
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

AOCE Application Interfaces

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleTalk, APDA, ImageWriter,
LaserWriter, Macintosh, MPW, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

AOCE, AppleMail, Balloon Help,
DigiSign, Finder, PowerShare,
PowerTalk, QuickDraw, QuickTime,
ResEdit, and System 7 are trademarks
of Apple Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

QuickMail is a trademark of CE
Software, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40848-1
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, June 1994

Library of Congress Cataloging-in-Publication Data

Apple Computer, Inc.
Inside Macintosh : AOCE application interfaces.

p. cm.
Includes index.
ISBN 0-201-40848-1
1. Macintosh (Computer) 2. Application software. I. Title.

QA76.8.M3A668 1994
005.265—dc20 94-16207

CIP

iii

Contents

Figures, Tables, and Listings xv

Preface About This Book xix

What to Read xix

Format of a Typical Chapter xxi

Conventions Used in This Book xxii

Special Fonts xxii

Types of Notes xxii

Parameter Block Information xxiii

Development Environment xxiii

For More Information xxiv

Introduction to the Apple Open Collaboration
Chapter 1 Environment 1-1

About AOCE System Software 1-3

Some Uses for AOCE Software 1-4

The Company Store Catalog 1-5

Purchasing 1-7

Sales 1-8

The Components of the AOCE Software 1-8

Desktop Services 1-9

Collaboration Package 1-11

Standard Mail Package 1-11

Standard Catalog Package 1-12

Digital Signature Manager 1-12

Collaboration Toolbox 1-12

Authentication Manager 1-12

Catalog Manager 1-13

Interprogram Messaging Manager 1-13

Service Access Modules 1-14

AOCE Concepts 1-14

Catalogs, Records, and Attributes 1-14

Messaging and Message Queues 1-15

Addressing Mail and Messages 1-16

Authentication and Authentication Identities 1-17

iv

Chapter 2 AOCE Utilities 2-1

About the AOCE Utilities 2-3

AOCE Data Structures of Maximum and Minimum Size 2-3

Using the AOCE Utilities 2-5

Determining Whether the Collaboration Toolbox Is Available 2-5

Packing and Unpacking the AOCE Data Structures 2-5

Unpacking Catalog Specifications 2-6

Validating the AOCE Data Structures 2-10

Comparing AOCE Data Structures for Equality 2-12

Copying AOCE Data Structures 2-13

Copying Versus Duplicating AOCE Data Structures 2-15

Allocating AOCE Strings of Nonstandard Sizes 2-16

Allocating a RecordID Structure of Maximum Size 2-16

AOCE Utilities Reference 2-19

AOCE Data Structures 2-19

AOCE String Structures 2-19

Record Identifier Structures 2-25

Catalog Services Specification 2-36

Attribute Structures 2-38

AOCE Utility Functions 2-44

AOCE String Functions 2-45

Creation Identifier Functions 2-51

Packed Pathname Functions 2-55

Catalog Discriminator Functions 2-63

Record Location Information Functions 2-64

Local Record Identifier Functions 2-79

Short Record Identifier Functions 2-82

Record Identifier Functions 2-85

Packed Record Identifier Functions 2-88

Attribute Type Functions 2-94

Catalog Services Specification Functions 2-95

Application-Defined Functions 2-106

Summary of the AOCE Utilities 2-108

C Summary 2-108

Constants and Data Types 2-108

AOCE Utility Functions 2-118

Pascal Summary 2-123

Constants 2-123

Data Types 2-128

AOCE Utility Functions 2-133

Assembly Language Summary 2-138

Result Codes 2-140

v

Chapter 3 Standard Mail Package 3-1

About the Standard Mail Package 3-3

The Send-Letter Functions 3-3

The Mailer Functions 3-4

Mailers 3-4

Letter Formats 3-7

The Standard Catalog Package 3-8

Using the Standard Mail Package 3-8

Initializing the Standard Mail Package 3-8

Creating a Mailer 3-9

Sending Mail 3-11

Receiving Mail 3-17

Forwarding and Replying to Mail 3-19

Closing a Letter 3-20

Handling Mailer Events 3-21

Standard Mail Package Reference 3-25

Data Structures 3-25

Recipient Descriptor 3-25

Enclosure Descriptor 3-26

Letter Descriptor 3-27

Letter Information Structure 3-27

Creator Type Structure 3-28

Image Block Information Structure 3-28

Letter Parameter Block 3-29

Close-Options Structure 3-29

Mailer-State Structure 3-30

Send-Options Structure 3-34

Send-Format Structure 3-34

Letter-Specification Structure 3-35

Standard Mail Package Functions 3-36

Assembly-Language Interface 3-36

Authenticating a User 3-36

Send-Letter Functions 3-37

Providing Mailers in Your Windows 3-45

Handling Events in Mailers 3-63

Sending and Saving Mail 3-72

Reading Mail 3-93

Printing Mailers 3-107

Getting and Setting Information in the Mailer 3-110

Application-Defined Functions 3-122

Summary of the Standard Mail Package 3-127

C Summary 3-127

Constants and Data Types 3-127

Standard Mail Package Functions 3-134

Application-Defined Functions 3-140

vi

Pascal Summary 3-140

Constants 3-140

Data Types 3-143

Standard Mail Package Functions 3-146

Application-Defined Functions 3-151

Assembly-Language Summary 3-151

Trap Macros 3-151

Result Codes 3-153

Chapter 4 Standard Catalog Package 4-1

About the Standard Catalog Package 4-3

Finding and Selecting Records 4-3

Using the Standard Catalog Package 4-5

Testing for the Presence of the Standard Catalog Package 4-5

Creating an Authentication Identity 4-6

Creating a Catalog-Browsing Panel 4-8

Handling Catalog-Browsing Panel Events 4-11

Creating and Disposing of a Find Panel 4-18

Standard Catalog Package Reference 4-20

Data Types 4-20

Catalog-Browsing Panel Structure 4-20

Find Panel Structure 4-22

RString List 4-23

Standard Catalog Package Functions 4-23

Assembly-Language Interface 4-24

Authenticating a User 4-25

Sorting a Personal Catalog 4-28

Creating, Displaying, and Disposing of a Catalog-Browsing Panel 4-29

Handling Events in a Catalog-Browsing Panel 4-51

Creating, Displaying, and Disposing of a Find Panel 4-61

Handling Events in a Find Panel 4-75

Resolving Aliases 4-85

Obtaining Icons and Lists of Catalog-Item Categories and Types 4-88

Application-Defined Functions 4-94

Summary of the Standard Catalog Package 4-96

C Summary 4-96

Constants and Data Types 4-96

Standard Catalog Package Functions 4-100

Pascal Summary 4-105

Constants 4-105

Data Types 4-107

Standard Catalog Package Functions 4-109

Assembly-Language Summary 4-114

Trap Macros 4-114

Result Codes 4-115

vii

Chapter 5 AOCE Templates 5-1

Introduction to the AOCE Catalogs Extension 5-5

Introduction to AOCE Templates 5-9

Aspect Templates 5-13

Information Page Templates 5-14

Forwarder Templates 5-14

Killer Templates 5-15

File Type Templates 5-15

How Aspect and Information Page Templates Work 5-15

Lookup Tables 5-25

Conditional Views 5-26

Code Resources 5-27

How the Catalogs Extension Saves New Values 5-27

Property Value Synchronization 5-28

Drags and Drops 5-28

Writing AOCE Templates 5-30

Defining a New Record Type or Attribute Type 5-30

Defining the Contents of the New Record Type or Attribute Type 5-33

Laying Out an Information Page 5-36

Adding a Conditional View 5-40

Adding an Information Page With a Sublist 5-43

Writing a Main Aspect and Information Page for an Attribute 5-52

Creating a Custom Information Page Window 5-58

Writing Template Code Resources 5-65

AOCE Templates Reference 5-73

File and Resource Types Used by the Catalogs Extension 5-73

Template Names 5-75

Specifying Record and Attribute Types for Templates 5-75

Components of Aspect Templates 5-78

Properties 5-84

Aspect Template Signature Resource 5-88

Main Aspect Template Resources 5-88

Supporting Drags and Drops 5-98

Other Aspect Template Resources 5-103

The Lookup-Table Resource 5-105

Basic Element Types 5-111

Conditional Element Types 5-112

Block Elements 5-113

Size Element Types 5-115

Providing Your Own Pattern Elements 5-118

Overriding Default Property-Type Assignments 5-119

Canceling Pattern Processing 5-119

Components of Information Page Templates 5-119

Information Page Template Signature Resource 5-121

View Lists 5-123

viii

Implementing Conditional Views 5-131

Sublists 5-136

Information Page Resources 5-136

Components of Forwarder Templates 5-138

Forwarder Template Signature Resource 5-139

Forwarder Template Resources 5-139

Components of Killer Templates 5-140

Killer Template Signature Resource 5-140

Killer Template Resources 5-140

Components of File Type Templates 5-141

File Type Template Signature Resource 5-141

File Type Template Resources 5-141

Code Resources Reference 5-142

Rules for Writing Code Resources 5-142

Data Types 5-142

Target Specifier 5-142

Forwarder List 5-145

Call Block Headers 5-145

Callback Block Headers 5-147

Functions You Can Provide as Part of Your Code Resource 5-148

Call-For Mask 5-149

Initializing and Removing Templates 5-150

Dynamic Creation of Resources 5-154

Processing Idle-Time Tasks 5-157

Property and Information Page Functions 5-158

Supporting Drops 5-169

Attribute-Related Commands 5-175

Processing Custom Lookup-Table Pattern Elements 5-182

Synchronizing Property Values 5-185

Custom Property-Type Conversions 5-188

Custom Views and Custom Menus 5-192

CE-Provided Functions That Your Code Resource Can Call 5-196

Calling CE-Provided Functions 5-197

Testing Your Code Resource 5-198

Changing the Call-For Mask 5-198

Process Control 5-199

Handling Drags and Drops 5-201

Working With Templates 5-205

Working With Catalog Objects 5-209

Edit-Text Routines 5-211

Getting Information About Properties 5-213

Setting Value, Type, and Other Features of Properties 5-223

Working With Sublists 5-235

Working With Pop-Up Menus 5-238

Custom Views 5-242

Sending a Property Command 5-245

ix

Summary of AOCE Templates 5-247

C Summary 5-247

Constants and Data Types 5-247

Functions You Can Provide as Part of Your Code Resource 5-260

CE-Provided Functions That Your Code Resource Can Call 5-265

Pascal Summary 5-270

Constants 5-270

Data Types 5-278

Functions You Can Provide as Part of Your Code Resource 5-283

CE-Provided Functions That Your Code Resource Can Call 5-292

Result Codes 5-299

Chapter 6 Digital Signature Manager 6-1

About Digital Signatures 6-3

Cryptography and Digital Signatures 6-4

Components of a Full Signature 6-5

The Digital Signature 6-5

The Certificate Set 6-6

Creating and Verifying Signatures 6-8

About Public-Key Certificates 6-8

Using the Digital Signature Manager 6-11

Determining the Version Number of the Digital Signature Manager 6-11

Using a Context 6-12

Creating a Full Signature 6-14

Verifying a Full Signature 6-16

Creating a Simple (Unencrypted) Digest 6-19

Getting Information From a Signature or Certificate 6-19

Dealing With Standard Signatures in Files 6-22

Digital Signature Manager Reference 6-23

Constants and Data Types 6-23

Signer Information Structure 6-23

Certificate Information Structure 6-25

Standard Signature Icon Suite 6-26

Name Attribute Information Structure 6-26

Digital Signature Manager Functions 6-27

Assembly-Language Interface 6-27

Creating and Disposing of a Context 6-28

Processing Data to Generate a Digest 6-30

Creating a Signature 6-31

Verifying a Signature 6-38

Creating a Digest 6-43

Getting Information From a Signature or Certificate 6-45

x

Application-Defined Function 6-54

Summary of the Digital Signature Manager 6-56

C Summary 6-56

Constants and Data Types 6-56

Digital Signature Manager Functions 6-58

Pascal Summary 6-60

Constants and Data Types 6-60

Digital Signature Manager Functions 6-62

Assembly-Language Summary 6-63

Result Codes 6-64

Chapter 7 Interprogram Messaging Manager 7-1

About the IPM Manager 7-3

About AOCE Interprogram Messages 7-4

Message Queues 7-8

Addresses 7-9

Report Messages 7-9

Addressing IPM Messages 7-10

Direct Addressing 7-11

AppleTalk Direct Addressing 7-12

Telephone Direct Addressing 7-12

Indirect Addressing 7-14

Attribute-Type Indirect Addressing 7-15

Queue-Name Format for Attribute Values 7-16

Using the IPM Manager 7-17

Determining Whether the Collaboration Toolbox is Available 7-17

Determining the Version of the Collaboration Toolbox 7-17

Error Handling 7-18

Creating a Message 7-18

Initiating the Message-Creation Process 7-18

Adding Information to the Message 7-19

Ending a Message 7-20

Creating and Managing Message Queues 7-20

Creating and Opening a Queue 7-20

Specifying a Queue Filter and Enumerating a Queue 7-21

Closing a Queue 7-22

Reading Messages 7-22

IPM Manager Reference 7-24

Data Types 7-24

Message Addressing Structures 7-24

Message and Block Types 7-26

Delivery Notification 7-28

xi

Filter Structures 7-34

Message Information Structure 7-36

Header Information Structures 7-37

Sender Structure 7-39

Interprogram Messaging Parameter Block Header 7-40

Asynchronous or Synchronous Operations 7-41

Completion Routines and Polling Options 7-41

IPM Manager Functions 7-42

Calling an IPM Function From Assembly Language 7-43

Creating a New Message 7-43

Managing Message Queues 7-68

Listing and Reading Messages 7-80

Deleting Messages 7-105

Utility Functions 7-107

Application-Defined Functions 7-114

Summary of the IPM Manager 7-117

C Summary 7-117

Constants and Data Types 7-117

IPM Manager Functions 7-133

Pascal Summary 7-135

Constants 7-135

Data Types 7-138

IPM Manager Functions 7-153

Assembly-Language Summary 7-156

Result Codes 7-157

Chapter 8 Catalog Manager 8-1

Introduction to AOCE Catalogs 8-4

Catalog Nodes 8-5

Catalog Records and Attributes 8-6

Aliases and Pseudonyms 8-7

Access Controls 8-7

Identities and the PowerTalk Setup Catalog 8-8

About the Catalog Manager 8-9

Get/Parse Function Pairs 8-9

Callback Routines 8-10

Determining Features Supported 8-10

Getting Access Controls 8-11

Types of Requesters 8-11

Types of Access Privileges 8-13

Access Control Lists 8-14

xii

Using the Catalog Manager 8-15

Determining Whether the Collaboration Toolbox Is Available 8-16

Determining the Version of the Catalog Manager 8-16

Getting Attribute Value Information 8-16

Getting Attribute Type Information 8-20

Getting Extended Catalog Information 8-24

Catalog Manager Reference 8-28

Feature Flag Bit Array 8-28

Data Types 8-32

The Parameter Block Header 8-32

The dNode ID 8-34

The Enumeration Choice Type 8-34

The Enumeration Specification 8-35

The Script Structure 8-36

The Matching Criteria Type 8-37

Catalog Manager Functions 8-38

Getting Information About Catalogs 8-38

Getting Information About dNodes 8-56

Maintaining the PowerTalk Setup Catalog 8-71

Creating, Opening, and Closing Personal Catalogs 8-82

Managing Records 8-89

Managing Attribute Types and Values 8-108

Reading Access Controls for dNodes, Records, and Attribute

Types 8-132

Cancelling a Catalog Manager Function 8-148

Application-Defined Functions 8-150

Summary of the Catalog Manager 8-164

C Summary 8-164

Constants and Data Types 8-164

Catalog Manager Functions 8-187

Pascal Summary 8-191

Constants and Data Types 8-191

Catalog Manager Functions 8-229

Assembly-Language Summary 8-234

Result Codes 8-236

Chapter 9 Authentication Manager 9-1

Introduction to Authentication 9-4

Keys 9-4

Credentials 9-5

Steps in the Authentication Process 9-5

Identities 9-7

Local Identities 9-8

xiii

Specific Identities 9-9

Guest Access 9-9

The PowerTalk Setup Catalog 9-9

Proxies 9-10

About the Authentication Manager 9-10

Using the Authentication Manager 9-11

Determining Whether the Collaboration Toolbox Is Available 9-11

Determining the Version of the Authentication Manager 9-11

Authentication Using ASDSP 9-12

Authentication for Non-ASDSP Users 9-13

The Initiator’s Authentication Process 9-13

The Recipient’s Authentication Process 9-14

Authentication Using a Proxy 9-14

Using the Notification Queue 9-15

Authentication Manager Reference 9-18

Data Structures 9-18

Parameter Block Header 9-18

The Key Structures 9-20

Authentication Manager Functions 9-20

Assembly-Language Interface 9-21

Key Management 9-21

Local Identity Management 9-28

Specific Identity Management 9-39

Credentials Management 9-43

Creation ID Resolution 9-50

Time Service 9-52

Non-ASDSP Authentication Utilities 9-54

PowerTalk Setup Catalog Management 9-61

Application-Defined Functions 9-68

Summary of the Authentication Manager 9-71

C Summary 9-71

Constants and Data Types 9-71

Authentication Manager Functions 9-80

Application-Defined Functions 9-82

Pascal Summary 9-82

Constants 9-82

Data Types 9-83

Authentication Manager Functions 9-100

Application-Defined Routines 9-102

Assembly-Language Summary 9-102

Trap Macros 9-102

Result Codes 9-103

xiv

Appendix PowerTalk Built-in Templates A-1

User Records A-1

Group Records A-4

Addresses A-4

Other Built-in Templates A-4

Glossary GL-1

Index IN-1

xv

Figures, Tables, and Listings

Chapter 1 Introduction to the Apple Open Collaboration Environment 1-1

Figure 1-1 Letter containing an AOCE mailer 1-5
Figure 1-2 Catalog-item information page 1-6
Figure 1-3 The components of the AOCE software 1-9
Figure 1-4 The Catalogs Extension to the Finder in use on a desktop 1-10
Figure 1-5 An In Tray with certified (that is, authenticated) and uncertified

letters 1-17

Chapter 2 AOCE Utilities 2-1

Figure 2-1 The Record identifier structure 2-26

Table 2-1 AOCE packed data structures and functions used to pack and
unpack them 2-6

Table 2-2 AOCE validation functions and associated data structures 2-11
Table 2-3 AOCE equality functions and associated data structures 2-13
Table 2-4 AOCE copying and duplicating functions and associated data

structures 2-15

Listing 2-1 Unpacking a DSSpec structure 2-7
Listing 2-2 Validating a PackedPathName structure 2-11
Listing 2-3 Calling a copy function 2-14
Listing 2-4 Allocating a string to store specialized data 2-16
Listing 2-5 Allocating and disposing of a maximum-sized RecordID

structure 2-17

Chapter 3 Standard Mail Package 3-1

Figure 3-1 Mailer in an application window 3-5
Figure 3-2 Mailer in the contracted state 3-5
Figure 3-3 Mailer in the expanded state 3-5
Figure 3-4 Mailer with addressing panel open 3-6
Figure 3-5 The four versions of the addressing panel 3-6
Figure 3-6 Mailer for a forwarded letter 3-50
Figure 3-7 Send-options dialog box 3-75
Figure 3-8 Add Enclosure dialog box 3-121

Listing 3-1 Testing for the presence of Standard Mail Package services 3-8
Listing 3-2 Initializing the Standard Mail Package 3-9
Listing 3-3 Creating a mailer 3-10
Listing 3-4 Displaying the send-options dialog box 3-11
Listing 3-5 Performing the send operation 3-12
Listing 3-6 Adding the letter content 3-13
Listing 3-7 Adding the application’s native-format content 3-14

xvi

Listing 3-8 Adding AppleMail standard interchange-format content 3-15
Listing 3-9 Adding image-format content 3-16
Listing 3-10 Apple event handler processing both file and letter

specifications 3-17
Listing 3-11 Opening a letter 3-18
Listing 3-12 Forwarding a letter 3-19
Listing 3-13 Replying to a letter 3-20
Listing 3-14 Preparing to close a letter 3-20
Listing 3-15 Checking status prior to closing a letter 3-21
Listing 3-16 Closing the letter 3-21
Listing 3-17 Processing events in a mailer window 3-22
Listing 3-18 Handling a mouse click in a mailer window 3-24
Listing 3-19 Supporting the Clipboard in a mailer edit command 3-25

Chapter 4 Standard Catalog Package 4-1

Figure 4-1 A Catalog-Browsing panel in an application window 4-4
Figure 4-2 A Find panel in an application window 4-4
Figure 4-3 Authentication dialog box 4-7
Figure 4-4 A Catalog-Browsing panel 4-9
Figure 4-5 The Find panel 4-18

Listing 4-1 Testing for the Standard Catalog Package 4-5
Listing 4-2 Getting an authentication identity 4-8
Listing 4-3 Using the SDPNewPanel function to create a new panel 4-9
Listing 4-4 Handling events in a Catalog-Browsing panel 4-12
Listing 4-5 Creating a Find panel 4-19
Listing 4-6 Disposing of a Find panel 4-20

Chapter 5 AOCE Templates 5-1

Figure 5-1 The AOCE Catalogs Extension in use 5-6
Figure 5-2 View menu seen with the AOCE Catalogs Extension to the

Finder 5-7
Figure 5-3 Information page 5-8
Figure 5-4 Information page with a sublist 5-8
Figure 5-5 Information page for an item in a sublist 5-9
Figure 5-6 From a record to an information page 5-11
Figure 5-7 Creating an aspect from a record 5-16
Figure 5-8 Creating an information page from an aspect 5-17
Figure 5-9 Multiple aspects and information pages 5-18
Figure 5-10 Main aspects for records 5-19
Figure 5-11 Main aspects for attributes 5-20
Figure 5-12 Main aspect templates for records 5-21
Figure 5-13 Main aspect templates for attributes 5-22
Figure 5-14 Providing an information page for an attribute in a sublist 5-23
Figure 5-15 Providing an information page for a record in a dNode window

list 5-24

xvii

Figure 5-16 Pattern-based attribute parsing 5-25
Figure 5-17 Conditional view 5-26
Figure 5-18 Catalog window displaying the record type defined by

Listing 5-1 5-33
Figure 5-19 Simple information page 5-40
Figure 5-20 Simple information page with a conditional view 5-40
Figure 5-21 Information page with a sublist 5-44
Figure 5-22 Custom information page 5-65
Figure 5-23 Information page using a code resource 5-65
Figure 5-24 Lookup-table format 5-107

Table 5-1 Resources in aspect templates 5-78
Table 5-2 Property types 5-85
Table 5-3 Metaproperties 5-86
Table 5-4 Resources used by main aspect templates 5-89
Table 5-5 Lookup-table flags 5-109
Table 5-6 Basic lookup-table element types 5-111
Table 5-7 Conditional elements for lookup tables 5-112
Table 5-8 Block elements for lookup tables 5-114
Table 5-9 Lookup-table elements that create patterns of a specific

size 5-115
Table 5-10 Resources in information page templates 5-120
Table 5-11 Resources in forwarder templates 5-138
Table 5-12 Resources in killer templates 5-140
Table 5-13 Resources in file type templates 5-141
Table 5-14 Property commands 5-161
Table 5-15 Property-type conversions on requesting a property value 5-214
Table 5-16 Property-type conversions on setting a property value 5-223

Listing 5-1 Main aspect template 5-31
Listing 5-2 Defining properties for a record 5-34
Listing 5-3 A simple information page 5-36
Listing 5-4 An information page with a sublist 5-44
Listing 5-5 Attribute main aspect and information page 5-52
Listing 5-6 Templates for a custom information page 5-58
Listing 5-7 View lists that get values from a code resource 5-66
Listing 5-8 Template code resource 5-68
Listing 5-9 Lookup table with basic elements 5-111
Listing 5-10 Lookup table with conditional elements 5-113
Listing 5-11 Lookup table with block elements 5-114
Listing 5-12 Lookup table with size and block elements 5-116
Listing 5-13 Lookup-table entry with a destination property for the 'wsiz'

element type 5-117
Listing 5-14 Information page signature resource with conditional

views 5-122
Listing 5-15 Sample view list 5-130
Listing 5-16 Implementing a conditional view 5-131

xviii

Chapter 6 Digital Signature Manager 6-1

Figure 6-1 Principles of public-key encryption 6-4
Figure 6-2 The components of a full signature 6-5
Figure 6-3 A certificate set consisting of two signed certificates 6-7
Figure 6-4 Hierarchically arranged distinguished name 6-11
Figure 6-5 The password-prompting dialog box 6-33
Figure 6-6 Show-signer dialog box 6-47

Table 6-1 Conventions governing attributes of a distinguished name 6-9
Table 6-2 Digital Signature Manager tasks and functions 6-12

Listing 6-1 A sample signature-creation routine 6-15
Listing 6-2 A sample signature-verification routine 6-17
Listing 6-3 A sample routine that returns information in a certificate

set 6-21

Chapter 7 Interprogram Messaging Manager 7-1

Figure 7-1 Structure of an AOCE message 7-5
Figure 7-2 An AOCE message containing a nested message 7-5
Figure 7-3 Contents of an AOCE message header 7-6
Figure 7-4 An IPM report message 7-10
Figure 7-5 Contents of an OCERecipient structure 7-11
Figure 7-6 The two forms of the message type structure 7-27

Listing 7-1 Calling an MSAM function from assembly language 7-43
Listing 7-2 Calling an MSAM utility function from assembly language 7-108

Chapter 8 Catalog Manager 8-1

Figure 8-1 Structure of an AOCE catalog 8-6

Listing 8-1 Listing the attribute values for a catalog 8-17
Listing 8-2 Listing the attribute types for a catalog 8-21
Listing 8-3 Getting extended information for a catalog 8-25

Chapter 9 Authentication Manager 9-1

Figure 9-1 The authentication process 9-6

Listing 9-1 Using the notification queue 9-15

Appendix PowerTalk Built-in Templates A-1

Table A-1 Names of AOCE templates for User records A-3

xix

P R E F A C E

About This Book

This book, Inside Macintosh: AOCE Application Interfaces, describes the

application programming interfaces (APIs) to PowerTalk system software and

to services provided by PowerShare collaboration servers. The technology

underlying the PowerTalk and PowerShare software is called the Apple Open
Collaboration Environment (AOCE). In this book, the term AOCE software
refers to the Macintosh Operating System managers, Finder extensions, and

other system software that the PowerTalk desktop interface and PowerShare

servers use to implement their many features. You can use the AOCE software

to enhance your application’s capabilities. The term PowerTalk system software

refers specifically to the implementation of the AOCE technology for the

Macintosh computer, and the term PowerShare collaboration servers refers to

AOCE-based servers provided by Apple Computer, Inc. The PowerShare

collaboration servers provide mail, messaging, catalog, security, and time

services.

This book shows in detail how your application can take advantage of the

system software enhancements offered by the AOCE software. It provides a

complete technical reference to AOCE data structures, AOCE utility routines,

the Standard Mail Package, the Standard Catalog Package, AOCE templates,

the Digital Signature Manager, the Interprogram Messaging Manager, the

Catalog Manager, and the Authentication Manager.

You need this book if you want to incorporate AOCE features into your

application or to write AOCE templates to extend the Finder’s capability to

display information in an AOCE catalog. If you are interested in extending the

capabilities of the AOCE system software to take advantage of services

offered by external databases and messaging systems, see Inside Macintosh:
AOCE Service Access Modules.

What to Read

The PowerTalk system software and PowerShare servers add many new

capabilities to the Macintosh Operating System with which you might not yet

be familiar. For this reason, you should read the first chapter, “Introduction to

the Apple Open Collaboration Environment,” before attempting to use any of

the software described in this book. That chapter describes some of the uses of

PowerTalk and PowerShare system software and introduces all of the AOCE

managers. It discusses some concepts fundamental to an understanding of the

AOCE software and defines many terms used throughout this book.

The AOCE software uses several complex, packed data structures whose

exact contents are private. You must often work with unpacked forms of these

xx

P R E F A C E

structures, compare packed data structures whose contents you cannot read,

and convert between packed and unpacked forms of structures. For this

reason, the AOCE software provides a variety of utility routines that you can

use to pack, unpack, compare, and otherwise manipulate these data

structures. The chapter “AOCE Utilities” describes these data structures and

utility routines. You should read this chapter before reading any of the other

chapters in this book.

The AOCE software provides several high-level programming interfaces that

you can use to add PowerTalk and PowerShare capabilities to both existing

and new applications.

The chapter “Standard Mail Package” tells you how to add PowerTalk mail

capabilities to any application.

The chapter “Standard Catalog Package” tells you how to add

catalog-browsing and searching services to any application.

If you want to extend the ability of the Finder to display information in AOCE

catalogs, you can write a set of resource files called AOCE templates that

describe the data to be displayed and the format in which it is shown. AOCE

templates can include code resources that respond to user actions and

manipulate data. The chapter “AOCE Templates” describes the template

resources in detail and shows sample templates to help you get started

writing your own.

A user can use the PowerTalk system software to add a digital signature to

any file in the Finder or to sign any letter that has a PowerTalk mailer

attached. In addition, if you want to allow a user to add a digital signature to

your application’s documents or to any portion of a document, you can use

the information in the chapter “Digital Signature Manager” to add this

capability to your application.

In addition to these high-level programming interfaces, the AOCE software

provides three low-level managers that you can use to implement messaging,

catalog, and authentication features in your application. These interfaces are

intended for use by experienced Macintosh programmers who have a good

knowledge of Macintosh system software. Whereas the chapters that describe

the high-level APIs all include sample code and programming hints, the

chapters on the low-level managers provide less of this sort of information. As

with all the chapters, they do provide a complete reference to all of the data

structures and functions provided by these managers.

You can use the AOCE Interprogram Messaging Manager, described in the

chapter “Interprogram Messaging Manager,” to send messages between

processes or applications without user intervention. This chapter also may be

of interest to anyone using the Standard Mail Package or writing a messaging

service access module (MSAM). An MSAM is an interface between an

external mail or messaging system and the PowerTalk system software.

The chapter “Catalog Manager” describes functions you can use to get

information about AOCE catalogs and to manipulate the data in catalogs. You

xxi

P R E F A C E

can use this information to provide catalog-related functions beyond those

provided by the Standard Catalog Package. This chapter is required reading

for anyone writing a catalog service access module (CSAM). A CSAM is an

interface between an external catalog or database and the PowerTalk system

software.

The chapter “Authentication Manager” describes the functions provided by

the AOCE authentication service. Some of these functions require you to use

PowerShare collaboration servers. Other functions described in this chapter

allow you to implement your own authentication system.

There is one appendix, “PowerTalk Built-in Templates,” which describes some

of the details of the AOCE templates that are built into the PowerTalk system

software. You can use this information to gain access to the information in

these templates or to provide additional templates that work with and extend

the built-in templates.

For your convenience, this book and Inside Macintosh: AOCE Service Access
Modules include the same glossary of AOCE terminology. Thus, some glossary

entries refer to topics that are not introduced in this book.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the

chapter “Standard Mail Package” contains these sections:

■ “About the Standard Mail Package.” This section provides an overview of
the features provided by the Standard Mail Package.

■ “Using the Standard Mail Package.” This section describes the tasks you
can accomplish using the Standard Mail Package. It describes how to use
the most common routines, gives related user interface information,
provides code samples, and supplies additional information.

■ “Standard Mail Package Reference.” This section provides a complete
reference to the Standard Mail Package by describing the data structures
and functions that it uses. Each function description also follows a
standard format, which gives the function declaration and a description of
every parameter of the function. Some function descriptions also give
additional descriptive information, such as special considerations and
cross-references to other sections, chapters, and books.

■ “Summary of Standard Mail Package.” This section provides the Standard
Mail Package’s C interface, as well as the Pascal interface, for the constants,
data structures, functions, and result codes associated with the Standard
Mail Package. It also includes some assembly-language interface
information.

Some chapters include additional main sections that introduce new concepts

or discuss certain concepts in detail. For example, in the chapter “Digital

Signature Manager,” the section “About Public-Key Certificates” describes the

xxii

P R E F A C E

public-key certificates used by the Digital Signature Manager to verify the

identity of a signer. In the chapter “Interprogram Messaging Manager,” the

section “Addressing IPM Messages” describes the address format used by the

Interprogram Messaging Manager.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information, such as parameter blocks, use special formats so that you can

scan them quickly.

Special Fonts
All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and functions are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts defined in the

glossary.

Types of Notes
Four types of notes are used in this book:

Note

A note like this contains general information that is supplemental to the
main text. (An example appears on page 2-6.) ◆

Special topic note

A note like this contains information about a specific topic that is
supplemental to the main text. (An example appears on page 5-29.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text and that might cause you problems if
ignored. (An example appears on page 3-64.) ▲

▲ W A R N I N G

A warning like this indicates a potential problem that you should be
aware of as you design your software. Failure to head such a warning
could result in a system crash or loss of data. (An example appears on
page 5-197.) ▲

xxiii

P R E F A C E

Parameter Block Information
Inside Macintosh presents information about the fields of a parameter block in

this format:

Parameter block

The arrow in the column at the far left indicates whether the field is an input

parameter, output parameter, or both. You must supply values for all

input parameters and input/output parameters. The function returns values

in output parameters and input/output parameters.

The second column shows the field name as defined in the MPW C interface

files; the third column indicates the C data type of that field. The fourth

column provides a brief description of the use of the field. For a complete

description of each field, see the discussion that follows the parameter block

or the description of the parameter block in the reference section of the

chapter.

Development Environment

The system software routines described in this book are available using C or

Pascal interfaces. You can call most of these routines in assembly language,

but no assembly-language interface files are provided. How you access these

routines depends on the development environment you are using. This book

shows system software functions in their C interface using the Macintosh

Programmer’s Workshop (MPW).

All code listings in this book are shown in C, or, for resources, in Rez in put

format. They show methods of using various routines and illustrate

techniques for accomplishing particular tasks. Not all code listings have been

compiled or tested. These code listings are for illustrative purposes only;

Apple Computer, Inc., does not intend for you to use these code samples in

your application.

This book occasionally uses SurfWriter and SurfDB as the names of

applications for illustrative purposes; these are not actual products of Apple

Computer, Inc. In addition, the name River Change Systems is used to represent

a fictitious company.

↔ inAndOut Boolean Input/output parameter.

← output1 OSErr Output parameter.

→ input1 long Input parameter.

xxiv

P R E F A C E

For More Information

APDA is Apple’s worldwide source for hundreds of development tools,

technical resources, training products, and information for anyone interested

in developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and

the most popular third-party development tools. APDA offers convenient

payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering application signatures, file types, Apple events,

and other technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 303-2T

Cupertino, CA 95014-6299

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Introduction to the Apple
Open Collaboration

Contents

Environment

About AOCE System Software 1-3

Some Uses for AOCE Software 1-4

The Company Store Catalog 1-5

Purchasing 1-7

Sales 1-8

The Components of the AOCE Software 1-8

Desktop Services 1-9

Collaboration Package 1-11

Standard Mail Package 1-11

Standard Catalog Package 1-12

Digital Signature Manager 1-12

Collaboration Toolbox 1-12

Authentication Manager 1-12

Catalog Manager 1-13

Interprogram Messaging Manager 1-13

Service Access Modules 1-14

AOCE Concepts 1-14

Catalogs, Records, and Attributes 1-14

Messaging and Message Queues 1-15

Addressing Mail and Messages 1-16

Authentication and Authentication Identities 1-17

C H A P T E R 1

About AOCE System Software 1-3

Introduction to the Apple Open Collaboration Environment

This chapter describes the Apple Open Collaboration Environment and the Macintosh

system software components that compose the AOCE APIs. It provides an introduction

to the capabilities of the AOCE software and some of the ways you can use AOCE

technology to enhance your application or to solve specific problems in workflow and

collaboration among people and computers.

Whereas the other chapters of this book are intended for programmers and application

developers with a working knowledge of the C programming language, this chapter is

also of interest to anyone who wants to gain a deeper understanding of the capabilities

and uses of the AOCE technology and the PowerTalk system software. To read this

chapter you should be familiar with the fundamentals of programming for the

Macintosh computer and the basic concepts of interapplication communications. For

introductions to these topics, see Inside Macintosh: Overview and Technical Introduction to
the Macintosh Family. It will also be helpful if you have spent some time using the

PowerTalk software on your own computer.

This chapter begins with a brief statement about the relationship of the AOCE software

to the rest of the Macintosh Operating System. It then presents several scenarios

describing possible uses of the AOCE technology to solve collaboration and workflow

problems for a mythical company. The third section of this chapter describes each of the

components of the AOCE system software in some detail. The final section introduces

some basic concepts used throughout the remaining chapters in this book.

About AOCE System Software

The AOCE system software adds to the capabilities of the Macintosh Operating System

and of the Finder. To the Macintosh Operating System, the AOCE software adds a

transport-independent messaging service that applications can use for mail and for

interapplication communications. Unlike the Program-to-Program Communications

(PPC) Toolbox, the AOCE Interprogram Messaging (IPM) service does not require that

both the sending and receiving applications be simultaneously connected to a network.

In fact, IPM does not require that the communication ends be connected to a network at

all: it operates over modems and can work over any other message-transport mechanism

for which a developer cares to write an interface.

Although collaboration among users and applications implies the existence of some

messaging service, the AOCE system software supports collaboration in other ways as

well: it provides catalogs, which store not only addresses but any sort of data you wish

to put in them; it authenticates the identities of the sender, routers, and receivers of

messages; and it allows users and applications to guarantee the identity of the sender of

a message and the integrity of the data in a message by affixing a digital signature to the

data.

The AOCE software extends the capabilities of the Finder by adding a universal mailbox

capable of holding every sort of electronic mail received by the user: E-mail, voicemail,

faxes, and so forth. It also provides a familiar folder-based interface that allows users to

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

1-4 Some Uses for AOCE Software

browse the contents of AOCE catalogs. Developers can extend both the types of mail that

the mailbox can receive and the types of catalog data that the Finder can display.

The following sections illustrate these uses of the AOCE software and describe the

components of the AOCE software in more detail.

Some Uses for AOCE Software

To understand some of the ways you can use AOCE software to improve productivity

and workflow efficiency, consider a hypothetical situation. Suppose that the president

and CEO of the River Change Systems company wants to improve the efficiency of her

company’s operations. She uses her favorite word processor, SurfWriter, to write a memo

on her Macintosh computer to all of her department heads soliciting suggestions. Rather

than printing the memo and using the company mail service to deliver it, she simply

adds a PowerTalk mailer to the memo (Figure 1-1), turning it into a PowerTalk letter. She

then drags the addresses for her department heads from her personal catalog on her

Macintosh desktop, drops them into the mailer, and chooses Send from the Mail menu to

send the letter over her company’s AppleTalk network. Not all of the department heads

at the River Change Systems company have SurfWriter on their Macintosh computers,

but those who don’t can read the memo using the AppleMail letter application that is

provided with the PowerTalk system software.

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

Some Uses for AOCE Software 1-5

Figure 1-1 Letter containing an AOCE mailer

Here are some of the ideas that the department heads come up with.

The Company Store Catalog
The River Change Systems company has over 12,000 employees worldwide, and they

make extensive use of the company store, buying gift and office items for themselves

and friends. The company store stocks hundreds of items and prints a full-color catalog

four times a year as well as numerous notices and announcements of sales and special

events. Overseas employees of the company sometimes have to wait weeks for the

delivery of their catalogs, occasionally missing out on limited-stock items. Although the

store grosses nearly $500,000 a year, it barely breaks even because of its low profit

margins.

The manager of the company store suggests a PowerTalk-based system that will replace

the company store’s printed catalog and integrate it with the store’s inventory-tracking

system. This is how the system works:

The paper catalog is replaced by a server-based AOCE catalog. The basis for the catalog

is the store’s existing inventory database, which was created using the SurfDB database

application. A catalog service access module (CSAM) in each user’s computer interfaces

the SurfDB database server to that user’s PowerTalk system. Each item in the catalog

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

1-6 Some Uses for AOCE Software

appears as an icon in a folder on the employee’s desktop when he or she logs on to the

PowerTalk system. Overseas employees, who are connected via microwave links to the

company’s extended AppleTalk network, have the same access to the store’s catalog as

anyone else. Even employees working at home or using Macintosh PowerBook

computers while traveling can dial in to the network by using the AppleTalk Remote

Access application.

When an employee double-clicks an item in the catalog, a window appears that contains

a stack of PowerTalk information pages displaying information about the item, including

a picture (Figure 1-2). Because the catalog draws its information from the store’s

inventory database, the catalog includes information about whether the item is in stock,

how many are available, whether it is backordered if not currently available, and—

depending on the type of item—such data as what sizes and colors are in stock. One of

the information pages in the stack is an order form.

Figure 1-2 Catalog-item information page

When employees want to order items from the catalog, they fill out the order form on the

screen. To fill in the name and address fields, they can drag the information from a

personal catalog or a PowerTalk information card on their desktop and drop it on the

order form. They can do the same thing to add an address of a third party for delivery of

a gift. For payment, employees can authorize deductions from their paychecks or can use

credit cards. In either case, they must affix a digital signature to the order form to

guarantee the authenticity of the order.

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

Some Uses for AOCE Software 1-7

When the employee clicks the Send button on the order form, the code resource

associated with the information page sends the signed order form to the company store

and updates the database to indicate the sale. It also sends a message to the company’s

accounting database informing it of the sale, the amount due, and the form of payment.

In the case of a payroll deduction, the accounting database automatically reduces the

employee’s paycheck by the indicated amount and marks the account as paid. If the

employee used a credit card, the database sends a message to the credit card bank

requesting payment.

From the time the employee sends the order, no human interaction is necessary to

complete the financial transaction. Once the payment has been approved, the accounting

database application sends a PowerTalk message to the company store warehouse,

where the order, shipping list, and mailing label are automatically printed out.

In addition to this catalog-based system, the company store uses PowerTalk to send

announcements of sales and special events to all the employees. The company store

marketing director uses SurfWriter to create the announcement, adds a PowerTalk

mailer, and sends it to several group addresses that include all the employees of the

company. Each announcement is sent in both the SurfWriter native format and the

AppleMail image format, so each employee can read the letter whether or not that

employee has the SurfWriter application.

Purchasing
The manager of the purchasing department suggests the use of PowerTalk to automate

the routing of purchasing requests. An employee wishing to make a purchase opens the

company’s forms application and chooses New Form from the File menu. This opens a

catalog-selection dialog box that lets the user select the proper form from a PowerTalk

catalog. The application displays the form, and the employee fills it in and adds a digital

signature.

When the employee clicks a Send button at the bottom of the form, the application

automatically looks up the AppleTalk address of the employee’s manager in a

PowerShare catalog and sends the form to that manager. The form appears as a forms

application file in the manager’s PowerTalk mailbox. The manager reads the form,

approves or disapproves it, adds a digital signature, and clicks Send. At each routing

step the forms application sends dated messages in AppleMail letter format to the

requestor and to the purchasing department indicating that a request has been made,

who made it, who has last forwarded it, and to whom it has most recently been sent. If at

any point the request is denied, the forms application sends a letter, with a copy of the

form attached, informing the original requestor that the request has been denied, when it

was denied, and who denied it.

When the fully approved form arrives at purchasing, the requested item can be

purchased. If the vendor is also using PowerTalk, the purchasing department can

forward the purchase order over the network or by modem and arrange for the

electronic transfer of funds from one bank to the other. The entire transaction can be

completed without printing any paper. What’s more, a digital signature guaranteeing the

originator and integrity of the request has been added at each step. If the request is

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

1-8 The Components of the AOCE Software

delayed at any point in the routing, the purchasing department can check the latest

routing report to determine who is holding it up and for how long.

Sales
The large sales staff of the River Change Systems company have been losing sales when

they miss messages either because they are on the road or because a salesperson neglects

to check all of the different types of electronic messages that can come in each day:

voicemail, faxes, AppleLink, and internal E-mail. In addition, sales staff need some way

to check inventory and enter orders while on the road.

By adding PowerTalk to their systems, each salesperson can gather all of his or her

messages in a single mailbox, which the salesperson can check whether in the office or

on the road. In addition, by using a PowerTalk CSAM to access the company’s inventory

database, the salesperson can check inventory and place orders at any time. Each

salesperson can also use a personal PowerTalk catalog stored on his or her notebook

computer to keep track of accounts and to store addresses, phone numbers, and personal

information about clients.

The Components of the AOCE Software

Rather than suggesting more uses for the AOCE technology, at this point it might be

more useful to describe the components that constitute the AOCE software and to show

how each of the features or functions in the foregoing examples is implemented with

AOCE APIs.

At the heart of AOCE technology are three basic services: messaging, authentication, and

catalogs. These are enhanced by an independent module, Digital Signatures, plus an

extensible version of the Finder. The AOCE software provides APIs for each of these

components: the Interprogram Messaging Manager, the Authentication Manager, the

Catalog Manager, the Digital Signatures Manager, and the AOCE template mechanism

for extending the Finder. In addition, there are two high-level AOCE APIs that make it

very easy to add mail and catalog services to existing applications: the Standard Mail

Package and the Standard Catalog Package.

To allow the AOCE system software to work with external databases and messaging

systems, the AOCE technology also includes interfaces for catalog service access

modules (CSAMs) and mail and messaging service access modules (MSAMs).

Figure 1-3 shows all of the components of the AOCE software.

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

The Components of the AOCE Software 1-9

Figure 1-3 The components of the AOCE software

Desktop Services
The PowerTalk system software includes extensions to the desktop services offered by

System 7. The user adds and configures mail and catalog services through the PowerTalk

Key Chain. If you provide a CSAM or MSAM, you will also have to provide resources

for use by the Key Chain as described in the chapter “Service Access Module Setup” in

Inside Macintosh: AOCE Service Access Modules. All of the forms of electronic mail coming

in from the messaging systems that the user has added to his or her Key Chain appear in

the compound mailbox, which appears on the user’s desktop as the Mailbox icon. There

is no application interface to the mailbox. To learn how to interface an external mail or

messaging system to the PowerTalk messaging system, see Inside Macintosh: AOCE
Service Access Modules.

The AOCE Catalogs Extension (CE) to the Finder includes the Catalog Browser and

AOCE templates. The Catalog Browser is a Finder extension that allows a user to search

through an AOCE catalog by opening folders on the desktop. An AOCE catalog is a

hierarchically arranged store of data. AOCE catalogs include PowerTalk server-based

catalogs, personal catalogs, and external databases interfaced to the AOCE catalog

system through a catalog service access module (CSAM). Personal catalogs are stored as

hierarchical file system (HFS) files on the user’s computer. AOCE catalogs are described

in more detail in “Catalogs, Records, and Attributes” on page 1-14.

Viewed through the catalog browser, an AOCE catalog appears to be a folder, analogous

to a volume in HFS, that contains catalog folders, analogous to HFS folders, and records,
analogous to HFS files. Each record can contain one or more blocks of data, called

attribute values. Figure 1-4 shows a desktop with catalogs, catalog folders, and record

icons displayed.

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

1-10 The Components of the AOCE Software

Figure 1-4 The Catalogs Extension to the Finder in use on a desktop

Just as with HFS files, the user can open an AOCE catalog record to view its contents.

Unlike HFS, however, which calls on the application that created the file to open it, it’s

the Finder itself that opens a catalog record. When the user opens a record on the

desktop, the Catalogs Extension (CE) to the Finder displays a special window called an

information page window. The information page window for a record might contain a list

of attribute values; if so, the user can open each attribute value in the list to see what it

contains, displayed in another information page window.

An information page window contains one or more information pages, each of which

contains information about a record or about one of its attributes. This information can

include a list of attributes in a record, information derived from attributes, and controls

such as buttons and checkboxes. Information pages can also contain editable text and

pictures. When the user makes changes to the information in an information page and

closes the information page, the CE makes corresponding changes to the attribute values

in the record. Figure 1-2 on page 1-6 shows an information page window.

Because there are no restrictions on the type of data that you can put in a record, the

AOCE software includes a mechanism for designing and implementing new information

pages to display new types of data (or for displaying old types of data in new ways). To

create new information pages and to interface them with AOCE catalog records and

attributes, you write resource files known as AOCE templates.

In the example in “The Company Store Catalog” beginning on page 1-5, AOCE

templates are used extensively by the company store catalog to display the information

in the store’s database. On the user’s desktop, the store’s database appears as an AOCE

catalog folder, containing a number of catalog folders with labels such as “Rubber

ducks,” “Other bath toys,” and “Recording albums.” Each such folder contains one

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

The Components of the AOCE Software 1-11

AOCE catalog record for each item in the company store catalog; for example, the

“Rubber ducks” folder contains a little over 40 records, each containing information

about a different variety of rubber duck.

When an employee opens a catalog-item record, an information page displays

information that is stored as attributes in the record: a picture of the item, its price, the

number in stock, and so forth. The order-form information page contains text-entry

fields and controls that let the employee order the item. For each of these information

pages, the company’s programmers have supplied a set of AOCE templates to define the

contents and appearance of the information page and to implement the functions that it

performs.

For detailed information about AOCE templates, see the chapter “AOCE Templates” in

this book. For more information about the structure of AOCE catalogs, see the chapter

“Catalog Manager” in this book.

Collaboration Package
The AOCE Collaboration Package consists of two high-level APIs: the Standard Mail

Package and the Standard Catalog Package. The Standard Mail Package provides two

interfaces: the send-letter routines and the mailer routines.

Standard Mail Package

The send-letter routines send a file created by an application to a user’s mailbox. In the

example in “Purchasing” beginning on page 1-7, the forms application uses the

send-letter routines to send purchase-order status reports to the originator of the

purchase order and to the purchasing department.

The mailer routines allow you to add a mailer to any of your application’s documents. A

mailer appears as a new region at the top of your document’s window (or you can put

one in its own window, if you wish) that provides addressing and subject fields. The user

can also add a digital signature to a letter containing a mailer. Adding a mailer to a

document turns the document into a letter. The AOCE software delivers a letter you mail

this way into the recipients’ PowerTalk mailboxes. When the recipient double-clicks the

letter, the Finder opens the application that was used to create it. If the recipient does not

have that application, and if you chose to send an image version or a standard

AppleMail format version of the document, the user can still open the document using

the AppleMail application.

In the example, the president of the River Change Systems company uses a SurfWriter

application document with a PowerTalk mailer to send a memo to all department heads,

and the company store uses this application to send announcements to employees. In

both cases, the letter includes an image or AppleMail format version so that recipients

who do not have SurfWriter can still open it.

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

1-12 The Components of the AOCE Software

Standard Catalog Package

The Standard Catalog Package makes it easy for you to provide dialog boxes that let the

user browse and search PowerTalk catalogs from within your application. In the example

in “Purchasing” on page 1-7, the forms application provides a dialog box to the user to

allow the selection of a form from a PowerTalk catalog that contains forms. Because you

can restrict the dialog box to display only records of specific types, the catalog can

contain many types of records in addition to those containing forms, but the forms

application presents only the selection of forms to the user.

Digital Signature Manager
The Digital Signature Manager allows you to add a digital signature to a file or any

portion of a file. A digital signature is an encrypted number that is associated with a

particular set of data. The digital signature guarantees the identity of the individual or

entity (for example, the company) that signed the data, and it ensures the integrity of the

data. A digital signature cannot be forged, and the signed data can not be altered

without invalidating the signature.

Users can use a mailer to add a digital signature to a document in an application that

uses the Standard Mail Package to add mailers to its documents. They can also use the

DigiSign utility program to sign any file. You can use the Digital Signature Manager to

allow users to sign any data. In the example in “The Company Store Catalog” beginning

on page 1-5, the AOCE template that provides data for the order-form information page

calls the Digital Signature Manager to sign the order form to authorize a credit card

purchase or payroll deduction. In “Purchasing” on page 1-7, the forms application

requires the person submitting, approving, or disapproving the purchase order to add a

digital signature. Because the signature is being added from within the application, the

application itself must call the Digital Signature Manager.

Collaboration Toolbox
The fundamental services of AOCE are handled by three system software managers: the

Authentication Manager, the Catalog Manager, and the Interprogram Messaging (IPM)

Manager. Although you can call each of these managers independently to make use of its

services, they work together to support a variety of server-based and workstation-based

collaboration services. Together with the Digital Signature Manager, these managers are

referred to in this book as the AOCE toolbox. The Authentication, Catalog, and IPM

Managers are sometimes referred to as the Collaboration toolbox.

Authentication Manager

The Authentication Manager provides services to the other Collaboration toolbox

managers and to the PowerShare servers. The Authentication Manager allows each end

of a communications connection to determine that the other end is who it claims to be.

Every time a user provides a password to log on to PowerTalk or to connect to a

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

The Components of the AOCE Software 1-13

PowerShare collaboration server, the Authentication Manager provides credentials to the

AOCE software that verify the identity of the user.

Very few applications need to call the Authentication Manager directly. However, if you

want to authenticate the connection ends of an AppleTalk Secure Data Stream Protocol

(ASDSP) connection or if you want to authenticate some other type of connection

outside of the AOCE messaging service, you can use Authentication Manager functions

to do so. In any case, it is important that you understand the concepts of authentication

and the credentials (known as identities) returned to your program by the Authentication

Manager; these concepts are discussed in “Authentication and Authentication Identities”

beginning on page 1-17. ASDSP is described in the chapter on ADSP in Inside Macintosh:
Networking.

Catalog Manager

The AOCE Catalog Manager provides an interface to AOCE catalogs (see “Desktop

Services” on page 1-9 for a general description of AOCE catalogs). The AOCE Catalog

Manager lets you

■ get information about AOCE catalogs and catalog nodes

■ create, open, and close personal catalogs

■ manage the organization of an AOCE catalog

■ manage the contents of an AOCE catalog

■ get information about access controls for a catalog and the contents of a catalog

The AOCE Finder extension allows users to browse catalogs, and the Standard Catalog

Package lets you display dialog boxes that let the user browse catalogs and search for

specific records. If you want to get information from a catalog or make changes to a

catalog directly from your application or without user interaction, you can use the

functions provided by the Catalog Manager.

In the example “Purchasing” on page 1-7, the forms application uses the Catalog

Manager to find in a PowerShare catalog the name and address of the next person to

whom the form should be routed. No user interaction is therefore necessary to route the

form.

Interprogram Messaging Manager

The Interprogram Messaging (IPM) Manager provides a messaging service that is used

by the AOCE software and that you can use for your own purposes. The IPM Manager

works with servers (such as the PowerShare mail servers) and without servers. It can

send messages over an AppleTalk network, over other networks (through mail and

messaging service access modules, or MSAMs), and even over telephone lines through

modems. The IPM Manager provides store-and-forward messaging. In store-and-forward

messaging, the receiver does not have to be available to receive the message at the time it

is sent; the IPM Manager stores the message and sends it on when the receiver is

available.

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

1-14 AOCE Concepts

Whereas you can use the Standard Mail Package to add mail capabilities to your

application and to send any file as an attachment to a letter, you can use the IPM

Manager to send mail or non-mail messages. The distinction between mail and non-mail

messages is that mail involves the transmission of a message that is intended to be read

by a person, whereas non-mail messages are intended to be used by an application.

In the example “The Company Store Catalog” beginning on page 1-5, when the

employee clicks the Send button on the order form, the code resource associated with the

information page uses the IPM Manager to send the signed order form to the company

store and to send a message to the company’s accounting database informing it of the

sale, the amount due, and the form of payment. The signed order form is intended to be

read by people and so is sent as electronic mail, but the message to the accounting

database contains commands intended to be used only by the database application and

so is sent as a non-mail message.

Service Access Modules
Developers can provide software modules, called service access modules (SAMs) that

link the AOCE Collaboration toolbox to external mail and messaging services or

databases. Two types of mail and messaging SAMs can be written: server-based MSAMs

and personal MSAMs. A server-based MSAM resides on the same computer as a

PowerShare mail server and makes an external mail or messaging system available to all

users of that PowerShare server. A personal MSAM resides on an individual user’s

computer and makes an external mail or messaging system available through the AOCE

software for only that user. In either case, the user sends and receives mail from the

external system through the PowerTalk mailbox, and applications that send or receive

AOCE messages can send and receive these messages via the external messaging system.

All catalog service access modules (CSAMs) are in the form of device drivers located on

the user’s computer. A CSAM allows a non-AOCE database to appear to users and

applications to be an AOCE catalog. In the example “The Company Store Catalog”

beginning on page 1-5, each user of the company catalog has a CSAM that interfaces the

SurfDB database server to that user’s PowerTalk system.

AOCE Concepts

This section describes some of the basic concepts and structures that appear frequently

in this book. All of these topics are discussed in more detail in the succeeding chapters in

this book, but they are all crucial to an understanding of how the AOCE software works

and how you can use it, and you might find an early introduction to these topics helpful.

Catalogs, Records, and Attributes
As discussed in “Desktop Services” beginning on page 1-9, an AOCE catalog is a

hierarchically arranged store of data. The root level of a catalog appears on the desktop

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

AOCE Concepts 1-15

as a folder with the name of the catalog. The root-level catalog folder can contain any

number of folders (also known as catalog nodes or dNodes) and records, and each

contained folder can itself contain folders and records. (Note that in some AOCE

catalogs, such as personal catalogs, the root-level folder contains only records, not other

folders.) The catalog records contain the data and take the place in the catalog hierarchy

occupied by files in the hierarchical file system (HFS). Accordingly, records cannot

contain folders or other records.

The data in an AOCE catalog record is stored as attribute values, which cannot exceed

65,536 bytes in size. Each attribute value has an attribute value tag, which specifies the

format of the data in the attribute value. Attribute values are grouped according to

attribute type. When you add an attribute value to a record, the Catalog Manager

assigns it an attribute creation ID, which is unique within the record. The combination

of an attribute type, attribute value, attribute value tag, and attribute creation ID is

referred to as an attribute.

Although an attribute value is the smallest unit of data storable in a catalog, an AOCE

template can parse the data in an attribute value and display any portion of that data in

a manner meaningful to the user. When the user edits the data in an information page

and closes the information page, the CE uses the data-parsing pattern in the template to

determine how to update the attribute value and saves the new value in the record.

You can call Catalog Manager functions to create and delete records and to add, modify,

and delete attributes within records. You can call Standard Catalog Package functions to

provide dialog boxes that allow users to browse and search catalogs. You can write

AOCE templates that tell the Finder how to display the contents of records and

attributes.

Messaging and Message Queues
The AOCE Interprogram Messaging Manager provides store-and-forward messaging;

that is, when you send a message, the IPM Manager stores the message until it is able to

forward it to its destination. Although PowerShare mail servers and other

AOCE-compatible messaging servers can store messages on the server computer so that

it is never necessary for the sending computer and receiving computer to be online

simultaneously, the IPM Manager also provides a store-and-forward messaging service

for messages not sent through servers. To achieve this end, the IPM Manager maintains

an output queue for messages on the computer of the sending application and an input

queue on the computer of the receiving application.

Suppose, for example, that you used a PowerTalk mailer to send a SurfWriter application

document to someone at an AppleTalk address. If the recipient’s computer was not

connected to the network at the time you sent the message, the IPM Manager would

place the message in your output queue. The IPM Manager would then check AppleTalk

periodically to determine whether the recipient computer was present on the network.

When the recipient’s computer comes online, the IPM Manager in the sender’s computer

forwards the letter, and the IPM Manager in the recipient’s computer places it in the

input queue. Because in this example the message is a letter, it appears in the recipient’s

mailbox. Note that it is not necessary for the application used to create the message—

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

1-16 AOCE Concepts

SurfWriter in this case—to be running on either computer at the time the IPM Manager

forwards the letter from the sender’s output queue to the recipient’s input queue.

The IPM Manager provides default input queues for mail and for non-mail messages. In

addition, your application can create additional input queues on the local computer for

its own purposes. Managing such queues is somewhat complicated, however, and the

AOCE software provides no protocol for determining the name of a nonstandard input

queue; thus, you should create your own queues only when you have a clear need to do

so.

The administrator of an AOCE messaging server can create additional input queues on

the server computer and typically creates one queue for each user who has an account

on that server.

There is no facility for creating additional output queues; the IPM Manager opens and

maintains a single output queue on each user’s computer for all mail and messaging

purposes.

Because several applications might be using the same default input mail and messaging

queues for different purposes, the IPM Manager provides the ability to filter the message

list by a variety of criteria when you enumerate a queue.

Queues are described in detail in the chapter “Interprogram Messaging Manager” in this

book.

Addressing Mail and Messages
Each AOCE message or letter must be delivered to a specific input queue. In many cases,

the AOCE software takes care of addressing the message or letter for you, as when the

user drags an address from a catalog and drops it in a mailer. In other cases, an AOCE

function returns an address to which you can send a message or letter. For example, you

can use the Standard Catalog Package to let the user select a user record. The Standard

Catalog Package returns to you the catalog specifier (DSSpec structure) that identifies

the record the user selects. You can then provide that catalog specifier to the IPM

Manager as the address for a message. The IPM Manager extracts the name and address

of the default messaging queue for that user from the specified record and routes the

message accordingly.

This last example illustrates the use of indirect addressing. Indirect addressing lets you

specify the entity (the user or application, for example) to which you want the message

sent without specifying— or even having to know—the actual queue name or the

location of the queue. You do this by specifying a catalog record (and, optionally, the

attribute within that record) that contains the address. (If you use the user record type

and do not specify the attribute, the IPM Manager uses the default mail or messaging

queue, as in the preceding example.)

You can also use indirect addressing to send a letter or message to a group. In the

simplest use of group addresses, the record you specify as an address is a group record

containing the record identifiers of the user records of the members of the group. The

AOCE software takes care of resolving the addresses and routing the message. You can

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

AOCE Concepts 1-17

define your own record type in which to store group members’ addresses and resolve

group addresses yourself, but that requires a great deal more work on your part.

You can also use direct addressing, specifying the actual queue name plus the AppleTalk

address, modem string, or other exact information needed by the IPM Manager to

deliver the message. To use direct addressing, you must have prior knowledge of the

queue name and location of the recipient, or you must develop your own protocol,

outside of the AOCE APIs, for determining this information.

Addressing is discussed in detail in the chapter “Interprogram Messaging Manager” in

this book.

Authentication and Authentication Identities
The AOCE Authentication Manager works together with the PowerShare collaboration

servers to verify the identity of the requestor of a messaging or catalog service. Each

AOCE message header includes an authentication field that you can use to determine

whether the message or letter has been authenticated. If the value of this field is true,

you can have a very high level of confidence that the name in the sender field is genuine.

In order for a message (or letter) to be authenticated, the sender of the message and

every PowerShare server used to route the message has to have provided a valid

password when logging on to the AOCE system. In addition, the recipient of the

message has to provide a password before opening the mailbox or reading messages

from an input queue. In the case of mail, the user can determine whether a letter is

authenticated by looking for a seal next to the name of the sender in the In Tray. In

Figure 1-5, for example, the letter titled “Dialup Address” is authenticated, whereas the

letter titled “Re> AOCE Templates review...” is not.

Figure 1-5 An In Tray with certified (that is, authenticated) and uncertified letters

Note that only messages sent entirely through PowerShare servers can be authenticated

by the AOCE system; messages sent through MSAM servers or by way of a serverless

connection (over telephone lines, for example) cannot be authenticated by the AOCE

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

1-18 AOCE Concepts

software. However, you can use Authentication Manager functions to implement your

own authentication system for such messages. Note also that authentication guarantees

only the identity of the sender, not the integrity of the data in the message itself. To

guarantee that the content of a message has not been altered, use the Digital Signature

Manager (see “Digital Signature Manager” on page 1-12).

When an entity (user, server, or application) provides a valid name and password to the

Authentication Manager, the Authentication Manager returns a number known as an

authentication identity. Each entity requesting a service from the IPM Manager, Catalog

Manager, Standard Mail Package, or Standard Catalog Package then has to provide the

authentication identity each time it requests a messaging, mail, or catalog service.

The IPM Manager uses the authentication identity to authenticate a message or letter.

The Standard Mail Package goes a step further, using the authentication identity to

determine the sender of a letter and to fill in the From field in the mailer. The Catalog

Manager and Standard Catalog Package use the authentication identity for a different

purpose entirely; they use the identity to determine whether the requestor of a catalog

service has the authority to make a specific request. For example, the user who “owns” a

user record (that is, the user to whom that record was assigned by the catalog

administrator) normally has the authority to change personal data within that record.

Your application, by providing that user’s authentication identity to the Catalog

Manager, could then alter attribute values in that user record on behalf of that user. You

could not, however, alter data in some other person’s user record, because the Catalog

Manager would not grant you access to do so based on the authentication identity you

supplied.

The Catalog Manager provides access controls for catalogs, dNodes, records, and

attribute types. Access controls are described in detail in the chapter “Catalog Manager”

in this book.

If you have used the PowerTalk software, you are probably already familiar with the

concept of the PowerTalk Key Chain. Each time the user adds a service to the Key Chain,

the AOCE software saves in a special personal catalog an encrypted form of the name

and password the user provides. In this book this special catalog is referred to as the

PowerTalk Setup catalog. The AOCE Authentication Manager takes the user’s name and

password and creates a number called the local identity. In most cases, it is the local

identity that you provide to an AOCE toolbox function as the authentication identity

when requesting a service.

Suppose a user has accounts on two different PowerShare collaboration servers. The user

adds the name and password for each of these accounts to the PowerTalk Key Chain.

When the user turns on the computer in the morning and opens the PowerTalk mailbox,

the PowerTalk software requests the user’s access code, which is the password that

provides access to the Setup catalog. The user’s PowerTalk software then uses the

information in the Setup catalog to obtain authentication identities, referred to in this

book as specific identities, to obtain services from the PowerShare servers listed in the

Key Chain.

When you need to provide an authentication identity to an AOCE function, you can

provide either a local identity or a specific identity. When you provide the local identity,

C H A P T E R 1

Introduction to the Apple Open Collaboration Environment

AOCE Concepts 1-19

the AOCE software uses the information in the Setup catalog to obtain the specific

identity it needs to carry out the request. In most cases, you should provide the local

identity to any AOCE function that requires an authentication identity. You should

provide a specific identity only when it is absolutely necessary to do so, such as when

you are using a background interapplication messaging service that is not visible to the

user (and that has therefore not been added to the Key Chain), or when the user is not

the owner of the computer and does not know the owner’s access code.

The SDPPromptForID function (described in the chapter “Standard Catalog Package”

in this book) displays a dialog box requesting a name and password and returns an

authentication identity (either local or specific). If the user has already logged on, you

can use the AuthGetLocalIdentity function (see the chapter “Authentication

Manager” in this book) to obtain the local identity.

Contents 2-1

C H A P T E R 2

Contents

AOCE Utilities

About the AOCE Utilities 2-3

AOCE Data Structures of Maximum and Minimum Size 2-3

Using the AOCE Utilities 2-5

Determining Whether the Collaboration Toolbox Is Available 2-5

Packing and Unpacking the AOCE Data Structures 2-5

Unpacking Catalog Specifications 2-6

Validating the AOCE Data Structures 2-10

Comparing AOCE Data Structures for Equality 2-12

Copying AOCE Data Structures 2-13

Copying Versus Duplicating AOCE Data Structures 2-15

Allocating AOCE Strings of Nonstandard Sizes 2-16

Allocating a RecordID Structure of Maximum Size 2-16

AOCE Utilities Reference 2-19

AOCE Data Structures 2-19

AOCE String Structures 2-19

Record Identifier Structures 2-25

Catalog Services Specification 2-36

Attribute Structures 2-38

AOCE Utility Functions 2-44

AOCE String Functions 2-45

Creation Identifier Functions 2-51

Packed Pathname Functions 2-55

Catalog Discriminator Functions 2-63

Record Location Information Functions 2-64

Local Record Identifier Functions 2-79

Short Record Identifier Functions 2-82

Record Identifier Functions 2-85

Packed Record Identifier Functions 2-88

C H A P T E R 2

2-2 Contents

Attribute Type Functions 2-94

Catalog Services Specification Functions 2-95

Application-Defined Functions 2-106

Summary of the AOCE Utilities 2-108

C H A P T E R 2

About the AOCE Utilities 2-3

AOCE Utilities

This chapter describes those data structures and utility functions that are used

throughout the Apple Open Collaborative Environment (AOCE) but are not specific to

any one particular manager or package. It describes the data structures you need to be

familiar with to use the AOCE toolbox functions and shows you how to use the AOCE

utility functions to manipulate these data structures in various ways.

You should read this chapter if you will be using the Standard Mail or Standard Catalog

Packages to add AOCE services to your application, are developing a stand-alone mail

or communications package that will use AOCE services, or if you are developing

lower-level AOCE entities such as catalog services access modules.

Before reading this chapter you should have at least a general understanding of the

Apple Open Collaborative Environment. At the minimum, you should have read the

chapter “Introduction to AOCE,” earlier in this book, which explains the organization

and use of the various AOCE managers and services.

About the AOCE Utilities

The AOCE toolbox contains over 60 utility functions that are designed to provide you

with easy methods for performing various tasks using the AOCE data structures. Here

are some of the services that the AOCE utility functions provide:

■ converting data structures to their packed forms (packing)

■ converting data structures from their packed forms (unpacking)

■ checking data structures to verify that they are in the proper format and contain valid
data for their particular type

■ comparing data structures for equality

■ copying the contents of one data structure to another

■ converting variables from one data type to another

■ determining the size of data structures

■ determining whether a given data structure is null or empty

Unless otherwise noted, all of the AOCE utility functions described in this chapter can be

called at interrupt level and do not allocate any memory.

AOCE Data Structures of Maximum and Minimum Size
Some of the AOCE data structures are defined as maximum- or minimum-sized

structures. A maximum-sized structure is one that, upon creation, contains enough

storage to hold the maximum amount of data possible for that particular type of data

structure. An example of a maximum-sized AOCE structure is the RString structure

shown here and defined on page 2-20.

C H A P T E R 2

AOCE Utilities

2-4 About the AOCE Utilities

struct RString

{

RStringHeader

Byte body[kRStringMaxBytes];

};

When you create a new RString structure, it contains enough memory to hold 256

bytes of data in its body field, plus the number of bytes necessary for the

RStringHeader field. You never need to allocate any additional memory for the

structure.

By contrast, a minimum-sized structure is one that, upon creation, contains only the

minimum necessary storage. The minimum storage varies according to the type of data

structure. An example of a minimum-sized structure is the ProtoRString structure

shown here and defined on page 2-22.

struct ProtoRString

{

RStringHeader

};

As you can see, the ProtoRString structure differs from the RString structure in that

it does not contain a body field. Therefore, when you create a ProtoRString structure

for the first time, it contains only enough memory to hold the information in its

RStringHeader field. If you want to store any additional data in the ProtoRString

structure, you will have to allocate the memory. See the section “Allocating AOCE

Strings of Nonstandard Sizes” on page 2-16 for details on how to allocate additional

memory for a ProtoRString structure.

The advantage of using minimum-sized AOCE data structures is that you can allocate

structures of any size and can save memory by allocating structures that are exactly the

size you need. The disadvantage of using minimum-sized AOCE data structures is that

you will have to remember to allocate additional storage for the structure as you need it,

and you will have to write more code to allocate each structure.

After declaring a variable as a minimum-sized AOCE structure, you may sometimes find

that you need to allocate it as a maximum-sized structure. See the section “Allocating a

RecordID Structure of Maximum Size” on page 2-16 for more information.

C H A P T E R 2

AOCE Utilities

Using the AOCE Utilities 2-5

Using the AOCE Utilities

This section describes how you can use various AOCE utility functions and data

structures in your own code. Many of the AOCE utility functions have similar

characteristics and can be grouped according to the type of operations they perform.

This section explains most of the major groups of AOCE utility functions and provides

you with background knowledge that may help you understand how to use these

functions.

Determining Whether the Collaboration Toolbox Is Available
Before calling any of the AOCE Utility functions, you should verify that the

Collaboration toolbox is available by calling the Gestalt function with the selector

gestaltOCEToolboxAttr. If the Collaboration toolbox is present but not running (for

example, if the user deactivated it from the PowerTalk Setup control panel), the

Gestalt function sets the bit gestaltOCETBPresent in the response parameter. If

the Collaboration toolbox is running and available, the function sets the bit

gestaltOCETBAvailable in the response parameter. The Gestalt Manager is

described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

Packing and Unpacking the AOCE Data Structures
Several of the AOCE data structures contain fields that are themselves structures, and

these may in turn contain other nested structures. It is sometimes useful to compact, or

“flatten” a complex data structure into a sequence of bytes in order to perform an

operation more efficiently. This process is known as packing the data structure.

Similarly, the process of reconstructing a data structure from a sequence of bytes is

known as unpacking the data structure.

Many of the AOCE functions pass packed structures. Because the packed forms of these

structures are private, you can’t read or write them unless you use the utility routines to

pack and unpack them.

Another reason for using the packed form of a data structure is to simplify I/O related

tasks, such as writing the information contained in a data structure to a file, or sending

the data to a serial port. In its packed form, the data is usually just a stream of bytes,

which is much easier to work with in I/O operations.

The AOCE toolbox simplifies the processes of packing and unpacking by providing

unpacked and packed forms of many of its data structures, as well as the utility

functions to convert between the two forms. All of the AOCE packing functions begin

with the letters OCEPack followed by the name of the data structure they pack, and all of

the AOCE unpacking functions begin with the letters OCEUnpack followed by the name

of the data structure they unpack. For example, the AOCE packing function that packs

RecordID structures is named OCEPackRecordID.

C H A P T E R 2

AOCE Utilities

2-6 Using the AOCE Utilities

Table 2-1 shows the AOCE data structures that have packed forms, along with the

functions used to convert between the packed and unpacked forms.

Note

The Rstring structure is shown in Table 2-1 as the unpacked form of
the PackedPathName structure. This is actually a special case because
the unpacked form of the PackedPathName structure is an array of
RString structures. See the description of the PackedPathName
structure on page 2-29 for more information. To create a
PackedPathName structure, you need to supply an array of RString
structures to the OCEPackPathName function (page 2-60). ◆

Unpacking Catalog Specifications

The catalog services specification data structure, of data type DSSpec, is central to

accessing information within PowerTalk. Unpacking a PackedDSSpec structure is the

process of converting the sequence of bytes in a PackedDSSpec structure into the

structure of a DSSpec. In its packed form, the DSSpec structure contains other data

structures that are also packed, so you must unpack each component as well as the

PackedDSSpec structure itself.

Listing 2-1 shows how to unpack a DSSpec structure completely into its component

parts, including its nested packed structures.

1. First, allocate a DSSpec structure (DSSpecDumpRecord) in which to store the
contents of the PackedDSSpec structure when you unpack it. Also declare Boolean
variables to record whether the various parts of the structure are valid.

Table 2-1 AOCE packed data structures and functions used to pack and unpack them

Unpacked data structure Packed data structure Packing/unpacking functions

RString PackedPathName OCEUnpackPathName

OCEPackPathName

RLI PackedRLI OCEPackRLI

OCEUnpackRLI

OCEPackedRLIPartsSize

OCEPackRLIParts

RecordID PackedRecordID OCEPackRecordID

OCEUnpackRecordID

DSSpec PackedDSSpec OCEPackDSSpec

OCEUnpackDSSpec

C H A P T E R 2

AOCE Utilities

Using the AOCE Utilities 2-7

2. Call the Standard Catalog Package function SDPGetPanelSelectionSize to obtain
the size of the PackedDSSpec structure and then allocate memory for it. Call
SDPGetPanelSelection to retrieve the PackedDSSpec structure.

3. Call the UnpackPackedDSSpec function to unpack the PackedDSSpec structure.
Pass the function a pointer to the PackedDSSpec structure to be unpacked and a
pointer to the DSSpec structure to hold its component parts.

4. Call the DoDisplayDSSpecDumpRecord function (which is not shown here) to use
the information that you have retrieved from the PackedDSSpec structure; for
example, to display the contents of a record that a user has selected.

5. It is possible that the PackedDSSpec structure you obtained from the
SDPGetPanelSelection routine contains corrupted data. Therefore, you should
check the integrity of the PackedDSSpec structure and of each of the nested packed
structures that it contains before unpacking them. The DoUnpackPackedDSSpec
function calls a series of AOCE utility functions to verify the integrity of the packed
structures and to unpack them. The validation functions are nested in conditional
statements. If any of the structures is invalid, the code prints an error message
specifying which structure was corrupted. (The error messages are in the else
statements at the end of Listing 2-1.)

■ The OCEValidPackedDSSpec and OCEUnpackDSSpec functions verify and
unpack the packed DSSpec structure itself. The OCEGetDSSpecInfo function
returns the type of the DSSpec structure.

■ The OCEValidPackedRLI and OCEUnpackRLI functions verify and unpack the
packedRLI structure contained in the unpacked DSSpec structure.

■ The unpacked RLI structure contains a PackedPathName structure that you must
unpack. However, before unpacking it, you call OCEDNodeNameCount to obtain
the presumed number of pathnames. Then you allocate a vector to hold the
RString structures that make up the pathname list. Finally, you call
OCEUnpackPathName to unpack the PackedPathName buffer. If the presumed
number of pathnames matches the actual number returned by
OCEUnpackPathName, you are done.

Listing 2-1 Unpacking a DSSpec structure

/* In the example, the following external functions are defined:

 DoNOTE(message) Write the message to the error log.

 DoFailOSErr(status, msg) If status is not noErr, begin error recovery.

 DoFailNIL(ptr) If ptr is nil, begin error recovery. This is

 generally an unexpected, serious, error.

 The argument PackedDSSpec is stored in a private structure,

 DSSpecDumpRecord. Members of this structure contain pointers to the

 packed DSSpec.*/

typedef struct DSSpecDumpRecord {

 DSSpec theDSSpec; /* Unpacked DSSpec */

C H A P T E R 2

AOCE Utilities

2-8 Using the AOCE Utilities

 RecordID recordID; /* Its record ID structure */

 RLI theDSSpecRLI; /* Its unpacked Record Location Info */

 OSType specType; /* The type of this DSSpec */

 unsigned short nodeNameCount; /* Presumed number of pathnames */

 unsigned short trueNodeNameCount; /* Actual number of pathnames */

 RStringPtr *partsVector; /* -> vector of pathname RStrings */

/* These Boolean variables record the status of the DSSpec. They are true

if the associated part of the structure is present and in good

condition. */

 Boolean isValidDSSpec; /* OCEValidPackedDSSpec succeeds */

 Boolean isNonNullRLI; /* RLI is present in this DSSpec */

 Boolean isValidPackedRLI; /* OCEValidPackedRLI succeeds */

 Boolean isValidPackedPathName; /* OCEValidPackedPathName succeeds */

 Boolean isValidUnpackedCount; /* Unpacked count == presumed count */

} DSSpecDumpRecord, *DSSpecDumpPtr;

void

DoUnpackSDPPanelSelection(

 register DocumentPtr dbp,

 SDPPanelHandle thePanel

)

{

 OSErr status;

 PackedDSSpecPtr packedDSSpec;

 unsigned short packedDSSpecSize;

 DSSpecDumpRecord dumpRecord;

/* Allocate memory for the DSSpec and get it from the Standard

 Directory Manager. */

 status = SDPGetPanelSelectionSize(thePanel, &DpackedDSSpecSize);

 DoFailOSErr(status, "\pSDPGetPanelSelectionSize");

 packedDSSpec = (PackedDSSpecPtr) NewPtrClear(packedDSSpecSize);

 DoFailNIL(packedDSSpec);

 status = SDPGetPanelSelection(thePanel, packedDSSpec);

 DoFailOSErr(status, "\pSDPGetPanelSelection");

 DoUnpackPackedDSSpec(packedDSSpec, &dumpRecord);

 DoDisplayDSSpecDumpRecord(&dumpRecord); /* Not shown */

 if (dumpRecord.partsVector != NULL)

 DisposePtr((Ptr) dumpRecord.partsVector);

 if (packedDSSpec != NULL)

C H A P T E R 2

AOCE Utilities

Using the AOCE Utilities 2-9

 DisposePtr((Ptr) packedDSSpec);

}

void

DoUnpackPackedDSSpec(

 PackedDSSpecPtr packedDSSpec

 register DSSpecDumpPtr theDSSpecDumpPtr

)

{

#define SPEC (*theDSSpecDumpPtr)

 ClearMemory(&SPEC, sizeof SPEC);

 SPEC.isValidDSSpec = OCEValidPackedDSSpec(packedDSSpec);

 if (SPEC.isValidDSSpec) {

 OCEUnpackDSSpec(packedDSSpec, &SPEC.theDSSpec, &SPEC.recordID);

 SPEC.specType = OCEGetDSSpecInfo(&SPEC.theDSSpec);

 SPEC.isNonNullRLI = (SPEC.recordID.rli != NULL);

 if (SPEC.isNonNullRLI) {

 SPEC.isValidPackedRLI = OCEValidPackedRLI(SPEC.recordID.rli);

 if (SPEC.isValidPackedRLI) {

 OCEUnpackRLI(SPEC.recordID.rli, &SPEC.theDSSpecRLI);

 SPEC.isValidPackedPathName =

 OCEValidPackedPathName(SPEC.theDSSpecRLI.path);

 /* SPEC.isValidPackedPathName is false if you click

 on a printer or CPU in the AppleTalk directory. */

 if (SPEC.isValidPackedPathName) {

 SPEC.nodeNameCount =

 OCEDNodeNameCount(SPEC.theDSSpecRLI.path);

 /* Allocate a vector to hold the RStrings that make

 up the pathname list. Then unpack the pathname

 list. */

 SPEC.partsPtr = (RStringPtr *) NewPtrClear(

 sizeof (RStringPtr) * SPEC.nodeNameCount

);

 DoFailNIL(SPEC.partsPtr);

 SPEC.trueNodeNameCount= OCEUnpackPathName(

 SPEC.theDSSpecRLI.path,

 SPEC.partsPtr,

 SPEC.nodeNameCount

);

C H A P T E R 2

AOCE Utilities

2-10 Using the AOCE Utilities

 if (SPEC.nodeNameCount == SPEC.trueNodeNameCount)

 SPEC.isValidUnpackedCount = true;

 else {

 NOTE("\pUnpacked Node Name Count != Node Name

 Count");

 }

 else {

 NOTE("\pInvalid PackedPathName");

 }

 }

 else {

 NOTE("\pInvalid Packed RLI");

 }

 }

 else {

 NOTE("\pValid DSSpec but NULL RLI");

 }

 }

 else {

 NOTE("\pInvalid Packed DSSpec");

 }

}

Validating the AOCE Data Structures
The AOCE toolbox provides a set of validation functions that allow you to verify the

integrity of the various AOCE data structures. All of the AOCE validation functions

begin with the letters “OCEValid” and are followed by the name of the data structure

that they validate. For example, the AOCE validation function for PackedDSSpec

structures is called OCEValidPackedDSSpec. Table 2-1 on page 2-6 shows the AOCE

validation functions along with the data structures that each function validates. You

should use the AOCE validation functions whenever you want to make sure that the

AOCE data structures allocated in your program

■ are valid values for that data type

■ contain fields that have valid values

■ are of a valid size

■ contain fields of a valid size

The way the AOCE validation functions verify the integrity of a data structure depends

upon the type of structure being examined. In general, however, AOCE validation

functions perform the following checks:

■ They determine whether the pointer to the data structure is nil or the data structure
has a length of 0 and whether these are permissible values for this data structure.

C H A P T E R 2

AOCE Utilities

Using the AOCE Utilities 2-11

■ They determine if the data structure or any of its fields contain values that are not
valid for that particular data structure.

■ They determine if the value contained in any length fields of the data structure is
equal to the number of bytes of data actually contained in that field.

■ If the data structure contains fields that are other AOCE data structures, then the
validation function passes these fields to other AOCE validation functions until all of
the data structure’s fields are checked. If the AOCE validation function cannot
validate a field, it does not check that field but does check the rest of the data structure
for validity.

■ For packed data structures, the AOCE validation functions check that the packed data
structure is at least as large or larger than the smallest possible packed structure of
that type. This ensures that the data structure is at least large enough to hold the
minimum amount of data in all of its fields.

Listing 2-2 shows how to use the OCEValidPackedPathName function (page 2-62) to

compare a PackedPathName structure for validity. This sample code calls the

OCEValidPackedPathName function two different times to illustrate cases when the

PackedPathName structure is valid and when it is not valid. The

MyValidatePackedPathName function assumes the existence of a routine named

DoErrorChecking, which handles any memory errors. For information on the

PackedPathName structure see page 2-29.

Listing 2-2 Validating a PackedPathName structure

MyValidatePackedPathName()

{

PackedPathName* myPackedPathName;

PackedPathName* myNilPackedPathName;

Boolean isValid; /* value returned by

OCEValidPackedPathName/*

Table 2-2 AOCE validation functions and associated data structures

Verify function name Data structure verified

OCEValidRString RString

OCEValidPackedPathName PackedPathName

OCEValidRLI RLI

OCEValidPackedRLI PackedRLI

OCEValidPackedRecordID PackedRecordID

OCEValidPackedDSSpec PackedDSSpec

C H A P T E R 2

AOCE Utilities

2-12 Using the AOCE Utilities

/* First call OCEValidPackedPathName with a nil pointer. */

myNilPackedPathName = nil;

/* The AOCE toolbox does not consider nil PackedPathName

pointers to be valid, so this call to OCEValidPackedPathName

returns false in the isValid variable. */

isValid = OCEValidPackedPathName(myNilPackedPathName);

/* Allocate a PackedPathName structure. */

myPackedPathName = (PackedPathName *)

NewPtr(sizeof(PackedPathName);

DoErrorChecking(); /* make sure the PackedPathName allocation

didn’t fail */

myPackedPathName->dataLength = 0;/* set the length of the

PackedPathName to 0 */

/* The AOCE toolbox considers a PackedPathName with a length of

0 to be valid, so this call to OCEValidPackedPathName

returns true in the isValid variable. */

isValid = OCEValidPackedPathName(myPackedPathName);

}

Comparing AOCE Data Structures for Equality
The AOCE toolbox provides a set of functions that allow you to compare the AOCE data

structures for equality. All the AOCE equality functions begin with the letters OCEEqual

and are followed by the type of the data structures being compared. For example, the

AOCE equality function that compares two RString structures is called

OCEEqualRString. The AOCE equality functions and the data structures that they

compare are shown in Table 2-1 on page 2-6.

The actual method used to determine the equality of the data structures varies with their

type. Before using any equality function, you should read its description to find out

exactly how that function compares the data structures for equality. For example, the

OCEEqualPackedPathName function (page 2-61) considers two PackedPathName

structures to be equal if these three conditions are met: (a) one of the pointers passed into

the function is nil, (b) the other pointer is not nil, and (c) the pointer that is not nil

does point to a PackedPathName structure that has a length of 0. In general, each

AOCE equality function acts as follows when comparing two structures for equality:

■ If the data structures are packed, then the AOCE equality function unpacks them
before comparing them. This has no effect on the original data structures.

■ If the pointers to the data structures are both nil, then they are equal.

C H A P T E R 2

AOCE Utilities

Using the AOCE Utilities 2-13

■ If the data structures are not the same length, then they are not equal and no further
comparisons are performed on them.

■ If the data structures have fields that are other AOCE data structures, then the AOCE
equality function compares these nested structures by calling the appropriate AOCE
equality functions for these data structure types. This process is repeated for each
nested data structure. If any of the nested structures are not equal, then the AOCE
equality function returns false, indicating that the original data structures are not
equal.

Copying AOCE Data Structures
The AOCE toolbox provides a set of functions for copying the contents of one AOCE

data structure into another. You should use the AOCE copy functions whenever you

want to copy the contents of one AOCE data structure into another.

None of the utility functions allocates any memory. Therefore, before you call an AOCE

copy function, you need to make sure you have allocated both the source and

destination structures. The AOCE copy function returns an error if the structures you

allocate are too small. You should always check the value returned by an AOCE copy

function to make sure that the copy took place successfully.

All of the AOCE copy functions begin with the letters OCECopy and are followed by the

name of the data structure type that they copy. For example, the AOCE function for

copying two CreationID structures is OCECopyCreationID. See Table 2-1 on page 2-6

for a list of the AOCE copy functions and the data structures that they copy.

Table 2-3 AOCE equality functions and associated data structures

Equality Function Name Data Structures Compared

OCEEqualRString RString

OCEEqualCreationID CreationID

OCEEqualPackedPathName PackedPathName

OCEEqualDirDiscriminator DirDiscriminator

OCEEqualRLI RLI

OCEEqualPackedRLI PackedRLI

OCEEqualLocalRecordID LocalRecordID

OCEEqualShortRecordID ShortRecordID

OCEEqualRecordID RecordID

OCEEqualPackedRecordID PackedRecordID

OCEEqualDSSpec DSSpec

OCEEqualPackedDSSpec PackedDSSpec

C H A P T E R 2

AOCE Utilities

2-14 Using the AOCE Utilities

Listing 2-3 illustrates the correct way to call an AOCE copy function. The

MyCopyingCode function uses the OCECopyRString (page 2-45) utility routine to copy

the sourceRString structure. The sourceRString structure is assumed to be a valid

RString structure that has already been allocated and initialized elsewhere. The

MyCopyingCode function also uses the Macintosh toolbox routine MemErr to check for

memory allocation errors. In addition, the myCopyingCode function assumes the

existence of a function named DoErrorHandling that handles an error if one occurs.

Listing 2-3 Calling a copy function

MyCopyingCode(RString* sourceRString)

{

/* This function assumes that the sourceRString parameter is

a pointer to a valid RString containing data to be copied.

*/

OSErr myError; /* this variable holds the value returned

by the OCECopyRString function */

RString* destinationRString; /* pointer to the RString that

you want to copy the contents

of sourceRString into */

destinationRString = nil; /* initialize the pointer to a

“safe” value before

continuing... */

myError = noErr; /* initialize error to none */

/* Here is the correct way to call OCECopyRString. This

 code allocates the destinationRString variable to the

correct size before calling the OCECopyRString function. */

destinationRString = (RString *)NewPtr(sizeof(RString));

/* Check if memory allocation failed by calling MemError

Toolbox function. */

if (MemError() != noErr)

{

/* There was an error. Call your error handler. */

DoErrorHandling(myError);

}

/* Otherwise the RString was allocated properly. */

myError = OCECopyRString(sourceRString, destinationRString);

if (myError != noErr)

{

C H A P T E R 2

AOCE Utilities

Using the AOCE Utilities 2-15

/* There was an error. Call your error handler. */

DoErrorHandling(myError);

}

}

Copying Versus Duplicating AOCE Data Structures
There is a single AOCE duplication function, OCEDuplicateRLI; it is used to duplicate

RLI data structures. The difference between copying and duplicating as performed by

AOCE toolbox functions is subtle but important. In this context, copying is taking the

contents of each field in the source structure and placing them in the corresponding field

of the destination structure. This process includes all nested structures as well.

However, some AOCE data structures, such as RLI structures, contain fields that are

pointers to other nested data structures. For this reason, it is possible to change the

pointers in the destination structure so that they point to the corresponding data

structures in the source structure. This process of copying the pointers to data structures

and not the actual data structures themselves, is called duplicating the data structures.

This distinction between copying and duplicating applies only to the AOCE utility

functions, and not to other APIs.

There are advantages and disadvantages to duplicating a data structure as opposed to

copying it, and you must decide when it is appropriate to use duplication or copying in

your own code. The advantage of duplicating a data structure is that it is much faster

and requires less code than copying because only a pointer must be moved instead of a

whole data structure.

The disadvantage of duplication is that you must keep both the source and destination

structures in memory until you have finished using them. Here is the reason why: When

you duplicate a structure, the pointers in the destination structure change to point to the

source structure. Thus, after you duplicate a data structure, there is really only one copy

of the data, but that data is pointed to by both the source and destination structures.

Table 2-4 AOCE copying and duplicating functions and associated data structures

Copying Function Name Data Structure Copied

OCECopyRString RString

OCECopyCreationID CreationID

OCECopyPackedPathName PackedPathName

OCECopyDirDiscriminator DirDiscriminator

OCECopyRLI RLI

OCEDuplicateRLI RLI

OCECopyPackedRLI PackedRLI

continued

C H A P T E R 2

AOCE Utilities

2-16 Using the AOCE Utilities

Allocating AOCE Strings of Nonstandard Sizes
Three standard AOCE string sizes are defined for you by the RString, RString64, and

RString32 structures. There are times, however, when you may wish to create an

AOCE string of arbitrary size to store specialized data. Listing 2-4 shows how to

accomplish this task. This example allocates an AOCE string that has a size of 23 bytes.

Listing 2-4 Allocating a string to store specialized data

ProtoRString *rstr; /* create a pointer to a

ProtoRString struct */

rstr = NewPtr(23+sizeof(RStringHeader)); /* allocate memory for it

including its header

information */

if (rstr == nil)

{

/* Then allocation has failed; not enough memory available.

 Put your error handling here. */

}

rstr->charSet = smRoman; /* set script code to Roman */

rstr->length = 23; /* set the proper length */

Allocating a RecordID Structure of Maximum Size
When you allocate a new minimum-sized structure for the first time, memory is not

automatically allocated for any of its fields except the header. There are times, however,

when you may want to create a structure that has all of the memory for its fields

allocated, thus ensuring that you have enough memory to hold a maximum-sized

structure. For more information on minimum and maximum-sized AOCE structures, see

“AOCE Data Structures of Maximum and Minimum Size” on page 2-3.

OCECopyLocalRecordID LocalRecordID

OCECopyShortRecordID ShortRecordID

OCECopyRecordID RecordID

OCECopyPackedRecordID PackedRecordID

OCECopyPackedDSSpec PackedDSSpec

Table 2-4 AOCE copying and duplicating functions and associated data structures (continued)

Copying Function Name Data Structure Copied

C H A P T E R 2

AOCE Utilities

Using the AOCE Utilities 2-17

Listing 2-5 shows two functions, MyAllocateMaxRID and MyDeallocateMaxRID,

which allocate and dispose of a maximum-sized RecordID structure. The

MyAllocateMaxRID function uses the AOCE utility routine

OCESetCreationIDtoNULL (page 2-54) to initialize the fields of a CreationID

structure to NULL values. In addition, this function uses the Macintosh Toolbox routine

MemErr to check for memory allocation errors.

Listing 2-5 Allocating and disposing of a maximum-sized RecordID structure

/* This function allocates a maximum-sized recordID structure*/

OSErr MyAllocateMaxRID(RecordID *rid)

{

OSErr err; /* The error, if any, returned

by AllocateMaxRID */

PackedRLIPtr rli; /* Pointer to a packed RLI */

RString *name; /* The record name */

RString *type; /* The record type */

rid->local.recordName = nil; /* Initialize the record */

rid->local.recordType = nil; /* name, type, and rli to */

rid->rli = nil; /* nil */

/* Now allocate memory for a maximum-sized RString to hold

the record name. */

name = (RString*) NewPtr(sizeof(RString));

err = MemError();

if (err == noErr)

{

/* Now allocate space for the RString to hold the

record type. */

type = (RString*) NewPtr(sizeof(RString));

err = MemError();

if (err == noErr)

{

/* Finally, allocate the memory for the packed RLI. */

rli = (PackedRLIPtr) NewPtr(sizeof(PackedRLI));

err = MemError();

C H A P T E R 2

AOCE Utilities

2-18 Using the AOCE Utilities

if (err == noErr)

{

/* Now that all storage has been allocated, assign

it to its proper location. */

rid->local.recordName = name;

rid->local.recordType = type;

rid->rli = rli;

/* Set the RLI’s length field to its maximum size */

rli->length = kRLIMaxBytes;

/* Set the name and type RString’s length fields to

their maximum size. */

name->length = kRStringMaxBytes;

type->length = kRStringMaxBytes;

/* Now initialize the creation ID by setting it to

NULL. */

OCESetCreationIDtoNull(&(rid->local.cid));

}

}

}

if (err != noErr) /* if there was an error during memory */

allocation, dispose of the record ID

and return the error to the caller */

{

MyDeallocateMaxRID(rid);/* call function described next */

}

return err;

}

/* This function deallocates a record ID whose fields were

allocated on the heap. */

void MyDeallocateMaxRID(RecordID *rid)

{

DisposPtr((Ptr) rid->local.recordName);

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-19

DisposPtr((Ptr) rid->local.recordType);

DisposPtr((Ptr) rid->rli);

}

AOCE Utilities Reference

This section describes the data structures that are used throughout the various AOCE

managers and packages and the utility functions that manipulate these data structures.

AOCE Data Structures

The data types described in this chapter are used throughout AOCE and are not confined

to a particular manager or package.

AOCE String Structures

The AOCE string structures are used by AOCE functions in place of standard Pascal

strings because AOCE strings can handle international character sets that may consist of

2 bytes per character and because AOCE strings include the script code for the character

set of the data they contain. Standard Pascal strings use only 1 byte per character. All of

the AOCE string structures consist of an RStringHeader field and a body field. The

RStringHeader field contains information about the AOCE string, such as its character

set and length, whereas the body field holds the actual string contents.

RStringHeader

The header is the portion of each AOCE string that defines the particular qualities that

apply to the string’s contents. Each header contains the field charSet, which is used to

specify the character set, or script code, corresponding to the script you should use to

interpret the AOCE string. A script code represents a writing system for a human

language, such as Roman, Kanji, or Arabic, and the charSet field is the same as the

script code used by the Script Manager to specify a particular script. See Inside Macintosh:
Text for more information about script codes and international character sets, as well as

for a listing of defined script code constants.

The header is defined as follows:

#define RStringHeader \

CharacterSet charSet; \

unsigned short dataLength;

typedef short CharacterSet;

C H A P T E R 2

AOCE Utilities

2-20 AOCE Utilities Reference

Field descriptions

charSet The character set that applies to the text contained in the RString.

datalength The length, in bytes, of the body field of the RString structure, not
including the header. Note that for 2-byte character sets, such as
Kanji, the number of characters in the RString structure is half the
number of bytes in the body field.

RString

The RString structure is the basis for most strings in AOCE, as well as for other AOCE

data types such as the DirectoryName, AttributeType, and NetworkSpec

structures. The maximum number of bytes in an RString structure is defined by the

constant kRStringMaxBytes, and the maximum number of characters in an RString

structure is defined by the constant kRStringMaxChars.

Because the RString structure is of maximum size, it is already large enough to hold

any other valid RString structure when you allocate it. For a minimum-sized AOCE

string structure, see the ProtoRString type on page 2-22. The RString structure is

defined as follows:

struct RString

{

RStringHeader

Byte body[kRStringMaxBytes];

};

typedef struct RString RString;

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString structure and
specifies the length, in bytes, of the data in the body field of the
RString structure.

body An array containing the actual RString structure’s characters. The
array has a length of kRStringMaxBytes number of bytes and
contains as many bytes of data as specified by the dataLength
field of the header. The constant kRStringMaxBytes is equal to
256 bytes.

RString64

The RString64 structure is identical to an RString structure, except that its maximum

size is smaller. The RString64 length is defined by the constant kRString64Size.

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-21

struct RString64

{

RStringHeader

Byte body[kRString64Size];

};

typedef struct RString64 RString64;

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString64 structure and
specifies the length, in bytes, of the data in the body field of the
RString64 structure.

body An array containing the actual RString64 structure’s characters.
The array has a length of kRString64Size number of bytes and
contains as many bytes of data as specified by the dataLength
field of the header. The constant kRString64Size is equal to 64
bytes.

RString32

The RString32 structure is identical to an RString structure, except that its maximum

size is smaller. The RString32 structure’s length is defined by the constant

kRString32Size.

struct RString32

{

RStringHeader

Byte body[kRString32Size];

};

typedef struct RString32 RString32;

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString32 structure and
specifies the length, in bytes, of the data in the body field of the
RString32 structure.

body An array containing the actual RString32 structure’s characters.
The array has a length of kRString32Size number of bytes and
contains as many bytes of data as specified by the dataLength
field of the header. The constant kRString32Size is equal to 32
bytes.

C H A P T E R 2

AOCE Utilities

2-22 AOCE Utilities Reference

ProtoRString

The ProtoRString is the only AOCE string structure of minimum size; it initially has

no space allocated for the string contents. You should use a ProtoRString structure

whenever you need to create an AOCE string of variable length.

struct ProtoRString

{

RStringHeader

/* Define the body of the ProtoRstring here. */

};

typedef struct ProtoRString ProtoRString;

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString structure and
specifies the length, in bytes, of the data in the body field of the
RString structure.

Note
The ProtoRString structure does not have a defined body field as do
the other AOCE string structures. It is up to you to add a body field for
the ProtoRString structure. See the section “Allocating AOCE Strings
of Nonstandard Sizes” on page 2-16 for an example of how to do this. ◆

DirectoryName

A DirectoryName structure consists of a character set code, a length containing the

number of bytes in the body field, and the data in the body field. A DirectoryName

structure is identical to an RString structure, except that its maximum length is defined

by the constant kDirectoryNameMaxBytes and its body field holds the name of a

catalog (it is called a DirectoryName structure for historical reasons). You can typecast

any DirectoryName structure to an RString structure and use the RString utility

functions on it. The RString utility functions are described starting on page 2-45.

struct DirectoryName

{

RStringHeader

Byte body[kDirectoryNameMaxBytes];

};

typedef struct DirectoryName DirectoryName;

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-23

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString structure and
specifies the length, in bytes, of the data in the body field of the
RString structure.

body An array of characters that contains the name of a catalog. This
array can contain up to kDirectoryNameMaxBytes number of
bytes and contains as many bytes of data as specified by the
dataLength field of the header. The constant
kDirectoryNameMaxBytes is equal to 32 bytes.

NetworkSpec

A NetworkSpec structure consists of a character set code, a length containing the

number of bytes of data, and the data itself. A NetworkSpec structure is identical to an

RString structure, except that its maximum length is defined by the constant

kNetworkSpecMaxBytes and its body field is used to hold the name of a network. You

can typecast any NetworkSpec structure to an RString structure and use any of the

RString utility functions on it. The RString utility functions are described starting on

page 2-45.

For an example of how some functions use the NetworkSpec structure, see the

DirGetLocalNetworkSpec and DirGetDNodeInfo functions in the chapter “Catalog

Manager” in this book.

struct NetworkSpec

{

RStringHeader

Byte body[kNetworkSpecMaxBytes];

};

typedef struct NetworkSpec NetworkSpec;

The RStringHeader, described on page 2-19, defines the character set information that

applies to the text of the RString structure and specifies the length, in bytes, of the

body field of the RString structure.

Field descriptions

RStringHeader A header (described on page 2-19) which defines the character set
information that applies to the text of the RString structure and
specifies the length, in bytes, of the data in the body field of the
RString structure.

C H A P T E R 2

AOCE Utilities

2-24 AOCE Utilities Reference

body An array of characters that contains the name of a network. This
array can contain up to kNetworkSpecMaxBytes number of bytes
and contains as many bytes of data as specified by the dataLength
field of the header. The constant kNetworkSpecMaxBytes is equal
to 32 bytes.

RStringKind

Some of the AOCE utility functions require a parameter of type RStringKind in

addition to an AOCE string parameter. Based on the value of the parameter of type

RStringKind, the routine determines how it will handle the RString structure. The

OCERelRString (page 2-48), OCEEqualRString (page 2-50), and OCEValidRString

(page 2-51) functions use the RStringKind data type. When you call one of these

functions, you need to decide what value of the RStringKind type to use.

enum

{

kOCEDirName = 0,

kOCERecordOrDNodeName = 1,

kOCERecordType = 2,

kOCENetworkSpec = 3,

kOCEAttrType = 4,

kOCEGenericSensitive = 5,

kOCEGenericInsensitive =6

};

typedef unsigned short RStringKind;

Field descriptions

kOCEDirName The AOCE string is a DirectoryName structure containing a
catalog name. For more information about the DirectoryName
structure see page 2-22.

kOCERecordOrDNodeName
The AOCE string is a recordName structure containing a record
name or a catalog node name. See the LocalRecordId structure
on page 2-27 for the definition of the recordName structure.

kOCERecordType
The AOCE string is a recordType structure containing a record
type. See the LocalRecordId structure on page 2-27 for more
information on the recordType structure.

kOCENetworkSpec
The AOCE string is a NetworkSpec structure containing a network
specification. See page 2-23 for more information on the
NetworkSpec structure.

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-25

kOCEAttrType The AOCE string is an AttributeType structure containing an
attribute type. For more information on the AttributeType
structure see page 2-39.

kOCEGenericSensitive
The AOCE string is a generic AOCE string type that you should use
when you want an AOCE utility routine to be both case-sensitive
and sensitive to diacritical marks in its treatment of an RString
structure (c ≠ C ≠ ç). Use this type for your own AOCE strings that
will not be seen by a user.

kOCEGenericInsensitive
The AOCE string is a generic AOCE string type that you should use
when you want an AOCE utility routine to be neither case-sensitive
nor sensitive to diacritical marks in its treatment of an RString
structure (c = C = ç). Use this type for your own AOCE strings that
will be seen by a user.

Note

You should use the kOCEGenericSensitive and
kOCEGenericInsensitive RStringKind values when you use
AOCE strings to hold data other than a catalog node name or the five
derivative AOCE string structures (DirectoryName, AttributeType,
NetworkSpec, recordName, and recordType). Do not use the
kOCEGenericSensitive and kOCEGenericInsensitive
RStringKind types with DirectoryName, recordName,
recordType, NetworkSpec, or AttributeType structures or with
catalog node names because this may cause the AOCE string to be
treated incorrectly by the function you are calling. ◆

Record Identifier Structures

A record identifier structure uniquely identifies a record in an AOCE catalog. It consists

of the name and discriminator value of the catalog, the catalog node number or the path

information for the catalog node in which the record is located, and the record’s name,

type, and creation identifier. A record identifier is defined by the RecordID structure.

Because the RecordID structure is composed of substructures (see Figure 2-1), many of

which contain components of their own, the component structures of the RecordID

structure are described first in this section.

C H A P T E R 2

AOCE Utilities

2-26 AOCE Utilities Reference

Figure 2-1 The Record identifier structure

CreationID

The record creation identifier is defined by the CreationID structure and is used to

uniquely identify a record within a PowerShare catalog or in a personal catalog. Some

catalogs may not support the CreationID structure; they may rely on the uniqueness of

a record’s name and type to specify each record instead. The CreationID structure is a

component of the LocalRecordID structure (page 2-27).

The fields of the CreationID structure are private to a catalog; you never need to know

how to put data into a CreationID structure or how the data is represented inside the

CreationID structure. Once you have allocated space for a new CreationID

structure, you simply pass it into a function such as DirAddRecord, which fills the

CreationID structure with the proper data for you. You then pass the CreationID

structure along to other functions that require it, such as the DirDeleteRecord

function. For more information on the DirAddRecord and DirDeleteRecord

functions see the chapter “Catalog Manager” in this book.

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-27

AOCE defines two types of CreationID structures: the CreationID structure and the

AttributeCreationID structure. These structures are identical but have different

names to help distinguish the way in which they are used by various AOCE managers

and functions. The CreationID structure is sometimes called the record CreationID

structure to reinforce the idea that it is being used for a record, and not an attribute.

struct CreationID

{

unsigned long source; /* private to a catalog.*/

unsigned long seq; /* private to a catalog*/

};

typedef struct CreationID CreationID;

typedef CreationID AttributeCreationID;

LocalRecordID

A local record identifier uniquely identifies a record within a catalog. It contains the

record’s creation identifier, described in the previous section, and the record’s name and

type. The name and type can uniquely identify a record in an external catalog that does

not support creation identifiers. The local record identifier is defined by the

LocalRecordID structure.

The creation identifier field of the local record identifier is maintained by the catalog that

contains the LocalRecordID structure. Whenever a record is created in a catalog that

supports creation identifiers, the catalog assigns the record a new creation identifier that

is unique within the catalog. This procedure prevents duplicate creation identifiers

within the same catalog. Within a catalog that does not support creation identifiers, it is

not possible to have two records with the same name and type, because the catalog uses

the record’s name and type to define a particular record uniquely.

The LocalRecordID structure is a component of the RecordID structure described on

page 2-34, and is also a component of the DirEnumSpec structure, described in the

chapter “Standard Catalog Package” in this book. See the DirFindValue function in

the chapter “Catalog Manager” in this book for an example of a function that uses the

LocalRecordID structure.

struct LocalRecordID

{

CreationID cid; /* creation ID of the record */

RStringPtr recordName; /* name of the record */

RStringPtr recordType; /* type of record */

};

C H A P T E R 2

AOCE Utilities

2-28 AOCE Utilities Reference

typedef struct LocalRecordID LocalRecordID;

typedef LocalRecordID *LocalRecordIDPtr;

Field descriptions

cid The creation identifier of the record. If the creation identifier is not
NULL, this number is unique within a catalog.

recordName The name of the record. The name is not necessarily unique within a
catalog.

recordType The type of entity that the record represents. For example, the
record could be of type User, Group, LaserWriter, and so forth.
For a list of standard record types, see the OCERecordTypeIndex
structure described next. The record type is not necessarily unique
within a catalog.

OCERecordTypeIndex

The OCERecordTypeIndex is an enumerated list of the standard AOCE record types.

You should use this list whenever you need to obtain a record type that has been defined

by Apple Computer, Inc. All lowercase four-character combinations are reserved by

Apple Computer, Inc., as well as all uppercase and lowercase combinations of the

sequence 'AOCE'. To get a specific record type, call the OCEGetIndRecordType

function and pass it the proper index constant from the OCERecordTypeIndex

enumerated list. The OCEGetIndRecordType function returns a pointer to an RString

structure that contains the proper record type corresponding to the index entry you

supplied. See page 2-85 for the complete description of the OCEGetIndRecordType

function.

enum /* OCERecordTypeIndex */

{

kUserRecTypeNum = 1, /* "User" */

kGroupRecTypeNum = 2, /* "Group" */

kMnMRecTypeNum = 3, /* "AppleMail™ M&M" */

kMnMForwarderRecTypeNum = 4, /* "AppleMail™ Fwdr" */

kNetworkSpecRecTypeNum = 5, /* "NetworkSpec" */

kADAPServerRecTypeNum = 6, /* "PowerShare Server" */

kADAPDNodeRecTypeNum = 7, /* "PowerShare DNode" */

kADAPDNodeRepRecTypeNum = 8, /* "PowerShare DNode Rep" */

kServerSetupRecTypeNum = 9, /* "Server Setup" */

kDirectoryRecTypeNum = 10, /* "Catalog" */

kDNodeRecTypeNum = 11, /* "DNode" */

kSetupRecTypeNum = 12, /* "Setup" */

kMSAMRecTypeNum = 13, /* "MSAM" */

kDSAMRecTypeNum = 14, /* "CSAM" */

kAttributeValueRecTypeNum =15, /* "Attribute Value" */

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-29

kBusinessCardRecTypeNum = 16, /* "Business Card" */

kMailServiceRecTypeNum = 17, /* "Mail Service" */

kCombinedRecTypeNum = 18, /* "Combined" */

kOtherServiceRecTypeNum = 19, /* "Other Service" */

kAFPServiceRecTypeNum = 20 /* "Other Service afps" */

};

typedef unsigned short OCERecordTypeIndex;

In addition to the OCERecordTypeIndex values defined above, there are three more

record type definitions:

#define kFirstOCERecTypeNum kUserRecTypeNum

/* first standard AOCE record type */

#define kLastOCERecTypeNum kAFPServiceRecTypeNum

/* last standard AOCE record type */

#define kNumOCERecTypes (kLastOCERecTypeNum -

kFirstOCERecTypeNum + 1)/* total number of

standard AOCE

record types */

You can use these three constants to enumerate all the standard AOCE record types.

PackedPathName

The PackedPathName structure contains the names of all of the catalog nodes in the

path from the catalog node in which a record resides, to the root catalog node in the

AOCE catalog tree. A PackedPathName structure is an array of RString structures,

with each component RString structure containing the name of a catalog node on the

path. You create a PackedPathName structure from an array of RString structures by

using the OCEPackPathName function (page 2-60). You can also unpack a

PackedPathName structure into its RString component parts by using the

OCEUnpackPathName function (page 2-58). The maximum size of an entire packed

pathname is defined by the constant kPathNameMaxBytes.

The PackedPathName structure’s format is private, so you must always use the

OCEPackPathName and OCEUnpackPathName functions to pack and unpack these

structures. Do not assume you know the format of PackedPathName structures.

The PackedPathName structure is a component of the record location information

structure (page 2-32). In addition, the AOCE Catalog Manager uses the packed

pathname structure in various functions such as DirMapDNodeToPathName and

DirMapPathNameToDNode. For information on these functions, see the chapter

“Catalog Manager” in this book.

C H A P T E R 2

AOCE Utilities

2-30 AOCE Utilities Reference

struct PackedPathName

{

unsigned short dataLength; /* number of bytes in data

 field */

Byte data[kPathNameMaxBytes - sizeof (unsigned short)];

};

typedef struct PackedPathName PackedPathName;

Field descriptions

dataLength The number of bytes in the data field. This does not include the
bytes in the dataLength field itself.

data A packed array containing the names of all of the catalog nodes in
the path from the catalog node in which the record resides, to the
catalog root node. Each of the names in the array is an RString
structure.

ProtoPackedPathName

The ProtoPackedPathName structure is a minimum-sized structure. It is equivalent to

a PackedPathName structure without a data field. You should use this data type

whenever you need to create a PackedPathName structure of variable length.

struct ProtoPackedPathName {

unsigned short dataLength;

/* Followed by data */

};

typedef struct ProtoPackedPathName ProtoPackedPathName;

Field descriptions

dataLength The length of the data field of the PackedPathName structure.

Note
You must create the data portion of the ProtoPackedPathName
structure yourself. Since this is a minimum-sized structure, it initially
has no data field, and hence no memory is allocated for any contents.
See the section “Allocating AOCE Strings of Nonstandard Sizes” on
page 2-16 for an example of how to allocate memory for a
minimum-sized structure. ◆

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-31

DirDiscriminator

A catalog discriminator is defined by a DirDiscriminator structure and is used to

differentiate between two or more catalogs that have the same name, as the combination

of a catalog name and a DirDiscriminator structure uniquely identify a catalog. The

DirDiscriminator structure contains two fields which are set by the catalog. An

application does not need to set or change these fields. If you are creating a catalog

server access module, you need to read the chapter “Catalog Service Access Modules” in

Inside Macintosh: AOCE Service Access Modules for information on how to modify the

fields of a DirDiscriminator structure.

In addition to being a component of the record location information structure, described

next, the DirDiscriminator structure is used by several of the AOCE Catalog

Manager functions. You also use a DirDiscriminator structure when you provide

callback functions to such functions as DirEnumerateDirectoriesParse and
DirNetSearchADAPDirectoriesParse. See the chapter “Catalog Manager” in this

book for more information on these two functions.

struct DirDiscriminator {

OCEDirectoryKind signature; /* type of a catalog */

unsigned long misc; /* private to catalog */

};

typedef struct DirDiscriminator DirDiscriminator;

Field descriptions

signature Defined by the catalog provider. It may be, but is not required to be,
the same as the application’s signature. Apple Computer, Inc. has
defined the following values for this field. Developers of catalog
service access modules may define additional values.

kDirAllKinds = 0

kDirADAPKind = 'adap'

kDirPersonalDirectoryKind = 'pdir'

kDirDSAMKind = 'dsam'

misc Defined by the catalog provider. A catalog service access module
may use it to distinguish between different catalogs that it supports.
See the chapter “Catalog Service Access Modules” in Inside
Macintosh: AOCE Service Access Modules for more information on
this field.

C H A P T E R 2

AOCE Utilities

2-32 AOCE Utilities Reference

RLI

The record location information structure identifies the catalog and catalog node in

which a record resides. The record location information is defined by the RLI data type.

The RLI structure is the unpacked form of the PackedRLI data structure, described next.

typedef unsigned long DNodeNum;

struct RLI {

DirectoryNamePtr directoryName;

DirDiscriminator discriminator;

DNodeNum dNodeNumber;

PackedPathNamePtr path;

};

typedef struct RLI RLI;

typedef RLI *RLIPtr;

Field descriptions

directoryName A pointer to the name of the catalog in which the record resides.
The maximum number of bytes in a catalog name is defined by the
constant kDirectoryNameMaxBytes.

discriminator A value that allows you to distinguish between two or more
catalogs that have the same name.

dNodeNumber A value that uniquely identifies the catalog node in which the
record resides. Set this field to 0 or to kNULLDNodeNumber if you
are using the path field to identify the catalog node.

path A pointer to a buffer that contains the names of all of the catalog
nodes on the path from the catalog node in which the record
resides, to the catalog root node. You should set this field to nil if
you are using the dNodeNumber field to identify the catalog node.

The directoryName and discriminator fields of the RLI structure specify the

catalog. The last two fields of the RLI structure, the dNodeNumber and path fields,

specify a catalog node within the catalog specified by the directoryName and

discriminator fields. For PowerShare catalogs, you must specify the catalog node by

either a catalog node number or by a pathname, but not both.

Some catalogs may allow you to specify a catalog node using a partial pathname. A

partial pathname is a combination of values in the dNodeNumber and path fields. To

assure compatibility with all catalogs, you need to call the DirGetDirectoryInfo

function to find out if the catalog supports the use of partial pathnames before providing

a partial pathname to the catalog. If a catalog supports partial pathnames, you must set

both the dNodeNumber and path fields to meaningful values, because both fields are

used. If this is the case, and your application does not support partial pathnames, you

should set either the dNodeNumber field to 0 or the path field to nil.

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-33

PackedRLI

The record location information in its packed form is defined by the PackedRLI data

type. Use the OCEPackRLI function (page 2-71) to create a PackedRLI structure from

an RLI structure or its component parts. Use the OCEUnpackRLI function (page 2-72) to

unpack a PackedRLI structure into its component parts. The order of the data within a

PackedRLI structure is private, so you must use the utility functions when creating and

unpacking PackedRLI structures. This is the only way to be sure that the data will be in

the correct format.

In addition to being a component of the RecordID data structure, described on

page 2-34, the PackedRLI structure is used by several of the AOCE Catalog Manager

functions.

#define kRLIMaxBytes (sizeof (RString) + \

sizeof (DirDiscriminator) + \

sizeof (DNodeNum) + kPathNameMaxBytes)

The constant kRLIMaxBytes is the maximum number of bytes that can be stored in the

data field of a PackedRLI structure. This is large enough to hold the sum of RString,

DirDiscriminator, and DNodeNum structures plus a maximum-length pathname.

struct PackedRLI {

unsigned short dataLength; /* length of data field */

Byte data[kRLIMaxBytes]; /* packed record

location info */

};

typedef struct PackedRLI PackedRLI;

typedef PackedRLI *PacedPLIPtr;

Field descriptions

dataLength The number of bytes in the data field of the PackedRLI structure.
It does not include the number of bytes in the dataLength
parameter itself.

data A packed array of characters that contains the catalog name, the
catalog discriminator, and the catalog node number or a pathname.

ProtoPackedRLI

The ProtoPackedRLI structure is a minimum-sized structure. It is equivalent to a

PackedRLI structure without a data field. You should use this data type whenever you

need to create a PackedRLI structure of variable length.

C H A P T E R 2

AOCE Utilities

2-34 AOCE Utilities Reference

struct ProtoPackedRLI {

unsigned short dataLength; /* length of data */

/* Followed by data */

};

typedef struct ProtoPackedRLI ProtoPackedRLI;

typedef ProtoPackedRLI *ProtoPackedRLIPtr;

Field descriptions

dataLength The length of the data field of the PackedRLI structure.

Note

You must create the data portion of the ProtoPackedRLI structure
yourself. Because this is a minimum-sized structure, it initially has no
data field, and thus no memory is allocated for any contents. See the
section “Allocating AOCE Strings of Nonstandard Sizes” on page 2-16
for an example of allocating memory for a minimum-sized structure. ◆

RecordID

Each record in an AOCE catalog is described by a RecordID structure. A RecordID

structure consists of two parts: a local record identifier and a packed record location

information structure. The local record identifier uniquely defines the record within its

catalog. The packed record location information structure identifies the catalog and

catalog node in which the record resides.

struct RecordID {

PackedRLIPtr rli; /* identifies record’s catalog

and dNode */

LocalRecordID local; /* identifies record within

its dNode */

};

typedef struct RecordID RecordID;

typedef RecordID *RecordIDPtr;

Field descriptions

rli A pointer to a PackedRLI structure that identifies the catalog and
the specific catalog node in which the record resides.

local A LocalRecordID structure that uniquely identifies the record
within its catalog.

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-35

PackedRecordID

A packed record identifier is the packed form of a RecordID structure and is defined by

the PackedRecordID structure. The packed form of the RecordID structure is useful

when you wish to store data or transmit it because the PackedRecordID structure is a

single block of data, rather than a structure containing pointers into other structures as

the RecordID structure is. You use the OCEPackRecordID function (page 2-90) to

create a PackedRecordID structure from a RecordID structure, and you use the

OCEUnpackRecordID function (page 2-91) to convert a PackedRecordID structure

into an unpacked RecordID structure.

#define kPackedRecordIDMaxBytes (kPathNameMaxBytes + \

sizeof (DNodeNum) + sizeof (DirDiscriminator) + \

sizeof (CreationID) + (3 * sizeof (RString)))

The constant kPackedRecordIDMaxBytes defines the maximum number of bytes that

can be stored in the data field of a PackedRecordID structure.

struct PackedRecordID {

unsigned short dataLength; /* length of data field

 in PackedRecordID */

Byte data[kPackedRecordIDMaxBytes];/* packed record ID */

};

typedef struct PackedRecordID PackedRecordID;

Field descriptions

dataLength The size of the data field of the PackedRecordID structure. It
does not include the length of the dataLength parameter itself.

data An array containing the RecordID data.

ShortRecordID

A short record identifier structure is similar to a record identifier, except that it does not

contain the recordName and recordType fields. For more information on record

location information structures see page 2-32.

struct ShortRecordID

{

PackedRLIPtr rli;

CreationID cid;

};

typedef struct ShortRecordID ShortRecordID;

C H A P T E R 2

AOCE Utilities

2-36 AOCE Utilities Reference

Field descriptions

rli A pointer to a packed record location information structure.

cid A pointer to a creation identifier structure.

Catalog Services Specification

The catalog services specification structures are used throughout AOCE for performing

various tasks such as getting and setting access controls for records, obtaining the

individual members of a group record that the user has selected, computing the size of a

record currently selected by the user, specifying message addresses, and so forth. The

catalog services specification is defined by the DSSpec structure and its packed form by

the PackedDSspec structure. Other forms of the DSSpec structure include the

OCERecipient and the packed form, OCEPackedRecipient, which are defined in the

chapter “Interprogram Messaging Manager” in this book.

In addition to the above uses, you can also use the catalog services specification to hold

your own types of data that may not have a specified size. In this case, use the

ProtoPackedDSspec structure.

DSSpec

The catalog services specification structure is defined by the DSSpec data type. A

DSSpec structure contains a pointer to a RecordID structure, plus additional

information such as an extension type, extension size, and extension value. When you

supply a DSSpec structure to a routine, you must provide a pointer to a record identifier

in its entitySpecifier field. The other fields are optional, depending upon what data

the DSSpec structure is being used to hold. For example, if the DSSpec structure has no

extension, then it can represent either the root of all catalogs, a single catalog, a catalog

node, or a record. If the DSSpec structure has an extension, then the extensionType,

extensionSize, and extensionValue fields must contain valid values for the

particular extension type. For more information on extension types and their allowable

values, see the OCEValidDSSpec function on page 2-102 and the OCEGetDSSpecInfo

function on page 2-103.

One of the uses for the DSSpec structure is to specify access controls for a catalog node,

record, or attribute type that supports access controls. The way that you accomplish this

for PowerShare catalogs, for example, is to obtain a DSSpec structure by calling the

OCEGetAccessControlDSSpec function. This function returns a pointer to a DSSpec

structure based on the information you supply when you call the function. You can then

use the DSSpec structure with access control functions such as

DirGetDNodeAccessControlGet. For information on access control functions, see the

section “Getting Access Controls” in the chapter “Catalog Manager” in this book.

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-37

struct DSSpec {

RecordID *entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

typedef struct DSSpec DSSpec;

typedef DSSpec *DSSpecPtr;

Field descriptions

entitySpecifier
A pointer to a RecordID structure that contains the record
information pertaining to the DSSpec. If the extension type is not
'entn', the contents of this field determine whether the DSSpec
structure represents a catalog, a catalog node, a record, or the root of
all catalogs.

extensionType The extension type of the DSSpec structure, if any. If the extension
type is 'entn' then the DSSpec has an extension. To determine
whether a DSSpec structure has an extension type or not, you call
the OCEGetDSSpecInfo function (page 2-103).

extensionSize The size, in bytes, of the extension (if any).

extensionValue
A pointer to the data of the extension.

PackedDSSpec

The PackedDSSpec structure is the packed form of the DSSpec structure. The

PackedDSSpec structures are used by AOCE in various functions. For example, the

SDPGetPanelSelection function uses a PackedDSSpec structure to indicate the

record that the user has selected. Another use of the PackedDSSpec structure is as a

component of an Attribute structure. If an attribute value has a tag field set to the

value typePackedDSSpec, then the attribute contains data of type PackedDSSpec.

You can use the functions OCEUnpackDSSpec (page 2-98) and OCEPackDSSpec

(page 2-97) to convert between the packed and unpacked forms of the DSSpec structure.

Note
The PackedDSSpec is not a maximum-sized structure. When you
allocate a PackedDSSpec structure it will hold any valid packed
RecordID structure, but not necessarily any additional extension
data. ◆

#define kPackedDSSpecMaxBytes(sizeof (PackedRecordID) + \

sizeof (OSType) + sizeof (unsigned short))

C H A P T E R 2

AOCE Utilities

2-38 AOCE Utilities Reference

The constant kPackedDSSpecMaxBytes is the maximum size in bytes that can be

stored in the data field of a PackedDSSpec structure.

struct PackedDSSpec {

unsigned short dataLength;/* length of data field */

Byte data[kPackedDSSpecMaxBytes];

};

Field descriptions

dataLength The length of the data field of the PackedDSSpec structure. This
does not include the bytes in the dataLength field itself.

data An array containing the actual contents of the PackedDSSpec. The
size of the data array is equal to kPackedDSSpecMaxBytes bytes.

typedef struct PackedDSSpec PackedDSSpec;

ProtoPackedDSSpec

The ProtoPackedDSSpec structure is a minimum-sized structure. It is equivalent to a

PackedDSSpec structure without a data field. You should use this data type whenever

you need to create a variable length packed DSSpec structure.

struct ProtoPackedDSSpec {

unsigned short dataLength;/* length of data field */

/* Followed by data */

};

typedef struct ProtoPackedDSSpec ProtoPackedDSSpec;

typedef ProtoPackedDSSpec *ProtoPackedDSSpecPtr;

Field descriptions

dataLength The length of the data field of the PackedDSSpec structure.

Note
You must create the data portion of the ProtoPackedDSSpec structure
yourself. Since this is a minimum-sized structure, it initially has no data
field and hence no memory is allocated for any contents. ◆

Attribute Structures

The attribute structures are used in AOCE to provide access to a record’s contents, as

well as to determine what type of data is stored in a record. The three main attribute

structures are Attribute, AttributeType, and AttributeValue. The Attribute

structure contains AttributeValue and AttributeType structures as components.

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-39

The AttributeValue structure is described on page 2-42. The AttributeType

structure is a derivative of the RString structure (page 2-20) and is described on

page 2-39.

Attributes

In AOCE, all information in a record is stored as attribute values of the record. An

attribute can hold any type of data, and it is defined by the Attribute structure. Each

Attribute structure contains an AttributeType, AttributeCreationID, and

AttributeValue component. Certain types of attributes have been reserved by Apple

Computer, Inc., but you can create other types as needed. The Attribute structure

provides you with all the information you need to manipulate an attribute value.

Because an attribute value may contain vastly different types of data depending upon its

type, it is vital that you determine the type of attribute before attempting to manipulate

or use its value.

Because the Attribute structure is composed of several substructures such as

AttributeValue, which may contain structures of their own, the Attribute

structure is described last in this section, after its component structures.

AttributeType

An attribute type is a component of the Attribute structure and is used to indicate

what kind of information is stored in the value field of an Attribute structure. For a

complete description of the Attribute and AttributeValue structures, see page 2-44

and page 2-42 respectively. You can define your own attribute types or use a standard

attribute type. For a list of standard attribute types and their data formats see the

description of OCEAttributeTypeIndex, next.

An attribute type consists of a character set code, a length containing the number of

bytes in the body field, and the data in the body field. An AttributeType structure is

identical to an RString structure, except that its maximum length is defined by the

constant kAttributeTypeMaxBytes and its body field specifies the type of a given

attribute. Attribute types must be larger than 0 bytes; AOCE does not allow NULL

attribute types. You can typecast any AttributeType structure to an RString

structure and use the RString utility functions on it. The RString utility functions are

described in “AOCE String Functions” beginning on page 2-45.

In addition to being a component of an Attribute structure, the AttributeType

structure is used by several of the AOCE Catalog Manager functions. In particular, the

callback functions you create for the DirLookupParse and

DirEnumerateAttributeTypesGet functions take an attribute type as an input. See

the chapter “Catalog Manager” in this book for more information on these functions.

C H A P T E R 2

AOCE Utilities

2-40 AOCE Utilities Reference

An attribute type is defined as follows:

struct AttributeType

{

RStringHeader

Byte body[kAttributeTypeMaxBytes];

};

typedef struct AttributeType AttributeType;

typedef AttributeType *AttributeTypePtr;

The RStringHeader, described on page 2-19, defines the character set information that

applies to the text of the RString structure and specifies the length, in bytes, of the

body field of the RString structure.

Field descriptions

body An array of characters that contains the name of an attribute type.
The maximum length of an attribute type is defined by the constant
kAttributeTypeMaxBytes, and is equal to 32 bytes.

OCEAttributeTypeIndex

You should use the attribute type index whenever you need to obtain a standard

attribute type. To do this, you call the OCEGetIndAttributeType function (page 2-94)

with the proper value from the OCEAttributeTypeIndex list. The

OCEGetIndAttributeType function returns a pointer to an RString structure

containing the standard attribute type based on the index value you supplied.

All lowercase four-character combinations are reserved by Apple Computer, Inc., as are

all uppercase and lowercase combinations of the sequence 'AOCE'.

#define kMemberAttrTypeNum 1001 /* "Member" */

#define kAdminsAttrTypeNum 1002 /* "Administrators" */

#define kMailSlotsAttrTypeNum 1003 /* "mailslots" */

#define kPrefMailAttrTypeNum 1004 /* "pref mailslot" */

#define kAddressAttrTypeNum 1005 /* "Address" */

#define kPictureAttrTypeNum 1006 /* "Picture" */

#define kAuthKeyAttrTypeNum 1007 /* "auth key" */

#define kTelephoneAttrTypeNum 1008 /* "Telephone" */

#define kNBPNameAttrTypeNum 1009 /* "NBP Name" */

#define kQMappingAttrTypeNum 1010 /* "ForwarderQMap" */

#define kDialupSlotAttrTypeNum 1011 /* "DialupSlotInfo" */

#define kHomeNetAttrTypeNum 1012 /* "Home Internet" */

#define kCoResAttrTypeNum 1013 /* "Co-resident M&M" */

#define kFwdrLocalAttrTypeNum 1014 /* "FwdrLocalRecord" */

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-41

#define kConnectAttrTypeNum 1015 /* "Connected To" */

#define kForeignAttrTypeNum 1016 /* "Foreign RLIs" */

#define kOwnersAttrTypeNum 1017 /* "Owners" */

#define kReadListAttrTypeNum 1018 /* "ReadList" */

#define kWriteListAttrTypeNum 1019 /* "WriteList" */

#define kDescriptorAttrTypeNum 1020 /* "Descriptor" */

#define kCertificateAttrTypeNu 1021 /* "Certificate" */

#define kMsgQsAttrTypeNum 1022 /* "MessageQs" */

#define kPrefMsgQAttrTypeNum 1023 /* "PrefMessageQ" */

#define kMasterPFAttrTypeNum 1024 /* "MasterPF" */

#define kMasterNetSpecAttrTypeNum 1025 /* "MasterNetSpec" */

#define kServersOfAttrTypeNum 1026 /* "Servers Of" */

#define kParentCIDAttrTypeNum 1027 /* "Parent CID" */

#define kNetworkSpecAttrTypeNum 1028 /* "NetworkSpec" */

#define kLocationAttrTypeNum 1029 /* "Location" */

#define kTimeSvrTypeAttrTypeNum 1030 /* "TimeServer Type" */

#define kUpdateTimerAttrTypeNum 1031 /* "Update Timer" */

#define kShadowsOfAttrTypeNum 1032 /* "Shadows Of" */

#define kShadowServerAttrTypeNum 1033 /* "Shadow Server" */

#define kTBSetupAttrTypeNum 1034 /* "TB Setup" */

#define kMailSetupAttrTypeNum 1035 /* "Mail Setup" */

#define kSlotIDAttrTypeNum 1036 /* "SlotID" */

#define kGatewayFileIDAttrTypeNum 1037 /* "Gateway FileID" */

#define kMailServiceAttrTypeNum 1038 /* "Mail Service" */

#define kStdSlotInfoAttrTypeNum 1039 /* "Std Slot Info" */

#define kAssoDirectoryAttrTypeNum 1040 /* "Asso. Catalog" */

#define kDirectoryAttrTypeNum 1041 /* "Catalog" */

#define kDirectoriesAttrTypeNum 1042 /* "Catalogs" */

#define kSFlagsAttrTypeNum 1043 /* "SFlags" */

#define kLocalNameAttrTypeNum 1044 /* "Local Name" */

#define kLocalKeyAttrTypeNum 1045 /* "Local Key" */

#define kDirUserRIDAttrTypeNum 1046 /* "Dir User RID" */

#define kDirUserKeyAttrTypeNum 1047 /* "Dir User Key" */

#define kDirNativeNameAttrTypeNum 1048 /* "Dir Native Name" */

#define kCommentAttrTypeNum 1049 /* "Comment" */

#define kRealNameAttrTypeNum 1050 /* "Real Name" */

#define kPrivateDataAttrTypeNum 1051 /* "Private Data" */

#define kDirTypeAttrTypeNum 1052 /* "Catalog Type" */

#define kDSAMFileAliasAttrTypeNum 1053 /* "CSAM File Alias" */

#define kCanAddressToAttrTypeNum 1054 /* "Can Address To" */

#define kDiscriminatorAttrTypeNum 1055 /* "Discriminator" */

#define kAliasAttrTypeNum 1056 /* "Alias" */

#define kParentMSAMAttrTypeNum 1057 /* "Parent MSAM" */

C H A P T E R 2

AOCE Utilities

2-42 AOCE Utilities Reference

#define kParentDSAMAttrTypeNum 1058 /* "Parent CSAM" */

#define kSlotAttrTypeNum 1059 /* "Slot" */

#define kAssoMailServiceAttrTypeNum1060 /* "Asso. Mail

Service" */

#define kFakeAttrTypeNum 1061 /* "Fake" */

#define kInheritSysAdminAttrTypeNum1062 /* "Inherit

 SysAdministrators" */

#define kPreferredPDAttrTypeNum 1063 /* "Preferred PD" */

#define kLastLoginAttrTypeNum 1064 /* "Last Login" */

#define kMailerAOMStateAttrTypeNum 1065 /* "Mailer AOM State" */

#define kMailerSendOptionsAttrTypeNum \

1066 /* "Mailer Send

 Options" */

#define kJoinedAttrTypeNum 1067 /* "Joined" */

#define kUnconfiguredAttrTypeNum 1068 /* "Unconfigured" */

#define kVersionAttrTypeNum 1069 /* "Version" */

#define kLocationNamesAttrTypeNum 1070 /* "Location Names" */

#define kActiveAttrTypeNum 1071 /* "Active" */

#define kDeleteRequestedAttrTypeNum

1072 /* "Delete Requested" */

#define kGatewayTypeAttrTypeNum 1073 /* "Gateway Type" */

In addition, Apple Computer, Inc., has defined three other attribute type constants to

simplify the task of enumerating the standard attribute types.

typedef unsigned short OCEAttributeTypeIndex;

#define kFirstOCEAttrTypeNum kMemberAttrTypeNum

/* the first standard attribute type */

#define kLastOCEAttrTypeNum kGatewayTypeAttrTypeNum

/* the last standard attribute type */

#define kNumOCEAttrTypes (kLastOCEAttrTypeNum -

 kFirstOCEAttrTypeNum + 1)

 /* the total number of attributes */

AttributeValue

The AttributeValue structure consists of a tag field that indicates the format of the

attribute value, a datalength field specifying the number of bytes contained in the

attribute value, and a pointer to the attribute value data itself. Apple Computer, Inc. has

reserved tags for attribute values that consist of RString and PackedDSSpec

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-43

structures, as well as for an unspecified sequence of bytes. You can also define your own

tags to specify the attribute value formats that you have created.

typedef DescType AttributeTag;/* same type used in AppleEvents */

enum {

typeRString = 'rstr',

typePackedDSSpec = 'dspc',

typeBinary = 'bnry'

};

Constant descriptions

typeRString The attribute value is an RString structure.

typePackedDSSpec
The attribute value is a PackedDSSpec structure.

typeBinary The attribute value is a sequence of bytes not defined by a formal
structure.

struct AttributeValue {

AttributeTag tag; /* format of attribute value */

unsigned long dataLength; /* # of bytes in attribute value */

Ptr bytes; /* points to attribute value data */

};

typedef struct AttributeValue AttributeValue;

typedef AttributeValue *AttributeValuePtr;

Field descriptions

tag A value that indicates the format of the attribute value contained in
the bytes field. If the tag field is set to 'rstr', the attribute value
is considered to be an RString type.

If the attribute value is an RString structure, then the maximum
size of the body field of the RString structure is
(kAttrValueMaxBytes - sizeof(ProtoRString) bytes.

If the attribute value is a DSSpec structure, then the maximum
amount of data that can be stored in the DSSpec structure is
(kAttrValueMaxBytes - sizeof(ProtoPackedDSSpec)
bytes.

The tag field can also contain a value defined by you that specifies
the format of the attribute value.

Apple’s PowerShare catalogs and personal catalogs restrict attribute
values to a maximum size of kAttrValueMaxBytes bytes. If the
tag field is set to 'dspc', the attribute value is a PackedDSSpec
type.

C H A P T E R 2

AOCE Utilities

2-44 AOCE Utilities Reference

dataLength The number of bytes in the buffer pointed to by the bytes field. If
the tag field is equal to 'rstr' or 'dspc', then this length also
includes the size of the dataLength field of the DSSpec structure
or the RStringHeader of the RString structure.

bytes A pointer to a buffer that contains the attribute value. You must
provide this buffer. The constant kAttrValueMaxBytes defines
the maximum size of any attribute value.

Attribute

The Attribute structure completely defines an attribute value by specifying its

attribute type, attribute creation identifier, attribute tag, and the attribute value.

typedef CreationID AttributeCreationID;

struct Attribute {

AttributeType attributeType; /* type of the attribute */

AttributeCreationID cid; /* the creationID of the

attribute */

AttributeValue value; /* the attribute value */

};

typedef struct Attribute Attribute;

Field descriptions

attributeType The attribute type. Apple Computer, Inc. has reserved all attribute
types that are four-letter lowercase combinations, as well as any
uppercase and lowercase combination of the letters 'AOCE'. A
complete list of reserved attribute types can be found on page 2-40.

cid The attribute creation identifier that uniquely defines the attribute
value within the record. The AttributeCreationID structure has
the same definition as the CreationID structure (see page 2-26).

value The data for the attribute.

AOCE Utility Functions

The AOCE utility functions make it easier to manipulate the AOCE data structures.

These functions perform various tasks such as comparison, duplication, creation, and

conversion of structures. To call any of the functions described here from assembly

language, you need to perform the following actions:

1. Leave space on the stack for the function result, if any.

2. Push the parameters on the stack using Pascal calling convention. This means that
parameter1 is pushed first, parameter2 is pushed second, and so forth.

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-45

3. Place the routine selector in register D0.

4. Call the __OCEUtils trap macro.

AOCE String Functions

The AOCE string functions described in this section facilitate the creation, duplication,

and conversion of AOCE strings.

OCECopyRString

The OCECopyRString function copies one AOCE string into another AOCE string.

pascal OSErr OCECopyRString (const RString *str1, RString *str2,

unsigned short str2Length);

str1 A pointer to the source AOCE string that you want to copy from. You
must provide this structure.

str2 A pointer to the destination AOCE string that you want to copy to. You
must provide this structure.

str2Length
The length of the destination AOCE string, not including the header
information.

DESCRIPTION

The OCECopyRString function copies the contents of the source AOCE string into the

destination AOCE string. If the destination string is not large enough to hold the

contents of the source string, then the OCECopyRString function returns a memory-full

error. You obtain the proper size needed for the destination AOCE string from the value

contained in the RStringHeader field of the source AOCE string. Once you obtain this

value, you can then use it to allocate a destination AOCE string of the proper size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

__OCEUtils $0308

noErr 0 No error
memFullErr –108 Not enough memory to copy the source string into the

destination string, or the destination string is not large
enough to hold the source string

C H A P T E R 2

AOCE Utilities

2-46 AOCE Utilities Reference

SEE ALSO

The RString structure is described on page 2-20.

OCECToRString

The OCECToRString function converts a C string into an AOCE string.

pascal void OCECToRString (const char *cStr, CharacterSet charSet,

RString *rStr,

unsigned short rStrLength);

cStr A pointer to the C string you want to convert.

charSet The script code that the OCECToRString function uses for the RString
structure’s header.

rStr A pointer to an RString structure. You must allocate this.

rStrLength
The length, in bytes, of the body field of the RString structure, not
including the length of the header information. If the C string is longer
than the AOCE string, then only the number of bytes equal to the value of
the rStrLength parameter are copied from the C string into the AOCE
string.

DESCRIPTION

Given a C string and a RString structure that you supply, the OCECToRString

function converts the C string into the RString structure. The OCECToRString

function uses the charSet and rStrLength parameters to create the RStringHeader

field of the new RString structure.

SPECIAL CONSIDERATIONS

If the C string is longer than the AOCE string, then only the number of bytes equal to the

value of the rStrLength parameter are copied from the C string into the AOCE string.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

For information on converting an RString structure to or from a Pascal string, see the

functions OCEPToRString (next) and OCERToPString (page 2-48).

Trap macro Selector

__OCEUtils $0339

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-47

OCEPToRString

The OCEPToRString function converts a Pascal string into an AOCE string.

pascal void OCEPToRString(ConstStr255Param pStr,

CharacterSet charSet,

RString *rStr,

unsigned short rStrLength);

pStr A pointer to the Pascal string you want to convert.

charSet The script code that the OCEPToRString function uses for the RString
structure’s header.

rStr A pointer to an RString structure. You must allocate this.

rStrLength
The length, in bytes, of the body field of the RString structure, not
including the length of the header information. If the Pascal string is
longer than the AOCE string, then only the number of bytes equal to the
value of the rStrLength parameter are copied from the Pascal string
into the AOCE string.

DESCRIPTION

The OCEPToRString function converts a Pascal string into an RString structure. The

OCEPToRString function uses the charSet and rStrLength parameters to create the

RStringHeader field of the new RString structure.

SPECIAL CONSIDERATIONS

If the Pascal string is longer than the AOCE string, then only the number of bytes equal

to the value of the rStrLength parameter are copied from the Pascal string into the

AOCE string.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

For information on converting an RString structure to a Pascal string, see the function

OCERToPString, described next.

Trap macro Selector

__OCEUtils $033A

C H A P T E R 2

AOCE Utilities

2-48 AOCE Utilities Reference

OCERToPString

The OCERToPString function converts an RString structure into a Pascal string.

pascal StringPtr OCERToPString (const RString *rStr);

rStr A pointer to an RString structure that you want to convert into a Pascal
string.

DESCRIPTION

The OCERToPString function converts an RString structure into a Pascal string. As

with all of the AOCE utility functions, no memory is allocated by this function, so the

string pointer that is returned points directly back into the RString structure that you

supply when you make the call.

You must check the character set, or script code of the AOCE string before calling the

OCEPToRString function to determine how to handle the Pascal string returned by this

function. Because RString structures contain character set information and Pascal

strings do not, you need to decide how to interpret the Pascal string that is returned,

because it may contain multibyte characters.

SPECIAL CONSIDERATIONS

You should check the length of the AOCE string that the rStr parameter points to

before calling this function to see if the string is greater than 255 bytes. Because a Pascal

string can contain at most 255 bytes, the OCERToPString function truncates the length

of the Pascal string to the lower byte of the length of the AOCE string.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

To convert a Pascal string to an RString structure, use the function OCEPToRString

described on page 2-47.

OCERelRString

The OCERelRString function compares two RString structures to determine their

relative sorting order.

Trap macro Selector

__OCEUtils $033B

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-49

pascal short OCERelRString (const void *str1, const void *str2,

RStringKind kind);

str1 A pointer to the first RString structure you want to compare.

str2 A pointer to the second RString structure you want to compare

kind The value the OCERelRString function uses to determine the proper
method of comparing the two RString structures. See the description of
the RStringKind type on page 2-24 for a complete definition of the
different values for the kind parameter, and for the restrictions on when
to use them.

DESCRIPTION

Given two RString structures pointed to by the parameters str1 and str2, the

OCERelRString function determines if the first AOCE string is greater than, equal to,

or less than the second AOCE string. The OCERelRString uses the value of the kind

parameter to determine how to compare the two RString structures. For certain kinds

of RString structures, this function uses the International Utilities to compare them.

Because the Text Utilities take into account primary and secondary ordering, this call will

not return the value sortsEqual if the strings differ only in case (“Dave” is not equal to

“dave”). For more information see the chapter “Text Utilities” in Inside Macintosh: Text.

The OCERelRString function can return the following values:

The result returned by the OCERelRstring function is undefined when either the str1

parameter or the str2 parameter is set to nil.

SPECIAL CONSIDERATIONS

Although this function uses the Text Utilities for comparing certain kinds of RString

structures, it is still alright to call this routine at interrupt level.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

sortsBefore –1 The first RString structure should sort before the second
RString structure

sortsEqual 0 The two RString structures are equal

sortsAfter 1 The first RString structure should sort after the second
RString structure

Trap macro Selector

__OCEUtils $032D

C H A P T E R 2

AOCE Utilities

2-50 AOCE Utilities Reference

To compare two RString structures for equality only, use the OCEEqualRString

function, described next.

OCEEqualRString

The OCEEqualRString function checks the equality of two RString structures.

pascal Boolean OCEEqualRString (const void *str1, const void

 *str2, RStringKind kind);

str1 A pointer to the first RString structure you want to compare.

str2 A pointer to the second RString structure you want to compare.

kind A value that defines what kind of RString structures the
OCEEqualRString function is comparing.

DESCRIPTION

Given pointers to two RString structures, the OCEEqualRString function compares

them for equality, and returns true if they are equal, false if they are not. If the two

AOCE strings have the same length, then they are compared for equality, with the

method of comparison dependent upon the value of the kind parameter. If the two

AOCE strings have different lengths, then they are not equal. For certain kinds of

RString structures, this function uses the Text Utilities to compare the strings. For more

information see the chapter “Text Utilities” in Inside Macintosh: Text. See the description

of the RStringKind type on page 2-24 for a complete definition of the different values

for the kind parameter, and for the restrictions on when to use them.

SPECIAL CONSIDERATIONS

Although this function uses the Text Utilities for comparing certain kinds of RString

structures, it is still alright to call this routine at interrupt level.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

The RStringKind structure is described on page 2-24.

Trap macro Selector

__OCEUtils $0316

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-51

OCEValidRString

The OCEValidRString function checks the validity of an AOCE string.

pascal Boolean OCEValidRString (const void *str,RStringKind kind);

str A pointer to the AOCE string you want to validate.

kind The kind of AOCE string being validated.

DESCRIPTION

The OCEValidRString function checks the AOCE string you supply for validity based

on the type of AOCE string specified by the kind parameter and returns true if the

AOCE string structure is valid, false if it is not. See the description of the

RStringKind type on page 2-24 for a complete definition of the different values for the

kind parameter, and for the restrictions on when to use them. Currently this function

checks for validity by ensuring that the length of the AOCE string is the proper size for

its particular type. A nil pointer and a length of 0 for the RString structure are

considered valid.

SPECIAL CONSIDERATIONS

The OCEValidRString function may be modified in the future to perform other checks

for validity, so you should not assume that the only thing this function examines is the

length of the AOCE string.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RString structure is described on page 2-20.

Creation Identifier Functions

The functions described in this section manipulate record and attribute creation

identifiers in various ways. The two creation identifier data types are defined by the

CreationID and AttributeCreationID structures, which are described on

page 2-26.

Trap macro Selector

__OCEUtils $0338

C H A P T E R 2

AOCE Utilities

2-52 AOCE Utilities Reference

OCEEqualCreationID

The OCEEqualCreationID function checks the equality of two CreationID structures.

pascal Boolean OCEEqualCreationID(const CreationID *cid1,

const CreationID *cid2);

cid1 A pointer to the first CreationID structure you want to compare.

cid2 A pointer to the second CreationID structure you want to compare.

DESCRIPTION

Given pointers to two CreationID structures, OCEEqualCreationID compares the

CreationID structures for equality, and returns true if their values are identical,

false if they are not. Two CreationID structures are considered equal if each field in

the first CreationID structure contains the same value as the corresponding field in the

second CreationID structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

OCECopyCreationID

The OCECopyCreationID function copies one CreationID structure to another.

pascal void OCECopyCreationID(const CreationID *cid1,

CreationID *const cid2);

cid1 A pointer to the source CreationID structure you want to copy from.
You must provide this structure.

cid2 A pointer to the destination CreationID structure you want to copy to.
You must provide this structure.

DESCRIPTION

Given two CreationID structures pointed to by the parameters, cid1 and cid2, the

OCECopyCreationID function copies the contents of the first structure to the second.

Trap macro Selector

__OCEUtils $030C

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-53

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

OCENullCID

The OCENullCID function returns a pointer to a null CreationID structure.

pascal const CreationID *OCENullCID(void);

DESCRIPTION

The OCENullCID function returns a pointer to a null CreationID structure that is

maintained by the AOCE toolbox. You can use the OCENullCID function to check a

CreationID structure to see if it is set to NULL, or to create a NULL CID. To check for a

null CreationID structure you can use the following code fragment (This fragment

uses the OCEEqualCreationID function described on page 2-52):

if (OCEEqualCreationID (myCID, OCENullCID())

/* then myCID is NULL */

You do not need to deallocate the NULL CreationID structure returned by the

OCENullCID function when you are done with it.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

To set an existing CreationID structure to NULL, call the OCESetCreationIDtoNull

function (page 2-54).

The OCECopyCreationID function is described on page 2-52.

Trap macro Selector

__OCEUtils $0300

Trap macro Selector

__OCEUtils $0344

C H A P T E R 2

AOCE Utilities

2-54 AOCE Utilities Reference

OCEPathFinderCID

The OCEPathFinderCID function returns a pointer to a special CreationID structure

called the path finder creation ID.

pascal const CreationID *OCEPathFinderCID(void);

DESCRIPTION

The OCEPathFinderCID function returns a pointer to the special creation identifier

structure known as the path finder creation ID. The path finder creation ID is maintained

by the AOCE toolbox so you do not need to deallocate it when you are finished using it.

This special creation ID is used by certain functions in the AOCE Authentication

Manager. This function is intended for future use and is currently only used internally

by the AOCE toolbox.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

OCESetCreationIDtoNull

The OCESetCreationIDtoNull function sets a CreationID structure to NULL.

pascal void OCESetCreationIDtoNull(CreationID *const cid);

cid A pointer to the CreationID structure you want to set to NULL.

DESCRIPTION

The OCESetCreationIDtoNull function sets the CreationID structure you provide

to NULL. The OCESetCreationIDtoNull function makes it easier for you to use other

AOCE functions such as AuthResolveCreationID that require the CreationID

structure passed into them to be set to NULL before they are called.

Trap macro Selector

__OCEUtils $033C

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-55

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The CreationID structure is described on page 2-26.

For more information on the AuthResolveCreationID function see the chapter

“Authentication Manager” in this book.

Packed Pathname Functions

The functions described in this section manipulate packed pathnames in various ways.

The packed pathname is defined by the PackedPathName structure, which is described

on page 2-29.

OCECopyPackedPathName

The OCECopyPackedPathName function copies the contents of one PackedPathName

structure to another.

pascal OSErr OCECopyPackedPathName(const PackedPathName *path1,

PackedPathName *path2,

unsigned short path2Length);

path1 A pointer to the source PackedPathName structure that you want to
copy from.

path2 A pointer to the destination PackedPathName structure that you want to
copy to.

path2Length
The length, in bytes, of the PackedPathName structure pointed to by the
path2 parameter, not including the size information contained in the
dataLength field.

DESCRIPTION

Given two PackedPathName structures pointed to by the parameters, path1 and

path2, the OCECopyPackedPathName function copies the contents of the first structure

into the second. The path2Length parameter is the size, in bytes, of the destination

PackedPathName structure excluding the size information contained in the

dataLength field. The destination PackedPathName structure must be large enough

to hold the entire contents of the source PackedPathName structure; otherwise, a

memory-full error is returned. Therefore, when you allocate a new destination

Trap macro Selector

__OCEUtils $032E

C H A P T E R 2

AOCE Utilities

2-56 AOCE Utilities Reference

PackedPathName structure as the destination, you must set its length field to the

proper size before calling the OCECopyPackedPathName function.

You obtain the proper size for a PackedPathName structure from its dataLength field.

Once you obtain this value, you can then use it to allocate a destination

PackedPathName structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedPathName structure is described on page 2-29.

OCEIsNullPackedPathName

The OCEIsNullPackedPathName function determines if the value of a

PackedPathName structure is NULL.

pascal Boolean OCEIsNullPackedPathName(const PackedPathName

*path);

path A pointer to the PackedPathName structure you want to evaluate.

DESCRIPTION

Given a pointer to a PackedPathName structure, the OCEIsNullPackedPathName

function determines if it satisfies the conditions for being considered NULL and returns

true if its value is NULL, false if it is not. The value true is returned for any of the

following conditions:

■ If the path parameter is set to nil.

■ If the PackedPathName structure pointed to by the path parameter has a length of 0.

■ If the PackedPathName structure pointed to by the path parameter is composed of 0
RString components.

Trap macro Selector

__OCEUtils $0304

noErr 0 No error
memFullErr –108 Not enough memory to copy path1 into path2

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-57

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

OCEPackedPathNameSize

The OCEPackedPathNameSize function computes the number of bytes required to

create a PackedPathName structure, including the size information.

pascal unsigned short OCEPackedPathNameSize

(const RStringPtr parts[],

 const unsigned short nParts);

parts An array of pointers to RString structures containing the dNode names.

nParts The number of individual dNode names that are contained in the parts
array.

DESCRIPTION

The OCEPackedPathNameSize function computes the number of bytes of memory

needed to hold a PackedPathName structure manufactured from the parts array. This

length includes the size of the dataLength field of the PackedPathName structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

For information on determining the number of partial pathnames within a

PackedPathName structure see the OCEDNodeNameCount function, described next.

For information on packing and unpacking pathnames see the OCEUnpackPathName

(page 2-58) and OCEPackPathName (page 2-60) functions.

Trap macro Selector

__OCEUtils $031D

Trap macro Selector

__OCEUtils $0328

C H A P T E R 2

AOCE Utilities

2-58 AOCE Utilities Reference

OCEDNodeNameCount

The OCEDNodeNameCount function returns the number of RString structures, or

catalog node names contained within a PackedPathName structure.

pascal unsigned short OCEDNodeNameCount

(const PackedPathName *path);

path The PackedPathName structure that you want to evaluate.

DESCRIPTION

When you call the OCEUnpackPathName function to unpack a PackedPathName

structure, you must pass it the number of dNodes that the path is composed of and

allocate an array large enough to hold the pointers to each dNode name. The

OCEDNodeNameCount function provides you with the number of dNodes contained in

the path.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

For information on determining the size of a PackedPathName structure needed to hold

all the components of a pathname, see the OCEPackedPathNameSize function on

page 2-57.

For information on packing and unpacking pathnames see the OCEUnpackPathName

(next) and OCEPackPathName (page 2-60) functions.

OCEUnpackPathName

The OCEUnpackPathName function unpacks a PackedPathName structure into its

component RString structures.

pascal unsigned short OCEUnpackPathName(const PackedPathName

*path, RString *const parts[],

const unsigned short nParts);

path A pointer to the PackedPathName structure that you want unpacked.

Trap macro Selector

__OCEUtils $032C

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-59

parts An array of pointers to RString structures that the
OCEUnpackPathName function fills with pointers into the path
parameter.

nParts The size of the parts array.

DESCRIPTION

Given a pointer into a PackedPathName structure that you provide, the

OCEUnpackPathName function breaks apart the structure specified by path into the

individual RString structures it contains, writing pointers to these RString structures

into the parts array. The parts array must be large enough to hold as many as nParts

dNode names. You can determine the number of dNodes that a path contains by calling

the OCEDNodeNameCount function (page 2-58).

The OCEUnpackPathName function returns the number of dNode names actually found

during the process of unpacking. You should check this value to ensure that it

corresponds to the nParts parameter that you supplied to verify that no discrepancies

exist.

The RString structures are placed in the parts array in order from lowest to highest;

that is, the first element beneath the top level in the PackedPathName structure is

placed last in the parts array.

SPECIAL CONSIDERATIONS

The array in the parts parameter generated by the OCEUnpackPathName function

contains pointers into the PackedPathName structure specified by the path parameter.

You should not delete or reuse the PackedPathName structure pointed to by the path

parameter until you are finished with the parts array as well. Otherwise, the parts

array may no longer contain pointers to valid data.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

For information on packing a pathname structure, see the OCEPackPathName function,

described next.

For information on determining the size of a PackedPathName structure needed to hold

all the components of a pathname, see the OCEPackedPathNameSize function on

page 2-57.

Trap macro Selector

__OCEUtils $0330

C H A P T E R 2

AOCE Utilities

2-60 AOCE Utilities Reference

For information on determining the number of partial pathnames within a

PackedPathName structure, see the OCEDNodeNameCount function described on

page 2-58.

OCEPackPathName

The OCEPackPathName function forms a PackedPathName structure from its

component parts.

pascal OSErr OCEPackPathName(const RStringPtr parts[],

const unsigned short nParts,

PackedPathName *path,

unsigned short pathLength);

parts An array of RString structures that the OCEPackPathName function
uses to form the packed pathname.

nParts The number of dNodes contained in the parts array.

path A pointer to a buffer that you have allocated to hold the
PackedPathName structure.

pathLength
The size of the structure pointed to by the path parameter, not including
the size information contained in the dataLength field. For information
on determining the size of a PackedPathName structure needed to hold
all the components of a pathname, see the OCEPackedPathNameSize
function on page 2-57.

DESCRIPTION

The OCEPackPathName function takes a buffer that you supply and stores in it a

PackedPathName structure that the function creates from an array of dNodes. The

buffer must be large enough to hold the full packed pathname. If the buffer is too small

to hold the entire packed pathname, then a memory-full error is returned.

The order in which you store the partial pathnames in the parts array is as follows:

parts[0] should contain the last pathname element, and parts[nParts - 1]
should contain the name of the first pathname element beneath the root.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0323

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-61

RESULT CODES

SEE ALSO

The PackedPathName structure is described on page 2-29.

For information on unpacking a pathname structure, see the OCEUnpackPathName

function described on page 2-58.

For information on determining the size of a PackedPathName structure needed to hold

all the components of a pathname, see the OCEPackedPathNameSize function on

page 2-57.

For information on determining the number of partial pathnames within a

PackedPathName structure, see the OCEDNodeNameCount function described on

page 2-58.

OCEEqualPackedPathName

The OCEEqualPackedPathName checks the equality of two packed pathnames.

pascal Boolean OCEEqualPackedPathName(const PackedPathName *path1,

const PackedPathName *path2);

path1 A pointer to the first PackedPathName you want to compare.

path2 A pointer to the second PackedPathName you want to compare.

DESCRIPTION

Given pointers to two PackedPathName structures, path1 and path2, the

OCEEqualPackedPathName function compares them for equality and returns true if

the two pathnames are equal and false if they are not. This function takes into account

the proper case and diacritical marks of the various fields of the PackedPathName

structures it compares. This function checks for equality in the following manner:

■ If the value of both PackedPathName structures is NULL, they are equal. A
PackedPathName structure is considered NULL if the pointer to it is set to nil, or if
its length is 0, or if it contains 0 catalog node names.

■ If the value of one PackedPathName structure is NULL, but the value of the other is
not, they are not equal.

■ If neither PackedPathName structures is NULL, but they do not contain the same
number of catalog node names, they are not equal.

■ If neither PackedPathName structures is NULL and they both contain the same
number of catalog node names, then each catalog node name is compared with the

noErr 0 No error
memFullErr –108 The buffer pointed to by the path parameter is not large

enough to hold the entire contents of the parts array.

C H A P T E R 2

AOCE Utilities

2-62 AOCE Utilities Reference

corresponding one with regard to case and diacritical marks. If every one compares
exactly, then the PackedPathName structures are equal. Otherwise, they are not.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedPathName structure is described on page 2-29.

OCEValidPackedPathName

The OCEValidPackedPathName function checks a given PackedPathName structure

for internal consistency.

pascal Boolean OCEValidPackedPathName(const PackedPathName *path);

path A pointer to the PackedPathName you want to validate.

DESCRIPTION

The OCEValidPackedPathName function returns true if the PackedPathName

structure is valid; otherwise, it returns false. The OCEValidPackedPathName

function checks the PackedPathName structure for validity by unpacking it and

performing the following tests:

■ If the pointer to the PackedPathName structure is set to nil, the
OCEValidPackedPathName function considers the PackedPathName structure to
be invalid and returns false.

■ If the length of the PackedPathName structure is 0 it is considered valid.

■ It checks that all of the catalog node names in the PackedPathName structure are
valid by passing them to the OCEValidRString function (page 2-51).

■ It adds up the lengths of all the catalog node names in the PackedPathName
structure and verifies that the total length matches the length of the
PackedPathName structure.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0311

Trap macro Selector

__OCEUtils $0334

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-63

SEE ALSO

The PackedPathName structure is described on page 2-29.

Catalog Discriminator Functions

The utility functions described in this section manipulate catalog discriminators. The

catalog discriminator is defined by the DirDiscriminator structure described on

page 2-30.

OCECopyDirDiscriminator

The OCECopyDirDiscriminator function copies the value of one

DirDiscriminator structure to another.

pascal void OCECopyDirDiscriminator

(const DirDiscriminator *disc1,

 DirDiscriminator *const disc2);

disc1 A pointer to the source DirDiscriminator structure that you want to
copy from. You must provide this structure.

disc2 A pointer to the destination DirDiscriminator structure that you want
to copy to. You must provide this structure.

DESCRIPTION

Given two DirDiscriminator structures pointed to by the parameters, disc1 and

disc2, the OCECopyDirDiscriminator function copies the contents of the first

structure to the second.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DirDiscriminator structure is described on page 2-30.

Trap macro Selector

__OCEUtils $0301

C H A P T E R 2

AOCE Utilities

2-64 AOCE Utilities Reference

OCEEqualDirDiscriminator

The OCEEqualDirDiscriminator function checks the equality of two

DirDiscriminator structures.

pascal Boolean OCEEqualDirDiscriminator

(const DirDiscriminator *disc1,

 DirDiscriminator *const disc2);

disc1 A pointer to the first DirDiscriminator structure you want to compare.

disc2 A pointer to the second DirDiscriminator structure you want to
compare.

DESCRIPTION

Given pointers to two DirDiscriminator structures, the

OCEEqualDirDiscriminator function determines if they are equal. It returns true if

they are equal, false if they are not. The two DirDiscriminator structures are

considered equal if their signature and misc fields match byte for byte.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DirDiscriminator structure is described on page 2-30.

Record Location Information Functions

The functions described in this section manipulate record location information

structures. The record location information structure is defined by the RLI data type,

described on page 2-32.

OCENewRLI

The OCENewRLI function constructs an RLI structure from its component parts.

pascal void OCENewRLI(RLI *newRLI, const DirectoryName *dirName,

DirDiscriminator *discriminator,

const DNodeNum dNodeNumber,

const PackedPathName *path);

Trap macro Selector

__OCEUtils $030D

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-65

newRLI A pointer to the buffer where the OCENewRLI function stores the RLI
structure it constructs. You must allocate this.

dirName A pointer to the catalog name you want incorporated into the RLI
structure.

discriminator
A pointer to the catalog discriminator you want incorporated into the RLI
structure.

dNodeNumber
The catalog node number you want incorporated into the RLI structure.

path A pointer to the packed pathname you want incorporated into the RLI
structure.

DESCRIPTION

Given catalog name, discriminator, catalog node number, and packed pathname

structures, the OCENewRLI function creates an RLI structure and replaces the contents of

the buffer, newRLI, with the RLI structure that it forms.

SPECIAL CONSIDERATIONS

Because the OCENewRLI function does not allocate any memory, the RLI structure it

forms uses the same DirectoryName structure and the same PackedPathname

structure that you supplied as parameters. Therefore, you should not dispose of or reuse

the DirectoryName and PackedPathname structures until you have finished using

the RLI structure as well. Doing so will cause the pointers in the RLI structure to point

to incorrect locations in memory and might cause your application to crash.

Use OCENewRLI instead of the OCEUnPackRLI function to create an RLI structure that

you are going to make an alias for. An alias to an RLI structure created with the

OCEUnPackRLI function does not work properly.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is described on page 2-32.

The DirDiscriminator structure is described on page 2-30.

Trap macro Selector

__OCEUtils $031F

C H A P T E R 2

AOCE Utilities

2-66 AOCE Utilities Reference

OCEDuplicateRLI

The OCEDuplicateRLI function duplicates the contents of one RLI structure to another.

pascal void OCEDuplicateRLI(const RLI *rli1, RLI *rli2);

rli1 A pointer to the source RLI structure. You must allocate this structure.

rli2 A pointer to the destination RLI structure. You must allocate this
structure; however, you do not have to allocate the structures that this
RLI structure points to.

DESCRIPTION

The OCEDuplicateRLI function copies the pointers from the directoryName and

path fields of the source RLI structure to the corresponding fields in the destination RLI

structure. This function does not copy the data these fields point to, only the pointers to

the data. After you call the OCEDuplicateRLI function, each RLI structure contains

pointers to the same PackedPathName and DirectoryName structures. This means

that if you free the memory for one RLI structure’s PackedPathName or

DirectoryName structure, you are freeing the same structure in the corresponding RLI

structure as well. In addition, the OCEDuplicateRLI function copies the values from

the source RLI structure’s dirDiscriminator and dNodeNumber fields into the

corresponding fields of the destination RLI structure.

To actually copy the contents of the structures that the DirectoryNamePtr and

PackedPathNamePtr fields point to from one RLI to another, use the OCECopyRLI

function, described next.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is described on page 2-32.

To copy the contents of one RLI structure to another see the OCECopyRLI function,

described next.

To copy one PackedRLI structure to another see the OCECopyPackedRLI function on

page 2-70.

For a description of the difference between copying and duplicating an RLI structure,

see the section “Copying Versus Duplicating AOCE Data Structures” on page 2-15.

Trap macro Selector

__OCEUtils $030B

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-67

OCECopyRLI

The OCECopyRLI function copies the contents of one RLI structure into another.

pascal OSErr OCECopyRLI(const RLI *rli1, RLI *rli2);

rli1 A pointer to the source RLI structure. You must allocate this structure.

rli2 A pointer to the destination RLI structure. You must allocate this
structure.

DESCRIPTION

Given pointers to two RLI structures pointed to by the parameters, rli1 and rli2, the

OCECopyRLI function copies the contents of the first into the second. The destination

RLI structure must already contain pointers to structures large enough to hold copies of

the corresponding fields from the source RLI structure; otherwise, a memory-full error is

returned. Therefore, when you allocate a new destination RLI structure, you must set the

fields that define the length of the PackedPathName and DirectoryName structures

pointed to by its path and directoryName fields to the proper size before calling the

OCECopyRLI function.

You obtain the proper size for a PackedPathName from its dataLength field and that

of a DirectoryName structure from its RStringHeader. Once you obtain these values,

you can then use them to allocate structures of the correct size.

If you want a destination RLI structure that points to the same PackedPathName and

DirectoryName structures as the source RLI structure, then use the

OCEDuplicateRLI function (page 2-66). The OCEDuplicateRLI function changes the

destination RLI structure’s path and directoryName fields so that they point to the

same data in the fields of the corresponding source RLI structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RLI structure is described on page 2-32.

Trap macro Selector

__OCEUtils $0307

noErr 0 No error
memFullErr –108 The destination RLI structure is not large enough to hold the

entire contents of the source RLI structure.

C H A P T E R 2

AOCE Utilities

2-68 AOCE Utilities Reference

To create a destination RLI structure that points to the same PackedPathName and

DirectoryName structures as the source RLI structure, use the OCEDuplicateRLI

function on page 2-66.

To copy one PackedRLI structure to another see the OCECopyPackedRLI function on

page 2-70.

The PackedPathName and DirectoryName structures are described on page 2-29 and

page 2-22, respectively.

For a description of the difference between copying and duplicating an RLI structure,

see the section “Copying Versus Duplicating AOCE Data Structures” on page 2-15.

OCEEqualRLI

The OCEEqualRLI function checks the equality of two record location information

structures.

pascal Boolean OCEEqualRLI(const RLI *rli1, const RLI *rli2);

rli1 A pointer to the first RLI structure you want to compare.

rli2 A pointer to the second RLI structure you want to compare.

DESCRIPTION

Given pointers to two RLI structures, the OCEEqualRLI function compares them for

equality and returns true if they are equal, false if they are not. This function takes

into account differences in the case and diacritical marks of the catalog name and the

pathname that are contained in the RLI structures.

If the RLI structure that the rli1 parameter points to contains a catalog node number

and a nil pathname, and the RLI structure that the rli2 parameter points to contains

the value kNULLDNodeNumber and a pathname that is not nil, then the comparison

will fail. In other words, the two RLI structures must be of the same form before they

can be compared for equality. The one exception to this rule is when the pathname

contained in the two RLI structures is set to nil. In that case, a dNodeNumber field with

a value of kNULLDNodeNumber, and a dNodeNumber field with a value of

kRootDNodeNumber are treated as equal.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0315

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-69

SEE ALSO

The RLI structure is described on page 2-32.

To check two PackedRLI structures for equality, use the OCEEqualPackedRLI

function (page 2-76).

OCEValidRLI

The OCEValidRLI function checks the validity of a record location information

structure.

pascal Boolean OCEValidRLI(const RLI *theRLI);

theRLI A pointer to the RLI structure you want to check.

DESCRIPTION

The OCEValidRLI function returns true if the RLI structure is valid, false if it is not.

It checks for validity in the following manner:

■ If the pointer to the RLI structure is set to nil, then the OCEValidRLI function
considers the RLI structure to be invalid and returns false.

■ The OCEValidRLI function then checks if the catalog name length is greater than 0
and less than or equal to the constant kDirectoryNameMaxBytes. If it is not, then
the RLI structure is not valid.

■ The OCEValidRLI function then checks that the packed pathname, if specified, is
valid by calling the OCEValidPackedPathName function (page 2-62). If the
OCEValidPackedPathName function returns false, the RLI structure is not valid.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is described on page 2-32.

To perform a validity check on a PackedRLI structure use the OCEValidPackedRLI

function (page 2-77).

Trap macro Selector

__OCEUtils $0337

C H A P T E R 2

AOCE Utilities

2-70 AOCE Utilities Reference

OCECopyPackedRLI

The OCECopyPackedRLI function copies the contents of one PackedRLI structure into

another.

pascal OSErr OCECopyPackedRLI(const PackedRLI *prli1,

PackedRLI *prli2,

unsigned short prli2Length);

prli1 A pointer to the source PackedRLI structure.

prli2 A pointer to the destination PackedRLI structure.

prli2Length
The size of the destination PackedRLI structure, not including the size of
the dataLength field.

DESCRIPTION

Given two PackedRLI structures pointed to by the parameters prli1 and prli2, the

OCECopyPackedRLI function copies the contents of the first PackedRLI structure into

the second. The prli2Length parameter is the size of the destination PackedRLI

structure, excluding its dataLength field. The destination PackedRLI structure must

be large enough to hold the entire contents of the source PackedRLI structure;

otherwise, a memory-full error is returned.

You obtain the proper size for a PackedRLI structure from its dataLength field. Once

you obtain this value, you can then use it to allocate a PackedRLI structure of the

correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI structure is described on page 2-33.

To copy an RLI structure, use the OCECopyRLI function (page 2-67).

Trap macro Selector

__OCEUtils $0305

noErr 0 No error
memFullErr –108 The destination PackedRLI structure is not large enough to

hold the contents of the source PackedRLI structure

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-71

OCEPackedRLISize

The OCEPackedRLISize function computes the number of bytes of memory needed to

hold a PackedRLI structure.

pascal unsigned short OCEPackedRLISize(const RLI *theRLI);

theRLI A pointer to an RLI structure.

DESCRIPTION

Given a pointer to an RLI structure, the OCEPackedRLISize function computes the

number of bytes needed for a PackedRLI structure large enough to hold the data in the

RLI structure. The number of bytes returned by the OCEPackedRLISize function

includes the bytes in the field that specifies the length of the PackedRLI structure,

which enables you to allocate the correct amount of memory for a PackedRLI structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

To obtain the number of bytes necessary to create a PackedRLI structure from the

component parts of an RLI structure, see the OCEPackedRLIPartsSize function on

page 2-73.

OCEPackRLI

The OCEPackRLI function packs a record location information structure.

pascal OSErr OCEPackRLI(const RLI *theRLI, PackedRLI *prli,

unsigned short prliLength);

theRLI A pointer to the record location information structure you want packed.

prli A pointer to a PackedRLI structure. You must allocate this.

prliLength
The length, in bytes, of the PackedRLI structure pointed to by the prli
parameter, excluding the bytes in the dataLength field.

Trap macro Selector

__OCEUtils $032A

C H A P T E R 2

AOCE Utilities

2-72 AOCE Utilities Reference

DESCRIPTION

The OCEPackRLI function packs the contents of an RLI structure into a PackedRLI

structure. During this process, the OCEPackRLI function replaces the contents of the

PackedRLI structure with new data from the RLI structure. The PackedRLI structure

must be large enough to hold the contents of the RLI structure when packed; otherwise,

a memory-full error is returned. To determine the correct size for the PackedRLI

structure, call the OCEPackedRLISize function (page 2-71).

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

For information on unpacking a PackedRLI structure see the OCEUnpackRLI function,

next.

To create a PackedRLI structure from the component parts of an RLI structure, use the

OCEPackRLIParts function on page 2-74.

To determine the correct size for the PackedRLI structure, call the OCEPackedRLISize

function on page 2-71.

OCEUnpackRLI

The OCEUnpackRLI function unpacks a PackedRLI structure into its component parts.

pascal void OCEUnpackRLI(const PackedRLI *prli, RLI *theRLI);

prli1 A pointer to the PackedRLI structure you want unpacked.

theRLI A pointer to the RLI structure. You must allocate this; however, you do
not have to allocate the structures that this RLI structure points to.

Trap macro Selector

__OCEUtils $0324

noErr 0 No error
memFullErr –108 The PackedRLI structure is not large enough to hold the

contents of the RLI structure when packed

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-73

DESCRIPTION

Given a PackedRLI structure pointed to by the prli1 parameter, and an RLI structure

pointed to by the parameter theRLI, the OCEUnpackRLI function unpacks the

PackedRLI structure into its components, writing pointers to these components into the

RLI structure that you supply.

SPECIAL CONSIDERATIONS

The unpacked RLI structure contains pointers into the packed structure. Therefore, you

should not delete or reuse the packed structure pointed to by the prli1 parameter until

you are finished with the unpacked RLI structure as well.

An alias to an RLI structure created with the OCEUnPackRLI function does not work

properly. If you unpack an RLI structure with OCEUnPackRLI, create an alias to it, and

then pack it with OCEPackRLI, when you try to extract the alias with

OCEExtractAlias, a nil value is returned for the new PackedRLI structure. Use the

OCENewRLI function (page 2-64) instead of OCEUnPackRLI whenever you create an

RLI structure with an alias.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

For information on packing an RLI structure see the OCEPackRLI function on page 2-71.

OCEPackedRLIPartsSize

The OCEPackedRLIPartsSize function computes the size of a PackedRLI structure

needed to hold the constituent parts of an RLI structure.

pascal unsigned short OCEPackedRLIPartsSize

(const DirectoryName *dirName,

 const RStringPtr parts[],

 const unsigned short nParts);

dirName A pointer to a catalog name structure.

parts An array containing the pathname parts.

nParts The number of parts contained in the parts array.

Trap macro Selector

__OCEUtils $0331

C H A P T E R 2

AOCE Utilities

2-74 AOCE Utilities Reference

DESCRIPTION

Given the component parts of a record location information structure, the

OCEPackedRLIPartsSize function returns the size, in bytes, needed to create a

PackedRLI structure large enough to hold all of the data and the PackedRLI

dataLength field. This function is equivalent to the OCEPackedRLISize function

(page 2-71), except that it takes the parts of an RLI structure as parameters instead of an

RLI structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

To pack the components of an RLI structure into a PackedRLI structure, see the

OCEPackRLIParts function, described next.

OCEPackRLIParts

The OCEPackRLIParts function packs the components of a record location information

structure into a PackedRLI structure.

pascal OSErr OCEPackRLIParts(const DirectoryName *dirName,

const DirDiscriminator *discriminator,

const DNodeNum dNodeNumber,

const RStringPtr parts[],

const unsigned short nParts,

PackedRLI *prli,

unsigned short prliLength);

dirName A pointer to a catalog name structure you want packed.

discriminator
A pointer to a DirDiscriminator value you want packed.

dNodeNumber
The catalog node number you want packed.

parts An array of pointers to RString structures, each of which is a dNode
name on the path. The total array is the pathname structure that you want
packed.

nParts The number of dNode names contained in the parts array.

Trap macro Selector

__OCEUtils $0329

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-75

prli A pointer to a PackedRLI structure that you have allocated.

prliLength
The length, in bytes, of the PackedRLI structure pointed to by the prli
parameter.

DESCRIPTION

From all of the component pieces of a record location information structure, the

OCEPackRLIParts function forms a PackedRLI structure. You must allocate the

storage for the PackedRLI structure before calling this function. This function is

equivalent to the OCEPackRLI function, except that it takes the parts of an RLI structure

as its parameters instead of an RLI structure. The OCEPackRLIParts function

examines the prliLength parameter to see if the structure pointed to by the prli

parameter is large enough to hold the packed contents of the RLI structure, and returns

a memory-full error if it is not. Use the OCEPackedRLIPartsSize function to obtain

the size needed for a PackedRLI structure large enough to hold the data from all of the

pieces of an RLI structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RLI structure is defined on page 2-32.

The PackedRLI structure is defined on page 2-33.

For information on unpacking a PackedRLI structure see the OCEUnpackRLI function

on page 2-72.

To obtain the number of bytes necessary to create a PackedRLI structure from the

component parts of an RLI structure, see the OCEPackedRLIPartsSize function on

page 2-73.

Trap macro Selector

__OCEUtils $0325

noErr 0 No error
memFullErr –108 The PackedRLI structure is not large enough to hold the

packed components of the RLI structure

C H A P T E R 2

AOCE Utilities

2-76 AOCE Utilities Reference

OCEEqualPackedRLI

The OCEEqualPackedRLI function checks the equality of two packed record location

information structures.

pascal Boolean OCEEqualPackedRLI(const PackedRLI *prli1,

const PackedRLI *prli2);

prli1 A pointer to the first PackedRLI structure you want to compare.

prli2 A pointer to the second PackedRLI structure you want to compare.

DESCRIPTION

The OCEEqualPackedRLI function determines if two PackedRLI structures are equal

and returns true if they are, false if they are not. This function checks for equality in

the following manner:

■ If the value of both PackedRLI structures is NULL they are equal. The PackedRLI
structures are set to NULL if the pointers to them are nil, or if they have a length of 0.

■ If only one PackedRLI structure is NULL, the PackedRLI structures are not equal.

■ If neither PackedRLI structures is NULL, then they are unpacked and their
discriminator and dNodeNumber field’s values are compared. If these values are
not identical, then the PackedRLI structures are not equal. If the values are identical,
then the DirectoryName and PackedPathName structures are compared for
equality by calling the OCEEqualRString (page 2-50) and
OCEEqualPackedPathName (page 2-61) functions. If the DirectoryName and
PackedPathName structures are equal then the PackedRLI structures are equal;
otherwise, the PackedRLI structures are not equal.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRLI structure is defined on page 2-33.

To check the equality of two RLI structures use the OCEEqualRLI function (page 2-68).

Trap macro Selector

__OCEUtils $0313

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-77

OCEValidPackedRLI

The OCEValidPackedRLI function checks the validity of a packed record location

information structure.

pascal Boolean OCEValidPackedRLI(const PackedRLI *prli);

prli A pointer to a PackedRLI structure.

DESCRIPTION

The OCEValidPackedRLI function checks a PackedRLI structure for validity and

returns true if it is valid, false if it is not. The OCEValidPackedRLI function

determines validity by unpacking the PackedRLI structure and then performing the

following tests on it:

■ If the pointer to the PackedRLI structure is nil, or the PackedRLI structure has a
length of 0, then the PackedRLI structure is not valid.

■ The OCEValidPackedRLI function determines if the PackedRLI structure is larger
than the smallest possible PackedRLI structure. If it is not, then the PackedRLI
structure is not valid.

■ The OCEValidPackedRLI function then checks that the catalog name of the
PackedRLI structure is valid by calling the OCEValidRString function (page 2-51).
If the OCEValidRString function returns false, then the PackedRLI structure is
not valid.

■ The OCEValidPackedRLI function then checks the validity of the packed pathname
of the PackedRLI structure by calling the OCEValidPackedPathName function
(page 2-62). If the OCEValidPackedPathName function returns false, then the
PackedRLI structure is not valid.

■ The OCEValidPackedRLI function then adds up the sizes of all of the fields in the
PackedRLI structure and compares the total number of bytes to the value contained
in the dataLength field of the PackedRLI structure. If the two values are equal,
then the PackedRLI structure is valid; otherwise, it is not valid.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRLI structure is defined on page 2-33.

To check the validity of an RLI structure, use the OCEValidRLI function (page 2-69).

Trap macro Selector

__OCEUtils $0336

C H A P T E R 2

AOCE Utilities

2-78 AOCE Utilities Reference

OCEExtractAlias

The OCEExtractAlias function returns an alias record from a packed record location

information structure.

pascal AliasPtr OCEExtractAlias(const PackedRLI *prli);

prli A pointer to the PackedRLI structure containing the alias you want to
extract.

DESCRIPTION

If the PackedRLI structure describes a personal catalog, the OCEExtractAlias

function extracts an HFS alias to the personal catalog.

To use the alias, connect it to a handle and call the ResolveAlias function as shown in

the following code sample.

aliasPtr = OCEExtractAlias()

status = PtrToHand(

(Ptr) aliasPtr,

(Handle *) &aliasHandle,

aliasPtr->aliasSize

);

if (status == noErr)

status = ResolveAlias(NULL, aliasHandle, &theFSSpec, &wasChanged);

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRLI structure is defined on page 2-33.

See the chapter “Alias Manager” in Inside Macintosh: Files for more information on aliases

and the alias structure.

OCEGetDirectoryRootPackedRLI

The OCEGetDirectoryRootPackedRLI function returns a pointer to a special packed

RLI structure that represents the root of all catalogs.

pascal const PackedRLI * OCEGetDirectoryRootPackedRLI (void)

Trap macro Selector

__OCEUtils $0318

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-79

DESCRIPTION

You use the OCEGetDirectoryRootPackedRLI function whenever you need to obtain

the record location information for the root of all catalogs. This PackedRLI structure is

maintained by the AOCE toolbox, and therefore you never need to free the PackedRLI

structure returned by the OCEGetDirectoryRootPackedRLI function when you have

finished using it.

Clients of the AOCE standard catalog-browsing panel can use the PackedRLI returned

by this function to tell the Standard Catalog panel to begin displaying catalogs from the

root, thus allowing the user to see all of the catalogs configured on the computer.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRLI structure is defined on page 2-33.

The catalog-browsing panel is described in the chapter “Standard Catalog Package” in

this book.

Local Record Identifier Functions

The functions described in this section manipulate local record identifier structures. The

local record identifier is defined by the LocalRecordID structure (page 2-27).

OCENewLocalRecordID

The OCENewLocalRecordID function converts the data you supply into a

LocalRecordID structure.

pascal void OCENewLocalRecordID(const RString *recordName,

const RString *recordType,

const CreationID *cid,

LocalRecordID *lRID);

recordName
A pointer to an RString structure containing the record name you want
stored in the LocalRecordID structure.

recordType
A pointer to an RString structure containing the record type you want
stored in the LocalRecordID structure.

Trap macro Selector

__OCEUtils $0346

C H A P T E R 2

AOCE Utilities

2-80 AOCE Utilities Reference

cid A pointer to the CreationID structure you want stored in the
LocalRecordID structure.

lRID A pointer to a LocalRecordID structure you have allocated.

DESCRIPTION

The OCENewLocalRecordID function converts a record name, record type, and creation

identifier into a LocalRecordID structure. You must allocate the storage for the

LocalRecordID structure before calling this function.

SPECIAL CONSIDERATIONS

Because the OCENewLocalRecordID function does not allocate any memory, the

LocalRecordID structure it forms uses the same RString structures and the same

CreationID structure that you supplied as parameters. Therefore, you should not

dispose of or reuse the RSTring and CreationID structures until you have finished

using the LocalRecordID structure as well. Doing so will cause the pointers in the

LocalRecordID structure to point to incorrect locations in memory and might cause

your application to crash.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The LocalRecordID structure is defined on page 2-27.

OCECopyLocalRecordID

The OCECopyLocalRecordID function copies one LocalRecordID structure into

another.

pascal OSErr OCECopyLocalRecordID(const LocalRecordID *lRID1,

LocalRecordID *lRID2);

lRID1 A pointer to the source LocalRecordID structure.

lRID2 A pointer to the destination LocalRecordID structure.

DESCRIPTION

Given two LocalRecordID structures, the OCECopyLocalRecordID function copies

the contents of the first one into the second. The destination LocalRecordID structure

Trap macro Selector

__OCEUtils $031E

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-81

must contain pointers to RString structures large enough to hold copies of the

corresponding fields from the source LocalRecordID structure; otherwise, a

memory-full error is returned. Therefore, when you allocate a new destination

LocalRecordID structure, you must set the length fields of the RString structures

pointed to by recordName and recordType to their proper values before calling the

OCECopyLocalRecordID function. You obtain the correct size for these Rstring

structures from their headers in the source LocalRecordID structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The LocalRecordID structure is defined on page 2-27.

OCEEqualLocalRecordID

The OCEEqualLocalRecordID function checks the equality of two LocalRecordID

structures.

pascal Boolean OCEEqualLocalRecordID(const LocalRecordID *lRID1,

const LocalRecordID *lRID2);

lRID1 A pointer to the first LocalRecordID structure you want to compare.

lRID2 A pointer to the second LocalRecordID structure you want to compare.

DESCRIPTION

The OCEEqualLocalRecordID function compares the two LocalRecordID structures

for equality in the following manner:

■ The recordName and recordType fields of the two LocalRecordID structures are
compared for equality by calling the OCEEqualRString (page 2-50) function and
passing it the proper RStringKind value for each field.

■ The cid fields of the two LocalRecordID structures are compared for equality by
calling the OCEEqualCreationID function (page 2-52).

Trap macro Selector

__OCEUtils $0302

noErr 0 No error
memFullErr –108 The destination LocalRecordID structure is not large

enough to hold the contents of the source LocalRecordID
structure

C H A P T E R 2

AOCE Utilities

2-82 AOCE Utilities Reference

If the recordName, recordType, and CreationID fields of the two LocalRecordID

structures are equal, then the OCEEqualLocalRecordID function returns true;

otherwise, it returns false.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The LocalRecordID structure is defined on page 2-27.

The RStringKind structure is defined on page 2-24.

Short Record Identifier Functions

The functions described in this section manipulate short record identifiers. The short

record identifier is defined by the ShortRecordID structure (page 2-35).

OCENewShortRecordID

The OCENewShortRecordID function converts data you supply into a

ShortRecordID structure.

pascal void OCENewShortRecordID(const PackedRLI *theRLI,

const CreationID *cid,

ShortRecordIDPtr *sRID);

theRLI A pointer to the packed record location information structure containing
data you want stored in the ShortRecordID structure.

cid A pointer to the creation identifier structure containing data you want
stored in the ShortRecordID structure.

sRID A pointer to a ShortRecordID structure you have allocated.

DESCRIPTION

The OCENewShortRecordID function converts a CreationID structure and a

PackedRLI structure into a ShortRecordID structure. You must allocate the

ShortRecordID structure before calling this function.

SPECIAL CONSIDERATIONS

Because the OCENewRecordID function does not allocate any memory, the

ShortRecordID structure it forms uses the same PackedRLI structure and the same

Trap macro Selector

__OCEUtils $030E

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-83

CreationID structure that you supplied as parameters. Therefore, you should not

dispose of or reuse the PackedRLI and CreationID structures until you have finished

using the ShortRecordID structure as well. Doing so will cause the pointers in the

ShortRecordID structure to point to incorrect locations in memory and might cause

your application to crash.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The ShortRecordID structure is defined on page 2-35.

OCECopyShortRecordID

The OCECopyShortRecordID function copies one ShortRecordID structure into

another.

pascal OSErr OCECopyShortRecordID(const ShortRecordID *sRID1,

ShortRecordID *sRID2);

sRID1 A pointer to the source ShortRecordID structure.

sRID2 A pointer to the destination ShortRecordID structure.

DESCRIPTION

Given two ShortRecordID structures pointed to by the sRID1 and sRID2 parameters,

the OCECopyShortRecordID function copies the data from the first one into the

second. The destination ShortRecordID structure must contain pointers to structures

large enough to hold copies of the corresponding fields from the source

ShortRecordID structure; otherwise, a memory-full error is returned. Therefore, when

you allocate a new destination ShortRecordID structure, you must set the

dataLength field of its PackedRLI component to the proper value before calling the

OCECopyShortRecordID function.

You obtain the correct size for a PackedRLI structure from the value contained in its

dataLength field. Once you obtain this value, you can then use it to allocate a

PackedRLI structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0321

Trap macro Selector

__OCEUtils $030A

C H A P T E R 2

AOCE Utilities

2-84 AOCE Utilities Reference

RESULT CODES

SEE ALSO

The ShortRecordID structure is defined on page 2-35.

OCEEqualShortRecordID

The OCEEqualShortRecordID function checks the equality of two short record

identifier structures.

pascal Boolean OCEEqualShortRecordID(const ShortRecordID *sRID1,

const ShortRecordID *sRID2);

sRID1 A pointer to the first ShortRecordID structure you want to compare.

sRID2 A pointer to the second ShortRecordID structure you want to compare.

DESCRIPTION

If both ShortRecordID structures are equal, then the OCEEqualShortRecordID

function returns true; otherwise, it returns false.

The OCEEqualShortRecordID function compares two ShortRecordID structures for

equality in the following manner:

■ If both pointers to the ShortRecordID structures are set to nil, then they are equal.

■ If one of the pointers to a ShortRecordID structure is set to nil and the other is not,
then the OCEEqualShortRecordID function returns false.

■ If neither pointer to the ShortRecordID structures is set to nil, then the cid fields
of the two ShortRecordID structures are compared for equality by calling the
OCEEqualCreationID function (page 2-52). If the OCEEqualCreationID function
returns false, then the ShortRecordID structures are not equal.

■ If the CreationID fields of the two ShortRecordID structures are equal, then the
PackedRLI structures pointed to by the PackedRLIPtr fields of the two
ShortRecordID structures are compared for equality by calling the
OCEEqualPackedRLI function (page 2-76). If the OCEEqualPackedRLI function
returns true, then the two ShortRecordID structures are equal; otherwise, they are
not.

noErr 0 No error
memFullErr –108 The destination ShortRecordID structure is not large

enough to hold the contents of the source ShortRecordID
structure

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-85

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The ShortRecordID structure is defined on page 2-35.

Record Identifier Functions

The functions in this section manipulate record identifier structures. The record identifier

is defined by the RecordID data structure (page 2-34).

OCEGetIndRecordType

The OCEGetIndRecordType function returns a standard record type based on the

index value you pass to it.

pascal RString *OCEGetIndRecordType

(const OCERecordTypeIndex stringIndex);

stringIndex
One of the index values from the OCERecordTypeIndex enumerated list.

DESCRIPTION

To obtain a standard record type, you call the OCEGetIndRecordType function and

pass it an index value based on the type of record you want. The record type index

(page 2-28) is an enumerated list containing all of the standard AOCE record types.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The recordType field is part of the LocalRecordID structure defined on page 2-27.

For an enumerated list containing all of the standard AOCE record types, see the record

type index on page 2-28.

Trap macro Selector

__OCEUtils $0317

Trap macro Selector

__OCEUtils $031B

C H A P T E R 2

AOCE Utilities

2-86 AOCE Utilities Reference

OCENewRecordID

The OCENewRecordID function converts data you supply into a RecordID structure.

pascal void OCENewRecordID(const PackedRLI *theRLI,

const LocalRecordID *lRID, RecordID *rid);

theRLI A pointer to the PackedRLI structure you want stored in the RecordID
structure.

lRID A pointer to the LocalRecordID structure you want stored in the
RecordID structure.

rid A pointer to the destination RecordID structure. You must allocate this
structure.

DESCRIPTION

The OCENewRecordID function converts a PackedRLI structure and LocalRecordID

structure into a RecordID structure.

SPECIAL CONSIDERATIONS

Because the OCENewRecordID function does not allocate any memory, the RecordID

structure it forms uses the same PackedRLI structure and the same LocalRecordID

structure that you supplied as parameters. Therefore, you should not dispose of or reuse

the PackedRLI and LocalRecordID structures until you have finished using the

RecordID structure as well. Doing so will cause the pointers in the RecordID structure

to point to incorrect locations in memory and might cause your application to crash.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RecordID structure is defined on page 2-34.

OCECopyRecordID

The OCECopyRecordID function copies one RecordID structure to another.

pascal OSErr OCECopyRecordID(const RecordID *rid1,

const RecordID *rid2);

Trap macro Selector

__OCEUtils $0320

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-87

rid1 The source RecordID structure.

rid2 The destination RecordID structure.

DESCRIPTION

Given two RecordID structures pointed to by the rid1 and rid2 parameters, the

OCECopyRecordID function copies the contents of the first one into the second. The

destination RecordID structure must contain pointers to structures large enough to hold

copies of the corresponding fields from the source RecordID structure; otherwise, a

memory-full error is returned. Therefore, when you allocate a new destination

RecordID structure, you must set the length fields of its

LocalRecordID.recordName, LocalRecordId.recordType, and

LocalRecordID.PackedRLI fields to their proper values before calling the

OCECopyRecordID function.

You obtain the correct size for the LocalRecordID.recordName and

LocalRecordID.recordType fields of a RecordID structure from the values

contained in their RStringHeader fields. Once you obtain these values, you can then

use them to allocate recordName and recordType structures of the correct size.

You obtain the correct size for a LocalRecordId.PackedRLI structure from the value

contained in its dataLength field. Once you obtain this value you can then use it to

allocate a PackedRLI structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID structure is defined on page 2-34.

OCEEqualRecordID

The OCEEqualRecordID function checks the equality of two record identifier structures.

pascal Boolean OCEEqualRecordID(const RecordID *rid1,

const RecordID *rid2);

Trap macro Selector

__OCEUtils $0309

noErr 0 No error
memFullErr –108 The destination RecordID structure is not large enough to

hold the contents of the source RecordID structure

C H A P T E R 2

AOCE Utilities

2-88 AOCE Utilities Reference

rid1 A pointer to the first RecordID you want to compare.

rid2 A pointer to the second RecordID you want to compare.

DESCRIPTION

The OCEEqualRecordID function compares two RecordID structures for equality and

returns true if they are equal, false if they are not. This function checks the two

RecordID structures for equality in the following manner:

■ If both pointers to the RecordID structures are set to nil, then they are equal.

■ If one of the pointers to a RecordID structure is set to nil and the other is not, then
the OCEEqualRecordID function returns false.

■ If neither pointer to the RecordID structures is set to nil, then the CreationID
structures pointed to by the LocalRecordID.cid fields of the two RecordID
structures are compared for equality by calling the OCEEqualCreationID function
(page 2-52). If the OCEEqualCreationID function returns false, then the two
RecordID structures are not equal.

■ If the CreationID structures identified by the LocalRecordID.cid fields of the
two RecordID structures are equal, then the PackedRLI structures pointed to by the
PackedRLIPtr fields of the two RecordID structures are compared for equality by
calling the OCEEqualPackedRLI function (page 2-76). If the OCEEqualPackedRLI
function returns false, then the two RecordID structures are not equal.

■ If the PackedRLI structures pointed to by the PackedRLIPtr fields of the two
RecordID structures are equal, then the LocalRecordID.recordName and
LocalRecordID.recordType fields of the two RecordID structures are compared
for equality by calling the OCEEqualRString (page 2-50) function and passing it the
proper RStringKind value for each field. If the OCEEqualRString function returns
false, the two RecordID structures are not equal.

If the conditions for equality listed above are satisfied, then the two RecordID

structures are equal; otherwise, they are not equal.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RecordID structure is defined on page 2-34.

The RStringKind structure is defined on page 2-24.

Packed Record Identifier Functions

The functions described in this section manipulate packed record identifiers. Packed

record identifiers are defined by the PackedRecordID structure (page 2-35).

Trap macro Selector

__OCEUtils $0314

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-89

OCECopyPackedRecordID

The OCECopyPackedRecordID function copies one PackedRecordID structure to

another.

pascal OSErr OCECopyPackedRecordID(const PackedRecordID *pRID1,

const PackedRecordID *pRID2,

unsigned short pRID2Length);

pRID1 A pointer to the source PackedRecordID structure.

pRID2 A pointer to the destination PackedRecordID structure.

pRID2Length
The length, in bytes, of the destination PackedRecordID structure, not
including the bytes in the dataLength field.

DESCRIPTION

Given two PackedRecordID structures pointed to by the pRID1 and pRID2

parameters, the OCECopyPackedRecordID function copies the contents of the first into

the second. The pRID2Length parameter is the size of the destination

PackedRecordID structure, excluding its dataLength field. The destination

PackedRecordID structure must be large enough to hold the entire contents of the

source PackedRecordID structure; otherwise, a memory-full error is returned.

You obtain the proper size for a PackedRecordID structure from the value contained in

its dataLength field. Once you obtain this value, you can then use it to allocate a

destination PackedRecordID structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRecordID structure is defined on page 2-35.

Trap macro Selector

__OCEUtils $0306

noErr 0 No error
memFullErr –108 The pRID2 parameter is not large enough to hold the entire

contents of pRID1

C H A P T E R 2

AOCE Utilities

2-90 AOCE Utilities Reference

OCEPackedRecordIDSize

The OCEPackedRecordIDSize function computes the number of bytes of memory

needed to hold a PackedRecordID structure.

pascal unsigned short OCEPackedRecordIDSize(const RecordID *rid);

rid A pointer to a RecordID structure.

DESCRIPTION

The OCEPackedRecordIDSize function returns the number of bytes that a

PackedRecordID needs to hold the packed data from a specified RecordID structure.

The number of bytes returned by the OCEPackedRecordIDSize function includes the

size of the datalength field of the PackedRecordID structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RecordID structure is defined on page 2-34.

The PackedRecordID structure is defined on page 2-35.

To unpack a PackedRecordID structure into a RecordID structure, use the

OCEUnpackRecordID function (page 2-91).

OCEPackRecordID

The OCEPackRecordID function packs a RecordID structure into a PackedRecordID

structure.

pascal OSErr OCEPackRecordID(const RecordID *rid,

PackedRecordID *pRID,

unsigned short packedRecordIDLength);

rid A pointer to the RecordID structure you want packed.

pRID A pointer to a PackedRecordID structure. You must allocate this
structure.

packedRecordIDLength
The maximum length, in bytes, of the PackedRecordID structure,
excluding the bytes in the dataLength field.

Trap macro Selector

__OCEUtils $032B

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-91

DESCRIPTION

The OCEPackRecordID function packs a RecordID structure into a PackedRecordID

structure. The PackedRecordID structure must be large enough to contain the entire

contents of the RecordID in packed format; otherwise, a memory-full error is returned.

You obtain the size of a PackedRecordID structure large enough to hold the data in a

RecordID structure by calling the OCEPackedRecordIDSize function described on

page 2-90.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID structure is defined on page 2-34.

The PackedRecordID structure is defined on page 2-35.

To unpack a PackedRecordID structure into a RecordID structure, see the

OCEUnpackRecordID function, described next.

OCEUnpackRecordID

The OCEUnpackRecordID function unpacks a PackedRecordID structure into a

RecordID structure.

pascal void OCEUnpackRecordID(const PackedRecordID *pRID,

RecordID *rid);

pRID A pointer to the PackedRecordID structure you want to unpack.

rid A pointer to a RecordID structure. You must allocate this structure.

DESCRIPTION

Given a PackedRecordID structure pointed to by the pRID parameter and a RecordID

structure pointed to by the rid parameter, the OCEUnpackRecordID function unpacks

the PackedRecordID structure into the RecordID structure.

Trap macro Selector

__OCEUtils $0326

noErr 0 No error
memFullErr –108 The PackedRecordID structure is not large enough to hold

the packed data from the RecordID structure

C H A P T E R 2

AOCE Utilities

2-92 AOCE Utilities Reference

SPECIAL CONSIDERATIONS

Because the OCEUnpackRecordID function does not allocate any memory, the

unpacked RecordID structure contains pointers into the PackedRecordID structure.

Therefore, do not delete or reuse the PackedRecordID structure until you have finished

using the unpacked RecordID structure as well. Doing so will cause the pointers in the

RecordID structure to point to incorrect locations in memory, and your application may

crash when you try to access the RecordID structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The RecordID structure is defined on page 2-34.

The PackedRecordID structure is defined on page 2-35.

To pack a RecordID structure into a PackedRecordID structure, see the

OCEPackRecordID function described on page 2-90.

OCEEqualPackedRecordID

The OCEEqualPackedRecordID function checks the equality of two

PackedRecordID structures.

pascal Boolean OCEEqualPackedRecordID

(const PackedRecordID *pRID1,

 const PackedRecordID *pRID2);

pRID1 A pointer to the first PackedRecordID structure you want to compare.

pRID2 A pointer to the second PackedRecordID structure you want to
compare.

DESCRIPTION

The OCEEqualPackedRecordID function compares two PackedRecordID structures

for equality and returns true if they are equal and false if they are not.

This function checks the two PackedRecordID structures for equality in the following

manner:

■ If both pointers to the PackedRecordID structures are nil, then they are equal.

■ If one of the pointers to a PackedRecordID structure is nil and the other is not,
then the PackedRecordID structures are not equal.

Trap macro Selector

__OCEUtils $0332

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-93

■ If neither pointer to the PackedRecordID structures is nil, then they are unpacked
and the CreationID structures identified by the LocalRecordId.cid fields of the
two unpacked PackedRecordID structures are compared for equality by calling the
OCEEqualCreationID function (page 2-52). If the OCEEqualCreationID function
returns false, then the two PackedRecordID structures are not equal.

■ If the CreationID structures identified by the LocalRecordId.cid fields of the
two unpacked PackedRecordID structures are equal, then the PackedRLI
structures pointed to by the PackedRLIPtr fields of the two PackedRecordID
structures are compared for equality by calling the OCEEqualPackedRLI function
(page 2-76). If the OCEEqualPackedRLI function returns false, then the two
PackedRecordID structures are not equal.

■ If the PackedRLI structures pointed to by the PackedRLIPtr fields of the two
(unpacked) PackedRecordID structures are equal, then the
LocalRecordID.recordName and LocalRecordID.recordType fields of the
two (unpacked) PackedRecordID structures are compared for equality by calling
the OCEEqualRString (page 2-50) function and passing it the proper RStringKind
value for each field. If the OCEEqualRString function returns false, the two
PackedRecordID structures are not equal.

If the conditions for equality listed above are satisfied, then the two PackedRecordID

structures are equal; otherwise, they are not equal.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRecordID structure is defined on page 2-35.

The RStringKind structure is defined on page 2-24.

OCEValidPackedRecordID

The OCEValidPackedRecordID function checks the validity of a packed record

identifier.

pascal Boolean OCEValidPackedRecordID(const PackedRecordID *pRID);

pRID A pointer to the PackedRecordID you want to validate.

Trap macro Selector

__OCEUtils $0312

C H A P T E R 2

AOCE Utilities

2-94 AOCE Utilities Reference

DESCRIPTION

Given a pointer to a PackedRecordID structure, the OCEValidPackedRecordID

function checks it for validity based on its internal structure and returns true if it is

valid and false if it is not. The OCEValidPackedRecordID function checks a

PackedRecordID structure for validity in the following manner:

■ If the pointer to the PackedRecordID structure is set to nil, or the length of the
PackedRecordID structure is 0, then the PackedRecordID structure is invalid.

■ If the pointer to the PackedRecordID structure is not nil and the length of the
structure is greater than 0, then it is unpacked and the RLI component of the
PackedRecordID structure is validated by calling the OCEValidRLI function
(page 2-69). If the OCEValidRLI function returns false, then the PackedRecordID
structure is not valid.

■ If the RLI component of the PackedRecordID structure is valid, then the
recordName and recordType fields of the PackedRecordID structure are
validated by calling the OCEValidRString function. If the OCEValidRString
function returns false, then the PackedRecordID structure is not valid.

■ If all of the conditions tested for validity are true, then the entire PackedRecordID
structure is valid.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedRecordID structure is defined on page 2-35.

Attribute Type Functions

The function described in this section returns a standard attribute type. The attribute

type is defined by the AttributeType data structure and is described on page 2-39.

OCEGetIndAttributeType

The OCEGetIndAttributeType function returns an attribute type based on the index

value you pass to it.

pascal AttributeType *OCEGetIndAttributeType(const

OCEAttributeTypeIndex stringIndex);

Trap macro Selector

__OCEUtils $0335

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-95

stringIndex
One of the index values from the OCEAttributeTypeIndex
enumerated list.

DESCRIPTION

To obtain a standard attribute type, you call the OCEGetIndAttributeType function

and pass it an index value based on the kind of attribute type you want. The attribute

type index (page 2-40) is an enumerated list containing all of the standard AOCE

attribute types.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The AttributeType structure is defined on page 2-39.

For an enumerated list of all the standard AOCE attribute types, see the attribute type

index on page 2-40.

Catalog Services Specification Functions

The functions described in this section manipulate the various catalog services

specification data structures. The catalog services specification is defined by the DSSpec

data structure (page 2-36) and its packed form by the PackedDSspec structure

(page 2-37). These functions perform such tasks as copying, comparing, unpacking, and

retrieving information from DSSpec structures.

Other forms of the DSSpec structure include the OCERecipient and the packed form,

OCEPackedRecipient, which are defined in the chapter “Interprogram Messaging

Manager” in this book. The functions, such as OCEPackRecipient, that manipulate

these data structures are also described in the chapter “Interprogram Messaging

Manager.”

OCECopyPackedDSSpec

The OCECopyPackedDSSpec function copies data from one PackedDSSpec into

another.

pascal OSErr OCECopyPackedDSSpec(const PackedDSSpec *pdss1,

const PackedDSSpec *pdss2, unsigned short pdss2Length);

pdss1 A pointer to the source PackedDSSpec structure.

Trap macro Selector

__OCEUtils $031A

C H A P T E R 2

AOCE Utilities

2-96 AOCE Utilities Reference

pdss2 A pointer to the destination PackedDSSpec structure.

pdss2Length
The length, in bytes, of the destination PackedDSSpec structure, not
including the header information.

DESCRIPTION

Given two PackedDSSpec structures pointed to by the pdss1 and pdss2 parameters,

the OCECopyPackedDSSpec function copies the first into the second. The

pdss2Length parameter is the size, in bytes, of the destination PackedDSSpec

structure, excluding its header. The destination PackedDSSpec structure must be large

enough to hold the entire contents of the source PackedDSSpec structure; otherwise, a

memory-full error is returned.

You obtain the proper size for a PackedDSSpec structure from the value contained in its

dataLength field. Once you obtain this value, you can then use it to allocate a

destination PackedDSSpec structure of the correct size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedDSSpec data structure is defined on page 2-37.

OCEPackedDSSpecSize

The OCEPackedDSSpecSize function computes the number of bytes of memory

needed to hold a packed DSSpec structure.

pascal unsigned short OCEPackedDSSpecSize(const DSSpec *dss);

dss A pointer to the DSSpec structure whose size, when packed, you want to
determine.

Trap macro Selector

__OCEUtils $0303

noErr 0 No error
memFullErr –108 The destination PackedDSSpec structure is not large

enough to hold the contents of the source PackedDSSpec
structure

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-97

DESCRIPTION

The OCEPackedDSSpecSize function computes the number of bytes required to hold

the information contained in a DSSpec structure when it is packed. The number of bytes

returned by the OCEPackedDSSpecSize function includes the dataLength field of the

PackedDSSpec structure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec structure is defined on page 2-36.

The PackedDSSpec structure is defined on page 2-37.

To pack a DSSpec structure, use the OCEPackDSSpec function, described next.

OCEPackDSSpec

The OCEPackDSSpec function forms a PackedDSSpec structure from a DSSpec

structure.

pascal OSErr OCEPackDSSpec(const DSSpec *dss, PackedDSSpec *pdss,

unsigned short pdssLength);

dss A pointer to the DSSpec structure that you want to pack.

pdss A pointer to a PackedDSSpec structure. You must allocate this structure.

pdssLength The maximum number of bytes that can be stored in the PackedDSSpec
structure, not including the header information.

DESCRIPTION

The OCEPackDSSpec function packs the contents of a DSSpec structure into a

PackedDSSpec structure. The PackedDSSpec structure must be large enough to

contain the packed RecordID information and any extension value as well; otherwise, a

memory-full error is returned. Use the OCEPackDSSpecSize function to obtain the size

of a PackedDSSpec structure.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

__OCEUtils $0327

Trap macro Selector

__OCEUtils $0322

C H A P T E R 2

AOCE Utilities

2-98 AOCE Utilities Reference

RESULT CODES

SEE ALSO

The DSSpec structure is defined on page 2-36.

The PackedDSSpec structure is defined on page 2-37.

To obtain the size of a PackedDSSpec structure, use the OCEPackDSSpecSize function

on page 2-96.

For information on unpacking a PackedDSSpec structure, see the OCEUnpackDSSpec

function, described next.

OCEUnpackDSSpec

The OCEUnpackDSSpec function unpacks a PackedDSSpec structure.

pascal void OCEUnpackDSSpec(const PackedDSSpec *pdss, DSSpec *dss,

RecordID *rid);

pdss A pointer to the PackedDSSpec structure you want to unpack.

dss A pointer to a DSSpec structure. You must allocate this structure.

rid A pointer to a RecordID structure. The OCEUnpackDSSpec function
extracts the RecordID information from the PackedDSSpec structure
and places it in this RecordID structure. You must allocate this structure.

DESCRIPTION

The OCEUnpackDSSpec function extracts the information from a PackedDSSpec

structure and places it in a DSSpec structure and a RecordID structure. The

OCEUnpackDSSpec function extracts the record identifier (if any) into the RecordID

structure, places the rest of the information into the DSSpec structure, and then sets the

entitySpecifier field of the DSSpec structure to point to the RecordID structure.

The OCEUnpackDSSpec function returns a pointer to the extension (if any) in the

extensionValue field of the DSSpec structure, and returns the length of that

extension in the extensionSize field of the DSSpec structure. If there is no extension,

the OCEUnpackDSSpec function sets the extensionValue field of the DSSpec

structure to nil.

noErr 0 No error
memFullErr –108 The PackedDSSpec structure is not large enough to hold all

of the packed information

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-99

SPECIAL CONSIDERATIONS

The unpacked DSSpec and RecordID structures contain pointers into the

PackedDSSpec structure. You should not delete or reuse the PackedDSSpec structure

until you have finished using the DSSpec and RecordID structures as well.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec structure is defined on page 2-36.

The PackedDSSpec structure is defined on page 2-37.

The RecordID structure is defined on page 2-34.

To pack a DSSpec structure, use the OCEPackDSSpec function (page 2-97).

OCEEqualDSSpec

The OCEEqualDSSpec function checks the equality of two DSSpec structures.

pascal Boolean OCEEqualDSSpec(const DSSpec *pdss1,

const DSSpec *pdss2);

pdss1 A pointer to the first DSSpec structure you want to compare.

pdss2 A pointer to the second DSSpec structure you want to compare.

DESCRIPTION

Given two DSSpec structures pointed to by the pdss1 and pdss2 parameters, the

OCEEqualDSSpec function compares them for equality and returns true if they are

equal and false if they are not.

This function checks the two DSSpec structures for equality in the following manner:

■ If both pointers to the DSSpec structures are nil, then they are equal.

■ If one of the pointers to a DSSpec structure is nil and the other is not, then the two
DSSpec structures are not equal.

■ If neither pointer to the DSSpec structures is nil, then the CreationID structures,
identified by the RecordID->LocalRecordID.cid fields of the two DSSpec
structures, are compared for equality by calling the OCEEqualCreationID function
(page 2-52). If the OCEEqualCreationID function returns false, then the two
DSSpec structures are not equal.

Trap macro Selector

__OCEUtils $032F

C H A P T E R 2

AOCE Utilities

2-100 AOCE Utilities Reference

■ If the CreationID structures are equal, then the PackedRLI structures pointed to by
the RecordID->PackedRLIPtr fields of the two DSSpec structures are compared
for equality by calling the OCEEqualPackedRLI function (page 2-76). If the
OCEEqualPackedRLI function returns false, then the two DSSpec structures are
not equal.

■ If the PackedRLI structures are equal, then the LocalRecordID.recordName and
LocalRecordID.recordType fields belonging to the RecordID structure of the
two DSSpec structures are compared for equality by calling the OCEEqualRString
(page 2-50) function and passing it the proper RStringKind value for each field. If
the OCEEqualRString function returns false, the two DSSpec structures are not
equal.

■ If the LocalRecordID.recordName and LocalRecordID.recordType fields are
equal then the values of the extensionType fields of the DSSpec structures are
examined. If they are not identical then the DSSpec structures are not equal.

■ If the extensionType fields of the two DSSpec structures are identical, then the
extensionSize fields of the DSSpec structures are compared. If they are not
identical, then the two DSSpec structures are not equal.

■ If the extensionSize fields of the two DSSpec structures are identical, then the
extensionValue fields of the DSSpec structures are compared. They are compared
byte by byte for equality, and if they are not identical then the two DSSpec structures
are not equal.

If the conditions for equality listed above are satisfied, then the two DSSpec structures

are equal; otherwise, they are not equal.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec data structure is defined on page 2-36.

To compare two PackedDSSpec structures for equality use the

OCEEqualPackedDSSpec function, described next.

OCEEqualPackedDSSpec

The OCEEqualPackedDSSpec function checks the equality of two PackedDSSpec

structures.

pascal Boolean OCEEqualPackedDSSpec(const PackedDSSpec *pdss1,

const PackedDSSpec *pdss2);

Trap macro Selector

__OCEUtils $030E

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-101

pdss1 A pointer to the first PackedDSSpec structure you want to compare.

pdss2 A pointer to the second PackedDSSpec structure you want to compare.

DESCRIPTION

Given two PackedDSSpec structures pointed to by the pdss1 and pdss2 parameters,

the OCEEqualPackedDSSpec function compares them for equality and returns true if

they are equal, and false if they are not.

This function checks the two PackedDSSpec structures for equality in the following

manner:

■ If both pointers to the PackedDSSpec structures are nil, then they are equal.

■ If one of the pointers to a PackedDSSpec structure to nil and the other is not, then
the two PackedDSSpec structures are not equal.

■ If neither pointer to the PackedDSSpec structures is nil, then the two structures are
unpacked and the CreationID structures, identified by the
RecordID->LocalRecordID.cid fields of the two DSSpec structures, are
compared for equality by calling the OCEEqualCreationID function (page 2-52). If
the OCEEqualCreationID function returns false, then the two PackedDSSpec
structures are not equal.

■ If the CreationID structures are equal, then the PackedRLI structures pointed to by
the RecordID->PackedRLIPtr fields of the two unpacked PackedDSSpec
structures are compared for equality by calling the OCEEqualPackedRLI function
(page 2-76). If the OCEEqualPackedRLI function returns false, then the two
PackedDSSpec structures are not equal.

■ If the PackedRLI structures are equal, then the LocalRecordID.recordName and
LocalRecordID.recordType fields belonging to the RecordID structure of the
two unpacked PackedDSSpec structures are compared for equality by calling the
OCEEqualRString (page 2-50) function and passing it the proper RStringKind
value for each field. If the OCEEqualRString function returns false, the two
PackedDSSpec structures are not equal.

■ If the LocalRecordID.recordName and LocalRecordID.recordType fields
belonging to the RecordID structure of the two unpacked PackedDSSpec structures
are equal then the values of the extensionType fields of the PackedDSSpec
structures are examined. If they are not identical then the PackedDSSpec structures
are not equal.

■ If the extensionType fields of the two unpacked PackedDSSpec structures are
identical, then the extensionSize fields of the unpacked PackedDSSpec structures
are compared. If they are not identical, then the two PackedDSSpec structures are
not equal.

■ If the extensionSize fields of the two unpacked PackedDSSpec structures are
identical, then the extensionValue fields of the unpacked PackedDSSpec
structures are compared. They are compared byte by byte for equality, and if they are
not identical then the two PackedDSSpec structures are not equal.

If the conditions for equality listed above are satisfied, then the two PackedDSSpec

structures are equal; otherwise, they are not equal.

C H A P T E R 2

AOCE Utilities

2-102 AOCE Utilities Reference

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedDSSpec data structure is defined on page 2-37.

The RStringKind data structure is defined on page 2-24.

To compare two DSSpec structures for equality use the OCEEqualDSSpec function,

described on page 2-99.

OCEValidPackedDSSpec

The OCEValidPackedDSSpec function checks the validity of a PackedDSSpec

structure.

pascal Boolean OCEValidPackedDSSpec(const PackedDSSpec *pdss);

pdss A pointer to the PackedDSSpec that you want to verify.

DESCRIPTION

The OCEValidPackedDSSpec function examines a PackedDSSpec structure to ensure

validity for its particular type and returns true if it is valid, false if it is not.

The OCEValidPackedDSSpec function determines validity for a PackedDSSpec

structure in the following manner:

■ If the pointer to the PackedDSSpec structure is nil, then the PackedDSSpec
structure is invalid.

■ If the length of the PackedDSSpec structure is 0, then the PackedDSSpec structure
is valid.

■ If the pointer to the PackedDSSpec structure is not nil, and the length of the
PackedDSSpec structure is greater than 0, then the PackedDSSpec structure is
unpacked and its extensionType field is examined for validity. If the
extensionType field of the PackedDSSpec has a value of 'entn', then the
OCEValidPackedDSSpec function checks to make sure that the PackedDSSpec
structure contains a valid entitySpecifier field by calling the
OCEValidPackedRecordID function (page 2-93). If the
OCEValidPackedRecordID function returns false, the PackedDSSpec structure
is not valid.

■ If the extensionType field does not have a value of 'entn' and it is not nil, then
the RecordID field of the PackedDSSpec is examined to see if it contains an RLI
component. If it does, then the RLI structure is checked for validity by calling the
OCEValidRLI function. If the OCEValidRLI function returns false, then the

Trap macro Selector

__OCEUtils $0310

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-103

PackedDSSpec structure is invalid. The CreationID structure, identified by the
RecordID->LocalRecordID.cid field of the unpacked PackedDSSpec structure,
is not tested for validity.

■ If the RLI component of the PackedDSSpec is valid, then the
LocalRecordID.recordName and LocalRecordID.recordType fields of the
RecordID component of the PackedDSSpec structure are examined for validity by
calling the OCEValidRString function (page 2-51). If the OCEValidRString
function returns false, then the PackedDSSpec is invalid.

If all of the conditions for validity are satisfied, then the PackedDSSpec structure is

valid; otherwise, it is not.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The PackedDSSpec data structure is defined on page 2-37.

OCEGetDSSpecInfo

The OCEGetDSSpecInfo function returns information about a DSSpec structure.

pascal OSType OCEGetDSSpecInfo(const DSSpec *spec);

spec A pointer to the DSSpec structure you want to get information about.

DESCRIPTION

The OCEGetDSSpecInfo function returns certain information about the specific

DSSpec structure you pass to it. If the DSSpec structure does not have an entity

specifier, it is invalid, that is, it returns kOCEInvalidDSSpec. If it does have an entity

specifier, then it must have an extension type value of 'entn'; otherwise, it is invalid.

If the DSSpec structure has no extension, the OCEGetDSSpecInfo function determines

whether it represents the root of all catalogs, a single catalog, a catalog node, or a record.

If it has no extension and is not any of these types, it is considered invalid. If the DSSpec

structure does have an extension, this function simply returns the extension type. The

OCEGetDSSpecInfo function only performs the rudimentary checks just described. It

does not do a complete check of the DSSpec structure for validity. Call the

OCEValidPackedDSSpec function (page 2-102) to check a PackedDSSpec structure

for validity.

Trap macro Selector

__OCEUtils $0333

C H A P T E R 2

AOCE Utilities

2-104 AOCE Utilities Reference

The values that are returned by the OCEGetDSSpecInfo function are described in this

enumerated list:

enum /* OCEGetDSSpecInfo types */

{

kOCEInvalidDSSpec= '0x3F3F3F3FL',/* could not be determined */

kOCEDirsRootDSSpec= 'root', /* root of all catalogs

("Catalog" icon) */

kOCEDirectoryDSSpec= 'dire', /* catalog */

kOCEDNodeDSSpec= 'dnod', /* dNode */

kOCERecordDSSpec= 'reco', /* record */

kOCEentnDSSpec= 'entn', /* extensionType is 'entn' */

kOCENOTentnDSSpec= 'not ' /* extensionType is

not 'entn' */

};

Field descriptions

kOCEInvalidDSSpec
The type does not conform to any known type.

kOCEDirsRootDSSpec
The DSSpec structure represents the root of all catalogs.

kOCEDirectoryDSSpec
The DSSpec structure represents a catalog.

kOCEDNodeDSSpec
The DSSpec structure represents a catalog node.

kOCERecordDSSpec
The DSSpec structure represents a record.

kOCEentnDSSpec
The extension type of the DSSpec structure is 'entn'.

kOCENOTentnDSSpec
The entitySpecifier field of the DSSpec structure is not nil
and the extension type of the DSSpec structure is not 'entn'.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec data structure is defined on page 2-36.

To obtain the extension type of a DSSpec structure, use the OCEGetExtensionType

function, described next.

Trap macro Selector

__OCEUtils $0319

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-105

OCEGetExtensionType

The OCEGetExtensionType function returns the extension type embedded in a

PackedDSSpec structure.

pascal OSType OCEGetExtensionType(const PackedDSSpec *pdss);

pdss A pointer to a PackedDSSpec structure from which you want to retrieve
the extension type.

DESCRIPTION

Given a pointer to a PackedDSSpec structure, the OCEGetExtensionType function

extracts the extension type of the PackedDSSpec structure and returns it to you.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The DSSpec data structure is defined on page 2-36.

To obtain information about a DSSpec structure, see the OCEGetDSSpecInfo function

on page 2-103.

OCEStreamPackedDSSpec

The OCEStreamPackedDSSpec function takes a DSSpec structure and converts it from

a pointer-based structure into a stream of bytes.

pascal OSErr OCEStreamPackedDSSpec(const DSSpec *dss,

MyDSSpecStreamer stream,

long userData,

unsigned long *actualCount);

dss A pointer to the DSSpec structure you want to process.

stream A pointer to a function that you supply.

userData Data supplied by you that is passed on to your stream function. The
userData parameter can contain anything your particular stream
method needs.

actualCount
A pointer to the total number of bytes (streamed out) by the
OCEStreamPackedDSSpec function.

Trap macro Selector

__OCEUtils $031C

C H A P T E R 2

AOCE Utilities

2-106 AOCE Utilities Reference

DESCRIPTION

The OCEStreamPackedDSSpec function converts a DSSpec structure into a stream of

bytes by calling the stream function that you provide. You can use this function

whenever you want to write the contents of a DSSpec structure as a series of bytes to a

file, into a buffer in memory, or any other place.

The stream function that you provide contains the specific code that writes out the

data. The OCEStreamPackedDSSpec function calls your stream function repeatedly

and passes your function the current portion of the data that needs to be streamed, the

length of this data, an eof flag that is set by the OCEStreamPackedDSSpec function if

this is the last of the data to be streamed, and a parameter containing any

application-specific data that you define. For example, if you were writing a stream

function that wrote out a DSSpec structure to a file on a hard disk, you might want to

store a pointer in the userData parameter to a block of data that contains such

information as the filename and size of the file.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DSSpec data structure is defined on page 2-36.

The callback function MyDSSpecStreamer is described next.

Application-Defined Functions

This section describes a callback function that you supply to

OCEStreamPackedDSSpec. See the section “Application-Defined Functions” in the

chapter “Catalog Manager” in this book for more information on how AOCE callback

functions operate.

MyDSSpecStreamer

The MyDSSpecStreamer function provides a method for processing data from the

OCEStreamPackedDSSpec function.

Trap macro Selector

__OCEUtils $033D

noErr 0 No error

C H A P T E R 2

AOCE Utilities

AOCE Utilities Reference 2-107

typedef pascal OSErr (*MyDSSpecStreamer)(void *buffer,

unsigned long count, Boolean eof ,

long userData);

buffer A pointer to the data that your streamer method processes. This is
supplied by the OCEStreamPackedDSSpec function each time it calls
your MyDSSpecStreamer function.

count The length, in bytes, of the current data in the buffer.

eof A flag that is set by the OCEStreamPackedDSSpec function the last time
that it calls your MyDSSpecStreamer function. This flag informs you
that when the OCEStreamPackedDSSpec function finishes processing
the data currently in the buffer, it will have completed processing the
DSSpec structure.

userData The data that you supply in the userData parameter to the
OCEStreamPackedDSSpec function. This is passed directly to your
MyDSSpecStreamer function.

DESCRIPTION

The MyDSSpecStreamer function is called by the OCEStreamPackedDSSpec function

(page 2-105) to process the data from a DSSpec structure in discreet segments. You write

this routine to process the data in the way that you want. The

OCEStreamPackedDSSpec function calls your MyDSSpecStreamer function various

times and passes your function progress information as well as the current portion of the

DSSpec to process. Any errors returned by this function are passed on to the

OCEStreamPackedDSSpec function.

SEE ALSO

The DSSpec data structure is defined on page 2-36.

The OCEStreamPackedDSSpec function is defined on page 2-105.

C H A P T E R 2

AOCE Utilities

2-108 Summary of the AOCE Utilities

Summary of the AOCE Utilities

C Summary

Constants and Data Types

/* OCE String Constants */

#define RStringHeader \

CharacterSet charSet;\

unsigned short dataLength;

enum {

kRString32Size = 32, /* max size of RString32 */

kRString64Size = 64, /* max size of RString64 */

kNetworkSpecMaxBytes = 32, /* max size of NetworkSpec */

kPathNameMaxBytes = 1024, /* max size of PackedPathName */

kDirectoryNameMaxBytes = 32, /* max size of DirectoryName */

kAttributeTypeMaxBytes = 32, /* max size of AttributeType */

kAttrValueMaxBytes = 65536, /* max size of any attribute value */

kRStringMaxBytes = 256, /* max size of recordName or

recordType */

kRStringMaxChars = 128 /* max # of chars in recordName

RString, or recordType */

};

#define kMinPackedRStringLength (sizeof (ProtoRString))

/* RStringKind Values */

enum {

kOCEDirName = 0, /* RString is a Catalog Name */

kOCERecordOrDNodeName = 1, /* RString is a recordName or

catalog node name */

kOCERecordType = 2, /* RString is a recordType */

kOCENetworkSpec = 3, /* RString is a NetworkSpec */

kOCEAttrType = 4, /* RString is an AttributeType */

kOCEGenericSensitive = 5, /* RString is a case and diacritical

mark sensitive generic string */

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-109

kOCEGenericInsensitive = 6 /* RString is a case and diacritical

mark insensitive generic string */

};

/* OCEDirectoryKind Values */

enum {

kDirAllKinds = 0, /* All catalog types */

kDirADAPKind = 'adap', /* an PowerShare catalog */

kDirPersonalDirectoryKind

= 'pdir', /* a personal catalog */

kDirDSAMKind = 'dsam' /* catalog service access module */

}

/* Catalog Node Constants */

enum {

kNULLDNodeNumber = 0, /* none specified */

kRootDNodeNumber = 2 /* the root of the tree */

};

/* Values returned by OCEGetDSSpecInfo() */

enum {

kOCEInvalidDSSpec = 0x3F3F3F3FL,/* '????' could not be

 determined */

kOCEDirsRootDSSpec = 'root', /* root of all catalogs

("Catalog" icon) */

kOCEDirectoryDSSpec = 'dire', /* catalog */

kOCEDNodeDSSpec = 'dnod', /* Dnode */

kOCERecordDSSpec = 'reco', /* record */

kOCEentnDSSpec = 'entn', /* extensionType is 'entn' */

kOCENOTentnDSSpec = 'not ' /* extensionType is not 'entn' */

};

/* AttributeTag values */

enum {

typeRString = 'rstr', /* attribute value is an RString */

typePackedDSSpec = 'dspc', /* attribute value is a DSSpec */

typeBinary = 'bnry' /* attribute value is a sequence

of bytes */

};

C H A P T E R 2

AOCE Utilities

2-110 Summary of the AOCE Utilities

/* Cluster info */

enum {

kcanContainRecordsBit, /* a cluster */

kForeignNodeBit /* a foreign catalog */

};

/* DirNodeKind */

enum {

kcanContainRecords= 1L<<kcanContainRecordsBit,

kForeignNode= 1L<<kForeignNodeBit

};

/* RLI Constants */

#define kMinPackedRLISize (sizeof (ProtoPackedRLI) + \

sizeof (DirDiscriminator) + sizeof (DNodeNum) +\

kMinPackedRStringLength + sizeof (ProtoPackedPathName))

#define kRLIMaxBytes (sizeof (RString) + sizeof (DirDiscriminator) + \

sizeof (DNodeNum) + kPathNameMaxBytes)

#define PackedRLIHeader unsigned short dataLength /* number of bytes

in data field */

/* RecordID Constants */

#define kPackedRecordIDMaxBytes (kPathNameMaxBytes + sizeof (DNodeNum) + \

sizeof (DirDiscriminator) + sizeof (CreationID) + \

(3 * sizeof (RString)))

#define PackedRecordIDHeader unsigned short dataLength /* length of data field

in the PackedRecordID structure */

/* DSSpec Constants */

#define kPackedDSSpecMaxBytes(sizeof (PackedRecordID) + sizeof (OSType) + \

sizeof (unsigned short))

#define PackedDSSpecHeader unsigned short dataLength;

/* Indices for the standard definitions for standard record types */

#define kUserRecTypeNum 1 /* "User" */

#define kGroupRecTypeNum 2 /* "Group" */

#define kMnMRecTypeNum 3 /* "AppleMail™ M&M" */

#define kMnMForwarderRecTypeNum 4 /* "AppleMail™ Fwdr" */

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-111

#define kNetworkSpecRecTypeNum 5 /* "NetworkSpec" */

#define kADAPServerRecTypeNum 6 /* "PowerShare Server" */

#define kADAPDNodeRecTypeNum 7 /* "PowerShare DNode" */

#define kADAPDNodeRepRecTypeNum 8 /* "PowerShare DNode Rep" */

#define kServerSetupRecTypeNum 9 /* "Server Setup" */

#define kDirectoryRecTypeNum 10 /* "Catalog" */

#define kDNodeRecTypeNum 11 /* "DNode" */

#define kSetupRecTypeNum 12 /* "Setup" */

#define kMSAMRecTypeNum 13 /* "MSAM" */

#define kDSAMRecTypeNum 14 /* "CSAM" */

#define kAttributeValueRecTypeNum 15 /* "Attribute Value" */

#define kBusinessCardRecTypeNum 16 /* "Business Card" */

#define kMailServiceRecTypeNum 17 /* "Mail Service" */

#define kCombinedRecTypeNum 18 /* "Combined" */

#define kOtherServiceRecTypeNum 19 /* "Other Service" */

#define kAFPServiceRecTypeNum 20 /* "Other Service afps" */

#define kFirstOCERecTypeNum kUserRecTypeNum /* first standard OCE

record type */

#define kLastOCERecTypeNum kAFPServiceRecTypeNum/* last standard OCE

record type */

#define kNumOCERecTypes (kLastOCERecTypeNum - kFirstOCERecTypeNum + 1)

/* Indices for the standard definitions for standard attribute types

(OCEAttributeTypeIndex): */

#define kMemberAttrTypeNum 1001 /* "Member" */

#define kAdminsAttrTypeNum 1002 /* "Administrators" */

#define kMailSlotsAttrTypeNum 1003 /* "mailslots" */

#define kPrefMailAttrTypeNum 1004 /* "pref mailslot" */

#define kAddressAttrTypeNum 1005 /* "Address" */

#define kPictureAttrTypeNum 1006 /* "Picture" */

#define kAuthKeyAttrTypeNum 1007 /* "auth key" */

#define kTelephoneAttrTypeNum 1008 /* "Telephone" */

#define kNBPNameAttrTypeNum 1009 /* "NBP Name" */

#define kQMappingAttrTypeNum 1010 /* "ForwarderQMap" */

#define kDialupSlotAttrTypeNum 1011 /* "DialupSlotInfo" */

#define kHomeNetAttrTypeNum 1012 /* "Home Internet" */

#define kCoResAttrTypeNum 1013 /* "Co-resident M&M" */

#define kFwdrLocalAttrTypeNum 1014 /* "FwdrLocalRecord" */

#define kConnectAttrTypeNum 1015 /* "Connected To" */

#define kForeignAttrTypeNum 1016 /* "Foreign RLIs" */

C H A P T E R 2

AOCE Utilities

2-112 Summary of the AOCE Utilities

#define kOwnersAttrTypeNum 1017 /* "Owners" */

#define kReadListAttrTypeNum 1018 /* "ReadList" */

#define kWriteListAttrTypeNum 1019 /* "WriteList" */

#define kDescriptorAttrTypeNum 1020 /* "Descriptor" */

#define kCertificateAttrTypeNum 1021 /* "Certificate" */

#define kMsgQsAttrTypeNum 1022 /* "MessageQs" */

#define kPrefMsgQAttrTypeNum 1023 /* "PrefMessageQ" */

#define kMasterPFAttrTypeNum 1024 /* "MasterPF" */

#define kMasterNetSpecAttrTypeNum 1025 /* "MasterNetSpec" */

#define kServersOfAttrTypeNum 1026 /* "Servers Of" */

#define kParentCIDAttrTypeNum 1027 /* "Parent CID" */

#define kNetworkSpecAttrTypeNum 1028 /* "NetworkSpec" */

#define kLocationAttrTypeNum 1029 /* "Location" */

#define kTimeSvrTypeAttrTypeNum 1030 /* "TimeServer Type" */

#define kUpdateTimerAttrTypeNum 1031 /* "Update Timer" */

#define kShadowsOfAttrTypeNum 1032 /* "Shadows Of" */

#define kShadowServerAttrTypeNum 1033 /* "Shadow Server" */

#define kTBSetupAttrTypeNum 1034 /* "TB Setup" */

#define kMailSetupAttrTypeNum 1035 /* "Mail Setup" */

#define kSlotIDAttrTypeNum 1036 /* "SlotID" */

#define kGatewayFileIDAttrTypeNum 1037 /* "Gateway FileID" */

#define kMailServiceAttrTypeNum 1038 /* "Mail Service" */

#define kStdSlotInfoAttrTypeNum 1039 /* "Std Slot Info" */

#define kAssoDirectoryAttrTypeNum 1040 /* "Asso. Catalog" */

#define kDirectoryAttrTypeNum 1041 /* "Catalog" */

#define kDirectoriesAttrTypeNum 1042 /* "Catalogs" */

#define kSFlagsAttrTypeNum 1043 /* "SFlags" */

#define kLocalNameAttrTypeNum 1044 /* "Local Name" */

#define kLocalKeyAttrTypeNum 1045 /* "Local Key" */

#define kDirUserRIDAttrTypeNum 1046 /* "Dir User RID" */

#define kDirUserKeyAttrTypeNum 1047 /* "Dir User Key" */

#define kDirNativeNameAttrTypeNum 1048 /* "Dir Native Name" */

#define kCommentAttrTypeNum 1049 /* "Comment" */

#define kRealNameAttrTypeNum 1050 /* "Real Name" */

#define kPrivateDataAttrTypeNum 1051 /* "Private Data" */

#define kDirTypeAttrTypeNum 1052 /* "Catalog Type" */

#define kDSAMFileAliasAttrTypeNum 1053 /* "CSAM File Alias" */

#define kCanAddressToAttrTypeNum 1054 /* "Can Address To" */

#define kDiscriminatorAttrTypeNum 1055 /* "Discriminator" */

#define kAliasAttrTypeNum 1056 /* "Alias" */

#define kParentMSAMAttrTypeNum 1057 /* "Parent MSAM" */

#define kParentDSAMAttrTypeNum 1058 /* "Parent CSAM" */

#define kSlotAttrTypeNum 1059 /* "Slot" */

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-113

#define kAssoMailServiceAttrTypeNum 1060 /* "Asso. Mail Service" */

#define kFakeAttrTypeNum 1061 /* "Fake" */

#define kInheritSysAdminAttrTypeNum 1062 /* "Inherit SysAdministrators"*/

#define kPreferredPDAttrTypeNum 1063 /* "Preferred PD" */

#define kLastLoginAttrTypeNum 1064 /* "Last Login" */

#define kMailerAOMStateAttrTypeNum 1065 /* "Mailer AOM State" */

#define kMailerSendOptionsAttrTypeNum 1066 /* "Mailer Send Options" */

#define kJoinedAttrTypeNum 1067 /* "Joined" */

#define kUnconfiguredAttrTypeNum 1068 /* "Unconfigured" */

#define kVersionAttrTypeNum 1069 /* "Version" */

#define kLocationNamesAttrTypeNum 1070 /* "Location Names" */

#define kActiveAttrTypeNum 1071 /* "Active" */

#define kDeleteRequestedAttrTypeNum 1072 /* "Delete Requested" */

#define kGatewayTypeAttrTypeNum 1073 /* "Gateway Type" */

#define kFirstOCEAttrTypeNum kMemberAttrTypeNum/* first standard OCE

attribute type */

#define kLastOCEAttrTypeNum kGatewayTypeAttrTypeNum/* last standard OCE

attribute type */

#define kNumOCEAttrTypes (kLastOCEAttrTypeNum - kFirstOCEAttrTypeNum + 1)

/* the total number of

 attributes */

/* OCE String Types */

typedef short CharacterSet; /* script code info */

struct RString /* RString */

{

RStringHeader

Byte body[kRStringMaxBytes];

};

typedef struct RString RString;

typedef RString *RStringPtr, **RStringHandle;

struct RString64 /* RString64 */

{

RStringHeader

Byte body[kRString64Size];

};

typedef struct RString64 RString64;

C H A P T E R 2

AOCE Utilities

2-114 Summary of the AOCE Utilities

struct RString32 /* RString32 */

{

RStringHeader

Byte body[kRString32Size];

};

typedef struct RString32 RString32;

struct ProtoRString /* ProtoRString */

{

RStringHeader

/* The body for the ProtoRstring should be defined here */

};

typedef struct ProtoRString ProtoRString;

typedef ProtoRString *ProtoRString;

struct DirectoryName /* DirectoryName */

{

RStringHeader

Byte body[kDirectoryNameMaxBytes];

};

typedef struct DirectoryName DirectoryName;

typedef DirectoryName *DirectoryNamePtr;

struct NetworkSpec /* NetworkSpec */

{

RStringHeader

Byte body[kNetworkSpecMaxBytes];

};

typedef struct NetworkSpec NetworkSpec;

typedef NetworkSpec *NetworkSpecPtr;

typedef unsigned short RStringKind;

/* RecordID Types */

struct CreationID

{

unsigned long source; /* private to a catalog.*/

unsigned long seq; /* private to a catalog*/

};

typedef struct CreationID CreationID;

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-115

typedef CreationID AttributeCreationID;

struct LocalRecordID

{

CreationID cid; /* creation ID of the record */

RStringPtr recordName; /* name of the record */

RStringPtr recordType; /* type of record */

};

typedef struct LocalRecordID LocalRecordID;

typedef LocalRecordID *LocalRecordIDPtr;

struct PackedPathName

{

unsigned short dataLength; /* number of bytes in data field */

Byte data[kPathNameMaxBytes - sizeof (unsigned short)];

};

typedef struct PackedPathName PackedPathName;

typedef PackedPathName *PackedPathNamePtr;

struct ProtoPackedPathName {

unsigned short dataLength;

/* Followed by data */

};

typedef struct ProtoPackedPathName ProtoPackedPathName;

typedef ProtoPackedPathName *ProtoPackedPathNamePtr;

struct DirDiscriminator {

OCEDirectoryKind signature; /* private to catalog */

unsigned long misc; /* private to catalog */

};

typedef struct DirDiscriminator DirDiscriminator;

typedef unsigned long DNodeNum;

struct RLI {

DirectoryNamePtr directoryName;

DirDiscriminator discriminator;

C H A P T E R 2

AOCE Utilities

2-116 Summary of the AOCE Utilities

DNodeNum dNodeNumber;

PackedPathNamePtr path;

};

typedef struct RLI RLI;

typedef RLI *RLIPtr;

struct PackedRLI {

dataLength;

Byte data[kRLIMaxBytes]; /* packed record

location info */

};

typedef struct PackedRLI PackedRLI;

typedef PackedRLI *PackedPLIPtr;

struct ProtoPackedRLI {

dataLength

/* Followed by data */

};

typedef struct ProtoPackedRLI ProtoPackedRLI;

typedef ProtoPackedRLI *ProtoPackedRLIPtr;

struct RecordID {

PackedRLIPtr rli; /* identifies record’s catalog

and dNode */

LocalRecordID local; /* identifies record within

its dNode */

};

typedef struct RecordID RecordID;

typedef RecordID *RecordIDPtr;

struct PackedRecordID {

dataLength; /* length of data field */

Byte data[kPackedRecordIDMaxBytes];/* packed record ID */

};

typedef struct PackedRecordID PackedRecordID;

typedef PackedRecordID *PackedRecordIDPtr;

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-117

struct ShortRecordID

{

PackedRLIPtr rli;

CreationID cid;

};

typedef struct ShortRecordID ShortRecordID;

typedef ShortRecordID *ShortRecordIDPtr;

/* DSSpec Structures */

struct DSSpec {

RecordID *entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

typedef struct DSSpec DSSpec;

typedef DSSpec *DSSpecPtr;

struct PackedDSSpec {

dataLength

Byte data[kPackedDSSpecMaxBytes];

};

typedef struct PackedDSSpec PackedDSSpec;

typedef PackedDSSpec *PackedDSSpecPtr;

struct ProtoPackedDSSpec {

dataLength

/* Followed by data */

};

typedef struct ProtoPackedDSSpec ProtoPackedDSSpec;

typedef ProtoPackedDSSpec *ProtoPackedDSSpecPtr;

/* Attribute Structures */

struct AttributeType

{

RStringHeader

Byte body[kAttributeTypeMaxBytes];

};

typedef struct AttributeType AttributeType;

typedef AttributeType *AttributeTypePtr;

C H A P T E R 2

AOCE Utilities

2-118 Summary of the AOCE Utilities

struct AttributeValue {

AttributeTag tag; /* format of attribute value */

unsigned long dataLength; /* # of bytes in attribute value */

Ptr bytes; /* points to attribute value data */

};

typedef struct AttributeValue AttributeValue;

typedef AttributeValue *AttributeValuePtr;

typedef CreationID AttributeCreationID;

struct Attribute {

AttributeType attributeType; /* type of the attribute */

AttributeCreationID cid; /* the creationID of the

attribute */

AttributeValue value; /* the attribute value */

};

typedef struct Attribute Attribute;

typedef Attribute *AttributePtr;

typedef DescType AttributeTag;/* same type used in AppleEvents */

/* recordType index */

typedef unsigned short OCERecordTypeIndex;

/* AttributeType index */

typedef unsigned short OCEAttributeTypeIndex;

/* OCE Catalog Types */

typedef unsigned long OCEDirectoryKind;

/* OCE Catalog Node Types */

typedef unsigned long DirNodeKind;

AOCE Utility Functions

AOCE String Functions

pascal OSErr OCECopyRString
(const RString *str1, RString *str2, unsigned
short str2Length);

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-119

pascal void OCECToRString (const char *cStr, CharacterSet charSet,RString
*rStr,unsigned short rStrLength);

pascal void OCEPToRString (ConstStr255Param pStr,CharacterSet charSet,
RString *rStr,unsigned short rStrLength);

pascal StringPtr OCERToPString
(const RString *rStr);

pascal short OCERelRString (const void *str1, const void *str2,RStringKind
kind);

pascal Boolean OCEEqualRString
(const void *str1,const void *str2,RStringKind
kind);

pascal Boolean OCEValidRString
(const void *str,RStringKind kind);

Creation Identifier Functions

pascal Boolean OCEEqsrualCreationID
(const CreationID *cid1,
const CreationID *cid2);

pascal void OCECopyCreationID
(const CreationID *cid1,CreationID *const cid2);

pascal const CreationID *OCENullCID(void);

pascal const CreationID *OCEPathFinderCID(void);

pascal void OCESetCreationIDtoNull
(CreationID *const cid);

Packed Pathname Functions

pascal OSErr OCECopyPackedPathName
(const PackedPathName *path1,PackedPathName
*path2,unsigned short path2Length);

pascal Boolean OCEIsNullPackedPathName
(const PackedPathName *path);

pascal unsigned short OCEPackedPathNameSize
(const RStringPtr parts[], const unsigned short
nParts);

pascal unsigned short OCEDNodeNameCount
(const PackedPathName *path);

pascal unsigned short OCEUnpackPathName
(const PackedPathName *path, RString *const
parts[], const unsigned short nParts);

C H A P T E R 2

AOCE Utilities

2-120 Summary of the AOCE Utilities

pascal OSErr OCEPackPathName
(const RStringPtr parts[],const unsigned short
nParts,PackedPathName *path,unsigned short
pathLength);

pascal Boolean OCEEqualPackedPathName
(const PackedPathName *path1, const
PackedPathName *path2);

pascal Boolean OCEValidPackedPathName
(const PackedPathName *path);

Catalog Discriminator Functions

pascal void OCECopyDirDiscriminator
(const DirDiscriminator *disc1,
DirDiscriminator *const disc2);

pascal Boolean OCEEqualDirDiscriminator
(const DirDiscriminator *disc1, const
DirDiscriminator *disc2);

Record Location Information Functions

pascal void OCENewRLI (RLI *newRLI, const DirectoryName *dirName,
DirDiscriminator *discriminator,const DNodeNum
dNodeNumber,const PackedPathName *path);

pascal void OCEDuplicateRLI (const RLI *rli1, RLI *rli2);

pascal OSErr OCECopyRLI (const RLI *rli1, RLI *rli2);

pascal Boolean OCEEqualRLI (const RLI *rli1, const RLI *rli2);

pascal Boolean OCEValidRLI (const RLI *theRLI);

pascal OSErr OCECopyPackedRLI
(const PackedRLI *prli1, PackedRLI
*prli2,unsigned short prli2Length);

pascal unsigned short OCEPackedRLISize
(const RLI *theRLI);

pascal OSErr OCEPackRLI (const RLI *theRLI, PackedRLI *prli, unsigned
short prliLength);

pascal void OCEUnpackRLI (const PackedRLI *prli, RLI *theRLI);

pascal unsigned short OCEPackedRLIPartsSize
(const DirectoryName *dirName, const RStringPtr
parts[], const unsigned short nParts);

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-121

pascal OSErr OCEPackRLIParts
(const DirectoryName *dirName, const
DirDiscriminator *discriminator, const
DNodeNum dNodeNumber, const RStringPtr
parts[], const unsigned short nParts,
PackedRLI *prli, unsigned short prliLength);

pascal Boolean OCEEqualPackedRLI
(const PackedRLI *prli1, const PackedRLI
*prli2);

pascal Boolean OCEValidPackedRLI
(const PackedRLI *prli);

pascal AliasPtr OCEExtractAlias
(const PackedRLI *prli);

pascal const PackedRLI * OCEGetDirectoryRootPackedRLI (void)

Local Record Identifier Functions

pascal void OCENewLocalRecordID
(const RString *recordName, const RString
*recordType, const CreationID *cid,
LocalRecordID *lRID);

pascal OSErr OCECopyLocalRecordID
(const LocalRecordID *lRID1, LocalRecordID
*lRID2);

pascal Boolean OCEEqualLocalRecordID
(const LocalRecordID *lRID1, const
LocalRecordID *lRID2);

Short Record Identifier Functions

pascal void OCENewShortRecordID
(const PackedRLI *theRLI, const CreationID
*cid, ShortRecordIDPtr *sRID);

pascal OSErr OCECopyShortRecordID
(const ShortRecordID *sRID1,ShortRecordID
*sRID2);

pascal Boolean OCEEqualShortRecordID
(const ShortRecordID *sRID1,const ShortRecordID
*sRID2);

Record Identifier Functions

pascal RString *OCEGetIndRecordType
(const OCERecordTypeIndex stringIndex);

C H A P T E R 2

AOCE Utilities

2-122 Summary of the AOCE Utilities

pascal void OCENewRecordID (const PackedRLI *theRLI, const LocalRecordID
*lRID, RecordID *rid);

pascal OSErr OCECopyRecordID
(const RecordID *rid1,const RecordID *rid2);

pascal Boolean OCEEqualRecordID
(const RecordID *rid1,const RecordID *rid2);

Packed Record Identifier Functions

pascal OSErr OCECopyPackedRecordID
(const PackedRecordID *pRID1, const
PackedRecordID *pRID2, unsigned short
pRID2length);

pascal unsigned short OCEPackedRecordIDSize
(const RecordID *rid);

pascal OSErr OCEPackRecordID
(const RecordID *rid, PackedRecordID *pRID,
unsigned short packedRecordIDlength);

pascal void OCEUnpackRecordID
(const PackedRecordID *pRID, RecordID *rid);

pascal Boolean OCEEqualPackedRecordID
(const PackedRecordID *pRID1, const
PackedRecordID *pRID2);

pascal Boolean OCEValidPackedRecordID
(const PackedRecordID *pRID);

Attribute Type Functions

pascal AttributeType *OCEGetIndAttributeType(const
OCEAttributeTypeIndex stringIndex);

Catalog Services Specification Functions

pascal OSErr OCECopyPackedDSSpec
(const PackedDSSpec *pdss1, const PackedDSSpec
*pdss2, unsigned short pdss2Length);

pascal unsigned short OCEPackedDSSpecSize
(const DSSpec *dss);

pascal OSErr OCEPackDSSpec (const DSSpec *dss, PackedDSSpec *pdss,
unsigned short pdssLength);

pascal void OCEUnpackDSSpec (const PackedDSSpec *pdss, DSSpec *dss,
RecordID *rid);

pascal Boolean OCEEqualDSSpec
(const DSSpec *pdss1, const DSSpec *pdss2);

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-123

pascal Boolean OCEEqualPackedDSSpec
(const PackedDSSpec *pdss1, const PackedDSSpec
*pdss2);

pascal Boolean OCEValidPackedDSSpec
(const PackedDSSpec *pdss);

pascal OSType OCEGetDSSpecInfo
(const DSSpec *spec);

pascal OSType OCEGetExtensionType
(const PackedDSSpec *pdss);

pascal OSErr OCEStreamPackedDSSpec
(const DSSpec *dss,MyDSSpecStreamer stream,
long userData, unsigned long *actualCount);

Application-Defined Functions

typedef pascal OSErr (*MyDSSpecStreamer)(void *buffer, unsigned long
count, Boolean eof, long userData);

Pascal Summary

Constants

CONST

{ OCE String Constants }

kRString32Size = 32; { max size of RString32 }

kRString64Size = 64; { max size of RString64 }

kNetworkSpecMaxBytes = 32; { max size of NetworkSpec }

kPathNameMaxBytes = 1024; { max size of PackedPathName }

kDirectoryNameMaxBytes = 32; { max size of DirectoryName }

kAttributeTypeMaxBytes = 32; { max size of AttributeType }

kAttrValueMaxBytes = 65536; { max size of any attribute value }

kRStringMaxBytes = 256; { max bytes in recordName,recordType }

kRStringMaxChars = 128; { max chars in recordName,recordType }

kMinPackedRStringLength = sizeof(ProtoRString);

{ values of RStringKind }

kOCEDirName = 0;

kOCERecordOrDNodeName = 1;

kOCERecordType = 2;

kOCENetworkSpec = 3;

C H A P T E R 2

AOCE Utilities

2-124 Summary of the AOCE Utilities

kOCEAttrType = 4;

kOCEGenericSensitive = 5;

kOCEGenericInsensitive = 6;

{ values of OCEDirectoryKind }

kDirAllKinds = 0;

kDirADAPKind = 'adap';

kDirPersonalDirectoryKind

= 'pdir';

kDirDSAMKind = 'dsam';

{ Catalog Node Constants }

kNULLDNodeNumber = 0; { none specified }

kRootDNodeNumber = 2; { the root of the tree }

{ Values returned by OCEGetDSSpecInfo() }

kOCEInvalidDSSpec = '????', { could not be determined }

kOCEDirsRootDSSpec = 'root', { root of all catalogs }

kOCEDirectoryDSSpec = 'dire', { catalog }

kOCEDNodeDSSpec = 'dnod', { Dnode }

kOCERecordDSSpec = 'reco', { record }

kOCEentnDSSpec = 'entn', { extensionType is 'entn' }

kOCENOTentnDSSpec = 'not ' { extensionType is not 'entn' }

{ AttributeTag Values }

typeRString = 'rstr', { attribute value is an RString }

typePackedDSSpec = 'dspc', { attribute value is a DSSpec }

typeBinary = 'bnry' { attribute value is a sequence

of bytes }

{ Cluster info }

kcanContainRecordsBit, = 0{ a cluster }

kForeignNodeBit = 1{ a foreign catalog }

{ values of DirNodeKind }

kcanContainRecords = $00000001;{<<kcanContainRecordsBit}

kForeignNode = $00000002;{<<kForeignNodeBit}

{ RLI Constants }

kRLIMaxBytes = (sizeof (RString) + sizeof (DirDiscriminator) +

sizeof (DNodeNum) + kPathNameMaxBytes);

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-125

kMinPackedRLISize = (sizeof (ProtoPackedRLI) +

sizeof (DirDiscriminator) + sizeof (DNodeNum) +

kMinPackedRStringLength +

sizeof (ProtoPackedPathName));

{ RecordID Constants }

kPackedRecordIDMaxBytes = kPathNameMaxBytes + sizeof(DNodeNum) +

sizeof(DirDiscriminator) + sizeof(CreationID) + (3*sizeof(RString));

{ DSSpec Constants }

kPackedDSSpecMaxBytes = (sizeof (PackedRecordID) + sizeof (OSType) +

sizeof (INTEGER));

{ Indices for the standard definitions for standard record types }

kUserRecTypeNum = 1; { "User" }

kGroupRecTypeNum = 2; { "Group" }

kMnMRecTypeNum = 3; { "AppleMail™ M&M" }

kMnMForwarderRecTypeNum = 4; { "AppleMail™ Fwdr" }

kNetworkSpecRecTypeNum = 5; { "NetworkSpec" }

kADAPServerRecTypeNum = 6; { "PowerShare Server" }

kADAPDNodeRecTypeNum = 7; { "PowerShare DNode" }

kADAPDNodeRepRecTypeNum = 8; { "PowerShare DNode Rep" }

kServerSetupRecTypeNum = 9; { "Server Setup" }

kDirectoryRecTypeNum = 10; { "Catalog" }

kDNodeRecTypeNum = 11; { "DNode" }

kSetupRecTypeNum = 12; { "Setup" }

kMSAMRecTypeNum = 13; { "MSAM" }

kDSAMRecTypeNum = 14; { "CSAM" }

kAttributeValueRecTypeNum = 15; { "Attribute Value" }

kBusinessCardRecTypeNum = 16; { "Business Card" }

kMailServiceRecTypeNum = 17; { "Mail Service" }

kCombinedRecTypeNum = 18; { "Combined" }

kOtherServiceRecTypeNum = 19; { "Other Service" }

kAFPServiceRecTypeNum = 20; { "Other Service afps" }

kFirstOCERecTypeNum = kUserRecTypeNum; { first standard OCE record

type }

kLastOCERecTypeNum = kAFPServiceRecTypeNum; { last standard OCE record

type }

kNumOCERecTypes = (kLastOCERecTypeNum - kFirstOCERecTypeNum + 1);

C H A P T E R 2

AOCE Utilities

2-126 Summary of the AOCE Utilities

{ Indices for the standard definitions for standard attribute types

(OCEAttributeTypeIndex): }

kMemberAttrTypeNum = 1001;{ "Member" }

kAdminsAttrTypeNum = 1002;{ "Administrators" }

kMailSlotsAttrTypeNum = 1003;{ "mailslots" }

kPrefMailAttrTypeNum = 1004;{ "pref mailslot" }

kAddressAttrTypeNum = 1005;{ "Address" }

kPictureAttrTypeNum = 1006;{ "Picture" }

kAuthKeyAttrTypeNum = 1007;{ "auth key" }

kTelephoneAttrTypeNum = 1008;{ "Telephone" }

kNBPNameAttrTypeNum = 1009;{ "NBP Name" }

kQMappingAttrTypeNum = 1010;{ "ForwarderQMap" }

kDialupSlotAttrTypeNum = 1011;{ "DialupSlotInfo" }

kHomeNetAttrTypeNum = 1012;{ "Home Internet" }

kCoResAttrTypeNum = 1013;{ "Co-resident M&M" }

kFwdrLocalAttrTypeNum = 1014;{ "FwdrLocalRecord" }

kConnectAttrTypeNum = 1015;{ "Connected To" }

kForeignAttrTypeNum = 1016;{ "Foreign RLIs" }

kOwnersAttrTypeNum = 1017;{ "Owners" }

kReadListAttrTypeNum = 1018;{ "ReadList" }

kWriteListAttrTypeNum = 1019;{ "WriteList" }

kDescriptorAttrTypeNum = 1020;{ "Descriptor" }

kCertificateAttrTypeNum = 1021;{ "Certificate" }

kMsgQsAttrTypeNum = 1022;{ "MessageQs" }

kPrefMsgQAttrTypeNum = 1023;{ "PrefMessageQ" }

kMasterPFAttrTypeNum = 1024;{ "MasterPF" }

kMasterNetSpecAttrTypeNum = 1025;{ "MasterNetSpec" }

kServersOfAttrTypeNum = 1026;{ "Servers Of" }

kParentCIDAttrTypeNum = 1027;{ "Parent CID" }

kNetworkSpecAttrTypeNum = 1028;{ "NetworkSpec" }

kLocationAttrTypeNum = 1029;{ "Location" }

kTimeSvrTypeAttrTypeNum = 1030;{ "TimeServer Type" }

kUpdateTimerAttrTypeNum = 1031;{ "Update Timer" }

kShadowsOfAttrTypeNum = 1032;{ "Shadows Of" }

kShadowServerAttrTypeNum = 1033;{ "Shadow Server" }

kTBSetupAttrTypeNum = 1034;{ "TB Setup" }

kMailSetupAttrTypeNum = 1035;{ "Mail Setup" }

kSlotIDAttrTypeNum = 1036;{ "SlotID" }

kGatewayFileIDAttrTypeNum = 1037;{ "Gateway FileID" }

kMailServiceAttrTypeNum = 1038;{ "Mail Service" }

kStdSlotInfoAttrTypeNum = 1039;{ "Std Slot Info" }

kAssoDirectoryAttrTypeNum = 1040;{ "Asso. Catalog" }

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-127

kDirectoryAttrTypeNum = 1041;{ "Catalog" }

kDirectoriesAttrTypeNum = 1042;{ "Catalogs" }

kSFlagsAttrTypeNum = 1043;{ "SFlags" }

kLocalNameAttrTypeNum = 1044;{ "Local Name" }

kLocalKeyAttrTypeNum = 1045;{ "Local Key" }

kDirUserRIDAttrTypeNum = 1046;{ "Dir User RID" }

kDirUserKeyAttrTypeNum = 1047;{ "Dir User Key" }

kDirNativeNameAttrTypeNum = 1048;{ "Dir Native Name" }

kCommentAttrTypeNum = 1049;{ "Comment" }

kRealNameAttrTypeNum = 1050;{ "Real Name" }

kPrivateDataAttrTypeNum = 1051;{ "Private Data" }

kDirTypeAttrTypeNum = 1052;{ "Catalog Type" }

kDSAMFileAliasAttrTypeNum = 1053;{ "CSAM File Alias" }

kCanAddressToAttrTypeNum = 1054;{ "Can Address To" }

kDiscriminatorAttrTypeNum = 1055;{ "Discriminator" }

kAliasAttrTypeNum = 1056;{ "Alias" }

kParentMSAMAttrTypeNum = 1057;{ "Parent MSAM" }

kParentDSAMAttrTypeNum = 1058;{ "Parent CSAM" }

kSlotAttrTypeNum = 1059;{ "Slot" }

kAssoMailServiceAttrTypeNum = 1060;{ "Asso. Mail Service" }

kFakeAttrTypeNum = 1061;{ "Fake" }

kInheritSysAdminAttrTypeNum = 1062;{ "Inherit System

Administrators" }

kPreferredPDAttrTypeNum = 1063;{ "Preferred PD" }

kLastLoginAttrTypeNum = 1064;{ "Last Login" }

kMailerAOMStateAttrTypeNum = 1065;{ "Mailer AOM State" }

kMailerSendOptionsAttrTypeNum = 1066;{ "Mailer Send Options" }

kJoinedAttrTypeNum = 1067;{ "Joined" }

kUnconfiguredAttrTypeNum = 1068;{ "Unconfigured" }

kVersionAttrTypeNum = 1069;{ "Version" }

kLocationNamesAttrTypeNum = 1070;{ "Location Names" }

kActiveAttrTypeNum = 1071;{ "Active" }

kDeleteRequestedAttrTypeNum = 1072;{ "Delete Requested" }

kGatewayTypeAttrTypeNum = 1073;{ "Gateway Type" }

kFirstOCEAttrTypeNum = kMemberAttrTypeNum;{ first standard OCE attr type }

kLastOCEAttrTypeNum = kGatewayTypeAttrTypeNum;{ last standard OCE

attr type }

kNumOCEAttrTypes = (kLastOCEAttrTypeNum - kFirstOCEAttrTypeNum + 1);

C H A P T E R 2

AOCE Utilities

2-128 Summary of the AOCE Utilities

Data Types

TYPE

{ OCE String Types }

{RStringHeader}

RStringHeader = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

END;

{ RString }

RString = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kRStringMaxBytes] OF Byte;

END;

{ ProtoRString }

ProtoRString = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

{ Followed by body }

END;

RStringPtr = ^RString;

RStringHandle = ^RStringPtr;

ProtoRStringPtr = ^ProtoRString;

{RString64}

RString64 = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kRString64Size] OF Byte;

END;

{RString32}

RString32 = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kRString32Size] OF Byte;

END;

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-129

Rstring32Ptr = ^Rstring32;

struct DirectoryName /* DirectoryName */

{

RStringHeader

Byte body[kDirectoryNameMaxBytes];

};

{NetworkSpec}

NetworkSpec = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kNetworkSpecMaxBytes] OF Byte;

END;

NetworkSpecPtr = ^NetworkSpec;

RStringKind = INTEGER;

{ RecordID Types }

{CreationID}

CreationID = RECORD

source: LONGINT;

seq: LONGINT;

END;

AttributeCreationID = CreationID;

CreationIDPtr = ^CreationID;

{PackedPathName}

PackedPathName = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kPathNameMaxBytes - sizeof(INTEGER)] OF Byte;

END;

{ProtoPackedPathName}

ProtoPackedPathName = RECORD

dataLength: INTEGER;

{ Followed by data }

END;

PackedPathNamePtr = ^PackedPathName;

ProtoPackedPathNamePtr = ^ProtoPackedPathName;

C H A P T E R 2

AOCE Utilities

2-130 Summary of the AOCE Utilities

{DirDiscriminator}

DirDiscriminator = RECORD

signature: OCEDirectoryKind;

misc: LONGINT;

END;

{ Catalog node number }

DNodeNum = LONGINT;

{ RLI }

RLI = RECORD

directoryName: DirectoryNamePtr;

discriminator: DirDiscriminator;

dNodeNumber: DNodeNum;

path: PackedPathNamePtr;

END;

RLIPtr = ^RLI;

{ PackedRLIHeader }

PackedRLIHeader = RECORD

dataLength: INTEGER;

END;

{ PackedRLI }

PackedRLI = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kRLIMaxBytes] OF Byte;

END;

{ ProtoPackedRLI }

ProtoPackedRLI = RECORD

dataLength: INTEGER;

{ Followed by data }

END;

PackedRLIPtr = ^PackedRLI;

ProtoPackedRLIPtr = ^ProtoPackedRLI;

{ LocalRecordID }

LocalRecordID = RECORD

cid: CreationID;

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-131

recordName: RStringPtr;

recordType: RStringPtr;

END;

LocalRecordIDPtr = ^LocalRecordID;

{ ShortRecordID }

ShortRecordID = RECORD

rli: PackedRLIPtr;

cid: CreationID;

END;

ShortRecordIDPtr = ^ShortRecordID;

{ RecordID }

RecordID = RECORD

rli: PackedRLIPtr;

local: LocalRecordID;

END;

RecordIDPtr = ^RecordID;

{ PackedRecordIDHeader }

PackedRecordIDHeader = RECORD

dataLength: INTEGER;

END;

{ PackedRecordID }

PackedRecordID = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kPackedRecordIDMaxBytes] OF Byte;

END;

{ ProtoPackedRecordID }

ProtoPackedRecordID = RECORD

dataLength: INTEGER;

{ Followed by data }

END;

PackedRecordIDPtr = ^PackedRecordID;

ProtoPackedRecordIDPtr = ^ProtoPackedRecordID;

{ DSSpec Structures }

C H A P T E R 2

AOCE Utilities

2-132 Summary of the AOCE Utilities

{ DSSpec }

DSSpec = RECORD

entitySpecifier: ^RecordID;

extensionType: OSType;

extensionSize: INTEGER;

extensionValue: Ptr;

END;

DSSpecPtr = ^DSSpec;

{ PackedDSSpecHeader }

PackedDSSpecHeader = RECORD

dataLength: INTEGER;

END;

{ PackedDSSpec }

PackedDSSpec = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kPackedDSSpecMaxBytes] OF Byte;

END;

ProtoPackedDSSpec = RECORD

dataLength: INTEGER;

{ Followed by data }

END;

PackedDSSpecPtr = ^PackedDSSpec;

PackedDSSpecHandle = ^PackedDSSpecPtr;

ProtoPackedDSSpecPtr = ^ProtoPackedDSSpec;

{ Attribute Structures }

AttributeType = RECORD

charSet: CharacterSet;

dataLength: INTEGER;

body: PACKED ARRAY[1..kAttributeTypeMaxBytes] OF Byte;

END;

AttributeTypePtr = ^AttributeType;

{ AttributeValue }

AttributeValue = RECORD

tag: AttributeTag;

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-133

dataLength: LONGINT;

bytes: Ptr;

END;

AttributeValuePtr = ^AttributeValue;

AttributeTag = DescType;

{ Attribute }

Attribute = RECORD

attributeType: AttributeType;

cid: AttributeCreationID;

value: AttributeValue;

END;

AttributePtr = ^Attribute;

{ recordType index }

OCERecordTypeIndex = INTEGER;

{ AttributeType index }

OCEAttributeTypeIndex = INTEGER;

{ OCE Catalog Types }

OCEDirectoryKind = LONGINT;

{ OCE Catalog Node Types }

DirNodeKind = LONGINT;

{ MyDSSpecStreamer callback routine }

MyDSSpecStreamer = ProcPtr;

AOCE Utility Functions

AOCE String Functions

FUNCTION OCECopyRString (str1: RStringPtr; str2: RStringPtr;
str2Length: INTEGER): OSErr;

PROCEDURE OCECToRString (cStr: Ptr; charSet: CharacterSet; rStr:
RStringPtr; rStrLength: INTEGER);

PROCEDURE OCEPToRString (pStr: Str255; charSet: CharacterSet; rStr:
RStringPtr; rStrLength: INTEGER);

FUNCTION OCERToPString (rStr: RStringPtr): StringPtr; INLINE $303C,
kOCERToPString, $AA5C;

C H A P T E R 2

AOCE Utilities

2-134 Summary of the AOCE Utilities

FUNCTION OCERelRString (str1: UNIV Ptr; str2: UNIV Ptr; kind:
RStringKind): INTEGER;

FUNCTION OCEEqualRString (str1: UNIV Ptr; str2: UNIV Ptr; kind:
RStringKind): BOOLEAN;

FUNCTION OCEValidRString (str: UNIV Ptr; kind: RStringKind): BOOLEAN;

Creation Identifier Functions

FUNCTION OCEEqualCreationID (cid1: CreationID; cid2: CreationID): BOOLEAN;

PROCEDURE OCECopyCreationID (cid1: CreationID; VAR cid2: CreationID);

FUNCTION OCENullCID: CreationIDPtr;

FUNCTION OCEPathFinderCID: CreationIDPtr;

PROCEDURE OCESetCreationIDtoNull
(VAR cid: CreationID);

Packed pathname Functions

FUNCTION OCECopyPackedPathName
(path1: PackedPathNamePtr; path2:
PackedPathNamePtr; path2Length: INTEGER):
OSErr;

FUNCTION OCEIsNullPackedPathName
(path: PackedPathNamePtr): BOOLEAN;

FUNCTION OCEPackedPathNameSize
(VAR parts: RStringPtr; nParts: INTEGER):
INTEGER;

FUNCTION OCEDNodeNameCount (path: PackedPathNamePtr): INTEGER;

FUNCTION OCEUnpackPathName (path: PackedPathNamePtr; VAR parts:
RStringPtr; nParts: INTEGER): INTEGER;

FUNCTION OCEPackPathName (VAR parts: RStringPtr; nParts: INTEGER; path:
PackedPathNamePtr; pathLength: INTEGER): OSErr;

FUNCTION OCEEqualPackedPathName
(path1: PackedPathNamePtr; path2:
PackedPathNamePtr): BOOLEAN;

FUNCTION OCEValidPackedPathName
(path: PackedPathNamePtr): BOOLEAN;

Catalog Discriminator Functions

PROCEDURE OCECopyDirDiscriminator
(disc1: DirDiscriminator; VAR disc2:
DirDiscriminator);

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-135

FUNCTION OCEEqualDirDiscriminator
(disc1: DirDiscriminator; disc2:
DirDiscriminator): BOOLEAN;

Record Location Information Functions

PROCEDURE OCENewRLI (VAR newRLI: RLI; dirName: DirectoryName; VAR
discriminator: DirDiscriminator dNodeNumber:
DNodeNum; path: PackedPathName);

PROCEDURE OCEDuplicateRLI (rli1: RLI; VAR rli2: RLI);

FUNCTION OCECopyRLI (rli1: RLI; VAR rli2: RLI): OSErr;

FUNCTION OCEEqualRLI (rli1: RLI; rli2: RLI): BOOLEAN;

FUNCTION OCEValidRLI (theRLI: RLI): BOOLEAN;

FUNCTION OCECopyPackedRLI (prli1: PackedRLIPtr; prli2: PackedRLIPtr;
prli2Length: INTEGER): OSErr;

FUNCTION OCEPackedRLISize (theRLI: RLI): INTEGER;

FUNCTION OCEPackRLI (theRLI: RLI; prli: PackedRLIPtr; prliLength:
INTEGER): OSErr;

PROCEDURE OCEUnpackRLI (prli: PackedRLIPtr; VAR theRLI: RLI);

FUNCTION OCEPackedRLIPartsSize
(dirName: DirectoryNamePtr; VAR parts:
RStringPtr; nParts: INTEGER): INTEGER;

FUNCTION OCEPackRLIParts (dirName: DirectoryNamePtr; discriminator:
DirDiscriminator; dNodeNumber: DNodeNum; VAR
parts: RStringPtr; nParts: INTEGER; prli:
PackedRLIPtr; prliLength: INTEGER): OSErr;

FUNCTION OCEEqualPackedRLI (prli1: PackedRLIPtr; prli2: PackedRLIPtr):
BOOLEAN;

FUNCTION OCEValidPackedRLI (prli: PackedRLIPtr): BOOLEAN;

FUNCTION OCEExtractAlias (prli: PackedRLIPtr): AliasPtr;

FUNCTION OCEGetDirectoryRootPackedRLI
():PackedRLIPtr;

Local Record Identifier Functions

PROCEDURE OCENewLocalRecordID
(recordName: RStringPtr; recordType:RStringPtr;
cid: CreationID; VAR lRID: LocalRecordID);

FUNCTION OCECopyLocalRecordID
(lRID1: LocalRecordID; VAR lRID2:
LocalRecordID): OSErr;

FUNCTION OCEEqualLocalRecordID
(lRID1: LocalRecordID; lRID2: LocalRecordID):
BOOLEAN;

C H A P T E R 2

AOCE Utilities

2-136 Summary of the AOCE Utilities

Short Record Identifier Functions

PROCEDURE OCENewShortRecordID
(theRLI: PackedRLIPtr; cid: CreationID; sRID:
ShortRecordIDPtr);

FUNCTION OCECopyShortRecordID
(sRID1: ShortRecordID; VAR sRID2:
ShortRecordID): OSErr;

FUNCTION OCEEqualShortRecordID
(sRID1: ShortRecordID; sRID2: ShortRecordID):
BOOLEAN;

Record Identifier Functions

FUNCTION OCEGetIndRecordType
(STRINGIndex: OCERecordTypeIndex): RStringPtr;

PROCEDURE OCENewRecordID (theRLI: PackedRLIPtr; lRID: LocalRecordID; VAR
rid: RecordID);

FUNCTION OCECopyRecordID (rid1: RecordID; rid2: RecordID): OSErr;

FUNCTION OCEEqualRecordID (rid1: RecordID; rid2: RecordID): BOOLEAN;

Packed Record Identifier Functions

FUNCTION OCECopyPackedRecordID
(pRID1: PackedRecordIDPtr; pRID2:
PackedRecordIDPtr; pRID2Length: INTEGER):
OSErr;

FUNCTION OCEPackedRecordIDSize
(rid: RecordID): INTEGER;

FUNCTION OCEPackRecordID (rid: RecordID; VAR pRID: PackedRecordIDPtr;
packedRecordIDLength: INTEGER): OSErr;

PROCEDURE OCEUnpackRecordID (pRID: PackedRecordIDPtr; VAR rid: RecordID);

FUNCTION OCEEqualPackedRecordID
(pRID1: PackedRecordIDPtr; pRID2:
PackedRecordIDPtr): BOOLEAN;

FUNCTION OCEValidPackedRecordID
(pRID: PackedRecordIDPtr): BOOLEAN;

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-137

Attribute Type Functions

FUNCTION OCEGetIndAttributeType
(STRINGIndex: OCEAttributeTypeIndex):
AttributeTypePtr;

Catalog Services Specification Functions

FUNCTION OCECopyPackedDSSpec
(pdss1: PackedDSSpecPtr; pdss2:
PackedDSSpecPtr; pdss2Length: INTEGER): OSErr;

FUNCTION OCEPackedDSSpecSize
(dss: DSSpec): INTEGER;

FUNCTION OCEPackDSSpec (dss: DSSpec; VAR pdss: PackedDSSpecPtr;
pdssLength: INTEGER): OSErr;

PROCEDURE OCEUnpackDSSpec (pdss: PackedDSSpecPtr; VAR dss: DSSpec; VAR
rid: RecordID);

FUNCTION OCEEqualDSSpec (pdss1: DSSpec; pdss2: DSSpec): BOOLEAN;

FUNCTION OCEEqualPackedDSSpec
(pdss1: PackedDSSpecPtr; pdss2:
PackedDSSpecPtr): BOOLEAN;

FUNCTION OCEValidPackedDSSpec
(pdss: PackedDSSpecPtr): BOOLEAN;

FUNCTION OCEGetDSSpecInfo (spec: DSSpec): OSType;

FUNCTION OCEGetExtensionType
(pdss: PackedDSSpecPtr): OSType;

FUNCTION OCEStreamPackedDSSpec
(dss: DSSpec; stream: MyDSSpecStreamer;
userData: LONGINT; VAR actualCount: LONGINT):
OSErr;

Application-Defined Functions

FUNCTION MyDSSpecStreamer (VAR buffer: void; count: LONGINT; eof:
BOOLEAN; userData: LONGINT): OSErr;}

C H A P T E R 2

AOCE Utilities

2-138 Summary of the AOCE Utilities

Assembly Language Summary

Trap Macros Requiring Routine Selectors

__OCEUtils

Selector Routine

$0300 kOCECopyCreationID

$0301 kOCECopyDirDiscriminator

$0302 kOCECopyLocalRecordID

$0303 kOCECopyPackedDSSpec

$0304 kOCECopyPackedPathName

$0305 kOCECopyPackedRLI

$0306 kOCECopyPackedRecordID

$0307 kOCECopyRLI

$0308 kOCECopyRString

$0309 kOCECopyRecordID

$030A kOCECopyShortRecordID

$030B kOCEDuplicateRLI

$030C kOCEEqualCreationID

$030D kOCEEqualDirDiscriminator

$030E kOCEEqualDSSpec

$030F kOCEEqualLocalRecordID

$0310 kOCEEqualPackedDSSpec

$0311 kOCEEqualPackedPathName

$0312 kOCEEqualPackedRecordID

$0313 kOCEEqualPackedRLI

$0314 kOCEEqualRecordID

$0315 kOCEEqualRLI

$0316 kOCEEqualRString

$0317 kOCEEqualShortRecordID

$0318 kOCEExtractAlias

$0319 kOCEGetDSSpecInfo

$031A kOCEGetIndAttributeType

$031B kOCEGetIndRecordType

$031C kOCEGetXtnType

$031D kOCEIsNullPackedPathName

$031E kOCENewLocalRecordID

$031F kOCENewRLI

C H A P T E R 2

AOCE Utilities

Summary of the AOCE Utilities 2-139

$0320 kOCENewRecordID

$0321 kOCENewShortRecordID

$0322 kOCEPackDSSpec

$0323 kOCEPackPathName

$0324 kOCEPackRLI

$0325 kOCEPackRLIParts

$0326 kOCEPackRecordID

$0327 kOCEPackedDSSpecSize

$0328 kOCEPackedPathNameSize

$0329 kOCEPackedRLIPartsSize

$032A kOCEPackedRLISize

$032B kOCEPackedRecordIDSize

$032C kOCEDNodeNameCount

$032D kOCERelRString

$032E kOCESetCreationIDtoNull

$032F kOCEUnpackDSSpec

$0330 kOCEUnpackPathName

$0331 kOCEUnpackRLI

$0332 kOCEUnpackRecordID

$0333 kOCEValidPackedDSSpec

$0334 kOCEValidPackedPathName

$0335 kOCEValidPackedRecordID

$0336 kOCEValidPackedRLI

$0337 kOCEValidRLI

$0338 kOCEValidRString

$0339 kOCECToRString

$033A kOCEPToRString

$033B kOCERToPString

$033C kOCEPathFinderCID

$033D kOCEStreamPackedDSSpec

$0344 kOCENullCID

$0345 kOCEGetAccessControlDSSpec

$0346 kOCEGetRootPackedRLI

Selector Routine

C H A P T E R 2

AOCE Utilities

2-140 Summary of the AOCE Utilities

Result Codes
There is no allocated range of result codes for the Utility Manager. Functions may,

however, return standard Macintosh result codes such as noErr 0 (No error) and

memFullErr –108 (Buffer not large enough).

Contents 3-1

C H A P T E R 3

Contents

Standard Mail Package

About the Standard Mail Package 3-3

The Send-Letter Functions 3-3

The Mailer Functions 3-4

Mailers 3-4

Letter Formats 3-7

The Standard Catalog Package 3-8

Using the Standard Mail Package 3-8

Initializing the Standard Mail Package 3-8

Creating a Mailer 3-9

Sending Mail 3-11

Receiving Mail 3-17

Forwarding and Replying to Mail 3-19

Closing a Letter 3-20

Handling Mailer Events 3-21

Standard Mail Package Reference 3-25

Data Structures 3-25

Recipient Descriptor 3-25

Enclosure Descriptor 3-26

Letter Descriptor 3-27

Letter Information Structure 3-27

Creator Type Structure 3-28

Image Block Information Structure 3-28

Letter Parameter Block 3-29

Close-Options Structure 3-29

Mailer-State Structure 3-30

Send-Options Structure 3-34

Send-Format Structure 3-34

Letter-Specification Structure 3-35

C H A P T E R 3

3-2 Contents

Standard Mail Package Functions 3-36

Assembly-Language Interface 3-36

Authenticating a User 3-36

Send-Letter Functions 3-37

Providing Mailers in Your Windows 3-45

Handling Events in Mailers 3-63

Sending and Saving Mail 3-72

Reading Mail 3-93

Printing Mailers 3-107

Getting and Setting Information in the Mailer 3-110

Application-Defined Functions 3-122

Summary of the Standard Mail Package 3-127

C Summary 3-127

Constants and Data Types 3-127

Standard Mail Package Functions 3-134

Application-Defined Functions 3-140

Pascal Summary 3-140

Constants 3-140

Data Types 3-143

Standard Mail Package Functions 3-146

Application-Defined Functions 3-151

Assembly-Language Summary 3-151

Trap Macros 3-151

Result Codes 3-153

C H A P T E R 3

About the Standard Mail Package 3-3

Standard Mail Package

This chapter describes the AOCE Standard Mail Package. The AOCE Standard Mail

Package provides a high-level interface that makes it easy for you to add electronic-mail

capabilities to your applications.

The Standard Mail Package provides two separate services:

■ an easy way to send a letter or a file from within your application without user
intervention

■ a complete user interface that you can use to convert any of your application’s
documents into electronic mail

In addition, you can use the Standard Catalog Package to provide a user interface for

browsing AOCE catalogs and selecting records from within your application.

If you want to design and implement your own electronic messaging service using the

AOCE toolbox, see the chapter “Interprogram Messaging Manager” in this book.

About the Standard Mail Package

The AOCE Standard Mail Package provides a high-level interface to the AOCE

Interprogram Messaging (IPM) Manager. It works together with the Catalog Browser

and the Digital Signature Manager to present a consistent and easy-to-use user interface

for addressing letters, signing letters, and sending your application’s documents as

electronic mail.

The Standard Mail Package can be divided into two main parts: the send-letter functions

and the mailer functions. The Standard Mail Package relies on other components of the

Apple Open Collaboration Environment, but you do not have to call the underlying

AOCE services directly to add electronic-mail capabilities to your application.

The Send-Letter Functions
The Standard Mail Package provides a basic, very easily implemented method of

sending documents and other files that can be used either by users of applications or by

applications acting without user intervention (agents). You can use the Standard Mail

Package functions (described in “Send-Letter Functions” on page 3-37) to enclose a file

with an AppleMail letter and then send the letter, to send a document as an image file, or

to send a file so that it appears in the recipient’s In Tray not as a letter but as the original

file.

The send-letter functions provide no interface for opening a letter from within your

application. When the user double-clicks a document in the In Tray, the Finder attempts

to launch the application that was used to send the letter, and that application opens the

document. If that application is not present, the Finder displays a dialog box asking the

user whether it should open the letter with the AppleMail application provided with the

AOCE software.

C H A P T E R 3

Standard Mail Package

3-4 About the Standard Mail Package

The Mailer Functions
The Standard Mail Package also provides a more sophisticated electronic-mail interface.

This interface adds a new region—known as a mailer—to any window.

“Providing Mailers in Your Windows” on page 3-45 describes functions to create a new

mailer, reposition a mailer in your window, control the way the user cycles through

fields in the mailer and your document using the Tab key, and dispose of a mailer.

You can use the functions described in “Handling Events in Mailers” beginning on

page 3-63 to handle events and Apple events that pertain to mailers and to make sure

that your menu commands accurately reflect the state of the mailer while a user is

working in it.

You use the functions described in “Sending and Saving Mail” beginning on page 3-72 to

send, save, or read a document containing a mailer. Use the routines in “Printing

Mailers” beginning on page 3-107 when you want to print a document containing a

mailer.

You can use the functions described in “Getting and Setting Information in the Mailer”

beginning on page 3-110 to read and set values in mailer fields and send options from

within your program instead of through the mailer or the standard dialog boxes

provided by the mailer.

You use the SMPOpenLetter function, described in “Reading Mail” beginning on

page 3-93, to open a letter to read its contents.

Mailers

The mailer lets the sender enter addresses and subject information, enclose other files

and folders in the letter, and add a digital signature to the letter. It lets the recipient read

all of this information and verify the digital signature. Figure 3-1 shows a mailer in an

application window. Each time the user forwards a letter, another mailer holding

addresses for the forwarder and the new recipients is added to the letter. The mailers for

a forwarded letter are collectively referred to as a mailer set.

C H A P T E R 3

Standard Mail Package

About the Standard Mail Package 3-5

Figure 3-1 Mailer in an application window

The preferred user interface for an AOCE Standard Mail Package letter is to place the

mailer inside your document’s windows, just below the title bar. However, if your

application’s windows are not suitable for displaying mailers, you can place the mailer

in its own, separate window. The user can display the mailer in either of two states:

contracted or expanded. Figure 3-2 shows a sample mailer in the contracted state and

Figure 3-3 shows the same mailer in the expanded state.

Figure 3-2 Mailer in the contracted state

Figure 3-3 Mailer in the expanded state

C H A P T E R 3

Standard Mail Package

3-6 About the Standard Mail Package

The user can drag an address from the Finder or another mailer into the Recipients field

or can open an addressing panel, as shown in Figure 3-4. The user can select among four

versions of the addressing panel by clicking one of the icons at the left side of the panel.

These versions of the addressing panel allow the user to select an address from the

default personal catalog or from any AOCE catalog, to find a record by typing in all or

part of the name of the record, or to type in the entire address. These four versions of the

panel are shown in Figure 3-5.

Figure 3-4 Mailer with addressing panel open

Figure 3-5 The four versions of the addressing panel

C H A P T E R 3

Standard Mail Package

About the Standard Mail Package 3-7

Letter Formats

When you use a mailer to send a document as a letter, you can send the document in a

“native” format (that is, any one of the document formats supported by your

application), you can send an image of your document, you can send the content of your

document in a special format called standard interchange format, or you can send the

document in any two or all three of these formats simultaneously.

You may choose to employ the AOCE Standard Mail Package at either of two levels: full

mailer support or basic mailer support. An application that offers full mailer support can

read and write both standard interchange format and images. An application that offers

basic mailer support can send either images or standard interchange format or both.

Either type of application might also send documents in one of the application’s native

formats.

When you send your document, the Standard Mail Package delivers it to the addressees’

In Trays. When a recipient double-clicks a document in the In Tray, the application used

to send the document (if present) opens it, and the mailer appears at the top of the

window. If the file includes an image of the document or a standard interchange format

version of its content, any application that offers full mailer support can open it.

Each user who has AOCE software has the AppleMail application, which provides full

mailer support. Thus, every user who has AOCE software can read, either as an image or

in standard interchange format, every document sent by an application that provides

either full or basic mailer support. In addition, if your application can send and read

documents sent in its own native formats, users who have your application have access

to the complete document when they receive it.

A letter consists of a header that contains addressing and priority information, followed

by blocks of data, followed by enclosures. Certain types of data blocks have standard

definitions, such as the image block and standard interchange format blocks. The image

block contains an image of the document being sent; you must provide an

image-drawing routine (page 3-123) to draw each page. The SMPImage function

(page 3-88) creates the image block and adds it to the letter. Standard interchange format

blocks contain a version of your document that can include text, styled text, sounds,

pictures, and QuickTime movies. Standard interchange format can be converted by

access modules and read by any standard letter application (such as the AppleMail

application provided with the AOCE software). You can define other blocks in any way

you wish. You use the SMPAddBlock function (page 3-91) to add blocks to a letter.

You can send your own document in one of its native formats as an enclosure to the

letter, known as a main enclosure (also referred to as a content enclosure), or incorporate

it into data blocks, as you wish. The Standard Mail Package user interface also allows the

user to enclose other files. (The main enclosure is not visible to the user as an enclosure.)

C H A P T E R 3

Standard Mail Package

3-8 Using the Standard Mail Package

Note
If you are using the IPM Manager or the MSAM API to send letters to
the Standard Mail Package, you should avoid sending any nested letters
that contain standard content. If the Standard Mail Package receives a
letter that contains a nested letter, it ignores any content (standard
interchange format or image format) within the nested letter. It displays
the header and nesting information of the nested letter as a forwarded
mailer. ◆

The Standard Catalog Package
The Standard Catalog Package provides authentication and letter-addressing services

that complement the routines described in this chapter. See the chapter “Standard

Catalog Package” in this book for more information.

Using the Standard Mail Package

This section describes how to initialize the Standard Mail Package and use it to create a

mailer, send mail, receive mail, forward and reply to mail, close a letter, and handle

events in the mailer.

Initializing the Standard Mail Package
Before you can enable Standard Mail Package features in your application, you must use

the Gestalt Manager to ensure that the system on which your application is running

supports the Standard Mail Package.

To determine the version of the Standard Mail Package mailer functions, call the

Gestalt function with the selector gestaltSMPMailerVersion. The function returns

the version number of the mailers in the low-order word of the response parameter.

For example, a value of 0x0101 indicates version 1.0.1. If the Standard Mail Package is

not present and available, the Gestalt function returns 0 for the version number.

Similarly, to determine the version of the send-letter functions, use the selector

gestaltSMPSendLetterVersion.

Listing 3-1 shows a function that returns true only if the Standard Mail Package is

installed and available.

Listing 3-1 Testing for the presence of Standard Mail Package services

Boolean MyTestForStandardMail(void)

{

OSErr err;

long response;

C H A P T E R 3

Standard Mail Package

Using the Standard Mail Package 3-9

err = Gestalt(gestaltSMPMailerVersion, &response);

if ((err!=noErr) || (response==0))

return false;

return true;

}

If the Standard Mail Package is not available, you should disable those features of your

application while allowing the user to use its other features normally.

After determining that the Standard Mail Package is available, you must initialize it

using the SMPInitMailer function, passing in the version number of the package

current for the services incorporated into your application. If, at run time, the current

version of the Standard Mail Package is later than the one with which you compiled

your application, the package initializes in compatibility mode, supporting the older

version’s functions. If, conversely, the run-time version is earlier, SMPInitMailer

returns an error. The code in Listing 3-2 calls the initialization function.

Listing 3-2 Initializing the Standard Mail Package

OSErr MyInitStandardMail(void)

{

OSErr err;

SetCursor(&gWatchCursor);

err = SMPInitMailer(kSMPVersion);

SetCursor(&qd.arrow);

return err;

}

Creating a Mailer
The Standard Mail Package enables any application to add support for mailing

documents directly to other users on the network without going through intermediate

mail applications. It provides standard user interface elements needed to address, send,

and receive documents through the mailer, which appears as a special pane in the

window of the document to be sent. This section describes how to add a mailer to a

window.

Listing 3-3 uses the SMPGetDimensions (page 3-48) function to find the dimensions of

the standard mailer window, and it creates a document window just large enough to

accommodate the mailer. More typically, you would size your application windows

according to the requirements of your application and use SMPGetDimensions to place

the mailer and perform actions such as adjusting the content area of your window. The

function then creates the mailer by calling the SMPNewMailer function (page 3-46), and

it makes the mailer the initial target of user actions with the SMPBecomeTarget

C H A P T E R 3

Standard Mail Package

3-10 Using the Standard Mail Package

function (page 3-54), specifying the target field within the mailer as kSMPOther (that is,

a field other than the Recipients, From, or other enumerated field as described on

page 3-32). The application-defined MyErrorAlert function in the listings throughout

this section reports errors to the user in a standard manner.

Listing 3-3 Creating a mailer

void

MyBuildMailerWindow(void)

{

Rect boundsRect;

Point mailerCorner;

short mailerWidth;

short mailerContractedHeight;

short mailerExpandedHeight;

boundsRect = qd.screenBits.bounds;

boundsRect.top += ((GetMBarHeight() + 1) * 2);

InsetRect(&boundsRect, 4, 4);

gStatus = SMPGetDimensions(

&mailerWidth,

&mailerContractedHeight,

&mailerExpandedHeight

);

if (gStatus != noErr)

MyErrorAlert(gStatus, "\pSMPGetDimensions");

else {

boundsRect.right = boundsRect.left + mailerWidth;

boundsRect.bottom = boundsRect.top + mailerExpandedHeight;

}

gMailerWindow = NewWindow(

NULL, /* no window storage */

&boundsRect, /* window shape */

"\pMiniMailer", /* window title */

TRUE, /* visible */

documentProc, /* document, no zoom box */

(WindowPtr) -1L, /* in front */

TRUE, /* has close box */

0 /* refCon (ignored) */

);

if (gMailerWindow == NULL) {

MyErrorAlert(MemError(), "\pNewWindow (fatal)");

ExitToShell();

C H A P T E R 3

Standard Mail Package

Using the Standard Mail Package 3-11

}

SetPort(gMailerWindow); /* set port to be safe */

SetPt(&mailerCorner, 0, 0);/* locate mailer in window */

gStatus = SMPNewMailer(/* create Standard Mailer */

gMailerWindow, /* in this window */

mailerCorner, /* mailer top-left */

FALSE, /* cannot contract */

TRUE, /* initially expanded */

0, /* default identity */

nil, /* no prepare-to-draw callback */

0 /* no client data */

);

if (gStatus != noErr) {

MyErrorAlert(gStatus, "\pSMPNewMailer (fatal)");

ExitToShell();

}

}

The SMPNewMailer function call shown in Listing 3-3 passes a value of 0 for the

identity of the caller, which invokes the most recently authenticated user identity (see

“Authenticating a User” on page 3-36). Note that setting the Boolean parameter

canContract of the SMPNewMailer function to FALSE is unusual; Listing 3-3 does it

because the window exists only to accommodate the mailer. To add a mailer to an

existing document window, call the SMPNewMailer function, passing in the window

pointer, followed by the SMPGetDimensions function, to adjust the size of the window

content area.

Sending Mail
The first step in sending a letter is to display the send-options dialog box. This dialog

box is similar to the standard print dialog box, offering the user options as to how the

letter should be sent. Listing 3-4 illustrates a way to display the send-options dialog box.

The code assumes that your application stores as a resource a list of formats in which it

can send letters; these formats should be those in which your application can save

documents. It also assumes that your application stores user preference values, including

send options, in a global struct named gPreferences.

Listing 3-4 Displaying the send-options dialog box

GetResString(nativeFormat, kAppNameID, kAppName);

GetWTitle(window, docTitle);

nativeFormatArray[0] = (StringPtr)nativeFormat;

SetCursor(&qd.arrow);

err = SMPSendOptionsDialog(window, docTitle, nativeFormatArray, 1,

C H A P T E R 3

Standard Mail Package

3-12 Using the Standard Mail Package

kSMPNativeMask | kSMPImageMask | kSMPStandardInterchangeMask,

&gPreferences.sendFormat, nil, 0L, &gPreferences.sendFormat,

&gPreferences.sendOptions);

if (err == userCanceledErr)

return;

if (err !== noErr) {

MyErrorAlert(err, "\pSMPSendOptionsDialog");

return;

}

The SMPSendOptionsDialog function (page 3-73) prompts the user for send options.

It returns the name of the format that should be used to send the letter, which is used in

the next part of the process. The process of sending a letter is begun by calling the

SMPBeginSend function (page 3-81), passing in the user’s send options (see Listing 3-5).

The Standard Mail Package uses this information to build the header for the letter. Any

subsequent content-adding function calls apply to the letter specified in the

SMPBeginSend call. Listing 3-5 shows how to perform the send operation.

Listing 3-5 Performing the send operation

SetCursor(&gWatchCursor);

/* Use creator if you have native format, else use AppleMail. */

if ((gPreferences.sendFormat.whichFormats & kSMPNativeMask != 0) {

letterCreator = kMyAppCreator;

letterType = kMyLtrMsgType;

}

else {

letterCreator = 'lap2';

letterType = kMailLtrMsgType;

}

err = SMPBeginSend(window, letterCreator, letterType,

&gPreferences.sendOptions, &mustAddContent);

if (err != noErr) {

SetCursor(&qd.arrow);

MyErrorAlert(err, "\pSMPBeginSend");

return;

}

if (mustAddContent) {

err = MyAddLetterBlocks(window, infoPtr,

&gPreferences.sendFormat);

if (err != noErr)

MyErrorAlert(err);

}

C H A P T E R 3

Standard Mail Package

Using the Standard Mail Package 3-13

err = SMPEndSend(window, (err == noErr));

if (err != noErr)

MyErrorAlert(err, "\pSMPEndSend");

The application-defined MyAddLetterBlocks function adds the actual blocks of

content to the letter. It adds blocks only if the mustAddContent Boolean value,

returned from SMPBeginSend, is set to true; there is no need to add content blocks to a

letter forwarded unchanged. The function adds blocks in any combination of the three

types of content formats: native application format, standard interchange (AppleMail)

format, and image format. The MyAddLetterBlocks function calls appropriate

subroutines to add the blocks.

Finally, you must call the SMPEndSend function (page 3-84) to send the letter. Its second

parameter is a Boolean value that specifies whether to execute the send operation or to

cancel the send process begun with SMPBeginSend. The example in Listing 3-5 uses this

parameter to ensure that if MyAddLetterBlocks or any of its subroutines returns a

nonzero error code, the send operation is canceled.

The MyAddLetterBlocks function and its subroutine functions are illustrated in

Listing 3-6. The MyAddLetterBlocks function checks the sendFormat parameter

returned from the SMPSendOptionsDialog function to determine which formats to

add, and it calls one, two, or all three of the functions that actually add the content

blocks.

Listing 3-6 Adding the letter content

OSErr MyAddLetterBlocks(WindowPtr window, WInfoPtr infoPtr,

SMPSendFormat *sendFormat, StringPtr nativeFormatName)

{

OSErr err = noErr;

/* Add image (snapshot). */

if (!sendFormat ||

(sendFormat->whichFormats & kSMPImageMask)) {

err = MyAddLetterImage(window, infoPtr);

if (err != noErr)

return err;

}

/* Add standard letter interchange format (AppleMail). */

if (!sendFormat ||

(sendFormat->whichFormats & kSMPStandardInterchangeMask)) {

err = MyAddAppleMailContent(window, infoPtr);

if (err != noErr)

return err;

}

C H A P T E R 3

Standard Mail Package

3-14 Using the Standard Mail Package

/* Add main content enclosure (native). */

if (!sendFormat ||

(sendFormat->whichFormats & kSMPNativeMask)) {

err = MyAddNativeContent(window,infoPtr,nativeFormatName);

if (err != noErr)

return err;

}

return err;

}

Native application content is stored in files accessed by file system FSSpec data

structures. Thus, to add native content you must save the content to a temporary file

before adding it to the letter. You can use an application-defined utility routine (the

MySaveFileToTemp function, not shown here) for this purpose. Once the temporary

file is available, the MyAddNativeContent function (Listing 3-7) calls

SMPAddMainEnclosure (page 3-90), passing in the letter window pointer and the file

specification. Finally, the MyAddNativeContent function calls the SMPAddBlock

function (page 3-91) to add a block indicating the name of the native format used in the

letter.

Listing 3-7 Adding the application’s native-format content

OSErr MyAddNativeContent(WindowPtr window, WInfoPtr infoPtr,

StringPtr nativeFormatName)

{

OSErr err;

FSSpec fSpec;

OCECreatorType blockType;

/* Save file temporarily so you can add by FSSpec. */

err = MySaveFileToTemp(infoPtr, &fSpec);

if (err != noErr)

return err;

err = SMPAddMainEnclosure(window, &fSpec);

FSpDelete(&fSpec);

/* Add native-format name string block. */

if (err == noErr) {

blockType.msgCreator = kMailAppleMailCreator;

blockType.msgType = kSMPNativeFormatName;

C H A P T E R 3

Standard Mail Package

Using the Standard Mail Package 3-15

err = SMPAddBlock(window, &blockType, false,

&nativeFormatName[1], nativeFormatName[0],

kMailFromStart, 0);

}

return err;

}

In Listing 3-8, the MyAddAppleMailContent function creates and adds a content block

segment in one of the AppleMail standard interchange formats. This example represents

data in PICT format, indicated by the constant kMailPictSegmentType, passed as a

parameter to the SMPAddContent function (page 3-85). Other standard interchange

formats handle text, styled text, sound, and movies.

Listing 3-8 Adding AppleMail standard interchange-format content

OSErr MyAddAppleMailContent(WindowPtr window, WInfoPtr infoPtr)

{

OSErr err;

PicHandle thePicture;

thePicture = MyDrawImageToPicture(window, infoPtr);

if (thePicture) {

HLock((Handle)thePicture);

err = SMPAddContent(window, kMailPictSegmentType, false,

*thePicture, GetHandleSize((Handle)thePicture),

nil, true, smRoman);

KillPicture(thePicture);

}

else return kInternalError;

return err;

}

The code shown in Listing 3-9 creates an image from your document and adds it to the

letter. The SMPImage function (page 3-88) requires you to pass in a pointer to a callback

routine, an application-defined function (described on page 3-123) that actually draws

the image of your document.

The SMPImage function adds the image blocks to the letter. You provide it with input

parameters of the pointer to the letter window, a pointer to your image-drawing callback

function (MyDrawImageProc, in Listing 3-9), a reference constant (used to pass a

pointer to a block of information about the window in this example), and a Boolean

value indicating whether your image-drawing function can draw in color (in Listing 3-9,

it does not). The MyDrawImageProc function first sets up the resolution and size of the

page using information in the print record for the window (in this example, a pointer to

the print record is contained in the window information block passed in the reference

C H A P T E R 3

Standard Mail Package

3-16 Using the Standard Mail Package

constant). Next, MyDrawImageProc calls the SMPNewPage function (page 3-41) to set

up the graphics drawing port, as your image-drawing routine must do before drawing

each page, then calls MyDrawAllShapes to image the page.

The application-defined MyDrawAllShapes function (called in Listing 3-9 but not

shown) images the entire page with QuickDraw calls. The same function is called in the

application-defined MyDrawImageToPicture function, which is used to add standard

interchange format AppleMail content to a letter (see Listing 3-8). In that case the

MyDrawImageToPicture function must provide a graphics port for QuickDraw to

draw into.

Listing 3-9 Adding image-format content

OSErr MyAddLetterImage(WindowPtr window, WInfoPtr infoPtr)

{

return SMPImage(window, MyDrawImageProc, (long)infoPtr, false);

}

pascal void MyDrawImageProc(long refCon, Boolean inColor)

{

#pragma unused (inColor)

OpenCPicParams newHeader;

OSErr err;

Point zeroPt = (0, 0);

WInfoPtr infoPtr;

TPrPtr prInfo;

infoPtr = (WInfoPtr)refCon;

prInfo = (**(infoPtr->printRecord)).prInfo;

newHeader.srcRect = prInfo.rPage;

newHeader.hRes = FixRatio(prInfo.iHRes, 1);

newHeader.vRes = FixRatio(prInfo.iVRes, 1);

newHeader.version = -2;

newHeader.reserved1 = 0;

newHeader.reserved2 = 0L;

err = SMPNewPage(&newHeader);

if (err != noErr)

MyErrorAlert(err, "\pSMPNewPage");

MyDrawAllShapes(infoPtr, zeroPt);

}

C H A P T E R 3

Standard Mail Package

Using the Standard Mail Package 3-17

Receiving Mail
A mail-aware application can receive mail in either of two ways: the user can

double-click the letter in the mailbox In Tray or in the Finder. In either case, this action

generates an Open Documents core Apple event ('aevt' 'odoc') that the Finder

sends to your application. If the letter is on disk, the Apple event includes a file

specification of type FSSpec; if it is in the In Tray, the Apple event includes instead a

letter specification of type LetterSpec. The portion of an Apple event handler shown

in Listing 3-10 shows how to process both file and letter specifications. The Standard

Mail Package handles both file and letter specifications through the letter descriptor

structure, which includes both formats.

Listing 3-10 Apple event handler processing both file and letter specifications

AECountItems(&docList, &itemsInList);

for (index = 1; index <= itemsInList; index++) {

err = AESizeOfNthItem(&docList, index, &returnedType, &size);

if (err != noErr)

return err;

if (returnedType == typeLetterSpec) {

diskForm = false;

err = AEGetNthPtr(&docList, index, typeLetterSpec, &keywd,

&returnedType, (Ptr)&myLetterSpec, sizeof(LetterSpec),

&actualSize);

} else if ((returnedType == typeAlias) ||

(returnedType == typeFSS)) {

diskForm = true;

err = AEGetNthPtr(&docList, index, typeFSS, &keywd,

&returnedType, (Ptr)&myFSS, sizeof(myFSS),

&actualSize);

}

if (err != noErr)

return err;

if ((returnedType == typeLetterSpec) ||

(returnedType == typeAlias) ||

(returnedType == typeFSS)) {

err = MyHandleOpenDoc(diskForm, &myFSS, &myLetterSpec);

if (err != noErr)

return err;

}

}

The MyHandleOpenDoc function shown in Listing 3-11 uses this information to open a

letter in the mailbox or on disk. The SMPOpenLetter function (page 3-94) registers with

C H A P T E R 3

Standard Mail Package

3-18 Using the Standard Mail Package

the Standard Mail Package the window passed to it and associates it with the letter

identified in the LetterDescriptor structure. The SMPGetMainEnclosureFSSpec

function (page 3-103) then extracts the native format document from the letter, and an

application-defined content-drawing routine (MyDrawLetterContent, in this example)

draws the document into the window.

Listing 3-11 Opening a letter

OSErr MyHandleOpenDoc(Boolean diskForm, FSSpec *myFSS,

LetterSpec *myLetterSpec)

{

OSErr err;

LetterDescriptor letterDesc;

Point upLeft = (0, 0);

Rect newWindowRect;

letterDesc.diskForm = diskForm;

if (diskForm)

{

letterDesc.fileSpec = *myFSS;

}

else

{

letterDesc.fileSpec = *myLetterSpec;

}

newWindow = MyMakeWindow(kDrawMailerWindow, &newWindowRect,

"\pTitle", false);

if (newWindow == NULL)

{

MyErrorAlert(memFullErr, "\pSMPOpenLetter");

return memFullErr;

}

err = SMPOpenLetter(&letterDesc, newWindow, upLeft, true,

gPreferences.expandOnOpen, nil, 0L);

if (err != noErr)

{

MyErrorAlert(err, "\pSMPOpenLetter");

return err;

}

err = SMPGetMainEnclosureFSSpec(newWindow, &enclSpec);

C H A P T E R 3

Standard Mail Package

Using the Standard Mail Package 3-19

if (err != noErr)

{

MyErrorAlert(err, "\pSMPOpenLetter");

return err;

}

return MyDrawLetterContent(newWindow, &enclSpec);

}

Forwarding and Replying to Mail
After opening a letter, the user has the option to reply or to forward it. The user can also

remove the mailer, changing the letter into a regular document.

To forward a letter, you must add a new mailer to the existing letter. A letter has a new

mailer attached each time it is forwarded. The mailers form a set with each mailer

superimposed upon the preceding mailers. The user can view the mailers in the set by

clicking a dog-ear in the corner of the mailer window pane to cycle through the set or by

choosing among the names in a pop-up menu appearing in the Forwarded By field.

The first step in forwarding a letter is to expand the existing mailer, if it is contracted.

Next, you call the SMPMailerForward function (page 3-49) to create the new mailer

and add it to the letter. Finally, you should adjust your menu items in the configuration

appropriate for sending mail, which is done in Listing 3-12 by an application-defined

function MyFixMailerMenus. The parameter constant kDefaultIdentity has a

value of 0, with the effect described in “Authenticating a User” on page 3-36.

Listing 3-12 Forwarding a letter

err = SMPExpandOrContract(window, true);

/* Ignore errors if window is already expanded. */

err = SMPMailerForward(window, kDefaultIdentity);

if (err != noErr)

MyErrorAlert(err, "\pSMPMailerForward");

MyFixMailerMenus(window);

The first step in replying to a letter is to create a new window in which the user will

write the reply. When this new window exists, you can call the SMPMailerReply

function (page 3-51), passing in among other parameters the new window and the

existing letter window. The function causes the reply letter to be created, automatically

addressed to the originator of the original letter. The code shown in Listing 3-13

illustrates how to handle replying to a letter.

C H A P T E R 3

Standard Mail Package

3-20 Using the Standard Mail Package

Listing 3-13 Replying to a letter

replyWindow = MyMakeWindow(kDrawMailerWindow, &newWindowRect,

newTitle, false);

err = SMPMailerReply(window, replyWindow, replyToAll, topLeft,

true, true, kDefaultIdentity, nil, 0L);

if (err != noErr)

MyErrorAlert(err, "\pSMPMailerReply");

ShowWindow(replyWindow);

The application-defined function MyMakeWindow creates a window and adjusts its

content area to accommodate the mailer. The SMPMailerReply function adds the

mailer, and the ShowWindow function causes the window to become visible.

Closing a Letter
Closing a letter window requires you to adhere to a short procedure: displaying the

close-options dialog box, checking for open enclosures and in-progress copy operations,

removing the mailer from the window, and closing the window.

Before closing a letter window, you can display the close-options dialog box, which gives

the user an opportunity to delete the letter or tag it before closing it. Listing 3-14 assumes

the existence of a data structure gPreferences containing user-preference flags,

including one determining whether or not you should display the close-options dialog

box. The code uses these preferences also to fill in the default values in the close-options

dialog box when it is displayed by the SMPCloseOptionsDialog function (page 3-60).

Listing 3-14 Preparing to close a letter

if (gPreferences.closeOptionsDialog) {

SetCursor(&qd.arrow);

err = SMPCloseOptionsDialog(window

 &gPreferences.closeOptions);

if (err != noErr)

returnValue = false;

}

The next step in the letter-closing procedure is to ensure that there are no open

enclosures attached to the letter, that there are no Finder copy operations in progress,

and that there are no other conditions that prevent closing the window. Finder copy

operations occur when the user is in the process of copying a document to or from the

enclosures list. If either situation is true, or if for some other reason a nonzero result was

returned from the SMPPrepareToClose function, the application-defined function

MyStopAlert notifies the user and prevents the letter from closing. Listing 3-15

illustrates these checks.

C H A P T E R 3

Standard Mail Package

Using the Standard Mail Package 3-21

Listing 3-15 Checking status prior to closing a letter

err = SMPPrepareToClose(window);

if (err == kSMPHasOpenAttachments) {

SetCursor(&qd.arrow);

MyStopAlert(kMyHasOpenAttachID, nil);

returnValue = false;

}

else if (err == kSMPCopyInProgress) {

SetCursor(&qd.arrow);

MyStopAlert(kMyCopyInProgress, nil);

returnValue = false;

}

else if (err != noErr) {

SetCursor(&qd.arrow);

MyStopAlert(kMyCannotCloseWindow, nil);

returnValue = false;

}

The final steps in the closing procedure are to remove the mailer from the window and

close the window, as shown in Listing 3-16. The SMPDisposeMailer function

(page 3-61) removes the mailer from the window passed in as a parameter and releases

the memory associated with the letter window. Then the application-defined routine

MyDestroyWindow disposes of the rest of the window and document structures in

memory.

Listing 3-16 Closing the letter

err = SMPDisposeMailer(window, closeOptions);

if (err != noErr)

MyErrorAlert(err, "\pSMPDisposeMailer");

return MyDestroyWindow(window);

Handling Mailer Events
The general strategy for handling events in a window with a mailer is to hand the events

to the Standard Mail Package first. The Standard Mail Package has built-in routines to

handle many events, including mouse-down events, key-down events, update events for

the mailer, activate events, deactivate events, and null events. The Standard Mail

Package then hands the event back to the application with an indication that either it

handled the event or your application must handle the event.

Your application should retrieve events in the normal manner, with the

WaitNextEvent system call. When a mailer window is frontmost, call the

SMPMailerEvent function (page 3-63), passing in the event record. The

C H A P T E R 3

Standard Mail Package

3-22 Using the Standard Mail Package

SMPMailerEvent function returns a set of flags in its whatHappened parameter

indicating what action it took, if any, and whether your application must handle the

event. (These flags, of type SMPMailerResult, are described on page 3-65.) Your

application can then process the event appropriately. The event-handling function

shown in Listing 3-17 receives the event record following a WaitNextEvent call, calls

SMPMailerEvent, and passes the SMPMailerResult value to an application-defined

routine named MyProcessWhatHappened. The parameter of type WInfoPtr is a

pointer to an application-defined data structure containing status information about the

mailer window.

Listing 3-17 Processing events in a mailer window

void *MyMailerEventHandler(WindowPtr window, WInfoPtr infoPtr,

EventRecord *ev)

{

SMPMailerResult whatHappened;

OSErr err;

err = SMPMailerEvent(ev, &whatHappened, nil, 0L);

if (err != noErr)

MyErrorAlert(err, "\pSMPMailerEvent");

return (void *)(MyProcessWhatHappened(window, infoPtr,

whatHappened));

}

Boolean MyProcessWhatHappened(WindowPtr window, WInfoPtr infoPtr,

SMPMailerResult whatHappened)

{

OSErr err;

SMPMailerState state;

long *lastChanged;

/* Check if mailer has changed since last menu adjustment. */

err = SMPGetMailerState(window, &state);

if (err != noErr)

MyErrorAlert(err, "\pSMPGetMailerState");

lastChanged = (long *)&infoPtr->otherData[kLastChangedData];

if (*lastChanged != state.changeCount) {

*lastChanged = state.changeCount;

infoPtr->changed = true;

MyFixMailerMenus(window, infoPtr);

}

if ((whatHappened & kSMPContractedMask) != 0)

C H A P T E R 3

Standard Mail Package

Using the Standard Mail Package 3-23

MyHandleContract(window,infoPtr);

if ((whatHappened & kSMPExpandedMask) != 0)

MyHandleExpand(window, infoPtr);

if ((whatHappened & kSMPMailerBecomesTargetMask) != 0 ||

(whatHappened & kSMPAppBecomesTargetMask) != 0))

MyFixMailerMenus(window, infoPtr);

/* Check menus for every event the mailer handles. */

if ((whatHappened & kSMPAppShouldIgnoreEventMask) != 0)

MyFixMailerMenus(window, infoPtr);

if ((whatHappened & kSMPAppMustHandleEventMask) != 0)

return false; /* app must handle this event */

else return true; /* mailer handled this event completely */

}

Most of the postprocessing of the event involves adjusting the menus, because the mailer

event may have affected which commands should be active. In addition, if the

kSMPContractedBit flag or kSMPExpandedBit flag is set as a a result of the event,

the code calls one of the application-defined routines: MyHandleContract or

MyHandleExpand. These routines call the SMPGetDimensions function to determine

the size of the expanded or contracted mailer, so that the application can adjust the size

of the content region of the window. If the user wants to expand the mailer, you must

then call the SMPExpandOrContract function (page 3-56) to expand the mailer to its

full size. However, if the user wants to contract the mailer to a single line, you need not

call SMPExpandOrContract because the Standard Mail Package performs the

contraction; you need only adjust the size of your content region and invalidate it to

update its content.

In addition, the Standard Mail Package requires you to add some logic to your

application’s mouse-click handler for a window that includes a mailer. You must notify

the Standard Mail Package before you allow the user to change the content of a letter, to

accommodate the needs of its digital signature capability. Before changing the letter, you

must call the SMPPrepareToChange function (page 3-83); if the letter has been digitally

signed, a dialog box appears warning the user that the impending change will invalidate

the signature. As in Listing 3-18, your routine should check the return value from

SMPPrepareToChange and exit if the user has clicked the Cancel button in the dialog

box.

The Standard Mail Package maintains its own undo buffer to support undoing mailer

operations. You must clear this buffer before doing operations on data in the content area

of your window so that only one undo operation is pending for the window. After

calling the application’s click-handler function, if the letter’s contents have changed, you

should call the SMPContentChanged function (page 3-76).

C H A P T E R 3

Standard Mail Package

3-24 Using the Standard Mail Package

Listing 3-18 Handling a mouse click in a mailer window

void *MyMailerMouseClickHandler(WindowPtr window,

WInfoPtr infoPtr)

{

void *returnVal;

OSErr err;

Boolean alreadyChanged;

/* Make sure you can change the letter. */

alreadyChanged = infoPtr->changed;

if (!alreadyChanged) {

err = SMPPrepareToChange(window);

if (err == userCanceledErr)

return nil;

}

/* Since content is changing, clear mailer undo buffer. */

err = SMPClearUndo(window);

if (err != noErr)

MyErrorAlert(err, "\pSMPClearUndo");

/* Call app's click handler. */

returnVal = MyClickHandler(window, infoPtr);

if (!alreadyChanged && infoPtr->changed) {

err = SMPContentChanged(window);

if (err != noErr)

MyErrorAlert(err, "\pSMPContentChanged");

}

return returnVal;

}

The previous section alluded to the undo buffer kept by the Standard Mail Package to

support undo operations in the mailer portion of letters. The Standard Mail Package

supports the Clipboard-based edit commands Cut, Copy, Paste, Clear, Select All, as well

as the Undo command. The function shown in Listing 3-19 is a mailer Cut command

handler; it shows how to support the Clipboard by calling the

SMPMailerEditCommand function (page 3-67), then processing the result by calling the

application-defined MyProcessWhatHappened function. You can use a similar strategy

for the Copy, Paste, Clear, Select All, and Undo commands.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-25

Listing 3-19 Supporting the Clipboard in a mailer edit command

void *MyMailerCutCommand(WindowPtr window, WInfoPtr infoPtr)

{

OSErr err;

SMPMailerResult whatHappened;

err = SMPMailerEditCommand(window, kSMPCutCommand,

 &whatHappened);

if (err != noErr)

MyErrorAlert(err, "\pSMPMailerEditCommand");

return (void *)(MyProcessWhatHappened(window, infoPtr,

whatHappened));

}

Standard Mail Package Reference

This section describes the data types and routines provided by the Standard Mail

Package.

Data Structures

The Standard Mail Package routines use the data types described in this section.

Recipient Descriptor

The recipient descriptor, used by the SMPSendLetter and SMPResolveToRecipient

functions, describes an addressee for a message or letter.

Note

You must call the DisposePtr function to deallocate the recipient
field before you can dispose of the recipient descriptor. ◆

struct SMPRecipientDescriptor

{

struct SMPRecipientDescriptor *next; /* pointer to next element */

OSErr result; /* result code */

OCEPackedRecipient *recipient; /* packed recipient address */

unsigned long size; /* size of recipient address */

MailRecipient theAddress; /* unpacked recipient address */

RecordID theRID; /* record ID of recipient */

};

C H A P T E R 3

Standard Mail Package

3-26 Standard Mail Package Reference

Field descriptions

next A pointer to the next element in a linked list of recipient descriptors.
This field must be set to nil in the last descriptor in the list.

result The result code returned by the SMPSendLetter function. If the
SMPSendLetter function fails because of a bad recipient
descriptor, you can examine this field in each of the recipient
descriptors to determine which caused the problem.

recipient A pointer to the packed address of the recipient of the letter.

size The length, in bytes, of the recipient’s address.

theAddress The unpacked address of the recipient.

theRID The record ID of the recipient. If the SMPSendLetter function fails
because of a bad recipient descriptor, you can use this record ID to
determine the name of the addressee that caused the error.

Enclosure Descriptor

The enclosure descriptor is an element of a linked list that describes an enclosure to be

sent with a letter. See the description of the SMPSendLetter function on page 3-37 for

more information about the use of this data structure.

struct SMPEnclosureDescriptor

{

struct SMPEnclosureDescriptor *next; /* pointer to next element */

OSErr result; /* result code */

FSSpec fileSpec; /* file specifier */

/* of enclosure */

OSType fileCreator; /* creator of enclosure */

OSType fileType; /* file type of enclosure */

};

Field descriptions

next A pointer to the next element in the linked list. If this is the only or
last element in the list, set this field to nil. If you use the
SMPResolveToRecipient function to create the linked list, the
function fills in this field for you.

result The result code returned by the SMPSendLetter function. If the
SMPSendLetter function fails because of a bad enclosure
descriptor, you can examine this field in each of the enclosure
descriptors to determine which caused the problem.

fileSpec File specifier of the enclosure.

fileCreator File creator of the enclosure. The SMPSendLetter function uses
this field only if you send the enclosure directly as a file (that is, you
set the sendAs field of the parameter block for the
SMPSendLetter function to kSMPSendFileOnlyMask).

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-27

fileType File type of the enclosure. The SMPSendLetter function uses this
field only if you send the enclosure directly as a file (that is, you set
the sendAs field of the parameter block for the SMPSendLetter
function to kSMPSendFileOnlyMask).

Letter Descriptor

The letter descriptor, used by the SMPOpenLetter (page 3-94) and

SMPGetNextLetter (page 3-97) functions, identifies a letter in the In Tray or on disk.

struct LetterDescriptor {

Boolean onDisk;

union {

FSSpec fileSpec;

LetterSpec mailboxSpec;

}u;

};

Field descriptions

onDisk A Boolean value that indicates whether the letter is on disk or in the
In Tray. If this value is set to true, the file is on disk.

fileSpec The file specification structure of the letter. Use this field of the
structure if the file is on disk.

mailboxSpec The letter specification structure of the letter. Use this field if the
letter is in the In Tray. When the user double-clicks a letter in the In
Tray and the letter’s creator is your application, you receive an
'aevt' 'odoc' Apple event that includes this specifier. The
LetterSpec structure is defined on page 3-35.

Letter Information Structure

The letter information structure, which is used by the SMPGetLetterInfo (page 3-93)

function, describes a letter in the In Tray.

struct SMPLetterInfo {

OSType letterCreator;

OSType letterType;

RString32 subject;

RString32 sender;

};

Field descriptions

letterCreator The creator of the letter. The field indicates what application created
the letter and is identical to the creator used by the application for
files.

C H A P T E R 3

Standard Mail Package

3-28 Standard Mail Package Reference

letterType The letter type, which is identical to the file type that the creating
application would use for the letter. Letters containing only AOCE
standard content are of type 'lttr'.

subject The contents of the Subject field in the mailer.

sender The contents of the From field in the mailer.

Creator Type Structure

The Standard Mail Package uses the creator type structure to specify block types. The

creator type structure is defined by the OCECreatorType data type.

struct OCECreatorType {

OSType msgCreator; /* block creator */

OSType msgType; /* block type */

};

Field descriptions

msgCreator The creator of the block. You can specify any four-character value in
this field; usually it is the signature of your application that adds
the block of data to the letter. For example, the creator of a block
added by the AppleMail application provided with the AOCE
software is 'apml'.

msgType The type of the block. You can define your own four-character block
types to serve your own purposes. Apple Computer, Inc., reserves
all block types consisting entirely of lowercase letters. For example,
the type of an image block as defined by the AppleMail application
is 'imag'.

Image Block Information Structure

An image block in a letter (a block with a creator type of 'apml' and a block type of

'imag') starts with an image block information structure, defined by the TPfPgDir

data type (defined by the Printing Manager).

struct TPfPgDir{

short iPages; /* number of pages in image block */

long iPgPos[129]; /* array [0..iPfMaxPgs] of offsets */

};

Field descriptions

iPages The number of pages in the image. The image block contains one
PICT resource for each page.

iPgPos An array of offsets from the start of the block to the picture elements
that follow the TPfPgDir structure.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-29

The iPgPos array contains offsets to the picture elements that follow the TPfPgDir

structure. The offset from the start of the image block to the image of page n + 1 is

iPgPos[n] (because page numbers start at 1 and the array elements start at 0). The

array contains iPgPos[n + 1] elements for a document of n pages. The last element is

the offset of the end of the last page from the beginning of the block. You can determine

the size of a page by subtracting the offset of the current page from the offset of the next

page, that is, the size of page n is iPgPos[n] – iPgPos[n – 1].

Allocate and lock down a buffer equal to the size of the page. Then call the

SMPReadBlock function (page 3-106) with the pointer to that buffer in the buffer

parameter and the offset iPgPos[n – 1] in the dataOffset parameter.

Letter Parameter Block

The SMPSendLetter function uses the SMPLetterPB parameter block. The fields of

the parameter block are described with the SMPSendLetter function on page 3-38.

struct SMPLetterPB

{

OSErr result; /* function result */

RStringPtr subject; /* subject of letter */

AuthIdentity senderIdentity;/* identity of sender */

SMPRecipientDescriptorPtr toList; /* list of addressees */

SMPRecipientDescriptorPtr ccList; /* list of cc addressees */

SMPRecipientDescriptorPtr bccList; /* list of bcc addressees */

ScriptCode script; /* script code for language */

Size textSize; /* length of body data */

Ptr textBuffer; /* body of the letter */

SMPPSendAs sendAs; /* file, enclosure, or image */

Byte padByte; /* reserved */

SMPEnclosureDescriptorPtr enclosures; /* files to be enclosed */

SMPDrawImageProcPtr drawImageProc; /* your imaging routine */

long imageRefCon; /* for your use */

Boolean supportsColor; /* true for a color grafPort */

};

Close-Options Structure

The SMPCloseOptionsDialog function (page 3-60) and the SMPDisposeMailer

function (page 3-61) use the close-options structure to specify what actions the Standard

Mail Package should take when the user closes a letter in the In Tray. The close-options

structure is defined by the SMPCloseOptions data type.

C H A P T E R 3

Standard Mail Package

3-30 Standard Mail Package Reference

struct SMPCloseOptions {

Boolean moveToTrash;

Boolean addTag;

RString32 tag;

};

Field descriptions

moveToTrash Move the letter from the In Tray to the Trash. You should not set this
field to true if the addTag field is set to true.

addTag Tag the letter with the value in the tag field. You should not set this
field to true if the moveToTrash field is set to true.

tag The tag to attach to the letter. This field must contain a valid tag if
the addTag field is set to true. A tag can be any alphanumeric
string up to 32 bytes in length.

Mailer-State Structure

The SMPGetMailerState function (page 3-69) uses the mailer-state structure to return

information about a mailer in a specified window. The mailer-state structure is defined

by the SMPMailerState data type.

struct SMPMailerState {

short mailerCount;

short currentMailer;

Point upperLeft;

Boolean hasBeenReceived;

Boolean isTarget;

Boolean isExpanded;

Boolean canMoveToTrash;

Boolean canTag;

Byte padByte2;

unsigned long changeCount;

SMPMailerComponent targetComponent;

Boolean canCut;

Boolean canCopy;

Boolean canPaste;

Boolean canClear;

Boolean canSelectAll;

Byte padByte3;

SMPUndoState undoState;

Str63 undoWhat;

};

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-31

Field descriptions

mailerCount The number of mailers in the mailer set associated with the
window. This number is incremented by 1 each time the letter is
forwarded. You should enable the Reply item in the Mail menu if
the mailerCount field is greater than 1.

currentMailer The number of the mailer that the user is currently looking at. The
original mailer for the letter is number 1, and each forwarding
mailer is numbered sequentially.

upperLeft The upper-left corner of the mailer in the window’s local
coordinates.

hasBeenReceived
A Boolean value that indicates whether the most recent mailer has
been received (that is, it was sent to the current user). If set to true
(that is, if the mailer has been received), then the user cannot edit
the fields in the mailer but can forward or reply to the letter. You
should enable the Forward and Reply items in the Mail menu. If it
is set to false, the current user is the originator of the letter or has
added a new mailer to forward the letter, and might still be working
on the letter, so you should disable the Forward item.

isTarget A Boolean value that indicates whether the mailer is the target; that
is, whether the user is working in the mailer so that key-down
events apply to the mailer rather than to the portion of the window
that you control. Note that the Event Manager sends all events that
take place in your window— including in the mailer—to your
application. If you pass every event to the SMPMailerEvent
function (page 3-63), that function returns a value that tells you
whether you have to handle the event.

isExpanded A Boolean value that indicates whether the mailer is in the
expanded state or contracted state.

canMoveToTrash
A Boolean value that indicates whether to enable the Close and
Delete item in the File menu. The standard interface is to enable this
item for a letter that is in the In Tray, but not for one that has been
saved to disk.

canTag A Boolean value that indicates whether to enable the Tag item in the
Mail menu. The user can add a tag to a letter that is in the In Tray,
but not to a letter that has been saved to disk. See the
SMPTagDialog function (page 3-58) to see how to implement the
Tag item in the Mail menu.

changeCount A value that indicates whether the mailer has been changed. If this
field is set to a nonzero value, the mailer has been changed since the
last time it was saved. If this number has changed since the last time
you checked it, then the mailer has been changed during that
period.

targetComponent
A constant that indicates which of the fields in the mailer the user is
working in. Possible values for this field are listed immediately
following these field descriptions.

C H A P T E R 3

Standard Mail Package

3-32 Standard Mail Package Reference

canCut A Boolean value that indicates whether you should enable the Cut
item in the Edit menu. This field is significant only if the isTarget
field is set to true.

canCopy A Boolean value that indicates whether you should enable the Copy
item in the Edit menu. This field is significant only if the isTarget
field is set to true.

canPaste A Boolean value that indicates whether you should enable the Paste
item in the Edit menu. This field is significant only if the isTarget
field is set to true.

canClear A Boolean value that indicates whether you should enable the Clear
item in the Edit menu. This field is significant only if the isTarget
field is set to true.

canSelectAll A Boolean value that indicates whether you should enable the
Select All item in the Edit menu. This field is significant only if the
isTarget field is set to true.

undoState A constant that you can use to determine whether you should
enable the Undo item in the Edit menu. See the description of the
SMPClearUndo function on page 3-70 for information on clearing
the undo buffer. The possible values for this field are described
following these field descriptions.

undoWhat A string that indicates the action that the reader should undo or
redo. You should use this string in place of the word “Undo” or
“Redo” in the Edit menu. For example, if the user just used the Edit
menu to cut a word from the subject field in the mailer, the
undoWhat field is set to the string Undo Cut. This field is
significant only if the undoState field equals kMailerUndo.

Here are the possible values for the targetComponent field. These values are also used

by the SMPBecomeTarget function (page 3-54), the SMPGetComponentSize function

(page 3-110), the SMPGetComponentInfo function (page 3-111), and the

SMPGetListItemInfo function (page 3-113).

enum {

kSMPOther = -1,

kSMPFrom = 32,

kSMPTo = 20,

kSMPRegarding = 22,

kSMPSendDateTime = 29,

kSMPAttachments = 26,

kSMPAddressOMatic = 16

};

typedef unsigned long SMPMailerComponent;

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-33

Constant descriptions

kSMPOther No field, or some field other than those indicated by the other
enumerated values (such as the Signature field).

kSMPFrom The From field in a mailer for a new letter, or the Forwarded By
field in a mailer for a forwarded letter.

kSMPTo The Recipients field.

kSMPRegarding The Subject field.

kSMPSendDateTime
The Sent field.

kSMPAttachments
The Enclosures field.

kSMPAddressOMatic
The addressing panel (see Figure 3-4 on page 3-6).

Your application and the mailer maintain independent undo buffers. The mailer keeps

track of which undo buffer should currently be in use and passes this information to you

in the undoState field of the mailer-state structure. You can use this information to

determine which items in the Edit menu to enable and whether to clear your

application’s undo buffer. The possible values for the undoState field are as follows:

enum {

kSMPUndoDisabled,

kSMPAppMayUndo,

kSMPMailerUndo

};

typedef unsigned short SMPUndoState;

Constant descriptions

kSMPUndoDisabled
The Standard Mail Package has cleared its undo buffer after
executing a command that the user cannot undo. Therefore, there is
currently no action in the mailer or in your application that the user
can undo. You should disable the Undo item in the Edit menu and
clear your application’s undo buffer.

kSMPAppMayUndo
The Standard Mail Package has not executed a command that the
user may undo. Therefore, there is no action in the mailer that the
user can undo, but the Standard Mail Package can’t tell whether
there is an action in your application that the user can undo. You
should enable the Undo item in the Edit menu only if your
application has executed a command that the user may undo. If the
user has taken an action in the content portion of the window that
the user can undo or that should cause the undo buffer to be
cleared, you must also call the SMPClearUndo function (page 3-70)
to tell the Standard Mail Package to clear its undo buffer.

C H A P T E R 3

Standard Mail Package

3-34 Standard Mail Package Reference

kSMPMailerUndo
The Standard Mail Package has executed a command that the user
may undo. Therefore, the latest action that the user can undo was in
the mailer, and there is no action in your application that the user
can undo. You should enable the Undo item in the Edit menu and
display the string returned in the undoWhat field of the
SMPMailerState structure. You should also clear your
application’s undo buffer. If the user chooses the Undo item in the
Edit menu, call the SMPMailerEditCommand function to allow the
Standard Mail Package to handle the undo operation.

Send-Options Structure

The Standard Mail Package maintains a set of options for each letter. There is a default

value for each option, but before you send a letter, you should give the user the

opportunity to change the send options for that letter. You can call the

SMPSendOptionsDialog function (page 3-73) to provide the user with a dialog box

that sets these options. The SMPSendOptionsDialog function returns the send-options

structure, defined by the SMPSendOptions data type.

struct SMPSendOptions {

Boolean signWhenSent;

IPMPriority priority;

};

Field descriptions

signWhenSent A Boolean value that indicates whether a digital signature should
be added to the letter when you send it. If this field is set to true,
the Standard Mail Package prompts the user for a signature when
you send the letter.

priority A constant that indicates the priority of the message. The Standard
Mail Package includes the priority information in the In and Out
Trays.

Send-Format Structure

The Standard Mail Package uses two standard formats and allows applications to send

or open letters in any number of “native” formats known to the application. The two

standard formats used by the Standard Mail Package are standard interchange format

and image format. Native formats for the SurfWriter word processing program might be

SurfWriter, TIFF, and SGML, for example.

Before you send a letter using the Standard Mail Package, you call the

SMPSendOptionsDialog function (page 3-73). This function displays a dialog box that

lets the user indicate which format or formats to use when sending the letter and returns

the user’s choices to you in a send-format structure.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-35

The send-format structure includes a whichFormats field that indicates whether you

should send the document in a format designed to be read by your application

(kSMPNativeBit), as an image designed to be read by any application that reads AOCE

image files (kSMPImageBit), or in standard interchange format

(kSMPStandardInterchangeBit).

enum {

kSMPNativeBit,

kSMPImageBit,

kSMPStandardInterchangeBit

};

/* values of SMPSendFormatMask */

enum {

kSMPNativeMask = 1<<kSMPNativeBit,

kSMPImageMask = 1<<kSMPImageBit,

kSMPStandardInterchangeMask = 1<<kSMPStandardInterchangeBit,

};

typedef unsigned long SMPSendFormatMask;

The send-format structure is defined by the SMPSendFormat data type.

struct SMPSendFormat {

SMPSendFormatMask whichFormats;

short whichNativeFormat; /* 0 based */

};

The whichNativeFormat field is an index number (starting with 0) that indicates

which one of your application’s native formats has been selected by the user, or, in the

case of a received letter, which native format is currently in the letter. The index number

refers to the array of string pointers you pass to the SMPSendOptionsDialog function

in the nativeFormatNames parameter. The whichNativeFormat field is significant

only if the whichFormats field has the kSMPNativeBit set to 1.

Letter-Specification Structure

The letter-specification structure is a data structure that you receive from an 'aevt'
'odoc'Apple event and pass to the SMPOpenLetter function (page 3-94). The content

of this data structure is private to the AOCE toolbox.

struct LetterSpec

{

unsigned long spec[3];

};

C H A P T E R 3

Standard Mail Package

3-36 Standard Mail Package Reference

Standard Mail Package Functions

The following sections describe the routines provided by the AOCE Standard Mail

Package. Several Standard Mail Package routines require you to provide an

authentication identity as input. The chapter “Standard Catalog Package” in this book

describes a routine that prompts the user for a name and password, authenticates the

user, and returns the authentication identity number to your application.

The routines in this chapter are divided into two main sections, reflecting the two parts

of the Standard Mail Package:

■ Send-letter functions, which provide a very simple way to send a letter or a file.

■ Mailer functions, which provide a standard user interface for sending and opening
your application’s documents as letters.

A final section, “Application-Defined Functions,” describes some callback routines that

you can provide to support Standard Mail Package features.

Assembly-Language Interface

To call a Standard Mail Package routine from assembly language, you must do the

following:

1. Push space for the function result and all routine parameters (in Pascal
calling-convention order) on the stack.

2. Put in the D0 register a long word consisting of the parameter word count for the
routine followed by the routine selector. The parameter word count indicates how
many words of parameters you are placing on the stack; for example, if the function
has two parameters and each is a pointer, the parameter word count for the function is
$0004.

3. Call the Standard Mail Package trap, $AA5D.

Each routine description in the following sections lists the parameter word count and

routine selector for that routine.

Authenticating a User

Before the first time you send a message, you must provide identification to prove that

the caller is an authorized user of the system. The SDPPromptForID function described

in the chapter “Standard Catalog Package” in this book provides dialog boxes that allow

the user to identify himself or herself as one of the authorized users of the system and

returns an identification number (the authentication identity) for the user. You can use the

authentication identity in all subsequent calls to Standard Mail Package and other AOCE

routines that require it.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-37

However, the Standard Mail Package implements a special scheme to ease handling

authentication identities for its routines. That is, you can pass a value of 0 for the

authentication identity parameter to those functions requiring it. The effect of passing

the 0 parameter value varies according to the situation. The first time you pass 0 after

initializing the Standard Mail Package, the system uses the local identity (see the chapter

“Standard Catalog Package” in this book for a description of local and specific identities).

If you forward or reply to a letter, the Standard Mail Package uses the identity for

the mailbox the letter was in: a visitor’s mailbox produces the visitor’s identity; the main

mailbox produces the local identity. In all other cases, if you pass 0 for the authentication

identity parameter, the Standard Mail Package uses the last identity (local or specific)

used by the user.

Send-Letter Functions

You can use the functions in this section to send a document as a letter with enclosures,

as an image, or as a file. The SMPSendLetter function sends the document. If you want

to send the document as an image, you must provide an image-drawing routine that

calls the SMPNewPage function each time it images a page of the document.

You can obtain catalog system specification (DSSpec) structures for the recipients of the

letter by using the dialog boxes or the Catalog-Browsing panel described in the chapter

“Standard Catalog Package” in this book. You can use the SMPResolveToRecipient

function described in this section to transform the DSSpec structures into a linked list of

mail addresses, and you can use this linked list as input to the SMPSendLetter function.

The SMPSendLetter function includes as a parameter a pointer to a parameter block.

The routine description includes a list of the parameter block fields for which you must

provide values or that return values to you. Each parameter block field list in the routine

description consists of four columns, as described in the Preface of this book.

SMPSendLetter

The SMPSendLetter function sends a letter, an image, or a file.

pascal OSErr SMPSendLetter(SMPLetterPBPtr theLetter);

theLetter Pointer to a parameter block.

C H A P T E R 3

Standard Mail Package

3-38 Standard Mail Package Reference

Parameter block

Field descriptions

result The function result. This field contains the same result code as the
function return value.

subject The subject string for the letter.

senderIdentity
Authentication identity of the sender.

toList A pointer to a linked list of recipient descriptors for the main
addressees of the letter. You can use the
SMPResolveToRecipient function to create this list.

ccList A pointer to a linked list of recipient descriptors for the “carbon
copy” (cc) addressees of the letter. You can use the
SMPResolveToRecipient function to create this list.

bccList A pointer to a linked list of recipient descriptors for the “blind
carbon copy” (bcc) addressees of the letter. You can use the
SMPResolveToRecipient function to create this list.

script Language of letter text. This is a script code from the Script
Manager. You cannot use the values smSystemScript or
smCurrentScript for this parameter. The function ignores this
field if you set the sendAs field to kSMPSendFileOnlyMask.

textSize Number of bytes in the text of the letter. The function ignores this
field if you set the sendAs parameter to kSMPSendFileOnlyMask.

textBuffer A pointer to the buffer that contains the text of the letter. The
function ignores this field if you set the sendAs field to
kSMPSendFileOnlyMask.

← result OSErr Result code
→ subject RStringPtr Subject of letter
→ senderIdentity AuthIdentity Identity of sender
→ toList SMPRecipientDescriptorPtr List of recipients
→ ccList SMPRecipientDescriptorPtr List of cc recipients
→ bccList SMPRecipientDescriptorPtr List of bcc

recipients
→ script ScriptCode Script code
→ textSize Size Length of text
→ textBuffer Ptr Letter text
→ sendAs SMPPSendAs Letter, image, or

file
→ enclosures SMPEnclosureDescriptorPtr Enclosed files
→ drawImageProc SMPDrawImageProcPtr Image-drawing

routine
→ imageRefCon long For your use
→ supportsColor Boolean Set to true for a

color graphics port

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-39

sendAs A constant that indicates whether to send the message as an image
(kSMPSendAsImageMask), to send the message as a letter with
enclosures (kSMPSendAsEnclosureMask), to send an enclosed file
so that it appears in the In Tray as the file itself rather than as a
letter (kSMPSendFileOnlyMask), or to send some combination of
these formats. You cannot combine the send-file-only and
send-as-enclosure formats.

enclosures A pointer to a linked list of enclosure descriptors. If you specify
kSMPSendFileOnlyMask for the sendAs field, you can include
only one enclosure. In this case, the enclosure descriptor must
provide values for the file creator and type that are appropriate for
the file being sent in order for the Finder to display the file correctly.

drawImageProc A pointer to your image-drawing routine. If you want to send a
letter as an image, you must provide a routine to draw the image.
The procedure declaration for this routine is described on
page 3-123. The function ignores this field if you do not set the
sendAs field to send the file as an image.

imageRefCon A reference constant for your use. The function passes this value to
your image-drawing routine.

supportsColor A Boolean value that indicates whether the procedure pointed to by
the drawImageProc parameter is capable of drawing in color. The
Standard Mail Package provides a color graphics port to your
image-drawing routine only if you specify true for the
supportsColor field and the user has color QuickDraw.

DESCRIPTION

The SMPSendLetter function provides no user interface. Your application must

determine the subject, text, enclosures, and addressees for the letter either by providing

its own user interface or through some other means. You can use the

SDPGetDirectories, SDPFindRecord, SDPNewPanel, or SDPGetNewPanel

functions to provide a user interface for selecting an addressee.

If the SMPSendLetter function returns with a result code that indicates a bad recipient

descriptor or a bad enclosure descriptor, you can check the result field of each

descriptor in the linked list to determine which one was bad. Look in the filename

field of the bad enclosure descriptor for the name of the file that caused the problem. The

theRID field of the recipient descriptor contains the record ID containing the name of

the addressee. For example, an RStringPtr structure pointing to the name of the

addressee represented by the first recipient descriptor of the Recipients list is located in

theLetter->toList->theRID.local.name.

You cannot specify the values smSystemScript or smCurrentScript for the script

parameter. To obtain the system script, call the GetScriptManagerVariable function

with a selector of smSysScript. To obtain the current script, call the FontScript

function.

The SMPSendLetter function can send a letter as a note with optional enclosures, as an

image of the note and enclosures, as the document file alone, or as some combination of

C H A P T E R 3

Standard Mail Package

3-40 Standard Mail Package Reference

these formats. Use one or a combination of the following constants in the sendAs field

to specify the format for the letter:

enum {

kSMPSendAsEnclosureBit, /* appears as letter with enclosures */

kSMPSendFileOnlyBit, /* appears as a file in mailbox. */

kSMPSendAsImageBit /* letter includes image of content */

};

/* values of SMPPSendAs */

enum {

kSMPSendAsEnclosureMask = 1<<kSMPSendAsEnclosureBit,

kSMPSendFileOnlyMask = 1<<kSMPSendFileOnlyBit,

kSMPSendAsImageMask = 1<<kSMPSendAsImageBit

};

typedef Byte SMPPSendAs;

Constant descriptions

kSMPSendAsEnclosureMask
The SMPSendLetter function sends the letter as a note with the
text pointed to by the textBuffer parameter and the enclosure
specified by the enclosure descriptor.

kSMPSendFileOnlyMask
The enclosed file appears directly in the recipient’s In Tray as the
file itself rather than as a letter with an enclosure. If you specify this
value for the sendAs parameter, the letter can contain only one
enclosure.

kSMPSendAsImageMask
The SMPSendLetter function converts the note into an image and
calls your image-drawing routine to convert the enclosures into an
image.

To combine formats, perform a bitwise OR operation on the appropriate constants. For

example, to send a document as both a note with enclosures and as an image, set the

sendAs parameter to kSMPSendAsEnclosureMask PLUS kSMPSendAsImageMask

in Pascal or kSMPSendAsEnclosureMask OR kSMPSendAsImageMask in assembly

language or C. You cannot combine the send-as-file format (kSMPSendFileOnlyMask)

with the note-with-enclosures format (kSMPSendAsEnclosureMask).

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

You cannot combine the document-only format (kSMPSendFileOnlyMask) with the

note-with-enclosures format (kSMPSendAsEnclosureMask). If you attempt to do so,

the function returns the paramErr result code.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-41

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The procedure declaration for your image-drawing routine is described on page 3-123.

The enclosure descriptor is defined in “Enclosure Descriptor” on page 3-26.

The recipient descriptor is defined in “Recipient Descriptor” on page 3-25.

The StGetScriptManagerVariable function and FontScript function are

described in Inside Macintosh: Text in the chapter “Script Manager.”

You can obtain record IDs for the recipients of the letter by using the dialog boxes or the

Catalog-Browsing panel described in the chapter “Standard Catalog Package” in this

book.

You can create a linked list of record descriptors from the recipient record IDs by calling

the SMPResolveToRecipient function described on page 3-44.

SMPNewPage

The SMPNewPage function creates a new page for use by your image-drawing routine.

pascal OSErr SMPNewPage(OpenCPicParams *newHeader);

newHeader Pointer to an OpenCPicParams structure (see the chapter “Color
QuickDraw” in Inside Macintosh: Imaging With QuickDraw). The
SMPNewPage function sets the size of your graphics port rectangle equal
to the size of the source rectangle you specify in this structure, and sets
the image’s horizontal and vertical resolutions to those you specify in this
structure. For the normal resolution of the Macintosh screen, use 72 pixels
per inch for both the vertical and horizontal resolutions.

DESCRIPTION

The SMPSendLetter or SMPImage function calls your image-drawing routine when

you add an image to a letter you are sending. Your image-drawing routine then calls the

SMPNewPage function before it draws each new page of an image file.

Parameter count Routine selector

$0002 $01F4

noErr 0 No error
paramErr –50 Error in a parameter value

C H A P T E R 3

Standard Mail Package

3-42 Standard Mail Package Reference

Note
You use the hRes and vRes fields in the OpenCPicParams structure to
specify the horizontal and vertical resolutions of the image. Both of these
fields are of type Fixed, which is a long word that contains an integer
part in the high-order word and a binary fraction in the low-order word.
To set the horizontal resolution to 72 dpi, for example, you specify a
value of 0x00480000 for the hRes field to indicate an integer part with a
value of 72 and no fractional part. If by mistake you simply specified a
value of 72 (that is, 0x00000048) for the hRes field, you would be
indicating an integer part with a value of 0 and a fractional part of
9/8192. Note also that you can use the FixRatio routine to create a
value of type Fixed from two integer values representing a numerator
and denominator. ◆

SPECIAL CONSIDERATIONS

If you change the graphics port within your image-drawing routine, you must change it

back before calling the SMPNewPage function.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SMPSendLetter function is described on page 3-37.

The procedure declaration for your image-drawing routine is described on page 3-123.

The OpenCPicParams structure is described in the chapter “Color QuickDraw” in

Inside Macintosh: Imaging With QuickDraw. The FixRatio routine is described in Inside
Macintosh: Operating System Utilities.

SMPImageErr

The SMPImageErr function returns result codes from image-drawing routines.

pascal OSErr SMPImageErr(void);

Parameter count Routine selector

$0002 $0834

noErr 0 No error
kSMPTooManyPages –1927 Image is more than 127 pages

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-43

DESCRIPTION

The SMPSendLetter or SMPImage function calls your image-drawing routine when

you add an image to a letter you are sending. Your image-drawing routine calls the

SMPImageErr function instead of calling the QDError function after it calls each

QuickDraw routine. The SMPImageErr function returns both QuickDraw errors and

errors returned by the SMPAddBlock function.

SPECIAL CONSIDERATIONS

If you change the graphics port within your image-drawing routine, you must change it

back before calling the SMPImageErr function.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SMPSendLetter function is described on page 3-37.

The procedure declaration for your image-drawing routine is described on page 3-123.

The QDError function is described in the chapter “Color QuickDraw” in Inside
Macintosh: Imaging With QuickDraw.

The SMPImageErr function returns both QuickDraw errors and errors returned by the

SMPAddBlock function (page 3-91).

Parameter count Routine selector

$0000 $0835

noErr 0 No error
dskFulErr –34 Disk full
pixmapTooDeepErr –148 Pixel map structure is deeper than 1 bit per pixel
mfStackErr –149 Insufficient stack
rgnTooBigErr –500 Bitmap would convert to a region greater than 64 KB

C H A P T E R 3

Standard Mail Package

3-44 Standard Mail Package Reference

SMPResolveToRecipient

The SMPResolveToRecipient function takes a pointer to a PackedDSSpec structure

and returns a pointer to a linked list of mail addresses.

pascal OSErr SMPResolveToRecipient(PackedDSSpecPtr dsSpec,

SMPRecipientDescriptorPtr *recipientList,

AuthIdentity identity);

dsSpec A pointer to a PackedDSSpec structure containing the record ID and
location information for a user record or group record.

recipientList
A pointer to a linked list of recipients for a letter. You can use this
parameter as input to the SMPSendLetter function, or you can use the
recipient field of the recipient descriptor as input to the
SMPAddAddress function.

identity The authentication identity of the caller. The catalog uses this identity to
determine whether the caller has the access privileges necessary to
resolve specific mail addresses.

DESCRIPTION

When the user selects a record from one of the standard dialog boxes or from the

Catalog-Browsing panel, you can use a pointer to the PackedDSSpec structure for that

record as input to the SMPResolveToRecipient function.

If the PackedDSSpec structure holds a single address, the function returns a linked list

with only one item. If the record is for a group address (that is, if the type of the record is

Group) and the record is in a personal catalog, then the function resolves it into a linked

list of all the members of the group, including all the members of any personal catalog

groups in that group. The function performs this service for group addresses in personal

catalogs because the recipient is unlikely to have the same information in his or her

personal catalog. The function does not expand groups that are not in personal catalogs,

because the recipient is assumed to have access to the catalog server to expand those

groups.

You can use the linked list returned by the SMPResolveToRecipient function as input

to the SMPSendLetter function.

SPECIAL CONSIDERATIONS

The SMPResolveToRecipient function allocates each recipient descriptor in the

current heap. To dispose of a recipient descriptor you must first call the DisposePtr

function to deallocate the recipient field in the recipient descriptor, and then call the

DisposePtr function again to dispose of the recipient descriptor itself.

This function may move or purge memory; you should not call this function at interrupt

time.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-45

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The routines for displaying and obtaining information from standard catalog dialog

boxes and the Catalog-Browsing panel are described in the chapter “Standard Catalog

Package” in this book.

Recipient descriptors are described in “Recipient Descriptor” on page 3-25.

The SMPSendLetter function is described on page 3-37. The SMPAddAddress function

is described on page 3-118.

Providing Mailers in Your Windows

The routines in this section add a mailer to a window and help you to make the mailer

appear to be an integral part of your application. You must call the SMPInitMailer

function before calling any of the other mailer functions.

The SMPNewMailer function (page 3-46) adds a new mailer to a window. The

SMPGetDimensions function (page 3-48) lets you determine the size of a mailer so you

can decide how to fit it in your window. You can add a new mailer to the mailer set of a

received letter with the SMPMailerForward function (page 3-49) or create a new mailer

for a reply letter with the SMPMailerReply function (page 3-51).

The SMPExpandOrContract function (page 3-56) lets you expand or contract a mailer

from within your application, and the SMPMoveMailer function (page 3-61) lets you

move a mailer within your window.

You can use the SMPGetTabInfo (page 3-53) and SMPBecomeTarget (page 3-54)

functions to let the user navigate seamlessly among fields in the mailer and your

application window using the Tab key.

You can call the SMPPrepareToClose function (page 3-59) to determine whether you

can close a window that contains a mailer. You use the SMPDisposeMailer function

(page 3-61) to remove a mailer from a window and release the memory used by the

mailer.

Parameter count Routine selector

$0006 $044C

noErr 0 No error
memFullErr –108 Out of memory

C H A P T E R 3

Standard Mail Package

3-46 Standard Mail Package Reference

SMPInitMailer

The SMPInitMailer function initializes the mailer routines of the Standard Mail

Package.

pascal OSErr SMPInitMailer(long mailerVersion);

mailerVersion
The version number of the Standard Mail Package.

DESCRIPTION

You must call this function before the first time you call any other Standard Mail Package

function that applies to mailers. If you do not call this function, other mailer functions

return the result code kSMPMailerNotInitialized when you call them.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SMPNewMailer

The SMPNewMailer function allocates a new mailer for a window you specify.

pascal OSErr SMPNewMailer(WindowPtr window,

Point upperLeft,

Boolean canContract,

Boolean initiallyExpanded,

AuthIdentity identity,

const PrepareMailerForDrawingProcPtr

 prepareMailerForDrawingCB,

long clientData);

Parameter count Routine selector

$0002 $1285

noErr 0 No error
memFullErr –108 Out of memory

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-47

window The window in which you want the mailer to appear.

upperLeft The upper-left corner of the mailer, in the window’s local coordinates.
This position is normally (0, 0).

canContract
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify true if you want the mailer to have this
ability; this parameter should always be set to true unless the mailer is
in its own, separate window.

initiallyExpanded
A Boolean value that specifies whether the mailer is to be expanded or
contracted when initially displayed. Specify true if you want it to be
expanded initially. The function ignores this parameter if the
canContract parameter is set to false.

identity The authentication identity of the sender of the letter. Specify 0 to use the
identity of the most recently authenticated user. The SMPNewMailer
function uses the identity to fill in the From field in the mailer.

prepareMailerForDrawingCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify nil for
this parameter if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPNewMailer function passes this value
unaltered to your drawing callback routine.

DESCRIPTION

You should call the SMPNewMailer function whenever you want to have a mailer

appear in a window; for example, when the user chooses the Add Mailer item from the

Mail menu in your application. When you call this function, the Standard Mail Package

adds a mailer to the window you specify. The next time the user chooses the Save or

Save As commands, you should save the document in the letter file format rather than in

your application’s file format.

If you want the mailer to appear in a modeless, movable dialog box, or for some other

reason do not want to provide the user with the ability to expand and contract the

mailer, set the canContract parameter to false.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

C H A P T E R 3

Standard Mail Package

3-48 Standard Mail Package Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SMPBeginSave function (page 3-77) to save a document in the letter file format.

Use the SMPDisposeMailer function (page 3-61) to dispose of a mailer.

Use the SMPMailerForward function (page 3-49) to add a mailer to a letter that you

want to forward.

Use the SMPMailerReply function (page 3-51) to add a reply mailer to a window.

SMPGetDimensions

The SMPGetDimensions function returns the standard dimensions of a mailer.

pascal OSErr SMPGetDimensions(short *width,

short *contractedHeight,

short *expandedHeight);

width A pointer to the minimum width, in QuickDraw coordinates, that bounds
all of the fields in a mailer.

contractedHeight
A pointer to the height, in QuickDraw coordinates, of a mailer in the
contracted state.

expandedHeight
A pointer to the height, in QuickDraw coordinates, of a mailer in the
expanded state.

DESCRIPTION

The SMPGetDimensions function lets you determine the standard dimensions of a

mailer from within your program so that your application will continue to work

correctly if Apple ever changes the size of a mailer. When the user expands or contracts a

mailer, it is up to you to update the content part of your document’s window

appropriately. You can use the heights returned by the SMPGetDimensions function to

determine how large an area of your window is affected. You can use the width returned

Parameter count Routine selector

$000C $125D

noErr 0 No error
memFullErr –108 Out of memory
kSMPMailerNotInitialized –1902 The mailer has not been initialized
kSMPMailerAlreadyInWindow –1911 A mailer was previously allocated

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-49

by this function to help determine the size to make a window when the user clicks the

zoom box. Clicking the zoom box should never make a window with a mailer in it

smaller than the minimum size of the mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the SMPMailerEvent function (page 3-63) to determine when the user has

contracted or expanded the mailer.

SMPMailerForward

The SMPMailerForward function creates a new mailer for a letter that is to be

forwarded.

pascal OSErr SMPMailerForward(WindowPtr window,

AuthIdentity from);

window A pointer to the window containing the letter you want to forward.

from The authentication identity of the sender of the letter. Specify 0 to use the
identity of the user whose mailbox contains the received letter. The
SMPMailerForward function uses the identity to fill in the From field in
the mailer.

DESCRIPTION

When the user has received a letter and chooses the Forward item in the Mail menu, you

call the SMPMailerForward function to add a new mailer to the mailer set. The

function superimposes the new mailer on the existing mailers in the specified window

and, if this is only the second mailer in the mailer set, adds a pop-up menu to the From

field in the mailer. If there are already two or more mailers in the mailer set, the function

Parameter count Routine selector

$0006 $125C

noErr 0 No error
kSMPMailerNotInitialized –1902 The mailer has not been initialized

C H A P T E R 3

Standard Mail Package

3-50 Standard Mail Package Reference

adds the new mailer to the existing pop-up menu. The user can use this menu to view

any of the mailers in the mailer set. Figure 3-6 shows the top mailer and the pop-up

menu for a letter that has been forwarded once.

You can call the SMPMailerForward function to add a new mailer to a mailer set only if

the top mailer in the set is a received mailer. You can use the hasBeenReceived field of

the SMPMailerState structure to get this information.

Figure 3-6 Mailer for a forwarded letter

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $1261

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-51

RESULT CODES

SEE ALSO

Use the SMPNewMailer function (page 3-46) to add a new mailer to a window that has

no mailer.

Use the SMPMailerReply function (described next) to add a new mailer to a letter to

which you want to reply.

Use the SMPGetMailerState function (page 3-69) to obtain an SMPMailerState

structure. The SMPMailerState structure is described in “Mailer-State Structure” on

page 3-30.

SMPMailerReply

The SMPMailerReply function helps you reply to a letter by adding a new mailer to a

window you specify and addressing the reply mailer by copying information from the

original mailer.

pascal OSErr SMPMailerReply(WindowPtr originalLetter,

WindowPtr newLetter,

Boolean replyToAll,

Point upperLeft,

Boolean canContract,

Boolean initiallyExpanded,

AuthIdentity identity,

const PrepareMailerForDrawingProcPtr

 prepareMailerForDrawingCB,

long clientData);

originalLetter
A pointer to the window containing the mailer for the original letter to
which the user wishes to reply.

newLetter A pointer to the window that you are providing for the reply. The
function adds a mailer to this window; the window must not already
contain a mailer.

replyToAll
A Boolean value that indicates whether all the original “To” and “cc”
recipients should be included as addressees for the reply.

upperLeft The upper-left corner of the mailer in the window’s local coordinates.
This position is normally (0, 0).

noErr 0 No error
kOCEUnknownID –1567 Authentication identity passed is not valid
kSMPNoMailerInWindow –1909 No mailer is in the specified window

C H A P T E R 3

Standard Mail Package

3-52 Standard Mail Package Reference

canContract
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify true if you want the mailer to have this
ability; this parameter should always be set to true unless the mailer is
in its own, separate window.

initiallyExpanded
A Boolean value that specifies whether the mailer is to be expanded or
contracted when initially displayed. Specify true if you want it to be
expanded initially. The function ignores this parameter if the
canContract parameter is set to false.

identity The authentication identity of the sender of the letter. Specify 0 to use the
identity of the user whose mailbox contains the received letter. The
SMPMailerReply function uses the identity to fill in the From field in
the mailer.

prepareMailerForDrawingCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify nil for
this field if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPMailerReply function passes this value
unaltered to your callback routine.

DESCRIPTION

When the user chooses the Reply or Reply to All items in the Mail menu, you should

create a new document window and call the SMPMailerReply function. This function

places a mailer in the window, copies the subject from the original letter, places the string

“Re>” in front of it, and places it in the Subject field of the new mailer. Then it copies the

From address from the original letter and places it in the Recipients field of the reply

mailer. If the user chose the Reply to All item, you should set the parameter

replyToAll to true, and the SMPMailerReply function also copies all the recipients

in the Recipients field— including the “cc” recipients—of the received mailer and places

them in the corresponding fields of the reply mailer.

If the original letter has been forwarded, the SMPMailerReply function takes the

subject and addresses from the original letter’s most recent mailer; that is, from the

mailer that was added the last time the letter was forwarded.

You should call the SMPMailerReply function only if the top mailer in the mailer set is

a received mailer. You can use the hasBeenReceived field of the SMPMailerState

structure to get this information.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-53

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SMPNewMailer function (page 3-46) to add a new mailer to a window that has

no mailer.

Use the SMPMailerForward function (page 3-49) to add a mailer to a letter that you

want to forward.

Use the SMPGetMailerState function (page 3-69) to obtain an SMPMailerState

structure. The SMPMailerState structure is described in “Mailer-State Structure” on

page 3-30.

SMPGetTabInfo

The SMPGetTabInfo function tells you which fields in the mailer are the first and last to

be highlighted when the user presses the Tab key repeatedly to move from one field to

another.

pascal OSErr SMPGetTabInfo(SMPMailerComponent *firstTab,

SMPMailerComponent *lastTab);

firstTab The first field highlighted.

lastTab The last field highlighted.

DESCRIPTION

When the user first clicks in a mailer, the Standard Mail Package makes one field the

target for user actions and highlights that field. If the user presses the Tab key, the

Standard Mail Package makes another field the target, and so on, eventually returning to

the first field. You can intercept this sequence and make a field in your window active

when the user presses the Tab key, returning to the mailer after you have given the user

the opportunity to modify one or more fields in your window. The SMPGetTabInfo

function tells you which field is the first one to be made a target by the Standard Mail

Package and which is the last, so you know where to intercept the sequence and where

Parameter count Routine selector

$000F $1262

noErr 0 No error
kOCEUnknownID –1567 Authentication identity is not valid
kSMPNoMailerInWindow –1909 No mailer is in the specified window
kSMPMailerAlreadyInWindow –1911 Specified window already has a mailer

C H A P T E R 3

Standard Mail Package

3-54 Standard Mail Package Reference

to return to it. This sequence is not dependent on the state of the mailer; you need call it

only once.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The possible values for the SMPMailerComponent data type are shown on page 3-32.

You use the SMPBecomeTarget function (described next) to return the Tab sequence to

the mailer.

You use the SMPGetMailerState function (page 3-69) to determine which field is

currently the target.

SMPBecomeTarget

The SMPBecomeTarget function specifies whether your window or the mailer is the

target of user action and, if the mailer is the target, specifies which field in the mailer is

active.

pascal OSErr SMPBecomeTarget(WindowPtr window,

Boolean becomeTarget,

SMPMailerComponent whichField);

window The window containing the mailer.

becomeTarget
A Boolean value that specifies whether the mailer in this window should
become the target of the user’s actions. If this parameter is set to true,
the mailer becomes the target. If it is set to false, the Standard Mail
Package does not highlight any field, and the SMPMailerEvent function
assumes that key-down events are intended for your application.

Parameter count Routine selector

$0004 $1274

noErr 0 No error
kSMPMailerNotInitialized –1902 Mailer has not been initialized

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-55

whichField
If the becomeTarget parameter is set to true, this parameter specifies
which field should be active. If the becomeTarget parameter is set to
false, the function ignores this field. Possible values for this field are
shown on page 3-32.

DESCRIPTION

The user can use the Tab key to cycle through the fields in the mailer. Each time the user

presses the Tab key, you receive a key-down event. In most cases, you would call the

SMPMailerEvent function to handle the event. However, if you want one or more

fields in your application’s window to be included in the set of fields that the user can

select with the Tab key, you must determine the nature of the key-down event yourself.

If the user pressed the Tab key, you can call the SMPGetMailerState function

(page 3-69) to determine which field in the mailer is currently the target. You can then

check the results of the SMPGetTabInfo function to find out which field is the last one

in the sequence. If the current field is the one returned in the lastTab parameter of the

SMPGetTabInfo function, you can call the SMPBecomeTarget function with the

becomeTarget parameter set to false. You can then activate and highlight whichever

field in your window you wish.

When you have finished cycling through the fields in your window, call the

SMPBecomeTarget function again, this time with the becomeTarget parameter set to

true and the whichField parameter set to the value returned in the firstTab

parameter of the SMPGetTabInfo function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The possible values for the SMPMailerComponent data type are shown on page 3-32.

Parameter count Routine selector

$0005 $1273

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in this window
kSMPIllegalComponent –1918 Bad field name parameter
kSMPMailerAlreadyNotTarget –1919 This mailer is not the target
kSMPComponentIsAlreadyTarget –1920 The selected field is the target

C H A P T E R 3

Standard Mail Package

3-56 Standard Mail Package Reference

You can call the SMPGetMailerState function (page 3-69) to determine which field in

the mailer is currently the target.

You can call the SMPGetTabInfo function (page 3-53) to find out which fields are the

first and last in the selection sequence.

You can call the SMPMailerEvent function (page 3-63) each time you receive an event.

This function returns a value telling you how the Standard Mail Package handled the

event and whether your application has to process it as well.

SMPExpandOrContract

The SMPExpandOrContract function expands or contracts a mailer.

pascal OSErr SMPExpandOrContract(WindowPtr window,

Boolean expand);

window The window containing the mailer.

expand A Boolean value that specifies whether the mailer in this window should
be expanded (true) or contracted (false).

DESCRIPTION

The user indicates a desire to expand or contract a mailer by clicking the triangle in the

upper-left corner of the mailer (see Figure 3-2 and Figure 3-3 on page 3-5). If the user

wants to expand the mailer, the SMPMailerEvent function returns the flag

kExpanded. You must update your window to make room for the expanded mailer and

then call the SMPExpandOrContract function to expand the mailer. (When the user

contracts the mailer, by contrast, you have to update the content portion of your window

but do not have to call the SMPExpandOrContract function.)

The SMPExpandOrContract function also lets you expand or contract the mailer

entirely from within your application, for example, to implement an Expand or Contract

menu command.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0003 $1272

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-57

RESULT CODES

SEE ALSO

You set the initial state of the mailer (expanded or contracted) with the SMPNewMailer

function (page 3-46), the SMPMailerReply function (page 3-51), or the

SMPOpenLetter function (page 3-94).

You can call the SMPGetMailerState function (page 3-69) to determine whether the

mailer is currently expanded or contracted.

You call the SMPGetDimensions function (page 3-48) to determine the size of an

expanded or contracted mailer.

SMPMoveMailer

The SMPMoveMailer function moves a mailer within your window.

pascal OSErr SMPMoveMailer(WindowPtr window,

short dh,

short dv);

window The window containing the mailer you want to move.

dh The horizontal distance, in QuickDraw coordinates, by which you want to
move the mailer. Use a positive number to move the mailer to the right
and a negative number to move the mailer to the left.

dv The vertical distance, in QuickDraw coordinates, by which you want to
move the mailer. Use a positive number to move the mailer down and a
negative number to move the mailer up.

DESCRIPTION

You set the initial location of a mailer in your window when you call the

SMPNewMailer function or the SMPMailerReply function. You can use the

SMPMoveMailer function to move a mailer if, for example, you need to make space for

a tool palette at the top or left edge of your window.

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in

specified window
kSMPMailerCannotExpandOrContract –1916 Mailer created with

canContract
parameter set to false

kSMPMailerAlreadyExpandedOrContracted –1917 Mailer is already in
requested state

C H A P T E R 3

Standard Mail Package

3-58 Standard Mail Package Reference

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You set the initial location of the mailer with the SMPNewMailer function (page 3-46),

the SMPMailerReply function (page 3-51), or the SMPOpenLetter function (page 3-94).

SMPTagDialog

The SMPTagDialog function displays a dialog box that allows a user to add a tag to a

letter that was opened from the mailbox.

pascal OSErr SMPTagDialog(WindowPtr window,

 RString32 *theTag);

window The window containing the mailer.

theTag A pointer to the tag to be associated with the letter. If you specify a tag
when you call the function, it is displayed as the default value in the
dialog box. The function uses this parameter to return the tag specified by
the user.

DESCRIPTION

The PowerTalk mailbox allows the user to sort and display letters according to tags that

the user has specified for each letter. Your application can provide a Tag item in the Mail

menu. If the user chooses this item, you should call the SMPTagDialog function to let

the user specify the tag. You should call the SMPGetMailerState function to

determine whether to enable the Tag command.

The AOCE software stores the tag with the letter and displays it for the user in the In and

Out Trays. It is not necessary for you to specify this tag in the close-options structure

when you call the SMPCloseOptionsDialog or SMPDisposeMailer functions. When

you save the letter to disk, the letter becomes an HFS object and no longer has a tag.

Parameter count Routine selector

$0004 $126A

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-59

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Call the SMPGetMailerState function (page 3-69) to determine whether to enable the

Tag command.

SMPPrepareToClose

The SMPPrepareToClose function tells you whether a mailer can be closed.

pascal OSErr SMPPrepareToClose(WindowPtr window);

window The window containing the mailer that you would like to close.

DESCRIPTION

In certain circumstances—for instance, when an enclosure is open—you can’t dispose of

a mailer. The SMPPrepareToClose function returns an error when you can’t dispose of

a mailer, so you can display a dialog box informing the user of the situation rather than

closing the window containing the mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $128B

noErr 0 No error
paramErr –50 Error in a parameter value
kSMPNoMailerInWindow –1909 No mailer is in specified window

Parameter count Routine selector

$0002 $1287

C H A P T E R 3

Standard Mail Package

3-60 Standard Mail Package Reference

RESULT CODES

SEE ALSO

You should call the SMPPrepareToClose function before closing a window containing

a mailer or attempting to call the SMPDisposeMailer function (page 3-61).

SMPCloseOptionsDialog

The SMPCloseOptionsDialog function displays a dialog box that allows a user to

delete letters or add tags to letters that were opened from the mailbox.

pascal OSErr SMPCloseOptionsDialog(WindowPtr window,

SMPCloseOptionsPtr closeOptions);

window The window containing the mailer.

closeOptions
A pointer to a close-options structure that specifies the initial settings to
be displayed in the dialog box. After the function call returns, this
structure contains the new settings entered by the user in the
close-options dialog box.

DESCRIPTION

Your application should provide a user preference option that specifies whether

attempting to close a letter should cause the close-options dialog box to appear. If the

user elects to see the dialog box, you should call the SMPCloseOptionsDialog

function whenever a user closes a window containing a mailer and before you call the

SMPDisposeMailer function. If the user opened the letter from the mailbox, the

SMPCloseOptionsDialog function displays the close-options dialog box; otherwise,

the function does nothing.

You can use the closeOptions parameter to provide default settings for the dialog

box. If you provide a Close and Delete item in the File menu and the user chooses this

item, you should specify true for the moveToTrash field of the structure pointed to by

the closeOptions parameter.

You can use the tag field of the structure pointed to by the closeOptions parameter to

specify a default tag for the letter. If the letter already has a tag value, either because the

user added it the last time the letter was closed or because you called the

SMPTagDialog function, the Standard Mail Package puts that tag in the tag field of the

dialog box. It is not necessary for you to specify this tag in the close-options structure

when you call the SMPCloseOptionsDialog function.

noErr 0 No error
kSMPCopyInProgress –1901 Finder is copying an enclosure
kSMPHasOpenAttachments –1906 One or more enclosures are open
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-61

The Standard Mail Package stores the options the user selects and executes them when

you call the SMPDisposeMailer function (if the closeOptions parameter in the

SMPDisposeMailer function is not set to nil).

SPECIAL CONSIDERATIONS

If you specify true for both the moveToTrash field and the addTag field of the

close-options structure, the SMPCloseOptionsDialog function returns the paramErr

result code.

If you specify true for the addTag field of the close-options structure, you must also

specify a valid tag for the letter. If you specify true for the addTag field and you specify

a zero-length string for the tag field, the function returns the paramErr result code.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The close-options structure is described in “Close-Options Structure” on page 3-29.

You can call the SMPTagDialog function (page 3-58) to display a dialog box that allows

the user to add a tag to a letter in the In Tray.

Call the SMPDisposeMailer function (described next) to execute the close options.

SMPDisposeMailer

The SMPDisposeMailer function deallocates the mailer set in the specified window

and erases the mailer set.

pascal OSErr SMPDisposeMailer(WindowPtr window,

SMPCloseOptionsPtr closeOptions);

window The window containing the mailer set you want to deallocate.

Parameter count Routine selector

$0004 $1288

noErr 0 No error
paramErr –50 Error in a parameter value
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-62 Standard Mail Package Reference

closeOptions
A pointer to a close-options structure specifying actions the Standard
Mail Package should take in addition to disposing of the mailer set. If you
specify nil for this parameter, the function disposes of the mailer set
without taking any other action.

DESCRIPTION

You should call the SMPDisposeMailer function when the user chooses the Remove

Mailer item from a menu or when you close a window that contains a mailer. This

function removes the mailer set from the window you specify and deallocates all the

data structures associated with that mailer set. If the user removes the mailer from the

window, the next time the user chooses the Save or Save As commands, you should save

the document in your application’s file format rather than the letter file format.

You use the closeOptions parameter to specify close options. For example, you can

provide a Close and Delete item in the File menu. If the user chooses this item, you

should specify true for the moveToTrash field of the structure pointed to by the

closeOptions parameter.

Your application may provide a user preference option that specifies whether attempting

to close a letter should cause the close-options dialog box to appear. If the user elects to

see the dialog box, you should call the SMPCloseOptionsDialog function whenever

the user closes a window containing a mailer. Then use the pointer to the close-options

structure that you provided to the SMPCloseOptionsDialog function as the value of

the closeOptions parameter of the SMPDisposeMailer function.

Before you close a window that contains a mailer, call the SMPPrepareToClose

function to make sure that you can dispose of the mailer.

SPECIAL CONSIDERATIONS

If you specify true for both the moveToTrash field and the addTag field of the

close-options structure, the SMPDisposeMailer function returns the paramErr result

code.

If you specify true for the addTag field of the close-options structure, you must also

specify a valid tag for the letter. If you specify true for the addTag field and you specify

a zero-length string for the tag field, the function returns the paramErr result code.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $125E

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-63

RESULT CODES

SEE ALSO

The SMPPrepareToClose function (page 3-59) tells you whether it’s possible to dispose

of a mailer.

The close-options structure is described in “Close-Options Structure” on page 3-29.

The SMPCloseOptionsDialog function (page 3-60) displays a dialog box that lets the

user select close options for a letter that was opened from the mailbox.

Handling Events in Mailers

Whenever you receive an event for a window that contains a mailer, you can pass that

event directly to the SMPMailerEvent function (described next). The Standard Mail

Package handles the event if it applied to the mailer and returns a value that tells you

what action it took and whether you have to take any further action. You can also use the

SMPMailerEditCommand function (page 3-67) to handle events related to standard

items in the Edit menu.

When the user is working in the mailer, you must enable and disable items in the Edit

menu as appropriate. The SMPGetMailerState function (page 3-69) lets you

determine which items should be enabled or disabled. You must ensure that the Undo

command works consistently whether the user is working in the mailer or in your

application. You use the SMPGetMailerState function to determine when to clear

your application’s undo buffer, and you use the SMPClearUndo function (page 3-70) to

tell the mailer when to clear its Undo buffer.

Finally, you can use the SMPDrawMailer function (page 3-72) to redraw the mailer if

you want to handle update events yourself or if you need to redraw the mailer for some

other reason.

SMPMailerEvent

The SMPMailerEvent function processes events that you pass to it, gives you

information about how the Standard Mail Package responded to the event, and informs

you of further action that you must take.

pascal OSErr SMPMailerEvent(const EventRecord *event,

SMPMailerResult *whatHappened,

const FrontWindowProcPtr frontWindowCB,

long clientData);

noErr 0 No error
paramErr –50 Error in a parameter value
kSMPHasOpenAttachments –1906 One or more enclosures are open
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-64 Standard Mail Package Reference

event A pointer to the event record of an event returned to your application by
the WaitNextEvent function.

whatHappened
A pointer to a set of flags informing you what action the
SMPMailerEvent function took.

frontWindowCB
A pointer to your front-window routine. This routine, described on
page 3-124, returns a pointer to the window that your application wants
the Standard Mail Package to consider as the front window. Specify nil
for this field if you do not want to provide a front-window routine. If you
do not provide a front-window routine, the Standard Mail Package uses
the Window Manager’s FrontWindow routine.

clientData
Reserved for your use. The SMPMailerEvent function passes this value
unaltered to your callback routine.

DESCRIPTION

Each time your application calls the WaitNextEvent function, it can pass the event

record immediately to the SMPMailerEvent function. The SMPMailerEvent function

determines whether the Standard Mail Package should handle the event, your

application should handle the event, or action is required by both the Standard Mail

Package and your application. If the SMPMailerEvent function has to take any further

action, it does so before returning control to your application. In any case, the

whatHappened parameter returns a set of flags that tell you what action, if any, the

function took, and whether your application must handle the event.

If the event record does not include a window pointer, the SMPMailerEvent function

uses your front-window callback routine to determine to which window the event

applies. If you do not provide a front-window callback routine, the SMPMailerEvent

function uses the Window Manager’s FrontWindow routine.

If you decide instead to check the event record first and pass to the SMPMailerEvent

function only events that the Standard Mail Package must handle, call the

SMPBecomeTarget function when the mailer is no longer the target (for example, when

the user clicks in the content region of the window). In that case, you must still pass null

events to the SMPMailerEvent function frequently so that the Standard Mail Package

can control the appearance of the cursor, implement Balloon Help, and pass null events

to the Catalog-Browsing panel and Find-Record panel.

IMPORTANT

To use the Standard Mail Package, your application must be aware of
high-level events. You must pass all high-level events (including Apple
events) to the SMPMailerEvent function before calling the
AEProcessAppleEvent or AcceptHighLevelEvent routines. If you
do not do so, some Standard Mail Package features, such as enclosing
files and folders, may not work correctly. ▲

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-65

The flags returned by the whatHappened parameter are as follows:

enum {

kSMPAppMustHandleEventBit,

kSMPAppShouldIgnoreEventBit,

kSMPContractedBit,

kSMPExpandedBit,

kSMPMailerBecomesTargetBit,

kSMPAppBecomesTargetBit,

kSMPCursorOverMailerBit,

kSMPCreateCopyWindowBit,

kSMPDisposeCopyWindowBit

};

You can use the following masks to test for these bits:

enum {

kSMPAppMustHandleEventMask = 1<<kSMPAppMustHandleEventBit,

kSMPAppShouldIgnoreEventMask = 1<<kSMPAppShouldIgnoreEventBit,

kSMPContractedMask = 1<<kSMPContractedBit,

kSMPExpandedMask = 1<<kSMPExpandedBit,

kSMPMailerBecomesTargetMask = 1<<kSMPMailerBecomesTargetBit,

kSMPAppBecomesTargetMask = 1<<kSMPAppBecomesTargetBit,

kSMPCursorOverMailerMask = 1<<kSMPCursorOverMailerBit,

kSMPCreateCopyWindowMask = 1<<kSMPCreateCopyWindowBit,

kSMPDisposeCopyWindowMask = 1<<kSMPDisposeCopyWindowBit

};

typedef unsigned long SMPMailerResult;

Bit descriptions

kSMPAppMustHandleEventBit
The application must process the event. The event was either an
event the Standard Mail Package couldn’t process, or it was one that
both the application and the Standard Mail Package must process
(such as activate and update events). The function always sets
either this flag or the kSMPAppShouldIgnoreEventBit flag.

kSMPAppShouldIgnoreEventBit
The application should ignore the event. It was handled by the
Standard Mail Package. The function always sets either this flag or
the kSMPAppMustHandleEventBit flag.

C H A P T E R 3

Standard Mail Package

3-66 Standard Mail Package Reference

kSMPContractedBit
The user clicked the triangle at the left edge of the mailer (see
Figure 3-3 on page 3-5), switching the mailer to the contracted state.
Because your application does not have to read the event record, the
function also sets the kSMPAppShouldIgnoreEventBit flag.
However, you must update the content portion of your
application’s frontmost window when you receive this flag.

kSMPExpandedBit
The user clicked the triangle at the left edge of the mailer (see
Figure 3-2 on page 3-5), indicating a desire to switch the mailer to
the expanded state. Because your application does not have to read
the event record, the function also sets the
kSMPAppShouldIgnoreEventBit flag. However, you must
update the content portion of your application’s frontmost window
and call the SMPExpandOrContract function (page 3-56) to finish
expanding the mailer when you receive this flag.

kSMPMailerBecomesTargetBit
The user had been working in the application’s part of the window
but has now clicked in the mailer or contracted the mailer. Because
your application does not have to read the event record, the
function also sets the kSMPAppShouldIgnoreEventBit flag.
However, you might want to take other action, such as removing
highlighting from the content portion of the window or stopping an
insertion-point caret from blinking.

kSMPAppBecomesTargetBit
The user had been working in the mailer but has now clicked in the
application’s part of the window. Because you must handle this
event, the function also sets the kSMPAppMustHandleEventBit
flag.

kSMPCursorOverMailerBit
When this flag is set, the cursor is in the mailer in the frontmost
window, so the Standard Mail Package is controlling Balloon Help
and the appearance of the cursor. When this flag is cleared, the
cursor is not in the mailer, so you must control the appearance of
the cursor. The function also sets the
kSMPAppMustHandleEventBit flag when it sets or clears the
kSMPCursorOverMailerBit flag. Because the Standard Mail
Package can detect the position of the cursor only when you give it
some processing time, the function sets or clears this flag only when
you pass it a null event.

kSMPCreateCopyWindowBit
The Standard Mail Package is using the Finder to copy files and has
displayed a modal dialog box showing the status of the copy
operation. You should continue to send events to the
SMPMailerEvent function.

kSMPDisposeCopyWindowBit
The Standard Mail Package has removed the copy status dialog box.
Your application should resume normal operation.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-67

SPECIAL CONSIDERATIONS

The Standard Mail Package reserves all high-level events of class 'cwin' for its own

use. Do not install an event handler for events of this class. (There is no problem if you

have installed an Apple event handler with class and ID of typeWildCard, because the

Standard Mail Package removes that handler before calling the

AEProcessAppleEvent routine and reinstalls it afterward.)

The SMPMailerEvent function may move or purge memory; you should not call this

function at interrupt time.

The SMPMailerEvent function preserves your application’s A5 world when it calls

your front-window routines. Therefore, you have access to your application’s global

variables from these routines.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The front-window callback function is described on page 3-124.

If you check the event record first and pass to the SMPMailerEvent function only

events that the Standard Mail Package must handle, call the SMPBecomeTarget

function (page 3-54) when the mailer is no longer the target.

Call the SMPGetMailerState function (page 3-69) to determine the current state of the

mailer.

SMPMailerEditCommand

The SMPMailerEditCommand function handles Edit menu commands when they apply

to fields in the mailer.

pascal OSErr SMPMailerEditCommand(WindowPtr window,

SMPEditCommand command,

SMPMailerResult *whatHappened);

window A pointer to the window containing the mailer.

command The Edit menu command that the user chose.

Parameter count Routine selector

$0008 $125F

noErr 0 No error

C H A P T E R 3

Standard Mail Package

3-68 Standard Mail Package Reference

whatHappened
A pointer to a set of flags that indicate what action the function took and
whether you must take any action. This function sets either the
kSMPAppMustHandleEventBit or the
kSMPAppShouldIgnoreEventBit flag.

DESCRIPTION

When the user chooses one of the standard Edit menu commands (Undo, Cut, Copy,

Paste, Clear, or Select All), you can call the SMPMailerEditCommand function

immediately. If the user has selected something in the mailer, the

SMPMailerEditCommand function handles the requested action, sets the

kSMPAppShouldIgnoreEventBit flag in the whatHappened parameter, and returns.

If the user has not selected anything in the mailer, the function sets the

kSMPAppMustHandleEventBit flag and returns to you immediately. Use the

SMPGetMailerState function to determine which of the Edit menu commands to

enable.

The possible values for the command parameter are as follows:

enum {

kSMPUndoCommand,

kSMPCutCommand,

kSMPCopyCommand,

kSMPPasteCommand,

kSMPClearCommand,

kSMPSelectAllCommand

};

typedef unsigned short SMPEditCommand;

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0005 $1260

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-69

RESULT CODES

SEE ALSO

The flag field for the whatHappened parameter is completely defined on page 3-65.

You can use the SMPGetMailerState function (page 3-69) to determine whether the

user is working in the mailer and, if so, which of the Edit menu commands to enable.

You can call the SMPMailerEvent function (page 3-63) each time you receive an event.

This function returns a value telling you how the Standard Mail Package handled the

event and whether your application has to process it as well. The SMPMailerEvent

function returns the value kSMPAppMustHandleEventBit when the event is an Edit

menu command.

SMPGetMailerState

The SMPGetMailerState function returns the state of the specified mailer.

pascal OSErr SMPGetMailerState(windowPtr window,

SMPMailerState *itsState);

window The window containing the mailer whose state you want to know.

itsState A pointer to a structure containing the state of the mailer. The
SMPMailerState data type is defined and all of its fields are described
in “Mailer-State Structure” on page 3-30.

DESCRIPTION

The SMPGetMailerState function lets you determine whether the user is working in

the mailer, and if so, which Edit menu and Mail menu commands you should enable. For

example, if both the isTarget and canCut fields are set to true, then you should

enable the Cut item in the Edit menu. This function also returns a value that helps you

determine whether to clear your application’s undo buffer. You should call this function

when you need to display the Edit menu (that is, before calling the MenuSelect

function) or the Mail menu or when the user presses a keyboard equivalent for an Edit

menu command or Mail menu command.

This function also returns other information about the mailer, such as its current state

(contracted or expanded), its location in the window, and the number of mailers in the

mailer set.

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalComponent –1918 Bad command parameter value

C H A P T E R 3

Standard Mail Package

3-70 Standard Mail Package Reference

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SMPMailerState data type is defined and all of its fields are described in

“Mailer-State Structure” on page 3-30.

You can call the SMPMailerEvent function (page 3-63) each time you receive an event.

This function returns a value telling you how the Standard Mail Package handled the

event and whether your application has to process it as well.

SMPClearUndo

The SMPClearUndo function tells the Standard Mail Package to clear its undo buffer.

pascal OSErr SMPClearUndo(WindowPtr window);

window A pointer to the window containing the mailer.

DESCRIPTION

The Macintosh Human Interface Guidelines call for an Undo item in the Edit menu and

specify that only the latest action can be undone. Furthermore, certain actions that

cannot be undone should cause you to disable the Undo item and some should not; for

example, you should disable the Undo item after the user saves a file but not after the

user scrolls through the window. Even though the Standard Mail Package maintains its

own undo buffer, you are responsible for enabling and disabling the Undo item in the

Edit menu whether the user is working in the content portion of your window or in the

mailer. The SMPClearUndo function lets you coordinate the Standard Mail Package’s

undo facility with that of your application so that it appears to the user that there is only

one undo buffer for the entire window.

Parameter count Routine selector

$0004 $1263

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-71

You should call the SMPGetMailerState function when you need to display the Edit

menu (that is, before calling the MenuSelect routine) or when the user presses a

keyboard equivalent for an Edit menu command. If the SMPGetMailerState function

indicates that the user is working in the content portion of the window, you must

determine whether the user can undo the action, and you must enable or disable the

Undo item in the Edit menu accordingly. If the action can be undone or if it causes you to

disable the Undo item, you must call the SMPClearUndo function to tell the Standard

Mail Package to clear its undo buffer. If you fail to do so, the Standard Mail Package will

not update the mailer state correctly.

Conversely, if the user’s last action was in the mailer, you must call the

SMPGetMailerState function to find out whether to enable or disable the Undo item

in the Edit menu and whether to clear your application’s undo buffer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SMPMailerEvent function (page 3-63) each time you receive an event.

This function returns a value telling you how the Standard Mail Package handled the

event and whether your application has to process it as well.

The SMPGetMailerState function (page 3-69) returns a mailer-state structure; see

“Mailer-State Structure” on page 3-30. The undoState field of the mailer-state structure,

described on page 3-33, returns a value that tells you whether to clear your application’s

undo buffer and whether to disable the Undo item in the Edit menu.

You can use the SMPMailerEditCommand function (page 3-67) to handle edit

commands when they apply to the mailer.

Parameter count Routine selector

$0002 $1275

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-72 Standard Mail Package Reference

SMPDrawMailer

The SMPDrawMailer function redraws the mailer in the window you specify.

pascal OSErr SMPDrawMailer(WindowPtr window);

window A pointer to the window containing the mailer you want to draw.

DESCRIPTION

You use the SMPDrawMailer function to redraw a mailer when you need to do so but

have not received an update event, or if you want to handle an update event yourself

rather than passing it to the SMPMailerEvent function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can have the Standard Mail Package draw the mailer by passing update events to

the SMPMailerEvent function (page 3-63).

Sending and Saving Mail

The SMPBeginSend function (page 3-81) starts the process of creating a letter that is to

be mailed. Immediately before you call the SMPBeginSend function, you should call the

SMPSendOptionsDialog function (page 3-73) to let the user set send options.

The SMPSendOptionsDialog function returns the user’s choice: whether to send the

letter as an image, as standard interchange format, in one of your application’s native

formats, or in some combination of these three options. To send the letter as an image,

you must call the SMPImage function (page 3-88) to put an image block in the letter. Call

the SMPAddContent function (page 3-85) to add a standard interchange format block to

the letter and the SMPAddMainEnclosure function (page 3-90) to add a document in

Parameter count Routine selector

$0002 $1269

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-73

one of its native formats to the letter. You can also call the SMPAddBlock function

(page 3-91) to add one or more blocks of your own design to the letter.

You can enclose files or folders in a letter by calling the SMPAddAttachment function

(page 3-119) or the SMPAttachDialog function (page 3-119).

When you are ready to send the letter, call the SMPEndSend function (page 3-84).

The process of saving a letter to disk is similar to the process of sending one. First you

call the SMPBeginSave function (page 3-77) to create the letter. Then you can use the

SMPAddContent, SMPAddMainEnclosure, and SMPAddBlock functions to add

content to the letter. To save the letter, call the SMPEndSave function (page 3-80). You

can use the SMPOpenLetter function (page 3-94) to open a letter on disk for reading.

SMPSendOptionsDialog

The SMPSendOptionsDialog function displays the send-options dialog box and

returns the user’s selections.

pascal OSErr SMPSendOptionsDialog(WindowPtr window,

Str255 documentName,

StringPtr nativeFormatNames[],

unsigned short nameCount,

SMPSendFormatMask canSend,

SMPSendFormat *currentFormat,

SendOptionsFilterProc filterProc,

long clientData,

SMPSendFormat *shouldSend,

SMPSendOptionsPtr sendOptions);

window A pointer to the window containing the mailer.

documentName
The name of the document. This name is displayed at the top of the
send-options dialog box.

nativeFormatNames
An array of string pointers containing the names of the “native” formats
your application can use for the letter. These names should be the same as
the formats listed in the dialog box you display when the user chooses
Save As from the File menu. If your application can write data in only one
format, use the name of the application. The Standard Mail Package
displays the names you list here in a pop-up menu in the send-options
dialog box.

nameCount The number of string pointers in the nativeFormatNames parameter.

C H A P T E R 3

Standard Mail Package

3-74 Standard Mail Package Reference

canSend A set of flags indicating which types of format your application can send
for this letter. You can use any combination of the mask values
kSMPNativeMask, kSMPImageMask, and
kSMPStandardInterchangeMask.

currentFormat
A pointer to a send-format structure. If the user opened this letter from
the mail box or from disk, you should use this structure to indicate which
formats the letter currently contains. If this is a new letter, you should
indicate which formats you prefer to use for this letter. Do not include any
format you did not include in the canSend parameter.

filterProc
A pointer to a routine you can provide to add additional items to the
send-options dialog box. This routine is described on page 3-125.

clientData
A constant reserved for your use. The Standard Mail Package passes this
value to the routine you provide in the filterProc parameter.

shouldSend
A pointer to a send-format structure, allocated by your application, in
which the SMPSendOptionsDialog function returns the formats the
user has selected for sending the letter.

sendOptions
A pointer to a send-options structure. Pass this pointer to the
SMPBeginSend function when you are ready to send the letter. The
function only returns information in this structure; it ignores any values
in this structure that are set at the time you call the function.

DESCRIPTION

The send-options dialog box lets the user specify whether letters should be signed and

whether documents should be sent as application documents, images, or both.

Figure 3-7 shows a send-options dialog box.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-75

Figure 3-7 Send-options dialog box

To make it possible for any user to read letters sent by your application, even if the

recipient doesn’t have your application, you should be able to add either a standard

interchange format version of your document, an image version, or both to the letter. If

the standard interchange format does not completely describe your application’s

documents, you can also send a document in one of its native formats either as a main

enclosure to the letter or as a block or blocks that you add to the letter. You use the

canSend parameter to specify which formats you are prepared to add to a letter.

You should call the SMPSendOptionsDialog function before you use the

SMPBeginSend function to initiate the process of sending a letter. The SMPBeginSend

function returns a send-format structure that indicates whether the user wants to send

an image, standard interchange format, one of the document formats supported by your

application, or some combination of the three. If the reader wants to send an image, you

must call the SMPImage function so that the Standard Mail Package can provide the

image. If the reader wants to send standard interchange format, call the

SMPAddContent function. If the user wants to send the letter as a document, the

send-format structure also indicates which of your application’s document formats to

use.

C H A P T E R 3

Standard Mail Package

3-76 Standard Mail Package Reference

To add your own items to the send-options dialog box, provide a send-options filter

routine.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

The SMPSendOptionsDialog function only returns the user’s selections. You cannot

use this function to set default values for the fields in the send-options dialog box.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See the descriptions of the SMPBeginSend (page 3-81) and SMPEndSend (page 3-84)

functions for more information about sending mail.

The send-format structure is defined in “Send-Format Structure” on page 3-34. The

send-options structure is defined in “Send-Options Structure” on page 3-34.

You can specify a routine to add items to the send-options dialog box. See the description

of the MySendOptionsFilterProc routine on page 3-125 for more information.

Call the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a

letter. Call the SMPAddContent function (page 3-85) to add standard interchange format

content to a letter. Call the SMPImage function (page 3-88) to add an image to the letter.

SMPContentChanged

The SMPContentChanged function informs the Standard Mail Package that the content

of the letter has changed.

pascal OSErr SMPContentChanged(WindowPtr window);

window A pointer to the window containing the mailer.

Parameter count Routine selector

$0013 $1388

noErr 0 No error
paramErr –50 Error in a parameter value
userCanceledErr –128 User clicked Cancel button
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalSendFormats –1923 Format not in canSend parameter

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-77

DESCRIPTION

You must call the SMPContentChanged function to inform the Standard Mail Package

when the user changes the content of a letter. The Standard Mail Package can then

indicate to the user that the signature is not valid. The Standard Mail Package also needs

this information to determine whether it can save or send a forwarded letter without

requiring you to rebuild the content of the letter.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To forward a letter, see the SMPMailerForward function (page 3-49).

To save a letter, see the SMPBeginSave function (page 3-77). To send a letter, see the

SMPBeginSend function (page 3-81).

Before you allow the user to change the content of a letter, call the

SMPPrepareToChange function (page 3-83).

SMPBeginSave

You must call the SMPBeginSave function before you save a letter.

pascal OSErr SMPBeginSave(WindowPtr window,

const FSSpec *diskLetter,

OSType creator,

OSType filetype,

SMPSaveType saveType,

Boolean *mustAddContent);

window The window containing the letter to be saved.

Parameter count Routine selector

$0002 $126F

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-78 Standard Mail Package Reference

diskLetter
A pointer to a file system specification structure indicating the name and
location you want to use for the file.

creator The creator for the file, which also becomes the letter’s creator. Use the
same creator that you use for all of your application’s documents.

filetype The file type, which also becomes the letter type. Letters containing only
AOCE standard content should be of type 'lttr'.

saveType The type of save: kSMPSave, kSMPSaveAs, or kSMPSaveACopy.

mustAddContent
A pointer to a Boolean value returned by the function that tells you
whether you have to add any blocks or enclosures to the letter. If this
parameter is set to false, call the SMPEndSave function immediately
without adding blocks or enclosures to the letter.

DESCRIPTION

When you save a document to which you have added a mailer, you must save it in letter

file format rather than the document format normally used by your application. A letter

consists of a header, data blocks, and enclosures. Every block has a block creator and

type, and every letter has a letter creator and type. When you save the letter, the

Standard Mail Package assigns the file the same creator and type as the letter. Your

application should provide icon resources and a file reference resource for your

application’s letters so that users can distinguish them from standard documents.

To begin the process of saving a letter, you call the SMPBeginSave function. This

function prepares the letter file into which you can save your document. You can create a

new file format for your application’s documents that takes advantage of the block

structure of a letter file, or you can save your document in one of your application’s

native formats to a temporary file on disk and then add that file as the main enclosure to

the letter. The letter is not actually saved to disk until you call the SMPEndSave function.

If neither your application nor the user has changed the content of a received letter, the

SMPBeginSave function returns a value of false for the mustAddContent parameter.

In that case you can call the SMPEndSave function immediately to save the letter. If you

have changed the content of the letter, however, the mustAddContent parameter

returns true and you must build the letter (adding the appropriate combination of

blocks, main enclosure, standard interchange format block, and image block) just as if it

were a new letter. The Standard Mail Package handles enclosures added by the user.
Note that, if you make changes to the enclosed original letter, you invalidate any digital

signature.

IMPORTANT

Be sure to call the SMPContentChanged function whenever the user
changes the content of a letter. If you do not call the
SMPContentChanged function, then the SMPBeginSave function
doesn’t know that the letter has been changed and won’t return true as
the value of mustAddContent. ▲

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-79

Note
The SMPBeginSave and SMPEndSave function pair perform a “safe
save”; that is, they save the document into a temporary file and then, if
the document has been saved before, replace the original file with the
temporary file. ◆

When you call the SMPBeginSave function you must specify the type of save, as

follows:

enum {kSMPSave, kSMPSaveAs, kSMPSaveACopy};

typedef unsigned short SMPSaveType;

Constant descriptions

kSMPSave Save an existing file, overwriting the older version, and keeping the
file open.

kSMPSaveAs Save the file with a new name, close the original file (if any) without
changing it, and open the new file.

kSMPSaveACopy Save a copy of the file with a new name, leaving the original file
open.

SPECIAL CONSIDERATIONS

Any time the user changes the content of a letter, you must call the

SMPContentChanged function immediately. The SMPBeginSave function needs this

information to operate correctly.

The SMPBeginSave function may move or purge memory; you should not call this

function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Before letting the user change the content of a letter, call the SMPPrepareToChange

function (page 3-83). If the user changes the content of a letter, you must call the

SMPContentChanged function (page 3-76) immediately.

Parameter count Routine selector

$000B $1266

noErr 0 No error
dskFulErr –34 Disk is full
fnfErr –43 File not found
fBsyErr –47 File is busy
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-80 Standard Mail Package Reference

When you have finished building your letter, you call the SMPEndSave function

(described next) to save it. To cancel a save operation any time after you call the

SMPBeginSave function, call the SMPEndSave function with the okToSave parameter

set to false.

Letter file format is briefly discussed in “The Mailer Functions” beginning on page 3-4.

Use the SMPAddContent function (page 3-85) to add a standard interchange format

block to a letter.

Use the SMPAddMainEnclosure function (page 3-90) to add an application document

as a main enclosure to a letter.

Use the SMPImage function (page 3-88) to add an image block to a letter.

Use the SMPAddBlock function (page 3-91) to add a block to a letter.

SMPEndSave

The SMPEndSave function saves a letter to disk.

pascal OSErr SMPEndSave(WindowPtr window,

Boolean okToSave);

window The window containing the letter to be saved.

okToSave A Boolean value that you can use to cancel the process of saving a letter.
Specify false to cancel the save operation.

DESCRIPTION

After you have used the SMPBeginSave function to initiate the process of saving a letter

and have added content or a main enclosure to the letter by calling the

SMPAddContent, SMPAddBlock, or SMPAddMainEnclosure functions, you call the

SMPEndSave function to save the letter to disk. You use the saveType parameter in the

SMPBeginSave function to specify which File menu operation this represents: Save,

Save As, or Save A Copy. In any case, some version of the file remains open after the file

has been saved to disk.

To cancel a save operation any time after you call the SMPBeginSave function, call the

SMPEndSave function with the okToSave parameter set to false.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-81

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You begin the process of saving a letter by calling the SMPBeginSave function

(page 3-77).

Call the SMPReadContent function (page 3-98) to read the standard interchange

contents of a letter.

Call the SMPGetMainEnclosureFSSpec function (page 3-103) to obtain the file system

specification for the main enclosure of a letter.

SMPBeginSend

You must call the SMPBeginSend function before you send a letter.

pascal OSErr SMPBeginSend(WindowPtr window,

OSType creator,

OSType fileType,

SMPSendOptionsPtr sendOptions,

Boolean *mustAddContent);

window The window containing the letter to be sent.

creator The creator for the file, which also becomes the letter’s creator for a new
letter. Use the same creator that you use for all of your application’s
documents.

filetype The file type, which also becomes the letter type for a new letter. Letters
containing only AOCE standard content should be of type 'lttr'.

sendOptions
The pointer to a send-options structure that was returned by the
SMPSendOptionsDialog function.

mustAddContent
A pointer to a Boolean value returned by the function that tells you
whether you have to add any blocks or enclosures to the letter. If this
parameter is set to false, call the SMPEndSave function immediately
without adding blocks or enclosures to the letter.

Parameter count Routine selector

$0002 $1270

noErr 0 No error
dskFulErr –34 Disk is full
kSMPNoMailerInWindow –1909 No mailer is in window
kSMPNoMatchingBegin –1913 SMPBeginSave was not called

C H A P T E R 3

Standard Mail Package

3-82 Standard Mail Package Reference

DESCRIPTION

When you send a letter, it is in letter file format rather than the document format

normally used by your application. A letter consists of a header, data blocks, and

enclosures. Every block has a creator and type, and every letter has a creator and type.

Before you send a letter, you should call the SMPSendOptionsDialog function to let

the user set the send options for that letter. To begin the process of sending a letter, you

call the SMPBeginSend function. This function prepares a letter file into which you can

place your document.

If the user elected to send the letter as a document, you can create a new file format for

the document that takes advantage of the block structure of a letter file, or you can save

the document in one of your application’s native formats to a temporary file on disk and

then add that file as the main enclosure to the letter. You should also add a standard

interchange format block to the letter. If the user elected to send the letter as an image,

you must also add an image block to the letter. The Standard Mail Package does not

actually send the letter until you call the SMPEndSend function.

If neither your application nor the user has changed the content of a received letter, the

SMPBeginSend function returns a value of false for the mustAddContent parameter.

In that case you can call the SMPEndSend function immediately to send the letter. If you

have changed the content of the letter, however, the mustAddContent parameter

returns true and you must build the letter (adding the appropriate combination of

blocks, main enclosure, standard interchange format block, and image block) just as if it

were a new letter. The Standard Mail Package handles enclosures added by the user.
Note that, if you make changes to the enclosed original letter, you invalidate any digital

signature.

IMPORTANT

Be sure to call the SMPContentChanged function whenever the user
changes the content of a letter. If you do not call the
SMPContentChanged function, then the SMPBeginSend function does
not know that the letter has been changed and won’t return true as the
value of mustAddContent. ▲

SPECIAL CONSIDERATIONS

Any time the user changes the content of a letter, you must call the

SMPContentChanged function immediately. The SMPBeginSend function needs this

information to operate correctly.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$000A $1267

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-83

RESULT CODES

SEE ALSO

Call the SMPSendOptionsDialog function (page 3-73) before calling the

SMPBeginSend function to let the user set send options.

If the user changes the content of a letter, you must call the SMPContentChanged

function (page 3-76) immediately.

When you have finished building your letter, you call the SMPEndSend function

(page 3-84) to send it. To cancel a send operation any time after you call the

SMPBeginSend function, call the SMPEndSend function with the okToSend parameter

set to false.

Letter file format is briefly discussed in “The Mailer Functions” beginning on page 3-4.

Use the SMPAddContent function (page 3-85) to add a standard interchange format

block to a letter.

Use the SMPAddMainEnclosure function page 3-90) to add an application document as

a main enclosure to a letter.

Use the SMPImage function (page 3-88) to add an image block to a letter.

Use the SMPAddBlock function (page 3-91) to add other blocks to a letter.

SMPPrepareToChange

The SMPPrepareToChange function checks whether the letter has any digital

signatures that might be invalidated if the user changes the content.

pascal OSErr SMPPrepareToChange(WindowPtr window)

window A pointer to the window containing the mailer.

DESCRIPTION

Before making a change in the content of a letter, call the SMPPrepareToChange

function. If the letter has any digital signatures that might be invalidated by the change,

the function displays a dialog box alerting the user and providing a chance to cancel the

change. If the user does not cancel the change, you should implement the change and

then call the SMPContentChanged function. If the user cancels the change, the function

returns the userCanceledErr result code.

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in window
kMSPCannotSendReceivedLetter –1914 Letter is received; cannot send

C H A P T E R 3

Standard Mail Package

3-84 Standard Mail Package Reference

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

After changing the content of a letter, call the SMPContentChanged function

(page 3-76).

SMPEndSend

The SMPEndSend function sends a letter.

pascal OSErr SMPEndSend(WindowPtr window,

Boolean okToSend);

window The window containing the letter to be sent.

okToSend A Boolean value that you can use to cancel the process of sending a letter.
Specify false to cancel the send operation.

DESCRIPTION

After you have used the SMPBeginSend function to initiate the process of sending a

letter and have created the letter by calling some or all of the SMPAddContent,

SMPAddBlock, SMPImage, and SMPAddMainEnclosure functions, you call the

SMPEndSend function to send the letter.

To cancel a send operation any time after you call the SMPBeginSend function, call the

SMPEndSend function with the okToSend parameter set to false.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

Parameter count Routine selector

$0002 $1289

noErr 0 No error
userCanceledErr –128 User clicked Cancel in dialog box
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-85

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You begin the process of sending a letter by calling the SMPBeginSend function

(page 3-81).

To read the standard interchange contents of a letter you call the SMPOpenLetter

function (page 3-94) and SMPReadContent function (page 3-98).

SMPAddContent

The SMPAddContent function adds a segment of a standard interchange format block to

a letter.

pascal OSErr SMPAddContent(WindowPtr window,

MailSegmentType segmentType,

Boolean appendFlag,

void *buffer,

unsigned long bufferSize,

StScrpRec *textScrap,

Boolean startNewScript,

ScriptCode script);

window The window containing the letter.

segmentType
A constant that indicates the type of data segment that you want to add to
the letter. Letter segments may be text, picture, sound, styled text, or
QuickTime movies. You can specify only one segment type in this
parameter each time you call the SMPAddContent function. It may be
any of the following constants:

kMailTextSegmentType
Text segment

kMailPictSegmentType
Picture segment

Parameter count Routine selector

$0002 $1271

noErr 0 No error
userCanceledErr –128 User clicked Cancel button
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPNoMatchingBegin –1913 SMPBeginSend was not called

C H A P T E R 3

Standard Mail Package

3-86 Standard Mail Package Reference

kMailSoundSegmentType
Sound segment

kMailStyledTextSegmentType
Styled text segment

kMailMovieSegmentType
Movie segment

The Standard Mail Package also defines another MailSegmentType
constant, kMailInvalidSegmentType, which you can use to initialize a
variable, for example, in a type-safe manner without indicating that a
valid segment has been passed.

appendFlag
A Boolean value that indicates whether you want the SMPAddContent
function to write the data in your buffer to a new segment or append it to
the current segment. Set this parameter to false when you first call the
SMPAddContent function. On subsequent calls to the function, set this
parameter to false if you want to start a new segment. Set this
parameter to true if you want to append the data in your buffer to the
segment currently being written by the SMPAddContent function.

buffer A pointer to the data you want to add to the letter.

bufferSize
The number of bytes of data you want to add to the letter.

textScrap A pointer to an StScrpRec structure that contains style information. You
must provide this style information when your buffer contains styled text.
Set this parameter to nil if you are not passing styled text data to the
function.

startNewScript
A Boolean value that indicates whether the text in your buffer uses a new
character set. Set this parameter to true each time you call the
SMPAddContent function to start a text segment. After that, set this
parameter to true only if the data in your buffer is in a different
character set than the data you previously provided to the function for
that segment. The function ignores this parameter when you set the
segmentType parameter to any value other than
kMailTextSegmentType or kMailStyledTextSegmentType.

script A value that indicates the character set (Roman, Arabic, Kanji, etc.) of the
data in your buffer. If you set the startNewScript parameter to true,
set this parameter to the code for the text segment’s character set. You
cannot use the values smSystemScript or smCurrentScript for this
parameter. The SMPAddContent function ignores this parameter when
you set the segmentType parameter to any value other than
kMailTextSegmentType or kMailStyledTextSegmentType.

DESCRIPTION

After you have called the SMPBeginSend or SMPBeginSave function, you can call the

SMPAddContent function to add standard interchange format data to the letter that is in

the window that you specify. The first time you call the function for a given letter, it

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-87

creates a new block and puts the data into the block. You then call the function

repeatedly until you have finished adding standard interchange format data to the letter.

Each time you call the SMPAddContent function, it adds data to that same block.

A standard interchange format block consists of data segments, each of a specific type.

You add one segment or a portion of a segment of data each time you call the

SMPAddContent function. The function adds the segments in the order that you

provide them. A single letter may contain more than one segment of a given type.

A text segment contains one or more script runs. A script run is a string of text in the

same character set. The SMPAddContent function can accommodate only one script at a

time. Therefore, if you want to create a segment that contains several script runs, you

must call this function once for each script run in the segment. Use the script

parameter to specify the character set of the script run. Set the startNewScript

parameter to true when you start a new text segment and to begin a new script run in

the current text segment. To append text to the current script run, set the

startNewScript parameter to false and the appendFlag parameter to true. If you

add a segment of styled text, you must provide the style information in the textScrap

parameter.

You cannot specify the values smSystemScript or smCurrentScript for the script

parameter. To obtain the system script, call the GetScriptManagerVariable function

with a selector of smSysScript. To obtain the current script, call the FontScript

function.

Because font numbers are local to a given Macintosh computer, the fonts originally used

in a letter might be different from those with the same font numbers on the receiving

computer. For this reason, the SMPAddContent function creates a font table that

associates a font name with each font number in the standard interchange format block

of the letter. When you receive a letter, you can use the SMPGetFontNameFromLetter

function to recover the names of the fonts originally used in a letter.

Once you begin creating a letter’s standard interchange format block, you must not call

other Standard Mail Package functions until you finish writing that block.

The data for picture segments must be in PICT format.

The data for sound segments must be in Audio Interchange File Format (AIFF).

The data for text and styled text segments must consist of 1-byte or 2-byte character

codes, depending on the value in the script parameter. For styled text you must also

provide a pointer to an StScrpRec structure in the textScrap parameter.

The data for QuickTime movie segments must be in the QuickTime movie format

('MooV').

ASSEMBLY LANGUAGE INFORMATION

Parameter count Routine selector

$000D $127A

C H A P T E R 3

Standard Mail Package

3-88 Standard Mail Package Reference

RESULT CODES

SEE ALSO

See “Summary of the Script Manager” at the end of the “Script Manager” chapter of

Inside Macintosh: Text, for a list of script code constants.

See Inside Macintosh: Imaging With QuickDraw for more information about PICT images.

See Inside Macintosh: Sound for more information about AIFF.

The StScrpRec structure is described in Inside Macintosh: Text in the chapter “TextEdit.”

The StGetScriptManagerVariable function and FontScript function are

described in Inside Macintosh: Text in the chapter “Script Manager.”

The SMPReadContent function is described on page 3-98.

You can use the SMPGetFontNameFromLetter function (page 3-102) to recover the

names of the fonts originally used in a letter.

Call the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a

letter. Call the SMPImage function (described next) to add an image to the letter. Use the

SMPAddBlock function (page 3-91) to add other blocks to a letter.

SMPImage

The SMPImage function adds an image of a document to a letter.

pascal OSErr SMPImage (WindowPtr window,

SMPDrawImageProcPtr drawImageProc,

long imageRefCon,

Boolean supportsColor);

window The window containing the letter.

drawImageProc
A pointer to your image-drawing routine. If you want to send a letter as
an image, you must provide a routine to draw the image. The procedure
declaration for this routine is described on page 3-123.

imageRefCon
A reference constant for your use. The function passes this constant to
your image-drawing routine.

noErr 0 No error
dskFulErr –34 Disk is full
memFullErr –108 Not enough room in heap zone
kSMPShouldNotAddContent –1903 You cannot add content to this letter
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-89

supportsColor
A Boolean value that indicates whether the procedure pointed to by the
drawImageProc parameter is capable of drawing in color. The Standard
Mail Package provides a color graphics port to your image-drawing
routine only if you specify true for the supportsColor field and the
user has color QuickDraw.

DESCRIPTION

You can use the Standard Mail Package to send a letter as an image. You use the

SMPImage function to create an image from your document and add it to a letter. When

you call the SMPImage function, you provide a pointer to your drawing routine. The

SMPImage function calls the drawing routine to draw the image of your document.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The procedure declaration for your image-drawing routine is on page 3-123.

Mailers are described in “The Mailer Functions” beginning on page 3-4.

Call the SMPSendOptionsDialog function (page 3-73) to let the user set send options.

Call the SMPBeginSend function (page 3-81) to start the process of sending a letter that

contains a mailer.

Call the SMPAddMainEnclosure function (described next) to add a main enclosure to a

letter. Call the SMPAddContent function (page 3-85) to add standard interchange format

content to a letter. Use the SMPAddBlock function (page 3-91) to add other blocks to a

letter.

When you have finished building your letter, you call the SMPEndSend function

(page 3-84) to send it.

Parameter count Routine selector

$0002 $1282

noErr 0 No error
dskFulErr –34 Disk is full
memFullErr –108 Not enough room in heap zone
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-90 Standard Mail Package Reference

SMPAddMainEnclosure

The SMPAddMainEnclosure function adds a main enclosure to a letter.

pascal OSErr SMPAddMainEnclosure(WindowPtr window,

const FSSpec *enclosure);

window The window containing the letter.

enclosure A pointer to a file system specification structure that identifies the file that
you want to enclose.

DESCRIPTION

When you are creating a letter, you can include a document in one of your application’s

native formats by first saving the document to disk and then calling the

SMPAddMainEnclosure function to add the document to the letter as a main enclosure.

If you must create a temporary file for this operation, create it in the Temporary Items

folder at the root level of the startup volume. The main enclosure is not listed as an

enclosure in the mailer.

SPECIAL CONSIDERATIONS

When you save the letter, the file system specification for the main enclosure changes so

that the FSSpec structure you specified in the enclosure parameter is no longer valid.

Use the SMPGetMainEnclosureFSSpec function to obtain the file system specification

of the main enclosure of a letter.

ASSEMBLY LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Call the SMPAddContent function (page 3-85) to add standard interchange format

content to a letter. Call the SMPImage function (page 3-88) to add an image to the letter.

Use the SMPAddBlock function (page 3-91) to add other blocks to a letter.

You can use the SMPGetMainEnclosureFSSpec function (page 3-103) to obtain the

FSSpec structure for the main enclosure of a letter.

Parameter count Routine selector

$0004 $127D

noErr 0 No error
fnfErr –43 File not found
memFullErr –108 Not enough room in heap zone
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-91

The Temporary Items folder is described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

SMPAddBlock

The SMPAddBlock function adds data to a block in a letter.

pascal OSErr SMPAddBlock(WindowPtr window,

const OCECreatorType *blockType,

Boolean append,

void *buffer,

unsigned long bufferSize,

MailBlockMode mode,

unsigned long offset);

window The window containing the letter.

blockType A pointer to a data structure that specifies the creator and type of the
block you want to add. You may specify any value in the msgCreator
field of the structure; usually your application signature. The msgType
field identifies the type of block. You can define your own block types to
serve your purposes. Apple Computer, Inc., reserves all block types
consisting entirely of lowercase letters.

append A Boolean value that indicates whether you want the SMPAddBlock
function to append the data in your buffer to the current block. Set this
parameter to false when you call the function to start a new block. If
you set this parameter to true, the function uses the mode and offset
parameters to determine where to start writing.

buffer A pointer to your data buffer.

bufferSize
The number of bytes of data to write to the block.

mode The mode in which the offset parameter is to be interpreted. The function
uses this field to determine whether to begin writing data relative to the
end of the last data written, to the beginning of the message, or to the end
of the block. See the discussion following these parameter descriptions for
details. The function ignores this parameter if you set the append
parameter to false.

offset An offset that the function uses when it calculates the starting point of the
write operation. Set this value to 0 when you start a new block. See the
following discussion for details. The function ignores this parameter if
you set the append parameter to false.

C H A P T E R 3

Standard Mail Package

3-92 Standard Mail Package Reference

DESCRIPTION

You call the SMPAddBlock function to write data into a block whose type you specify in

the blockType field.

You can write data to a block that is too large to be written all at once by setting the

append parameter to true after the first time you call the function and then calling the

function repeatedly until you have written the entire block.

The Standard Mail Package uses a mark to point to the current location within a block

that you are writing. After the SMPAddBlock function completes, the mark points to the

end of the last byte written.

You use the mode and offset parameters to specify the point in the block at which the

SMPAddBlock function starts writing. You can set the mode parameter to any one of the

following values:

enum {

kMailFromStart = 1,

kMailFromLEOB = 2,

kMailFromMark = 3

};

Constant descriptions

kMailFromStart
The function interprets the value in the offset parameter as an
offset from the beginning of the block. When you use this mode,
you cannot set the offset parameter to a negative value.

kMailFromLEOB The function interprets the value in the offset parameter as an
offset from the current end of the block. The offset must always be
negative and cannot extend beyond the beginning of the block.

kMailFromMark The function interprets the value in the offset parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark. You cannot specify a
negative offset that extends beyond the beginning of the block.

To use the SMPAddBlock function to write data in several pieces sequentially into a

block, call the function as many times as necessary, setting the mode parameter to

kIPMFromMark and the offset parameter to 0 each time.

You can overwrite data you have already written to a block but cannot modify a

completed block once you start a new block.

SPECIAL CONSIDERATIONS

Once you begin writing a block in a letter, you must finish writing the block, calling the

SMPAddBlock function as many times as necessary to complete the block before starting

another block or calling the SMPAddContent or SMPAddMainEnclosure functions.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-93

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCECreatorType structure is described in “Creator Type Structure” on page 3-28.

Call the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a

letter. Call the SMPAddContent function (page 3-85) to add standard interchange format

content to a letter. Call the SMPImage function (page 3-88) to add an image to the letter.

Reading Mail

If you are retrieving mail using the Standard Mail Package, use the SMPOpenLetter

function (page 3-94) to gain access to an existing letter. If the letter is in the In Tray, you

can use the use the SMPGetLetterInfo function before you call SMPOpenLetter. The

SMPGetLetterInfo function returns the name and type of the letter. Once you have

opened a letter in the In Tray, you can use the SMPGetNextLetter function (page 3-97)

to open the next or preceding letter in the tray.

While a letter is open, you can examine the standard interchange contents of the letter by

calling the SMPReadContent function (page 3-98) and can examine the letter’s main

enclosure by calling the SMPGetMainEnclosureFSSpec function (page 3-103). You can

use the SMPGetFontNameFromLetter function (page 3-102) to determine the original

fonts used in the standard interchange content block of a letter. You can use the

SMPEnumerateBlocks function (page 3-104) to list all the blocks in a letter and the

SMPReadBlock function (page 3-106) to read any block in a letter, including an image

block.

SMPGetLetterInfo

The SMPGetLetterInfo function returns information about a letter in the In Tray.

pascal OSErr SMPGetLetterInfo(LetterSpec *mailboxSpec,

SMPLetterInfo *info);

mailboxSpec
A pointer to a letter-specification structure. The LetterSpec structure is
defined on page 3-35.

Parameter count Routine selector

$000C $127F

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-94 Standard Mail Package Reference

info A pointer to a letter information structure. The SMPLetterInfo
structure is defined on page 3-27.

DESCRIPTION

The SMPGetLetterInfo function lets you determine the creator and letter type of a

letter in the In Tray, together with the subject and sender of the letter. You can use this

information to title windows or in a dialog box if you cannot open the letter for some

reason.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SMPOpenLetter function (described next) to open a letter for reading.

SMPOpenLetter

The SMPOpenLetter function opens a letter so you can read the contents.

pascal OSErr SMPOpenLetter(const LetterDescriptor *letter,

WindowPtr window,

Point upperLeft,

Boolean canContract,

Boolean initiallyExpanded,

const PrepareMailerForDrawingProcPtr

 prepareMailerForDrawingCB,

long clientData);

Parameter count Routine selector

$0004 $128A

noErr 0 No error
kSMPMailboxNotFound –1904 Cannot find mailbox

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-95

letter A pointer to the letter descriptor of the letter you want to open. The letter
descriptor specifies whether the letter is on disk or in the In Tray and
provides the file system specification structure or letter-specification
structure of the letter.

window The window in which you want to display the opened letter. This
window must not contain a mailer at the time you call the
SMPOpenLetter function.

upperLeft The upper-left corner of the mailer in your window’s local coordinates.
This position is normally (0, 0).

canContract
A Boolean value that specifies whether it should be possible to contract
and expand the mailer. Specify true if you want the mailer to have this
ability.

initiallyExpanded
A Boolean value that indicates whether you want the mailer displayed
initially in its expanded or contracted state. Specify true to display the
mailer initially expanded.

prepareMailerForDrawingCB
A pointer to your drawing-preparation function. If you change the clip
region, coordinates, or other aspects of your window’s graphics port, you
must provide this function to restore the graphics port to a standard state
so that the Standard Mail Package can draw a mailer in your window. The
drawing-preparation function is described on page 3-122. Specify nil for
this parameter if you are not providing a drawing-preparation function.

clientData
Reserved for your use. The SMPOpenLetter function passes this value
unaltered to your callback routine.

DESCRIPTION

You call the SMPOpenLetter function when you receive an Apple event to open a letter

or when the user chooses the Open command. This function displays a mailer in the

window you specify and opens the letter so you can read its contents.

The user can double-click an icon in the In Tray to open a letter or double-click the icon

for a letter file on disk. Your Open item in the File menu should also open letter files on

disk. There is no way to open a letter in the In Tray from a menu in your application; the

user must use the Finder to open the letter. The Finder determines the owner of the letter

and sends an 'aevt' 'odoc' Apple event to the appropriate application, which can

then open it. The Apple event contains the letter-specification structure, which you put

in the letter descriptor and pass to the SMPOpenLetter function. If the user chooses the

Open command to open the letter, you can get the file system specification structure

from the Standard File Package.

Whether a letter is on disk or not, the Standard Mail Package treats the letter’s

enclosures as if they are stored in a folder in an external file system. That folder contains

all of the enclosures added by the user through the mailer or by the

SMPAddAttachment function, and might contain the letter’s main enclosure, if any.

C H A P T E R 3

Standard Mail Package

3-96 Standard Mail Package Reference

(You can use the SMPAddMainEnclosure function to add a main enclosure to a letter.

The main enclosure is not displayed in the Enclosures field of a mailer.)

The Standard Mail Package displays the enclosures added by the user in the Enclosures

field of the mailer and handles the user interface for those enclosures. To obtain the file

system specification structure of the main enclosure to a letter, use the

SMPGetMainEnclosureFSSpec function. Use the SMPGetListItemInfo function to

get the file system specification for the enclosures added by the user.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The LetterDescriptor data type is described in “Letter Descriptor” on page 3-27.

Use the SMPGetMainEnclosureFSSpec function (page 3-103) to obtain the file system

specification structure of the main enclosure of a letter.

Use the SMPGetListItemInfo function (page 3-113) to get the file system specification

for the enclosures added by the user.

You can use the SMGetComponentInfo function (page 3-111) to obtain the file system

specification structure of the enclosures folder for the letter.

You can use the SMPGetNextLetter function (described next) to determine which

letter in the In Tray is the oldest unread letter.

Parameter count Routine selector

$000C $1268

noErr 0 No error
kSMPMailerAlreadyInWindow –1911 Specified window has a mailer
kMailInvalidSeqNum –15041 Invalid letter sequence number

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-97

SMPGetNextLetter

The SMPGetNextLetter function returns the letter descriptor of the In Tray item to be

opened next.

pascal OSErr SMPGetNextLetter(

 OSType *typesList,

short numTypes,

LetterDescriptor *adjacentLetter);

typesList A pointer to a list of letter types and file types. The function returns letter
descriptors only for items with the letter types and file types specified in
this list. Letters containing only AOCE standard content are of type
'lttr'. Use the wildcard letter type 'ltr*' if you want the function to
return letter descriptors for all the items in the In Tray.

numTypes The number of letter types and file types in the types list pointed to by the
typesList parameter.

adjacentLetter
The letter descriptor returned by the function identifying the next item to
open.

DESCRIPTION

The letter descriptor returned by the SMPGetNextLetter function is that of the oldest

unread letter in the In Tray. You can use this function to open letters in age sequence.

You can use the typesList parameter to specify what letter types and file types the

function should include when it returns a letter descriptor.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0008 $1286

noErr 0 No error
kSMPMailboxNotFound –1904 Cannot find mailbox
kSMPNoNextLetter –1905 There is no next letter in the In Tray

C H A P T E R 3

Standard Mail Package

3-98 Standard Mail Package Reference

SEE ALSO

Use the SMPOpenLetter function (page 3-94) to open a letter for reading.

The letter descriptor (LetterDescriptor data type) is described in “Letter Descriptor”

on page 3-27.

SMPReadContent

The SMPReadContent function reads a segment from a letter’s standard interchange

format block.

pascal OSErr SMPReadContent(WindowPtr window,

MailSegmentMask segmentTypeMask,

void *buffer,

unsigned long bufferSize,

unsigned long *dataSize,

StScrpRec *textScrap,

ScriptCode *script,

MailSegmentType *segmentType,

Boolean *endOfScript,

Boolean *endOfSegment,

Boolean *endOfContent,

long *segmentLength,

long *segmentID);

window The window containing the letter.

segmentTypeMask
The type of segment that you want to retrieve. You can request a
combination of segment types by performing a bitwise OR operation on
the following constants:

kMailTextSegmentMask
Text segment

kMailPictSegmentMask
Picture segment

kMailSoundSegmentMask
Sound segment

kMailStyledTextSegmentMask
Styled text segment

kMailMovieSegmentMask
Movie segment

You can request any combination of segment types, except that you
cannot combine the kMailTextSegmentMask and
kMailStyledTextSegmentMask constants in the same request. If you
request styled text segments, the function returns both plain text and

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-99

styled text segments. If you request plain text segments, it returns any
plain text segments that are in the letter and also converts styled text
segments to plain text segments and returns them to you.

The SMPReadContent function reads this parameter only the first time
you call it for a given letter. The next and subsequent times you call this
function for the same letter, it ignores this parameter. The function returns
data of a single segment type each time you call it.

buffer A pointer to the buffer you are providing to hold the data read from the
letter.

bufferSize
The size of the buffer you are providing.

dataSize A pointer to the amount of data returned in your buffer.

textScrap A pointer to an StScrpRec structure. You must allocate this pointer. Set
the first field of this structure (scrpNStyles) to the number of styles
your buffer can hold. When the function writes styled text to your buffer,
it returns style information in this structure and sets the scrpNStyles
field to the actual number of styles returned.

script A pointer to the script code, which indicates the character set (Roman,
Arabic, Kanji, etc.) of the text that the function placed in your buffer. If the
function placed nontext data in your buffer, it does not set this parameter
and you should ignore it.

segmentType
A constant that indicates the type of data segment that the
SMPReadContent function returned in your buffer. It may be any of the
following constants:

kMailTextSegmentType
Text segment

kMailPictSegmentType
Picture segment

kMailSoundSegmentType
Sound segment

kMailStyledTextSegmentType
Styled text segment

kMailMovieSegmentType
Movie segment

The Standard Mail Package also defines another MailSegmentType
constant, kMailInvalidSegmentType, which you can use to initialize a
variable, for example, in a type-safe manner without indicating that a
valid segment has been passed.

endOfScript
A pointer to a Boolean value returned by the function that indicates
whether the text placed in your buffer is the end of a script run. A script
run is a sequence of text in a single character set. If there is more text in
the current script run, the function sets this parameter to false.

C H A P T E R 3

Standard Mail Package

3-100 Standard Mail Package Reference

endOfSegment
A pointer to a Boolean value returned by the function that indicates
whether you have received all of the data in the segment. The
SMPReadContent function sets this parameter to true when it has
returned all of the data in a given segment. It sets this parameter to
false when there is more data in that segment to return.

endOfContent
A pointer to a Boolean value returned by the function that indicates if
there is more data in the standard interchange format block of the letter to
be read. If the SMPReadContent function has returned the entire
contents of the block, it sets the endOfContent parameter to true;
otherwise, it sets this parameter to false.

segmentLength
A pointer to the size of the current segment. The SMPReadContent
function returns a valid value for this parameter the first time you call the
function to read a particular segment.

segmentID A pointer to the ID of this segment. If you specify 0 for this parameter, the
SMPReadContent function reads the next segment sequentially,
returning the segment ID in this parameter. If you specify a value,
SMPReadContent reads the segment with the specified ID. Note that this
number is not an index number; it is an ID that is unique for the
beginning of each segment. The number returned by the function in this
parameter when you continue reading in the middle of a segment is
undefined. You must set this parameter to 0 the first time you call the
function.

DESCRIPTION

You call the SMPReadContent function to read some or all of a letter’s standard

interchange format block. You must call the SMPOpenLetter function before the first

time you call the SMPReadContent function for a given letter. You then call the

SMPReadContent function repeatedly to read all of the segments of the types you

specified the first time you called the function. Once the SMPReadContent function has

returned true for the endOfContent parameter, you must call the SMPOpenLetter

function again before you can call the SMPReadContent function again.

The SMPReadContent function examines the value of the segmentTypeMask

parameter the first time you call it for a given letter and uses that same value until you

start the sequence over by calling the SMPOpenLetter function again. The

SMPReadContent function returns segments in the order that they are stored in the

letter.

If you request styled text segments, the function returns both plain text and styled text

segments. If you request plain text segments, it returns any plain text segments that are

in the letter and also converts styled text segments to plain text segments and returns

them to you.

A text segment contains one or more script runs. A script run is a string of text in the

same character set. When the SMPReadContent function returns text data (that is, when

the function sets the segmentType parameter to kMailTextSegmentType), it

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-101

indicates the character set by setting the script parameter. The function identifies the

end of a script run by setting the endOfScript parameter to true.

The SMPReadContent function returns, in the dataSize parameter, a pointer to the

actual number of bytes written to your buffer. If your buffer is not large enough to hold

all of the data in a segment, the function sets the endOfSegment parameter to false.

You can call the function again to continue reading data from that segment.

If a single segment of styled text contains more styles than your StScrpRec structure

can hold, the SMPReadContent function stops writing data to your buffer and sets the

endOfSegment parameter to false. You can use the dataSize parameter to

determine how many bytes of text were written to your buffer. The next time to call the

function, it continues writing text from the same segment into your buffer and putting

text styles in your StScrpRec structure. In this case, the offsets in the scrpStartChar

field of the script table of the StScrpRec structure apply only to the data currently in

your data buffer, not to the offsets in the original segment in the letter.

For example, suppose that the next segment in the letter to be read is a styled text

segment that is 120 bytes long and contains 12 different styles. The 11th style starts at an

offset of 90 (that is, at the 91st byte of the segment). Suppose further that your text buffer

is 200 bytes but your StScrpRec structure can hold only 10 styles. In this case, the

SMPReadContent function stops writing data to your buffer after it has placed 10 styles

in your StScrpRec structure. Because these 10 styles applied to the first 90 bytes of text,

the dataSize parameter indicates that 90 bytes of data were written to your buffer and

the endOfSegment parameter is false.

The next time you call the SMPReadContent function, it writes the last 30 bytes of text

into your buffer and puts the last two styles into your StScrpRec structure. It returns a

value of 2 in the scrpNStyles field of your StScrpRec structure and sets the

endOfSegment parameter to true. In this case, the first offset in the scrpStartChar

field of the script table of the StScrpRec structure is 0, indicating that the first style in

the text scrap starts with the first byte of text currently in your buffer. (The offset is not
90, as it would have been for this portion of text had your StScrpRec structure been

able to hold all of the styles at once.)

The data for picture segments is in PICT format.

The data for sound segments is in Audio Interchange File Format (AIFF).

The data for text and styled text segment consists of 1-byte or 2-byte character codes,

depending on the value in the script parameter. For styled text the function also

returns a pointer to an StScrpRec structure in the textScrap parameter.

The data for QuickTime movie segments must be in the QuickTime movie format

('MooV').

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0019 $127B

C H A P T E R 3

Standard Mail Package

3-102 Standard Mail Package Reference

RESULT CODES

SEE ALSO

See Inside Macintosh: Imaging With QuickDraw for more information about PICT images.

See Inside Macintosh: Sound for more information about AIFF.

The StScrpRec structure is described in the chapter “TextEdit” of Inside Macintosh: Text.

SMPGetFontNameFromLetter

The SMPGetFontNameFromLetter function converts the font numbers in the standard

interchange format block of a letter into font names.

pascal OSErr SMPGetFontNameFromLetter(WindowPtr window,

short fontNum,

str255 fontName,

Boolean doneWithFontTable);

window The window containing the letter.

fontNum The font number you read from the text scrap (the TextEdit structure)
for the text.

fontName The name of the font associated with the font number.

doneWithFontTable
A Boolean value that you set to indicate that this is the last request for a
font name.

DESCRIPTION

You can use the SMPGetFontNameFromLetter function to recover the names of the

fonts originally used in a letter. Because font numbers are local to a given Macintosh

computer, the fonts originally used in a received letter might be different from those with

the same font numbers on the local computer. For this reason, when the Standard Mail

Package sends a letter, it creates a font table that associates a font name with each font

number in the standard interchange format block of the letter.

To recover the font names, you must first call the SMPReadContent function to read the

standard content block of the letter, and then read the font numbers from the

StScrpRec structure associated with each styled-text segment in that block. Then you

can call the SMPGetFontNameFromLetter function once for each font number.

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
kMailMalformedContent –15061 A mailed structure is malformed

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-103

Set the doneWithFontTable parameter to true the last time you call the

SMPGetFontNameFromLetter function. Doing so signals the Standard Mail Package to

release the memory it has reserved for the font table.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The StScrpRec structure is described in the chapter “TextEdit” of Inside Macintosh: Text.

SMPGetMainEnclosureFSSpec

The SMPGetMainEnclosureFSSpec function returns the file specification of the main

enclosure file for a letter.

pascal OSErr SMPGetMainEnclosureFSSpec (WindowPtr window,

FSSpec *enclosureDir);

window The window containing the letter.

enclosureDir
A pointer to the file system specification structure of the main enclosure.

DESCRIPTION

You can call the SMPGetMainEnclosureFSSpec function to get the file system

specification for the main enclosure file for a letter. The main enclosure contains the

letter’s content, usually in your application’s native document format. You can then use

standard File Manager routines to open and read the main enclosure. The file system

specification returned by this function is valid until the mailer is disposed of or until the

next time the user saves the letter. You must call the SMPOpenLetter function before

you call the SMPGetMainEnclosureFSSpec function.

If the letter does not contain a main enclosure, the function returns the result code

fnfErr (file not found).

Parameter count Routine selector

$0006 $127C

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-104 Standard Mail Package Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a

letter.

File Manager routines are described in Inside Macintosh: Files.

SMPEnumerateBlocks

The SMPEnumerateBlocks function returns information about the blocks in a letter.

pascal OSErr SMPEnumerateBlocks (WindowPtr window,

unsigned short startIndex,

void *buffer,

unsigned long bufferSize,

unsigned long *dataSize,

unsigned short *nextIndex,

Boolean *more);

window The window containing the letter.

startIndex
The sequence number of the next block for which you want the function
to return information. Sequence numbers start with 1. When you call the
SMPEnumerateBlocks function and there is insufficient space in the
buffer you provide to hold information about all of the remaining blocks,
the function returns, in the nextIndex parameter, the sequence number
of the next block. Use that number as the value of the startIndex
parameter the next time you call the function.

buffer A pointer to a buffer you provide to hold the information returned by the
function. The block information is in the form of a count byte, indicating
the number of blocks in the letter, followed by a block information
structure for each block.

bufferSize
The length, in bytes, of the buffer you are providing.

Parameter count Routine selector

$0004 $127E

noErr 0 No error
fnfErr –43 File not found
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-105

dataSize The address at which the function places the number of bytes written to
your buffer.

nextIndex The address at which the function places the sequence number of the first
block whose information did not fit into your buffer. The function sets
this field when your buffer is too small to hold all the information you
requested. If there is no more information to return, the function sets the
sequence number to 0.

more A Boolean value returned by the function indicating whether there is
more block information to be returned. If your buffer is too small to hold
all of the information that you requested, the SMPEnumerateBlocks
function sets this parameter to true and returns, in the nextIndex
parameter, the sequence number of the next item to be returned.

DESCRIPTION

You can use the SMPEnumerateBlocks function to determine the number of blocks that

are contained in a letter and each block’s type and size. You can use this information to

read specific blocks in the letter. You must call the SMPOpenLetter function before the

first time you call the SMPEnumerateBlocks function for a given letter.

Apple Computer, Inc., reserves all block types that consist of all lowercase letters for its

own use. Use the SMPReadBlock function to read image blocks and blocks of types that

you define. Use the SMPReadContent function to read the standard interchange format

block.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SMPReadBlock function (described next) to read the contents of a block.

Use the SMPReadContent function (page 3-98) to read the standard interchange format

block in a letter.

Parameter count Routine selector

$000D $1281

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-106 Standard Mail Package Reference

SMPReadBlock

The SMPReadBlock function reads a block from a letter that you specify.

pascal OSErr SMPReadBlock (WindowPtr window,

const OCECreatorType *blockType,

unsigned short blockIndex,

void *buffer,

unsigned long bufferSize,

unsigned long dataOffset,

unsigned long *dataSize,

Boolean *endOfBlock,

unsigned long *remaining);

window The window containing the letter.

blockType A pointer to a structure that specifies the creator and the type of the block
that you want to read.

blockIndex
The relative position of the block of type blockType that you want to
read. To read all blocks of a specific block type, set this field to 1 the first
time you call the SMPReadBlock function and increment it by 1 each
subsequent time you call the function until you have read all blocks of
that type in the letter.

buffer A pointer to your data buffer. The SMPReadBlock function writes the
information that you request into your buffer and sets the dataSize field
to the number of bytes written.

bufferSize
The length, in bytes, of the buffer you are providing.

dataOffset
The offset relative to the beginning of the block of the byte at which you
want the SMPReadBlock function to begin reading. Set this field to 0 to
read from the beginning of the block.

dataSize A pointer to the number of bytes written to your buffer.

endOfBlock
A pointer to a Boolean value that indicates if the SMPReadBlock function
has reached the end of the block. If the buffer that you provide is not large
enough to contain the data remaining in the block, the SMPReadBlock
function sets this parameter to false. You can call the function again
with an updated value in the dataOffset parameter to retrieve
additional data.

remaining A pointer to the number of bytes of data remaining in the block. You can
use the value returned by this parameter to adjust the size of your data
buffer before the next time you call the function. When the function sets
the endOfBlock parameter to true, it sets the number of bytes
remaining to 0.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-107

DESCRIPTION

You call the SMPReadBlock function to read data from a specific block in a letter. You

identify the block that you want to read by the values of the blockType and

blockIndex parameters.

You can use this function to read an image block (a block with creator type 'apml' and

block type 'imag') or any block of a type you define.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPEnumerateBlocks function (page 3-104) to list the block types and

sizes of blocks in a letter.

The OCECreatorType data structure is described in “Creator Type Structure” on

page 3-28.

The section “Image Block Information Structure” on page 3-28 describes how to read an

image block.

Printing Mailers

If you are printing or imaging a letter, you should print or image the mailers as cover

pages. You use the SMPPrepareCoverPages function (described next) to determine the

total number of cover pages and the SMPDrawNthCoverPage function (page 3-108) to

draw each cover page.

SMPPrepareCoverPages

The SMPPrepareCoverPages function prepares cover pages for a letter and returns the

number of cover pages that are needed to print all of the mailers for the letter.

pascal OSErr SMPPrepareCoverPages(windowPtr window,

short *pageCount);

Parameter count Routine selector

$0012 $1280

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-108 Standard Mail Package Reference

window The window for which you want the number of cover pages.

pageCount A pointer to the number of cover pages necessary to print all the mailers
in the specified window.

DESCRIPTION

When you print or image a letter, you can print or image the mailers as cover pages. You

must call the SMPPrepareCoverPages function from within your printing or imaging

routine to prepare the cover pages and to determine the number of cover pages before

calling the SMPDrawNthCoverPage function.

SPECIAL CONSIDERATIONS

The SMPPrepareCoverPages function makes a number of calculations that are used

by the SMPDrawNthCoverPage function. You must make sure that the mailer does not

change between the time you call these two functions.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You call the SMPDrawNthCoverPage function, described next, to draw a cover page to

the current graphics port.

SMPDrawNthCoverPage

The SMPDrawNthCoverPage function draws a cover page for a letter.

pascal OSErr SMPDrawNthCoverPage(WindowPtr window,

short pageNumber,

Boolean doneDrawingCoverPages);

Parameter count Routine selector

$0004 $1264

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-109

window A pointer to the window for which you want to draw a cover page.

pageNumber
The number of the cover page you want to print.

doneDrawingCoverPages
A Boolean value that you set to true when you call the function for your
last cover page. Doing so allows the Standard Mail Package to release the
memory that it uses for drawing cover pages.

DESCRIPTION

Before you print or image a letter, you should include the mailers for that letter as cover

pages. The SMPDrawNthCoverPage function draws or images one cover page. You

must use the SMPPrepareCoverPages function first to prepare the cover pages and to

determine the total number of cover pages for a given letter. You call these functions

from within your drawing or imaging routine, and they draw to whatever graphics port

you provide. You can use these routines for printing, preparing an image of your letter to

be sent as electronic mail, or for display on the screen.

SPECIAL CONSIDERATIONS

The SMPDrawNthCoverPage function uses a number of calculations that are made by

the SMPPrepareCoverPages function. You must make sure that the mailer does not

change between the time you call these two functions.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SMPPrepareCoverPages function is described on page 3-107.

For the sequence of routines you must call to image a letter, see the description of the

image-drawing callback routine on page 3-123.

Parameter count Routine selector

$0004 $1265

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window

C H A P T E R 3

Standard Mail Package

3-110 Standard Mail Package Reference

Getting and Setting Information in the Mailer

You can use the functions in this section to determine the contents of the fields of a

mailer and to change the information in those fields without user interaction.

The SMPGetListItemInfo function (page 3-113) returns information from the

Recipients or Enclosures fields of any mailer. The SMPGetComponentInfo function

(page 3-111) returns information from any other field. Before calling either of these

functions, you call the SMPGetComponentSize function (described next) to determine

the size of the buffer to allocate.

You can put information into the fields of a mailer with the functions SMPSetSubject

(page 3-116), SMPSetFromIdentity (page 3-117), SMPAddAddress (page 3-118), and

SMPAddAttachment (page 3-119).

SMPGetComponentSize

The SMPGetComponentSize function returns the size of the buffer that would be

required to hold all of the information in a specific field of the mailer you specify.

pascal OSErr SMPGetComponentSize(WindowPtr window,

unsigned short whichMailer,

SMPMailerComponent whichField,

unsigned short *size);

window The window containing the mailer from which you want information.

whichMailer
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

whichField
The field from which you want to extract the information.

size A pointer to the number of bytes of data in the field you specified. For all
fields except the Recipients and Enclosures fields, you should allocate a
buffer of this size and call the SMPGetComponentInfo function to
obtain the contents of that field. The Recipients and Enclosures fields
might contain more data than it is practical to retrieve all at once; see the
description of the SMPGetListItemInfo function (page 3-113) for more
information.

DESCRIPTION

The SMPGetComponentSize function returns the number of bytes of data in any of the

fields in a mailer. You specify which field by using one of the following constants for the

whichField parameter: kSMPFrom, kSMPTo, kSMPRegarding, kSMPSendDateTime,

or kSMPAttachments.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-111

If you specify any other value for the whichField parameter, the function returns the

kSMPIllegalComponent result code.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to get the total number of

mailers for a given letter.

Use the SMPGetComponentInfo function (described next) to get data from any field

except the Recipients and Enclosures fields. Use the SMPGetListItemInfo function

(page 3-113) to get data from the Recipients and Enclosures fields.

All possible values for the SMPMailerComponent data type are shown on page 3-32.

SMPGetComponentInfo

The SMPGetComponentInfo function returns information from the From, Subject, and

Sent fields of a mailer.

pascal OSErr SMPGetComponentInfo(WindowPtr window,

unsigned short whichMailer,

SMPMailerComponent whichField,

void *buffer);

window The window containing the mailer from which you want information.

whichMailer
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

Parameter count Routine selector

$0007 $1277

noErr 0 No error
paramErr –50 Error in user parameter list
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalComponent –1918 Illegal value for whichField parameter

C H A P T E R 3

Standard Mail Package

3-112 Standard Mail Package Reference

whichField
The field from which you want to extract the information.

buffer A pointer to a buffer you provide into which the function places the
information you requested. Use the SMPGetComponentSize function to
determine what size to make this buffer.

DESCRIPTION

The SMPGetComponentInfo function returns information from a mailer. You specify

which field by using one of the following constants for the whichField parameter:

kSMPFrom (for the From field), kSMPRegarding (for the Subject field), or

kSMPSendDateTime (for the Sent field).

If you specify any other value for the whichField parameter, the function returns the

kSMPIllegalComponent result code.

If you request information from the Subject field, then the function returns an RString

structure containing the text of the field.

If you request information from the From field of a draft mailer, the function returns an

AuthIdentity structure identifying the sender, followed by an RString structure

containing the text in the From field. If you request information from the From field of a

received mailer, the function returns an OCEPackedRecipient structure containing the

address of the sender. Only the top mailer in a mailer set can be a draft mailer; use the

hasBeenReceived field of the SMPMailerState structure to determine whether the

top mailer has been received.

If you request information from the Date field of the mailer, then the function returns a

MailTime structure. The time is defined with respect to the local computer that records

it. The offset field in the MailTime structure corrects UTC time (also known as

Greenwich Mean Time) for the local time zone. The offset field is in seconds; it is

positive if east of Greenwich and negative if west of Greenwich.

typedef struct MailTime {

UTCTime time; /* current UTC (GMT) time */

UTCOffset offset; /* in seconds from GMT */

};

typedef struct MailTime MailTime;

typedef unsigned long UTCTime; /* seconds since 1/1/1904 */

typedef long UTCOffset; /* correct for local time */

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-113

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to get the total number of

mailers for a given letter and to determine if the top mailer has been received.

Use the SMPGetComponentSize function (page 3-110) to determine the size of the

buffer to provide. Use the SMPGetListItemInfo function (described next) to get data

from the Recipients and Enclosures fields.

All possible values for the SMPMailerComponent data type are shown on page 3-32.

SMPGetListItemInfo

The SMPGetListItemInfo function returns information from the Recipients or

Enclosures fields of a mailer.

pascal OSErr SMPGetListItemInfo(WindowPtr window,

unsigned short whichMailer,

SMPMailerComponent whichField,

void *buffer,

unsigned long bufferLength,

unsigned short startItem,

unsigned short *itemCount,

unsigned short *nextItem,

Boolean *more);

window The window containing the mailer from which you want information.

whichMailer
The sequence number of the mailer from which you want information.
The original mailer for the letter is number 1, and each forwarding mailer
is numbered sequentially.

whichField
The field from which you want information; either kSMPAttachments or
kSMPTo.

Parameter count Routine selector

$0007 $1278

noErr 0 No error
paramErr –50 Error in user parameter list
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalComponent –1918 Illegal value for whichField parameter

C H A P T E R 3

Standard Mail Package

3-114 Standard Mail Package Reference

buffer A pointer to a buffer you provide to hold the information returned by the
function.

bufferLength
The length, in bytes, of the buffer you are providing.

startItem The sequence number of the first address or enclosure that the function
should return. Sequence numbers start with 0. When you call the
SMPGetListItemInfo function and there is insufficient space in the
buffer you provide to hold all of the remaining items, the function
returns, in the nextItem parameter, the sequence number of the next
item. Use that number for the startItem parameter the next time you
call the function. If there is insufficient space in the buffer to hold even
one item, the number the function returns in the nextItem parameter is
the same as the number you put in the startItem parameter. In that
case, you must increase the buffer size before calling the function again.

itemCount A pointer to the number of items that the function has placed in the
buffer. If the buffer is too small to hold the item you specify in the
startItem parameter, then the itemCount parameter returns 0, and the
more parameter returns true. If you specify nil for the buffer
parameter and 0 for the bufferLength parameter, the itemCount
parameter returns a pointer to the total number of items in the mailer
field.

nextItem A pointer to the sequence number of the next item to be returned. If the
more parameter returns true, set the startItem parameter to the
number returned in the nextItem parameter and call the function again.

more A pointer to a Boolean value returned by the function indicating whether
there is more information to be returned. If your buffer was not large
enough to hold all of the requested data, the function sets this parameter
to true and returns, in the nextItem parameter, the sequence number of
the next item to be returned.

DESCRIPTION

Before you call the SMPGetListItemInfo function, call the SMPGetComponentSize

function with a value of kSMPTo or kSMPAttachments for the whichField parameter.

The SMPGetComponentSize function returns the total number of bytes of storage space

required to hold all of the information you requested. You can then allocate a buffer to

hold the data returned by the SMPGetListItemInfo function. If you can’t (or don’t

want to) provide a buffer large enough to hold all of the information at once, you can

allocate a smaller buffer.

If you cannot allocate a buffer large enough to hold all of the items at once, the function

returns the sequence number of the next item in the nextItem parameter and it returns

true for the more parameter. If the buffer is not large enough to hold even one item, the

sequence number returned in the nextItem parameter is the same as the number you

passed in the startItem parameter. You can then increase the size of your buffer if

necessary, set the startItem parameter to the number just returned in the nextItem

parameter, and call the function again.

You can specify either kSMPTo or kSMPAttachments for the whichField parameter.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-115

If you request information from the Recipients field, for each address the function

returns a short value indicating the type of address followed by an

OCEPackedRecipient structure containing the address. The address type can be any

of the following values:

enum {

kSMPToAddress = kMailToBit,

kSMPCCAddress = kMailCcBit,

kSMPBCCAddress = kMailBccBit

};

typedef MailAttributeID SMPAddressType;

If you request information from the Enclosures field, the function returns a file system

specification structure (FSSpec data type) identifying the letter’s enclosure folder. You

can then use File Manager routines to determine the contents of that folder.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to get the total number of

mailers for a given letter.

Use the SMPGetComponentSize function (page 3-110) to determine the size of the

buffer to provide.

Use the SMPGetComponentInfo function (page 3-111) to get data from mailer fields

other than the Recipients and Enclosures fields.

Parameter count Routine selector

$0010 $1279

noErr 0 No error
paramErr –50 Error in user parameter list
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPIllegalComponent –1918 Illegal value for whichField parameter

C H A P T E R 3

Standard Mail Package

3-116 Standard Mail Package Reference

SMPSetSubject

The SMPSetSubject function specifies the subject string for the top mailer in the

window you specify.

pascal OSErr SMPSetSubject(WindowPtr window,

const RString *text);

window The window containing the mailer.

text A pointer to the subject string you want to place in the mailer.

DESCRIPTION

The Standard Mail Package provides a user interface that lets a user enter a subject string

in a mailer. You can use the SMPSetSubject function to set the subject string directly

from your application. You can use this function, for example, to place an initial, default

subject string in the subject field of a new mailer.

The SMPSetSubject function sets only the string in the most recent mailer for the

window you specify, and then only if it is a draft mailer (that is, if it is not a received

mailer). You can use the hasBeenReceived field of the SMPMailerState structure (a

parameter of the SMPGetMailerState function) to determine whether the mailer is a

draft mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to determine if the top

mailer is for a received letter.

Parameter count Routine selector

$0004 $126B

noErr 0 No error
paramErr –50 Error in user parameter list
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPSubjectTooBig –1925 Subject string exceeds 127 characters

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-117

SMPSetFromIdentity

The SMPSetFromIdentity function sets the authentication identity for the sender of a

letter.

pascal OSErr SMPSetFromIdentity(WindowPtr window,

AuthIdentity from);

window The window containing the mailer.

from The authentication identity you want to use for that mailer. Specify 0 to
use the identity of the most recently authenticated user.

DESCRIPTION

The SMPSetFromIdentity function lets you change the contents of the From field of a

mailer from within your application. The SMPSetFromIdentity function modifies

only the most recent mailer in the specified window, and then only if it is not a received

mailer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SDPPromptForID function in the chapter “Standard Catalog Package” in this

book to obtain an authentication identity.

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to determine if the top

mailer is for a received letter.

Parameter count Routine selector

$0004 $126C

noErr 0 No error
kOCEUnknownID –1567 Identity passed is not valid
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited

C H A P T E R 3

Standard Mail Package

3-118 Standard Mail Package Reference

SMPAddAddress

The SMPAddAddress function adds an address to the Recipients field of a mailer.

pascal OSErr SMPAddAddress(WindowPtr window,

SMPAddressType addrType,

OCEPackedRecipient *address);

window The window containing the mailer.

addrType The type of address you want to add. You can specify the value
kSMPToAddress to add a primary addressee, or kSMPCCAddress to add
a “copy to” addressee.

address The address that you want to add to the mailer.

DESCRIPTION

The Standard Mail Package provides a user interface that lets a user enter an address in

the Recipients field of a mailer. You can use the SMPAddAddress function to add an

address directly from your application. You can use this function, for example, to place

an initial, default address in the Recipients field of a reply mailer. If you specify an

address type of kSMPCCAddress, the mailer flags the address as a “copy to” address

(see Figure 3-3 on page 3-5). The values of the SMPAddressType data type are defined

as follows:

enum {

kSMPToAddress = kMailToBit,

kSMPCCAddress = kMailCcBit,

kSMPBCCAddress = kMailBccBit

};

typedef MailAttributeID SMPAddressType;

The SMPAddAddress function adds addresses only to the most recent mailer in the

specified window, and then only if it is not a received mailer. You can use the

hasBeenReceived field of the SMPMailerState structure (a parameter of the

SMPGetMailerState function) to determine whether the top mailer has been received.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0005 $126D

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-119

RESULT CODES

SEE ALSO

You can use the SMPGetMailerState function (page 3-69) to determine if the top

mailer is for a received letter.

You can use the SMPGetListItemInfo function (page 3-113) to get the addresses that

the user entered in the Recipients field of a mailer.

SMPAddAttachment

The SMPAddAttachment function adds a disk file as an enclosure to a letter.

pascal OSErr SMPAddAttachment(WindowPtr window,

const FSSpec *attachment);

window The window containing the mailer.

attachment
A pointer to the file system specification structure of the disk file that you
want to add as an enclosure.

DESCRIPTION

The Standard Mail Package provides a user interface that lets a user add a disk file or

folder as an enclosure to a letter. You can use the SMPAddAttachment function to add

an enclosure directly from your application in case you want to provide an Add

Enclosures command. The SMPAddAttachment function adds enclosures only to the

most recent mailer in the specified window, and then only if it is not a received mailer.

You can use the hasBeenReceived field of the SMPMailerState structure (a

parameter of the SMPGetMailerState function) to determine whether the top mailer

has been received.

Use the SMPAddMainEnclosure function to add a main enclosure to the letter. The

mailer does not display the contents of the letter’s main enclosure in the Enclosures field.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

The enclosure is not actually added until well after this function has returned. Therefore,

after calling the SMPAddAttachment function, you should call the WaitNextEvent

noErr 0 No error
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPAddressAlreadyInList –1922 Specified address is in Recipients field

C H A P T E R 3

Standard Mail Package

3-120 Standard Mail Package Reference

routine so that you yield time to the Finder to process Apple events while in the

background. You must wait until the Standard Mail Package has finished copying the

enclosure into the letter before you add anything else to the letter or try to send or save

the letter. The SMPMailerEvent function uses the kSMPCreateCopyWindowBit and

kSMPDisposeCopyWindowBit status bits to inform you of the progress of the copy

operation.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SMPAttachDialog function (described next) to display a dialog box

that lets the user add an enclosure to a mailer.

You can use the SMPGetMailerState function (page 3-69) to determine if the top

mailer is for a received letter.

You can use the SMPGetListItemInfo function (page 3-113) to list the enclosures that

the user entered in the Enclosures field of a mailer.

Call the SMPMailerEvent function (page 3-63) to handle mailer events and to

determine the status of the copy operation that occurs when you call the

SMPAddMainEnclosure function.

Use the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a letter.

SMPAttachDialog

The SMPAttachDialog function displays a dialog box that lets the user add a disk file

as an enclosure to a letter.

pascal OSErr SMPAttachDialog (WindowPtr window);

window The window containing the mailer.

Parameter count Routine selector

$0004 $126E

noErr 0 No error
fnfErr –43 File not found
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPTooManyEnclosures –1928 More than 50 total files and folders

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-121

DESCRIPTION

The Standard Mail Package provides a dialog box that lets a user add a disk file or folder

as an enclosure to a letter (Figure 3-8). You can use the SMPAttachDialog function to

display this same dialog box as an easy way to provide an Add Enclosures command.

The SMPAttachDialog function adds enclosures only to the most recent mailer in the

specified window, and then only if it is not a received mailer. You can use the

hasBeenReceived field of the SMPMailerState structure (a parameter of the

SMPGetMailerState function) to determine whether the top mailer is editable.

Figure 3-8 Add Enclosure dialog box

Use the SMPAddMainEnclosure function to add a main enclosure to the letter. The

mailer does not display the contents of the letter’s main enclosure in the Enclosures field.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

The enclosure is not actually added until well after this function has returned. Therefore,

after calling the SMPAttachDialog function, you should call the WaitNextEvent

routine so that you yield time to the Finder to process Apple events while in the

background. You must wait until the Standard Mail Package has finished copying the

enclosure into the letter before you add anything else to the letter or try to send or save

the letter. The SMPMailerEvent function uses the kSMPCreateCopyWindowBit and

kSMPDisposeCopyWindowBit status bits to inform you of the progress of the copy

operation.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0002 $1276

C H A P T E R 3

Standard Mail Package

3-122 Standard Mail Package Reference

RESULT CODES

SEE ALSO

You can use the SMPAddAttachment function (page 3-119) if you want to provide your

own interface that lets the user add an enclosure to a mailer.

You can use the SMPGetMailerState function (page 3-69) to determine if the top

mailer is for a received letter and is therefore uneditable.

Call the SMPMailerEvent function (page 3-63) to handle mailer events and to

determine the status of the copy operation that occurs when you call the

SMPAddMainEnclosure function.

Use the SMPAddMainEnclosure function (page 3-90) to add a main enclosure to a letter.

Application-Defined Functions

This section describes the callback routines that you may provide for Standard Mail

Package functions. Your MyPrepareMailerForDrawing routine restores your window

port to a standard state so the Standard Mail Package can draw into it. Your

MyDrawImage routine (page 3-123) images a document for the Standard Mail Package.

The Standard Mail Package calls your MyFrontWindowCB routine (page 3-124) to

determine which window is active when processing a key-down event.

MyPrepareMailerForDrawing

You may need to provide a MyPrepareMailerForDrawing routine to the

SMPNewMailer function to make sure that the Standard Mail Package can draw a mailer

in your window.

pascal void MyPrepareMailerForDrawing (WindowPtr window,

long clientData);

window A pointer to the window into which the Standard Mail Package wants to
draw.

clientData
Reserved for your use. You specify this value when you call the
SMPNewMailer function, and that function passes the value unaltered to
your callback routine.

noErr 0 No error
userCanceledErr –128 User clicked Cancel button
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPTooManyEnclosures –1928 More than 50 total files and folders

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-123

DESCRIPTION

If you ever change the clip region, coordinates, or other aspects of your window’s

graphics port, you must provide a drawing-preparation routine that restores the window

to its original state. The Standard Mail Package calls this routine before it draws into

your window to add a new mailer or alter an existing mailer. You provide a pointer to

your drawing-preparation routine when you call the SMPNewMailer function, the

SMPMailerReply function, and the SMPOpenLetter function.

SPECIAL CONSIDERATIONS

You must make sure that your code for this routine is in a locked segment.

The SMPNewMailer function preserves your application’s A5 world when it calls your

drawing-preparation routine. Therefore, you have access to your application’s global

variables from this routine.

SEE ALSO

The SMPNewMailer function is described on page 3-46.

The SMPMailerReply function is described on page 3-51.

The SMPOpenLetter function is described on page 3-94.

MyDrawImage

The MyDrawImage function is a callback routine you must provide if you call the

SMPImage function or if you specify kSMPSendAsImageMask for the sendAs field of

the parameter block used by the SMPSendLetter function.

pascal void MyDrawImage (long refcon, Boolean inColor);

refcon A reference constant that you can use for your own purposes.

inColor A Boolean value that indicates whether the Standard Mail Package is
providing a color graphics port to your image-drawing routine. This
parameter is significant only in image-information structures passed to
image-drawing routines.

DESCRIPTION

You provide a pointer to your image-drawing routine in the drawImageProc parameter

when you call the SMPImage function and in the drawImageProc field of the

parameter block when you call the SMPSendLetter function. Your image-drawing

routine must call the SMPNewPage function before it draws each page of the document.

You should call the SMPImageErr function rather than the QDError function after each

QuickDraw routine you call. When you are finished imaging the document, just return.

C H A P T E R 3

Standard Mail Package

3-124 Standard Mail Package Reference

If the user has color QuickDraw and you specified true for the supportsColor

parameter of the SMPImage function or the supportsColor field of the parameter

block used by SMPSendLetter, then the Standard Mail Package provides you with a

color graphics port when it calls your image-drawing routine.

If you are imaging a letter that includes one or more mailers, you should image the

mailers as cover pages before imaging the document. To do so, your image-drawing

routine should first call the SMPPrepareCoverPages function to prepare the cover

pages and to determine the total number of cover pages. Then for each cover page, you

should call the SMPNewPage function and then the SMPDrawNthCoverPage function.

SPECIAL CONSIDERATIONS

If you change the graphics port within your image-drawing routine, you must change it

back before calling the SMPNewPage or SMPImageErr functions.

SEE ALSO

The SMPSendLetter function is described on page 3-37. The SMPImage function is

described on page 3-88.

You must call the SMPNewPage function (page 3-41) before you draw each page.

You should call the SMPImageErr function (page 3-41) after each QuickDraw routine

you call.

To prepare cover pages for a mailer, you must call the SMPPrepareCoverPages

function (page 3-107). To draw each cover page, you call the SMPDrawNthCoverPage

function (page 3-108).

You can call the GetPort routine to determine the current graphics port. The GetPort

routine is described in Inside Macintosh: Imaging With QuickDraw.

MyFrontWindowCB

The MyFrontWindowCB function is a callback routine you can provide with the

SMPMailerEvent function. If you provide this function, the Standard Mail Package

calls your MyFrontWindowCB function to determine which is the active window when

processing a key-down event.

pascal WindowPtr MyFrontWindowCB (long clientData);

clientData
Reserved for your use. You specify this value when you call the
SMPMailerEvent function, and that function passes the value unaltered
to your callback routine.

C H A P T E R 3

Standard Mail Package

Standard Mail Package Reference 3-125

DESCRIPTION

You can provide a pointer to your front-window routine when you call the

SMPMailerEvent function. Your front-window routine returns a pointer to the window

that you want the SMPMailerEvent function to treat as the frontmost window. You

might use this callback routine, for example, if your application displays a status dialog

box in front of your application’s main window on the screen, but you want any

key-down events to apply to your application’s main window. If, as is the case with most

applications, you do not have any windows in front of your main application window,

specify nil for the frontWindowCB parameter of the SMPMailerEvent function. In

that case the Standard Mail Package uses the Window Manager’s FrontWindow routine

to determine the frontmost window.

SPECIAL CONSIDERATIONS

The SMPMailerEvent function preserves your application’s A5 world when it calls

your front-window routine. Therefore, you have access to your application’s global

variables from this routine.

SEE ALSO

The SMPMailerEvent function is described on page 3-63.

MySendOptionsFilterProc

The send-options filter procedure is a routine you can provide when you call the

SMPSendOptionsDialog function. This routine extends the send-options dialog box.

pascal Boolean MySendOptionsFilterProc (DialogPtr theDialog,

 EventRecord* theEvent,

short itemHit,

long clientData);

theDialog A pointer to the dialog structure for the send-options dialog box.

theEvent The event that was just received by the send-options dialog box.

itemHit If the dialog box has just received a mouse-down event, this parameter
indicates the number of the dialog item in which the mouse-down event
occurred.

clientData
A constant reserved for your use. You specify this value when you call the
SMPSendOptionsDialog function.

C H A P T E R 3

Standard Mail Package

3-126 Standard Mail Package Reference

DESCRIPTION

If you provide a filter routine when you call the SMPSendOptionsDialog function, the

Standard Mail Package calls your filter routine each time it receives an event for the

send-options dialog box. If your filter routine returns true, the Standard Mail Package

assumes you handled the event. If your filter routine returns false, the Standard Mail

Package handles the event normally. You can alter the event before returning false.

To allow your filter routine to add new items to the send-options dialog box and to clean

up before it removes the dialog box, the Standard Mail Package sends your function two

pseudoevents:

enum {

kSMPSendOptionsStart = -1,

kSMPSendOptionsEnd = -2

};

When your filter routine receives the kSMPSendOptionsStart event, you can call the

CountDITL routine to determine the number of items already in the dialog box. You can

then call the AppendDITL function to add new items to the dialog box, as follows:

AppendDITL(theDialog, myDITL, appendDITLBottom)

The parameter myDITL describes the new items you wish to add to the dialog box. When

you begin numbering new items, increment by 1 the number returned by the

CountDITL routine. When your filter routine receives the kSMPSendOptionsStart

event, you can also allocate memory, initialize menus, and so forth.

Immediately before closing the send-options dialog box, the Standard Mail Package

sends a kSMPSendOptionsEnd event to your filter routine. You should then deallocate

any memory that you allocated earlier.

SPECIAL CONSIDERATIONS

Do not make any assumptions about the number or position of the standard items in the

send-options dialog box, as Apple Computer, Inc., reserves the right to change this

dialog box at any time.

SEE ALSO

The SMPSendOptionsDialog function is described on page 3-73.

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-127

Summary of the Standard Mail Package

C Summary

Constants and Data Types

#define gestaltSMPMailerVersion'malr'

#define gestaltSMPSPSendLetterVersion'spsl'

#define kSMPNativeFormatName'natv'

#define typeLetterSpec'lttr'

/* wildcard used for filtering letter types */

enum {

FilterAnyLetter='ltr*',

FilterAppleLetterContent='ltc*',

FilterImageContent='lti*'

};

/* SMPPSendAs values. You may add the following values together to determine

how the file is sent, but you may not set both kSMPSendAsEnclosureMask and

kSMPSendFileOnlyMask. */

enum {

kSMPSendAsEnclosureBit, /* appears as letter with enclosures */

kSMPSendFileOnlyBit, /* appears as a file in mailbo. */

kSMPSendAsImageBit /* letter includes image of content */

};

/* values of SMPPSendAs */

enum {

kSMPSendAsEnclosureMask = 1<<kSMPSendAsEnclosureBit,

kSMPSendFileOnlyMask = 1<<kSMPSendFileOnlyBit,

kSMPSendAsImageMask = 1<<kSMPSendAsImageBit

};

typedef Byte SMPPSendAs;

C H A P T E R 3

Standard Mail Package

3-128 Summary of the Standard Mail Package

enum {

kSMPAppMustHandleEventBit,

kSMPAppShouldIgnoreEventBit,

kSMPContractedBit,

kSMPExpandedBit,

kSMPMailerBecomesTargetBit,

kSMPAppBecomesTargetBit,

kSMPCursorOverMailerBit,

kSMPCreateCopyWindowBit,

kSMPDisposeCopyWindowBit

};

/* values of SMPMailerResult */

enum {

kSMPAppMustHandleEventMask = 1<<kSMPAppMustHandleEventBit,

kSMPAppShouldIgnoreEventMask = 1<<kSMPAppShouldIgnoreEventBit,

kSMPContractedMask = 1<<kSMPContractedBit,

kSMPExpandedMask = 1<<kSMPExpandedBit,

kSMPMailerBecomesTargetMask = 1<<kSMPMailerBecomesTargetBit,

kSMPAppBecomesTargetMask = 1<<kSMPAppBecomesTargetBit,

kSMPCursorOverMailerMask = 1<<kSMPCursorOverMailerBit,

kSMPCreateCopyWindowMask = 1<<kSMPCreateCopyWindowBit,

kSMPDisposeCopyWindowMask = 1<<kSMPDisposeCopyWindowBit

};

typedef unsigned long SMPMailerResult;

/* values of SMPMailerComponent*/

enum {

kSMPOther = -1,

kSMPFrom = 32,

kSMPTo = 20,

kSMPRegarding = 22,

kSMPSendDateTime = 29,

kSMPAttachments = 26,

kSMPAddressOMatic = 16

};

typedef unsigned long SMPMailerComponent;

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-129

enum {

kSMPToAddress = kMailToBit,

kSMPCCAddress = kMailCcBit,

kSMPBCCAddress = kMailBccBit

};

typedef MailAttributeID SMPAddressType;

enum {

kSMPUndoCommand,

kSMPCutCommand,

kSMPCopyCommand,

kSMPPasteCommand,

kSMPClearCommand,

kSMPSelectAllCommand

};

typedef unsigned short SMPEditCommand;

enum {

kSMPUndoDisabled,

kSMPAppMayUndo,

kSMPMailerUndo

};

typedef unsigned short SMPUndoState;

/* SMPSendFormatMask: Bitfield indicating which combinations of formats are

included in, should be included in, or can be included in a letter. */

enum {

kSMPNativeBit,

kSMPImageBit,

kSMPStandardInterchangeBit

};

/* values of SMPSendFormatMask */

enum {

kSMPNativeMask = 1<<kSMPNativeBit,

kSMPImageMask = 1<<kSMPImageBit,

kSMPStandardInterchangeMask = 1<<kSMPStandardInterchangeBit

};

typedef unsigned long SMPSendFormatMask;

C H A P T E R 3

Standard Mail Package

3-130 Summary of the Standard Mail Package

/* pseudo-events passed to the client's filter proc for initialization and

cleanup */

enum {

kSMPSendOptionsStart = -1,

kSMPSendOptionsEnd = -2

};

enum {

kSMPSave,

kSMPSaveAs,

kSMPSaveACopy

};

typedef unsigned short SMPSaveType;

/* values of MailSegmentType */

enum {

kMailInvalidSegmentType = 0,

kMailTextSegmentType = 1,

kMailPictSegmentType = 2,

kMailSoundSegmentType = 3,

kMailStyledTextSegmentType = 4,

kMailMovieSegmentType = 5

};

typedef unsigned short MailSegmentType;

/* values of MailBlockMode */

enum {

kMailFromStart = 1, /* offset calculated from start of block */

kMailFromLEOB = 2, /* offset calculated from end of block */

kMailFromMark = 3 /* offset calculated from current mark */

};

typedef short MailBlockMode;

struct SMPRecipientDescriptor

{

struct SMPRecipientDescriptor *next; /* pointer to next element */

OSErr result; /* result code */

OCEPackedRecipient *recipient; /* packed recipient address */

unsigned long size; /* size of recipient address */

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-131

MailRecipient theAddress; /* unpacked recipient address */

RecordID theRID; /* record ID of recipient */

};

typedef struct SMPRecipientDescriptor SMPRecipientDescriptor;

typedef SMPRecipientDescriptor *SMPRecipientDescriptorPtr;

struct SMPEnclosureDescriptor

{

struct SMPEnclosureDescriptor *next; /* pointer to next element */

OSErr result; /* result code */

FSSpec fileSpec; /* file specifier of

enclosure */

OSType fileCreator; /* creator of enclosure */

OSType fileType; /* file type of enclosure */

};

typedef struct SMPEnclosureDescriptor SMPEnclosureDescriptor;

typedef SMPEnclosureDescriptor *SMPEnclosureDescriptorPtr;

struct LetterDescriptor {

Boolean onDisk;

union {

FSSpec fileSpec;

LetterSpec mailboxSpec;

}u;

};

typedef struct LetterDescriptor LetterDescriptor;

struct SMPLetterPB

{

OSErr result; /* function result */

RStringPtr subject; /* subject of letter */

AuthIdentity senderIdentity;/* identity of sender */

SMPRecipientDescriptorPtr toList; /* list of addressees */

SMPRecipientDescriptorPtr ccList; /* list of cc addressees */

SMPRecipientDescriptorPtr bccList; /* list of bcc addressees */

ScriptCode script; /* script code for language */

Size textSize; /* length of body data */

Ptr textBuffer; /* body of the letter */

SMPPSendAs sendAs; /* file, enclosure, or image */

Byte padByte; /* reserved */

SMPEnclosureDescriptorPtr enclosures; /* files to be enclosed */

SMPDrawImageProcPtr drawImageProc; /* your imaging routine */

C H A P T E R 3

Standard Mail Package

3-132 Summary of the Standard Mail Package

long imageRefCon; /* for your use */

Boolean supportsColor; /* true for a color grafPort */

};

typedef struct SMPLetterPB SMPLetterPB;

typedef SMPLetterPB *SMPLetterPBPtr;

struct SMPCloseOptions {

Boolean moveToTrash;

Boolean addTag;

RString32 tag;

};

typedef struct SMPCloseOptions SMPCloseOptions;

typedef SMPCloseOptions *SMPCloseOptionsPtr;

struct SMPMailerState {

short mailerCount;

short currentMailer;

Point upperLeft;

Boolean hasBeenReceived;

Boolean isTarget;

Boolean isExpanded;

Boolean canMoveToTrash;

Boolean canTag;

Byte padByte2;

unsigned long changeCount;

SMPMailerComponent targetComponent;

Boolean canCut;

Boolean canCopy;

Boolean canPaste;

Boolean canClear;

Boolean canSelectAll;

Byte padByte3;

SMPUndoState undoState;

Str63 undoWhat;

};

typedef struct SMPMailerState SMPMailerState;

struct SMPSendOptions {

Boolean signWhenSent;

IPMPriority priority;

};

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-133

typedef struct SMPSendOptions SMPSendOptions;

typedef SMPSendOptions *SMPSendOptionsPtr, **SMPSendOptionsHandle;

/* SMPSendFormat: Structure describing the format of a letter. If

kSMPNativeMask bit is set, the whichNativeFormat field indicates which of the

client-defined formats to use. */

struct SMPSendFormat {

SMPSendFormatMask whichFormats;

short whichNativeFormat; /* zero-based */

};

typedef struct SMPSendFormat SMPSendFormat;

struct LetterSpec

{

unsigned long spec[3];

};

struct SMPLetterInfo {

OSType letterCreator;

OSType letterType;

RString32 subject;

RString32 sender;

};

typedef struct SMPLetterInfo SMPLetterInfo;

typedef struct MailTime {

UTCTime time; /* current UTC (GMT) time */

UTCOffset offset; /* in seconds from GMT */

};

typedef struct MailTime MailTime;

typedef unsigned long UTCTime; /* seconds since 1/1/1904 */

typedef long UTCOffset; /* correct for local time */

/* pointers to functions for application-defined callback functions */

typedef pascal void (*SMPDrawImageProcPtr)(long refcon, Boolean inColor);

typedef pascal WindowPtr (*FrontWindowProcPtr) (long clientData);

typedef pascal void (*PrepareMailerForDrawingProcPtr) (WindowPtr window,

long clientData);

C H A P T E R 3

Standard Mail Package

3-134 Summary of the Standard Mail Package

typedef pascal Boolean (*SendOptionsFilterProc) (DialogPtr theDialog,

EventRecord* theEvent,

short itemHit,

long clientData);

Standard Mail Package Functions

Send-Letter Functions

pascal OSErr SMPSendLetter (SMPLetterPBPtr theLetter);

pascal OSErr SMPNewPage (OpenCPicParams *newHeader);

pascal OSErr SMPImageErr (void);

pascal OSErr SMPResolveToRecipient
(PackedDSSpecPtr dsSpec,
SMPRecipientDescriptorPtr *recipientList,
AuthIdentity identity);

Providing Mailers in Your Windows

pascal OSErr SMPInitMailer (long mailerVersion);

pascal OSErr SMPNewMailer (WindowPtr window,
Point upperLeft,
Boolean canContract,
Boolean initiallyExpanded,
AuthIdentity identity,
const PrepareMailerForDrawingProcPtr
 prepareMailerForDrawingCB,
long clientData);

pascal OSErr SMPGetDimensions
(short *width,
short *contractedHeight,
short *expandedHeight);

pascal OSErr SMPMailerForward
(WindowPtr window,
AuthIdentity from);

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-135

pascal OSErr SMPMailerReply
(WindowPtr originalLetter,
WindowPtr newLetter,
Boolean replyToAll,
Point upperLeft,
Boolean canContract,
Boolean initiallyExpanded,
AuthIdentity identity,
const PrepareMailerForDrawingProcPtr
prepareMailerForDrawingCB,
long clientData);

pascal OSErr SMPGetTabInfo (SMPMailerComponent *firstTab,
SMPMailerComponent *lastTab);

pascal OSErr SMPBecomeTarget
(WindowPtr window,
Boolean becomeTarget,
SMPMailerComponent whichField);

pascal OSErr SMPExpandOrContract
(WindowPtr window,
Boolean expand);

pascal OSErr SMPMoveMailer (WindowPtr window,
short dh,
short dv);

pascal OSErr SMPTagDialog (WindowPtr window,
RString32 *theTag);

pascal OSErr SMPPrepareToClose
(WindowPtr window);

pascal OSErr SMPCloseOptionsDialog
(WindowPtr window,
SMPCloseOptionsPtr closeOptions);

pascal OSErr SMPDisposeMailer
(WindowPtr window,
SMPCloseOptionsPtr closeOptions);

Handling Events in Mailers

pascal OSErr SMPMailerEvent
(const EventRecord *event,
SMPMailerResult *whatHappened,
const FrontWindowProcPtr frontWindowCB,
long clientData);

pascal OSErr SMPMailerEditCommand
(WindowPtr window,
SMPEditCommand command,
SMPMailerResult *whatHappened);

C H A P T E R 3

Standard Mail Package

3-136 Summary of the Standard Mail Package

pascal OSErr SMPGetMailerState
(windowPtr window,
SMPMailerState *itsState);

pascal OSErr SMPClearUndo (WindowPtr window);

pascal OSErr SMPDrawMailer (WindowPtr window);

Sending and Saving Mail

pascal OSErr SMPSendOptionsDialog
(WindowPtr window,
Str255 documentName,
StringPtr nativeFormatNames[],
unsigned short nameCount,
SMPSendFormatMask canSend,
SMPSendFormat *currentFormat,
SendOptionsFilterProc filterProc,
long clientData,
SMPSendFormat *shouldSend,
SMPSendOptionsPtr sendOptions);

pascal OSErr SMPContentChanged
(WindowPtr window);

pascal OSErr SMPBeginSave (WindowPtr window,
const FSSpec *diskLetter,
OSType creator,
OSType filetype,
SMPSaveType saveType,
Boolean *mustAddContent);

pascal OSErr SMPEndSave (WindowPtr window,
Boolean okToSave);

pascal OSErr SMPBeginSend (WindowPtr window,
OSType creator,
OSType fileType,
SMPSendOptionsPtr sendOptions,
Boolean *mustAddContent);

pascal OSErr SMPPrepareToChange
(WindowPtr window);

pascal OSErr SMPEndSend (WindowPtr window,
Boolean okToSend);

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-137

pascal OSErr SMPAddContent (WindowPtr window,
MailSegmentType segmentType,
Boolean appendFlag,
void *buffer,
unsigned long bufferSize,
StScrpRec *textScrap,
Boolean startNewScript,
ScriptCode script);

pascal OSErr SMPImage (WindowPtr window,
SMPDrawImageProcPtr drawImageProc,
long imageRefCon,
Boolean supportsColor);

pascal OSErr SMPAddMainEnclosure
(WindowPtr window,
const FSSpec *enclosure);

pascal OSErr SMPAddBlock (WindowPtr window,
const OCECreatorType *blockType,
Boolean append,
void *buffer,
unsigned long bufferSize,
MailBlockMode mode,
unsigned long offset);

Reading Mail

pascal OSErr SMPGetLetterInfo
(LetterSpec *mailboxSpec,
SMPLetterInfo *info);

pascal OSErr SMPOpenLetter (const LetterDescriptor *letter,
WindowPtr window,
Point upperLeft,
Boolean canContract,
Boolean initiallyExpanded,
const PrepareMailerForDrawingProcPtr
 prepareMailerForDrawingCB,
long clientData);

pascal OSErr SMPGetNextLetter
(OSType *typesList,
short numTypes,
LetterDescriptor *adjacentLetter);

C H A P T E R 3

Standard Mail Package

3-138 Summary of the Standard Mail Package

pascal OSErr SMPReadContent
(WindowPtr window,
MailSegmentMask segmentTypeMask,
void *buffer,
unsigned long bufferSize,
unsigned long *dataSize,
StScrpRec *textScrap,
ScriptCode *script,
MailSegmentType *segmentType,
Boolean *endOfScript,
Boolean *endOfSegment,
Boolean *endOfContent,
long *segmentLength,
long *segmentID);

pascal OSErr SMPGetFontNameFromLetter
(WindowPtr window,
short fontNum,
str255 fontName,
Boolean doneWithFontTable);

pascal OSErr SMPGetMainEnclosureFSSpec
(WindowPtr window,
FSSpec *enclosureDir);

pascal OSErr SMPEnumerateBlocks
(WindowPtr window,
unsigned short startIndex,
void *buffer,
unsigned long bufferSize,
unsigned long *dataSize,
unsigned short *nextIndex,
Boolean *more);

pascal OSErr SMPReadBlock (WindowPtr window,
const OCECreatorType *blockType,
unsigned short blockIndex,
void *buffer,
unsigned long bufferSize,
unsigned long dataOffset,
unsigned long *dataSize,
Boolean *endOfBlock,
unsigned long *remaining);

Printing Mailers

pascal OSErr SMPPrepareCoverPages
(windowPtr window,
short *pageCount);

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-139

pascal OSErr SMPDrawNthCoverPage
(WindowPtr window,
short pageNumber,
Boolean doneDrawingCoverPages);

Getting and Setting Information in the Mailer

pascal OSErr SMPGetComponentSize
(WindowPtr window,
unsigned short whichMailer,
SMPMailerComponent whichField,
unsigned short *size);

pascal OSErr SMPGetComponentInfo
(WindowPtr window,
unsigned short whichMailer,
SMPMailerComponent whichField,
void *buffer);

pascal OSErr SMPGetListItemInfo
(WindowPtr window,
unsigned short whichMailer,
SMPMailerComponent whichField,
void *buffer,
unsigned long bufferLength,
unsigned short startItem,
unsigned short *itemCount,
unsigned short *nextItem,
Boolean *more);

pascal OSErr SMPSetSubject (WindowPtr window,
const RString *text);

pascal OSErr SMPSetFromIdentity
(WindowPtr window,
AuthIdentity from);

pascal OSErr SMPAddAddress (WindowPtr window,
SMPAddressType addrType,
OCEPackedRecipient *address);

pascal OSErr SMPAddAttachment
(WindowPtr window,
const FSSpec *attachment);

pascal OSErr SMPAttachDialog
(WindowPtr window);

C H A P T E R 3

Standard Mail Package

3-140 Summary of the Standard Mail Package

Application-Defined Functions

pascal void MyPrepareMailerForDrawing
(WindowPtr window,
long clientData);

pascal void MyDrawImage (long refcon, Boolean inColor);

pascal WindowPtr MyFrontWindowCB
(long clientData);

pascal Boolean MySendOptionsFilterProc
(DialogPtr theDialog,
EventRecord* theEvent,
short itemHit,
long clientData);

Pascal Summary

Constants

CONST

gestaltSMPMailerVersion = 'malr';

gestaltSMPSPSendLetterVersion = 'spsl';

kSMPNativeFormatName = 'natv';

typeLetterSpec = 'lttr';

{ wildcard used for filtering letter types }

FilterAnyLetter = 'ltr*';

FilterAppleLetterContent = 'ltc*';

FilterImageContent = 'lti*';

{ SMPPSendAs values. You may add the following values together to

determine how the file is sent, but you may not set both

kSMPSendAsEnclosureMask and kSMPSendFileOnlyMask. }

kSMPSendAsEnclosureBit = 0; { appears as letter with enclosures }

kSMPSendFileOnlyBit = 1; { appears as a file in mailbox }

kSMPSendAsImageBit = 2; { letter includes image of content }

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-141

{ values of SMPPSendAs }

kSMPSendAsEnclosureMask = $01; {1<<kSMPSendAsEnclosureBit}

kSMPSendFileOnlyMask = $02; {1<<kSMPSendFileOnlyBit}

kSMPSendAsImageMask = $04; {1<<kSMPSendAsImageBit}

kSMPAppMustHandleEventBit = 0;

kSMPAppShouldIgnoreEventBit = 1;

kSMPContractedBit = 2;

kSMPExpandedBit = 3;

kSMPMailerBecomesTargetBit = 4;

kSMPAppBecomesTargetBit = 5;

kSMPCursorOverMailerBit = 6;

kSMPCreateCopyWindowBit = 7;

kSMPDisposeCopyWindowBit = 8;

{ values of SMPMailerResult }

kSMPAppMustHandleEventMask = $00000001; {1<<kSMPAppMustHandleEventBit}

kSMPAppShouldIgnoreEventMask = $00000002; {1<<kSMPAppShouldIgnoreEventBit}

kSMPContractedMask = $00000004; {1<<kSMPContractedBit}

kSMPExpandedMask = $00000008; {1<<kSMPExpandedBit}

kSMPMailerBecomesTargetMask = $00000010; {1<<kSMPMailerBecomesTargetBit}

kSMPAppBecomesTargetMask = $00000020; {1<<kSMPAppBecomesTargetBit}

kSMPCursorOverMailerMask = $00000040; {1<<kSMPCursorOverMailerBit}

kSMPCreateCopyWindowMask = $00000080; {1<<kSMPCreateCopyWindowBit}

kSMPDisposeCopyWindowMask = $00000100; {1<<kSMPDisposeCopyWindowBit}

{ values of SMPMailerComponent }

kSMPOther = -1;

kSMPFrom = 32;

kSMPTo = 20;

kSMPRegarding = 22;

kSMPSendDateTime = 29;

kSMPAttachments = 26;

kSMPAddressOMatic = 16;

kSMPToAddress = kMailToBit;

kSMPCCAddress = kMailCcBit;

kSMPBCCAddress = kMailBccBit;

kSMPUndoCommand = 0;

kSMPCutCommand = 1;

kSMPCopyCommand = 2;

C H A P T E R 3

Standard Mail Package

3-142 Summary of the Standard Mail Package

kSMPPasteCommand = 3;

kSMPClearCommand = 4;

kSMPSelectAllCommand = 5;

kSMPUndoDisabled = 0;

kSMPAppMayUndo = 1;

kSMPMailerUndo = 2;

{ SMPSendFormatMask: Bitfield indicating which combinations of formats are

included in, should be included in, or can be included in a letter. }

kSMPNativeBit = 0;

kSMPImageBit = 1;

kSMPStandardInterchangeBit = 2;

{ values of SMPSendFormatMask }

kSMPNativeMask = $00000001; {1<<kSMPNativeBit}

kSMPImageMask = $00000002; {1<<kSMPImageBit}

kSMPStandardInterchangeMask = $00000004; {1<<kSMPStandardInterchangeBit}

{ pseudo-events passed to the client's filter proc for initialization and

cleanup }

kSMPSendOptionsStart= -1;

kSMPSendOptionsEnd= -2;

kSMPSave = 0;

kSMPSaveAs = 1;

kSMPSaveACopy = 2;

{ values of MailSegmentType }

kMailInvalidSegmentType= 0;

kMailTextSegmentType= 1;

kMailPictSegmentType= 2;

kMailSoundSegmentType= 3;

kMailStyledTextSegmentType= 4;

kMailMovieSegmentType= 5;

{ values of MailBlockMode }

kMailFromStart= 1;{ offset calculated from start of block }

kMailFromLEOB= 2; { offset calculated from end of block }

kMailFromMark= 3; { offset calculated from the current mark }

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-143

Data Types

TYPE

SMPSendFormatMask = LONGINT;

SMPSaveType = INTEGER;

SMPMailerResult = LONGINT;

SMPMailerComponent = LONGINT;

SMPAddressType = MailAttributeID;

SMPEditCommand = INTEGER;

SMPUndoState = INTEGER;

SMPPSendAs = Byte;

MailBlockMode = INTEGER;

MailSegmentType = INTEGER;

SMPRecipientDescriptor = RECORD

next: ^SMPRecipientDescriptor; { pointer to next element }

result: OSErr; { result code }

recipient: ^OCEPackedRecipient; { packed recipient address }

size: LONGINT; { size of recipient address }

theAddress: MailRecipient; { unpacked recipient address }

theRID: RecordID; { record ID of recipient }

END;

SMPRecipientDescriptorPtr = ^SMPRecipientDescriptor;

SMPEnclosureDescriptor = RECORD

next: ^SMPEnclosureDescriptor; { pointer to next element }

result: OSErr; { result code }

fileSpec: FSSpec; { file specifier of enclosure }

fileCreator: OSType; { creator of enclosure }

fileType: OSType; { file type of enclosure }

END;

SMPEnclosureDescriptorPtr = ^SMPEnclosureDescriptor;

C H A P T E R 3

Standard Mail Package

3-144 Summary of the Standard Mail Package

LetterDescriptor = RECORD

onDisk: BOOLEAN;

CASE INTEGER OF

1: (fileSpec: FSSpec);

2: (mailboxSpec: LetterSpec);

END;

SMPLetterPB = PACKED RECORD

result: OSErr; { function result }

subject: RStringPtr; { subject of letter }

senderIdentity:AuthIdentity; { identity of sender }

toList: SMPRecipientDescriptorPtr; { list of addressees }

ccList: SMPRecipientDescriptorPtr; { list of cc addressees }

bccList: SMPRecipientDescriptorPtr; { list of bcc addressees }

script: ScriptCode; { script code for language }

textSize: Size; { length of body data }

textBuffer: Ptr; { body of the letter }

sendAs: SMPPSendAs; { letter,enclosure, or image }

padByte: Byte; { reserved }

enclosures: SMPEnclosureDescriptorPtr; { files to be enclosed }

drawImageProc: SMPDrawImageProcPtr; { your imaging routine }

imageRefCon: LONGINT; { for your use }

supportsColor: BOOLEAN; { true for a color grafPort }

END;

SMPLetterPBPtr = ^SMPLetterPB;

SMPCloseOptions = RECORD

moveToTrash: BOOLEAN;

addTag: BOOLEAN;

tag: RString32;

END;

SMPCloseOptionsPtr = ^SMPCloseOptions;

SMPMailerState = RECORD

mailerCount: INTEGER;

currentMailer: INTEGER;

upperLeft: Point;

hasBeenReceived: BOOLEAN;

isTarget: BOOLEAN;

isExpanded: BOOLEAN;

canMoveToTrash: BOOLEAN;

canTag: BOOLEAN;

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-145

{padByte2: Byte;}

changeCount: LONGINT;

targetComponent: SMPMailerComponent;

canCut: BOOLEAN;

canCopy: BOOLEAN;

canPaste: BOOLEAN;

canClear: BOOLEAN;

canSelectAll: BOOLEAN;

{padByte3: Byte;}

undoState: SMPUndoState;

undoWhat: Str63;

END;

SMPSendOptions = RECORD

signWhenSent: BOOLEAN;

priority: IPMPriority;

END;

SMPSendOptionsPtr = ^SMPSendOptions;

SMPSendOptionsHandle = ^SMPSendOptionsPtr;

{ SMPSendFormat: Structure describing the format of a letter. If

kSMPNativeMask bit is set, the whichNativeFormat field indicates which of the

client-defined formats to use. }

SMPSendFormat = RECORD

whichFormats: SMPSendFormatMask;

whichNativeFormat: INTEGER;{ 0 based }

END;

LetterSpec = RECORD

spec: ARRAY[1..3] OF LONGINT;

END;

SMPLetterInfo = RECORD

letterCreator: OSType;

letterType: OSType;

subject: RString32;

sender: RString32;

END;

C H A P T E R 3

Standard Mail Package

3-146 Summary of the Standard Mail Package

MailTime = RECORD

time: UTCTime; { current UTC (GMT) time }

offset: UTCOffset;{ in seconds from GMT (positive is east) }

END;

UTCTime = LONGINT; { seconds since 1/1/1904 }

UTCOffset = LONGINT; { correct for local time }

{ pointers to functions for application-defined callback functions }

SMPDrawImageProcPtr = ProcPtr;

{ FUNCTION SMPDrawImageProcPtr(refcon: LONGINT; inColor: BOOLEAN): void;}

FrontWindowProcPtr = ProcPtr;

{ FUNCTION FrontWindowProcPtr(clientData: LONGINT): WindowPtr;}

PrepareMailerForDrawingProcPtr = ProcPtr;

{ FUNCTION PrepareMailerForDrawingProcPtr(window: WindowPtr;

clientData: LONGINT): void;}

SendOptionsFilterProc = ProcPtr;

{ FUNCTION SendOptionsFilterProc(theDialog: DialogPtr;

VAR theEvent: EventRecord;

itemHit: INTEGER;

clientData: LONGINT): BOOLEAN;}

Standard Mail Package Functions

Send-Letter Functions

FUNCTION SMPSendLetter (theLetter: SMPLetterPBPtr): OSErr;

FUNCTION SMPNewPage (VAR newHeader: OpenCPicParams): OSErr;

FUNCTION SMPImageErr: OSErr;

FUNCTION SMPResolveToRecipient
(dsSpec: PackedDSSpecPtr;
VAR recipientList: SMPRecipientDescriptorPtr;
identity: AuthIdentity): OSErr;

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-147

Providing Mailers in Your Windows

FUNCTION SMPInitMailer (mailerVersion: LONGINT): OSErr;

FUNCTION SMPNewMailer (window: WindowPtr; upperLeft: Point;
canContract: BOOLEAN;
initiallyExpanded: BOOLEAN;
identity: AuthIdentity;
prepareMailerForDrawingCB:
PrepareMailerForDrawingProcPtr;
clientData: LONGINT): OSErr;

FUNCTION SMPGetDimensions (VAR width: INTEGER; VAR contractedHeight:
INTEGER; VAR expandedHeight: INTEGER): OSErr;

FUNCTION SMPMailerForward (window: WindowPtr; from: AuthIdentity): OSErr;

FUNCTION SMPMailerReply (originalLetter: WindowPtr; newLetter:
WindowPtr; replyToAll: BOOLEAN; upperLeft:
Point; canContract: BOOLEAN;
initiallyExpanded: BOOLEAN;
identity: AuthIdentity;
prepareMailerForDrawingCB:
PrepareMailerForDrawingProcPtr;
clientData: LONGINT): OSErr;

FUNCTION SMPGetTabInfo (VAR firstTab: SMPMailerComponent;
VAR lastTab: SMPMailerComponent): OSErr;

FUNCTION SMPBecomeTarget (window: WindowPtr; becomeTarget: BOOLEAN;
whichField: SMPMailerComponent): OSErr;

FUNCTION SMPExpandOrContract
(window: WindowPtr; expand: BOOLEAN): OSErr;

FUNCTION SMPMoveMailer (window: WindowPtr; dh: INTEGER; dv: INTEGER):
OSErr;

FUNCTION SMPTagDialog (window: WindowPtr; theTag: RString32Ptr):
OSErr;

FUNCTION SMPPrepareToClose (window: WindowPtr): OSErr;

FUNCTION SMPCloseOptionsDialog
(window: WindowPtr;
closeOptions: SMPCloseOptionsPtr): OSErr;

FUNCTION SMPDisposeMailer (window: WindowPtr;
closeOptions: SMPCloseOptionsPtr): OSErr;

C H A P T E R 3

Standard Mail Package

3-148 Summary of the Standard Mail Package

Handling Events in Mailers

FUNCTION SMPMailerEvent (event: EventRecord;
VAR whatHappened: SMPMailerResult;
frontWindowCB: FrontWindowProcPtr;
clientData: LONGINT): OSErr;

FUNCTION SMPMailerEditCommand
(window: WindowPtr; command: SMPEditCommand;
VAR whatHappened: SMPMailerResult): OSErr;

FUNCTION SMPGetMailerState (window: WindowPtr; VAR itsState:
SMPMailerState): OSErr;

FUNCTION SMPClearUndo (window: WindowPtr): OSErr;

FUNCTION SMPDrawMailer (window: WindowPtr): OSErr;

Sending and Saving Mail
FUNCTION SMPSendOptionsDialog

(window: WindowPtr; documentName: Str255;
VAR nativeFormatNames: StringPtr;
nameCount: INTEGER;
canSend: SMPSendFormatMask;
VAR currentFormat: SMPSendFormat;
filterProc: SendOptionsFilterProc;
clientData: LONGINT;
VAR shouldSend: SMPSendFormat;
sendOptions: SMPSendOptionsPtr): OSErr;

FUNCTION SMPContentChanged
(window: WindowPtr): OSErr;

FUNCTION SMPBeginSave (window: WindowPtr; diskLetter: FSSpec;
creator: OSType; fileType: OSType;
saveType: SMPSaveType;
VAR mustAddContent: BOOLEAN): OSErr;

FUNCTION SMPEndSave (window: WindowPtr; okToSave: BOOLEAN): OSErr;

FUNCTION SMPBeginSend (window: WindowPtr; creator: OSType; fileType:
OSType; sendOptions: SMPSendOptionsPtr;
VAR mustAddContent: BOOLEAN): OSErr;

FUNCTION SMPPrepareToChange
(window: WindowPtr): OSErr;

FUNCTION SMPEndSend (window: WindowPtr; okToSend: BOOLEAN): OSErr;

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-149

FUNCTION SMPAddContent (window: WindowPtr; segmentType:
MailSegmentType; appendFlag: BOOLEAN; buffer:
UNIV Ptr; bufferSize: LONGINT; textScrap:
StScrpPtr; startNewScript: BOOLEAN; script:
ScriptCode): OSErr;

FUNCTION SMPImage (window: WindowPtr; drawImageProc:
SMPDrawImageProcPtr; imageRefCon: LONGINT;
supportsColor: BOOLEAN): OSErr;

FUNCTION SMPAddMainEnclosure
(window: WindowPtr; enclosure: FSSpec): OSErr;

FUNCTION SMPAddBlock (window: WindowPtr; blockType: OCECreatorType;
append: BOOLEAN; buffer: UNIV Ptr;
bufferSize: LONGINT; mode: MailBlockMode;
offset: LONGINT): OSErr;

Reading Mail
FUNCTION SMPGetLetterInfo (VAR mailboxSpec: LetterSpec;

VAR info: SMPLetterInfo): OSErr;

FUNCTION SMPOpenLetter (letter: LetterDescriptor; window: WindowPtr;
upperLeft: Point; canContract: BOOLEAN;
initiallyExpanded: BOOLEAN;
prepareMailerForDrawingCB:
PrepareMailerForDrawingProcPtr;
clientData: LONGINT): OSErr;

FUNCTION SMPGetNextLetter (VAR typesList: OSType; numTypes: INTEGER;
VAR adjacentLetter: LetterDescriptor): OSErr;

FUNCTION SMPReadContent (window: WindowPtr; segmentTypeMask:
MailSegmentMask; buffer: UNIV Ptr; bufferSize:
LONGINT;
VAR dataSize: LONGINT;
VAR textScrap: StScrpRec;
VAR script: ScriptCode;
VAR segmentType: MailSegmentType;
VAR endOfScript: BOOLEAN;
VAR endOfSegment: BOOLEAN;
VAR endOfContent: BOOLEAN;
VAR segmentLength: LONGINT;
VAR segmentID: LONGINT): OSErr;

FUNCTION SMPGetFontNameFromLetter
(window: WindowPtr; fontNum: INTEGER; fontName:
Str255; doneWithFontTable: BOOLEAN): OSErr;

C H A P T E R 3

Standard Mail Package

3-150 Summary of the Standard Mail Package

FUNCTION SMPGetMainEnclosureFSSpec
(window: WindowPtr;
VAR enclosureDir: FSSpec): OSErr;

FUNCTION SMPEnumerateBlocks (window: WindowPtr; startIndex: INTEGER;
buffer: UNIV Ptr; bufferSize: LONGINT;
VAR dataSize: LONGINT; VAR nextIndex: INTEGER;
VAR more: BOOLEAN): OSErr;

FUNCTION SMPReadBlock (window: WindowPtr; blockType: OCECreatorType;
blockIndex: INTEGER; buffer: UNIV Ptr;
bufferSize: LONGINT; dataOffset: LONGINT;
VAR dataSize: LONGINT; VAR endOfBlock:
BOOLEAN; VAR remaining: LONGINT): OSErr;

Printing Mailers
FUNCTION SMPPrepareCoverPages

(window: WindowPtr; VAR pageCount: INTEGER):
OSErr;

FUNCTION SMPDrawNthCoverPage
(window: WindowPtr; pageNumber: INTEGER;
doneDrawingCoverPages: BOOLEAN): OSErr;

Getting and Setting Information in the Mailer

FUNCTION SMPGetComponentSize
(window: WindowPtr; whichMailer: INTEGER;
whichField: SMPMailerComponent;
VAR size: INTEGER): OSErr;

FUNCTION SMPGetComponentInfo
(window: WindowPtr; whichMailer: INTEGER;
whichField: SMPMailerComponent;
buffer: UNIV Ptr): OSErr;

FUNCTION SMPGetListItemInfo (window: WindowPtr; whichMailer: INTEGER;
whichField: SMPMailerComponent;
buffer: UNIV Ptr; bufferLength: LONGINT;
startItem: INTEGER; VAR itemCount: INTEGER;
VAR nextItem: INTEGER; VAR more: BOOLEAN):
OSErr;

FUNCTION SMPSetSubject (window: WindowPtr; text: RString): OSErr;

FUNCTION SMPSetFromIdentity
(window: WindowPtr; from: AuthIdentity): OSErr;

FUNCTION SMPAddAddress (window: WindowPtr; addrType: SMPAddressType;
address: OCEPackedRecipientPtr): OSErr;

FUNCTION SMPAddAttachment (window: WindowPtr; attachment: FSSpec): OSErr;

FUNCTION SMPAttachDialog (window: WindowPtr): OSErr;

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-151

Application-Defined Functions

FUNCTION MyPrepareMailerForDrawing
(window: WindowPtr; clientData: LONGINT): void;

FUNCTION MyDrawImage (refcon: LONGINT; inColor: BOOLEAN): void;

FUNCTION MyFrontWindowCB (clientData: LONGINT): WindowPtr;

FUNCTION MySendOptionsFilterProc
(theDialog: DialogPtr;
VAR theEvent: EventRecord; itemHit: INTEGER;
clientData: LONGINT): BOOLEAN;

Assembly-Language Summary

Trap Macros

Trap Requiring Routine Selectors

$AA5D

Selector Count Routine

$01F4 $0002 SMPSendLetter

$044C $0006 SMPResolveToRecipient

$0834 $0002 SMPNewPage

$0835 $0000 SMPImageErr

$125C $0006 SMPGetDimensions

$125D $000C SMPNewMailer

$125E $0004 SMPDisposeMailer

$125F $0008 SMPMailerEvent

$1260 $0005 SMPMailerEditCommand

$1261 $0004 SMPMailerForward

$1262 $000F SMPMailerReply

$1263 $0004 SMPGetMailerState

$1264 $0004 SMPPrepareCoverPages

$1265 $0004 SMPDrawNthCoverPage

$1266 $000B SMPBeginSave

$1267 $000A SMPBeginSend

$1268 $000C SMPOpenLetter

$1269 $0002 SMPDrawMailer

continued

C H A P T E R 3

Standard Mail Package

3-152 Summary of the Standard Mail Package

$126A $0004 SMPMoveMailer

$126B $0004 SMPSetSubject

$126C $0004 SMPSetFromIdentity

$126D $0005 SMPAddAddress

$126E $0004 SMPAddAttachment

$126F $0002 SMPContentChanged

$1270 $0002 SMPEndSave

$1271 $0002 SMPEndSend

$1272 $0003 SMPExpandOrContract

$1273 $0005 SMPBecomeTarget

$1274 $0004 SMPGetTabInfo

$1275 $0002 SMPClearUndo

$1276 $0002 SMPAttachDialog

$1277 $0007 SMPGetComponentSize

$1278 $0007 SMPGetComponentInfo

$1279 $0010 SMPGetListItemInfo

$127A $000D SMPAddContent

$127B $0019 SMPReadContent

$127C $0006 SMPGetFontNameFromLetter

$127D $0004 SMPAddMainEnclosure

$127E $0004 SMPGetMainEnclosureFSSpec

$127F $000C SMPAddBlock

$1280 $000C SMPReadBlock

$1281 $000D SMPEnumerateBlocks

$1282 $0002 SMPImage

$1285 $0002 SMPInitMailer

$1286 $0008 SMPGetNextLetter

$1287 $0002 SMPPrepareToClose

$1288 $0004 SMPCloseOptionsDialog

$1289 $0002 SMPPrepareToChange

$128A $0004 SMPGetLetterInfo

$128B $0004 SMPTagDialog

$1388 $0013 SMPSendOptionsDialog

Selector Count Routine

C H A P T E R 3

Standard Mail Package

Summary of the Standard Mail Package 3-153

Result Codes
The allocated range of result codes for the Standard Mail Package is –1900 through

–1949. Routines may also return standard Macintosh result codes such as noErr 0 (no

error) and fnfErr –43 (file not found).

kSMPNotEnoughMemoryForAllRecips –1900 Too many recipients in mailer
kSMPCopyInProgress –1901 Enclosure being copied to mailer
kSMPMailerNotInitialized –1902 Mailer has not been initialized
kSMPShouldNotAddContent –1903 You cannot add content to letter
kSMPMailboxNotFound –1904 Cannot find mailbox
kSMPNoNextLetter –1905 There is no next letter in In Tray
kSMPHasOpenAttachments –1906 One or more enclosures are open
kSMPFinderNotRunning –1907 The Finder is not running
kSMPCommandDisabled –1908 Requested command unavailable
kSMPNoMailerInWindow –1909 No mailer is in specified window
kSMPNoSuchAddress –1910 Requested address not found
kSMPMailerAlreadyInWindow –1911 A mailer was previously allocated
kSMPMailerUneditable –1912 Mailer cannot be edited
kSMPNoMatchingBegin –1913 End function called without begin
kSMPCannotSendReceivedLetter –1914 Letter is received; cannot be sent
kSMPIllegalForDraftLetter –1915 Operation cannot be completed
kSMPMailerCannotExpandOrContract –1916 Mailer created with canContract

false
kSMPMailerAlreadyExpandedOrContracted –1917 Mailer is already in requested state
kSMPIllegalComponent –1918 Bad field name parameter
kSMPMailerAlreadyNotTarget –1919 This mailer is not the target
kSMPComponentIsAlreadyTarget –1920 The selected field is the target
kSMPRecordDoesNotContainAddress –1921 Address is not in this record
kSMPAddressAlreadyInList –1922 Specified address is in Recipients field
kSMPIllegalSendFormats –1923 Format is not in canSend parameter
kSMPInvalidAddressString –1924 Address string is invalid
kSMPSubjectTooBig –1925 Subject string exceeds 127 characters
kSMPParamCountErr –1926 Enclosure count should be 1
kSMPTooManyPages –1927 Image is more than 127 pages
kSMPTooManyEnclosures –1928 More than 50 total files and folders

Contents 4-1

C H A P T E R 4

Contents

Standard Catalog Package

About the Standard Catalog Package 4-3

Finding and Selecting Records 4-3

Using the Standard Catalog Package 4-5

Testing for the Presence of the Standard Catalog Package 4-5

Creating an Authentication Identity 4-6

Creating a Catalog-Browsing Panel 4-8

Handling Catalog-Browsing Panel Events 4-11

Creating and Disposing of a Find Panel 4-18

Standard Catalog Package Reference 4-20

Data Types 4-20

Catalog-Browsing Panel Structure 4-20

Find Panel Structure 4-22

RString List 4-23

Standard Catalog Package Functions 4-23

Assembly-Language Interface 4-24

Authenticating a User 4-25

Sorting a Personal Catalog 4-28

Creating, Displaying, and Disposing of a Catalog-Browsing Panel 4-29

Handling Events in a Catalog-Browsing Panel 4-51

Creating, Displaying, and Disposing of a Find Panel 4-61

Handling Events in a Find Panel 4-75

Resolving Aliases 4-85

Obtaining Icons and Lists of Catalog-Item Categories and Types 4-88

Application-Defined Functions 4-94

Summary of the Standard Catalog Package 4-96

C Summary 4-96

Constants and Data Types 4-96

Standard Catalog Package Functions 4-100

C H A P T E R 4

4-2 Contents

Pascal Summary 4-105

Constants 4-105

Data Types 4-107

Standard Catalog Package Functions 4-109

Assembly-Language Summary 4-114

Trap Macros 4-114

Result Codes 4-115

C H A P T E R 4

About the Standard Catalog Package 4-3

Standard Catalog Package

This chapter describes the AOCE Standard Catalog Package. The AOCE Standard

Catalog Package provides a high-level interface that makes it easy for you to add

catalog-browsing, authentication, and alias-resolution services to your applications.

This chapter assumes you are familiar with the nature and use of AOCE catalogs and

authentication services.

If you want to design and implement your own interface to AOCE catalogs, see the

chapter “Catalog Manager” in this book.

About the Standard Catalog Package

The AOCE Standard Catalog Package provides a high-level interface to the AOCE

Catalog Manager. It makes it easy for you to add catalog-browsing and record-selection

services to your application.

The Standard Catalog Package provides functions that

■ Display a dialog box that allows users to enter their password for their authentication
identity.

■ Display and return information from a Catalog-Browsing panel that you can place in
your window. The Catalog-Browsing panel lets users browse catalogs and select
records.

■ Display and return information from a Find panel that you can place in your window.
The Find panel lets users search catalogs for a record if they know all or part of the
record’s name.

■ Resolve aliases of records, catalogs, and other objects in the AOCE catalog system.

■ Return icons for records, catalogs, and other AOCE components.

■ Return lists of categories of catalog items available on a system (such as printers or
users) and of types of items in these categories (such as LaserWriter and ImageWriter
printers).

The Standard Catalog Package is a client of the AOCE Catalog and Authentication

Managers. You do not have to call the underlying AOCE services directly to add catalog

services to your application.

Finding and Selecting Records
The Standard Catalog package provides two standard interfaces for finding and

selecting records in catalogs: a Catalog-Browsing panel and a Find panel. Catalog panels

are described in “Creating, Displaying, and Disposing of a Catalog-Browsing Panel,”

beginning on page 4-29, and “Handling Events in a Catalog-Browsing Panel,” beginning

on page 4-51. Find panels are described in “Creating, Displaying, and Disposing of a

Find Panel,” beginning on page 4-61, and “Handling Events in a Find Panel,” beginning

on page 4-75. You can place a panel in any window you wish and provide menu items

and dialog-box controls that make it easier for the user to browse or search for catalogs.

C H A P T E R 4

Standard Catalog Package

4-4 About the Standard Catalog Package

Figure 4-1 shows a Catalog-Browsing panel in use in an application’s window,

and Figure 4-2 shows a Find panel as it appears in a window of the AppleMail

application. It is important to note that the use of such panels is not restricted to looking

up addresses; you can use these interfaces to allow users to browse and search AOCE

catalogs no matter what their content. For example, if you use an AOCE catalog to store

information about routing forms (who should sign the form, the sequence in which to

route it, and so forth), you can use the panels to help the user fill in and route a

particular form.

Figure 4-1 A Catalog-Browsing panel in an application window

Figure 4-2 A Find panel in an application window

C H A P T E R 4

Standard Catalog Package

Using the Standard Catalog Package 4-5

Using the Standard Catalog Package

This section describes how to use Standard Catalog Package routines to determine if

AOCE is available, to authenticate a user, to create a Catalog-Browsing panel, and to

handle Catalog-Browsing panel events. It also describes how to create and dispose of a

Find panel.

Testing for the Presence of the Standard Catalog Package
Before using Standard Catalog Package functions in your application, you must use the

Gestalt Manager to ensure that the system on which your application is running

supports AOCE and the Standard Catalog Package.

To verify that the AOCE Collaboration toolbox is available, call the Gestalt function

with the selector gestaltOCEToolboxAttr. If the Collaboration toolbox is present but

not running (for example, if the user deactivated it from the PowerTalk Setup control

panel), the Gestalt function sets the bit gestaltOCETBPresent in the response

parameter. If the Collaboration toolbox is running and available, the function sets the bit

gestaltOCETBAvailable in the response parameter. The Gestalt Manager is

described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

To determine the version of the Standard Catalog Package that is available, call the

Gestalt function with the selector gestaltSDPStandardDirectoryVersion. The

function returns the version number of the Standard Catalog Package in the low-order

word of the response parameter. For example, a value of 0x0101 indicates version 1.0.1.

If the Standard Catalog Package is not present and available, the Gestalt function

returns 0 for the version number. Similarly, to determine the version of the Find panel,

use the selector gestaltSDPFindVersion. To determine the version of the

prompt-for-identity dialog box, use the selector gestaltSDPPromptVersion.

Listing 4-1 shows a function that checks for the availability of AOCE routines and

returns true only if the Standard Catalog Package is installed and available.

Listing 4-1 Testing for the Standard Catalog Package

Boolean MyTestForStandardCatalog(void)

{

OSErr err;

long response;

err = Gestalt(gestaltSDPStandardDirectoryVersion, &response);

if ((err != noErr) || (response == 0))

return false;

C H A P T E R 4

Standard Catalog Package

4-6 Using the Standard Catalog Package

return true;

}

Creating an Authentication Identity
The PowerTalk Key Chain lets the owner or principal user of a Macintosh computer

enter a name, password, and other identifying information for PowerShare servers and

whatever access modules are installed. The PowerTalk software protects that

information with a single password, referred to as the Key Chain Access Code. The

Authentication Manager takes the name and password set in the Key Chain and issues

the computer a local identity. The AOCE toolbox can then gain access to the PowerShare

server and access module services without requiring the user to log on again or enter

another password.

Before the first time you send a message or let the user browse catalogs, you must

provide identification to prove that the caller is an authorized user of the system. The

SDPPromptForID function provides two versions of a dialog box that allows the user to

identify himself or herself as one of the authorized users of the system (Figure 4-3). The

simpler version of this dialog box allows the user to enter only the Key Chain Access

Code. The function then returns the local identity to your application. The other version

of this dialog box (also shown in Figure 4-3) allows the user to select a catalog and enter

a name and password. The name must correspond to a record in the selected catalog.

The function then verifies that the user has entered the correct access code and returns a

specific identity. If the user logs on as a guest, the function returns 0 for the identity.

The “More Choices” version of the dialog box provides radio buttons corresponding to

the three possibilities: Guest, PowerShare account (specific identity), or Key Chain

Access Code (local identity). You can specify which of these options are enabled. You can

also specify a catalog or a user or group record to be displayed initially in the dialog box,

and you can restrict the user to this initially displayed selection.

You must provide an identity when you call many of the Standard Catalog Package

functions and most of the functions in the Catalog and Authentication Managers.

Note

Local AOCE resources such as personal messaging service access
modules (MSAMs) are not available to a user who logs on with a specific
identity or as a guest. ◆

If the user has never set up a local identity or selected any AOCE catalogs, the
SDPPromptForID function prompts the user to make the appropriate choices.

C H A P T E R 4

Standard Catalog Package

Using the Standard Catalog Package 4-7

Figure 4-3 Authentication dialog box

Before using Standard Catalog Package services, your application must determine the

user’s authentication identity. To discover if the user has previously been authenticated,

without prompting the user, call the AuthGetLocalIdentity function, described in

the “Authentication Manager” chapter of this book. If that function returns an error, then

call the SDPPromptForID function to allow the user to unlock the local identity, set one

up if none exists, or log on as a specific identity or guest.

The routine shown in Listing 4-2 first checks for an existing local identity. If none has

been set up (if, for example, the system has just been started) or if the PowerTalk Key

Chain is locked, the routine calls SDPPromptForID. The resulting authentication

identity is stored by the application in the AuthIdentity pointer parameter

userIdentity. If the local identity is already set up, it is returned in the authentication

parameter block (type AuthParamBlock).

C H A P T E R 4

Standard Catalog Package

4-8 Using the Standard Catalog Package

Listing 4-2 Getting an authentication identity

OSErr MyGetUserIdentity(AuthIdentity *userIdentity)

{

SDPIdentityKind selectedKind;

AuthParamBlock theAuthParamBlock;

OSErr status;

status = AuthGetLocalIdentity(&theAuthParamBlock, FALSE);

if (status == noErr) { /* Local identity is already set up. */

*userIdentity =

theAuthParamBlock.getLocalIdentityPB.theLocalIdentity;

}

else if (status == kOCELocalAuthenticationFail) {

status = SDPPromptForID(

userIdentity, /* AuthIdentity *id */

NULL, /* default guest prompt */

NULL, /* default specific prompt */

NULL, /* default local prompt */

NULL, /* RString *recordType */

(/* SDPIdentityKind permittedKinds */

kSDPLocalIdentityMask | /* local identity or */

kSDPSpecificIdentityMask /* specific identity */

),

&selectedKind, /* SDPIdentityKind *selectedKind */

NULL, /* RecordID *loginFilter */

0 /* SDPLoginFilterKind filterKind */

);

}

else {

/* could check for (status == kOCESetupRequired) */

}

return status;

}

Creating a Catalog-Browsing Panel
This section illustrates how to create a Catalog-Browsing panel. The Catalog-Browsing

panel provides a scrolling list and pop-up menu that you can place in any window. This

list shows AOCE catalogs and their contained nodes and records. It also shows

hierarchical file system (HFS) volumes, catalogs, and files so that the user can find AOCE

information cards, aliases, and personal catalogs. The panel allows users to examine the

contents of AOCE catalogs and to select a record in a catalog. Figure 4-4 shows a

Catalog-Browsing panel, and Figure 4-1 on page 4-4 shows a panel in use in an

C H A P T E R 4

Standard Catalog Package

Using the Standard Catalog Package 4-9

application window. Note that the font, size, and style of the characters in the

Catalog-Browsing panel are those you set for the window before you call a routine to

create a panel.

Figure 4-4 A Catalog-Browsing panel

In addition to the Catalog-Browsing panel, you can display a Personal-Catalog panel.

This panel is identical to the Catalog-Browsing panel except that it displays only the

contents of the user’s default personal catalog. The Personal-Catalog panel looks just like

the Catalog-Browsing panel in Figure 4-4 except that it does not include a pop-up menu.

Listing 4-3 illustrates the use of the SDPNewPanel function to create a new panel.

Listing 4-3 Using the SDPNewPanel function to create a new panel

OSErr MyCreateNewPanel(SDPPanelHandle *newPanel,

WindowPtr theWindow,

Rect *bounds,

AuthIdentity identity)

{

PackedRStringListHandle types = NULL;

unsigned short typeCount;

RStringPtr *typeList = NULL;

DirEnumChoices enumFlags;

DirMatchWith matchTypeHow;

RStringPtr *myCategory;

Boolean typesIsResource = false;

OSErr result;

matchTypeHow = kExactMatch;

enumFlags = kEnumDistinguishedNameMask + kEnumAliasMask + kEnumDNodeMask;

myCategory = (RStringPtr *)GetResource('rstr',kMyCategory);

result = !myCategory?resNotFound:ResError();

if(result)

{

C H A P T E R 4

Standard Catalog Package

4-10 Using the Standard Catalog Package

goto UseDefaultTypeList;

}

if(!result)

{

result = SDPGetCategoryTypes(*myCategory ,&types);

if(result)

{

/* Get default type list from a resource. */

UseDefaultTypeList:

types =(PackedRStringListHandle)GetResource('rtyp',kTypeListID);

result = !types?resNotFound:ResError();

DisposHandle((Handle)myCategory);

typesIsResource = true;

}

}

if(!result)

{

typeCount = OCEDNodeNameCount(*types);

typeCount++; /* Make space for DNode record type. */

typeList = NewPtr(typeCount * sizeof(RStringPtr));

OCEUnpackPathName(*types,typeList,typeCount);

/* Allow aliases to DNodes to be shown by adding the following type.*/

typeList[typeCount-1] = OCEGetIndRecordType(kDNodeRecTypeNum);

}

if(!result)

{

result = SDPNewPanel(&newPanel,

 theWindow,

 &bounds,

 true,

 true,

 NULL,

 typeList,

 typeCount,

 identity,

 enumFlags,

 matchTypeHow,

 0);

}

C H A P T E R 4

Standard Catalog Package

Using the Standard Catalog Package 4-11

if(typesIsResource)

{

ReleaseResource((Handle),types);

}

else

{

DisposHandle((Handle),types);

}

DisposPtr(typeList);

return(result);

}

Handling Catalog-Browsing Panel Events
When you receive a window event in your application that contains a Catalog-Browsing

panel, you must first determine whether it took place in the panel. For mouse-down

events, you can check the coordinates of the event to see if they are in the panel. You

must keep track of where the user is working to know how to handle key-down events.

For example, you can draw a heavy border (called a focus rectangle or focus box)

around the panel or around the content portion of the window, according to the last

location of a mouse-down event. The focus rectangle indicates to the user that the area it

encloses is active and that any subsequent key-down event pertains to that portion of the

window.

If the event took place in the Catalog-Browsing panel, you should call the

SDPPanelEvent function, passing in the event record. If the return value of

SDPPanelEvent tells you the user has double-clicked a record displayed in the panel or

otherwise changed the selection, call SDPGetPanelSelectionSize and

SDPGetPanelSelection.

If the return value of SDPPanelEvent tells you the event is an update event, call

SDPUpdatePanel. If the return value says that the user has selected an item other than

a record, and your application presents a way to open it, such as a menu command, you

can open the item by calling SDPOpenSelectedItem. You can determine what the user

selected in the panel by calling SDPGetPanelSelectionState. Finally, you should

adjust your application menus appropriately to reflect their status in the wake of the

event.

The routines shown in Listing 4-4 illustrate event handling in a Catalog-Browsing panel.

The first application-defined function, MyProcessEvent, receives events from the

application’s main event loop and dispatches them, according to their type, to

subroutines also shown in the listing.

Listing 4-4 omits some utility routines that perform functions such as

MyGetPanelForThisWindow, which takes a window pointer and the address of a

panel handle as parameters and returns a Boolean value. It returns true if it successfully

sets the panel handle to the Catalog-Browsing panel associated with the window. This

C H A P T E R 4

Standard Catalog Package

4-12 Using the Standard Catalog Package

application associates a panel with a window by storing the panel handle in the window

record’s reference constant. The application-defined function

MyDisplayDataForSelection shows code that retrieves a catalog record selected by

the user and unpacks the record information. The listing omits code that extracts other

information and that displays the unpacked information.

Listing 4-4 Handling events in a Catalog-Browsing panel

void MyProcessEvent(EventRecord *ev)

{

SDPPanelHandle panel;

switch (ev->what) {

case mouseDown:

case mouseUp:

MyHandleMouseUp(ev);

break;

case keyDown:

case autoKey:

if (MyGetPanelForThisWindow(FrontWindow(),&panel) == true)

MyHandleKeyDownsForPanel(FrontWindow(),ev,panel);

break;

case updateEvt:

MyHandleUpdates((WindowPtr)ev->message);

break;

case activateEvt:

MyHandleActivates(ev);

break;

case osEvt:

MyHandleSREvt(ev->message);

break;

case nullEvent:

MyHandleIdle(ev,FrontWindow());

break;

}

}

void MyHandleMouseUp(EventRecord *ev)

{

WindowPtr window;

Rect limit;

SDPPanelState whatHappened;

SDPPanelHandle panel;

C H A P T E R 4

Standard Catalog Package

Using the Standard Catalog Package 4-13

OSErr err;

SetRect(&limit,-32000,-32000,32000,32000);

switch (FindWindow(ev->where,&window))

{

case inDrag:

DragWindow(window,ev->where,&limit);

break;

case inGoAway:

if (TrackGoAway(window,ev->where))

gDone = true;

break;

case inMenuBar:

/* MyDoMenuCommand executes the menu command the user chose. */

MyDoMenuCommand(FrontWindow(),MenuSelect(ev->where));

break;

case inSysWindow:

SystemClick(ev,window);

break;

case inContent:

if (MyGetPanelForThisWindow(window,&panel) == true)

{

/* MyClickedInOurPanel returns true if click was in panel. */

if (MyClickedInOurPanel(ev, (*panel)->bounds) == true)

{

/* Pass the event to the Standard Catalog Package. */

err = SDPPanelEvent(panel, ev, &whatHappened);

if (err == noErr)

MyHandleUserSelection(window,whatHappened,panel);

}

}

break;

}

}

void MyHandleKeyDownsForPanel(WindowPtr window, EventRecord *ev,

 SDPPanelHandle panel)

{

short theChar;

SDPPanelState whatHappened;

OSErr err;

/* dummy string that holds keys pressed by the user */

RString sKeyDowns = {smRoman,1,{'?'}};

C H A P T E R 4

Standard Catalog Package

4-14 Using the Standard Catalog Package

theChar = ev->message & charCodeMask;

if ((ev->modifiers & cmdKey) != 0)

MyDoMenuCommand(window, MenuKey(theChar));

else

{

/* Did they press the Return key? If so,

open the currently selected item. */

if (theChar == 0x0D)

{

err = SDPOpenSelectedItem(panel,&whatHappened);

MyHandleUserSelection(window,whatHappened,panel);

}

else

{

/* First check if last keypress was less than kMaxTickDelay

ticks ago - if so, append the current character onto

our current search string and continue the search. */

if (((ev->when - gLastTime) < kMaxTickDelay))

{

/* Append character only if it doesn't overflow our buffer. */

if (sKeyDowns.dataLength < kRStringMaxBytes)

{

/* Append key onto our previously saved string. */

sKeyDowns.body[sKeyDowns.dataLength] = theChar;

++sKeyDowns.dataLength;

}

}

else

{

/* Last keypress was more than kMaxTickDelay ticks ago,

so treat it as a "new" key to search on. */

sKeyDowns.body[0] = theChar;

sKeyDowns.dataLength = 1;

}

/* Save time of last keypress for the comparison above. */

gLastTime = ev->when;

/* Go select the appropriate item based on our search string. */

SDPSelectString(panel, &sKeyDowns);

MyHandleUserSelection(window, kSDPChangedSelection, panel);

}

}

}

C H A P T E R 4

Standard Catalog Package

Using the Standard Catalog Package 4-15

void MyHandleUserSelection(WindowPtr window, SDPPanelState whatHappened,

SDPPanelHandle panel)

{

OSErr err;

SDPSelectionState itsState;

err = SDPGetPanelSelectionState(panel, &itsState);

if (err == noErr)

{

switch (itsState)

{

case kSDPContainerSelected:

if (whatHappened == kSDPChangedSelection)

{

MyDisplayDataForSelection(panel, window);

}

break;

case kSDPRecordSelected :

if (whatHappened == kSDPChangedSelection)

{

MyDisplayDataForSelection(panel, window);

}

break;

case kSDPRecordAliasSelected:

break;

case kSDPLockedContainerSelected:

break;

case kSDPContainerAliasSelected:

break;

case kSDPNothingSelected:

break;

}

}

}

void MyDisplayDataForSelection(SDPPanelHandle panel, WindowPtr window)

{

OSErr err;

PackedDSSpec selection;

DSSpec dss;

RLI theRLI;

RecordID rid;

RString sTempRStr;

C H A P T E R 4

Standard Catalog Package

4-16 Using the Standard Catalog Package

err = SDPGetPanelSelection(panel, &selection);

if (err == noErr)

{

OCEUnpackDSSpec(&selection, &dss, &rid);

OCEUnpackRLI(rid.rli,&theRLI);

/* record name */

OCECopyRString(rid.local.recordName, &sTempRStr, kRStringMaxBytes);

/* display the record name now in sTempRStr */

...

/* catalog name */

OCECopyRString((RStringPtr)theRLI.directoryName, &sTempRStr,

kRStringMaxBytes);

/* display the catalog name now in sTempRStr */

...

/* record type */

OCECopyRString(rid.local.recordType, &sTempRStr, kRStringMaxBytes);

/* display the record type now in sTempRStr */

...

}

}

void MyHandleUpdates(WindowPtr window)

{

GrafPtr savePort;

SDPPanelHandle panel;

GetPort(&savePort);

SetPort(window);

BeginUpdate(window);

EraseRect(&window->portRect);

if (MyGetPanelForThisWindow(window, &panel) == true)

SDPUpdatePanel(panel, savePort->visRgn);

EndUpdate(window);

SetPort(savePort);

}

C H A P T E R 4

Standard Catalog Package

Using the Standard Catalog Package 4-17

void MyHandleActivates(EventRecord *ev)

{

if ((ev->modifiers & activeFlag) != 0) {

MyDoActivate((WindowPtr)ev->message);

}

else {

MyDoDeactivate((WindowPtr)ev->message);

}

}

void MyDoActivate(WindowPtr window)

{

SDPPanelHandle panel;

if (MyGetPanelForThisWindow(window, &panel) == true)

{

SDPEnablePanel(panel, true);

SDPUpdatePanel(panel, nil);

}

}

void MyDoDeactivate(WindowPtr window)

{

SDPPanelHandle panel;

if (MyGetPanelForThisWindow(window, &panel) == true)

SDPEnablePanel(panel, false);

}

void MyHandleSREvt(long message)

{

extern Boolean gInBackground;

unsigned long whatMessage;

whatMessage = message >> 24;

if (whatMessage == suspendResumeMessage) {

if ((message & 1) != 0) {

gInBackground = false;

SetCursor(&qd.arrow);

if (FrontWindow()) {

HiliteWindow(FrontWindow(),true);

MyDoActivate(FrontWindow());

}

C H A P T E R 4

Standard Catalog Package

4-18 Using the Standard Catalog Package

}

else if (FrontWindow()) {

gInBackground = true;

HiliteWindow(FrontWindow(),false);

MyDoDeActivate(FrontWindow());

}

}

}

void MyHandleIdle(EventRecord *ev, WindowPtr window)

{

OSErr err;

SDPPanelState whatHappened;

SDPPanelHandle panel;

if (MyGetPanelForThisWindow(window, &panel) == true)

err = SDPPanelEvent(panel, ev, &whatHappened);

}

Creating and Disposing of a Find Panel
The Find panel provides an editable text box, a scrolling list, and a pop-up menu that

you can place in any window. The text box lets the user enter a search string. The menu

specifies the catalogs and volumes to be searched. The list shows AOCE records that

have the record types you specify and that have names that start with the text string the

user types in the text box. The Find panel allows users to search AOCE catalogs,

personal catalogs, and HFS volumes and to select a record. Figure 4-5 shows a Find

panel.

Figure 4-5 The Find panel

The preferred user interface to display a Find panel is in a dialog box that also displays a

Catalog-Browsing panel. You should provide clearly labeled buttons enabling the user to

switch between the find and Catalog-Browsing panels within the dialog box. The

AppleMail application included with the AOCE software provides an example of this

user interface, which is invoked when the user clicks the Recipients button on a mailer.

C H A P T E R 4

Standard Catalog Package

Using the Standard Catalog Package 4-19

The function shown in Listing 4-5 illustrates how to create a Find panel. If the call to the

SDPNewFindPanel function succeeds, and if there is a 'STR#' resource available

containing help balloon strings for the Find panel, the function installs Balloon Help

online assistance. Finally, the function installs an application-defined callback routine for

the Find panel to call whenever it is busy, such as while it is searching.

Listing 4-5 Creating a Find panel

OSErr MyCreateFindPanel(WindowPtr window,

const RStringPtr *typesList,

unsigned long typeCount,

AuthIdentity identity,

short helpResourceID)

{

OSErr status;

Point panelLoc;

SDPFindPanelHandle thePanel;

SetPt(&panelLoc, 0, 0);

status = SDPNewFindPanel(

&thePanel, /* address of panel handle*/

window, /* in this window */

panelLoc, /* at upper left in window */

kStandardFindLayout, /* normal layout */

false, false, /* initially invisible */

typesList, /* types to display */

typeCount, /* number of types in list */

kExactMatch, /* display only list types */

identity, /* identity of the caller */

10, /* simultaneous searches */

kSDPFindPanelTextHasFocus, /* text input field focus */

(long) window /* reference constant */

);

if (status == noErr && helpResourceID != 0)

status = SDPSetFindPanelBalloonHelp(

thePanel, helpResourceID);

if (status == noErr)

status = SDPInstallFindPanelBusyProc(

thePanel, MyArrowSpinnerFunc);

C H A P T E R 4

Standard Catalog Package

4-20 Standard Catalog Package Reference

return status;

}

The code in Listing 4-6 illustrates an application-defined function that disposes of a Find

panel. The only feature of this function in addition to calling SDPDisposeFindPanel is

a check to see if the panel has already been deallocated.

Listing 4-6 Disposing of a Find panel

OSErr MyFindPanelDispose(SDPFindPanelHandle thePanel)

{

OSErr status;

if (thePanel == NULL)

status = noErr;

else {

status = SDPDisposeFindPanel(thePanel);

thePanel = NULL;

}

return status;

}

Standard Catalog Package Reference

This section describes the data types and routines provided by the Standard Catalog

Package.

Data Types

The Standard Catalog Package routines use the data types described in this section.

Catalog-Browsing Panel Structure

The Catalog-Browsing panel provides a way for users to locate catalogs, look through

them, and select individual records.

The SDPPanelRecord structure is the main data type representing the panel. You can

examine the contents of any of the fields, but you should not write to any field except the

refCon field, which you can use for whatever purpose you wish. You might want to

look at the contents of the bounds field, which stores the rectangle around the panel in

the local coordinates of the window that contains the panel. (You provide the GrafPort

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-21

structure for this window when you call the SDPNewPanel function.) The

SDPNewPanel and SDPGetNewPanel functions return handles to SDPPanelRecord

structures.

IMPORTANT

The public fields of the SDPPanelRecord structure are followed by
private fields. You must not resize the handle to this structure or allocate
one yourself. Always use the SDPGetNewPanel function (page 4-34) or
SDPNewPanel function (page 4-30) to allocate an SDPPanelRecord
structure. ▲

struct SDPPanelRecord {

Rect bounds; /* rectangle around panel */

Boolean visible; /* Is panel visible? */

Boolean enabled; /* Is panel enabled? */

Boolean focused; /* Is focus box around panel? */

Byte padByte; /* reserved */

AuthIdentity identity; /* auth ID of caller of panel */

long refCon; /* for your use */

Rect listRect; /* rectangle on scrolling list */

Rect popupRect; /* rectangle around pop-up menu */

short numberOfRows;/* rows in scrolling list */

short rowHeight; /* height of list rows (points) */

Boolean pabMode; /* Is panel in personal catalog? */

};

Field descriptions

bounds The rectangle around the panel in the local coordinates of the
window that contains the panel. The bounds rectangle includes
both the scrolling field and the pop-up menu above it.

visible A Boolean value indicating controlling whether the panel is
currently visible. You can use the SDPShowPanel and
SDPHidePanel functions to set this value.

enabled A Boolean value that specifies whether the panel is currently
enabled. You can use the SDPEnablePanel function to set this
value.

focused A Boolean value that specifies whether the panel has a focus
rectangle drawn around it to indicate that it is the target of
keystroke events.

identity The authentication identity of the caller of the panel, corresponding
to the name and password of the user.

refCon A reference constant. You can use this field for whatever you wish.

listRect The rectangle around only the scrolling list.

popupRect The rectangle around only the pop-up menu.

numberOfRows The number of lines in the scrolling list.

rowHeight The height, in printer’s points, of each line in the scrolling list.

C H A P T E R 4

Standard Catalog Package

4-22 Standard Catalog Package Reference

pabMode A Boolean value indicating whether the panel is browsing the
user’s default personal catalog, rather than a standard catalog.

Find Panel Structure

The Find panel provides a way for users to locate catalogs, look through them, and select

individual records.

The SDPFindPanelRecord structure is the main data type representing the Find panel.

Its fields are reserved for internal use only, except for the refCon field, which you can

use for whatever purpose you wish. The SDPNewFindPanel function returns a handle

to an SDPFindPanelRecord structure.

IMPORTANT

The public fields of the SDPFindPanelRecord structure are followed
by private fields. You must not resize the handle to this structure or
allocate one yourself. Always use the SDPNewFindPanel function
(page 4-61) to allocate an SDPFindPanelRecord structure. ▲

struct SDPFindPanelRecord {

Point upperLeft; /* reserved */

Boolean visible; /* reserved */

Boolean enabled; /* reserved */

Boolean nowFinding; /* reserved */

Byte padByte; /* reserved */

SDPFindPanelFocus currentFocus; /* reserved */

AuthIdentity identity; /* reserved */

short simultaneousSearchCount; /* reserved */

long refCon; /* for your use */

};

Field descriptions

upperLeft The upper-left corner of the Find panel in the window’s local
coordinates.

visible A Boolean value indicating whether the Find panel is currently
visible. You can use the SDPShowFindPanel and
SDPHideFindPanel functions to set this value.

enabled A Boolean value that specifies whether the Find panel is currently
enabled. You can use the SDPEnableFindPanel function to set
this value.

nowFinding A Boolean value indicating whether the Find panel is currently busy.

currentFocus A constant that specifies whether there is a focus rectangle in the
Find panel, and if so, whether it is around the scrolling list in the
Find panel or around the text-input field (the Find field; see Figure
4-5 on page 4-18). You can use the SDSetFindPanelFocus
function to change the location of the focus rectangle.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-23

identity The authentication identity of the caller of the Find panel,
corresponding to the name and password of the user.

simultaneousSearchCount
The number of catalog searches that can be done simultaneously.
See the description of this parameter on page 4-62 for more
information.

refCon A reference constant. You can use this field for whatever you wish.

RString List

The SDPGetCategories function (page 4-91) and SDPGetCategoryTypes function

(page 4-92) return handles to lists of items in the form of a packed RString list.

typedef PackedPathNamePtr *PackedRStringListHandle;

A PackedPathName structure contains a length plus an array of bytes:

#define PackedPathNameHeader\

unsigned short dataLength;/* excludes the dataLength field */

struct PackedPathName {

PackedPathNameHeader

Byte data[kPathNameMaxBytes - sizeof(unsigned short)];

};

The packed RString list consists of a PackedPathName structure containing packed

RString structures. Each RString structure contains a script code, a length, and a

string: Use the AOCE string utility routines described in the chapter “AOCE Utilities” in

this book to unpack and manipulate this structure. Use the OCEDNodeNameCount

function described in that chapter to determine the number of items in a

PackedPathName structure.

#define RStringHeader \

CharacterSet charSet; \

unsigned short dataLength;

struct RString {

RStringHeader

Byte body[kRStringMaxBytes]; /* place of characters */

};

Standard Catalog Package Functions

This section and the following sections describe the routines provided by the AOCE

Standard Catalog Package. Many Standard Catalog Package routines require you to

C H A P T E R 4

Standard Catalog Package

4-24 Standard Catalog Package Reference

provide an authentication identity as input. The subsection “Authenticating a User,”

beginning on page 4-25, describes routines that prompt the user for a name and

password, authenticate the user, and return the authentication identity number to your

application.

The second dialog box allows the user to search for a record by specifying the name or

the first part of the name of the record.

The section “Creating, Displaying, and Disposing of a Catalog-Browsing Panel,”

beginning on page 4-29, provides functions that you can use to display a

Catalog-Browsing panel. This panel lets the user browse through HFS catalogs and

AOCE catalogs and select a record from a catalog. You can place a Catalog-Browsing

panel in any of your application’s windows.

The routines in“Handling Events in a Catalog-Browsing Panel,” beginning on page 4-51,

allow you to process events related to the panel, such as a user selecting an item

displayed in the panel.

The section “Creating, Displaying, and Disposing of a Find Panel” on page 4-61 provides

functions that you can use to display a Find panel. The Find panel allows the user to

search for a record by specifying the name or the first part of the name of the record. The

Find panel is similar in implementation to the Catalog-Browsing panel; you can place

one in any of your application’s windows.

The routines in “Handling Events in a Find Panel,” beginning on page 4-75, allow you

process events related to the Find panel.

The section “Resolving Aliases,” beginning on page 4-85, provides functions that resolve

HFS and AOCE aliases of objects in the AOCE catalog system.

The section “Obtaining Icons and Lists of Catalog-Item Categories and Types,”

beginning on page 4-88, provides functions that return icons for AOCE components such

as attributes, records, and catalogs, and functions that return lists of the record types and

record categories currently available.

Assembly-Language Interface

To call a Standard Catalog Package routine from assembly language, you must do the

following:

1. Push space for the function result and all routine parameters (in Pascal
calling-convention order) on the stack.

2. Put in the D0 register a long word consisting of the parameter word count for the
routine followed by the routine selector. The parameter word count indicates how
many words of parameters you are placing on the stack; for example, if the function
has two parameters and each is a pointer, the parameter word count for the function is
$0004.

3. Call the Standard Catalog Package trap, $AA5D.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-25

Each routine description in the following sections lists the parameter word count and

routine selector for that routine.

Note

The routines described in the section “Obtaining Icons and Lists of
Catalog-Item Categories and Types,” beginning on page 4-88 use the
$AA5C trap and do not require a parameter count. ◆

Authenticating a User

The SDPPromptForID function in this section authenticates a user. The function

displays dialog boxes that enable the user to enter a name and password, and it returns

either a local or specific authentication identity. Authentication identities are described in

“Creating an Authentication Identity,” beginning on page 4-6. You must provide a valid

authentication identity as a parameter to many AOCE functions.

SDPPromptForID

The SDPPromptForID function displays a dialog box that allows the user to enter a

name and password. The function returns the user’s authentication identity.

pascal OSErr SDPPromptForID (AuthIdentity *id,

ConstStr255Param guestPrompt,

ConstStr255Param specificIDPrompt,

ConstStr255Param localIDPrompt,

const RString *recordType,

SDPIdentityKind permittedKinds,

SDPIdentityKind *selectedKind,

const RecordID *loginFilter,

SDPLoginFilterKind filterKind);

id The authentication identity returned by the function. This identity
corresponds to the name and password entered by the user and can be a
local identity or a specific identity, depending on the value you specify for
the permittedKinds parameter and which radio button the user selects.
If the user cancels the authentication, the function returns the
userCanceledErr result code and the ID is undefined. If the user logs
on with guest access, the function returns 0 in this parameter.

guestPrompt
The prompt string displayed when the user selects the Guest radio button.

specificIDPrompt
The prompt string displayed when the user selects the PowerShare
account radio button.

C H A P T E R 4

Standard Catalog Package

4-26 Standard Catalog Package Reference

localIDPrompt
The prompt string displayed when the user selects the “Fewer Choices”
version of the dialog box or when the user selects the Key Chain Access
Code radio button.

recordType
The record type of the records that can be authenticated. The function
uses this type to determine for which records to accept a name and
password in the dialog box. If you specify nil, the function uses the user
record type. To obtain the value to use for a standard record type, you
pass an index value to the utility function OCEGetIndRecordType. For
example, you can use the index value kUserRecTypeNum to get a pointer
to the user record type. Other index values are listed in the chapter
“AOCE Utilities” in this book.

permittedKinds
A value that specifies whether the user should be allowed to log on with
guest access (an authentication ID of 0), as an alternate user (that is, with
the password for a specific identity), or with the password for the local
identity. Use any combination of the bit masks kSDPGuestMask,
kSDPSpecificIdentityMask, and kSDPLocalIdentityMask for
this parameter.

selectedKind
A value that indicates which type of identity the function returned: an
authentication ID of 0 (guest access), a specific identity (alternate-user
access), or a local identity. This parameter can have any one of the
following values: kSDPGuestMask, kSDPSpecificIdentityMask, or
kSDPLocalIdentityMask.

loginFilter
A pointer to a record ID that specifies a catalog or record name that is
initially displayed in the dialog box. You use the filterKind parameter
to specify what is in this parameter and whether to restrict the user to this
catalog or record. Specify nil for this parameter to allow any user to log
on to any catalog. The function uses this parameter only when the user
selects the PowerShare account radio button.

filterKind
A value that indicates which type of information you have provided in
the loginFilter parameter. If you specify
kSDPRestrictToDirectory for the filterKind parameter, you must
specify a catalog in the loginFilter parameter. The dialog box displays
this catalog and allows only users with records in that catalog to log on. If
the record ID you provide in the loginFilter parameter includes a
record name, the function places that name in the Name text field of the
dialog box but doesn’t restrict the user to that record.

If you specify kSDPRestrictToRecord for the filterKind parameter,
you must provide the record ID of a user record for the loginFilter
parameter, and only the user specified by that record ID can log on.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-27

If you specify kSDPSuggestionOnly for the filterKind parameter,
the dialog box initially displays the catalog and record name you specify
in the loginFilter parameter but does not restrict the user to that
selection.

If you specify nil for the loginFilter parameter, the function ignores
the filterKind parameter.

The function uses the filterKind parameter only when the user selects
the PowerShare account radio button.

DESCRIPTION

The dialog box displayed by the SDPPromptForID function lets the user verify a local

identity by entering a password, log on with a specific identity by selecting a catalog and

then entering a name and password, or log on to a catalog as a guest. The function

returns the authentication identity for the user in the id parameter. If the name or

password entered by the user is not valid, the dialog box prompts the user to reenter the

information. If the user fails three times to enter the correct password, the function

returns the kSDPTooManyLoginAttempts result code. If the user cancels the dialog

box, the function returns the userCanceledErr result code.

The owner or principal user of a Macintosh computer enters a name and a password

during the first attempt to use an AOCE catalog or mailbox. If the user elects access as

the principal user and has never set up a local identity, the function guides the user

through the process of setting up a local identity. If the user selects the Key Chain Access

Code radio button and has previously entered a password to verify the local identity

during the current computer session, the function displays a dialog box with the user’s

name but without a text-entry field for the password. When the user clicks the OK

button, the function returns the local identity.

To obtain a local identity without displaying a dialog box, call the

AuthGetLocalIdentity function. If that function returns an error, then call the

SDPPromptForID function to allow the user to unlock the local identity or set one up if

none exists.

You can use the loginFilter and filterKind parameters to restrict the dialog box to

a single catalog or record, or to set a specific record as the one displayed initially in the

dialog box.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0010 $0388

C H A P T E R 4

Standard Catalog Package

4-28 Standard Catalog Package Reference

RESULT CODES

SEE ALSO

You can use the DirEnumerateDirectoriesGet and

DirEnumerateDirectoriesParse functions to obtain discriminators for catalogs that

are listed in the PowerTalk Setup catalog. You can use the

DirNetSearchADAPDirectoriesGet and

DirNetSearchADAPDirectoriesParse functions to obtain discriminators for all

catalogs on the network. These functions are all described in the chapter “Catalog

Manager” in this book.

You can use the AuthGetLocalIdentity function to obtain a local identity without

displaying a dialog box. See the chapter “Authentication Manager” in this book for a

description of that function.

Sorting a Personal Catalog

The routine in this section operates on personal catalogs.

SDPRepairPersonalDirectory

The SDPRepairPersonalDirectory function sorts the contents of a personal catalog

according to the current script system.

pascal OSErr SDPRepairPersonalDirectory (FSSpec *pd,

Boolean showProgress);

pd The file system specification structure for the personal catalog you wish to
sort.

showProgress
A Boolean value indicating whether the Standard Catalog Package should
display a progress bar to show the user the progress of the sorting
operation.

DESCRIPTION

If the user moves a personal catalog to a computer whose operating system uses a

different script system from the one last used to sort the catalog, the personal catalog

must be resorted before the Catalog Manager can open it. If the

DirOpenPersonalDirectory function returns the error kOCEVersionErr, you must

noErr 0 No error
userCanceledErr –128 User clicked Cancel button
kSDPTooManyLoginAttempts –1951 User failed three times to enter correct

password

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-29

call the SDPRepairPersonalDirectory function to resort the personal catalog and

then call the DirOpenPersonalDirectory function again to open the catalog.

If you specify true for the showProgress parameter, the Standard Catalog Package

first displays a dialog box that tells the user there is a problem with the personal catalog

and asks if it should correct the problem. If the user elects to correct the problem, the

Standard Catalog Package sorts the catalog, displaying a progress bar as it does so. If

you specify false for the showProgress parameter, the Standard Catalog Package

sorts the catalog without any feedback to the user.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirOpenPersonalDirectory function is described in the chapter “Catalog

Manager” in this book.

Creating, Displaying, and Disposing of a Catalog-Browsing Panel

You can call either the SDPNewPanel function (page 4-30) or the SDPGetNewPanel

function (page 4-34) to create a new panel. The two functions are identical, except that

you pass all the parameters to the SDPNewPanel function when you call the function,

whereas you specify several of the parameters to the SDPGetNewPanel function in a

resource.

The SDPNewPanel and SDPGetNewPanel functions allow you to specify a particular

container (volume, folder, AOCE catalog, personal catalog, or node) for the panel to

display when it opens. After the panel is open, you can use the SDPSetPath function

(page 4-38) to change the container the panel is displaying.

The other functions in this section, as their names suggest, allow you to hide, show,

enable, and disable a panel, redraw a panel, move a panel within your window, and

change the size of a panel. When you are finished using a panel or close the window, call

the SDPDisposePanel function (page 4-50).

Parameter count Routine selector

$0003 $1A2C

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-30 Standard Catalog Package Reference

Once you have placed a panel in your window, you use the functions in “Handling

Events in a Catalog-Browsing Panel,” beginning on page 4-51, to handle events that take

place within the panel.

SDPNewPanel

The SDPNewPanel function creates a new Catalog-Browsing panel with the size and

location you specify in the window you specify.

pascal OSErr SDPNewPanel (SDPPanelHandle *newPanel,

WindowPtr window,

const Rect *bounds,

Boolean visible,

Boolean enabled,

const PackedRLI *initialRLI,

const RStringPtr *typesList,

unsigned long typeCount,

AuthIdentity identity,

DirEnumChoices enumFlags,

DirMatchWith matchTypeHow,

long refCon);

newPanel The handle to the new panel created by the function. The SDPNewPanel
function allocates this handle.

window The window into which the panel is to be inserted.

bounds The bounds for the panel, including both the pop-up menu above the
scrollable list and the list itself (see Figure 4-4), in the local coordinates of
the window you specify in the window parameter. You can calculate the
minimum width of a panel as

5 * FontInfo.widMax + 42

and the minimum height as

Max(64, 3 * FontHeight) + fontHeight + 18

where

fontHeight = FontInfo.ascent + FontInfo.descent +
 FontInfo.Leading.

If the bounds you specify do not enclose an integral number of items in
the scrollable list, the SDPNewPanel function shortens the panel slightly
to prevent the last item in the list from being cropped.

visible A Boolean value that specifies whether the panel is initially visible. Set
this parameter to true if you want the panel to be visible. You can use
the SDPShowPanel and SDPHidePanel functions to show and hide a
panel.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-31

enabled A Boolean value that specifies whether the panel is initially enabled. Set
this parameter to true to enable the panel. You can use the
SDPEnablePanel function to enable and disable the panel.

initialRLI
A pointer to the volume, folder, AOCE catalog, personal catalog, or node
that the panel should display initially. If you specify nil for this
parameter, the panel displays a list of volumes and AOCE catalogs.
Specify –1 for this parameter to open a Personal-Catalog panel rather than
the standard Catalog-Browsing panel. You can use the
OCEGetDirectoryRootPackedRLI function to get the location of the
root of all catalogs (represented on the desktop by the Catalogs icon).

typesList A pointer to an array, each item of which is of type RStringPtr,
providing a list of the types of records you want the panel to display. The
panel displays only records of the types you specify in this list. The
matchTypeHow parameter specifies how the SDPNewPanel function
interprets the types list. To display aliases of dNodes, you must include a
record type of “DNode” (the value kDNodeRecTypeNum) and include the
value kEnumAliasMask in the enumFlags parameter.

typeCount The number of record types in your types list.

identity The authentication identity of the caller. Specify 0 for guest access.

enumFlags A mask value that specifies what sort of information you want the
Standard Catalog Package to display in the panel. You can set this field to
any combination of the following constants. The constant kEnumAllMask
combines all of the other values.

kEnumDistinguishedNameMask
records

kEnumAliasMask
aliases

kEnumPseudonymMask
pseudonyms

kEnumDNodeMaskd
Nodes

kEnumInvisibleMask
invisible entities

kEnumAllMaskall
entities

matchTypeHow
A constant that specifies how the function interprets the types list. The
possible values for this parameter are described in the following function
description.

refCon A reference constant. The function places this value in the refCon field of
the SDPPanelRecord structure pointed to by the newPanel parameter.
You can use the refCon parameter for whatever you wish.

C H A P T E R 4

Standard Catalog Package

4-32 Standard Catalog Package Reference

DESCRIPTION

You use the SDPNewPanel function to create a new Catalog-Browsing panel in your

window. You specify the location and size of the panel, and can specify that the panel is

to be initially visible or invisible and initially enabled or disabled. You can use the

enumFlags parameter to specify which types of entities (records, dNodes, aliases, or

pseudonyms) the panel displays.

The typesList and matchTypeHow parameters let you specify what types of records

the panel should display. The possible values for the matchTypeHow parameter are as

follows:

enum {

kMatchAll,

kExactMatch,

kBeginsWith,

kEndingWith,

kContaining

};

typedef unsigned char DirMatchWith;

Constant descriptions

kMatchAll Display all record types. The function ignores the typesList and
typeCount parameters.

kExactMatch Display only the record types in the types list.

kBeginsWith Display only records whose types begin with the string pointed to
by the typesList parameter. The typesList parameter can point
to only one string; if the typeCount parameter is not equal to 1, the
function returns an error.

kEndingWith Display only records whose types end with the string pointed to by
the typesList parameter. The typesList parameter can point to
only one string; if the typeCount parameter is not equal to 1, the
function returns an error.

kContaining Display only records whose types contain the string pointed to by
the typesList parameter. The typesList parameter can point to
only one string; if the typeCount parameter is not equal to 1, the
function returns an error.

You can use the SDPGetCategories and SDPGetCategoryTypes functions to

determine what record types are available and use that information to let the user select

which types of records the Catalog-Browsing panel should display. Then you can use the

typesList parameter to restrict the panel to those record types.

Subsequently, you can use the other routines in this and the following section to hide

and show the panel, enable and disable it, and handle events that occur within the panel.

If you wish to specify some parameters in a resource rather than when you call the

function, use the SDPGetNewPanel function instead.

Listing 4-3 on page 4-9 illustrates the use of the SDPNewPanel function to create a new

panel.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-33

SPECIAL CONSIDERATIONS

The window’s font, text size, and text style affect how the panel appears when it is

created.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SDPGetNewPanel function, described next, does the same thing as the

SDPNewPanel function but allows you to specify several of the parameters in a resource.

You can use the SDPHidePanel function (page 4-43) and SDPShowPanel function

(page 4-44) to hide and show a Find panel.

You can use the SDPEnablePanel function (page 4-45) to enable and disable the Find

panel.

Use the other routines in this section to dispose of, draw, move, resize, and otherwise

manipulate panels. Use the routines in “Handling Events in a Catalog-Browsing Panel,”

beginning on page 4-51, to handle events that occur in the panel and to determine what

record the user selected.

The PackedRecordLocationInfo structure is described in the chapter “Catalog

Manager” in this book.

You can use the OCEGetDirectoryRootPackedRLI function, described in the chapter

“AOCE Utilities” in this book, to get the location of the root of all catalogs.

You can use the SDPPromptForID function (page 4-25) to get a local or specific identity.

You can use the SDPGetCategories function (page 4-91) to obtain a list of all the

record-type categories currently available and the SDPGetCategoryTypes function

(page 4-92) to list all the types of records included in a specific category.

Parameter count Routine selector

$0015 $0064

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-34 Standard Catalog Package Reference

SDPGetNewPanel

The SDPGetNewPanel function creates a new panel in the window you specify with the

size and location specified in a resource of type 'panl'.

pascal OSErr SDPGetNewPanel (SDPPanelHandle *newPanel,

short resourceID,

WindowPtr window,

const PackedRLI *initialRLI,

AuthIdentity identity);

newPanel A handle to the new panel created by the function.

resourceID
The resource ID of the panel resource, which contains several parameters
for use by the function.

window A pointer to the window into which the panel is to be inserted.

initialRLI
A pointer to the volume, folder, AOCE catalog, node, or personal catalog
that the dialog box should display initially. If you specify nil for this
parameter, the dialog box displays a list of volumes and AOCE catalogs.
Specify –1 for this parameter to open a Personal-Catalog panel rather than
the standard Catalog-Browsing panel.

identity The authentication identity of the caller. Specify 0 for guest access.

DESCRIPTION

The SDPGetNewPanel function creates a new panel and returns its handle, given a

resource with the following Rez type:

type 'panl' {

rect; /* bounds parameter */

byte invisible, visible; /* visible parameter */

byte disabled, enabled; /* enabled parameter */

longint; /* enumFlags parameter */

integer; /* matchTypeHow parameter */

longint; /* refCon parameter */

integer = $$CountOf(TypeIdArray);/* typeCount parameter */

array TypeIdArray {

 integer; /* typesList parameter

('rtyp' resource ID

 for each type) */

};

};

#define kSDPPanelResourceType 'panl'

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-35

See the SDPNewPanel function on page 4-30 for descriptions of these parameters.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SDPNewPanel function (page 4-30) does the same thing as the SDPGetNewPanel

function, but you specify all of the parameters when you call the SDPNewPanel function

rather than using a panel resource.

Use the other routines in this section to dispose of, hide, show, enable, disable, draw,

move, and resize panels. Use the routines in “Handling Events in a Catalog-Browsing

Panel,” beginning on page 4-51, to handle events that occur in the panel and to

determine what record the user selected.

The PackedRecordLocationInfo structure is described in the chapter “Catalog

Manager” in this book.

You can use the OCEGetDirectoryRootPackedRLI function, described in the chapter

“AOCE Utilities” in this book, to get the location of the root of all catalogs.

You can use the SDPPromptForID function (page 4-25) to get a specific or local identity.

SDPInstallPanelBusyProc

The SDPInstallPanelBusyProc function installs an application-defined routine that

the panel calls when it is busy.

pascal OSErr SDPInstallPanelBusyProc (SDPPanelHandle panel,

PanelBusyProc busyProc);

panel A handle for the panel for which you want to install a panel-busy callback
routine.

Parameter count Routine selector

$0009 $0065

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-36 Standard Catalog Package Reference

busyProc A pointer to your callback routine. To remove a callback routine that you
installed previously, specify nil for this parameter.

DESCRIPTION

If you use the SDPInstallPanelBusyProc function to install a panel-busy callback

routine, the Catalog-Browsing panel calls your routine whenever the panel is busy. For

example, if the user double-clicks a dNode in the panel, the panel calls your callback

routine while it searches the dNode.

The panel passes to your callback routine the handle to the panel and a Boolean value

that indicates whether the panel is busy. You can use your callback routine to provide

feedback to the user that indicates that the panel is busy. One good way to do this is to

display the Standard Catalog Package’s spinning arrow icon.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The panel-busy callback routine is described on page 4-94.

SDPSetPanelBalloonHelp

The SDPSetPanelBalloonHelp function enables Balloon Help for the panel.

pascal OSErr SDPSetPanelBalloonHelp (SDPPanelHandle panel,

short balloonHelpID);

panel A handle for the panel for which you want to enable Balloon Help.

balloonHelpID
The resource ID of a 'STR#' resource that contains Balloon Help strings
for the panel.

Parameter count Routine selector

$0004 $0079

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-37

DESCRIPTION

You must use the SDPSetPanelBalloonHelp function to provide text strings for

Balloon Help and to activate Balloon Help for the panel. You must provide two text

strings, one for each element of the panel, in the following order:

1. the scrolling list

2. the pop-up menu

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Balloon Help is described in the “Help Manager” chapter of Inside Macintosh: More
Macintosh Toolbox.

SDPSetIdentity

The SDPSetIdentity function changes the authentication identity used by the panel.

pascal OSErr SDPSetIdentity (SDPPanelHandle panel,

AuthIdentity identity);

panel A handle for the panel for which you want to change the caller’s
authentication identity.

identity The new authentication identity. Specify 0 for guest access.

DESCRIPTION

You can use the SDPSetIdentity function to change the authentication identity of the

user while the user is browsing catalogs. If the new identity does not have read

privileges for the dNode being browsed, the panel moves up levels in the catalog until it

Parameter count Routine selector

$0003 $0078

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-38 Standard Catalog Package Reference

reaches a level at which the user has read privileges and the function returns the

kOCEReadAccessDenied result code.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SDPPromptForID function (page 4-25) prompts the user for a password and

returns an authentication identity.

SDPSetPath

The SDPSetPath function causes the panel to display the contents of the container

specified by the packed record location information structure (packedRLI data type)

you specify.

pascal OSErr SDPSetPath (SDPPanelHandle panel,

const PackedRLI *prli);

panel The panel on which you want this function to act.

prli A pointer to the record location information for the container whose
contents you want the panel to display. Specify nil for this parameter to
display a list of volumes and AOCE catalogs. You can use the
OCEGetDirectoryRootPackedRLI function to get the location of the
root of all catalogs (represented on the desktop by the Catalogs icon).

DESCRIPTION

When you call the SDPSetPath function, the panel’s pop-up menu displays the

container (volume, folder, AOCE catalog, personal catalog, or node) you specify in the

prli parameter, and the scrollable list displays the contents of that container. Whereas

Parameter count Routine selector

$0004 $0073

noErr 0 No error
paramErr –50 Illegal parameter
kOCEReadAccessDenied –1540 User does not have read privileges.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-39

the SDPNewPanel and SDPGetNewPanel functions let you specify which container the

panel displays when it opens, the SDPSetPath function lets you change the container

displayed by a panel that is already open. If the container you specify in the prli

parameter is the one currently being browsed in the panel, then this function does

nothing.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRecordLocationInfo structure is described in the chapter “Catalog

Manager” in this book.

You can use the OCEGetDirectoryRootPackedRLI function, described in the chapter

“AOCE Utilities” in this book, to get the location of the root of all catalogs.

To select an item in the scrollable list of the panel, use the SDPSelectString function

(page 4-42).

Use the SDPNewPanel (page 4-30) or SDPGetNewPanel (page 4-34) functions to specify

which container a panel displays initially.

SDPGetPathLength

The SDPGetPathLength function returns the size of the buffer required to hold the

pathname of the current item in the panel’s pop-up menu.

pascal OSErr SDPGetPathLength (SDPPanelHandle panel,

unsigned short *pathNameLength);

panel The panel for which you want information.

Parameter count Routine selector

$0004 $0070

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-40 Standard Catalog Package Reference

pathNameLength
A pointer to the length, in bytes, of the PackedRLI structure representing
the current pathname. You must allocate this pointer.

DESCRIPTION

The SDPGetPathLength function returns the number of bytes required to hold the

PackedRLI structure that represents the current pathname of the container (volume,

folder, AOCE catalog, dNode, or personal catalog) in the pop-up menu of the panel. You

can allocate a buffer of this size and pass a pointer to it in the prli parameter of the

SDPGetPath function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the value returned by this function to determine how big a buffer to allocate for

the SDPGetPath function, described next.

SDPGetPath

The SDPGetPath function returns the pathname of the current item in the panel’s

pop-up menu.

pascal OSErr SDPGetPath (SDPPanelHandle panel,

PackedRLI *prli,

short *dsRefNum);

panel The panel for which you want information.

prli A pointer to a buffer you provide to hold the current pathname. Specify
nil for this parameter if you want the function to return only the
dsRefNum parameter.

Parameter count Routine selector

$0004 $0075

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-41

dsRefNum A pointer to a location to hold a reference number if the item is a personal
catalog. You must allocate this pointer. Specify nil for this parameter if
you want the function to return only the prli parameter.

DESCRIPTION

The SDPGetPath function returns the current pathname of the container (volume,

folder, AOCE catalog, dNode, or personal catalog) in the pop-up menu of the panel

and—if the container is a personal catalog—a reference number. You can call the

SDPGetPathLength function to determine the size of buffer required for the pathname.

The SDPGetPath function returns the pathname in packed RLI format.

If you want the function to return either the pathname or the reference number, but not

both, specify nil for the parameter you do not want returned.

You can use the record location information (prli) returned by this function to call

Catalog Manager functions, such as DirGetDirectoryInfo or DirFindValue, that

return information about the container. You can use the value returned in the dsRefNum

parameter if you immediately want to call a Catalog Manager function that takes a

personal-catalog reference number as input. Once you have called the SDPPanelEvent

function or the SDPDisposePanel function, you can no longer use this reference

number. In that case, you must use the DirOpenPersonalDirectory function to open

the personal catalog and obtain a new reference number.

SPECIAL CONSIDERATIONS

Because the personal-catalog reference number returned in the dsRefNum parameter is

valid only while the personal catalog is open, this value may not be valid after you call

the SDPPanelEvent function and is never valid after you call the SDPDisposePanel

function.

The pathname of a container returned by the SDPGetPath function is not necessarily

the same as the pathname you get by using the SDPGetPanelSelection function to

obtain location information for an item the user has selected in that container. This

discrepancy results from the fact that the item might be an alias or information card. The

SDPGetPanelSelection function returns the location of the original item, not that of

the alias or information card itself.

The SDPGetPath function may move or purge memory; you should not call this

function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0006 $0076

C H A P T E R 4

Standard Catalog Package

4-42 Standard Catalog Package Reference

RESULT CODES

SEE ALSO

You use the value returned by the SDPGetPathLength function (page 4-39) to

determine the size of the buffer to allocate for the pathname.

The packedRLI structure and Catalog Manager routines are described in the chapter

“Catalog Manager” in this book.

You call the SDPPanelEvent function (page 4-52) to handle events that take place in the

panel. You call the SDPDisposePanel function (page 4-50) to dispose of a panel that

you no longer need.

You can use the SDPGetPanelSelection function (page 4-58) to obtain location

information for a panel item that a user has selected. You can use the

SDPGetPanelSelectionState function (page 4-55) to determine the nature of the

selected item.

SDPSelectString

The SDPSelectString function scrolls to and highlights the item in the panel that best

matches the string you specify.

pascal OSErr SDPSelectString (SDPPanelHandle panel,

const RString *name);

panel The panel on which you want this function to act.

name A pointer to the string you want the function to match.

DESCRIPTION

When you call the SDPSelectString function, the panel’s scrollable list displays and

highlights the item that best matches the string you specify in the name parameter. The

matching algorithm is the same one used by the Standard File dialog box when the user

types a string: the function matches characters starting at the beginning of the string. If

the function cannot match all of the characters in the string, it selects the item in the list

that follows the string alphabetically. For example, if the panel contains the items Andy,

Atticus, Bernice, Bruce, and Freda, and you specify the string “Bru”, the function

highlights “Bruce”. If you specify the string “Charlie”, the function highlights “Freda”.

The SDPSelectString function acts on the list at the current level; that is, it does not

change the path represented by the item selected in the pop-up menu.

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-43

You could use this function, for example, to display the item the user had selected the

last time the panel was opened. If the string you specify in the name parameter matches

the item currently being selected, then this function does nothing.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To set a specific path in the pop-up menu of the panel, use the SDPSetPath function

(page 4-38).

SDPHidePanel

The SDPHidePanel function hides a panel.

pascal OSErr SDPHidePanel (SDPPanelHandle panel);

panel The panel you wish to hide.

DESCRIPTION

If a panel is visible, this function makes it invisible by hiding the menu, erasing and

invalidating the list’s rectangle, and causing the list to not be drawn. If the panel is

already hidden, this function does nothing.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

Parameter count Routine selector

$0004 $0074

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-44 Standard Catalog Package Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SDPShowPanel function (described next) to display a panel that you have

hidden.

SDPShowPanel

The SDPShowPanel function displays a panel.

pascal OSErr SDPShowPanel (SDPPanelHandle panel);

panel The panel you wish to display.

DESCRIPTION

You can hide a panel by setting the visible parameter in the SDPNewPanel or in the

'panl' resource of the SDPGetNewPanel function to false or by calling the

SDPHidePanel function. If the panel is hidden, the SDPShowPanel function makes it

visible. If the panel is already visible, this function does nothing. Use the

SDPUpdatePanel function to handle an update event.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0002 $0067

noErr 0 No error
paramErr –50 Illegal parameter

Parameter count Routine selector

$0002 $0068

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-45

RESULT CODES

SEE ALSO

You can specify that a panel is to be initially hidden when you create it with the

SDPNewPanel function (page 4-30) or SDPGetNewPanel function (page 4-34).

Use the SDPHidePanel function (page 4-43) to hide a panel.

Use the SDPUpdatePanel function (page 4-47) to handle an update event.

SDPEnablePanel

The SDPEnablePanel function enables or disables a panel.

pascal OSErr SDPEnablePanel (SDPPanelHandle panel,

Boolean enable);

panel The panel you wish to enable or disable.

enable A Boolean value that specifies whether you wish to enable or disable the
panel. Specify true to enable the panel.

DESCRIPTION

This function disables the list and menu so that they do not accept any commands, or

enables a disabled panel.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

noErr 0 No error
paramErr –50 Illegal parameter

Parameter count Routine selector

$0003 $0069

C H A P T E R 4

Standard Catalog Package

4-46 Standard Catalog Package Reference

RESULT CODES

SEE ALSO

When you call the SDPNewPanel function (page 4-30) to create a panel, you specify

whether it should be enabled or disabled initially.

SDPSetFocus

The SDPSetFocus function draws or removes a focus rectangle around a panel.

pascal OSErr SDPSetFocus (SDPPanelHandle panel,

Boolean focus);

panel The panel for which you wish to draw or remove a focus rectangle.

focus A Boolean value that specifies whether you wish to draw or remove the
rectangle. Specify true to draw the rectangle and false to remove it.

DESCRIPTION

When the user clicks in a panel or uses the Tab key to select it (assuming you support

this feature), you can use the SDPSetFocus function to draw a heavy border around the

panel. This border, called a focus rectangle (or focus box), indicates to the user that the

panel is active and that any keypress commands will be applied to the panel.

If you never call the SDPSetFocus function, the Standard Catalog Package highlights

the user’s current selection regardless of whether the user is working in the panel or in

your window. However, once you call the SDPSetFocus function, the Standard Catalog

Package removes highlighting in the panel whenever you remove the focus rectangle

from the panel.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

noErr 0 No error
paramErr –50 Illegal parameter

Parameter count Routine selector

$0003 $0077

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-47

RESULT CODES

SDPUpdatePanel

The SDPUpdatePanel function draws all or part of a panel.

pascal OSErr SDPUpdatePanel (SDPPanelHandle panel,

RgnHandle theRgn);

panel The panel you wish to draw.

theRgn The region of the window you wish to draw. Any component of the panel
that intersects this region is redrawn. For example, if any portion of the
list of the panel intersects this region, the Standard Catalog Package
redraws the whole list. Pass nil in this parameter to draw the entire
panel.

DESCRIPTION

You must call the SDPUpdatePanel function to draw a panel in response to an update

event. (Do not pass an update event to the SDPPanelEvent function.) You can also use

the SDPUpdatePanel function to draw a panel when your application needs to redraw

its window because of some activity other than an update event.

In response to an update event, you should first call the BeginUpdate routine, which

takes a window pointer as a parameter. Use the value in the visRgn field of the

window’s grafPort structure for the theRgn parameter to the SDPUpdatePanel

function.

Note that the SDPUpdatePanel function does not use the region specified by theRgn

as a clipping region. To clip the drawing region, you must first call the SetClip routine.

(Remember to save the old clipping region so that you can restore it when you have

finished clipping.)

If you have hidden the panel (either by setting the visible parameter in the

SDPNewPanel function or SDPGetNewPanel function to false or by calling the

SDPHidePanel function), then the SDPUpdatePanel function does not display the

panel. To display a hidden panel, you must call the SDPShowPanel function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-48 Standard Catalog Package Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SDPShowPanel function (page 4-44) to display a panel that you have hidden

with the SDPNewPanel function (page 4-30), SDPGetNewPanel function (page 4-34), or

SDPHidePanel function (page 4-43).

Use the BeginUpdate routine to begin the process of updating your window. The

chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials describes how

to respond to update events. The BeginUpdate routine is described in the chapter

“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Use the SetClip routine to set a clipping region. The SetClip routine is described in

Inside Macintosh: Imaging With QuickDraw.

SDPMovePanel

The SDPMovePanel function moves the panel to a location you specify.

pascal OSErr SDPMovePanel (SDPPanelHandle panel,

short h,

short v);

panel The panel you wish to move.

h The horizontal coordinate to which you want to move the upper-left
corner of the panel, in the local coordinates of the panel’s window.

v The vertical coordinate to which you want to move the upper-left corner
of the panel, in the local coordinates of the panel’s window.

DESCRIPTION

Use the SDPMovePanel function to move the upper-left corner of the panel to (h, v),

given in local coordinates of the panel’s window. You set the original location of the

panel with the bounds parameter in the SDPNewPanel function or SDPGetNewPanel

function.

Parameter count Routine selector

$0004 $006A

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-49

If you have hidden the panel (either by setting the visible parameter in the

SDPNewPanel function or SDPGetNewPanel function to false or by calling the

SDPHidePanel function), then the SDPMovePanel function does not display the panel.

To display a hidden panel, you must call the SDPShowPanel function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the SDPNewPanel function (page 4-30) or SDPGetNewPanel function

(page 4-34) to set the original location of the panel.

Use the SDPShowPanel function (page 4-44) to display a panel that you have hidden

with the SDPNewPanel function, SDPGetNewPanel function, or SDPHidePanel

function (page 4-43).

SDPSizePanel

The SDPSizePanel function resizes the panel to a size you specify.

pascal OSErr SDPSizePanel (SDPPanelHandle panel,

short width,

short height);

panel The panel you wish to resize.

width The width, in QuickDraw coordinates, that you want to use for the panel.
You must specify a value for this parameter—it has no default value. You
can calculate the minimum width of a panel as

5 * FontInfo.widMax + 42

Parameter count Routine selector

$0004 $006B

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-50 Standard Catalog Package Reference

height The height, in points, that you want to use for the panel. You must specify
a value for this parameter—it has no default value. You can calculate the
minimum height of a panel as

Max(64, 3 * FontHeight) + fontHeight + 18

where

fontHeight = FontInfo.ascent + FontInfo.descent +
 FontInfo.Leading.

DESCRIPTION

The SDPSizePanel function resizes the panel to have the specified width and height

(keeping the upper-left corner in a fixed position). You set the original size of the panel

with the bounds parameter in the SDPNewPanel function or SDPGetNewPanel

function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the SDPNewPanel function (page 4-30) or SDPGetNewPanel function

(page 4-34) to set the original size of the panel.

You can use the GetFontInfo routine described in Inside Macintosh: Imaging With
QuickDraw, to determine the font size.

SDPDisposePanel

The SDPDisposePanel function deallocates all of the data structures associated with a

panel.

pascal OSErr SDPDisposePanel (SDPPanelHandle panel);

Parameter count Routine selector

$0004 $006C

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-51

panel The handle of the panel you wish to deallocate.

DESCRIPTION

Call this function when you are finished using a panel.

SPECIAL CONSIDERATIONS

A personal-catalog reference number returned by the SDPGetPath function is no longer

valid after you call the SDPDisposePanel function.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SDPGetPath function (page 4-40) returns a personal-catalog reference number that

is no longer valid after you dispose of the panel.

Call the SDPNewPanel function (page 4-30) or the SDPGetNewPanel function

(page 4-34) to open a new panel.

Handling Events in a Catalog-Browsing Panel

The routines in this section let you find out what action the user has taken in the

Catalog-Browsing panel (or Personal-Catalog panel) and handle the resulting event.

If an event takes place in the Catalog-Browsing panel, you call the first function in this

section, SDPPanelEvent, to handle the event. You must also pass regular null events to

the SDPPanelEvent function. This function returns a value that tells you if the user has

double-clicked a record or has otherwise changed the selection in the panel. You can use

the SDPGetPanelSelectionSize (page 4-57) and SDPGetPanelSelection

(page 4-58) functions to determine what item the user has selected. If the user has

double-clicked a record, you can use these functions to determine what record the user

has double-clicked.

You must call the SDPUpdatePanel function (page 4-47) to handle update events.

Parameter count Routine selector

$0002 $0066

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-52 Standard Catalog Package Reference

If the user double-clicks any item other than a record, the panel opens the item and

displays its contents. If you want to provide a method other than double-clicking for a

user to open an item, such as an Open item in a menu or a button in your window, you

can use the SDPOpenSelectedItem function (page 4-59) to do so.

If you are implementing menu items or controls in addition to those in the panel, you

can use the SDPGetPanelSelectionState function (page 4-55) to determine what the

user is doing in order to decide whether to enable your menu items or buttons and what

their labels should be. For example, if the user has clicked a record once to highlight it,

you can enable a button labeled Choose. If the user has highlighted a container, you can

change the button to read Open.

SDPPanelEvent

The SDPPanelEvent function handles events intended for the panel.

pascal OSErr SDPPanelEvent (SDPPanelHandle panel,

const EventRecord *theEvent,

SDPPanelState *whatHappened);

panel The panel in which the event occurred.

theEvent The event record for the event.

whatHappened
A return value that tells you how the SDPPanelEvent function handled
the event.

DESCRIPTION

Because the panel is a modeless dialog box, the Event Manager passes all events that

occur in the panel to you. If you determine that the event occurred in the panel, you can

use the SDPPanelEvent function to handle the event.

You should use this function to handle mouse-up and mouse-down events in the panel,

any key-down and auto-key events you want the panel to process, disk-insert events for

which the panel is the intended target, and activate events for the panel’s window. It

treats suspend and resume events like activate events and all other events as null events.

You must call the SDPUpdatePanel function to handle update events.

Before you call the SDPPanelEvent function for a key-down event, you should provide

the appropriate feedback to the user. For example, if you provide a button labeled Open

for opening an item in the panel and the user presses the Return key, you should

highlight the Open button before calling the SDPPanelEvent function.

You must regularly provide the panel with null events so that it can update the scrollable

list when the user moves up or down in the catalog hierarchy and so it can enumerate

catalogs when appropriate to do so.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-53

The whatHappened parameter can have any of the following values:

enum {

kSDPProcessed,

kSDPSelectedAnItem,

kSDPChangedSelection

};

typedef unsigned short SDPPanelState;

Constant descriptions

kSDPProcessed The event resulted in no state change.

kSDPSelectedAnItem
The user wants to select the currently highlighted record. The
function returns this value, for example, when a user double-clicks
a record. When you are displaying the Personal-Catalog panel, the
SDPPanelEvent function also returns this value when the user
double-clicks an alias of a container.

kSDPChangedSelection
This is a good time to check the state of the panel. The function
returns this value when item selected in the panel has changed
because the user clicked a new item (which may mean that no item
is selected), clicked in a menu, pressed a Command-key
combination, or inserted a disk. The function also returns this value
from the first null event you send to a panel after creating the panel.

If you are displaying the Personal-Catalog panel and the user attempts to open an alias

of a container, the panel does not open the container, because the contents of that

container are not within the user’s default personal catalog. In that case, the

SDPPanelEvent function returns the value kSDPSelectedAnItem in the

whatHappened parameter. You can distinguish this case from that of the user selecting a

record by calling the SDPGetPanelSelectionState function, which returns the value

kSDPRecordSelected or kSDPRecordAliasSelected if the user selected a record

or the alias of a record, but returns the value kSDPContainerAliasSelected if the

user selected the alias of a container.

To display the contents of a container when the user tries to open the alias of a container

in the Personal-Catalog panel, you can call the SDPGetPanelSelectionSize and

SDPGetPanelSelection functions to get the location of the container, then close the

Personal-Catalog panel and open the Catalog-Browsing panel. Use the location of the

container as the value of the initialRLI parameter when you call the SDPNewPanel

function or the SDPGetNewPanel function to open the new panel. Alternatively, you

can get faster performance at the expense of more memory use by keeping both a

Personal-Catalog panel and a Catalog-Browsing panel open and hiding the one not in

use. Then when the user attempts to open the alias of a container in the Personal-Catalog

panel, you can hide the Personal-Catalog panel, display the Catalog-Browsing panel, and

use the SDPSetPath function to display the contents of the appropriate container.

C H A P T E R 4

Standard Catalog Package

4-54 Standard Catalog Package Reference

SPECIAL CONSIDERATIONS

You cannot assume that a personal-catalog reference number returned by the

SDPGetPath function is valid after you call the SDPPanelEvent function.

You must call the SDPUpdatePanel function to handle update events.

Be sure to pass mouse-down and mouse-up events to the SDPPanelEvent function. If

you don’t do so, the panel cannot respond to double clicks.

The SDPPanelEvent function may move or purge memory; you should not call this

function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Call the SDPUpdatePanel function (page 4-47) to handle update events.

Use the SDPGetPanelSelectionState function (described next) to find out what the

user has selected in the panel.

Call the SDPGetPanelSelectionSize function (page 4-57) to determine the size of

the packed DSSpec structure of a selected item in the panel and the

SDPGetPanelSelection function (page 4-58) to get a pointer to the packed DSSpec

structure.

Call the SDPNewPanel function (page 4-30) or the SDPGetNewPanel function

(page 4-34) to open a new panel. Call the SDPHidePanel (page 4-43) and

SDPShowPanel (page 4-44) functions to hide and display open panels.

Use the SDPSetPath function (page 4-38) to display the contents of a specific container

in an open panel.

The SDPGetPath function (page 4-40) returns a personal-catalog reference number that

you can no longer assume to be valid after you call the SDPPanelEvent function.

Parameter count Routine selector

$0006 $0071

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-55

SDPGetPanelSelectionState

The SDPGetPanelSelectionState function tells you what the user has selected in

the panel.

pascal OSErr SDPGetPanelSelectionState (SDPPanelHandle panel,

SDPSelectionState *itsState);

panel The panel on which you want this function to act.

itsState The state of the panel.

DESCRIPTION

The parameter itsState can return any of the following values:

enum {

kSDPNothingSelected,

kSDPLockedContainerSelected,

kSDPContainerSelected,

kSDPRecordSelected,

kSDPRecordAliasSelected,

kSDPContainerAliasSelected

};

typedef unsigned short SDPSelectionState;

Constant descriptions

kSDPNothingSelected
Nothing is currently selected.

kSDPLockedContainerSelected
The user has selected a container (a volume, folder, AOCE catalog,
dNode, or personal catalog), but doesn’t have access privileges.

kSDPContainerSelected
The user has selected a volume, folder, AOCE catalog, dNode, or
personal catalog.

kSDPRecordSelected
The user has selected a record.

kSDPRecordAliasSelected
The user has selected an alias of a record.

kSDPContainerAliasSelected
The user has selected an alias of a container.

C H A P T E R 4

Standard Catalog Package

4-56 Standard Catalog Package Reference

If the user has selected a record or the alias of a record, you can use the

SDPGetPanelSelectionSize function to determine the size of the PackedDSSpec

structure and the SDPGetPanelSelection function to get the PackedDSSpec

structure for that record. If the SDPGetPanelSelectionState function returns the

value kSDPContainerSelected or kSDPLockedContainerSelected, you can use

these functions to determine which container the user has selected.

If you are displaying the Catalog-Browsing panel and the user selects an alias of a

container, the SDPGetPanelSelectionState function returns the value

kSDPContainerAliasSelected, but otherwise the panel behaves as if the user had

selected the container itself. However, if you are displaying the Personal-Catalog panel

and the user attempts to open an alias of a container, the panel does not open the

container. In this case, you can call the SDPGetPanelSelectionSize and

SDPGetPanelSelection functions to get the location of the container, then close (or

hide) the Personal-Catalog panel and open (or show, if it’s already open) the

Catalog-Browsing panel to display the contents of that container.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See the description of the SDPPanelEvent function (page 4-52) for more information on

handling user selections in panels.

Call the SDPGetPanelSelectionSize function (page 4-57) to determine the size of

the packed DSSpec structure of a selected record and the SDPGetPanelSelection

function (page 4-58) to get a pointer to the packed DSSpec structure.

Use the SDPNewPanel function (page 4-30) or SDPGetNewPanel function (page 4-34) to

open a new panel.

Parameter count Routine selector

$0004 $006E

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-57

SDPGetPanelSelectionSize

The SDPGetPanelSelectionSize function returns the size of the PackedDSSpec

structure containing the packed record ID of the currently selected record or container.

pascal OSErr SDPGetPanelSelectionSize (SDPPanelHandle panel,

unsigned short *dsSpecSize);

panel The panel on which you want this function to act.

dsSpecSize
A pointer to the size of the PackedDSSpec structure containing the
record ID and location information for the record or container (dNode,
AOCE catalog, personal catalog, volume, or folder) that the user has
selected.

DESCRIPTION

If the SDPGetPanelSelectionState function returns the value kRecordSelected

or kSDPRecordAliasSelected, you can use the SDPGetPanelSelectionSize and

SDPGetPanelSelection functions to determine which record the user selected. If the

SDPGetPanelSelectionState function returns the value kContainerSelected,

kLockedContainerSelected, or kContainerAliasSelected, these functions tell

you which container the user has selected.

You can use the length returned in the dsSpecSize parameter to allocate a buffer for a

PackedDSSpec structure. You can then use a pointer to this buffer for the selection

parameter when you call the SDPGetPanelSelection function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0004 $0072

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-58 Standard Catalog Package Reference

SEE ALSO

Use the SDPGetPanelSelectionState function (page 4-55) to determine what (a

record, container, locked container, or nothing) the user has selected in the panel.

Use the SDPGetPanelSelection function, described next, to get the DSSpec structure

identifying the record or container the user has selected.

SDPGetPanelSelection

The SDPGetPanelSelection function returns a DSSpec structure for the record or

container the user has selected in the panel.

pascal OSErr SDPGetPanelSelection (SDPPanelHandle panel,

PackedDSSpec *selection);

panel The panel on which you want this function to act.

selection A pointer to a PackedDSSpec structure, which contains location
information for a volume, folder, dNode, personal catalog, or record. You
must allocate memory and provide this pointer before you call the
function.

DESCRIPTION

If the SDPGetPanelSelectionState function returns the value kRecordSelected,

you can use the SDPGetPanelSelection function to determine which record the user

selected. If the SDPGetPanelSelectionState function returns the value

kContainerSelected or kLockedContainerSelected, the user has selected a

volume, folder, AOCE catalog, dNode, or personal catalog, and the

SDPGetPanelSelection function tells you the location of that container.

If the SDPGetPanelSelectionState function returns the value

kRecordAliasSelected, the SDPGetPanelSelection function returns the DSSpec

structure for the record referred to by the alias, not for the alias itself. Similarly, if the

SDPGetPanelSelectionState function returns the value

kContainerAliasSelected, the SDPGetPanelSelection function tells you the

location of the container referred to by the alias.

Before you call the SDPGetPanelSelection function, you can call the

SDPGetPanelSelectionSize function to get the size of the PackedDSSpec structure

and use it to allocate the buffer for the selection parameter.

SPECIAL CONSIDERATIONS

The pathname of a container returned by the SDPGetPath function is not necessarily

the same as the pathname you get by using the SDPGetPanelSelection function to

obtain location information for an item the user has selected in that container. This

discrepancy results from the fact that the item might be an alias or information card. The

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-59

SDPGetPanelSelection function returns the location of the original item, not that of

the alias or information card itself.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SDPGetPanelSelectionState function (page 4-55) to determine whether the

user has selected a record, a container, a locked container, or an alias.

Use the SDPGetPanelSelectionSize function (page 4-57) to determine the size of the

packed DSSpec structure.

The SDPGetPath function (page 4-40) returns the current pathname of the container in

the pop-up menu of the panel.

SDPOpenSelectedItem

The SDPOpenSelectedItem function simulates a double-click on an item that the user

has selected in the panel.

pascal OSErr SDPOpenSelectedItem (SDPPanelHandle panel,

SDPPanelState *whatHappened);

panel The panel on which you want this function to act.

whatHappened
The result of the double click. This parameter can return the value
kSDPProcessed, kSDPSelectedAnItem, or
kSDPChangedSelection.

DESCRIPTION

If the user has selected a container (that is, a volume, folder, AOCE catalog, personal

catalog, or node), then the SDPOpenSelectedItem function opens that container and

returns the value kSDPChangedSelection in the whatHappened parameter. If the

user has selected a record or an alias of a record, then the function returns the value

Parameter count Routine selector

$0004 $006F

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-60 Standard Catalog Package Reference

kSDPSelectedAnItem in this parameter. If the user has selected an alias of a container

in the Catalog-Browsing panel, the SDPOpenSelectedItem function returns the value

kSDPChangedSelection and opens that container just as if the user had selected the

container itself. However, if the user has selected an alias of a container in the

Personal-Catalog panel, the function returns the value kSDPSelectedAnItem and does

not open the container. If the user has selected a locked container or there is no item

selected, the function returns kSDPProcessed.

The Catalog-Browsing panel allows the user to double-click an item but provides no

other user interface for opening a container or choosing a record. You can use the

SDPOpenSelectedItem function to provide a way for the user to open a container or

choose a record in the panel without double-clicking. For example, you can provide a

button adjacent to the panel and call the SDPOpenSelectedItem function when the

user clicks the button. To implement such a feature, you should call the

SDPGetPanelSelectionState function each time either the

SDPOpenSelectedItem function or the SDPPanelEvent function returns the value

kSDPChangedSelection. If the user has selected a container or an alias of a container,

you can enable the Open button. If there is no item selected or the user has selected a

locked container, you can disable the button. If the user has selected a record, you can

change the button to read “Choose” or whatever is appropriate for your application.

If the SDPOpenSelectedItem function returns the value kSDPSelectedAnItem for

the Catalog-Browsing panel, you can assume the item is a record and you can use the

SDPGetPanelSelectionSize function to determine the size of the packed DSSpec

structure and the SDPGetPanelSelection function to get the DSSpec for that record.

For the Personal-Catalog panel, you must first determine whether the item is a record or

an alias of a container. If it’s a record, you can get the DSSpec structure just as in the case

of the Catalog-Browsing panel. If the item is an alias of a container, you can switch to a

Catalog-Browsing panel to display the contents of the container.

If the SDPOpenSelectedItem function returns the value kSDPChangedSelection,

you should call the SDPGetPanelSelectionState function to determine how to label

your buttons and whether to enable them. If the function returns kSDPProcessed, you

need take no further action.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0004 $006D

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-61

RESULT CODES

SEE ALSO

Call the SDPPanelEvent function (page 4-52) for mouse-up and mouse-down events in

the panel to find out if the user changed the selection.

Call the SDPGetPanelSelectionSize function (page 4-57) to determine the size of

the packed DSSpec structure of a selected item and the SDPGetPanelSelection

function (page 4-58) to get a handle to the packed DSSpec structure.

Creating, Displaying, and Disposing of a Find Panel

The routines in this section create and display a Find panel. You can call the

SDPNewFindPanel function (described next) to create a new Find panel.

The other functions in this section, as their names suggest, allow you to hide, show,

enable, and disable a Find panel, redraw a Find panel, and move a Find panel within

your window. When you are finished using a Find panel or close the window, call the

SDPDisposeFindPanel function (page 4-75).

Once you have placed a Find panel in your window, you use the functions in “Handling

Events in a Find Panel,” beginning on page 4-75, to handle events that take place within

the Find panel.

SDPNewFindPanel

The SDPNewFindPanel function creates a new Find panel in the location you specify in

the window you specify.

pascal OSErr SDPNewFindPanel (SDPFindPanelHandle *newPanel,

WindowPtr window,

Point upperLeft,

short layoutResourceID,

Boolean visible,

Boolean enabled,

const RStringPtr *typesList,

long typeCount,

DirMatchWith matchTypeHow,

AuthIdentity identity,

short simultaneousSearchCount,

SDPFindPanelFocus initialFocus,

long refCon);

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-62 Standard Catalog Package Reference

newPanel The address of the handle to the new Find panel created by the function.
The SDPNewFindPanel function allocates this handle.

window A pointer to the window into which the Find panel is to be inserted.

upperLeft The upper-left corner, in the window’s local coordinates, of the Find panel.

layoutResourceID
The resource ID of a Find-panel layout resource (type
kSDPFindPanelResourceType) that specifies the layout of the Find
panel. You can specify kStandardFindLayout as the resource ID to use
a standard layout for the Find panel.

visible A Boolean value that specifies whether the Find panel is to be initially
visible. Set this parameter to true if you want the Find panel to be
visible. You can use the SDPShowFindPanel and SDPHideFindPanel
functions to hide and show a Find panel.

enabled A Boolean value that specifies whether the Find panel is to be initially
enabled. Set this parameter to true to enable the Find panel. You can use
the SDPEnableFindPanel function to enable and disable the Find panel.

typesList A pointer to an array, each item of which is of type RStringPtr,
providing a list of the types of records you want the Find panel to display.
The Find panel displays only records of the types you specify in this list.
The matchTypeHow parameter specifies how the SDPNewFindPanel
function interprets the types list.

typeCount The number of record types in your types list.

matchTypeHow
A constant that specifies how the function interprets
the types list. The possible values for this
parameter are described in the following function
description.

identity The authentication identity of the caller. Specify 0 for guest access.

simultaneousSearchCount
The number of catalog searches that may be done simultaneously. If you
specify a larger number for this parameter, the searches are generally
faster but require more memory. Each search requires 4600 bytes. The
function does not use more memory than is necessary; for example, if you
specify 10 for this parameter but there are only two catalogs to search, the
function uses only the memory necessary to search those two catalogs.
Note that the Find panel can perform simultaneous searches of catalogs
only; it cannot search more than one volume at a time.

initialFocus
A constant that specifies whether there should be a focus rectangle in the
Find panel, and if so, whether it should be around the scrolling list in the
Find panel or around the text-input field (the Find field; see Figure 4-5 on
page 4-18). You can use the SDSetFindPanelFocus function to change
the location of the focus rectangle.

refCon A reference constant. The function places this value in the refCon field of
the SDPPanelRecord structure pointed to by the newPanel parameter.
You can use the refCon parameter for whatever you wish.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-63

DESCRIPTION

You use the SDPNewFindPanel function to create a new Find panel in your window.

You specify the location of the Find panel and can specify that it is to be initially visible

or invisible and initially enabled or disabled.

The typesList and matchTypeHow parameters let you specify what types of records

the Find panel should display. The possible values for the matchTypeHow parameter are

as follows:

enum {

kMatchAll,

kExactMatch,

kBeginsWith,

kEndingWith,

kContaining

};

Constant descriptions

kMatchAll Display all record types. The function ignores the typesList and
typeCount parameters.

kExactMatch Display only the record types in the types list.

kBeginsWith Display only records whose types begin with the string in the
typesList parameter. The typesList parameter can contain
only one string; if the typeCount parameter is not equal to 1, the
function returns an error.

kEndingWith Display only records whose types end with the string in the
typesList parameter. The typesList parameter can contain
only one string; if the typeCount parameter is not equal to 1, the
function returns an error.

kContaining Display only records whose types contain the string in the
typesList parameter. The typesList parameter can contain
only one string; if the typeCount parameter is not equal to 1, the
function returns an error.

You can use the SDPGetCategories and SDPGetCategoryTypes functions to

determine what record types are available and use that information to let the user select

which types of records the Find panel should display. Then you can use the typesList

parameter to restrict the panel to those record types.

In the layoutResourceID parameter you provide the resource ID of a Find-panel

layout resource, defined by the following Rez type:

type 'find' {

pstring; /* "Find" text */

align word;

pstring; /* "Search" text */

align word;

C H A P T E R 4

Standard Catalog Package

4-64 Standard Catalog Package Reference

array [5] { /* specifications for text-entry box label,

 search menu label, text-entry box,

search menu, scrolling list */

integer sysFont, appFont, portFont;

integer; /* face */

integer; /* size */

rect; /* bounds */

};

};

#define kSDPFindPanelResourceType 'find'

Field descriptions

"Find" text The label for the text-entry field. You must supply a value for this
field; there is no default label.

"Search" text The label for the search menu. You must supply a value for this
field; there is no default label.

array An array of specifications for the elements of the Find panel in the
following order: The label for the text-entry box, the label for the
search menu, the text-entry box, the search menu, and the scrolling
list. The specifications include the following information:

Subsequently, you can use the other routines in this and the following section to hide

and show the Find panel, enable and disable it, and handle events that occur within the

Find panel.

You may specify any of the following values for the initialFocus parameter:

enum {

kSDPFindPanelNoFocus,

kSDPFindPanelListHasFocus,

kSDPFindPanelTextHasFocus

};

typedef unsigned short SDPFindPanelFocus;

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

font A choice of system font, application font, or graphics
port font.

face The QuickDraw font style.

size The type size, in points.

bounds The boundary, in local coordinates, of the element.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-65

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the SDPHideFindPanel function (page 4-67) and SDPShowFindPanel

function (page 4-68) to hide and show a Find panel.

You can use the SDPEnableFindPanel function (page 4-69) to enable and disable the

Find panel.

You can use the SDSetFindPanelFocus function (page 4-69) to change the location of

the focus rectangle.

Use the other routines in this section to dispose, draw, and move Find panels. Use the

routines in “Handling Events in a Find Panel,” beginning on page 4-75, to handle events

that occur in the Find panel and to determine what record the user selected.

You can use the SDPPromptForID function (page 4-25) to get a specific or local identity.

You can use the SDPGetCategories function (page 4-91) to obtain a list of all the

record-type categories currently available and the SDPGetCategoryTypes function

(page 4-92) to list all the types of records included in a specific category.

SDPInstallFindPanelBusyProc

The SDPInstallFindPanelBusyProc function installs an application-defined routine

that the Find panel calls when it is busy.

pascal OSErr SDPInstallFindPanelBusyProc (

SDPFindPanelHandle findPanel,

FindPanelBusyProc busyProc);

findPanel A handle for the Find panel for which you want to install a
Find-panel-busy callback routine.

busyProc A pointer to your callback routine. To remove a callback routine that you
installed previously, specify nil for this parameter.

DESCRIPTION

If you use the SDPInstallFindPanelBusyProc function to install a Find-panel-busy

callback routine, the Find panel calls your routine whenever the panel is busy. For

Parameter count Routine selector

$0014 $08FC

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-66 Standard Catalog Package Reference

example, if the user initiates a search, the Find panel calls your callback routine while it

conducts the search.

The Find panel passes to your callback routine the handle to the panel and a Boolean

value that indicates whether the panel is busy. You can use your callback routine to

provide feedback to the user that indicates that the Find panel is busy. One good way to

do this is to display the Standard Catalog Package’s spinning arrow icon.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The Find-panel-busy callback routine is described on page 4-95.

SDPSetFindPanelBalloonHelp

The SDPSetFindPanelBalloonHelp function enables Balloon Help for the Find panel.

pascal OSErr SDPSetFindPanelBalloonHelp (

SDPFindPanelHandle findPanel,

short balloonHelpID);

findPanel A handle for the panel for which you want to enable Balloon Help.

balloonHelpID
The resource ID of a 'STR#' resource that contains Balloon Help strings
for the Find panel.

Parameter count Routine selector

$0004 $090C

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-67

DESCRIPTION

You must use the SDPSetFindPanelBalloonHelp function to provide text strings for

Balloon Help and to activate Balloon Help for the Find panel. You must provide three

text strings, one for each element of the Find panel, in the following order:

1. the text-input field (the Find field)

2. the search menu

3. the scrolling list

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Balloon Help is described in the chapter “Help Manager” of Inside Macintosh: More
Macintosh Toolbox.

SDPHideFindPanel

The SDPHideFindPanel function hides a Find panel.

pascal OSErr SDPHideFindPanel (SDPFindPanelHandle findPanel);

findPanel The Find panel you wish to hide.

DESCRIPTION

If a Find panel is visible, this function makes it invisible by hiding the menu, erasing and

invalidating the list’s rectangles for the list and text fields, and causing the panel to not

be drawn. If the Find panel is already hidden, this function does nothing.

Parameter count Routine selector

$0003 $090A

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-68 Standard Catalog Package Reference

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SDPShowFindPanel function (described next) to display a Find panel that you

have hidden.

SDPShowFindPanel

The SDPShowFindPanel function displays a Find panel.

pascal OSErr SDPShowFindPanel (SDPFindPanelHandle findPanel);

findPanel The Find panel you wish to display.

DESCRIPTION

You can hide a Find panel by setting the visible parameter in the SDPNewFindPanel

to false or by calling the SDPHideFindPanel function. If the Find panel is hidden,

the SDPShowFindPanel function makes it visible. If the Find panel is already visible,

this function does nothing. Use the SDPUpdateFindPanel function to handle an

update event.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

Parameter count Routine selector

$0002 $0903

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-69

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

When you create a Find panel with the SDPNewFindPanel function (page 4-61), you

can specify that it be initially hidden.

Use the SDPHideFindPanel function (page 4-67) to hide a Find panel.

Use the SDPUpdateFindPanel function (page 4-72) to handle an update event.

SDPEnableFindPanel

The SDPEnableFindPanel function enables or disables a Find panel.

pascal OSErr SDPEnableFindPanel (SDPFindPanelHandle findPanel,

Boolean enabled);

findPanel The Find panel you wish to enable or disable.

enabled A Boolean value that specifies whether you wish to enable or disable the
Find panel. Specify true to enable the Find panel.

DESCRIPTION

This function disables the list, menu, and text field so that they do not accept any

commands or text, or enables a disabled Find panel.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0002 $0902

noErr 0 No error
paramErr –50 Illegal parameter

Parameter count Routine selector

$0003 $0905

C H A P T E R 4

Standard Catalog Package

4-70 Standard Catalog Package Reference

RESULT CODES

SEE ALSO

When you call the SDPNewFindPanel function (page 4-61) to create a Find panel, you

specify whether it should be enabled or disabled initially.

SDPSetFindPanelFocus

The SDPSetFindPanelFocus function changes the focus rectangle for a Find panel.

pascal OSErr SDPSetFindPanelFocus (SDPFindPanelHandle findPanel,

SDPFindPanelFocus newFocus);

findPanel The Find panel for which you wish to change the focus rectangle.

newFocus A constant that specifies whether there should be a focus in the Find
panel, and if so, whether it should be the scrolling list in the Find panel or
the text-input field (the Find field; see Figure 4-5 on page 4-18).

DESCRIPTION

When the user uses the Tab key to select the Find panel (assuming you support this

feature), you can use the SDPSetFindPanelFocus function to specify which portion of

the Find panel (the scrolling list or the text-entry field) is the focus; that is, to which

portion of the Find panel any keyboard equivalents are applied. If the scrolling list is the

focus, the Find panel draws a heavy border (called a focus rectangle) around the list. If the

text-entry field is the focus, the Find panel displays a blinking insertion point in the field.

If you want to integrate the action of the focus in the Find panel with one in your

application window, you can use the SDPSetFindPanelFocus function to control

whether the focus is in the Find panel and which element has the focus.

For example, if you have three text-entry fields in your application window and the user

presses the Tab key repeatedly, you can use this function to cycle the focus rectangle

sequentially through your three fields, then to the text-entry field in the Find panel, then

the scrolling list, and then back to the first of your text fields.

To implement this feature, you must interpret events before calling the

SDPFindPanelEvent function. Otherwise, when the user is working in the Find panel

and you call the SDPFindPanelEvent function in response to a press of the Tab key,

the Find panel toggles the focus between the text-entry field and the scrolling list.

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-71

You may specify any of the following values for the newFocus parameter:

enum {

kSDPFindPanelNoFocus,

kSDPFindPanelListHasFocus,

kSDPFindPanelTextHasFocus

};

typedef unsigned short SDPFindPanelFocus;

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

When you call the SDPNewFindPanel function (page 4-61) to create a Find panel, you

specify the initial focus rectangle for the Find panel.

You should call the SDPFindPanelEvent function (page 4-76) to handle events that

occur in your window when the Find panel is open.

SDPSetFindIdentity

The SDPSetFindIdentity function changes the authentication identity used by the

Find panel.

pascal OSErr SDPSetFindIdentity (SDPFindPanelHandle findPanel,

AuthIdentity identity)

findPanel The Find panel for which you want to change the caller’s authentication
identity.

identity The new authentication identity. Specify 0 for guest access.

Parameter count Routine selector

$0003 $0906

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-72 Standard Catalog Package Reference

DESCRIPTION

You can use the SDPSetFindIdentity function to change the authentication identity

of the user without closing the Find panel and opening a new one.

SPECIAL CONSIDERATIONS

If a search is in progress when you call the SDPSetFindIdentity function, the Find

panel continues to use the old identity until the search is complete.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The SDPPromptForID function (page 4-25) prompts the user for a password and

returns an authentication identity.

SDPUpdateFindPanel

The SDPUpdateFindPanel function draws all or part of a Find panel.

pascal OSErr SDPUpdateFindPanel (SDPFindPanelHandle findPanel,

RgnHandle theRgn);

findPanel The Find panel you wish to draw.

theRgn The region of the window you wish to draw. Any component of the Find
panel that intersects this region is redrawn. For example, if any portion of
the list of the Find panel intersects this region, the Standard Catalog
Package redraws the whole list. Pass nil in this parameter to draw the
entire Find panel.

DESCRIPTION

You must call the SDPUpdateFindPanel function to draw a Find panel in response to

an update event. (Do not pass an update event to the SDPFindPanelEvent function.)

Parameter count Routine selector

$0004 $090B

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-73

You can also use the SDPUpdateFindPanel function to draw a Find panel when your

application needs to redraw its window because of some activity other than an update

event.

In response to an update event, you should first call the BeginUpdate routine, which

takes a window pointer as a parameter. Then use the value in the visRgn field of the

window’s grafPort structure for the theRgn parameter of the SDPUpdateFindPanel

function.

Note that the SDPUpdateFindPanel function does not use the region specified by the

parameter theRgn as a clipping region. To clip the drawing region, you must first call

the SetClip routine. (Remember to save the old clipping region so that you can restore

it when you have finished clipping.)

If you have hidden the Find panel (either by setting the visible parameter in the

SDPNewFindPanel function to false or by calling the SDPHideFindPanel function),

then the SDPUpdateFindPanel function does not display the Find panel. To display a

hidden Find panel, you must call the SDPShowFindPanel function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SDPShowFindPanel function (page 4-68) to display a Find panel that you have

hidden with the SDPNewFindPanel function (page 4-61) or SDPHideFindPanel

function (page 4-67).

Use the BeginUpdate routine to begin the process of updating your window. The

chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials describes how

to respond to update events. The BeginUpdate routine is described in the chapter

“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Use the SetClip routine to set a clipping region. The SetClip routine is described in

Inside Macintosh: Imaging With QuickDraw.

Parameter count Routine selector

$0004 $0901

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-74 Standard Catalog Package Reference

SDPMoveFindPanel

The SDPMoveFindPanel function moves the Find panel to a location you specify.

pascal OSErr SDPMoveFindPanel (SDPFindPanelHandle findPanel,

short h,

short v);

findPanel The Find panel you wish to move.

h The horizontal coordinate to which you want to move the upper-left
corner of the Find panel, in the local coordinates of the Find panel’s
window.

v The vertical coordinate to which you want to move the upper-left corner
of the Find panel, in the local coordinates of the Find panel’s window.

DESCRIPTION

Use the SDPMoveFindPanel function to move the upper-left corner of the Find panel to

(h, v), given in local coordinates of the Find panel’s window. You set the original location

of the Find panel with the upperLeft parameter in the SDPNewFindPanel function.

If you have hidden the Find panel (either by setting the visible parameter in the

SDPNewFindPanel function to false or by calling the SDPHideFindPanel function),

then the SDPMoveFindPanel function does not display the Find panel. To display a

hidden Find panel, you must call the SDPShowFindPanel function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the SDPNewFindPanel function (page 4-61) to set the original location of the

Find panel.

Parameter count Routine selector

$0004 $0904

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-75

Use the SDPShowFindPanel function (page 4-68) to display a Find panel that you have

hidden with the SDPNewFindPanel function (page 4-61) or SDPHideFindPanel

function (page 4-67).

SDPDisposeFindPanel

The SDPDisposeFindPanel function deallocates all of the data structures associated

with a Find panel.

pascal OSErr SDPDisposeFindPanel (SDPFindPanelHandle findPanel);

findPanel The handle of the Find panel you wish to deallocate.

DESCRIPTION

Call this function when you have completely finished using a Find panel.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Call the SDPNewFindPanel function (page 4-61) to open a new Find panel.

Handling Events in a Find Panel

The routines in this section let you find out what action the user has taken in the Find

panel and handle the resulting event. When you receive an event for a window in your

application that contains a Find panel, you must first determine whether it took place in

the panel. For mouse-down events, you can check the coordinates of the event to see if it

was in the Find panel. You must keep track of where the user is working to know how to

handle key-down events; for example, you can place a focus rectangle in the Find panel

Parameter count Routine selector

$0002 $08FD

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-76 Standard Catalog Package Reference

or around the content portion of the window, according to the last location of a

mouse-down event. Then you can assume that any key-down event pertains to the

portion of the window inside the focus rectangle.

If an event takes place in the Find panel, you call the first function in this section,

SDPFindPanelEvent, to handle the event. You must also pass regular null events to

the SDPFindPanelEvent function. This function returns a value that tells you how the

function handled the event. If the user has double-clicked a record, for example, the

function returns the value kSDPSelectedAFindItem and you can call the

SDPGetFindPanelSelectionSize (page 4-80) and SDPGetFindPanelSelection

(page 4-82) functions to determine what record the user has selected.

You must call the SDPUpdateFindPanel function (page 4-72) to handle update events.

You can use the SDPStartFind function (page 4-83) to implement a Find button. If you

do so, you should also provide a Cancel button, which you can implement by calling the

SDPStopFind function (page 4-84).

If you are implementing menu items or controls in addition to those in the Find panel,

you can use the SDPGetFindPanelState function (page 4-79) to determine what the

user is doing in order to decide whether to enable your menu items or buttons and what

their labels should be. For example, if the user has clicked a record once to highlight it,

you can enable a button labeled Choose.

SDPFindPanelEvent

The SDPFindPanelEvent function handles events intended for the Find panel.

pascal OSErr SDPFindPanelEvent (SDPFindPanelHandle findPanel,

const EventRecord *event,

SDPFindPanelResult *whatHappened);

findPanel The Find panel in which the event occurred.

event The event record for the event.

whatHappened
A return value that tells you how the SDPFindPanelEvent function
handled the event.

DESCRIPTION

Because the Find panel is in your window, the Event Manager passes all events that

occur in the Find panel to you. If you determine that the event occurred in the Find

panel, you can use the SDPFindPanelEvent function to handle the event.

You should use this function to handle mouse-up and mouse-down events in the Find

panel, any key-down and auto-key events you want the Find panel to process, and

activate events for the Find panel’s window. It treats all other events as null events. You

must call the SDPUpdateFindPanel function to handle update events.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-77

Before you call the SDPFindPanelEvent function for a key-down event, you should

provide the appropriate feedback to the user. For example, if you provide a button

labeled Open for opening an item in the Find panel and the user presses the Return key,

you should highlight the Open button before calling the SDPFindPanelEvent function.

You must regularly provide the Find panel with null events so that it can search for the

records the user specifies.

The whatHappened parameter can have any of the following values:

enum {

kSDPSelectedAFindItem,

kSDPFindSelectionChanged,

kSDPFindCompleted,

kSDPTextStateChanged,

kSDPFocusChanged,

kSDPSelectionAndFocusChanged,

kSDPMenuChanged,

kSDPSelectionAndMenuChanged,

kSDPProcessedFind

};

typedef unsigned short SDPFindPanelResult;

Constant descriptions

kSDPSelectedAFindItem
The user wants to choose a record. The function returns this value,
for example, when a user double-clicks a record or clicks a record
once and presses Return or Enter.

kSDPFindSelectionChanged
The item selected in the Find panel has changed because the user
clicked a new item (which may mean that no item is selected),
pressed an arrow key, or typed the beginning letters of the name of
the record (“type-selecting” the record).

kSDPFindCompleted
The Find panel has completed a search. When the Find text-entry
field is the focus and the user presses the Return or Enter key, or
when you call the SDPStartFind function, the Find panel starts a
search. Each time you pass an event (including null events) to the
SDPFindPanelEvent function, the Find panel continues the
search for a short time and then returns control to your application.
The first time you call the SDPFindPanelEvent function after the
search is complete, the function returns the value
kSDPFindCompleted.

kSDPTextStateChanged
The user has entered text in a previously empty Find field or has
deleted all text from the field.

C H A P T E R 4

Standard Catalog Package

4-78 Standard Catalog Package Reference

kSDPFocusChanged
The focus has moved from the Find text field to the scrolling list or
vice versa.

kSDPSelectionAndFocusChanged
The user has changed the focus rectangle to the scrolling list by
clicking a new item.

kSDPMenuChanged
The user has changed the item chosen in the Search menu. The
Search menu lists the catalogs and volumes available for searching.

kSDPSelectionAndMenuChanged
The user has changed both the item chosen in the search menu and
the item selected in the scrolling list.

kSDPProcessedFind
The event resulted in no state change.

SPECIAL CONSIDERATIONS

The SDPFindPanelEvent function may move or purge memory; you should not call

this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Call the SDPUpdateFindPanel function (page 4-72) to handle update events.

Call the SDPGetFindPanelSelectionSize function (page 4-80) to determine the size

of the packed DSSpec structure of a selected item and the

SDPGetFindPanelSelection function (page 4-82) to get a pointer to the packed

DSSpec structure.

You can call the SDPStartFind function (page 4-83) to initiate a search and the

SDPStopFind function (page 4-84) to cancel one.

Parameter count Routine selector

$0006 $0900

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-79

SDPGetFindPanelState

The SDPGetFindPanelState function tells you what action the user has taken in the

Find panel.

pascal OSErr SDPGetFindPanelState (SDPFindPanelHandle findPanel,

SDPFindPanelState *itsState);

findPanel The Find panel on which you want this function to act.

itsState The state of the Find panel.

DESCRIPTION

The Find panel (see Figure 4-5 on page 4-18) does not provide buttons or menu items to

let the user choose records or initiate searches; you must provide these buttons and

menu items. You can use the SDPGetFindPanelState function to determine what the

user is doing in order to decide whether to enable your menu items or buttons and what

their labels should be. For example, if the user has clicked a record to highlight it, you

can enable a button labeled Choose. If the user has entered text in the Find field, you can

enable a button labeled Find.

You can use the following bit masks to test the value returned in the itsState

parameter:

enum {

kSDPItemIsSelectedBit,

kSDPFindTextExistsBit

};

/* values of SDPFindPanelState */

enum {

kSDPItemIsSelectedMask = 1<<kSDPItemIsSelectedBit,

kSDPFindTextExistsMask = 1<<kSDPFindTextExistsBit

};

typedef unsigned short SDPFindPanelState;

Constant descriptions

kSDPItemIsSelectedMask
The user has selected a record or the alias of a record.

kSDPFindTextExistsMask
The user has entered text in the Find field.

If the user has selected a record or the alias of a record, you can use the

SDPGetFindPanelSelectionSize function to determine the size of the

PackedDSSpec structure for the record and the SDPGetFindPanelSelection

function to get the PackedDSSpec structure.

C H A P T E R 4

Standard Catalog Package

4-80 Standard Catalog Package Reference

If the user has entered text in the Find field, you can activate a button labeled Find. If the

user clicks your Find button, you should call the SDPStartFind function to start the

search. You should also provide a Stop button, which you can implement by calling the

SDPStopFind function. Also, if the user presses the Return or Enter key during a

search, the Find panel stops the search. Therefore, you should highlight the Stop button

during a search to indicate that it is the default button.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See the description of the SDPFindPanelEvent function (page 4-76) for more

information on handling user selections in panels.

Call the SDPGetFindPanelSelectionSize function (described next) to determine the

size of the PackedDSSpec structure of a selected record and the

SDPGetFindPanelSelection function (page 4-82) to get a pointer to the packed

DSSpec structure.

SDPGetFindPanelSelectionSize

The SDPGetFindPanelSelectionSize function returns the size of the

PackedDSSpec structure containing the packed record ID of the currently selected

record in the Find panel.

pascal OSErr SDPGetFindPanelSelectionSize (

SDPFindPanelHandle findPanel,

unsigned short *size);

findPanel The Find panel on which you want this function to act.

Parameter count Routine selector

$0004 $0907

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-81

size A pointer to the size of the PackedDSSpec structure containing the
record ID and location information for the record that the user has
selected.

DESCRIPTION

If the SDPGetFindPanelState function returns the value

kSDPItemIsSelectedMask, you can use the SDPGetFindPanelSelectionSize

and SDPGetFindPanelSelection functions to determine which record the user

selected. If the user has selected an alias of a record, these functions tell you which

record the alias is for.

You can use the length returned in the dsSpecSize parameter to allocate a buffer to

hold a PackedDSSpec structure. You can then use a pointer to this buffer as the value of

the selection parameter when you call the SDPGetFindPanelSelection function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the SDPGetFindPanelState function (page 4-79) to determine if the user has

selected a record in the Find panel.

Use the SDPGetFindPanelSelection function, described next, to get the DSSpec

structure identifying the record the user has selected.

Parameter count Routine selector

$0004 $0908

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-82 Standard Catalog Package Reference

SDPGetFindPanelSelection

The SDPGetFindPanelSelection function returns a DSSpec structure for the record

the user has selected in the Find panel.

pascal OSErr SDPGetFindPanelSelection (

SDPFindPanelHandle findPanel,

PackedDSSpec *selection);

findPanel The Find panel on which you want this function to act.

selection A pointer to a PackedDSSpec structure, which contains location
information for a record. You must allocate memory and provide this
pointer before you call the function.

DESCRIPTION

If the SDPGetFindPanelState function returns the value

kSDPItemIsSelectedMask, you can use the SDPGetFindPanelSelection function

to determine which record the user selected.

If the user has selected the alias of a record, the SDPGetFindPanelSelection function

returns the DSSpec structure for the record referred to by the alias, not for the alias itself.

Before you call the SDPGetFindPanelSelection function, you can call the

SDPGetFindPanelSelectionSize function to get the size of the PackedDSSpec

structure and use it to allocate the buffer for the selection parameter.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0004 $0909

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-83

SEE ALSO

Use the SDPGetFindPanelState function (page 4-79) to determine whether the user

has selected a record.

Use the SDPGetFindPanelSelectionSize function (page 4-80) to determine the size

of the packed DSSpec structure.

SDPStartFind

The SDPStartFind function searches for the record or records the user specifies in the

Find text field of the Find panel.

pascal OSErr SDPStartFind (SDPFindPanelHandle findPanel);

findPanel The Find panel on which you want this function to act.

DESCRIPTION

The Find panel allows the user to enter text in the Find field and then press Return or

Enter to initiate a search but provides no button to start a search. The Macintosh Human
Interface Guidelines suggest that you should provide clearly labeled buttons to let the user

start and cancel searches. You can use the SDPStartFind function to provide a button

(or other interface) that lets the user start a search for records.

The SDPStartFind function returns control to your application as soon as it initiates

the search. Each time you call the SDPFindPanelEvent function, the Find panel

continues the search for a short time before returning control to you. When it completes

the search, the SDPFindPanelEvent function returns the value kSDPFindCompleted

in the whatHappened parameter.

You can use the SDPStopFind function to cancel a search.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0002 $08FE

C H A P T E R 4

Standard Catalog Package

4-84 Standard Catalog Package Reference

RESULT CODES

SEE ALSO

Call the SDPFindPanelEvent function (page 4-76) to determine when the

SDPStartFind function has completed a search.

Call the SDPStopFind function (described next) to cancel a search.

SDPStopFind

The SDPStopFind function cancels a search that you initiated with the SDPStartFind

function.

pascal OSErr SDPStopFind (SDPFindPanelHandle findPanel);

findPanel The Find panel on which you want this function to act.

DESCRIPTION

When you use the SDPStartFind function to initiate a search for records, you should

enable a Stop button. If the user clicks this button, you should call the SDPStopFind

function to stop the search. Also, if the user presses the Return or Enter key during a

search, the Find panel stops the search. Therefore, you should highlight the Stop button

during a search to indicate that it is the default button.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

noErr 0 No error
paramErr –50 Illegal parameter

Parameter count Routine selector

$0002 $08FF

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-85

SEE ALSO

Call the SDPStartFind function (page 4-83) to initiate a search.

Resolving Aliases

The functions in this section resolve HFS and AOCE catalog-system aliases to catalog

objects. The user can use the Finder to create an alias for any item in the catalog system,

including records, dNodes, catalogs, personal catalogs, and so forth. If the alias is an

HFS file, as in the case of a file-system alias for a personal catalog, you can use the

SDPResolveAliasFile function (described next) to resolve the alias. If the alias is

contained in a record, you can use the SDPResolveAliasDSSpec function (page 4-87)

to resolve it.

SDPResolveAliasFile

The SDPResolveAliasFile function resolves a file-system alias of an AOCE catalog

object.

pascal OSErr SDPResolveAliasFile (FSSpecPtr fileSpec,

PackedDSSpecHandle resolvedDSSpec,

AuthIdentity identity,

Boolean mayPromptUser);

fileSpec The file specification structure of the alias file you wish to resolve.

resolvedDSSpec
A handle to a packed DSSpec structure that contains the resolved alias.
You must allocate a handle of any size and provide it to the function. The
function resizes the handle as necessary and uses it to return the resolved
alias of you.

identity The authentication identity of the caller.

mayPromptUser
A Boolean value that specifies whether the function should present dialog
boxes to the user as necessary. If you set this parameter to true, the
function displays any dialog boxes that are necessary to complete the
resolution of the alias; for example, the user might be requested to insert a
disk or log on to a file server. If you set this parameter to false, the
function does not present the user with any dialog boxes but returns with
an error if it can’t resolve the alias.

C H A P T E R 4

Standard Catalog Package

4-86 Standard Catalog Package Reference

DESCRIPTION

A file containing an AOCE catalog-system alias has the isAlias bit set in the file’s

Finder flags field and has one of the following file types:

If it is appropriate to present the user with dialog boxes, specify true for the

mayPromptUser parameter to make sure that the function can resolve the alias. If your

function is running in the background or for some other reason it is not appropriate to

display dialog boxes, set this parameter to false.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

HFS aliases and the Finder flags field are described in the chapter “Finder Interface” in

the book Inside Macintosh: Macintosh Toolbox Essentials.

To resolve an alias in an AOCE catalog record, use the SDPResolveAliasDSSpec

function, described next.

File type Constant

'pabt' kPersonalCatalogFileType

'bust' kBusinessCardFileType

'dirt' kCatalogFileType

'dnod' kDNodeFileType

'rcrd' kRecordFileType

Parameter count Routine selector

$0007 $0E74

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-87

SDPResolveAliasDSSpec

The SDPResolveAliasDSSpec function resolves an alias of an AOCE catalog-system

alias that is contained in a PackedDSSpec structure.

pascal OSErr SDPResolveAliasDSSpec (

PackedDSSpecHandle theAliasDSSpec,

AuthIdentity identity,

Boolean mayPromptUser);

theAliasDSSpec
A handle to the PackedDSSpec structure of the alias you wish to resolve.
The function returns, in this same handle, the fully resolved alias of the
record to which that alias refers.

identity The authentication identity of the caller.

mayPromptUser
A Boolean value that specifies whether the function should present dialog
boxes to the user as necessary. If you set this parameter to true, the
function displays any dialog boxes that are necessary to complete the
resolution of the alias; for example, the user might be requested to log on
to a catalog server. If you set this parameter to false, the function does
not present the user with any dialog boxes but returns with an error if it
can’t resolve the alias.

DESCRIPTION

When the enumeration specification structure returned by the DirEnumerateGet

function indicates that a record contains an alias, that record includes an attribute of

type kAliasAttrTypeBody. The attribute value of such an attribute is a packed

DSSpec structure. The SDPResolveAliasDSSpec function returns the PackedDSSpec

structure of the fully resolved record to which that alias refers.

If it is appropriate to present the user with dialog boxes, specify true for the

mayPromptUser parameter to make sure that the function can resolve the alias. If your

function is running in the background or for some other reason it is not appropriate to

display dialog boxes, set this parameter to false.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

C H A P T E R 4

Standard Catalog Package

4-88 Standard Catalog Package Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To resolve an HFS file containing an alias of an AOCE catalog object, use the

SDPResolveAliasFile function (page 4-85).

Obtaining Icons and Lists of Catalog-Item Categories and Types

When you use the Catalog-Browsing panel or Find panel to let the user select records,

you might want to display a list of types or categories of records that the user can search

for, a list of records the user has selected, or other information about the catalog structure

and contents. The functions in this section return icons for records and other AOCE

catalog items (such as catalogs or dNodes) and provide lists of the record types and

categories available.

SDPGetIconByType

The SDPGetIconByType function returns the icon suite for a specific type of record.

pascal OSErr SDPGetIconByType (const RString *recordType,

IconSelectorValue whichIcons,

Handle *iconSuite);

recordType
A pointer to the record type whose icon suite you want.

whichIcons
A selector mask that indicates which icons you want.

iconSuite A handle to the suite of icons you requested. The function allocates this
handle. Use the Macintosh Toolbox icon utilities to handle these icons.

DESCRIPTION

If you want to display the icon for a record, you can use the SDPGetIconByType

function to obtain one or more icons for the record. You must specify the types of icon

resource you want and the type of record for which you want an icon.

Parameter count Routine selector

$0005 $0E75

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-89

To specify which icons you want for a record type, use the following mask values:

typedef unsigned long IconSelectorValue;

#define svLarge1Bit 0x00000001

#define svLarge4Bit 0x00000002

#define svLarge8Bit 0x00000004

#define svSmall1Bit 0x00000100

#define svSmall4Bit 0x00000200

#define svSmall8Bit 0x00000400

#define svMini1Bit 0x00010000

#define svMini4Bit 0x00020000

#define svMini8Bit 0x00040000

#define svAllLargeData 0x000000ff

#define svAllSmallData 0x0000ff00

#define svAllMiniData 0x00ff0000

#define svAll1BitData (svLarge1Bit | svSmall1Bit | svMini1Bit)

#define svAll4BitData (svLarge4Bit | svSmall4Bit | svMini4Bit)

#define svAll8BitData (svLarge8Bit | svSmall8Bit | svMini8Bit)

#define svAllAvailableData 0xffffffff

To dispose of the icon suite, call the icon utility routine DisposeIconSuite.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Unlike most Standard Catalog Package routines, the SDPGetIconByType function uses

the $AA5C trap and does not require a parameter word count.

RESULT CODES

SEE ALSO

Icons and icon resources are described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

Trap Routine selector

$AA5C $0400

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-90 Standard Catalog Package Reference

To dispose of the icon suite, call the icon utility routine DisposeIconSuite. The icon

utilities are described in the chapter “Icon Utilities” in Inside Macintosh: More Macintosh
Toolbox.

SDPGetDSSpecIcon

The SDPGetDSSpecIcon function returns the icon for any object in the AOCE catalog

system.

pascal OSErr SDPGetDSSpecIcon (const PackedDSSpec *packedDSSpec,

IconSelectorValue whichIcons,

Handle *iconSuite);

packedDSSpec
A pointer to the specifier of the object whose icon you want.

whichIcons
A selector mask that indicates which icons you want.

iconSuite A handle to the suite of icons you requested. The function allocates this
handle. Use the Macintosh Toolbox icon utilities to handle these icons.

DESCRIPTION

If you want to display an icon for a specific attribute, a record, or a container (volume,

folder, AOCE catalog, dNode, or personal catalog) in the AOCE catalog system, you can

use the SDPGetDSSpecIcon function to obtain the icon. You must specify the types

of icon resource you want and the DSSpec structure for the item for which you want an

icon. You can use the SDPGetPanelSelection or SDPGetFindPanelSelection

functions to get the DSSpec structure for an item the user selected.

If the object you specify does not have an icon, the system returns the default icon for

objects of that type.

To dispose of the icon suite, call the icon utility routine DisposeIconSuite.

The selector masks for the whichIcons parameter are described on page 4-89.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call this function at interrupt

time.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-91

ASSEMBLY-LANGUAGE INFORMATION

Unlike most Standard Catalog Package routines, the SDPGetDSSpecIcon function uses

the $AA5C trap and does not require a parameter word count.

RESULT CODES

SEE ALSO

You can obtain a record type from the DSSpec structure returned by the

SDPGetPanelSelection function (page 4-58) or the SDPGetFindPanelSelection

function (page 4-82).

The routines for expanding DSSpec structures are described in the chapter “AOCE

Utilities” in this book.

Icons and icon resources are described in the chapter “Finder Interface” in the book

Inside Macintosh: Macintosh Toolbox Essentials.

To dispose of the icon suite, call the icon utility routine DisposeIconSuite. The icon

utilities are described in the chapter “Icon Utilities” in Inside Macintosh: More Macintosh
Toolbox.

SDPGetCategories

The SDPGetCategories function returns a list of the AOCE catalog-item categories

known to the Catalog Browser.

pascal OSErr SDPGetCategories (

PackedRStringListHandle *categories,

PackedRStringListHandle *displayNames);

categories A pointer to a list of categories.

displayNames
A pointer to a list of user-readable category names.

DESCRIPTION

AOCE templates can group catalog records into categories. For example, the separate

record types for LaserWriter, ImageWriter, and ImageWriter LC printers can be grouped

into the category “printers.” You can use the SDPGetCategories function to obtain a

list of all the categories currently available.

Trap Routine selector

$AA5C $0401

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-92 Standard Catalog Package Reference

SPECIAL CONSIDERATIONS

The size of the structures referenced by the handles returned by this function may be

larger than a packed pathname.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Unlike most Standard Catalog Package routines, the SDPGetCategories function uses

the $AA5C trap and does not require a parameter word count.

RESULT CODES

SEE ALSO

Use the SDPGetCategoryTypes function (described next) to list all the types of items

available within a specific category.

The PackedRStringListHandle structure is described in “RString List” on page 4-23.

SDPGetCategoryTypes

The SDPGetCategoryTypes function returns a list of the types of items within a

catalog-item category known to the Catalog Browser.

pascal OSErr SDPGetCategoryTypes (const RString *category,

 PackedRStringListHandle *types);

category The catalog-item category for which you want a list of types.

types A pointer to a list of catalog-item types included in the category you
specified.

Trap Routine selector

$AA5C $0402

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-93

DESCRIPTION

After you use the SDPGetCategories function to obtain a list of all the catalog-item

categories currently available, you can call the SDPGetCategoryTypes function to list

all the types of records included in a specific category. You can use this information, for

example, to allow the user to choose which record types to include in the

Catalog-Browsing panel or the Find panel.

Note

Before you pass the list of record types to the SDPNewPanel or
SDPGetNewPanel function, you must add a record type of “DNode”
(the value kDNodeRecTypeNum) to the types list to allow the panel to
show aliases to dNodes. ◆

SPECIAL CONSIDERATIONS

The size of the structure referenced by the handle returned by this function may be

larger than a packed pathname.

This function may move or purge memory; you should not call this function at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

Unlike most Standard Catalog Package routines, the SDPGetCategoryTypes function

uses the $AA5C trap and does not require a parameter word count.

RESULT CODES

SEE ALSO

Use the SDPGetCategories function (page 4-91) to list all the record-type categories

available.

The PackedRStringListHandle structure is described in “RString List” on page 4-23.

You can restrict the Catalog-Browsing panel and the Find panel to display records of

specific types. For more information on this feature, see the descriptions of the

SDPNewPanel (page 4-30), SDPGetNewPanel (page 4-34), and SDPNewFindPanel

(page 4-61) functions.

Trap Routine selector

$AA5C $0403

noErr 0 No error
paramErr –50 Illegal parameter

C H A P T E R 4

Standard Catalog Package

4-94 Standard Catalog Package Reference

Application-Defined Functions

This section describes the callback routines that you may provide for the Standard

Catalog Package. Your MyPanelBusyProc and MyFindPanelBusyProc routines

enable you to provide feedback to the user when the Catalog-Browsing panel and Find

panel are busy.

MyPanelBusyProc

You can install a panel-busy callback routine to tell the user that the Catalog-Browsing

panel is busy.

pascal void MyPanelBusyProc (SDPPanelHandle panel,

Boolean busy);

panel A handle to the panel for which you installed this routine.

busy A Boolean value indicating whether the panel is busy.

DESCRIPTION

You can use the SDPInstallPanelBusyProc function to install a panel-busy callback

routine that the panel calls whenever the Catalog-Browsing panel is busy. You can use

your panel-busy routine, for example, to display the Standard Catalog Package’s

spinning arrow icon while the panel is busy. The panel calls your routine one last time

with the busy parameter set to false when the panel is no longer busy; you can then

take down the spinning cursor.

You can use the following constants to obtain the icon IDs of the spinning arrows:

#define kFirstSpinnerIcon -16745

#define kLastSpinnerIcon -16738

SEE ALSO

Use the SDPInstallPanelBusyProc function (page 4-35) to install and remove

panel-busy callback routines.

C H A P T E R 4

Standard Catalog Package

Standard Catalog Package Reference 4-95

MyFindPanelBusyProc

You can install a Find-panel-busy callback routine that tells the user that the Find panel

is busy.

pascal void MyFindPanelBusyProc (SDPFindPanelHandle findPanel,

Boolean busy);

findPanel A handle to the Find panel for which you installed this routine.

busy A Boolean value indicating whether the Find panel is busy.

DESCRIPTION

You can use the SDPInstallFindPanelBusyProc function to install a

Find-panel-busy callback routine that the Find panel calls whenever the panel is busy.

You can use your callback routine, for example, to display the Standard Catalog

Package’s spinning arrow icon while the Find panel is busy. The Find panel calls your

routine one last time with the busy parameter set to false when the Find panel is no

longer busy; you can then take down the spinning cursor.

You can use the following constants to obtain the icon IDs of the spinning arrows:

#define kFirstSpinnerIcon -16745

#define kLastSpinnerIcon -16738

SEE ALSO

Use the SDPInstallFindPanelBusyProc function (page 4-65) to install and remove

Find-panel-busy callback routines.

C H A P T E R 4

Standard Catalog Package

4-96 Summary of the Standard Catalog Package

Summary of the Standard Catalog Package

C Summary

Constants and Data Types

#define gestaltSDPStandardDirectoryVersion 'sdvr'

#define gestaltSDPFindVersion 'dfnd'

#define gestaltSDPPromptVersion 'prpv'

/* selector mask values */

typedef unsigned long IconSelectorValue;

#define svLarge1Bit 0x00000001

#define svLarge4Bit 0x00000002

#define svLarge8Bit 0x00000004

#define svSmall1Bit 0x00000100

#define svSmall4Bit 0x00000200

#define svSmall8Bit 0x00000400

#define svMini1Bit 0x00010000

#define svMini4Bit 0x00020000

#define svMini8Bit 0x00040000

#define svAllLargeData 0x000000ff

#define svAllSmallData 0x0000ff00

#define svAllMiniData 0x00ff0000

#define svAll1BitData (svLarge1Bit | svSmall1Bit | svMini1Bit)

#define svAll4BitData (svLarge4Bit | svSmall4Bit | svMini4Bit)

#define svAll8BitData (svLarge8Bit | svSmall8Bit | svMini8Bit)

#define svAllAvailableData 0xffffffff

/* generic icon suites */

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

#define genericDirectoryIconResource -16721

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

#define genericLockedDirectoryIconResource -16716

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

#define genericRecordIconResource -16722

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-97

#define genericAttributeIconResource -16723

/* icl8, icl4, ICN#, ics#, ics4, ics8 */

#define genericTemplateIconResource -16746

/* standard icon suites */

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

#define directoryFolderIconResource -16720

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

#define lockedDirectoryFolderIconResource -16719

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

#define personalDirectoryIconResource -16718

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

#define directoriesIconResource -16717

/* icl8, icl4, ICN#, ics#, ics4, ics8, sicn */

#define preferredPersonalDirectoryIconResource -16724

/* icon IDs for spinning-arrow cursor */

#define kFirstSpinnerIcon -16745

#define kLastSpinnerIcon -16738

/* resource types */

#define kSDPPanelResourceType 'panl'

#define kSDPFindPanelResourceType 'find'

/* standard FindPanel resource */

#define kStandardFindLayout -16700

enum {

kSDPGuestBit,

kSDPSpecificIdentityBit,

kSDPLocalIdentityBit

};

/* values of SDPIdentityKind */

enum {

kSDPGuestMask = 1<<kSDPGuestBit,

kSDPSpecificIdentityMask = 1<<kSDPSpecificIdentityBit,

kSDPLocalIdentityMask = 1<<kSDPLocalIdentityBit

};

typedef unsigned short SDPIdentityKind;

enum {

kSDPSuggestionOnly,

kSDPRestrictToDirectory,

C H A P T E R 4

Standard Catalog Package

4-98 Summary of the Standard Catalog Package

kSDPRestrictToRecord

};

typedef unsigned short SDPLoginFilterKind;

/* values of SDPSelectionState */

enum {

kSDPNothingSelected,

kSDPLockedContainerSelected,

kSDPContainerSelected,

kSDPRecordSelected,

kSDPRecordAliasSelected,

kSDPContainerAliasSelected

};

typedef unsigned short SDPSelectionState;

/* values of SDPPanelState */

enum {

kSDPProcessed,

kSDPSelectedAnItem,

kSDPChangedSelection

};

typedef unsigned short SDPPanelState;

enum {

kSDPItemIsSelectedBit,

kSDPFindTextExistsBit

};

/* values of SDPFindPanelState */

enum {

kSDPItemIsSelectedMask = 1<<kSDPItemIsSelectedBit,

kSDPFindTextExistsMask = 1<<kSDPFindTextExistsBit

};

typedef unsigned short SDPFindPanelState;

/* values of SDPFindPanelFocus */

enum {

kSDPFindPanelNoFocus,

kSDPFindPanelListHasFocus,

kSDPFindPanelTextHasFocus

};

typedef unsigned short SDPFindPanelFocus;

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-99

/* values of SDPFindPanelResult */

enum {

kSDPSelectedAFindItem,

kSDPFindSelectionChanged,

kSDPFindCompleted,

kSDPTextStateChanged,

kSDPFocusChanged,

kSDPSelectionAndFocusChanged,

kSDPMenuChanged,

kSDPSelectionAndMenuChanged,

kSDPProcessedFind

};

typedef unsigned short SDPFindPanelResult;

/* Your application may read any of the fields in an SDPPanelRecord, but it

should use the appropriate routines to make changes to the records with the

exception of the refCon field, which your application may read or write at

will. Private information follows the SDPPanelRecord, so the handle must

not be resized. */

struct SDPPanelRecord {

Rect bounds; /* rectangle around panel */

Boolean visible; /* Is panel visible? */

Boolean enabled; /* Is panel enabled? */

Boolean focused; /* Is focus rectangle around panel? */

Byte padByte; /* reserved */

AuthIdentity identity; /* auth ID of caller of panel */

long refCon; /* for your use */

Rect listRect; /* rectangle around scrolling list */

Rect popupRect; /* rectangle around pop-up menu */

short numberOfRows; /* number of rows in scrolling list */

short rowHeight; /* height of each row in list (points) */

Boolean pabMode; /* Is panel in personal catalog mode? */

};

typedef struct SDPPanelRecord SDPPanelRecord;

typedef SDPPanelRecord *SDPPanelPtr, **SDPPanelHandle;

struct SDPFindPanelRecord {

Point upperLeft; /* reserved */

Boolean visible; /* reserved */

Boolean enabled; /* reserved */

Boolean nowFinding; /* reserved */

Byte padByte; /* reserved */

C H A P T E R 4

Standard Catalog Package

4-100 Summary of the Standard Catalog Package

SDPFindPanelFocus currentFocus; /* reserved */

AuthIdentity identity; /* reserved */

short simultaneousSearchCount; /* reserved */

long refCon; /* for your use */

};

typedef struct SDPFindPanelRecord SDPFindPanelRecord;

typedef SDPFindPanelRecord *SDPFindPanelPtr, **SDPFindPanelHandle;

/* pointers to functions for application-defined callback routines */

typedef pascal void (*PanelBusyProc) (SDPPanelHandle Panel,

Boolean busy);

typedef pascal void (*FindPanelBusyProc) (SDPFindPanelHandle findPanel,

Boolean busy);

Standard Catalog Package Functions

Authenticating a User

pascal OSErr SDPPromptForID (AuthIdentity *id,
ConstStr255Param guestPrompt,
ConstStr255Param specificIDPrompt,
ConstStr255Param localIDPrompt,
const RString *recordType,
SDPIdentityKind permittedKinds,
SDPIdentityKind *selectedKind,
const RecordID *loginFilter,
SDPLoginFilterKind filterKind);

Sorting a Personal Catalog

pascal OSErr SDPRepairPersonalDirectory
(FSSpec *pd, Boolean showProgress);

Creating, Displaying, and Disposing of a Catalog-Browsing Panel

pascal OSErr SDPNewPanel (SDPPanelHandle *newPanel,
WindowPtr window,
const Rect *bounds,
Boolean visible,
Boolean enabled,
const PackedRLI *initialRLI,
const RStringPtr *typesList,
unsigned long typeCount,

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-101

AuthIdentity identity,
DirEnumChoices enumFlags,
DirMatchWith matchTypeHow,
long refCon);

pascal OSErr SDPGetNewPanel (SDPPanelHandle *newPanel,
short resourceID,
WindowPtr window,
const PackedRLI *initialRLI,
AuthIdentity identity);

pascal OSErr SDPInstallPanelBusyProc
(SDPPanelHandle panel,
PanelBusyProc busyProc);

pascal OSErr SDPSetPanelBalloonHelp
(SDPPanelHandle panel,
short balloonHelpID);

pascal OSErr SDPSetIdentity (SDPPanelHandle panel,
AuthIdentity identity);

pascal OSErr SDPSetPath (SDPPanelHandle panel,
const PackedRLI *prli);

pascal OSErr SDPGetPathLength
(SDPPanelHandle panel,
unsigned short *pathNameLength);

pascal OSErr SDPGetPath (SDPPanelHandle panel,
PackedRLI *prli,
short *dsRefNum);

pascal OSErr SDPSelectString
(SDPPanelHandle panel,
const RString *name);

pascal OSErr SDPHidePanel (SDPPanelHandle panel);

pascal OSErr SDPShowPanel (SDPPanelHandle panel);

pascal OSErr SDPEnablePanel (SDPPanelHandle panel,
Boolean enable);

pascal OSErr SDPSetFocus (SDPPanelHandle panel,
Boolean focus);

pascal OSErr SDPUpdatePanel (SDPPanelHandle panel,
RgnHandle theRgn);

pascal OSErr SDPMovePanel (SDPPanelHandle panel,
short h,
short v);

pascal OSErr SDPSizePanel (SDPPanelHandle panel,
short width,
short height);

C H A P T E R 4

Standard Catalog Package

4-102 Summary of the Standard Catalog Package

pascal OSErr SDPDisposePanel
(SDPPanelHandle panel);

Handling Events in a Catalog-Browsing Panel

pascal OSErr SDPPanelEvent (SDPPanelHandle panel,
const EventRecord *theEvent,
SDPPanelState *whatHappened);

pascal OSErr SDPGetPanelSelectionState
(SDPPanelHandle panel,
SDPSelectionState *itsState);

pascal OSErr SDPGetPanelSelectionSize
(SDPPanelHandle panel,
unsigned short *dsSpecSize);

pascal OSErr SDPGetPanelSelection
(SDPPanelHandle panel,
PackedDSSpec *selection);

pascal OSErr SDPOpenSelectedItem
(SDPPanelHandle panel,
SDPPanelState *whatHappened);

Creating, Displaying, and Disposing of a Find Panel

pascal OSErr SDPNewFindPanel
(SDPFindPanelHandle *newPanel,
WindowPtr window,
Point upperLeft,
short layoutResourceID,
Boolean visible,
Boolean enabled,
const RStringPtr *typesList,
long typeCount,
DirMatchWith matchTypeHow,
AuthIdentity identity,
short simultaneousSearchCount,
SDPFindPanelFocus initialFocus,
long refCon);

pascal OSErr SDPInstallFindPanelBusyProc
(SDPFindPanelHandle findPanel,
FindPanelBusyProc busyProc);

pascal OSErr SDPSetFindPanelBalloonHelp
(SDPFindPanelHandle findPanel,
short balloonHelpID);

pascal OSErr SDPHideFindPanel
(SDPFindPanelHandle findPanel);

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-103

pascal OSErr SDPShowFindPanel
(SDPFindPanelHandle findPanel);

pascal OSErr SDPEnableFindPanel
(SDPFindPanelHandle findPanel,
Boolean enabled);

pascal OSErr SDPSetFindPanelFocus
(SDPFindPanelHandle findPanel,
SDPFindPanelFocus newFocus);

pascal OSErr SDPSetFindIdentity
(SDPFindPanelHandle findPanel,
AuthIdentity identity)

pascal OSErr SDPUpdateFindPanel
(SDPFindPanelHandle findPanel,
RgnHandle theRgn);

pascal OSErr SDPMoveFindPanel
(SDPFindPanelHandle findPanel,
short h,
short v);

pascal OSErr SDPDisposeFindPanel
(SDPFindPanelHandle findPanel);

Handling Events in a Find Panel

pascal OSErr SDPFindPanelEvent
(SDPFindPanelHandle findPanel,
const EventRecord *event,
SDPFindPanelResult *whatHappened);

pascal OSErr SDPGetFindPanelState
(SDPFindPanelHandle findPanel,
SDPFindPanelState *itsState);

pascal OSErr SDPGetFindPanelSelectionSize
(SDPFindPanelHandle findPanel,
unsigned short *size);

pascal OSErr SDPGetFindPanelSelection
(SDPFindPanelHandle findPanel,
PackedDSSpec *selection);

pascal OSErr SDPStartFind (SDPFindPanelHandle findPanel);

pascal OSErr SDPStopFind (SDPFindPanelHandle findPanel);

C H A P T E R 4

Standard Catalog Package

4-104 Summary of the Standard Catalog Package

Resolving Aliases

pascal OSErr SDPResolveAliasFile
(FSSpecPtr fileSpec,
PackedDSSpecHandle resolvedDSSpec,
AuthIdentity identity,
Boolean mayPromptUser);

pascal OSErr SDPResolveAliasDSSpec
(PackedDSSpecHandle theAliasDSSpec,
AuthIdentity identity,
Boolean mayPromptUser);

Obtaining Icons and Lists of Catalog-Item Categories and Types

pascal OSErr SDPGetIconByType
(const RString *recordType,
IconSelectorValue whichIcons,
Handle *iconSuite);

pascal OSErr SDPGetDSSpecIcon
(const PackedDSSpec *packedDSSpec,
IconSelectorValue whichIcons,
Handle *iconSuite);

pascal OSErr SDPGetCategories
(PackedRStringListHandle *categories,
PackedRStringListHandle *displayNames);

pascal OSErr SDPGetCategoryTypes
(const RString *category,
PackedRStringListHandle *types);

Application-Defined Functions

pascal void MyPanelBusyProc (SDPPanelHandle panel,
Boolean busy);

pascal void MyFindPanelBusyProc
(SDPFindPanelHandle findPanel,
Boolean busy);

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-105

Pascal Summary

Constants

CONST

gestaltSDPStandardDirectoryVersion= 'sdvr';

gestaltSDPFindVersion= 'dfnd';

gestaltSDPPromptVersion= 'prpv';

{ selector mask values }

svLarge1Bit= $00000001;

svLarge4Bit= $00000002;

svLarge8Bit= $00000004;

svSmall1Bit= $00000100;

svSmall4Bit= $00000200;

svSmall8Bit= $00000400;

svMini1Bit= $00010000;

svMini4Bit= $00020000;

svMini8Bit= $00040000;

svAllLargeData= $000000ff;

svAllSmallData= $0000ff00;

svAllMiniData= $00ff0000;

svAll1BitData= (svLarge1Bit + svSmall1Bit + svMini1Bit);

svAll4BitData= (svLarge4Bit + svSmall4Bit + svMini4Bit);

svAll8BitData= (svLarge8Bit + svSmall8Bit + svMini8Bit);

svAllAvailableData= $ffffffff;

{ generic icon suites }

genericDirectoryIconResource= -16721;

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

genericLockedDirectoryIconResource= -16716;

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

genericRecordIconResource= -16722;

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

genericAttributeIconResource= -16723;

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

genericTemplateIconResource= -16746;

{ icl8, icl4, ICN#, ics#, ics4, ics8 }

{ standard icon suites }

directoryFolderIconResource= -16720;

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

lockedDirectoryFolderIconResource= -16719;

C H A P T E R 4

Standard Catalog Package

4-106 Summary of the Standard Catalog Package

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

personalDirectoryIconResource= -16718;

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

directoriesIconResource= -16717;

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

preferredPersonalDirectoryIconResource= -16724;

{ icl8, icl4, ICN#, ics#, ics4, ics8, sicn }

{ icon IDs for spinning-arrow cursor }

kFirstSpinnerIcon = -16745;

kLastSpinnerIcon = -16738;

{ resource types }

kSDPPanelResourceType= 'panl';

kSDPFindPanelResourceType= 'find';

{ standard FindPanel resource }

kStandardFindLayout= -16700;

kSDPGuestBit = 0;

kSDPSpecificIdentityBit = 1;

kSDPLocalIdentityBit = 2;

{ values of SDPIdentityKind }

kSDPGuestMask = $0001; { 1<<kSDPGuestBit }

kSDPSpecificIdentityMask = $0002; { 1<<kSDPSpecificIdentityBit }

kSDPLocalIdentityMask = $0004; { 1<<kSDPLocalIdentityBit }

kSDPSuggestionOnly = 0;

kSDPRestrictToDirectory = 1;

kSDPRestrictToRecord = 2;

{ values of SDPSelectionState }

kSDPNothingSelected = 0;

kSDPLockedContainerSelected = 1;

kSDPContainerSelected = 2;

kSDPRecordSelected = 3;

kSDPRecordAliasSelected = 4;

kSDPContainerAliasSelected = 5;

{ values of SDPPanelState }

kSDPProcessed = 0;

kSDPSelectedAnItem = 1;

kSDPChangedSelection = 2;

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-107

kSDPItemIsSelectedBit = 0;

kSDPFindTextExistsBit = 1;

{ values of SDPFindPanelState }

kSDPItemIsSelectedMask = $0001; { 1<<kSDPItemIsSelectedBit }

kSDPFindTextExistsMask = $0002; { 1<<kSDPFindTextExistsBit }

{ values of SDPFindPanelFocus }

kSDPFindPanelNoFocus = 0;

kSDPFindPanelListHasFocus = 1;

kSDPFindPanelTextHasFocus = 2;

{ values of SDPFindPanelResult }

kSDPSelectedAFindItem = 0;

kSDPFindSelectionChanged = 1;

kSDPFindCompleted = 2;

kSDPTextStateChanged = 3;

kSDPFocusChanged = 4;

kSDPSelectionAndFocusChanged = 5;

kSDPMenuChanged = 6;

kSDPSelectionAndMenuChanged = 7;

kSDPProcessedFind = 8;

Data Types

TYPE

IconSelectorValue = LONGINT;

SDPMatchWith = INTEGER;

SDPIdentityKind = INTEGER;

SDPLoginFilterKind = INTEGER;

SDPSelectionState = INTEGER;

SDPPanelState = INTEGER;

SDPFindPanelState = INTEGER;

SDPFindPanelFocus = INTEGER;

SDPFindPanelResult = INTEGER;

C H A P T E R 4

Standard Catalog Package

4-108 Summary of the Standard Catalog Package

{ Your application may read any of the fields in an SDPPanelRecord, but it

should use the appropriate routines to make changes to the records with the

exception of the refCon field, which your application may read or write at

will. Private information follows the SDPPanelRecord, so the handle must

not be resized. }

SDPPanelRecord = RECORD

bounds: Rect;

visible: BOOLEAN;

enabled: BOOLEAN;

focused: BOOLEAN;

{padByte: Byte;}

identity: AuthIdentity;

refCon: LONGINT;

listRect: Rect;

popupRect: Rect;

numberOfRows: INTEGER;

rowHeight: INTEGER;

pabMode: BOOLEAN;

END;

SDPPanelPtr = ^SDPPanelRecord;

SDPPanelHandle = ^SDPPanelPtr;

SDPFindPanelRecord = RECORD

upperLeft: Point;

visible: BOOLEAN;

enabled: BOOLEAN;

nowFinding: BOOLEAN;

{padByte: Byte;}

currentFocus: SDPFindPanelFocus;

identity: AuthIdentity;

simultaneousSearchCount: INTEGER;

refCon: LONGINT;

END;

SDPFindPanelPtr = ^SDPFindPanelRecord;

SDPFindPanelHandle = ^SDPFindPanelPtr;

PackedRStringListHandle = ^PackedPathNamePtr;

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-109

PackedDSSpecHandle = ^PackedDSSpecPtr;

PanelBusyProc = ProcPtr;

{ PROCEDURE PanelBusyProc(Panel: SDPPanelHandle; busy: BOOLEAN); }

FindPanelBusyProc = ProcPtr;

{PROCEDURE FindPanelBusyProc(findPanel: SDPFindPanelHandle;

busy: BOOLEAN); }

Standard Catalog Package Functions

Authenticating a User

FUNCTION SDPPromptForID (VAR id: AuthIdentity;
guestPrompt: StringPtr;
specificIDPrompt: StringPtr;
localIDPrompt: StringPtr;
recordType: RStringPtr;
permittedKinds: SDPIdentityKind;
VAR selectedKind: SDPIdentityKind;
loginFilter: RecordIDPtr;
filterKind: SDPLoginFilterKind): OSErr;

Sorting a Personal Catalog

FUNCTION SDPRepairPersonalDirectory
(pd: FSSpecPtr; showProgress: BOOLEAN): OSErr;

Creating, Displaying, and Disposing of a Catalog-Browsing Panel

FUNCTION SDPNewPanel (VAR newPanel: SDPPanelHandle;
window: WindowPtr;
bounds: Rect;
visible: BOOLEAN;
enabled: BOOLEAN;
initialRLI: PackedRLIPtr;
typesList: RStringHandle;
typeCount: LONGINT;
identity: AuthIdentity;
enumFlags: DirEnumChoices;
matchTypeHow: SDPMatchWith;
refCon: LONGINT): OSErr;

C H A P T E R 4

Standard Catalog Package

4-110 Summary of the Standard Catalog Package

FUNCTION SDPGetNewPanel (VAR newPanel: SDPPanelHandle;
resourceID: INTEGER;
window: WindowPtr;
initialRLI: PackedRLIPtr;
identity: AuthIdentity): OSErr;

FUNCTION SDPInstallPanelBusyProc
(panel: SDPPanelHandle;
busyProc: PanelBusyProc): OSErr;

FUNCTION SDPSetPanelBalloonHelp
(panel: SDPPanelHandle;
balloonHelpID: INTEGER): OSErr;

FUNCTION SDPSetIdentity (panel: SDPPanelHandle; identity:
AuthIdentity): OSErr;

FUNCTION SDPSetPath (panel: SDPPanelHandle; prli: PackedRLIPtr):
OSErr;

FUNCTION SDPGetPathLength (panel: SDPPanelHandle;
VAR pathNameLength: INTEGER): OSErr;

FUNCTION SDPGetPath (panel: SDPPanelHandle; prli: PackedRLIPtr;
VAR dsRefNum: INTEGER): OSErr;

FUNCTION SDPSelectString (panel: SDPPanelHandle; name: RStringPtr):
OSErr;

FUNCTION SDPHidePanel (panel: SDPPanelHandle): OSErr;

FUNCTION SDPShowPanel (panel: SDPPanelHandle): OSErr;

FUNCTION SDPEnablePanel (panel: SDPPanelHandle; enable: BOOLEAN): OSErr;

FUNCTION SDPSetFocus (panel: SDPPanelHandle; focus: BOOLEAN): OSErr;

FUNCTION SDPUpdatePanel (panel: SDPPanelHandle; theRgn: RgnHandle):
OSErr;

FUNCTION SDPMovePanel (panel: SDPPanelHandle; h: INTEGER; v:
INTEGER): OSErr;

FUNCTION SDPSizePanel (panel: SDPPanelHandle; width: INTEGER;
height: INTEGER): OSErr;

FUNCTION SDPDisposePanel (panel: SDPPanelHandle): OSErr;

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-111

Handling Events in a Catalog-Browsing Panel

FUNCTION SDPPanelEvent (panel: SDPPanelHandle;
theEvent: EventRecord;
VAR whatHappened: SDPPanelState): OSErr;

FUNCTION SDPGetPanelSelectionState
(panel: SDPPanelHandle;
VAR itsState: SDPSelectionState): OSErr;

FUNCTION SDPGetPanelSelectionSize
(panel: SDPPanelHandle;
VAR dsSpecSize: INTEGER): OSErr;

FUNCTION SDPGetPanelSelection
(panel: SDPPanelHandle;
selection: PackedDSSpecPtr): OSErr;

FUNCTION SDPOpenSelectedItem
(panel: SDPPanelHandle;
VAR whatHappened: SDPPanelState): OSErr;

Creating, Displaying, and Disposing of a Find Panel
FUNCTION SDPNewFindPanel (VAR newPanel: SDPFindPanelHandle;

window: WindowPtr;
upperLeft: Point;
layoutResourceID: INTEGER;
visible: BOOLEAN;
enabled: BOOLEAN;
typesList: RStringHandle;
typeCount: LONGINT;
matchTypeHow: SDPMatchWith;
identity: AuthIdentity;
simultaneousSearchCount: INTEGER;
initialFocus: SDPFindPanelFocus;
refCon: LONGINT): OSErr;

FUNCTION SDPInstallFindPanelBusyProc
(findPanel: SDPFindPanelHandle; busyProc:
FindPanelBusyProc): OSErr;

FUNCTION SDPSetFindPanelBalloonHelp
(findPanel: SDPFindPanelHandle;
balloonHelpID: INTEGER): OSErr;

FUNCTION SDPHideFindPanel (findPanel: SDPFindPanelHandle): OSErr;

FUNCTION SDPShowFindPanel (findPanel: SDPFindPanelHandle): OSErr;

C H A P T E R 4

Standard Catalog Package

4-112 Summary of the Standard Catalog Package

FUNCTION SDPEnableFindPanel (findPanel: SDPFindPanelHandle;
enabled: BOOLEAN): OSErr;

FUNCTION SDPSetFindPanelFocus
(findPanel: SDPFindPanelHandle;
newFocus: SDPFindPanelFocus): OSErr;

FUNCTION SDPSetFindIdentity
(findPanel: SDPFindPanelHandle;
identity: AuthIdentity): OSErr;

FUNCTION SDPUpdateFindPanel
(findPanel: SDPFindPanelHandle;
theRgn: RgnHandle): OSErr;

FUNCTION SDPMoveFindPanel (findPanel: SDPFindPanelHandle; h: INTEGER;
v: INTEGER): OSErr;

FUNCTION SDPDisposeFindPanel
(findPanel: SDPFindPanelHandle): OSErr;

Handling Events in a Find Panel
FUNCTION SDPFindPanelEvent (findPanel: SDPFindPanelHandle;

event: EventRecord;
VAR whatHappened: SDPFindPanelResult): OSErr;

FUNCTION SDPGetFindPanelState
(findPanel: SDPFindPanelHandle;
VAR itsState: SDPFindPanelState): OSErr;

FUNCTION SDPGetFindPanelSelectionSize
(findPanel: SDPFindPanelHandle;
VAR size: INTEGER): OSErr;

FUNCTION SDPGetFindPanelSelection
(findPanel: SDPFindPanelHandle;
selection: PackedDSSpecPtr): OSErr;

FUNCTION SDPStartFind (findPanel: SDPFindPanelHandle): OSErr;

FUNCTION SDPStopFind (findPanel: SDPFindPanelHandle): OSErr;

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-113

Resolving Aliases

FUNCTION SDPResolveAliasFile
(fileSpec: FSSpecPtr;
resolvedDSSpec: PackedDSSpecHandle;
identity: AuthIdentity;
mayPromptUser: BOOLEAN): OSErr;

FUNCTION SDPResolveAliasDSSpec
(theAliasDSSpec: PackedDSSpecHandle;
identity: AuthIdentity;
mayPromptUser: BOOLEAN): OSErr;

Obtaining Icons and Lists of Catalog-Item Categories and Types

FUNCTION SDPGetIconByType (recordType: RStringPtr;
whichIcons: IconSelectorValue;
VAR iconSuite: Handle): OSErr;

FUNCTION SDPGetDSSpecIcon (packedDSSpec: PackedDSSpecPtr;
whichIcons: IconSelectorValue;
VAR iconSuite: Handle): OSErr;

FUNCTION SDPGetCategories (VAR catagories: PackedRStringListHandle;
VAR displayNames: PackedRStringListHandle):
OSErr;

FUNCTION SDPGetCategoryTypes
(category: RStringPtr;
VAR types: PackedRStringListHandle): OSErr;

Application-Defined Functions

PROCEDURE MyPanelBusyProc (panel: SDPPanelHandle; busy: BOOLEAN);

PROCEDURE MyFindPanelBusyProc

(findPanel: SDPFindPanelHandle; busy: BOOLEAN);

C H A P T E R 4

Standard Catalog Package

4-114 Summary of the Standard Catalog Package

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

$AA5D

Selector Count Function

$0388 $0010 SDPPromptForID

$1A2C $0003 SDPRepairPersonalDirectory

$0064 $0015 SDPNewPanel

$0065 $0009 SDPGetNewPanel

$0079 $0004 SDPInstallPanelBusyProc

$0078 $0003 SDPSetPanelBalloonHelp

$0073 $0004 SDPSetIdentity

$0070 $0004 SDPSetPath

$0075 $0004 SDPGetPathLength

$0076 $0006 SDPGetPath

$0074 $0004 SDPSelectString

$0067 $0002 SDPHidePanel

$0068 $0002 SDPShowPanel

$0069 $0003 SDPEnablePanel

$0077 $0003 SDPSetFocus

$006A $0004 SDPUpdatePanel

$006B $0004 SDPMovePanel

$006C $0004 SDPSizePanel

$0066 $0002 SDPDisposePanel

$0071 $0006 SDPPanelEvent

$006E $0004 SDPGetPanelSelectionState

$0072 $0004 SDPGetPanelSelectionSize

$006F $0004 SDPGetPanelSelection

$006D $0004 SDPOpenSelectedItem

$08FC $0014 SDPNewFindPanel

$090C $0004 SDPInstallFindPanelBusyProc

$090A $0003 SDPSetFindPanelBalloonHelp

$0903 $0002 SDPHideFindPanel

$0902 $0002 SDPShowFindPanel

$0905 $0003 SDPEnableFindPanel

C H A P T E R 4

Standard Catalog Package

Summary of the Standard Catalog Package 4-115

$AA5C

Result Codes
The allocated range of result codes for the Standard Catalog Package is –1950 through

–1969. Routines may also return standard Macintosh result codes such as noErr 0 (no

error) and fnfErr –43 (file not found).

$0906 $0003 SDPSetFindPanelFocus

$090B $0004 SDPSetFindIdentity

$0901 $0004 SDPUpdateFindPanel

$0904 $0004 SDPMoveFindPanel

$08FD $0002 SDPDisposeFindPanel

$0900 $0006 SDPFindPanelEvent

$0907 $0004 SDPGetFindPanelState

$0908 $0004 SDPGetFindPanelSelectionSize

$0909 $0004 SDPGetFindPanelSelection

$08FE $0002 SDPStartFind

$08FF $0002 SDPStopFind

$0E74 $0007 SDPResolveAliasFile

$0E75 $0005 SDPResolveAliasDSSpec

Selector Function

$0400 SDPGetIconByType

$0401 SDPGetDSSpecIcon

$0402 SDPGetCategories

$0403 SDPGetCategoryTypes

kSDPNoSearchText –1950 No text is in Find panel text field
kSDPTooManyLoginAttempts –1951 User tried more than 3 incorrect passwords
kSDPNoSelection –1952 No selection is in Catalog-Browsing panel
kSDPPersonalDirectoryRepairFailed –1953 Cannot sort personal catalog

Selector Count Function

Contents 5-1

C H A P T E R 5

Contents

AOCE Templates

Introduction to the AOCE Catalogs Extension 5-5

Introduction to AOCE Templates 5-9

Aspect Templates 5-13

Information Page Templates 5-14

Forwarder Templates 5-14

Killer Templates 5-15

File Type Templates 5-15

How Aspect and Information Page Templates Work 5-15

Lookup Tables 5-25

Conditional Views 5-26

Code Resources 5-27

How the Catalogs Extension Saves New Values 5-27

Property Value Synchronization 5-28

Drags and Drops 5-28

Writing AOCE Templates 5-30

Defining a New Record Type or Attribute Type 5-30

Defining the Contents of the New Record Type or Attribute Type 5-33

Laying Out an Information Page 5-36

Adding a Conditional View 5-40

Adding an Information Page With a Sublist 5-43

Writing a Main Aspect and Information Page for an Attribute 5-52

Creating a Custom Information Page Window 5-58

Writing Template Code Resources 5-65

AOCE Templates Reference 5-73

File and Resource Types Used by the Catalogs Extension 5-73

Template Names 5-75

Specifying Record and Attribute Types for Templates 5-75

Components of Aspect Templates 5-78

Properties 5-84

Aspect Template Signature Resource 5-88

C H A P T E R 5

5-2 Contents

Main Aspect Template Resources 5-88

Supporting Drags and Drops 5-98

Other Aspect Template Resources 5-103

The Lookup-Table Resource 5-105

Basic Element Types 5-111

Conditional Element Types 5-112

Block Elements 5-113

Size Element Types 5-115

Providing Your Own Pattern Elements 5-118

Overriding Default Property-Type Assignments 5-119

Canceling Pattern Processing 5-119

Components of Information Page Templates 5-119

Information Page Template Signature Resource 5-121

View Lists 5-123

Implementing Conditional Views 5-131

Sublists 5-136

Information Page Resources 5-136

Components of Forwarder Templates 5-138

Forwarder Template Signature Resource 5-139

Forwarder Template Resources 5-139

Components of Killer Templates 5-140

Killer Template Signature Resource 5-140

Killer Template Resources 5-140

Components of File Type Templates 5-141

File Type Template Signature Resource 5-141

File Type Template Resources 5-141

Code Resources Reference 5-142

Rules for Writing Code Resources 5-142

Data Types 5-142

Target Specifier 5-142

Forwarder List 5-145

Call Block Headers 5-145

Callback Block Headers 5-147

Functions You Can Provide as Part of Your Code Resource 5-148

Call-For Mask 5-149

Initializing and Removing Templates 5-150

Dynamic Creation of Resources 5-154

Processing Idle-Time Tasks 5-157

Property and Information Page Functions 5-158

Supporting Drops 5-169

Attribute-Related Commands 5-175

Processing Custom Lookup-Table Pattern Elements 5-182

Synchronizing Property Values 5-185

Custom Property-Type Conversions 5-188

Custom Views and Custom Menus 5-192

CE-Provided Functions That Your Code Resource Can Call 5-196

Calling CE-Provided Functions 5-197

C H A P T E R 5

Contents 5-3

Testing Your Code Resource 5-198

Changing the Call-For Mask 5-198

Process Control 5-199

Handling Drags and Drops 5-201

Working With Templates 5-205

Working With Catalog Objects 5-209

Edit-Text Routines 5-211

Getting Information About Properties 5-213

Setting Value, Type, and Other Features of Properties 5-223

Working With Sublists 5-235

Working With Pop-Up Menus 5-238

Custom Views 5-242

Sending a Property Command 5-245

Summary of AOCE Templates 5-247

C Summary 5-247

Constants and Data Types 5-247

Functions You Can Provide as Part of Your Code Resource 5-260

CE-Provided Functions That Your Code Resource Can Call 5-265

Pascal Summary 5-270

Constants 5-270

Data Types 5-278

Functions You Can Provide as Part of Your Code Resource 5-283

CE-Provided Functions That Your Code Resource Can Call 5-292

Result Codes 5-299

C H A P T E R 5

Introduction to the AOCE Catalogs Extension 5-5

AOCE Templates

This chapter describes how to expand the capabilities of the AOCE Catalogs Extension to

the Finder. The AOCE Catalogs Extension (CE) allows users to use the Finder’s

iconographic interface to search through AOCE catalogs, examine records, and edit

records. You can provide extensions to the CE that make it possible for the Finder to

handle new types of records and attributes, to group record types in a new way, or to

present the content of records and record attributes in a new way. These extensions to the

AOCE Catalogs Extension are called AOCE templates.

This chapter describes the various types of AOCE templates, tells you how to write an

AOCE template, and defines the resource types that you use to create an AOCE

template. How you apply AOCE templates is up to you. Indeed, the entire point of

AOCE templates is to allow developers to extend the CE in ways that could not be

foreseen.

This chapter is intended for developers who are providing new record types or new

attribute types and who want to allow users to use the AOCE Catalogs Extension to the

Finder to view, create, or modify these records and attributes. The chapter is also for

anyone who wants to extend the capabilities of the CE in any other way. This chapter is

also required reading along with the chapter “Service Access Module Setup” in Inside
Macintosh: AOCE Service Access Modules for anyone writing a service access module

(SAM).

To use this chapter, you should be familiar with the structure of AOCE catalogs as

described in the introduction to the chapter “Catalog Manager” in this book. You also

must be familiar with Macintosh resources as described in the chapter on the Resource

Manager in Inside Macintosh: More Macintosh Toolbox. The sample code listings in this

chapter include code written for the Rez resource compiler.

This chapter first briefly describes the human interface of the AOCE Catalogs Extension

and the way in which AOCE templates work together to modify the CE. Next it

describes the use of each type of AOCE template in more detail. Finally, the chapter

presents the details of the implementation of AOCE templates, including definitions of

the various resource types you use to create AOCE templates.

Introduction to the AOCE Catalogs Extension

AOCE catalogs, described in the chapter “Catalog Manager” in this book, contain

information arranged in a hierarchical structure similar to the Macintosh hierarchical file

system (HFS). At the root level of the hierarchy is the AOCE catalog itself. Each catalog

can contain any number of dNodes, and each dNode can contain dNodes and records,

which contain the data.

The Catalog Manager provides access to server-based AOCE catalogs, including those

implemented by Apple Computer, Inc.’s PowerShare servers and those implemented by

third parties through the CSAM interface. The Catalog Manager also provides access to

catalogs on the local Macintosh computer: personal catalog files and information cards

(individual records on disk).

C H A P T E R 5

AOCE Templates

5-6 Introduction to the AOCE Catalogs Extension

Catalogs are organized in a hierarchy of dNodes, much like Macintosh HFS folders. Each

dNode has a name, so that a particular location within the catalog can be specified by

listing the dNode names leading from the catalog through the hierarchy to the particular

dNode of interest. At the bottom of the hierarchy are records, just as Macintosh files are

at the bottom of the HFS hierarchy. Each record has a name and a type. The data within

records is organized into attributes, each of which can contain an arbitrary number of

values. Each attribute has a type, and each attribute value has a tag that indicates its

format. Attribute tags are of type OSType and are therefore 4 bytes long. Attribute

values are blocks of data up to 64 KB in size.

PowerShare catalogs and the CE also support stand-alone attributes. A stand-alone
attribute is a record that contains only one attribute, extracted from another record.

Although technically a record, the AOCE software treats a stand-alone attribute like an

attribute in most circumstances. For example, if a user drags a single mail address from a

User record and drops it in a personal catalog, the CE creates a stand-alone attribute

containing that address. When the user drops that stand-alone attribute onto another

User record, the AOCE software adds the address to the User record as an attribute.

The AOCE Catalogs Extension to the Finder places all PowerShare catalogs and CSAM

catalogs within an icon (the “Catalogs” icon) that must remain on the desktop like the

icon for a disk. To the user, each catalog within the Catalogs icon appears to be a folder,

and each dNode within the catalog appears to be a folder inside another folder. Figure

5-1 shows what a user’s desktop might look like with catalogs and dNodes open.

Figure 5-1 The AOCE Catalogs Extension in use

C H A P T E R 5

AOCE Templates

Introduction to the AOCE Catalogs Extension 5-7

From the user’s perspective, browsing the catalog system is very much like browsing the

Macintosh file system. Catalog dNodes look like file folders. They contain lists of

enclosed dNodes and records. Opening a dNode produces a new window showing the

contents of that dNode.

There are three major differences between browsing HFS directories and browsing

AOCE catalogs:

■ The AOCE Catalogs Extension can display the contents of catalogs that contain many
more items than could be browsed in the file system. While file system browsing is
limited to hundreds of items, catalog dNodes can contain tens of thousands of items.

■ Finder windows that display lists of AOCE catalogs, contents of catalogs, and
contents of dNodes include a column labeled “Kind,” just as Finder windows for HFS
folders include a “Kind” column. Whereas HFS windows differentiate such items as
application documents, application programs, and folders, AOCE windows
differentiate between PowerShare catalogs and CSAM catalogs, and among records of
various types. Unlike the file system, AOCE catalog items are grouped into categories
such as people, mail servers, and AppleShare. For example, the separate record types
for LaserWriters, ImageWriters, and ImageWriter LCs could be grouped into the
category “printers.” The user can use the View menu to select the categories to be
displayed (Figure 5-2).

■ Whereas the Finder launches an application to display the contents of HFS files, the
AOCE Catalogs Extension itself can display and be used to edit the contents of
records.

Figure 5-2 View menu seen with the AOCE Catalogs Extension to the Finder

When the user opens a record, the AOCE Catalogs Extension opens a window that lets

the user select any of a series of information pages. Each information page (sometimes

called an info-page) shows a portion of the contents of the record. The user moves to

different information pages by using a pop-up menu.

Depending on the type of record and the design of the information pages, the user might

be able to select various options such as different displays of the same data, perform

functions such as dialing the telephone, and edit certain fields of the information page or

C H A P T E R 5

AOCE Templates

5-8 Introduction to the AOCE Catalogs Extension

even create a new record. Figure 5-3 shows an information page for an address catalog.

Notice the pop-up menu and editable text fields.

Figure 5-3 Information page

Any information page for a record can include a list of attribute values. The information

page template specifies which attribute types are included in the list. Because the list

includes a subset of the attribute types in the record and appears as a distinct portion of

the information page window, these lists are referred to as sublists. Each sublist entry

includes information from within the attribute value as specified by the template. After

opening an item in a sublist, the user is presented with a new information page window

displaying the contents of the opened attribute. Similarly, a dNode window can include

a sublist of records contained in the dNode. Figure 5-4 shows an information page with a

sublist, and Figure 5-5 shows the information page that appears when the user opens

one of the items in that sublist. (The information page in Figure 5-5 also appears when

the user opens a stand-alone attribute created by dragging the item from the sublist and

dropping it in a catalog or on the desktop.)

Figure 5-4 Information page with a sublist

C H A P T E R 5

AOCE Templates

Introduction to AOCE Templates 5-9

Figure 5-5 Information page for an item in a sublist

You can extend the ability of the AOCE Catalogs Extension to display the contents of

records and attributes by providing AOCE templates.

Introduction to AOCE Templates

The AOCE Catalogs Extension to the Finder provided with the PowerTalk system

software can display a certain number of record types and attribute types. If you want to

provide users with the ability to work with other record types or attribute types, you can

extend the AOCE Catalogs Extension (CE) by writing AOCE templates.

Templates allow developers to extend the browsing capabilities of the system in several

ways: adding new types of visible records, defining the kind and category for a

particular record type or attribute type shown in a list, and extending the available

information pages for displaying the record or attribute contents to the user.

The data in a record is stored in data structures known as attributes. Each attribute can

contain any number of attribute values. Each attribute has a type, and each attribute

value has a tag that indicates its format. Attribute values can be up to 64 KB in size. The

attribute structure is defined in the chapter “AOCE Utilities” in this book.

There is not necessarily a one-to-one correspondence between attribute values and data

items of interest to a user. For example, the name and address of a person could be

stored as a single attribute value, as two attribute values (one containing the name and

one the address), or as several attribute values (one containing the first name, one the

last name, one the house number and street, one the state, and so forth). There are no

restrictions on the type of data that can be placed in attributes, and, except for a few

standard attribute types, there is no way for the CE to determine how to display or

interpret an attribute. For this reason, for each new record type or attribute type that you

C H A P T E R 5

AOCE Templates

5-10 Introduction to AOCE Templates

add to a catalog, you must provide templates that tell the CE how to display the data

contained in records or attributes of that type.

To display the data contained in records, AOCE templates must do two things: parse

attribute values into the individual data items of interest to the user (referred to as

properties) and specify how the Finder should display each property. For example, an

attribute value could contain three strings: a house number, a street name, and a city

name. To display each string as a separate item on the screen, you would provide two

AOCE templates: an aspect template and an information page template. The aspect

template would specify that the house number, street name, and city name each

constitutes a property, and the information page template would specify that each of

these items is to be displayed in an editable text box and would specify the size and

location of each text box in the information page.

Just as an information page template has an associated information page, an aspect

template has an associated aspect; a structure in memory that contains properties

provided by the aspect template. Each information page displays properties taken from a

single aspect. Note, however, that a given information page template need not use all of

the properties in an aspect, and any number of information page templates can use

properties from a single aspect.

Note

In the terminology of object-oriented programming, the information
page is the view/controller and the attribute value is the persistent
storage; the aspect template is the class for the aspect instance, and the
information page template is the class for the information page
instance. ◆

Figure 5-6 illustrates the relationships among records, aspect templates, aspects,

information page templates, and information pages. As the figure shows, the aspect

template processes the data in an attribute within a catalog record to create properties in

an aspect. The aspect template itself might also provide data for properties, as is the case

with the icon resources in the figure. The information page template specifies how the

properties are displayed on an information page. The information page template can

also provide such unchanging items as labels for text fields. Any editable item in the

information page can also be processed in the other direction by the templates to change

the data in the catalog record, as indicated by the bidirectional arrows in the figure.

C H A P T E R 5

AOCE Templates

Introduction to AOCE Templates 5-11

Figure 5-6 From a record to an information page

There are five different types of AOCE templates:

■ An aspect template specifies an aspect that provides information about a record or
attribute of a particular type. Some of the information in an aspect is specified by the
aspect template itself and therefore applies to all records or attributes of the same
type. Examples of such information are the kind and category of an attribute or the
icon of a record. Other information in the aspect is extracted by the template from the
record, such as a string or number from the contents of an attribute value. Each aspect
includes a collection of items of various types, which are known as properties. The
aspect template includes instructions that tell the CE how to create properties from
attributes and attributes from properties. Some aspect templates also specify how new
records of a specific type are to be added to the containing dNode or how new
attributes of a specific type are to be added to the containing record.

Each aspect is independent of all other aspects, even aspects created from the same
attribute or record. Therefore, two developers can provide separate aspect templates
that act on the same attribute or record without causing any conflicts.

■ An information page template specifies how the Finder should display record or
attribute data. The information page template specifies which aspect to use to fill in
the fields of the information page and the graphic layout of the information page.

■ A forwarder template allows existing aspects and information pages to be used for
new types of records. Using forwarders, a single information page template can be
applied to several different record or attribute types.

C H A P T E R 5

AOCE Templates

5-12 Introduction to AOCE Templates

■ Killer templates allow developers to supersede existing templates. Killer templates
identify one or more templates by name and cause the CE to ignore those templates.
For example, if you want to override one of the built-in templates, you can provide a
killer template that disables the existing template and a replacement template that the
CE uses instead.

■ In some applications of templates, all of the types of files that might contain templates
cannot be known ahead of time. File type templates allow you to extend the list of file
types that the CE searches for templates. All of the new files containing templates
must, however, reside in the System Extensions folder.

The aspect and information page templates specify how to divide a record or attribute

into properties and how to display and edit those properties through information pages.

Forwarder, killer, and file type templates, in contrast, are concerned with which

templates to use and where to find them.

Templates reside in the resource forks of files. The CE looks in several places for

templates:

■ template files (as indicated by a file type of 'detf') in the System Extensions folder

■ MSAM and CSAM files in the System Extensions folder

■ additional files of the types specified by any file type templates

■ the PowerTalk Extension file, also in the System Extensions folder, which includes all
the templates that are included as part of the PowerTalk software

Templates consist of a set of associated resources in the resource forks of these files. Each

template has a signature resource that indicates the type of template. The ID of the

signature resource is used to locate the other resources that make up the template. All

additional resources are at fixed offsets from this base ID.

All templates, regardless of type, include a signature resource and a name resource. Each

of the different types of templates also contain additional resources specific to that

template’s function. For example, an information page template includes the record and

attribute types that it applies to, plus the layout of the information page to be displayed;

a killer template includes a list of template names to be ignored.

C H A P T E R 5

AOCE Templates

Introduction to AOCE Templates 5-13

Aspect Templates
An aspect template creates an aspect, which is a collection of information about a

particular part of a record or an attribute. The information is divided into properties.

Each property is identified by a unique number and can be any one of the following

types:

Aspects serve two primary purposes:

■ They provide unique identification for properties. Although within an aspect each
property is identified only by a number and the same number is likely to be used for
semantically different properties in different aspect templates, the combination of
aspect template name and property number should be unique. To ensure that your
aspect template has a unique name, you should start the template name with a
4-character application signature registered with Macintosh Developer Technical
Support.

■ They allow efficient access to subsets of the data in a record or attribute. For an item to
appear in a sublist—such as a record in a dNode window or an attribute in a record
information page—the Catalogs Extension must have icon, kind, and category
information for that item. The CE takes this information from a single aspect. If you
place other information about the item in other aspect templates, the CE does not
create the other aspects for the item until they are needed, such as when an
information page is opened for the item. Not creating aspects until they are needed
saves time and memory. In addition, one aspect can often be used by more than one
information page.

Property values in aspects are derived from three sources:

■ the aspect template itself

■ the record or attribute value

■ the CE, which fetches related information not directly a part of an attribute (such as
the access mask)

Some properties provide unchanging information, such as a record’s kind or default

values for changeable information. The CE takes these properties from resources in the

aspect template itself by using the property number as an offset from the base ID of the

template. For example, a resource of type 'rstr' (RString) with an ID of 1013 in a

template with a base ID of 1000 corresponds to a string property with property

number 13.

For properties that must be taken from a record or attribute, the aspect template includes

directions for dividing up attribute values to extract the properties. The aspect template

Property type Description

String A string of text characters, stored internally as an RString structure

Number A numerical value, stored internally as a long integer

Icon An icon suite; always stored within the aspect template as a set of
resources

Binary An uninterpreted block of bytes, which can be used to store arbitrarily
formatted data

C H A P T E R 5

AOCE Templates

5-14 Introduction to AOCE Templates

can include a lookup table with instructions for parsing attribute values into properties

(“The Lookup-Table Resource” beginning on page 5-105), a code resource (“Code

Resources Reference” beginning on page 5-142), or both. The CE uses the same process

in reverse to revise or create attribute values in the record when the user edits a field in

an information page. The lookup-table mechanism for parsing attribute values should

allow you to create most of your aspect templates without writing any code. Aspect

template lookup tables (also referred to as patterns) provide a wide range of different

types of data structures that can be combined to handle almost any attribute format.

An aspect template can convert data from one type to another as it divides an attribute

value into properties and also when it takes the value of a property from a field on an

information page. For instance, an aspect template might convert a number in an

attribute to a string property to allow the user to edit it. The property-type system is

extensible, allowing the aspect template code resource to supply additional types and

perform the appropriate type conversions.

Each aspect template includes a specification of the types of records and attributes to

which the template applies. An aspect template can apply to a particular type of record

or to a particular type of attribute found either in any record type or only in specific

record types.

Information Page Templates
There is an information page template for each information page displayed to users. The

template specifies the physical layout of the information page and indicates what

properties are used to fill in each field (or view) in the information page.

For a list of possible view types, see “View Lists” on page 5-123.

Like aspect templates, information page templates apply only to a specified record or

attribute type.

Forwarder Templates
Forwarder templates allow a new record or attribute type to use existing aspect and

information page templates. A forwarder template includes a specification of the record

type and attribute type to which it applies, just as is the case with aspect and information

page templates. In addition, the forwarder template contains a list of aspect and

information page template names to be used with the specified record or attribute type.

C H A P T E R 5

AOCE Templates

How Aspect and Information Page Templates Work 5-15

Killer Templates
Killer templates disable existing templates. A killer template consists of a list of names of

the templates to be disabled.

Killer templates do not change the affected template. They just render it inactive at the

time it would have been used.

You can use killer templates to disable any type of template except another killer

template.

File Type Templates
The CE looks for templates during system initialization and the first time the CE needs a

template after someone has called the kDETcmdUnloadTemplates callback routine

(page 5-208). The CE always looks for templates in files of type 'detf', 'dsam', 'msam',

and 'csam'; and in files of type 'fext' that have creator type 'adbk'. (See “File and

Resource Types Used by the Catalogs Extension” on page 5-73 for more information

about these file types.) File type templates specify additional file types in which the CE

looks for templates. The new files can also include file type templates. All of the new files

containing templates must reside in the System Extensions folder.

How Aspect and Information Page Templates Work

The most important function of AOCE templates is to provide users with new

information pages through which they can view and modify information contained

within the AOCE catalog system. To accomplish this, the Catalogs Extension starts with

a record or attribute and, following the instructions in aspect templates, creates aspects

of the record or attribute. Each aspect can contain information derived from a single

attribute, or—in the case of aspects derived from records—from several attributes.

Because each aspect is independent from other aspects of the same record or attribute,

you can create them without concern for what other developers might do. An aspect

contains one or more values, each of a specific type—a text string or a number, for

example. These values are referred to as properties. The CE then follows the instructions

in an information page template to use the properties to fill in one or more fields

(referred to as views) in the information page that is displayed to the user. Each

information page is associated with only one aspect, from whose properties values for all

of its views are taken.

When the user changes a value in an information page and then closes the page, the CE

uses the same process in reverse to revise the attribute value in the record. If the record

does not already contain this attribute value, the CE creates a new one from the values in

the information page, following the instructions in the aspect template.

C H A P T E R 5

AOCE Templates

5-16 How Aspect and Information Page Templates Work

Figure 5-7 shows the process of translating between a record and an aspect. The aspect

template uses lookup tables and code resources to parse the attribute data into

properties. The aspect template can also contain property resources that it uses to create

uneditable properties; in Figure 5-7 the icon property is created in this way.

Figure 5-7 Creating an aspect from a record

Figure 5-8 shows how the information page template translates properties in an aspect

into views (fields) in an information page. The information page template includes one

or more view lists that describe the layout and type of each field in the information page

and that assign a property to each view. Note that not all the properties in the aspect

must be represented in a single information page.

C H A P T E R 5

AOCE Templates

How Aspect and Information Page Templates Work 5-17

Figure 5-8 Creating an information page from an aspect

Any number of aspect templates can extract data from the same record or attribute, and

the aspects they create can exist simultaneously without conflict. Because the properties

in a given aspect are identified only by number, the CE uses the combination of the

aspect’s name and the property number to identify a property uniquely. Therefore, it is

important that the name of an aspect be unique. When you create an aspect template,

you should give it a name that includes a description of its purpose plus your

application signature or other unique identifying string. The CE uses aspect names

solely for internal identification; the user never sees them.

An information page takes the properties for all of its views from a single aspect. Each

view specification in the information page template tells which property number is to be

used. The information page template itself includes the name of the aspect within which

these properties are found.

C H A P T E R 5

AOCE Templates

5-18 How Aspect and Information Page Templates Work

Figure 5-9 shows a record with multiple aspects and information pages. Note that one

aspect can be used by more than one information page.

Figure 5-9 Multiple aspects and information pages

When a record or attribute appears in a sublist—in a dNode window in the case of

records, or in an information page in the case of attributes—the CE takes the properties

needed to fill in the data for an item in the list from a special aspect known as the main
aspect. Whereas any aspect can contain information about the contents of a record or

attribute, only a main aspect contains information about the record or attribute itself: its

name, kind, category, and icon. In the case of records, this information usually consists of

unchangeable properties stored permanently in the main aspect template. In the case of

attributes, however, the main aspect template often retrieves the information from the

attribute. Thus, the information changes when someone edits the attribute value.

C H A P T E R 5

AOCE Templates

How Aspect and Information Page Templates Work 5-19

There is a separate main aspect for each item in a sublist (note, however, that more than

one of these main aspects may be derived from the same aspect template). Figure 5-10

shows how main aspects for records are used to fill in the contents of a sublist in a

dNode window.

Figure 5-10 Main aspects for records

Figure 5-11 shows how aspects and main aspects are used to fill in the contents of an

information page that contains a sublist. All of the properties for the views in the main

part of the information page come from a single aspect, the main view aspect. This

aspect also specifies whether there is a sublist in the information page and which

attribute types are to be included in the sublist. Each attribute in the sublist has its own

main aspect, which provides the information shown in the sublist for that attribute.

C H A P T E R 5

AOCE Templates

5-20 How Aspect and Information Page Templates Work

 Figure 5-11 shows two of the aspects used to fill in an information page: the main view

aspect and a main aspect for an item in the sublist. There is one aspect template for each

attribute type in the sublist, and a separate aspect template for the main view aspect.

Note that, whereas the properties in the aspect for the main part of the information page

can come from any number of attributes in the record, a main aspect (which describes a

single line in a sublist) derives its properties from a single attribute value.

Figure 5-11 Main aspects for attributes

C H A P T E R 5

AOCE Templates

How Aspect and Information Page Templates Work 5-21

There must be a separate main aspect template for each type of record displayed in a

dNode window and for each type of attribute displayed in a sublist. The CE can use a

main aspect template to create main aspects for any number of items of the same type.

Figure 5-12 shows three records, two of type User and one of type Admin. The two

records of type User are processed by a single main aspect template to create a main

aspect for each record; the record of type Admin is processed by a separate main aspect

template to create its main aspect.

Figure 5-12 Main aspect templates for records

C H A P T E R 5

AOCE Templates

5-22 How Aspect and Information Page Templates Work

Figure 5-13 shows how an information page with a sublist is created from one aspect

template and one or more main aspect templates. The aspect template creates an aspect

for the main part of the information page. Each attribute type has a separate main aspect

template; several attributes of the same type might be processed by the same main

aspect template. Each attribute in the sublist has its own main aspect.

Figure 5-13 Main aspect templates for attributes

A main aspect can contain properties used by other information pages as well as the

information needed for a sublist. As shown in Figure 5-14, a typical use for this feature is

for a main aspect to contain all the properties for the information page that appears

when the user double-clicks an attribute in a sublist. Note that all of the views for a

single information page are described in a single information page template. Even the

position of the sublist and the layout of each line in the sublist are described in this

information page template. As shown in the figure, the information page that appears

when the user opens an attribute in the sublist requires its own information page

template.

C H A P T E R 5

AOCE Templates

How Aspect and Information Page Templates Work 5-23

Figure 5-14 Providing an information page for an attribute in a sublist

 In contrast to the situation shown in Figure 5-13 and Figure 5-14, a record shown in a

dNode window list typically has at least two aspect templates associated with it: a main

aspect template used to display information about the record in the dNode window plus

one or more aspect templates used to provide properties for the information pages that

are displayed when the user opens that record. Figure 5-15 illustrates this situation. Note

that you must provide both an aspect template and an information page template to

display the contents of the record, but you do not provide an information page template

for the dNode window.

Keeping the main aspect template and other aspect templates for a record separate

allows the Catalogs Extension to load into memory only the aspects that are needed at a

given time and makes it easier for developers and users to create new information pages

for an existing record type.

C H A P T E R 5

AOCE Templates

5-24 How Aspect and Information Page Templates Work

Figure 5-15 Providing an information page for a record in a dNode window list

A main aspect template for a record type specifies how new records of that type are to be

added to the containing dNode. Similarly, a main aspect template for an attribute type

specifies how new attributes of that type are to be added to the containing record.

Main aspect templates are described in “Aspect Template Signature Resource,” which

starts on page 5-88.

The process of filling in views in information pages from properties in aspects is fairly

straightforward. The information page template includes a property number for each

view that requires data from the aspect. The information page template includes

instructions for how to interpret the contents of the property—as a number, a text string,

and so forth—how to display it, and whether to allow the user to edit it. Information

page templates may display the same type of property in different ways depending on

the circumstances. For example, a number property is used in both checkboxes and

pop-up menus. In checkboxes, this property indicates whether the checkbox is selected

or not. In pop-up menus, it indicates which of the entries in the menu is currently

selected.

The process of filling in properties from records and records from properties is more

complex. The aspect template provides two mechanisms: lookup tables and code

resources. Lookup tables can translate a large variety of data structures without

requiring you to write any code. Code resources cover all data formats, including those

not handled by lookup tables. In addition, code resources can perform actions based on

the new data being written to the catalog system. For example, adding a new user record

might trigger an update of a personal gateway’s internal user list.

C H A P T E R 5

AOCE Templates

How Aspect and Information Page Templates Work 5-25

Figure 5-16 Pattern-based attribute parsing

Lookup Tables

A lookup table contains a pattern that describes the contents of an attribute and

specifies into which property to store each part of the attribute value. In many cases, the

pattern is extremely simple. For instance, an attribute value might consist only of a

single string of type RString or only of a single binary number. Other attribute value

formats may be more complex, combining multiple items in a single attribute value, or

requiring conditional evaluation of the contents. Figure 5-16 illustrates the basic process

of creating properties from attribute values.

A lookup table also works in reverse, revising the contents of attribute values when the

user enters new data in views in the information page. If an attribute value does not

C H A P T E R 5

AOCE Templates

5-26 How Aspect and Information Page Templates Work

already exist, the lookup table creates a new attribute value from the data and puts it

into the record.

Figure 5-17 Conditional view

Conditional Views
The information page template includes one or more view lists; each view list describes

one or more views that can be displayed on the information page. Each view list is

associated with two property values. The views described by that view list are displayed

only if those property values are equal (or if either property equals kDETNoProperty).

Therefore, you can control whether a particular view is displayed on the information

page by changing the values of properties in the aspect associated with the information

page. Views that are made to appear and disappear in this fashion are called conditional
views. Figure 5-17 illustrates the use of a conditional view. In this case, the radio buttons

that specify the playing speed of the album (33, 45, or 78 RPM) appear only when the

C H A P T E R 5

AOCE Templates

How Aspect and Information Page Templates Work 5-27

user selects Vinyl as the format of the album. For more information on conditional views,

see Listing 5-14 on page 5-122 and “Implementing Conditional Views” beginning on

page 5-131.

Code Resources
Aspect templates can include code resources that allow developers to extend the

capabilities of the templates.

The Catalogs Extension calls your code resource when certain events occur that affect the

aspect with which the code resource is associated. Such events include user actions, such

as the user clicking a button in an information page or dropping a file on a catalog object,

and administrative events, such as initialization or a query as to whether a control

should be drawn as enabled. The code resource may call the CE to perform a variety of

services, such as returning information, converting one data type to another, or updating

an information page.

The routine selectors and parameters that the CE passes to your code resource are

described in “Functions You Can Provide as Part of Your Code Resource” beginning on

page 5-148. The CE-provided routines that your code resource can call are described in

“CE-Provided Functions That Your Code Resource Can Call” beginning on page 5-196.

How the Catalogs Extension Saves New Values
When the user closes an information page or makes another information page the active

one, the Catalogs Extension checks all of the visible views in the information page the

user just closed or left. If the user has changed any of the properties associated with

those views, the Catalogs Extension saves the new values.

For each property, the CE first calls the code resource for the aspect from which the

property came with the kDETcmdValidateSave routine selector (page 5-168). If your

code resource does not return an error for any of the changed properties, then for each of

these properties, the CE finds all of the lookup-table patterns that include that property.

The CE processes those lookup-table patterns to write attribute values. Any of the

lookup-table patterns can contain custom elements that you define; in that case, the CE

calls your code resource to process those elements.

For a property to be saved, it must both be in a visible view and be marked as changed,

or it must be in a lookup-table pattern with another property for which those two

conditions are met.

If the user makes a change to a sublist value, the CE saves the change as soon as the user

leaves the item and clicks somewhere else on the screen. The CE uses the lookup-table

pattern in the main aspect for items of the type changed to process the change. The CE

does not call your kDETcmdValidateSave routine for changes in sublists.

C H A P T E R 5

AOCE Templates

5-28 How Aspect and Information Page Templates Work

Property Value Synchronization
The Catalogs Extension checks a catalog system flag periodically to see if the data in the

catalog system has changed. If it has, the Catalogs Extension processes the lookup tables

of all the aspects for open information pages, recalculating all the properties derived

from the catalog system. The CE then updates the aspects and open information pages

accordingly. At the time the CE checks for changes, it calls the aspects’ code resources

with the kDETcmdShouldSync routine selector (page 5-185). If you have derived any

properties from data outside the catalog system or from records or attributes other than

the one to which your aspect applies and you have reason to believe their values have

changed, your code resource should tell the CE to update all the properties, which it will

then do whether data in the catalog system has changed or not.

When the CE updates all the property values in an aspect—either because data in the

catalog system has changed or because your code resource told it to—the CE calls your

code resource with the kDETcmdDoSync routine selector (page 5-186). If your code

resource has supplied any of the property values, you should update your sublist items

and your other properties.

When the CE synchronizes a sublist, it first marks every item in the list as “unseen.” The

CE then reads in all the attribute values mentioned in the lookup tables and calls the

code resource’s kDETcmdDoSync routine. The code resource should update any sublist

items that it supplied. For each attribute the CE processes that the lookup table lists as

for use in the sublist, the CE checks the type and creation ID of the item to see if it is

already in the sublist. If the item is in the sublist, the CE updates it and marks it as

“seen.” If it’s not there, the CE creates a new item, adds it to the sublist, and marks it as

“seen.” After processing all such items, The CE removes from the sublist any items that

are still marked “unseen.”

Drags and Drops
The user can drag HFS and catalog objects—such as files, information cards, records, and

attributes—and drop them on records, attributes, or sublists. In each case, the Catalogs

Extension determines the most appropriate action based on the type of object dragged,

the type of object on which the item was dropped, and instructions in the aspect

templates of the dragged and destination objects (see note at end of this section).

For example, if the user drags an information card and drops it on a record in a catalog,

the CE checks every aspect template available that applies to that record for resources

that provide drop instructions. The CE then determines what to do (perhaps to add an

alias to the information card to the sublist of the record) and calls the code resource (if

any) in each aspect for the record. The code resource can take some other action, carry

out the action recommended by the CE, or take no action and return control to the CE.

See the descriptions of the kDETcmdDropQuery (page 5-172) and

kDETcmdDropMeQuery (page 5-170) routines for more information on how code

resources handle drags and drops.

C H A P T E R 5

AOCE Templates

How Aspect and Information Page Templates Work 5-29

If the user drags more than one item onto a catalog object, the CE collects all of the

operations and executes them in batches—for instance, the CE might copy half the items

and use the other half to invoke custom operations in a destination code resource.

In addition, there may be more than one aspect in the destination that can accept a drop.

For example, a Group record includes an aspect that can add a user to the group and

another aspect that can mail an information card to a group. Each aspect includes a

string that the CE can present to the user to confirm the action.

The aspect template signature resource includes a drop-check Boolean value and a

drop-operation order number. If there is only one aspect that can handle the drop and

you specify dropCheckAlways as the Boolean value, the CE displays a dialog box to let

the user confirm the action. You must provide the prompt string for the dialog box in an

aspect template resource. If you specify dropCheckConflicts as the Boolean value,

the CE handles the drop without checking with the user. If there is more than one aspect

that can handle the drop, the CE displays a confirmation dialog box for the option

offered by the aspect that has the lowest drop-operation order number.

The resources that you must provide in an aspect template to support drags and drops

are described in “Supporting Drags and Drops” beginning on page 5-98.

How the Catalogs Extension decides which drop operation to perform

The process the Catalogs Extension goes through to decide which drop
operation is appropriate is fairly complex. First, the CE finds every
aspect that might accept the drop (that is, every aspect of the destination
object that has drag-in resources or a code resource). For each one, the
CE figures out what operation the aspect wants to perform by looking at
where the aspect is located (for example, whether to move an object or
copy it depends on whether the destination is on the same volume as the
original location), the access masks (can the CE delete the original, for
example?), the drag-in and drag-out resources in the aspects of the
source and destination containers, and the code resource (if any).

The CE calls the code resource in the aspect of the object being dropped
with the kDETcmdDropMeQuery routine selector and then calls the code
resource of the destination aspect with the kDETcmdDropQuery routine
selector. These routines can specify that a different action be performed
in response to the drop. In both bases, if the code resource does not
handle the request, the CE calls the code resource of the object’s
container (if the object is an attribute, its container is a record).

At this point, the CE has a list of possible operations—one for each
possible destination. If the user has dragged several objects, the CE
repeats this process until it has such a list for each item being dropped.
Then the CE groups together all the items that share the same set of
possible operations. For each group for which there’s a choice of
possible operations, the CE selects the operation with the lowest
drop-operation order number and displays a dialog box asking the user
whether to perform the operation.

C H A P T E R 5

AOCE Templates

5-30 Writing AOCE Templates

The operation can be a move, a copy (also referred to as a drag), the
creation of an alias, or the sending of a property command to a code
resource. If the operation is a property command specified by the
destination’s code resource (in response to the kDETcmdDropQuery
request), then the CE sends the property command to the destination’s
code resource. If the operation is a property command specified by the
dragged object’s code resource (in response to the
kDETcmdDropMeQuery request), then the CE sends a property
command to that code resource. If the operation is a move, copy, or
creation of an alias, then the CE carries out the operation itself,
displaying status windows as appropriate. ◆

Writing AOCE Templates

This section provides some simple examples of source code for AOCE templates. The

templates shown here create a new record type that stores information about a user’s

collection of recording albums. A user can place these templates in the System Folder to

add a new record type and information pages to his or her personal catalog.

A set of AOCE templates includes a large number of resources of several different types.

To understand this section you must be familiar with the definitions and concepts

provided in the preceding sections of this chapter. In addition, the resource types used in

this section are all described fully in “AOCE Templates Reference” beginning on

page 5-73 and “Code Resources Reference” beginning on page 5-142; cross references to

the reference material are provided wherever practical. You will probably have to refer to

the reference material frequently while reading this section. Additionally, the AOCE

templates provide many features not illustrated by these examples; to learn about all

these features you will have to read the reference sections in detail.

Note

All of the resource examples in this chapter are written in the syntax of
the Rez resource compiler. All other code is written for the MPW C
compiler. ◆

Defining a New Record Type or Attribute Type
When you define a new record type or attribute type, you must provide a main aspect

for that record or attribute type. The main aspect includes a signature resource, a

resource that specifies the record or attribute type to which the main aspect applies, and

several other resources (for instance, icon resources, the text of help balloons, the text of

the New item in the Catalogs menu for records or the text of the Add item in the

new-attribute-item dialog box, and the name given to newly created records or the initial

value for new attributes). For a full list of the required and optional resources used only

by main aspect templates, see Table 5-4 on page 5-89. Additionally, main aspect

templates can contain any of the resources found in other aspect templates. For a full list

of resources that can be used by aspect templates, see Table 5-1 on page 5-78.

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-31

Listing 5-1 shows a main aspect template for a new record type. Because Listing 5-1 is for

a main aspect template for a record, it includes only resources that are specific to the

main aspect. Separating the main aspect template from other aspect templates for a

record has certain advantages. This segregation of resources into main aspect templates

and other aspect templates allows the Catalogs Extension to load into memory only the

aspects that are needed at a given time and makes it easier for developers and users to

create new information pages for an existing record type.

Note

In order to ensure uniqueness of attribute and record types, this and
other code listings in this chapter use WAVE, the application signature
of the fictitious application SurfWriter, as the first part of all attribute
and record type names. ◆

Listing 5-1 Main aspect template

// File: AlbumMainAspect.r

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#define kAlbumMainAspect kDETFirstID

// Aspect template signature resource

resource 'deta' (kAlbumMainAspect, purgeable) {

0, // drop-operation order (not used in this aspect)

dropCheckAlways, // drop-check flag (not used in this aspect)

isMainAspect // is the main aspect

};

// Template name

resource 'rstr' (kAlbumMainAspect + kDETTemplateName, purgeable) {

"WAVE Album Main Aspect" // start name with application signature

};

// Record type to which this template applies

resource 'rstr' (kAlbumMainAspect + kDETRecordType, purgeable) {

"WAVE Album" // start with application signature

};

C H A P T E R 5

AOCE Templates

5-32 Writing AOCE Templates

// Categories to which this record type belongs

resource 'rst#' (kAlbumMainAspect + kDETAspectCategory,purgeable)

{{

"Recordings"

}};

// String to be displayed in the Catalogs menu

resource 'rstr' (kAlbumMainAspect + kDETAspectNewMenuName, purgeable) {

"New Album"

};

// Name given to new record of this type

resource 'rstr' (kAlbumMainAspect + kDETAspectNewEntryName, purgeable) {

"untitled album"

};

// Record kind as shown in a sublist

resource 'rstr' (kAlbumMainAspect + kDETAspectKind, purgeable) {

"album"

};

// Text for help balloons

resource 'rstr' (kAlbumMainAspect + kDETAspectWhatIs, purgeable) {

"Album\n\nA description of an album. Open this icon to display information

 about the album."

};

resource 'rstr' (kAlbumMainAspect + kDETAspectAliasWhatIs, purgeable) {

"Album alias\n\nAn alias to a description of an album. Open this alias to

 display information about the album."

};

// Icons

include "AlbumIcons" 'ICN#'(0) as

'ICN#'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl4'(0) as

'icl4'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-33

include "AlbumIcons" 'icl8'(0) as

'icl8'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics#'(0) as

'ics#'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics4'(0) as

'ics4'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics8'(0) as

'ics8'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'SICN'(0) as

'SICN'(kAlbumMainAspect + kDETAspectMainBitmap, purgeable);

The main aspect in Listing 5-1 makes it possible for the user to create a new record of

type Album by choosing New Album from the Catalogs menu. A new record of this type

has the name “untitled album” until the user renames it. Records of this type are

displayed in the catalog window when the user chooses Recordings from the View

menu. Figure 5-18 shows a personal catalog window displaying records of type Album.

The icons displayed in this window are provided by the icon resources in the main

aspect.

Figure 5-18 Catalog window displaying the record type defined by Listing 5-1

Defining the Contents of the New Record Type or Attribute Type
When you define a new record type or attribute type, you must define its contents and

provide a mapping between attributes and properties. In the case of a new attribute, you

would normally include this information in the main aspect template. In the case of a

record, however, you usually provide a separate aspect template to support each

information page.

Listing 5-2 shows an aspect template for the Album record type defined in Listing 5-1.

This aspect template defines several properties, provides a lookup table mapping

attributes to properties, and provides default values and help-balloon strings for each

property type. The lookup table maps a single attribute ("WAVE Album General
Info") into four properties (prArtist, prTitle, prComments, and prFormat) and a

second attribute (“WAVE Album Cover”) into another property (prCover). Note that

this mapping also works in reverse: The first time the user provides new values for the

properties and closes the information page, the Catalogs Extension creates the attributes

C H A P T E R 5

AOCE Templates

5-34 Writing AOCE Templates

and places them in the record. Lookup tables are described in “The Lookup-Table

Resource” beginning on page 5-105.

Listing 5-2 Defining properties for a record

/*

File: AlbumMainAspect.r

*/

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#define kAlbum1stInfoPageAspect kDETSecondID

// Aspect template signature resource

resource 'deta' (kAlbum1stInfoPageAspect, purgeable) {

0, // drop-operation order (not used in this aspect)

dropCheckAlways, // drop-check flag (not used in this aspect)

notMainAspect // not the main aspect

};

// Template name

resource 'rstr' (kAlbum1stInfoPageAspect + kDETTemplateName, purgeable) {

"WAVE Album First Info Page Aspect" //start with application signature

};

// Record type to which this template applies

resource 'rstr' (kAlbum1stInfoPageAspect + kDETRecordType, purgeable) {

"WAVE Album" //start with application signature

};

// Properties

#define prTitle kDETFirstDevProperty

#define prArtist kDETFirstDevProperty + 1

#define prComments kDETFirstDevProperty + 2

#define prFormat kDETFirstDevProperty + 3

#define prCover kDETFirstDevProperty + 4

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-35

// Lookup table - maps attributes to properties

resource 'dett' (kAlbum1stInfoPageAspect + kDETAspectLookup, purgeable) {

{

{"WAVE Album General Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'rstr', prTitle, 0;

'rstr', prArtist, 0;

'rstr', prComments, 0;

'word', prFormat, 0;

};

{"WAVE Album Cover"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{ 'rest', prCover , 0 };

}

};

// Default property values

resource 'rstr' (kAlbum1stInfoPageAspect + prTitle) {

"<Put the album’s full title here.>"

};

resource 'rstr' (kAlbum1stInfoPageAspect + prArtist) {

"<Put the album’s recording artist or group here.>"

};

resource 'rstr' (kAlbum1stInfoPageAspect + prComments) {

"<Put comments here. Did you like it? What's the best track?>"

};

resource 'detn' (kAlbum1stInfoPageAspect + prFormat) {

1

};

include "AlbumIcons" 'detb'(0) as

'detb'(kAlbum1stInfoPageAspect + prCover, purgeable);

// Text for help balloons for the properties

resource 'rst#' (kAlbum1stInfoPageAspect + kDETAspectBalloons,purgeable) {

C H A P T E R 5

AOCE Templates

5-36 Writing AOCE Templates

{

"The full title.", "The full title. Uneditable because the record is

 locked or access is restricted.",

"The artist or group.", "The artist or group. Uneditable because the

 record is locked or access is restricted.",

"Comments.", Comments. Uneditable because the record is locked or

 access is restricted.",

"Format.", "Format. Uneditable because the record is locked or

 or access is restricted."

"Album’s cover.", Album’s cover. Uneditable because the record is locked

 or access is restricted."

}

};

To display the properties defined in Listing 5-2, you must provide an information page.

Laying Out an Information Page
Once you have defined a new record type or attribute type, or even if you just want to

display the contents of an existing record type or attribute type in a new way, you have

to provide one or more information page templates that tell the Catalogs Extension how

to display the information in the record or attribute.

Listing 5-3 provides an icon and title for the information page and lays out the way in

which the properties are displayed. The view list specifies the location and type of each

field used to display a property value. View lists are described in “View Lists” beginning

on page 5-123.

Listing 5-3 A simple information page

#define kAlbumInfoPage kDETThirdID

resource 'deti' (kAlbumInfoPage, purgeable) {

1000, // sort order

{0, 0, 0, 0}, // rectangle to put sublist in

selectFirstText, // select the first text

// field when info-page opens

{ // the header view list

kDETNoProperty, kDETNoProperty, kAlbumInfoPage;

},

{ // no subview view lists

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-37

}

};

resource 'rstr' (kAlbumInfoPage + kDETTemplateName, purgeable) {

"WAVE Album 1st Info Page" // start with application signature

};

resource 'rstr' (kAlbumInfoPage + kDETInfoPageName, purgeable) {

"General Info"

};

// Associate this information page with records of this type

// and with the aspect

resource 'rstr' (kAlbumInfoPage + kDETRecordType, purgeable) {

"WAVE Album"

};

resource 'rstr' (kAlbumInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Album First Info Page Aspect"

};

// View list

#define kCoverTop (kDETSubpageIconBottom + 8)

#define kCoverLeft (kDETSubpageIconLeft - 2)

#define kCoverBottom (kCoverTop + 175)

#define kCoverRight (kCoverLeft + 175)

#define k1stColumnLeft (kCoverRight + 4)

#define k1stColumnRight (k1stColumnLeft + 65)

#define k2ndColumnLeft (k1stColumnRight + 4)

#define k2ndColumnRight (kDETRecordInfoWindWidth - 8)

#define kTitleTop (kCoverTop)

#define kTitleBottom (kTitleTop + kDETAppFontLineHeight + 4)

#define kArtistTop (kTitleBottom + 6)

#define kArtistBottom (kArtistTop + kDETAppFontLineHeight + 4)

#define kFormatTop (kArtistBottom + 6)

#define kFormatBottom (kFormatTop + kDETAppFontLineHeight + 4)

#define kNumFormats (3)

#define kCDRadioLeft (k2ndColumnLeft)

#define kCDRadioRight (kCDRadioLeft + 35)

C H A P T E R 5

AOCE Templates

5-38 Writing AOCE Templates

#define kCassetteRadioLeft (kCDRadioRight)

#define kCassetteRadioRight (kCassetteRadioLeft + 60)

#define kVinylRadioLeft (kCassetteRadioRight)

#define kVinylRadioRight (k2ndColumnRight)

#define kCommentsTop (kFormatBottom + 32)

#define kCommentsLabelBottom (kCommentsTop + kDETAppFontLineHeight + 4)

#define kCommentsBottom (kCoverBottom)

resource 'detv' (kAlbumInfoPage, purgeable) {

{

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kTitleTop, k1stColumnLeft, kTitleBottom, k1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Full title:" };

{kTitleTop - 2, k2ndColumnLeft, kTitleBottom - 2, k2ndColumnRight},

kDETEnabled, prTitle,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kArtistTop, k1stColumnLeft, kArtistBottom, k1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Artist:" };

{kArtistTop - 2, k2ndColumnLeft, kArtistBottom - 2, k2ndColumnRight},

kDETEnabled, prArtist,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kFormatTop, k1stColumnLeft, kFormatBottom, k1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Format:" };

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-39

{kFormatTop, kCDRadioLeft, kFormatBottom, kCDRadioRight},

kDETEnabled, prFormat,

RadioButton { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal, "CD", prFormat, 1 };

{kFormatTop, kCassetteRadioLeft, kFormatBottom, kCassetteRadioRight},

 kDETEnabled, prFormat,

RadioButton { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal, "Cassette", prFormat, 2 };

{kFormatTop, kVinylRadioLeft, kFormatBottom, kVinylRadioRight},

 kDETEnabled, prFormat,

RadioButton { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal, "Vinyl", prFormat, 3 };

{kCommentsTop, k1stColumnLeft, kCommentsLabelBottom, k1stColumnRight},

 kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Comments:" };

{kCommentsLabelBottom, k1stColumnLeft, kCommentsBottom - 2,

 k2ndColumnRight},

kDETEnabled + kDETMultiLine, prComments,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{ kCoverTop, kCoverLeft, kCoverBottom, kCoverRight },

 kDETNoFlags, prCover,

EditPicture { 8 };

}

};

C H A P T E R 5

AOCE Templates

5-40 Writing AOCE Templates

Figure 5-19 Simple information page

Listing 5-3 together with Listing 5-2 on page 5-34 describe the information page shown

in Figure 5-19. The user can type information into the editable text fields and place a

figure in the editable picture field.

Adding a Conditional View
A conditional view is one that appears in an information page only if certain conditions

are met. For example, the Album information page shown in the preceding example

could display radio buttons that specify the speed of the album, but only if the user

selects the Vinyl radio button for album format (Figure 5-20).

Figure 5-20 Simple information page with a conditional view

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-41

To implement the conditional view shown in Figure 5-20, make the following additions

to the templates:

■ Add the property prVinylSpeed to the list of properties.

#define prTitle kDETFirstDevProperty

#define prArtist kDETFirstDevProperty + 1

#define prComments kDETFirstDevProperty + 2

#define prFormat kDETFirstDevProperty + 3

#define prCover kDETFirstDevProperty + 4

#define prVinylSpeed kDETFirstDevProperty + 5

■ Add the prVinylSpeed property to the lookup table.

resource 'dett' (kAlbum1stInfoPageAspect + kDETAspectLookup,

purgeable) {

{

{"WAVE Album General Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias,

 isNotRecordRef,

{

'rstr', prTitle, 0;

'rstr', prArtist, 0;

'rstr', prComments, 0;

'word', prFormat, 0;

'word', prVinylSpeed, 0;

};

{"Album Cover"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias,

 isNotRecordRef,

{ 'rest', prCover , 0 };

}

};

■ Add a default property value for the prVinylSpeed property.

resource 'detn' (kAlbumMainAspect + prVinylSpeed) {

1

};

■ Add help balloons.

resource 'rst#' (kAlbum1stInfoPageAspect + kDETAspectBalloons,

purgeable) {

{

"The full title.", "The full title. Uneditable because the

 record is locked or access is restricted.",

C H A P T E R 5

AOCE Templates

5-42 Writing AOCE Templates

"The artist or group.", "The artist or group. Uneditable

 because the record is locked or access is restricted.",

"Comments.", Comments. Uneditable because the record is locked

 or access is restricted.",

"Format.", "Format. Uneditable because the record is locked or

 access is restricted."

"Album’s cover.", Album’s cover. Uneditable because the record

 is locked or access is restricted."

"Record speed", Record speed. Uneditable because the record is

 locked or access is restricted."

}

};

■ Add a line to the information page signature resource for a second view list. Each
view list has a corresponding line in the information page signature resource; each
line has two property numbers and a resource ID for the view list resource. The view
is displayed only if the values of the two properties are equal. In this case, the second
line requires that the property prFormat must equal 3; that is, the value of the
property (kDETFirstConstantProperty + 3) is the constant 3. Information page
signature resources are defined and described in “Information Page Template
Signature Resource” on page 5-121.

resource 'deti' (kAlbumInfoPage, purgeable) {

1000,

{0, 0, 0, 0},

selectFirstText,

{

kDETNoProperty, kDETNoProperty, kAlbumInfoPage;

prFormat, kDETFirstConstantProperty + 3, kAlbumInfoPage + 1;

},

{

}

};

■ Add the definitions and view list for the conditional view. Notice that the conditional
view resource ('detv') includes the identification number for the conditional view,
kAlbumInfoPage + 1.

#define kConditionalTop (kFormatBottom + 4)

#define kConditionalBottom (kConditionalTop +

 kDETAppFontLineHeight + 4)

#define k33RadioLeft (k2ndColumnLeft)

#define k33RadioRight (kCDRadioLeft + 35)

#define k45RadioLeft (k33RadioRight)

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-43

#define k45RadioRight (k45RadioLeft + 35)

#define k78RadioLeft (k45RadioRight)

#define k78RadioRight (k45RadioRight + 35)

resource 'detv' (kAlbumInfoPage + 1, purgeable) {

{

{kConditionalTop, k1stColumnLeft, kConditionalBottom,

 k1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETRight, kDETBold, "Speed:" };

{kConditionalTop, k33RadioLeft, kConditionalBottom,

 k33RadioRight},

kDETEnabled, prVinylSpeed,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "33", prVinylSpeed, 1 };

{kConditionalTop, k45RadioLeft, kConditionalBottom,

 k45RadioRight}, kDETEnabled, prVinylSpeed,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "45", prVinylSpeed, 2 };

{kConditionalTop, k78RadioLeft, kConditionalBottom,

 k78RadioRight}, kDETEnabled, prVinylSpeed,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "78", prVinylSpeed, 3 };

}

};

For another example of a conditional view, see “Implementing Conditional Views”

beginning on page 5-131.

Adding an Information Page With a Sublist
Listing 5-4 shows the aspect and information page templates for a second information

page for the Album record. This information page (shown in Figure 5-21) provides

details about the tracks on the album, including a list of all the tracks. The list of tracks is

implemented as an information page sublist. Each item in the sublist is an attribute

value; each attribute value includes the title and track number of a track on the album.

For more information on sublists, see “Sublists” on page 5-136.

C H A P T E R 5

AOCE Templates

5-44 Writing AOCE Templates

Figure 5-21 Information page with a sublist

Note that this template supports the dropping of an attribute into the sublist as a way to

add an item to the sublist. The aspect template signature resource, the

kDETAspectDragInString resource, and the kDETAspectAttrDragIn resource all

support drops. See “Supporting Drags and Drops” beginning on page 5-98 for more

information about resources that support dragging and dropping objects on templates.

Listing 5-4 An information page with a sublist

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

// This is an aspect template with this base resource ID.

#define kAlbum2ndInfoPageAspect kDETFourthID

// Aspect template signature resource

resource 'deta' (kAlbum2ndInfoPageAspect, purgeable) {

0, // drop-operation order

dropCheckAlways, // drop-check flag

notMainAspect // not the main aspect

};

// Template name

resource 'rstr' (kAlbum2ndInfoPageAspect + kDETTemplateName, purgeable) {

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-45

"WAVE Album Second Info Page Aspect"

};

// Associate this aspect template with records of type Album.

resource 'rstr' (kAlbum2ndInfoPageAspect + kDETRecordType, purgeable) {

"WAVE Album"

};

// Icons

include "AlbumIcons" 'ICN#'(0) as

 'ICN#'(kAlbum2ndInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl4'(0) as

 'icl4'(kAlbum2ndInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl8'(0) as

 'icl8'(kAlbum2ndInfoPageAspect + kDETAspectMainBitmap, purgeable);

// Aspect properties - shared between aspect and info page(s)

#define prTrackNumber kDETFirstDevProperty

#define prNumTracks kDETFirstDevProperty + 1

#define prPlayingTimeHours kDETFirstDevProperty + 2

#define prPlayingTimeMinutes kDETFirstDevProperty + 3

#define prPlayingTimeSeconds kDETFirstDevProperty + 4

// Lookup table

// This lookup table defines the format of attribute type

// WAVE Album Track Info. This attribute type is not displayed in a

// sublist and so does not require a main aspect.

// Attribute values of type WAVE Track are displayed in the sublist.

// The format of attribute type WAVE Track is defined in the main aspect

// shown in Listing 5-5 on page 5-52.

resource 'dett' (kAlbum2ndInfoPageAspect + kDETAspectLookup, purgeable) {

{

{"WAVE Album Track Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

C H A P T E R 5

AOCE Templates

5-46 Writing AOCE Templates

{

'word', prNumTracks, 0;

'long', prPlayingTimeHours, 0;

'long', prPlayingTimeMinutes, 0;

'long', prPlayingTimeSeconds, 0;

};

{"WAVE Track"}, typeBinary,

notForInput, notForOutput, useInSublist, isNotAlias, isNotRecordRef,

{};

}

};

// Drag and drop information (see

// “Supporting Drags and Drops” beginning on page 5-98)

// Prompt string for drag-in dialog box

resource 'rstr' (kAlbum2ndInfoPageAspect + kDETAspectDragInString,

purgeable) {

"Do you want to add %3%“^3”%the selected items% to the track address

list of *0x/the/* ^1 “^2”?"

};

// Attributes can be dragged from any kind of record (""); attributes of

// type WAVE Track can be dragged into this record; and the new copy of the

// attribute will be of type WAVE Track.

resource 'rst#' (kAlbum2ndInfoPageAspect + kDETAspectAttrDragIn, purgeable) {

{

"", "WAVE Track", "WAVE Track"

}

};

// Sublist sorting information

// Property names in this resource appear in the View menu, and property

// numbers tell the CE what to sort by. Positive property number is

// alphanumeric sort; negative number is numeric sort.

resource 'detm' (kAlbum2ndInfoPageAspect + kDETAspectViewMenu, purgeable) {

kAlbum2ndInfoPageAspect + kDETAspectViewMenu,

{

kDETAspectName,"by Title";

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-47

-prTrackNumber,"by Track Number";

}

};

// Properties in this resource are sorted in reverse order.

resource 'detp' (kAlbum2ndInfoPageAspect + kDETAspectReverseSort,

purgeable) {

{

prTrackNumber

}

};

// Text for help balloons for the properties

resource 'rst#' (kAlbum2ndInfoPageAspect + kDETAspectBalloons,purgeable) {

{

"The number of tracks on the album.", The number of tracks on the album.

 Uneditable because the record is locked or access is restricted.",

"The number of hours of music on the album.", "The number of hours of

 music on the album. Uneditable because the record is locked or access

 is restricted.",

"The number of minutes of music on the album.", "The number of minutes of

 music on the album. Uneditable because the record is locked or access

 is restricted.",

"The number of seconds of music on the album.", "The number of seconds of

 music on the album. Uneditable because the record is locked or access

 is restricted.",

}

};

// --

//

// Album information page

#define kAlbum2ndInfoPage kDETFifthID

#define kTitleTop (85)

#define kTitleBottom (kTitleTop + 12)

#define kSublistTop (kTitleBottom + 2)

#define kSublistBottom (kDETRecordInfoWindHeight - 40)

#define kSublistLeft (12)

C H A P T E R 5

AOCE Templates

5-48 Writing AOCE Templates

#define kSublistRight (kDETRecordInfoWindWidth - 12)

// Information page template signature resource

resource 'deti' (kAlbum2ndInfoPage, purgeable) {

2000,

{kSublistTop, kSublistLeft, kSublistBottom, kSublistRight},

selectFirstText,

// View list for main view is identified by the following line.

{

kDETNoProperty, kDETNoProperty, kAlbum2ndInfoPage;

},

// View list for sublist is identified by this line.

{

kDETNoProperty, kDETNoProperty, kAlbum2ndInfoPage + 1;

}

};

resource 'rstr' (kAlbum2ndInfoPage + kDETTemplateName, purgeable) {

"WAVE Album 2nd Info Page"

};

resource 'rstr' (kAlbum2ndInfoPage + kDETInfoPageName, purgeable) {

"Track Info"

};

// Associate this information page with records of type WAVE Album

// and with this aspect template.

resource 'rstr' (kAlbum2ndInfoPage + kDETRecordType, purgeable) {

"WAVE Album"

};

resource 'rstr' (kAlbum2ndInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Album Second Info Page Aspect"

};

// View list - what you see in this information page

#define kMyFirstColumnLeft (55)

#define kMyFirstColumnRight (kMyFirstColumnLeft + 120)

#define kEditTextWidth (23)

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-49

#define kSpaceBeforeEditDesc (25)

#define kNumEditColumns (3)

#define kMyEditColumnWidth (70)

#define k1stEditColumnLeft (kMyFirstColumnRight + 2)

#define k2ndEditColumnLeft (k1stEditColumnLeft + kMyEditColumnWidth)

#define k3rdEditColumnLeft (k2ndEditColumnLeft + kMyEditColumnWidth)

#define k4thEditColumnLeft (k3rdEditColumnLeft + kMyEditColumnWidth)

#define kNumTracksTop (40)

#define kNumTracksBottom (kNumTracksTop + kDETAppFontLineHeight + 4)

#define kPlayingTimeTop (kNumTracksBottom + 4)

#define kPlayingTimeBottom (kPlayingTimeTop + kDETAppFontLineHeight + 4)

#define k2ndColumnRightInset (kDETRecordInfoWindWidth - 10)

#define kButtonTop (kSublistBottom + 15)

#define kButtonBottom (kButtonTop + 16)

#define kOpenLeft 62

#define kOpenRight 112

#define kAddLeft 208

#define kAddRight 258

#define kRemoveLeft 270

#define kRemoveRight 320

#define kIconLeft 2

#define kNameLeft 22

#define kTrackNumberLeft 162

#define kPrefLeft 285

#define kPrefRight 305

#define kIconEntryTop -7

#define kIconEntryBottom 9

#define kEntryTop -5

#define kEntryBottom 9

resource 'detv' (kAlbum2ndInfoPage, purgeable) {

{

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kNumTracksTop, kMyFirstColumnLeft, kNumTracksBottom,

 kMyFirstColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

C H A P T E R 5

AOCE Templates

5-50 Writing AOCE Templates

 kDETRight, kDETBold, "Number of tracks:" };

{kNumTracksTop - 2, k1stEditColumnLeft, kNumTracksBottom - 2,

 k1stEditColumnLeft + kEditTextWidth},

kDETEnabled + kDETNumericOnly, prNumTracks,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kPlayingTimeTop, kMyFirstColumnLeft, kPlayingTimeBottom,

 kMyFirstColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Total playing time:" };

{kPlayingTimeTop - 2, k1stEditColumnLeft, kPlayingTimeBottom - 2,

 k1stEditColumnLeft + kEditTextWidth},

kDETEnabled + kDETNumericOnly, prPlayingTimeHours,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kPlayingTimeTop, k1stEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k2ndEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "Hours" };

{kPlayingTimeTop - 2, k2ndEditColumnLeft, kPlayingTimeBottom - 2,

 k2ndEditColumnLeft + kEditTextWidth},

kDETEnabled + kDETNumericOnly, prPlayingTimeMinutes,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kPlayingTimeTop, k2ndEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k3rdEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "Minutes" };

{kPlayingTimeTop - 2, k3rdEditColumnLeft, kPlayingTimeBottom - 2,

 k3rdEditColumnLeft + kEditTextWidth},

kDETEnabled + kDETNumericOnly, prPlayingTimeSeconds,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-51

{kPlayingTimeTop, k3rdEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k4thEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "Seconds" };

{kSublistTop - 1, kSublistLeft - 1, kSublistBottom + 1,

 kSublistRight + 1},

kDETNoFlags, kDETNoProperty,

Box { kDETUnused };

{kTitleTop, kSublistLeft + kNameLeft, kTitleBottom,

 kSublistLeft + kTrackNumberLeft - 2},

kDETNoFlags, kDETAspectName,

StaticCommandTextFromView { kDETDefaultFont, kDETDefaultFontSize,

 kDETLeft, kDETUnderline, "Title", kDETChangeViewCommand, - 1};

{kTitleTop, kSublistLeft + kTrackNumberLeft, kTitleBottom,

 kSublistLeft + kPrefLeft - 2},

kDETNoFlags, prTrackNumber,

StaticCommandTextFromView { kDETDefaultFont, kDETDefaultFontSize,

 kDETLeft, kDETNormal, "Track Number", kDETChangeViewCommand, - 2 };

{kButtonTop, kOpenLeft, kButtonBottom, kOpenRight},

kDETNoFlags, kDETOpenSelectedItems,

Button { kDETApplicationFont, 10, kDETCenter, kDETNormal, "Open",

 kDETOpenSelectedItems };

{kButtonTop, kAddLeft, kButtonBottom, kAddRight},

kDETNoFlags, kDETAddNewItem,

Button { kDETApplicationFont, 10, kDETCenter, kDETNormal, "Add…",

 kDETAddNewItem };

{kButtonTop, kRemoveLeft, kButtonBottom, kRemoveRight},

kDETNoFlags, kDETRemoveSelectedItems,

Button { kDETApplicationFont, 10, kDETCenter, kDETNormal, "Remove",

 kDETRemoveSelectedItems };

}

};

// View list for sublist

C H A P T E R 5

AOCE Templates

5-52 Writing AOCE Templates

resource 'detv' (kAlbum2ndInfoPage + 1, purgeable) {

{

{kIconEntryTop, kIconLeft, kIconEntryBottom, kNameLeft-4},

kDETHilightIfSelected, kDETAspectMainBitmap,

Bitmap { kDETMiniIcon };

{kEntryTop, kNameLeft, kEntryBottom, kTrackNumberLeft - 2},

kDETHilightIfSelected + kDETDynamicSize, kDETAspectName,

EditText { kDETDefaultFont, kDETDefaultFontSize, kDETLeft,

 kDETNormal };

{kEntryTop, kTrackNumberLeft, kEntryBottom, kPrefLeft - 2},

kDETHilightIfSelected + kDETDynamicSize, prTrackNumber,

EditText { kDETDefaultFont, kDETDefaultFontSize, kDETLeft,

 kDETNormal };

}

};

Writing a Main Aspect and Information Page for an Attribute
The information page in Listing 5-4 on page 5-44 allows a user to add a new attribute of

type Track. To make this possible, you have to provide a main aspect for attributes of

that type. To let the user see the contents of the attribute, you need to provide an

information page (see Figure 5-5 on page 5-9). Listing 5-5 shows the main aspect

template and information page template for attributes of type Track. Because this is an

attribute, the main aspect template contains all the properties needed by the information

page in addition to the resources required for a main aspect template.

Listing 5-5 Attribute main aspect and information page

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#include "Track.h"

#define kDETSixthID (1000 + 5 * kDETIDSep)

#define kTrackAspect (kDETSixthID + kDETIDSep)

#define kTrackInfoPage (kDETSixthID + (2 * kDETIDSep))

// The aspect template

resource 'deta' (kTrackAspect, purgeable) {

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-53

0, // drop-operation order

dropCheckAlways, // drop-check flag

isMainAspect // is the main aspect

};

resource 'rstr' (kTrackAspect + kDETTemplateName, purgeable) {

"WAVE Track Aspect"

};

resource 'rstr' (kTrackAspect + kDETAttributeType, purgeable) {

"WAVE Track"

};

resource 'rstr' (kTrackAspect + kDETAspectKind, purgeable) {

"Track"

};

resource 'rstr' (kTrackAspect + kDETAspectWhatIs, purgeable) {

"Track\n\nA track on an album."

};

resource 'rst#' (kTrackAspect + kDETAspectCategory, purgeable)

{{

"Recordings"

}};

resource 'rstr' (kTrackAspect + kDETAspectNewMenuName, purgeable) {

"New Track"

};

#define prTrackNumber kDETFirstDevProperty

#define prTrackMinutes (kDETFirstDevProperty + 1)

#define prTrackSeconds (kDETFirstDevProperty + 2)

#define prTrackComposer (kDETFirstDevProperty + 3)

#define prTrackComments (kDETFirstDevProperty + 4)

// Default values for a newly created attribute

data 'detb' (kTrackAspect + kDETAspectNewValue, purgeable) {

$"626E 7279" // tag (bnry)

$"0000 0001" // prTrackNumber (1)

$"0000 0000" // prTrackMinutes (1)

$"0000 0000" // prTrackSeconds (1)

C H A P T E R 5

AOCE Templates

5-54 Writing AOCE Templates

$"0000 0007 3C74 6974 6C65 3E" // kDETAspectName (<title>)

$"0000 000A 3C63 6F6D 706F 7365 723E" // composer (<composer>)

$"0000 000A 3C63 6F6D 6D65 6E74 733E" // comments (<comments>)

};

// Lookup table

resource 'dett' (kTrackAspect + kDETAspectLookup, purgeable) {

{

{"WAVE Track"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'long', prTrackNumber, 0;

'long', prTrackMinutes, 0;

'long', prTrackSeconds, 0;

'rstr', kDETAspectName, 0;

'rstr', prTrackComposer, 0;

'rstr', prTrackComments, 0

};

}

};

// Icons

include "TrackIcons" 'ICN#'(0) as 'ICN#'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'icl4'(0) as 'icl4'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'icl8'(0) as 'icl8'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'ics#'(0) as 'ics#'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'ics4'(0) as 'ics4'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'ics8'(0) as 'ics8'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

include "TrackIcons" 'SICN'(0) as 'SICN'(kTrackAspect + kDETAspectMainBitmap,

 purgeable);

// --

// Information page

#define kTrackNumberTop (50)

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-55

#define kTrackNumberBottom (kTrackNumberTop + kDETAppFontLineHeight

 + 4)

#define kTrackPlayingTimeTop (kTrackNumberBottom + 4)

#define kTrackPlayingTimeBottom (kTrackPlayingTimeTop +

 kDETAppFontLineHeight + 4)

#define kTrackComposerTop (kTrackPlayingTimeBottom + 4)

#define kTrackComposerBottom (kTrackComposerTop +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4)

#define kTrackCommentsTop (kTrackComposerBottom + 4)

#define kTrackCommentsBottom (kTrackCommentsTop +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4 +

 kDETAppFontLineHeight + 4)

#define kTrackEditTextWidth (23)

#define kTrackSpaceBeforeEditDesc(25)

#define kTrack1stColumnLeft (4)

#define kTrack1stColumnRight (kDETAttributeInfoWindWidth / 2 - 20)

#define kTrack2ndColumnLeft (kTrack1stColumnRight + 4)

#define kTrack2ndColumnRight (kDETAttributeInfoWindWidth - 8)

#define kTrackSecondsColumnLeft (kTrack2ndColumnLeft +

 kTrackSpaceBeforeEditDesc + 40)

resource 'deti' (kTrackInfoPage, purgeable) {

1000,

{0, 0, 0, 0},

selectFirstText,

{

kDETNoProperty, kDETNoProperty, kTrackInfoPage;

},

{

}

};

resource 'rstr' (kTrackInfoPage + kDETTemplateName, purgeable) {

"WAVE Track Info Page"

};

resource 'rstr' (kTrackInfoPage + kDETAttributeType, purgeable) {

C H A P T E R 5

AOCE Templates

5-56 Writing AOCE Templates

"WAVE Track"

};

resource 'rstr' (kTrackInfoPage + kDETInfoPageName, purgeable) {

"Track Info"

};

resource 'rstr' (kTrackInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Track Aspect"

};

// View list

resource 'detv' (kTrackInfoPage, purgeable) {

{

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kTrackNumberTop, kTrack1stColumnLeft, kTrackNumberBottom,

 kTrack1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Track Number:" };

{kTrackNumberTop - 2, kTrack2ndColumnLeft, kTrackNumberBottom - 2,

 kTrack2ndColumnLeft + kTrackEditTextWidth},

kDETEnabled + kDETNumericOnly, prTrackNumber,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kTrackPlayingTimeTop, kTrack1stColumnLeft, kTrackPlayingTimeBottom,

 kTrack1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Playing Time:" };

{kTrackPlayingTimeTop - 2, kTrack2ndColumnLeft,

 kTrackPlayingTimeBottom - 2,

 kTrack2ndColumnLeft + kTrackEditTextWidth},

kDETEnabled + kDETNumericOnly, prTrackMinutes,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-57

{kTrackPlayingTimeTop, kTrack2ndColumnLeft + kTrackSpaceBeforeEditDesc,

 kTrackPlayingTimeBottom, kTrackSecondsColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal, "Mins" };

{kTrackPlayingTimeTop - 2, kTrackSecondsColumnLeft,

 kTrackPlayingTimeBottom - 2, kTrackSecondsColumnLeft +

 kTrackEditTextWidth},

kDETEnabled + kDETNumericOnly, prTrackSeconds,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kTrackPlayingTimeTop, kTrackSecondsColumnLeft +

 kTrackSpaceBeforeEditDesc, kTrackPlayingTimeBottom,

 kTrack2ndColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal,"Secs" };

{kTrackComposerTop, kTrack1stColumnLeft, kTrackComposerBottom,

 kTrack1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold,"Composer:" };

{kTrackComposerTop - 2, kTrack2ndColumnLeft, kTrackComposerBottom - 2,

 kTrack2ndColumnRight},

kDETEnabled + kDETMultiLine, prTrackComposer,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

 kDETNormal };

{kTrackCommentsTop, kTrack1stColumnLeft, kTrackCommentsBottom,

 kTrack1stColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold,"Comments:" };

{kTrackCommentsTop - 2, kTrack2ndColumnLeft, kTrackCommentsBottom - 2,

 kTrack2ndColumnRight},

kDETEnabled + kDETMultiLine, prTrackComments,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

C H A P T E R 5

AOCE Templates

5-58 Writing AOCE Templates

 kDETNormal };

}

};

Creating a Custom Information Page Window
The aspect and information page templates in Listing 5-6 define a new AOCE record

type and the information page that displays the record’s contents. The user can use this

record type to store information about collections of recording albums. The information

page lists the albums in the collection. Because an AOCE record cannot contain another

record, the AOCE record type Album Collection actually contains aliases to records of

type Album.

The information page consists of a sublist listing the albums in the collection. The

information page window is a custom size, defined by the 'detw' resource with a

resource ID of kCollectionAspect + kDETAspectInfoPageCustomWindow (see

page 5-97 for a description of this resource). This resource specifies the flag

discludePopup, so the Catalogs Extension does not include a pop-up menu in the

window. The template does not add a custom pop-up menu either. Therefore, no one can

add any more information pages to this information page window, because the user

would have no way of selecting which page to look at. For this reason, a single aspect

template is used for both the main aspect and the information page aspect for this new

record type.

Notice also that the aspect template for the Album Collection record type includes a

view list. Ordinarily, you can put view lists only in information page templates, not in

aspect templates. However, because this aspect template defines a custom information

page window, you can include a view list with a resource ID of kCollectionAspect
+ kDETAspectInfoPageCustomWindow. The views defined by this view list appear

in every information page associated with this main aspect. (In Listing 5-6, there’s only

one information page, so the view list could be placed in either the aspect or information

page template.)

Listing 5-6 Templates for a custom information page

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#define kCollectionAspect (kDETFifthID + (3 * kDETIDSep))

#define kCollectionInfoPage (kDETFifthID + (4 * kDETIDSep))

#define kGeneva 3

#define kSystemFont 0

// Page layout defines

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-59

#define iconColumnWidth 16

#define nameColumnWidth 132

#define kindColumnWidth 86

#define spaceBetweenColumns 2

#define iconColumnLeft 0

#define iconColumnRight (iconColumnLeft + iconColumnWidth)

#define nameColumnLeft (iconColumnRight + spaceBetweenColumns)

#define nameColumnRight (nameColumnLeft + nameColumnWidth)

#define kindColumnLeft nameColumnRight

#define kindColumnRight (kindColumnLeft + kindColumnWidth)

#define sublistIconTop (-7)

#define sublistIconBottom (9)

#define sublistTextTop (-6)

#define sublistTextBottom (8)

#define sublistTitleTop (35)

#define sublistTitleBottom (sublistTitleTop + 12)

#define windowHeight 280

#define windowWidth (kindColumnLeft + kindColumnWidth + 15 + 16)

#define sublistTopBound (sublistTitleBottom + 2)

#define sublistBottomBound (windowHeight - 12)

#define sublistLeftBound 12

#define sublistRightBound (windowWidth - 12)

#define kPageBitmapLeft (11)

#define kPageBitmapRight (kPageBitmapLeft + 16)

#define kPageBitmapTop 7

#define kPageBitmapBottom 23

// Aspect template; serves as both main aspect and information page aspect.

//

resource 'deta' (kCollectionAspect, purgeable) {

0, // drop-operation order

dropCheckConflicts, // drop-check flag

isMainAspect // is the main aspect

};

C H A P T E R 5

AOCE Templates

5-60 Writing AOCE Templates

resource 'rstr' (kCollectionAspect + kDETTemplateName, purgeable) {

"WAVE Album Collection Aspect"

};

resource 'rstr' (kCollectionAspect + kDETRecordType, purgeable) {

"WAVE Album Collection"

};

resource 'rstr' (kCollectionAspect + kDETAspectKind, purgeable) {

"album collection"

};

resource 'rstr' (kCollectionAspect + kDETAspectWhatIs, purgeable) {

"Album Collection\n\nA collection of albums.Open this icon to display

 information about the collection."

};

resource 'rstr' (kCollectionAspect + kDETAspectAliasKind, purgeable) {

"album collection alias"

};

resource 'rstr' (kCollectionAspect + kDETAspectAliasWhatIs, purgeable) {

"Album Collection alias\n\This is an alias to a collection of albums.

 Open this alias to display information about the collection."

};

// Record category; this record type is assigned to the same category as the

// Album record type.

resource 'rst#' (kCollectionAspect + kDETAspectCategory,purgeable)

{{

"Recordings"

}};

// Define a custom information page window.

resource 'detw' (kCollectionAspect + kDETAspectInfoPageCustomWindow,

purgeable) {

{ 0, 0, windowHeight, windowWidth },

discludePopup

};

// View list for views to appear in all information pages for this

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-61

// main aspect

resource 'detv' (kCollectionAspect + kDETAspectInfoPageCustomWindow,

purgeable)

{

{

{6, kPageBitmapRight + 8, 25, kPageBitmapRight + 8 + 166},

 kDETNoFlags, kDETInfoPageNumber,

Menu {kSystemFont, 12, kDETLeft, kDETNormal, "", kDETInfoPageNumber,

kDETInfoPageNumber };

};

};

resource 'rstr' (kCollectionAspect + kDETAspectNewMenuName, purgeable) {

"New Album Collection"

};

resource 'rstr' (kCollectionAspect + kDETAspectNewEntryName, purgeable) {

"untitled album collection"

};

include "AlbumCollectionIcons" 'ICN#'(0) as 'ICN#'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'icl4'(0) as 'icl4'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'icl8'(0) as 'icl8'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'ics#'(0) as 'ics#'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'ics4'(0) as 'ics4'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'ics8'(0) as 'ics8'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

include "AlbumCollectionIcons" 'SICN'(0) as 'SICN'(kCollectionAspect +

kDETAspectMainBitmap, purgeable);

// Supporting drops

resource 'rstr' (kCollectionAspect + kDETAspectDragInString, purgeable) {

"Do you want to add %3%“^3”%the selected items% to *0x/the/* ^1 “^2”?"

};

resource 'rst#' (kCollectionAspect + kDETAspectRecordCatDragIn,purgeable)

C H A P T E R 5

AOCE Templates

5-62 Writing AOCE Templates

{{

"Recordings", kMemberAttrTypeBody

}};

resource 'rst#' (kCollectionAspect + kDETAspectAttrDragIn,purgeable)

{{

"", kMemberAttrTypeBody, kMemberAttrTypeBody

}};

resource 'dett' (kCollectionAspect + kDETAspectLookup, purgeable)

{{

{kMemberAttrTypeBody}, typePackedDSSpec,

notForInput, notForOutput, useInSublist, isAlias, isNotRecordRef,

{};

}};

resource 'detm' (kCollectionAspect + kDETAspectViewMenu, purgeable)

{

kCollectionAspect + kDETAspectViewMenu,

{

kDETPrName, "by Name";

kDETPrKind, "by Kind";

}

};

//---

// The information page template

#define k2ndColumnRightInset (kDETRecordInfoWindWidth-kDETSubpageRightInset)

resource 'deti' (kCollectionInfoPage, purgeable) {

1000,

{sublistTopBound, sublistLeftBound, sublistBottomBound,

 sublistRightBound},

noSelectFirstText,

{

kDETNoProperty, kDETNoProperty, kCollectionInfoPage;

},

{

kDETNoProperty, kDETNoProperty, kCollectionInfoPage + 1;

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-63

}};

resource 'rstr' (kCollectionInfoPage + kDETTemplateName, purgeable) {

"WAVE Album Collection Info Page"

};

resource 'rstr' (kCollectionInfoPage + kDETRecordType, purgeable) {

"WAVE Album Collection"

};

resource 'rstr' (kCollectionInfoPage + kDETInfoPageName, purgeable) {

"Album Collection"

};

resource 'rstr' (kCollectionInfoPage + kDETInfoPageMainViewAspect, purgeable)

{

"WAVE Album Collection Aspect"

};

resource 'detv' (kCollectionInfoPage, purgeable)

{

{

{kPageBitmapTop, kPageBitmapLeft, kPageBitmapBottom, kPageBitmapRight},

kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETSmallIcon };

{sublistTopBound - 1, sublistLeftBound - 1, sublistBottomBound + 1,

sublistRightBound + 1}, kDETNoFlags, kDETNoProperty,

Box { kDETUnused };

{sublistTitleTop, sublistLeftBound + nameColumnLeft, sublistTitleBottom,

 sublistLeftBound + nameColumnRight},

kDETNoFlags, kDETPrName,

StaticCommandTextFromView { kGeneva, 9, kDETLeft, kDETUnderline,

 "Name", kDETChangeViewCommand, - 1 };

{sublistTitleTop, sublistLeftBound + kindColumnLeft, sublistTitleBottom,

 sublistLeftBound + kindColumnRight},

kDETNoFlags, kDETPrKind,

StaticCommandTextFromView { kGeneva, 9, kDETLeft, kDETNormal, "Kind",

 kDETChangeViewCommand, - 2 };

};

};

C H A P T E R 5

AOCE Templates

5-64 Writing AOCE Templates

resource 'detv' (kCollectionInfoPage + 1, purgeable)

{

{

{sublistIconTop, iconColumnLeft, sublistIconBottom, iconColumnRight},

kDETHilightIfSelected, kDETAspectMainBitmap,

Bitmap { kDETMiniIcon };

{sublistTextTop, nameColumnLeft, sublistTextBottom, nameColumnRight},

kDETHilightIfSelected + kDETDynamicSize, kDETPrName,

StaticText { kGeneva, 9, kDETLeft, kDETIconStyle };

{sublistTextTop, kindColumnLeft, sublistTextBottom, kindColumnRight},

kDETNoFlags, kDETPrKind,

StaticText { kGeneva, 9, kDETLeft, kDETNormal };

}

};

Figure 5-22 shows an example of the information page defined by Listing 5-6. Notice that

this information page contains no Add or Remove buttons. The only way for a user to

add a record alias to a record of type Album Collection is to drag an Album record into

the sublist. The only way to remove one is to drag it from the sublist into the Trash. This

design works well for the Album Collection record type because letting the user create a

new, empty attribute for this record would make little sense. When the user

double-clicks an album in the sublist, the Catalogs Extension opens the information page

for the album, not for an attribute in the Album record.

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-65

Figure 5-22 Custom information page

Writing Template Code Resources

The set of templates you’ve seen so far creates information pages that let a user store

information about an album, about each track on an album, and about a collection of

albums. Because the user can enter the duration of each track in the Track Info attribute

information page (Figure 5-5 on page 5-9), you can provide a code resource that

automatically adds up the number of tracks and the total playing time so that the user

does not have to enter that information into editable text boxes. The resulting

information page (Figure 5-23) is identical to an earlier information page (Figure 5-21 on

page 5-44) except that the number of tracks and total playing time are no longer editable

text.

Figure 5-23 Information page using a code resource

C H A P T E R 5

AOCE Templates

5-66 Writing AOCE Templates

The aspect and information page templates that create the information page in Figure

5-23 are identical to those in Listing 5-4 on page 5-44, with the following exceptions:

■ The aspect template includes the code resource. To include the code shown in Listing
5-8 on page 5-68 (assuming this code has been compiled and saved as the resource
Album2Code of type 'detc' with a resource ID of 0), add the following line to the
aspect template:

include "Album2Code" 'detc'(0) as

 'detc'(kAlbum2ndInfoPageAspect + kDETAspectCode, purgeable);

■ The lookup table does not contain the attribute Album Track Info or elements for the
properties prNumTracks, prPlayingTimeHours, prPlayingTimeMinutes, or
prPlayingTimeSeconds. These properties are all handled by the code resource.

■ Instead of the edit-text views in the view lists for the “Number of tracks” and
“Playing time” fields, the view list contains static text fields that get the values to
display from the code resource. Listing 5-7 shows the view lists.

Listing 5-7 View lists that get values from a code resource

resource 'detv' (kAlbum2ndInfoPage + 1, purgeable) {

{

{kNumTracksTop, kMyFirstColumnLeft, kNumTracksBottom,

 kMyFirstColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETRight, kDETBold, "Number of

 tracks:" };

{kNumTracksTop, k1stEditColumnLeft, kNumTracksBottom,

 k1stEditColumnLeft + kEditTextWidth},

kDETNoFlags, prNumTracks,

StaticText { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal };

}

};

resource 'detv' (kAlbum2ndInfoPage + 2, purgeable) {

{

{kPlayingTimeTop, kMyFirstColumnLeft, kPlayingTimeBottom,

 kMyFirstColumnRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETRight, kDETBold,

 "Total playing time:" };

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-67

{kPlayingTimeTop, k1stEditColumnLeft, kPlayingTimeBottom,

 k1stEditColumnLeft + kEditTextWidth},

kDETNoFlags, prPlayingTimeHours,

StaticText { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal };

{kPlayingTimeTop, k1stEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k2ndEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETLeft, kDETNormal, "Hours" };

{kPlayingTimeTop, k2ndEditColumnLeft, kPlayingTimeBottom,

 k2ndEditColumnLeft + kEditTextWidth},

kDETNoFlags, prPlayingTimeMinutes,

StaticText { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal };

{kPlayingTimeTop, k2ndEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k3rdEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETLeft, kDETNormal, "Minutes" };

{kPlayingTimeTop, k3rdEditColumnLeft, kPlayingTimeBottom,

 k3rdEditColumnLeft + kEditTextWidth},

kDETNoFlags, prPlayingTimeSeconds,

StaticText { kDETApplicationFont, kDETApplicationFontSize,

 kDETLeft, kDETNormal };

{kPlayingTimeTop, k3rdEditColumnLeft + kSpaceBeforeEditDesc,

 kPlayingTimeBottom, k4thEditColumnLeft},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont,

 kDETApplicationFontSize, kDETLeft, kDETNormal, "Seconds" };

}

};

All of the routines you can provide in code resources for aspect templates are described

in “Functions You Can Provide as Part of Your Code Resource” beginning on page 5-148.

The Catalogs Extension can call the code resource for the aspect of the information page

the user is currently using, or it can target another code resource. The code resource in

Listing 5-8 handles only calls from the CE that are not targeted or for which the target is

C H A P T E R 5

AOCE Templates

5-68 Writing AOCE Templates

kDETSelf. Targeting of code resource routines is described in “Target Specifier” on

page 5-142.

At initialization, Listing 5-8 sets the call-for mask so that the CE calls this code resource

only for idle events and view-change events. Thus, the CE calls this code resource

periodically to let it process idle-time tasks. The CE also calls this code resource

whenever the user opens the information page or displays a conditional view. The

call-for mask is described in “Call-For Mask” on page 5-149.

Listing 5-8 calls routines provided by the CE—referred to in this chapter as callback
routines—to get and set the values of properties and to obtain the number of items in the

sublist. The CallBackDET macro that you can use to call these routines is described on

“Calling CE-Provided Functions” on page 5-197. All of the available callback routines are

described in “CE-Provided Functions That Your Code Resource Can Call” beginning on

page 5-196.

Listing 5-8 calculates the playing time by adding up the playing times of all the

individual tracks. To calculate this total, Listing 5-8 calls the

kDETcmdGetPropertyNumber callback routine repeatedly, targeting each call to the

attribute representing a specific track. See the description of the kDETSublistItem

target selector in “Target Specifier” on page 5-142 to gain a better understanding of this

technique.

IMPORTANT

When you design your code resource, you must follow certain rules to
avoid corrupting or crashing the Finder. See “Rules for Writing Code
Resources” on page 5-142 for details. ▲

Listing 5-8 Template code resource

/* Forward declaration of function defined later */

static OSErr DoIdle(DETCallBlockPtr callBlockPtr);

/* Dispatcher for routines in this code resource that the CE can call */

pascal OSErr MyAlbumCode(DETCallBlockPtr callBlockPtr)

{

OSErr err = kDETDidNotHandle;

if ((callBlockPtr->protoCall.reqFunction < kDETcmdTargetedCall) ||

 (callBlockPtr->protoCall.target.selector == kDETSelf))

{

switch (callBlockPtr->protoCall.reqFunction)

{

case kDETcmdInit:

callBlockPtr->init.newCallFors = kDETCallForIdle +

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-69

 kDETCallForViewChanges;

break;

case kDETcmdIdle:

case kDETcmdViewListChanged:

err = DoIdle(callBlockPtr);

break;

}

}

return err;

}

/* This routine calls the CE-provided routine kDETcmdGetPropertyNumber to

 obtain the value of a property as a number. */

static OSErr DoGetPropertyNumber(DETCallBlockPtr callBlockPtr,

DETTargetSelector selector,

long itemNumber,

short property,

long *value)

{

OSErr err;

DETCallBackBlock cbb;

cbb.getPropertyNumber.reqFunction = kDETcmdGetPropertyNumber;

cbb.getPropertyNumber.property = property;

cbb.getPropertyNumber.target.selector = selector;

cbb.getPropertyNumber.target.aspectName = nil;

cbb.getPropertyNumber.target.itemNumber = itemNumber;

err = CallBackDET(callBlockPtr, &cbb);

*value = cbb.getPropertyNumber.propertyValue;

return err;

}

/* This routine calls the CE-provided routine kDETcmdSublistCount to

 obtain the number of items in a sublist. */

C H A P T E R 5

AOCE Templates

5-70 Writing AOCE Templates

static OSErr DoGetNumSublistItems(DETCallBlockPtr callBlockPtr, long *num)

{

OSErr err;

DETCallBackBlock cbb;

cbb.sublistCount.reqFunction = kDETcmdSublistCount;

cbb.sublistCount.target.selector = kDETSelf;

err = CallBackDET(callBlockPtr, &cbb);

*num = cbb.sublistCount.count;

return err;

}

/* This routine calls the CE-provided routine kDETcmdSetPropertyNumber to

 set the value of a number property. */

static OSErr DoSetPropertyNumber(DETCallBlockPtr callBlockPtr,

short property,

long newValue)

{

OSErr err;

DETCallBackBlock cbb;

cbb.setPropertyNumber.reqFunction = kDETcmdSetPropertyNumber;

cbb.setPropertyNumber.property = property;

cbb.setPropertyNumber.target.selector = kDETSelf;

cbb.setPropertyNumber.newValue = newValue;

err = CallBackDET(callBlockPtr, &cbb);

return err;

}

/* Here is the main routine for this code resource. This routine counts the

 number of tracks and adds up the total time for the album. */

static OSErr DoIdle(DETCallBlockPtr callBlockPtr)

{

OSErr err;

long oldNumber, actualNumber;

C H A P T E R 5

AOCE Templates

Writing AOCE Templates 5-71

/* Get the current value of the property prNumTracks. */

err = DoGetPropertyNumber(callBlockPtr, kDETSelf, 0, prNumTracks,

 &oldNumber);

/* Get the number of items in the sublist. Because each sublist item

 represents one track, set the value of prNumTracks equal to the

 number of sublist items. */

if (err == noErr)

{

err = DoGetNumSublistItems(callBlockPtr, &actualNumber);

}

if ((err == noErr) && (oldNumber != actualNumber))

{

err = DoSetPropertyNumber(callBlockPtr, prNumTracks, actualNumber);

}

if (err == noErr)

{

long index;

long oldSeconds, actualSeconds = 0;

long seconds;

long minutes;

long hours;

/* Calculate the playing time by adding up the playing times of all

 the tracks, calling each track in the sublist in turn. */

for (index = 1; (err == noErr) && (index <= actualNumber); ++index)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSublistItem, index,

 prTrackSeconds, &seconds);

if (err == noErr)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSublistItem, index,

 prTrackMinutes, &minutes);

}

if (err == noErr)

{

actualSeconds += (minutes * 60 + seconds);

}

C H A P T E R 5

AOCE Templates

5-72 Writing AOCE Templates

}

/* Get the old total playing time. */

if (err == noErr)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSelf, 0,

 prPlayingTimeHours, &hours);

}

if (err == noErr)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSelf, 0,

 prPlayingTimeMinutes, &minutes);

}

if (err == noErr)

{

err = DoGetPropertyNumber(callBlockPtr, kDETSelf, 0,

 prPlayingTimeSeconds, &seconds);

}

/* Now compare the two playing times. If they're different, set

 the properties to equal the new one. */

if (err == noErr)

{

oldSeconds = 3600 * hours + 60 * minutes + seconds;

if (oldSeconds != actualSeconds)

{

hours = actualSeconds / 3600;

err = DoSetPropertyNumber(callBlockPtr, prPlayingTimeHours,

 hours);

if (err == noErr)

{

actualSeconds -= (hours * 3600);

minutes = actualSeconds / 60;

err = DoSetPropertyNumber(callBlockPtr, prPlayingTimeMinutes,

 minutes);

}

if (err == noErr)

{

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-73

actualSeconds -= (minutes * 60);

err = DoSetPropertyNumber(callBlockPtr, prPlayingTimeSeconds,

 actualSeconds);

}

}

}

}

return err;

}

AOCE Templates Reference

This section describes the file types, template types, and resource types you can use to

extend the capabilities of the Catalogs Extension. For complete lists of the resource types

required to create each type of AOCE template, see Table 5-1 on page 5-78 for aspect

templates, Table 5-10 on page 5-120 for information page templates, Table 5-11 on

page 5-138 for forwarder templates, Table 5-12 on page 5-140 for killer templates, and

Table 5-13 on page 5-141 for file type templates.

Code resources are described in detail in “Code Resources Reference” beginning on

page 5-142.

File and Resource Types Used by the Catalogs Extension

AOCE templates exist as resources in the resource forks of files in the Macintosh file

system. A single file can contain multiple templates. The Catalogs Extension looks for

files containing templates in the System Extensions folder inside the System Folder. It

looks in all files in its list of appropriate file types. Initially, it uses the following file types:

File type Description

'detf' CE template file. This file type exists solely to hold templates.

'dsam' A CSAM. If you create new templates to support a CSAM, you can make
installation easy for users by including the templates in the CSAM file.

'msam' An MSAM. If you create new templates to support an MSAM, you can
make installation easy for users by including the templates in the MSAM
file.

'csam' A combined CSAM and MSAM. If you create new templates to support a
combined CSAM and MSAM, you can make installation easy for users by
including the templates in the SAM file.

'fext' Finder extensions. The CE searches only for those Finder extension files
that have creator 'adbk', which is the CE. This file supplies the templates
that come with the CE and that are installed when the CE is installed.

C H A P T E R 5

AOCE Templates

5-74 AOCE Templates Reference

Note
The abbreviation “dsam”—found in the 'dsam' file type and in
function names and data structures in the AOCE interface files—stands
for “directory service access module,” the name used for catalog service
access modules in early versions of the AOCE software. The 'csam' file
type is so named because it implements “combined service access
modules.” Therefore a file of type 'dsam' implements a CSAM and a
file of type 'csam' implements both a CSAM and an MSAM.

See the chapter “Service Access Module Setup” in Inside Macintosh:
AOCE Service Access Modules for descriptions of the templates you must
write to support CSAMs and MSAMs. ◆

File type templates can specify additional file types for the CE to search for template

resources. You can use this feature to include AOCE templates with extension files of

other types.

Within the file, templates consist of sets of associated resources. Each template in the file

includes a signature resource, which specifies the type of the template and the base ID of

the associated resources. All signature resources include a version number to tell the CE

the format of the template. Because these version numbers are automatically included as

a part of the Rez template resource definition, you do not need to include them explicitly

in your Rez file. Some signature resources also contain additional template-related

information.

AOCE templates use the following resource types for template signature resources:

AOCE templates also use the following types of resources:

Resource type Kind of template

'deta' Aspect template

'deti' Information page template

'detf' Forwarder template

'detk' Killer template

'detx' File type template

Resource type Description

'detb' Binary data

'detc' Code resource

'detm' Menu entries

'detn' Number (long)

'detp' Reverse-sort properties list

'dett' Lookup table

'detv' View list

'detw' Custom information page window

'rstr' String (RString)

'rst#' RString array

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-75

In addition, icons are composed of a suite of resource types as described in the chapter

“Finder Interface” in Inside Macintosh, Macintosh Toolbox Essentials.

IMPORTANT

It is very important not to overlap resource IDs from two different
templates within the same file. One way to help ensure that they don’t is
to separate template base IDs by 250. ▲

Template Names

Every template includes a name resource, described in this section.

Each template must have a name so that it can be referred to by other templates. To

avoid ambiguity in such cross-references, you should make your template names

unique. To ensure uniqueness, you should start the template name with a four-character

application signature registered with Macintosh Developer Technical Support.

kDETTemplateName

The template name resource has a resource ID with an offset of kDETTemplateName

from the template’s base (signature) resource ID.

resource 'rstr' (rMyBaseID + kDETTemplateName, purgeable) {

"WAVE This is the name of my template"

};

The 'rstr' resource is defined as follows:

type 'rstr' {

rstring; /* an RString */

};

To ensure the uniqueness of the template name, start it with a four-character application

signature registered with Macintosh Developer Technical Support.

Specifying Record and Attribute Types for Templates

Each aspect and information page template applies only to specific types of records or

attributes. To specify the types of records and attributes with which it is used, each

template must include one or both of the record-type and attribute-type resources.

If your template applies to records, include a kDETRecordType resource but no

kDETAttributeType resource. If your template applies to attributes in records of any

type, include a kDETAttributeType resource but no kDETRecordType resource. Such

C H A P T E R 5

AOCE Templates

5-76 AOCE Templates Reference

a template also supports stand-alone attributes. If your template applies to attributes in a

specific type of record, include both a kDETAttributeType resource and a

kDETRecordType resource. The following table summarizes these rules:

Note

Specifying both a kDETAttributeType resource and a
kDETRecordType resource does not prevent a user from dragging an
attribute from a sublist and dropping it on the desktop or on another
object. To control which attribute types can be dragged from a sublist,
use a kDETAspectDragOut resource (page 5-102). ◆

Note

A stand-alone attribute has a record type formed by concatenating the
value of the constant kAttributeValueRecTypeBody (aoce Attribute
Value), the attribute tag value, and the attribute type of the original
attribute (without the attribute type’s length or character set). The
RString structure that holds the record type has a character set that is
the same as the character set of the original attribute type. ◆

kDETRecordType

The record-type resource specifies the record type to which an aspect or information

page template applies. The record-type resource has a resource ID with an offset of

kDETRecordType from the template’s base resource ID.

resource 'rstr' (rMyBaseResourceID + kDETRecordType, purgeable) {

"WAVE record type"

};

To ensure the uniqueness of the record type, start it with a four-character application

signature registered with Macintosh Developer Technical Support.

kDETRecordType kDETAttributeType Template applies to

Not present Not present Nothing (invalid)

"my rectype" Not present Records of type "my rectype"

Not present "my attrtype" Attributes of type "my attrtype" in
records of any type or as stand-alone
attributes

"my rectype" "my attrtype" Attributes of type "my attrtype"
only in records of type "my rectype"

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-77

kDETAttributeType

The attribute-type resource specifies the attribute type to which an aspect or information

page template applies. The attribute-type resource has a resource ID with an offset of

kDETAttributeType from the template’s base resource ID.

resource 'rstr' (rMyBaseResourceID + kDETAttributeType,

purgeable) {

"WAVE attribute type"

};

To ensure the uniqueness of the attribute type, start it with a 4-character application

signature registered with Macintosh Developer Technical Support.

kDETAttributeValueTag

The attribute-tag resource specifies the attribute value tag of the attributes to which an

aspect or information page template applies. The attribute-tag resource has a resource ID

with an offset of kDETAttributeValueTag from the template’s base resource ID.

resource 'detn' (rMyTemplate + kDETAttributeValueTag, purgeable) {

'bnry'

};

The 'detn' resource type is defined as follows:

type 'detn' {

longInt;

};

You can specify this resource only if the template also contains an attribute-type

resource. If this resource is present, then the template applies only to attributes that have

the specified tag. Because you can define your own attribute value tags, you can use this

resource in any way you wish. If this resource is not present, then the template applies to

attributes with any tag value.

The attribute-tag resource is useful to improve the efficiency of the display of addresses

in a user address information page. Address attributes in user records should have

attribute tags set to the value of the address subtype (for example, 'alan' for

LAN-based mail, 'aphn' for Direct Dialup mail). Address templates should include the

attribute-tag resource to specify the tag they work with. This resource allows the

Catalogs Extension to determine very quickly the proper template to use with a given

address.

C H A P T E R 5

AOCE Templates

5-78 AOCE Templates Reference

Components of Aspect Templates

The primary purpose of an aspect template is to supply information about a record or

attribute in an AOCE catalog. Most of this information is in the form of properties used

by either an information page field or a sublist in an information page or dNode. Each

information page template includes the name of an aspect used to supply properties for

its fields and to generate its sublist (if any). In addition, an aspect template may provide

information about how to create new items (records or attributes) of the type described

by the template, the icon to use in a sublist, and the string to put in the “Kind” column of

a sublist.

An aspect template can contain the resources listed in Table 5-1.

Table 5-1 Resources in aspect templates

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

'deta' 0 Identifies template as aspect and provides
a base resource ID. Required for all aspect
templates.

'rstr' kDETTemplateName Name of template. Required for all aspect
templates.

'rstr' kDETRecordType Type of record to which the template
applies. Either this resource, the
kDETAttributeType resource, or both
must be included.

'rstr' kDETAttributeType Type of attribute to which the template
applies. Either this resource, the
kDETRecordType resource, or both must
be included.

'detn' kDETAttributeValueTag Attribute tag of attributes to which the
template applies. You can provide this
resource if you have also provided the
kDETAttributeType resource. If you
don’t provide this resource, the template
applies to attributes with any tag value.

icon
suite

kDETAspectMainBitmap Suite of icons. Neither the code resource
nor the user can change these values. A set
of icon resources at this offset is required
for main aspect templates. (You may also
include in any aspect template one or more
icon suites with other resource IDs to
provide icons for display in the
information page.)

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-79

'rstr' kDETAspectKind The kind of record or attribute as shown in
a sublist. Neither the code resource nor the
user can change this value. You must
include this resource in main aspect
templates; it is not needed in other
aspect templates.

'rst#' kDETAspectCategory The names of categories to which the
record or attribute belongs. These names
are used internally by the CE. They are
also displayed to the user if no template
includes a corresponding
kDETAspectExternalCategory
resource. You must include this resource in
main aspect templates for records and
stand-alone attributes; it is not needed in
other aspect templates.

'rst#' kDETAspectExternalCategory The names of categories to which the
record or attribute belongs. These names
are displayed to the user; they must
correspond 1:1 to those in the
kDETAspectCategory resource. If no
template includes this resource, the CE
displays the names in the
kDETAspectCategory resource to the
user. You can include this resource in main
aspect templates; it is not needed in other
aspect templates.

'detn' kDETAspectGender The gender of the kind to display in a
sublist for objects of this type. For use with
languages that require this information.
You can include this resource in main
aspect templates when necessary; it is not
needed in other aspect templates.

'rstr' kDETAspectWhatIs Help-balloon string for objects of the type
described by this aspect when they appear
in a sublist. You must include this resource
in main aspect templates; it is not needed
in other aspect templates.

'rstr' kDETAspectAliasKind The kind of record or attribute to display
in a sublist for aliases to the type of object
described by this aspect. You must include
this resource in main aspect templates; it is
not needed in other aspect templates.

continued

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

C H A P T E R 5

AOCE Templates

5-80 AOCE Templates Reference

'detn' kDETAspectAliasGender The gender of the kind to display in a
sublist for an alias to an object of this type.
For use with languages that require this
information. You can include this resource
in main aspect templates when necessary;
it is not needed in other aspect templates.

'rstr' kDETAspectAliasWhatIs Help-balloon string for aliases to objects of
the type described by this aspect when the
aliases appear in a sublist. You must
include this resource in main aspect
templates; it is not needed in other aspect
templates.

'rstr' kDETAspectNewMenuName Text for the New item in the Catalogs
menu for records, or for the Add button
for the new-attribute-item dialog box.
Include this resource only in a main aspect
and only if the user is allowed to add a
new record or attribute of this type. If you
do not include this resource, the user
cannot use the Catalogs menu or Add
button to add a new object of this type.

'rstr' kDETAspectNewEntryName Name given to newly created records of
the type described by this aspect. Include
this resource only in a main aspect for a
record and only if the user is allowed to
add a new record of this type. If you do
not include this resource, the user cannot
use the Catalogs menu to add a new
record of this type.

'rstr' kDETAspectName Name displayed in the sublist for newly
created attributes of the type described by
this aspect. Include only in a main aspect
for an attribute, only if the user is allowed
to add a new attribute of this type, and
only if the kDETAspectNewValue
resource does not provide a name for the
new attribute.

'detb' kDETAspectNewValue The concatenation of the 4-byte attribute
tag and the attribute value used as an
initial value for newly created attributes of
the type described by this aspect. Include
this resource only in a main aspect for an
attribute and only if the user is allowed to
add a new attribute of this type. If you do
not include this resource, the user cannot
use the Add button to add a new attribute
of this type.

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-81

'detn' kDETAspectSublistOpenOnNew If you include this resource set to a
nonzero number, the CE automatically
opens newly created attributes or records
of this type. This resource sets the value of
the property that has property number
kDETAspectSublistOpenOnNew. Your
code resource can specify a different
resource, overriding the resource in the
aspect template (see “Dynamic Creation of
Resources” beginning on page 5-154).
You can also use the
kDETcmdSetPropertyNumber callback
routine (page 5-227) to change this
property value at any time. You can
include this resource only in main aspect
templates. This resource is optional.

'detw' kDETAspectInfoPageCustomWindow The width, height, and placement of the
set of custom information pages that
appears if the user opens the catalog object
to which this aspect applies. This resource
also specifies whether a page-selection
pop-up menu should be included in the
window. You can include this resource
only in main aspect templates. Include
only if you do not want to use the default
information page window.

'detv' kDETAspectInfoPageCustomWindow A view list that describes items to be
displayed on every information page that
appears if the user opens the catalog object
to which this aspect applies. You can
include this resource only in main aspect
templates. Optional.

'rst#' kDETAspectRecordDragIn Types of records the user is allowed to
drag and drop on the catalog object to
which this aspect applies, paired with the
attribute types used to store aliases to
these records. When the user drops such a
record, the CE creates an alias to the record
and stores it in an attribute of the type you
specify (unless your code resource takes
some other action). Do not include
this resource if you do not want to allow
the user to drop records on this catalog
object.

continued

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

C H A P T E R 5

AOCE Templates

5-82 AOCE Templates Reference

'rst#' kDETAspectRecordCatDragIn Categories of records that can be dropped
on the catalog object to which this aspect
applies, paired with attribute types used to
store aliases to these records. When the
user drops such a record, the CE creates an
alias to the record and stores it in an
attribute of the type you specify (unless
your code resource takes some other
action). Do not include this resource if you
do not want to allow the user to drop
records on this catalog object.

'rst#' kDETAspectAttrDragIn Record and attribute types of attributes the
user is allowed to drag and drop on the
catalog object to which this aspect applies.
When the user drops such an attribute, the
CE creates a copy of the attribute (unless
your code resource takes some other
action). Together with the record type and
attribute type of each attribute the user can
drop, the resource lists the attribute type
the CE should assign to the new copy of
the attribute. Do not include this resource
if you do not want to allow the user to
drop attributes on this catalog object.

'rstr' kDETAspectDragInString Prompt string that the CE displays when
the user drags and drops an object on the
catalog object to which this aspect applies.
You do not have to include this resource if
your aspect template does not support
drops.

'rstr' kDETAspectDragInVerb Label for the OK button in the dialog box
that the CE might display when the user
drags and drops an object on the catalog
object to which this aspect applies. You do
not have to include this resource if your
aspect template does not support drops.

'rstr' kDETAspectDragInSummary Short phrase that describes the action of
dropping an object on the catalog object to
which this aspect applies. The CE can use
this phrase in a selection list if more than
one aspect can receive the drop.

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-83

'rst#' kDETAspectDragOut Types of attributes that the user is allowed
to drag out of the aspect’s sublist. If you
do not provide this resource, the user can
drag any attribute types from the sublist.
To prevent the user from dragging any
attributes from the sublist, include this
resource but do not specify any attribute
types.

'detn',
'rstr',
'detb'

Any property number in the range 0–249 If the aspect template has not used a
lookup table or code resource to construct
a property with this property number, the
CE looks for a resource with an offset
equal to this property number and uses
the value in that resource as the value of
the property. Your code resource can
change the value of these resources before
the CE loads them (see “Dynamic Creation
of Resources” beginning on page 5-154).
You can also use callback routines to
change property values and types from a
code resource at any time (see “Setting
Value, Type, and Other Features of
Properties” beginning on page 5-223).

'detm' kDETAspectViewMenu A list of property name and property
number pairs that specifies the properties
by which the user can sort items in a
sublist. The property names you list in this
resource appear in the View menu, and the
property numbers tell the CE what to sort
by. If the property number is positive, the
sort is alphanumeric; if you specify the
negative of the property number, the sort
is numeric. You should provide this
resource for any aspect template that
includes a sublist.

'detp' kDETAspectReverseSort A list of properties that you want sorted in
reverse order; that is, descending
alphanumeric or ascending numeric order.
You can list any property that you have
already listed in a kDETAspectViewMenu
resource.

continued

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

C H A P T E R 5

AOCE Templates

5-84 AOCE Templates Reference

Properties

Properties are individual, self-contained pieces of information, such as a number or a

string. Properties come from several sources: attribute values, resources in the template,

constants, and data provided by the Catalogs Extension. Each property is identified by a

property number. The property number uniquely identifies that property within an

aspect. Note, however, that other aspects can have entirely unrelated properties with the

same number; thus, it is important that each aspect have a unique name.

Each property also has a type. Table 5-2 lists the property types currently defined by

Apple Computer, Inc.

'rst#' kDETAspectBalloons Help-balloon strings for views in an
information page. You should provide
strings for any properties you define,
starting with property number
kDETFirstDevProperty. For each such
property, you include a string to be used if
the property is editable and one that
appears if the property is not editable. The
strings appear in help balloons when
Balloon Help is on and the user places the
cursor on a view that has a help-balloon
property number corresponding to an
entry in this resource. If your aspect
contains any such properties, you should
include this resource.

'dett' kDETAspectLookup A lookup table that parses attributes into
properties. Lookup tables are described in
“The Lookup-Table Resource” beginning
on page 5-105. You can include a lookup
table in any aspect template.

'detc' kDETAspectCode A code resource. Code resources for aspect
templates are described in “Code
Resources Reference” beginning on
page 5-142. You can include a code
resource in any aspect template.

Table 5-1 Resources in aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-85

The CE converts between these types as necessary for purposes of storage or display. For

example, a number stored in a 32-bit field in an attribute would be kept in a

number-type property when read in to the aspect. However, the number would have to

be displayed to the user as a character string. The CE does this conversion automatically.

You can define your own property types as needed. Apple Computer, Inc., reserves all

property-type values less than or equal to 0. Therefore, if you define your own property

type, give it a positive property-type value. Whenever the CE needs to convert to or

from one of your private property types, it calls your code resource. The CE performs

such conversions only between string and numeric types.

For example, you might want to store the date and time as a 32-bit long integer. Your

code resource could convert between that format and a string. The date and time could

then be stored in 32-bit format within the attribute value but displayed to the user using

normal edit-text views in an information page.

Some properties are supplied as resources in the aspect template file, some properties are

constructed from the contents of attribute values, and some are derived from the catalog

system in other ways.

Properties are divided into three main categories:

■ Local properties: Properties with property numbers from 0 through 249 are taken
from the current (local) aspect. First, the CE checks properties constructed by parsing
attribute values. (“The Lookup-Table Resource” beginning on page 5-105 describes
how to use lookup tables to convert attribute values to properties.) If the CE finds a
constructed property with the appropriate number, it uses that property. If not, then
the CE looks for a template resource of type 'detn' (number), 'rstr' (type
RString), or 'detb' (binary) with a resource ID equal to the template base ID plus
the property number. You should use property numbers starting with the value
kDETFirstDevProperty. For example, property rMyProperty of type RString
might be defined as follows:

#define rMyProperty kDETFirstDevProperty + 10

resource 'rstr' (rMyAspectResourceID + rMyProperty, purgeable)

{

"My fixed property value."

};

Table 5-2 Property types

Property type Use

kDETPrTypeNumber A number, stored internally as a 32-bit unsigned long word

kDETPrTypeString A string, stored as an RString structure

kDETPrTypeBinary A binary block, stored as an uninterpreted sequence of bytes
of any size

C H A P T E R 5

AOCE Templates

5-86 AOCE Templates Reference

■ Constants: information page templates can use property numbers in the range
250–499 as a shortcut to defining numeric constants in the range 0–249. To specify the
constant n (0 ≤ n ≤ 249), use property number n + 250.

■ Metaproperties: These properties are generated by the CE itself or are retrieved from
an AOCE catalog, but they are not attribute values. Examples of these are the name or
type of a record, or the value of a record or attribute access mask. Table 5-3 lists the
kinds of metaproperties that are available. (Note that a “metaproperty name” is a
symbolic name for a reserved property number.)

Several of the metaproperty descriptions in Table 5-3 mention property commands. A

property command is any command handled by your code resource’s

kDETcmdPropertyCommand routine (page 5-159). The CE calls your code resource with

the kDETcmdPropertyCommand routine selector whenever the user clicks a button or

checkbox in your information page, when the user selects an item in a pop-up menu in

your information page, and in a few other circumstances, as described in Table 5-14

starting on page 5-161. Each property command includes a property number, usually the

number of the property that corresponds to the information page control that originated

the command.

Table 5-3 Metaproperties

Metaproperty name Use

kDETPrName The name of an attribute, record, or alias. If you specify this
property in a view list, for example, the CE displays the name
of the record, the name of the alias (which it gets from the
record pointed to by the alias), or the name of the attribute
(which it gets from the kDETAspectName property). You
cannot store a name in this metaproperty. To store the name of
an attribute, use the kDETAspectName property in a lookup
table or resource.

kDETPrKind The kind of a record or alias.

kDETPastFirstLookup The value of this property is 0 until the CE has completed its
first catalog lookup, after which it’s 1.

kDETInfoPageNumber The number of the information page currently being
displayed. This number is 0 if no information page is open.
You can have the CE display a different information page by
issuing a property command (such as a command sent by a
pop-up menu) with this property number and with the new
page number in the parameter field. You must use this
metaproperty to implement your own page-selection pop-up
menu in place of the default pop-up menu.

kDETAspectTemplateNumber The template number of the targeted aspect’s template. This
value can be used with the kDETAspectTemplate target
selector (see “Target Specifier” on page 5-142).

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-87

kDETInfoPageTemplateNumber The template number of the template for the currently open
information page (if any). This value can be used with the
kDETInfoPageTemplate target selector (see “Target
Specifier” on page 5-142).

kDETOpenSelectedItems A property number for use with the property command
associated with an Open button in an information page with a
sublist. When you issue a property command with this
property number, the CE opens the sublist items the user has
selected.

kDETAddNewItem A property number for use with the property command
associated with an Add button in an information page with a
sublist. When you issue a property command with this
property number, the CE displays a dialog box that lets the
user add an attribute to the sublist.

kDETRemoveSelectedItems A property number for use with the property command
associated with a Remove button in an information page with
a sublist. When you issue a property command with this
property number, the CE removes the sublist items the user
has selected.

kDETAspectSublistOpenOnNew If you set this property to a nonzero number, the CE
automatically opens newly created sublist entries. You can
also set a default value for this property by including a
'detn' resource at this offset in the aspect template.

kDETDNodeAccessMask The dNode access mask.

kDETRecordAccessMask The record access mask.

kDETAttributeAccessMask The attribute access mask.

kDETPrimaryMaskByBit The full set of 16 bits of the primary access mask (the access
mask for the object you are in); the following properties
provide values for several of the individual bits.

kDETPrimarySeeMask The “see” access mask bit (1 for “can see”)

kDETPrimaryAddMask The “add” access mask bit (1 for “can add”)

kDETPrimaryDeleteMask The “delete” access mask bit (1 for “can delete”)

kDETPrimaryChangeMask The “change” access mask bit (1 for “can change”)

kDETPrimaryRenameMask The “rename” access mask bit (1 for “can rename”)

kDETPrimaryChangePrivsMask The “change privileges” access mask bit (1 for “can change
privileges”)

NOTE Access masks are described in the chapter “Catalog Manager” in this book.

Table 5-3 Metaproperties (continued)

Metaproperty name Use

C H A P T E R 5

AOCE Templates

5-88 AOCE Templates Reference

Aspect Template Signature Resource

As with all templates, an aspect template has a signature resource that identifies the type

of template and that provides a base resource ID relative to which all other resource IDs

are numbered.

'deta' Resource

The signature resource for an aspect template is of type 'deta'.

type 'deta' {

longInt = kDETAspectVersion; /* template format version */

longInt; /* drop-operation order */

boolean dropCheckConflicts, dropCheckAlways; /* confirm drops? */

boolean notMainAspect, isMainAspect; /* main aspect? */

align word; /* reserved */

};

The Catalogs Extension uses the drop-operation order in case a catalog object is

associated with more than one aspect that can handle drop operations. The operation

specified by the aspect with the lowest drop-operation order is offered to the user. If two

templates have the same drop-operation order number, the CE picks one arbitrarily. If

your template does not support drop operations, the CE ignores this field.

If you specify dropCheckAlways as the drop-check Boolean value, the CE always

displays a dialog box asking the user to confirm a drop operation before performing it. If

you specify dropCheckConflicts as this Boolean value, the CE displays the dialog

box only if there is more than one aspect that supports drops for this catalog object. You

must provide a prompt string and button label for the dialog box in additional resources

in the aspect template. If your template does not support drop operations, the CE

ignores this field.

See “Drags and Drops” on page 5-28 for more information about drag-and-drop

operations. See “Supporting Drags and Drops” beginning on page 5-98 for descriptions

of all the resources you must provide to support these operations.

You use the second Boolean field of the aspect signature resource to specify whether this

template is for a main aspect. The next section describes additional resources you must

provide if this is a main aspect template.

Main Aspect Template Resources

Main aspects provide the information the Catalogs Extension needs to display the record

or attribute value in a sublist—such as a record in a dNode window or an attribute value

in a record window. Figure 5-21 on page 5-44 shows an information page with a sublist.

Main aspect templates provide the information the CE needs to create a main aspect. You

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-89

can also use a main aspect template to specify the size, location, and standard contents of

custom information pages that the CE displays when the user opens an object to which

the main aspect template applies.

Table 5-4 lists the resources used specifically by main aspect templates. In addition to the

resources in Table 5-4, main aspect templates can include any of the resources shown in

Table 5-1 on page 5-78. The resources required by main aspect templates are described in

this section. The resources required for all aspect templates are described in the

preceding sections. All aspect-template resource descriptions are summarized in Table

5-1 on page 5-78.

Note that main aspects can support information pages in addition to supporting a

sublist. For example, a single main aspect can provide the information needed to list a

specific attribute value in a sublist, plus all the properties needed by the information

page displayed when the user double-clicks that line on the sublist.

Table 5-4 Resources used by main aspect templates

Resource
type

Offset of resource ID from signature
resource ID Comments

'deta' 0 Required for all aspect templates.

'rstr' kDETTemplateName Required for all aspect templates.

'rstr' kDETRecordType Either this resource, the
kDETAttributeType resource, or both
must be included.

'rstr' kDETAttributeType Either this resource, the kDETRecordType
resource, or both must be included.

icon
suite

kDETAspectMainBitmap Required for all main aspect templates.

'rstr' kDETAspectKind Required for all main aspect templates.

'rst#' kDETAspectCategory Required for records and stand-alone
attributes.

'rst#' kDETAspectExternalCategory Optional.

'detn' kDETAspectGender Optional.

'rstr' kDETAspectWhatIs Required for all main aspect templates.

'rstr' kDETAspectAliasKind Required for all main aspect templates.

'detn' kDETAspectAliasGender Optional.

'rstr' kDETAspectAliasWhatIs Required for all main aspect templates.

'rstr' kDETAspectNewMenuName Include if the user is allowed to add a new
record or attribute of this type.

continued

C H A P T E R 5

AOCE Templates

5-90 AOCE Templates Reference

kDETAspectMainBitmap

A main aspect template must include an icon suite with a resource ID that has an offset

of kDETAspectMainBitmap from the template’s base resource ID. Suppose, for

example, that you prepared an icon suite in a ResEdit file named AlbumIcons, that all

of your icon resources had resource IDs of 0, and that your resource base ID was

kMainAspect. In that case, you could use the following code to include the icon suite in

your main aspect template:

include "AlbumIcons" 'ICN#'(0) as

'ICN#'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl4'(0) as

'icl4'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl8'(0) as

'icl8'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics#'(0) as

'ics#'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics4'(0) as

'ics4'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics8'(0) as

'ics8'(kMainAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'SICN'(0) as

'SICN'(kMainAspect + kDETAspectMainBitmap, purgeable);

'rstr' kDETAspectNewEntryName Include in a template for a record if the
user is allowed to add a new record of this
type.

'rstr' kDETAspectName Include in a template for an attribute if the
user is allowed to add a new attribute of
this type, and if the
kDETAspectNewValue resource does not
provide a name for the new attribute.

'detb' kDETAspectNewValue Include in a template for an attribute if the
user is allowed to add a new attribute of
this type.

'detn' kDETAspectSublistOpenOnNew Optional.

'detw' kDETAspectInfoPageCustomWindow Include only if you do not want to use the
default information page window.

'detv' kDETAspectInfoPageCustomWindow Optional.

Table 5-4 Resources used by main aspect templates (continued)

Resource
type

Offset of resource ID from signature
resource ID Comments

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-91

The icon suite must be included in the main aspect template or specified by your

kDETcmdDynamicResource code resource routine (page 5-156). Once the icon suite has

been specified, it cannot be changed from a code resource or by the user.

kDETAspectKind

Specify the kind of the record or attribute as it is to be displayed in a sublist with an

RString resource with an offset of kDETAspectKind from the template’s base resource

ID.

resource 'rstr' (kMainAspect + kDETAspectKind, purgeable)

{

"My Kind"

};

This resource must be included in the main aspect template or specified by your

kDETcmdDynamicResource code resource routine (page 5-156). Once the record or

attribute kind has been specified, it cannot be changed from a code resource or by the

user.

kDETAspectCategory

Specify the categories to which the record or attribute belongs with an RString-array

resource with an offset of kDETAspectCategory from the template’s base resource ID.

resource 'rst#' (kMainAspect + kDETAspectCategory, purgeable)

{

{ "Category 1", "Category 2" }

};

The 'rst#' resource type is defined as follows:

type 'rst#' {

integer = (endOfData - startOfData) / 8;

startOfData:

integer = $$CountOf(RStrArray); /* Array size */

array RStrArray {

rstring;

align word;

};

endOfData:

};

C H A P T E R 5

AOCE Templates

5-92 AOCE Templates Reference

Every record must be assigned to one or more categories. The Catalogs Extension uses

record categories to group records in catalog windows. You also specify record

categories if you include a kDETAspectRecordCatDragIn resource in your template

(see page 5-99). If no template includes a kDETAspectExternalCategory resource,

the CE uses the category name you provide in the kDETAspectCategory resource for

display in the View menu.

You must include a kDETAspectCategory resource in an attribute’s main aspect

template if the template supports a stand-alone attribute—that is, if you do not include a

kDETRecordType resource in the main aspect template.

Note that an item in a sublist can be of only one kind, but it can be in as many categories

as is appropriate. Thus, the kind resource is a single string of type RString, but the

category resource is an array of RString strings.

kDETAspectExternalCategory

Specify category names to be displayed to the user with an RString-array resource with

an offset of kDETAspectExternalCategory from the template’s base resource ID.

resource 'rst#' (kMainAspect + kDETAspectExternalCategory, purgeable)

{

{ "Category 1", "Category 2" }

};

This resource must contain one category name for each name in the

kDETAspectCategory resource, in the same sequence. If you do not include this

resource in the main aspect template, the Catalogs Extension uses the external category

names provided for these categories in any other template available. If no template

provides this resource, the CE uses the names in the kDETAspectCategory resource.

(If more than one template provides a kDETAspectExternalCategory resource, the

CE picks one of them and ignores the others.)

You should use category names in your local language for the kDETAspectCategory

resource when you are creating the template. Then, when someone localizes the template

to another language, the person doing the localizing can add a

kDETAspectExternalCategory template to change the names displayed to the user.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-93

kDETAspectGender

You can specify the gender of the record kind of the record to which this main aspect

applies with a resource of type 'detn' with an offset of kDETAspectGender from the

template’s base resource ID.

resource 'detn' (kMainAspect + kDETAspectGender, purgeable) {

1

};

You can use this resource to match the article of the record kind to the gender of the

record kind when you are displaying the kind to the user. The significance of the value in

this resource depends on the language with which it is being used; you can place any

value you wish in this resource, and you are responsible for interpreting it. It is

recommended that you follow the guidelines in Guide to Macintosh Software Localization.

kDETAspectWhatIs

Each main aspect template must provide a help-balloon string. The Finder displays this

string when the user enables Balloon Help online assistance and moves the cursor over

an object (a record or attribute) of the type to which this main aspect applies. The

help-balloon string is in an RString resource with an offset kDETAspectWhatIs from

the template’s base resource ID.

resource 'rstr' (kMainAspect + kDETAspectWhatIs, purgeable) {

"Flue handle record\n\nA record containing information about a flue

handle."

};

kDETAspectAliasKind

To specify the kind of an alias to a record or attribute as it is to be displayed in a sublist,

use an RString resource with an offset of kDETAspectAliasKind from the template’s

base resource ID.

resource 'rstr' (kMainAspect + kDETAspectAliasKind, purgeable)

{

"My kind alias"

};

C H A P T E R 5

AOCE Templates

5-94 AOCE Templates Reference

kDETAspectAliasGender

To specify the gender of the kind of the alias to a record, use a resource of type 'detn'

with an offset of kDETAspectAliasGender from the template’s base resource ID.

resource 'detn' (kMainAspect + kDETAspectAliasGender, purgeable) {

1

};

The significance of the value in this resource depends on the language with which it is

being used; you can place any value you wish in this resource, and you are responsible

for interpreting it.

kDETAspectAliasWhatIs

Each main aspect template must provide a help-balloon string for aliases. The Finder

displays this string when the user enables Balloon Help online assistance and moves the

cursor over an alias to an object (a record or attribute) of the type to which this main

aspect applies. The help-balloon string is in an RString resource with an offset

kDETAspectAliasWhatIs from the template’s base resource ID.

resource 'rstr' (kMainAspect + kDETAspectAliasWhatIs, purgeable) {

"Alias to a flue handle record\n\nAn alias to a record containing

information about a flue handle."

};

kDETAspectNewMenuName

A main aspect template for a record type specifies how new records of that type are to be

added to the containing dNode. Similarly, a main aspect template for an attribute type

specifies how new attributes of that type are to be added to the containing record. To

allow the user to add a new record or attribute, you must supply an RString resource

containing the text of the New item for the Catalogs menu or the Add item for the

new-attribute dialog box. The menu name resource must have an ID with the offset

kDETAspectNewMenuName from the template’s base resource ID.

resource 'rstr' (rMyAspectResourceID + kDETAspectNewMenuName, purgeable)

{

"The text for the New menu item goes here"

};

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-95

IMPORTANT

To allow the user to add a new attribute, you must provide a New
button in your information page, and the property command associated
with that button must use the property number kDETAddNewItem. See
Table 5-3 on page 5-86 for a description of this and other special
property numbers. ▲

kDETAspectNewEntryName

A main aspect template for a record type must also specify the name the Catalogs

Extension should give to newly created records of that type. To provide this name, use

an RString resource with an offset of kDETAspectNewEntryName from the template’s

base resource ID.

resource 'rstr' (rMyAspectResourceID + kDETAspectNewEntryName, purgeable)

{

"Name of new record goes here"

};

kDETAspectName

A main aspect template for an attribute type can specify a default name for newly

created attribute values of that type. To provide this name, use an RString resource

with an offset of kDETAspectName from the template’s base resource ID.

resource 'rstr' (rMyAspectResourceID + kDETAspectName, purgeable)

{

"Name of new attribute goes here"

};

For main aspect templates for records, the Catalogs Extension automatically sets the

kDETAspectName property to be the name of the record. This property provides the

name the CE displays in the “Name” column in dNode windows.

If you wish to specify a name for an attribute value, you can provide a value for the

kDETAspectName property in the main aspect template for the attribute. You can

display attribute value names in sublists (use the metaproperty kDETPrName for this

purpose); the CE uses attribute value names for stand-alone attributes.

You can store the name of an attribute in the kDETAspectName property at any time.

You can use the lookup table, a code resource, a kDETAspectName resource, or any

combination of these methods to provide a value for the kDETAspectName property.

You should limit sublist items to one line. Multiline sublist items are not guaranteed to

work correctly.

C H A P T E R 5

AOCE Templates

5-96 AOCE Templates Reference

Note
For records to be displayed in the Key Chain, your setup main aspect
template must provide a kDETAspectName resource to explicitly set
this property. See the chapter “Service Access Module Setup” in Inside
Macintosh: Service Access Modules for complete information about setup
templates. ◆

kDETAspectNewValue

If the new item is an attribute value, the main aspect template must contain a binary

block resource (type 'detb') containing the concatenation of the attribute tag and the

new value. Give this resource an ID with an offset of kDETAspectNewValue from the

template’s base resource ID.

data 'detb' (kTrackAspect + kDETAspectNewValue, purgeable) {

$"626E 7279" // tag (bnry)

$"0000 0001" // prTrackNumber (1)

$"0000 0000" // prTrackMinutes (1)

$"0000 0000" // prTrackSeconds (1)

$"0000 0007 3C74 6974 6C65 3E" // kDETAspectName (<title>)

$"0000 000A 3C63 6F6D 706F 7365 723E" // composer (<composer>)

$"0000 000A 3C63 6F6D 6D65 6E74 733E" // comments (<comments>)

The Catalogs Extension needs the attribute tag, the attribute value, and the attribute type

to add an attribute to a record in an AOCE catalog. When the user clicks the Add button

in your information page to create a new attribute value, the CE gets the attribute type

from the aspect template’s attribute-type resource (see “Specifying Record and Attribute

Types for Templates” on page 5-75) and the tag and initial attribute value from the

kDETAspectNewValue resource. Once the CE has added the attribute to the catalog

record, the CE uses the main aspect for attributes of that type to display that attribute in

a sublist.

kDETAspectSublistOpenOnNew

A main aspect template can specify whether the Catalogs Extension should

automatically open an information page for a newly created attribute or record in a

sublist. If you set the value of property kDETAspectSublistOpenOnNew to a nonzero

number, the CE automatically opens newly created attributes or records of the type

associated with the main aspect. You can provide a 'detn' resource with an offset of

kDETAspectSublistOpenOnNew to provide a default value for this property.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-97

resource 'detn' (kMainAspect + kDETAspectSublistOpenOnNew, purgeable) {

1

};

Your code resource can change the value of this resource before the CE loads it (see

“Dynamic Creation of Resources” beginning on page 5-154). You can also use the

kDETcmdSetPropertyNumber callback routine (page 5-227) to change this property

value from a code resource at any time. This resource is optional.

kDETAspectInfoPageCustomWindow

If you want to specify a nonstandard size or location for the information page window

that appears when the user opens the catalog object to which this main aspect applies,

you can provide a 'detw' resource with an offset of

kDETAspectInfoPageCustomWindow from the template’s base resource ID. This

resource also specifies whether a page-selection pop-up menu should be included in the

window.

resource 'detw' (kMainAspect + kDETAspectInfoPageCustomWindow, purgeable) {

{kCustomPageTop, kCustomPageLeft, kCustomPageBottom, kCustomPageRight},

discludePopup

};

The 'detw' resource type is defined as follows:

type 'detw' {

rect; /* info-page window in */

/* global coordinates */

boolean discludePopup, includePopup;/* include a page-selection pop-up? */

align word; /* Future expansion */

};

Note that you can specify no pop-up menu only if there is only one information page for

the object or if you are also providing a 'detv' resource in this main aspect template

that provides a pop-up menu of information page names.

If there is more than one information page for the object and you include this resource in

the main aspect template, then all of the information pages have the size you specify in

this resource.

IMPORTANT

If the information page window you specify is too large to be displayed
on the user’s screen, the Finder makes the window smaller, truncating
the bottom and right side of the information page. To be sure an
information page can fit on a Macintosh computer screen of any size,
make it no larger than 322 pixels high by 512 pixels wide. ▲

C H A P T E R 5

AOCE Templates

5-98 AOCE Templates Reference

There are two special values you can use for the top left corner of a custom information

page window:

■ specify (0, 0) to place the upper-left corner of the window slightly below and to the
right of the upper-left corner of the parent window

■ specify (–1, –1) to center the window on the screen

If you want to specify a view list for views that are to be displayed on all the information

pages that appear when the user opens the catalog object to which this main aspect

applies, you can provide a 'detv' resource with an offset of

kDETAspectInfoPageCustomWindow from the template’s base resource ID.

If, as part of this view list, you include a pop-up menu (view type Menu) with a property

number of kDETInfoPageNumber, the Catalogs Extension displays a pop-up menu

with a list of information page names at the location you specify. Therefore, by

combining a 'detw' resource with the discludePopup flag set and a 'detv' resource

with a pop-up menu for selecting information pages, you can create a custom set of

information pages with the pop-up menu at any location you wish. The following view

list displays an icon and a pop-up menu for selecting information pages.

resource 'detv' (kMainAspect + kDETAspectInfoPageCustomWindow, purgeable) {

{

{kBitmapTop, kBitmapLeft, kBitmapBottom, kBitmapRight},

kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kMenuTop, kMenuLeft, kMenuBottom, kMenuRight},

kDETPopupDynamicSize, kDETInfoPageNumber,

Menu { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Page", kDETInfoPageNumber,

rMenuResourceID };

}

};

View lists are described in “View Lists” beginning on page 5-123.

Supporting Drags and Drops

If your aspect supports drags and drops, your template should include the resources

listed in this section, a code resource that handles drags and drops, or both. Drags and

drops are described in “Drags and Drops” on page 5-28. For more information on how

code resources handle drags and drops, see the descriptions of the kDETcmdDropQuery

(page 5-172) and kDETcmdDropMeQuery (page 5-170) routines.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-99

kDETAspectRecordDragIn

When a user drags a record and drops it on another record, the most common result is

that the Catalogs Extension creates an alias to the record and stores it in an attribute in

the target record. When the user drops a record on a record for which you provided an

aspect template, the CE looks for a resource with an ID offset of

kDETAspectRecordDragIn from the base resource ID. This resource lists the types of

records that can be dragged into the aspect, paired with the attribute type in which the

CE should store an alias to the record that was dragged. Use the

kDETAspectRecordCatDragIn resource (described next) to specify categories of

records that can be dragged and dropped on the catalog object.

resource 'rst#' (kMyAspectTemplate + kDETAspectRecordDragIn, purgeable)

{

 "Record type 1", "Alias attribute type 1",

 "Record type 2", "Alias attribute type 2"

};

Do not include a kDETAspectRecordDragIn resource if you do not want to allow the

user to drop records on this catalog object.

Note
In addition to checking for drag-in resources, the CE calls your code
resource (if any) to check whether the code resource can handle the
drop. A code resource can take an action different from that specified in
the drag-in resources, can handle a drop in the absence of drag-in
resources, and can handle drags and drops for source and destination
objects other than records (as long as either the source or the destination
is an AOCE catalog object). ◆

See the discussion of drags and drops in “Drags and Drops” on page 5-28 and the

descriptions of the kDETcmdDropQuery (page 5-172) and kDETcmdDropMeQuery

(page 5-170) routines for more information on this process.

IMPORTANT

If your code resource does not take a different action and you do want
the CE to store an alias to the record in an attribute value, you must be
sure that you have listed the attribute type in your aspect’s lookup table
with the useInSublist and isAlias flags set. Lookup tables are
described in “The Lookup-Table Resource” beginning on page 5-105. ▲

kDETAspectRecordCatDragIn

Instead of or in addition to specifying individual record types of records that can be

dragged and dropped on the record to which the aspect applies, you can specify

categories of records that can be dropped. When the user drops such a record, the

C H A P T E R 5

AOCE Templates

5-100 AOCE Templates Reference

Catalogs Extension creates an alias to the record and stores it in an attribute (unless your

code resource takes some other action). For each category of record the user can drop,

the resource also lists the attribute type of the new attribute containing the alias to the

record. Do not include this resource if you do not want to allow the user to drop records

on this catalog object.

resource 'rst#' (kMyAspectTemplate + kDETAspectRecordCatDragIn, purgeable)

{

 "Category 1", "Alias attribute type 1",

 "Category 2", "Alias attribute type 2"

};

See the preceding discussion of the kDETAspectRecordDragIn resource for more

information on drags and drops.

kDETAspectAttrDragIn

When a user drags an attribute and drops it on a record, the most common result is that

the Catalogs Extension creates a copy of the attribute and stores it in the target record.
When the user drops an attribute on a record for which you provided an aspect

template, the CE looks for a resource with an ID offset of kDETAspectAttrDragIn

from the base resource ID. This resource lists the types of records that can be dragged

from, the types of attributes that can be dragged into the target record, and the attribute

type the CE should assign to the new copy of the attribute. To indicate any type, you can

use the empty string "" for the type of record that can be dragged from.

resource 'rst#' (kMyAspectTemplate + kDETAspectAttrDragIn, purgeable)

{

 "Record type 1", "Attribute type 1", "New attribute type 1",

 "Record type 2", "Attribute type 2", "New attribute type 2"

};

Do not include this resource if you do not want to allow the user to drop attribute values

on this catalog object.

Note
In addition to checking for drag-in resources, the CE calls your code
resource (if any) to check whether the code resource can handle the
drop. A code resource can take an action different from that specified in
the drag-in resources, can handle a drop in the absence of drag-in
resources, and can handle drags and drops for source objects other than
attributes or records and destination objects other than records (as long
as either the source or the destination is an AOCE catalog object). ◆

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-101

See the discussion of drags and drops in “Drags and Drops” on page 5-28 and the

descriptions of the kDETcmdDropQuery (page 5-172) and kDETcmdDropMeQuery

(page 5-170) routines for more information on this process.

kDETAspectDragInString

If your aspect supports drops, you must provide a prompt string for the Catalogs

Extension to display when the user drags and drops an object on the catalog object to

which the aspect applies. You provide this string in an RString resource with an ID

offset of kDETAspectDragInString from the base resource ID.

resource 'rstr' (rMyAspectTemplate + kDETAspectDragInString, purgeable)

{

"Do you want to send %3%“^3”%the selected items% to *0x/the/* ^1 “^2”?"

};

The string %3%“^3”%the selected items% helps the CE either insert the name of

the item being dragged (in ^3 if it’s a single selection) or insert the substring “the
selected items” (if it’s a multiple-item selection).

The token ^1 is the destination’s kind as displayed in the sublist (kDETAspectKind).

The token ^2 is the destination's name.

When localizing this resource, replace the string *0x/the/* with an article consistent

with the destination’s kind (token ^1).

You do not have to include this resource if your aspect template does not support drops.

kDETAspectDragInVerb

If your aspect supports drops, you must provide a label for the OK button in the dialog

box that the Catalogs Extension can display when the user drags and drops an object on

the catalog object to which the aspect applies. You provide this label in an RString

resource with an ID offset of kDETAspectDragInVerb from the base resource ID.

resource 'rstr' (rMyAspectTemplate + kDETAspectDragInVerb, purgeable)

{

"Send"

};

If you are unsure as to what label to use for this feature, use OK.

You do not have to include this resource if your aspect template does not support drops.

Drag-in verbs are not implemented in the initial release of the AOCE software, but you

should include this resource to support future enhancements to the software.

C H A P T E R 5

AOCE Templates

5-102 AOCE Templates Reference

kDETAspectDragInSummary

If your aspect supports drops, you should provide a short phrase that describes the

action of dropping an object on the catalog object to which this aspect applies. The

Catalogs Extension can use this phrase in a selection list if more than one aspect can

receive the drop.

resource 'rstr' (rMyAspectTemplate + kDETAspectDragInSummary, purgeable)

{

"Send item"

};

You do not have to include this resource if your aspect template does not support drops.

Selection lists are not implemented in the initial release of the AOCE software, but you

should include this resource to support future enhancements to the software.

kDETAspectDragOut

If your aspect template’s lookup table includes any attribute types for which you have

set the useInSublist flag, the user might try to drag an attribute of that type from the

sublist to drop it on another object or on the desktop. You can include a resource of type

'rst#' that specifies which attribute types the user is allowed to drag from the sublist.

You must give this resource an ID offset of kDETAspectDragOut from the base

resource ID.

resource 'rst#' (rMyAspectTemplate + kDETAspectDragOut, purgeable)

{

{

"First attribute type",

"Second attribute type"

}

};

If you do not provide this resource, the user can drag any attribute types from the

sublist. To prevent the user from dragging any attributes from the sublist, include this

resource but do not specify any attribute types.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-103

Other Aspect Template Resources

Any aspect template can include the resources listed in this section. In addition to the

resources described here, see Table 5-1 on page 5-78 for a summary of all of the resources

that you can include in an aspect template.

Any property number in the range 0–249

If the information page template has not used a lookup table or code resource to

construct a property for any property number in the range 0–249, the Catalogs Extension

looks for a resource whose ID has an offset from the base resource ID equal to that

property number and uses the value in that resource as the value of the property. You

can use resources of types 'detn', 'rstr', or 'detb' for this purpose.

You must be careful to ensure that none of your property numbers conflict with the

resource ID numbers defined in the AOCE header files. To do so, use the value

kDETFirstDevProperty for your first property number and increment each

additional property number by 1.

kDETAspectViewMenu

The user can sort a sublist in an information page by any of a number of different

properties, just as users can sort lists in the Finder by name, kind, date, and so forth. The

user can use the View menu to select the property to use for sorting. If your aspect

template supports a sublist (that is, if the lookup table includes any attribute types for

which you have set the useInSublist flag), you should provide a resource of type

'detm' to specify the properties that can be used for sorting. You must give this

resource an ID offset of kDETAspectViewMenu from the base resource ID.

resource 'detm' (rMyAspectTemplate + kDETAspectViewMenu, purgeable)

{

rMyAspectResourceID + kDETAspectViewMenu,

{

kPrName, "By Name";

-kPrAge, "By Age";

}

};

C H A P T E R 5

AOCE Templates

5-104 AOCE Templates Reference

The 'detm' resource type is defined as follows:

type 'detm' as 'fmnu';

For each property by which the sublist may be sorted, you must provide the property

number followed by the text that appears in the View menu.

Normally, the Catalogs Extension sorts items in ascending alphanumeric order. To have

the items sorted numerically rather than alphanumerically (that is, taking the value of

the property as a number rather than a text string), use the negative of the property

number. Numeric sorting is descending by default (matching the Finder’s normal

procedure of sorting sizes and dates in descending order).

For a way to let users sort items in a sublist without using the View menu, see the

description of the StaticCommandTextFromView view type on page 5-128.

kDETAspectReverseSort

If you want to sort any properties of items in a sublist in reverse order—that is,

descending alphanumeric or ascending numeric order— you must list its property

number in a resource of type 'detp'. You must give this resource an ID offset of

kDETAspectReverseSort from the base resource ID. The resource can list any

property that you have already listed in a kDETAspectViewMenu resource.

resource 'detp' (rMyAspectTemplate + kDETAspectReverseSort, purgeable)

{

{ kPrAge }

};

The 'detp' resource type is defined as follows:

type 'detp' {

integer = $$CountOf(SortArray); /* Number of items */

array SortArray {

integer; /* Property number */

};

};

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-105

kDETAspectBalloons

Your aspect template should provide help-balloon strings for any properties that can

appear in an information page. The Finder displays a help-balloon string when the user

turns on Balloon Help assistance and positions the mouse over a view. For each property

you define, you should provide two strings: one to be presented if the property is

editable and one to be presented if the property is not editable. The first pair of strings in

the resource is used for property number kDETFirstDevProperty; the second pair of

strings is for property number kDETFirstDevProperty + 1; and so forth.

Use a resource of type 'rst#' to specify the help-balloon strings. You must give this

resource an ID offset of kDETAspectBalloons from the base resource ID.

resource 'rst#' (rMyAspectResourceID + kDETAspectBalloons, purgeable)

{

{

"The foobar’s age.",

"The foobar’s age. Uneditable because the foob is locked or access is

 restricted.",

"The foobar’s size.",

"The foobar’s size. Uneditable because the foob is locked or access is

 restricted."

}

}

The Lookup-Table Resource

You can use a lookup-table resource in an aspect template to parse attribute values into

properties and properties into attribute values. An aspect-template lookup table contains

an entry for each type of attribute value to be translated into and from properties.

Attribute values to be translated into properties come from two sources:

■ Attribute values in the record or attribute to which the aspect applies. For each
attribute type for which the lookup table contains a pattern, the lookup table
automatically processes all of the attribute values with that attribute type in this
record or attribute.

■ Attribute values sent to the lookup table by the code resource. You can use the code
resource callback routine kDETcmdBreakAttribute (page 5-224) to send to the
lookup table an attribute value from anywhere within or outside of an AOCE catalog.

Each lookup-table entry includes a list of attribute types, an attribute tag, a flags field,

and a pattern that specifies the mapping between attribute values and properties. The

attribute types and tag specify the types of attribute values to be processed. Use a tag

value of 0 to process all tag types. The flags further qualify how and when the table entry

should be used. The lookup-table flags are shown in Table 5-5 on page 5-109.

C H A P T E R 5

AOCE Templates

5-106 AOCE Templates Reference

In many cases, the translation pattern consists of a single item—indicating that the

attribute value maps to a single property. However, it is possible to have much more

complex patterns, including variable-length and repeating elements. Figure 5-24 on

page 5-107 illustrates the format of a lookup table. There is one entry for each type of

data block to be parsed (that is, each attribute value with a specific combination of

attribute type and attribute value tag), and each entry contains a list of pattern elements.

Each pattern element contains three parts: a format, which drives the parsing process; a

property number, telling where to store the result (which may be kDETNoProperty if

no result should be stored); and an “extra” parameter, which is used by some of the

pattern types to specify a second property number. Basic lookup-table pattern elements

are shown in Table 5-6 on page 5-111.

Note that a specific attribute might contain more than one attribute value with the same

tag, and you might want to parse these values differently. The lookup-table format

includes conditional elements and pattern elements that let you identify each kind of

attribute value and process each one appropriately. Lookup-table elements for repeating

patterns are shown in Table 5-9 on page 5-115, and elements for conditional patterns are

shown in Table 5-7 on page 5-112.

The Catalogs Extension sends any pattern element whose type begins with an uppercase

letter to the code resource for processing; see the description of the kDETcmdPatternIn

routine on page 5-182 for details.

When the CE uses lookup-table patterns to create or update attribute values, a pattern

entry can combine any number of property values into a single attribute value. When the

user closes an information page, the CE checks whether any properties have changed. If

it finds one that has, the CE calls the aspect’s code resource (if there is one) with the

kDETcmdValidateSave routine selector (page 5-168). If the code resource does not

want the new property value saved, it returns an error. If the code resource returns

noErr or kDETDidNotHandle, the CE processes all the entries in the lookup table that

have the useForOutput flag set and that include the property that has changed.

You can provide separate lookup-table entries for input (that is, converting attribute

values into property values) and output (converting property values into attribute

values), or you can specify that a single entry be used for both purposes.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-107

Figure 5-24 Lookup-table format

C H A P T E R 5

AOCE Templates

5-108 AOCE Templates Reference

kDETAspectLookup

You specify a lookup table with a resource of type 'dett' with an offset of

kDETAspectLookup from the template’s base resource ID.

resource 'dett' (rMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"Name"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'rstr', prName, 0; // name

};

{"Birthdate"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'word', prYear, 0; // year of birth

'byte', prMonth, 0; // month of birth

'byte', prDay, 0; // day of birth

};

{"Mthr's Name"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'rstr', prMother, 0; // mother's name

};

}

};

The format for a lookup-table resource is as follows:

type 'dett' {

integer = $$CountOf(AttributeArray); /* attribute array size */

array AttributeArray {

integer = $$CountOf(TypeArray); /* attribute type array size */

array TypeArray {

RString[32]; /* attribute type */

};

longInt; /* attribute tag */

/* Flags */

boolean notForInput, useForInput; /* use this pattern for

 input processing? */

boolean notForOutput, useForOutput; /* use for output processing? */

boolean notInSublist, useInSublist; /* include attr type in sublist? */

boolean isNotAlias, isAlias; /* mark attr value as an alias? */

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-109

boolean isNotRecordRef, isRecordRef;/* reserved; use isNotRecordRef */

align word; /* reserved */

integer = $$CountOf(PatternArray); /* pattern array size */

array PatternArray {

longint; /* pattern element type */

integer; /* property number */

integer; /* extra parameter */

};

};

};

IMPORTANT

The pattern element types in lookup tables are case sensitive. Thus, the
following two patterns are not equivalent:

'word', prYear, 0;
'byte', prMonth, 0;
};
{
'Word', prYear, 0;
'Byte', prMonth, 0;
};

The Catalogs Extension would interpret the pattern element types
'word' and 'byte' as standard types, but would send 'Word' and
'Byte' to the code resource for processing. ▲

The flags field in each entry in the lookup table contains several bits that help select and

control the translation process. Table 5-5 shows the currently defined flags (the rest are

reserved for future use, and should be set to 0).

Table 5-5 Lookup-table flags

Flag Meaning

useForInput Use this table entry for translating attribute values to properties.

useForOutput Use this table entry for translating properties to attribute values.

useInSublist Include this attribute value in the sublist. This flag is used in
aspect templates of records only. You must set this flag for each
attribute type that you want included in the sublist of any
information page that has a sublist and that uses this aspect. You
should limit sublist items to one line. Multiline sublist items are
not guaranteed to work correctly.

isAlias The resulting entry in the sublist is an alias. This flag applies only
to attributes in a sublist that hold aliases. If the useInSublist
flag is not set, the CE ignores this flag.

isRecordRef Reserved; use the isNotRecordRef value for this flag.

C H A P T E R 5

AOCE Templates

5-110 AOCE Templates Reference

The Catalogs Extension uses the mapping of properties to attributes provided by the

lookup table to check the user’s access privileges for each attribute and to mark each

property accordingly as either editable or uneditable. The CE can then use this

information to allow or prevent a user from making changes in an information page. The

CE assumes that properties not associated with any attribute are “internal” and therefore

always editable (unless you explicitly make them uneditable with the

kDETcmdSetPropertyEditable callback routine described on page 5-232).

When processing an output pattern (a lookup-table element that has the useForOutput

flag set), the CE changes an existing attribute value if there is one or creates a new

attribute value if one does not already exist. However, if there is no input pattern for that

attribute type in the lookup table, the CE has no way of knowing an attribute value

already exists, and so it creates a new one every time it processes the output pattern. In

that case, the record ends up containing multiple attribute values corresponding to a

single set of properties. Therefore, you must observe this rule:

IMPORTANT

You must always include an input pattern for every attribute type for
which you provide an output pattern. ▲

If your lookup table or code resource writes a zero-length attribute value, the CE deletes

that attribute value from the record. Note that an attribute type that contains an

RString (for example) would not have zero-length attribute value unless the entire

RString structure were removed; a zero-length RString still contains a length and a

script code.

The input pattern can be separate from the output pattern, if you wish, and can be empty

except for the resource declaration, the attribute type, the attribute tag, and the flags field.

Note

A lookup table can contain only one input pattern and one output
pattern for each attribute type. Therefore, although the CE places no
restriction on the number of attribute values that can be assigned to each
attribute type, lookup-table patterns are designed to work only for those
multivalued attributes that appear in sublists.

Multivalued attributes normally appear only in sublists, and the input
and output patterns for an attribute in a sublist are normally located in
the main aspect for that attribute type, not in the lookup table for the
information page that contains the sublist. Therefore, you will not
usually set the useInSublist flag and the useForInput or
useForOutput flags for the same pattern element.

However, see “Conditional Element Types” on page 5-112 for pattern
elements that you can use to develop exceptions to these rules. ◆

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-111

Basic Element Types

A number of pattern element types are available to process single pieces of the pattern.

Table 5-6 shows the basic lookup-table element types available.

Listing 5-9 shows the use of basic lookup-table elements to parse an attribute of type

Album Track Info into several properties (the number of tracks and the hours, minutes,

and seconds of playing time).

Listing 5-9 Lookup table with basic elements

// Properties

#define prNumTracks kDETFirstDevProperty

#define prPlayingTimeHours kDETFirstDevProperty + 1

#define prPlayingTimeMinutes kDETFirstDevProperty + 2

#define prPlayingTimeSeconds kDETFirstDevProperty + 3

Table 5-6 Basic lookup-table element types

Element type Data format Property type

'byte' Byte (8 bits) Number

'word' Word (16 bits) Number

'long' Long word (32 bits) Number

'pstr' Pascal-style string (8-bit length) RString

'wstr' Pascal-style string (16-bit length) RString

'cstr' C-style (null-terminated) string RString

'rstr' RString data structure RString

'type' 4-character type RString

'blok' Block of data; the “extra parameter” field holds the
number of bytes

Binary

'bbit' Binary bit (8 per byte) Number

'abyt' Align to byte boundary None

'awrd' Align to word boundary None

'alng' Align to long boundary. None

'padz' Process the following element and pad it to the size
specified in the extra field, using zero fill. (Used for
fixed-width fields.)

None

'rest' Take everything remaining in the attribute value and
put it into a property.

Binary

C H A P T E R 5

AOCE Templates

5-112 AOCE Templates Reference

// Lookup table

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Track Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'word', prNumTracks, 0;

'long', prPlayingTimeHours, 0;

'long', prPlayingTimeMinutes, 0;

'long', prPlayingTimeSeconds, 0;

};

}

};

Conditional Element Types

Lookup tables also provide several element types that implement “if” statements. The

element type indicates the test to be performed, the property number indicates which

property to test, and the extra field of the element indicates a property number of the

property against which the test is performed. If the condition in the test is met, the

following element or block is executed. Otherwise, the following element or block is

skipped. You can test against a constant value either by using one of the constant

property numbers—allowing comparisons against constants in the range 0–249—or by

using a resource-based static property. The conditional elements for lookup tables are

shown in Table 5-7.

Table 5-7 Conditional elements for lookup tables

Element type Pattern

'equa' Value of the property specified by the “property number” field equal
to value of the property specified by the “extra parameter” field (any
type)

'nteq' Value of the property specified by the “property number” field not
equal to value of the property specified by the “extra parameter” field
(any type)

'less' Value of the property specified by the “property number” field less
than value of the property specified by the “extra parameter” field
(long integers only)

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-113

You can use the 'p:=p' element type to set a property equal to the value of an existing

property. The property field in a 'p:=p' element indicates the destination property. The

source property is given by the extra field. The source property (that is, the extra field)

can specify a resource.

Listing 5-10 tests whether an album has a playing time of over 1 hour. If it does, the

lookup table sets the property prLongPlay to true.

Listing 5-10 Lookup table with conditional elements

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Track Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'word', prNumTracks, 0;

'long', prPlayingTimeHours, 0;

'long', prPlayingTimeMinutes, 0;

'long', prPlayingTimeSeconds, 0;

'p:=p', prLongPlay, kDETFalseProperty;

'greq', prPlayingTimeHours, kDETConstantProperty + 1;

'p:=p', prLongPlay, kDETTrueProperty;

};

}

};

Block Elements

You can use block elements to form more complex patterns. You form a block by

surrounding a list of elements with the '((((' and '))))' elements (Table 5-8). The

block is then treated conceptually as a single element. Block elements are particularly

'grea' Value of the property specified by the “property number” field greater
than value of the property specified by the “extra parameter” field
(long integers only)

'leeq' Value of the property specified by the “property number” field less
than or equal to value of the property specified by the “extra
parameter” field (long integers only)

'greq' Value of the property specified by the “property number” field greater
than or equal to value of the property specified by the “extra
parameter” field (long integers only)

Table 5-7 Conditional elements for lookup tables (continued)

Element type Pattern

C H A P T E R 5

AOCE Templates

5-114 AOCE Templates Reference

useful with repeating and conditional elements. In addition, if the destination property

for the '((((' element is something other than kDETNoProperty, everything

described by the block is put into the specified property as a binary block. (The

destination property of the '))))' element must always be kDETNoProperty.)

Listing 5-11 illustrates the use of the block elements ('((((' and '))))') with a

conditional element. This lookup table tests whether an album has a playing time of over

1 hour. If it does, the lookup table sets the property prLongPlay to true and the

property prComments to “Long-play album.”

Listing 5-11 Lookup table with block elements

// Properties

#define prNumTracks kDETFirstDevProperty

#define prPlayingTimeHours kDETFirstDevProperty + 1

#define prPlayingTimeMinutes kDETFirstDevProperty + 2

#define prPlayingTimeSeconds kDETFirstDevProperty + 3

#define prComments kDETFirstDevProperty + 4

#define prLongPlayComment kDETFirstDevProperty + 5

resource 'rstr' (kMyAspectResourceID + prLongPlayComment, purgeable) {

"Long-play album"

};

// Lookup table

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Track Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'word', prNumTracks, 0;

'long', prPlayingTimeHours, 0;

'long', prPlayingTimeMinutes, 0;

'long', prPlayingTimeSeconds, 0;

'p:=p', prLongPlay, kDETFalseProperty;

Table 5-8 Block elements for lookup tables

Element type Pattern

'((((' Begin block

'))))' End block

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-115

'greq', prPlayingTimeHours, kDETConstantProperty + 1;

'((((', kDETNoProperty, 0;

'p:=p', prLongPlay, kDETTrueProperty;

'p:=p', prComments, prLongPlayComment;

'))))', kDETNoProperty, 0;

};

}

};

Listing 5-16 on page 5-131 illustrates the use of conditional and block elements in the

implementation of a conditional view.

Size Element Types

Lookup tables provide pattern elements that create patterns of a specific size. Table 5-9

shows lookup-table elements you can use for this purpose. An attribute created by one of

these pattern elements begins with a length (either a byte, word, or long integer,

depending on the element), which is followed by data. The data is in the format specified

by the next pattern element. You can use the block elements shown in Table 5-8 on

page 5-114 to specify more complex formats for the data. If the data is longer than the

pattern element used to format it, the pattern element is repeated as many times as

necessary. You can use one of these elements to ensure that a particular attribute is of a

specified size and format so that it can be read by a program external to the AOCE

catalog system or by a CSAM.

A property created by one of these pattern elements is of property type Binary and of the

size specified by the length byte, word, or long integer in the attribute.

Table 5-9 Lookup-table elements that create patterns of a specific size

Element
type Pattern Property type

'bsiz' Byte-sized size, followed by enough repeats of
the following element to use that many bytes

Binary
(property does not
include size byte)

'wsiz' Word-sized size, followed by enough repeats
of the following element to use that many
bytes

Binary
(property does not
include size word)

'lsiz' Long word-sized size, followed by enough
repeats of the following element to use that
many bytes

Binary
(property does not
include size long word)

C H A P T E R 5

AOCE Templates

5-116 AOCE Templates Reference

The code fragment in Listing 5-12 stores two properties that are variable-length text

strings in a sized attribute. A CSAM or other program reading this attribute from the

record could determine how many bytes to read from the length word without having to

interpret the constituent RString structures.

Listing 5-12 Lookup table with size and block elements

// Properties

#define prAlbumName kDETFirstDevProperty

#define prPublisherName kDETFirstDevProperty + 1

// Lookup table

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Name Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'wsiz', kDETNoProperty, 0;

'((((', kDETNoProperty, 0;

'rstr', prAlbumName, 0;

'rstr', prPublisherName, 0;

'))))', kDETNoProperty, 0;

};

}

};

In this case, your information page template would assign the prAlbumName and

prPublisherName properties to edit-text fields (see “View Lists” beginning on

page 5-123). Your default value for each property should be a helpful text string such as

“<enter text here>”.

Suppose the user types the string “Apple’s Top Hits” in the album name field and closes

the information page. When it processes the lookup-table entry in Listing 5-12, the

Catalogs Extension creates an attribute of type WAVE Album Name Info with the

attribute tag typeBinary. On a roman script system (the script code is smRoman = 0),

the attribute-value data looks like this:

0029

0000 0010 4170 706C 6527 7320 546F 7020 4869 7473 '....Apple's Top Hits'

0000 0011 3C65 6E74 6572 2074 6578 7420 6865 7265 3E '....<enter text here>'

The block of data begins with a word length (the length of the block of data, not

including the length word itself), followed by two RString structures. Each RString

begins with the script code (which is $0000 for roman script) followed by a length word

followed by the string. Notice that the CE writes the value of the second string even

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-117

though it has not been changed, because the CE always fully specifies an attribute when

any property derived from that attribute has changed.

The next time the user opens this information page, the CE looks through the lookup

table for every attribute type for which the useForInput flag has been set. In this case,

it finds the attribute type WAVE Album Name Info and finds one attribute value of this

type, which has the attribute tag typeBinary. The CE finds the entry shown in Listing

5-12, which has this attribute type and tag type, and applies it to the data in the attribute

value.

Because the lookup-table entry is of element type 'wsiz', the CE knows the first word

of the data indicates the length of the rest of the data block. The rest of the lookup-table

entry indicates that the data block consists of two RString structures, so the CE reads

the length, script code, and string from the first RString structure and stores the value

in the property prAlbumName. It then reads the second RString the same way,

assigning the value to the property prPublisherName. The CE stores all strings

internally as RString structures (see Table 5-2 on page 5-85).

You normally include a destination property for either a size element, for a block

element, or for each element within the block, and make the destinations of all the other

elements kDETNoProperty. To illustrate why this is so, Listing 5-13 shows a

lookup-table entry similar to the one in Listing 5-12 except that, in Listing 5-13, the

destination property for the 'wsiz' element is prNames rather than kDETNoProperty.

Listing 5-13 Lookup-table entry with a destination property for the 'wsiz' element type

// Properties

#define prAlbumName kDETFirstDevProperty

#define prPublisherName kDETFirstDevProperty + 1

#define prNames kDETFirstDevProperty + 2

// Lookup table

resource 'dett' (kMyAspectResourceID + kDETAspectLookup, purgeable) {

{

{"WAVE Album Name Info"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'wsiz', prNames, 0;

'((((', kDETNoProperty, 0;

'rstr', prAlbumName, 0;

'rstr', prPublisherName, 0;

'))))', kDETNoProperty, 0;

};

}

};

C H A P T E R 5

AOCE Templates

5-118 AOCE Templates Reference

In the case of Listing 5-13, when the user types a new value into the album name or

publisher name field and closes the information page, the CE first checks whether the

binary property prNames already exists. If not, the CE uses the new value to create an

attribute of type WAVE Album Name Info with the attribute tag typeBinary, exactly as

it did for the lookup-table element in Listing 5-12 on page 5-116. If the property

prNames exists, however (as it would if the code resource had already created it), the CE

uses the value of the property prNames to create the attribute, ignoring the block

following the 'wsiz' element and therefore ignoring the new value typed in by the user.

In either case, the next time the user opens the information page, the CE creates the

binary property prNames from the value of the attribute WAVE Album Name Info. After

creating the property prNames, the CE uses the same attribute value to create the

RString properties prAlbumName and prPublisherName, as it did for the

lookup-table element in Listing 5-12 on page 5-116.

Because the property prNames exists, the CE ignores the block following the 'wsiz'

element and uses the value of the property prNames to create the attribute. Therefore, if

the user changes the value of the property prAlbumName or prPublisherName, the

value of the property prNames is not affected, and the changes to prAlbumName and

prPublisherName are not saved. For this reason, you would normally include a

destination property for either the size element, for the block element, or for each

element within the block, and make the destinations of all the other elements

kDETNoProperty. If you have some special need to maintain properties for both the

block element or the size element and the constituents of the block, you must use your

code resource to update property values.

Providing Your Own Pattern Elements

The Catalogs Extension passes to the aspect template’s code resource any pattern

element type that begins with an uppercase letter. The code resource can then process

that portion of the attribute value or property. You can freely mix together built-in and

code resource pattern elements.

When creating or changing attribute values, the CE processes only those properties that

have changed and that are included in the list of properties in the lookup table. Because

you can use a code resource routine invoked by a single pattern element to process any

number of properties, you must use the following pattern element to list each property

that your code resource processes:

The 'prop' pattern element lets you associate properties with a lookup table, so that the

CE uses that lookup table when those properties need to be saved.

Element type Pattern

'prop' Include this property in the lookup table

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-119

Overriding Default Property-Type Assignments

Each property has a type (see “Properties” beginning on page 5-84). The Catalogs

Extension automatically converts between types as needed. The type of the property is

taken from the pattern. In most cases, the type is determined automatically—'byte'

pattern elements produce number type properties; 'rstr' pattern elements produce

string type properties; and so forth. Two pattern elements are provided to allow you to

override the default type determination:

You can use the 'styp' and 'btyp' element types to assign custom property types to

properties. The CE calls your code resource when necessary to convert between your

custom property types and standard property types; see “Custom Property-Type

Conversions” beginning on page 5-188.

Canceling Pattern Processing

Lookup tables provide an element type that aborts processing of the pattern.

The 'abrt' lookup-table element stops the processing of the pattern but does not abort

the process of reading or writing the attribute value.

Components of Information Page Templates

Information page templates specify the layout and provide the functions of the

information pages that users see when they open a record or attribute. The primary

content of an information page template is one or more view lists, indicating where on

the information page to place the fields (or views) that display information to users and

allow them to edit that information.

The Catalogs Extension fills in the views from an aspect specified by the information

page. A view list specifies only the property numbers of properties in that aspect. All of

the information in the main part of an information page (that is, all of the information

page except for items in a sublist) comes from the same, specified aspect.

Element type Pattern

'styp' Set the type of the property to the value in the “extra parameter” field

'btyp' Use the value of the “extra parameter” field as the type of all
subsequent “binary” properties—for instance, '((((', 'rest',
'bsiz', 'wsiz' elements

Element type Pattern

'abrt' Abort processing of the pattern

C H A P T E R 5

AOCE Templates

5-120 AOCE Templates Reference

An information page template can contain the resources listed in Table 5-10.

Table 5-10 Resources in information page templates

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

'deti' 0 Identifies template as information page and
provides a base resource ID. Required for all
information page templates.

'rstr' kDETTemplateName Name of template. Required for all information
page templates.

'rstr' kDETRecordType Type of record to which the template applies.
Either this resource, the kDETAttributeType
resource, or both must be included.

'rstr' kDETAttributeType Type of attribute to which the template applies.
Either this resource, the kDETRecordType
resource, or both must be included.

'detn' kDETAttributeValueTag Attribute tag of attributes to which the template
applies. You can provide this resource if you
have also provided the kDETAttributeType
resource. If you don’t provide this resource, the
template applies to attributes with any tag value.

'detv' The resource ID of a view list is
independent of that of the
information page signature
resource.

View list. An information page template can
contain any number of view lists describing
specific items in the information page and in the
sublist (if any). The information page signature
resource lists the resource IDs of all of the
applicable view list resources. Each information
page must have at least one view list if it is to
provide any useful information.

'rstr' kDETInfoPageMainViewAspect The name of the aspect template whose aspect
provides all of the properties for the views in the
main portion of the information page. This
aspect also lists the objects that go in the sublist
(if any). Required for every information page
template.

'rstr' kDETInfoPageName The name of the information page that appears
in the page-selection pop-up menu. Required for
all information pages that appear in a
page-selection pop-up menu.

'detm' kDETInfoPageMenuEntries A list of items that the CE adds to the end of the
Catalogs menu. When the user chooses one of
these items, the CE calls the code resource of the
aspect. Optional.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-121

Information Page Template Signature Resource

The information page seen by the user is the combination of one or more view lists

specified by the template. The signature resource of the information page lists the

resource IDs of the view lists to be used in the main and icon-list parts of the information

page. Each view list resource ID is preceded by two property numbers. The view list is

displayed only if the contents of the two properties are equal or if either property equals

kDETNoProperty. This feature allows you to enable or disable a view list according to

the current values of properties in the associated aspect. Thus, an information page can

change to include different views according to the current state of the record or attribute

represented by that page.

The signature resource also specifies the sort-order number of the information page, the

presence or absence of a sublist in the information page, and the rectangle that contains

the sublist. The Catalogs Extension displays the information pages in the sequence

indicated by their sort-order numbers. When creating several information pages for a

single catalog object, you should assign sort-order numbers at intervals of 1000 (1000,

2000, 3000, and so on) to allow a new page to be easily inserted between two existing

pages.

The signature resource includes a Boolean value that indicates whether the first edit-text

field of the information page should be automatically selected when the information

page is opened. If you set this value to selectFirstText, the CE selects the first

edit-text field when a user opens the information page (as is usual for a dialog box). If

you set this value to noSelectFirstText, no field is initially selected. For most

information pages, you should set the Boolean value to noSelectFirstText to lessen

the likelihood that users will change a field unintentionally.

'deti' Resource

The signature resource for an information page template is of type 'deti'.

type 'deti' {

longInt = kDETInfoPageVersion; /* template format version */

longInt; /* sort order */

rect; /* rectangle to put sublist in */

boolean selectFirstText, noSelectFirstText;

/* select the first text field

 when info-page opens? */

align word; /* reserved */

integer = $$CountOf(HeaderViewArray);

array HeaderViewArray { /* the header view lists */

integer; /* property 1 */

integer; /* property 2 */

integer; /* 'detv' ID */

C H A P T E R 5

AOCE Templates

5-122 AOCE Templates Reference

};

integer = $$CountOf(SubviewViewArray);

array SubviewViewArray { /* the subview view lists */

integer; /* property 1 */

integer; /* property 2 */

integer; /* 'detv' ID */

};

};

Listing 5-14 is an example of an information page template signature resource. This

resource specifies four view lists. The first describes a view that always appears on the

information page. The second and third are conditional views; each appears on the

information page only if the two properties associated with that view are equal (or if

either property number equals kDETNoProperty). In Listing 5-14, the view list with an

ID of rMyInfoPage + 1 appears if the property prEnable1 equals

kDETZeroProperty (that is, 0) and the view list rMyInfoPage + 2 appears if

rEnable1 equals kDETOneProperty (that is, 1). The fourth view list in Listing 5-14

describes a line in the sublist and is always enabled.

Listing 5-14 Information page signature resource with conditional views

resource 'deti' (rMyInfoPage, purgeable) {

1000, // sort order

kDETSublistRect, // rect for sublist

noSelectFirstText,

{

// View list for main part of window:

kDETNoProperty, kDETNoProperty, rMyInfoPage; // always enabled

// View lists for conditional views in main part of window

prEnable1, kDETZeroProperty, rMyInfoPage + 1; // enabled if prEnable1

// property is 0

prEnable1, kDETOneProperty, rMyInfoPage + 2; // enabled if prEnable1

// property is 1

},

// View lists for sublist:

{

kDETNoProperty, kDETNoProperty, rMyInfoPage + 3;// always enabled

}

};

Listing 5-16 on page 5-131 further illustrates the implementation of conditional views.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-123

If the information page has no sublist, you can use the following sublist rectangle:

#define kDETNoSublistRect {0, 0, 0, 0}

View Lists

A view list specifies individual items on the information page. Each item in the list

includes the graphic rectangle containing the view, the number of the property that

provides the information to be displayed, the type of view, and information specific to

that view type. A view list need not use all of the properties in the aspect. On the other

hand, a single property can provide information for more than one view. For example, a

set of three radio buttons would require three views in a view list but could all display

the information in a single property.

'detv' Resource

A view list is defined by the 'detv' resource type.

type 'detv' {

longint = 0;

longint = 0;

longint = 0;

integer = 0;

longint = 0;

longint = 0;

longint = 0;

longint = 0;

integer = 0;

longint = 0;

longint = 0;

integer = $$CountOf(ItemArray);/* count */

array ItemArray {

rect; /* bounds of the view */

longint = 0; /* position flags (preset by CE) */

longint; /* flags (described following this struct) */

integer; /* property number */

switch { /* class of view */

case StaticTextFromView:

key longint = 7750;/* class ID */

integer; /* font ID */

integer; /* font size */

C H A P T E R 5

AOCE Templates

5-124 AOCE Templates Reference

integer; /* justification */

integer; /* style */

pstring; /* string to display */

case StaticCommandTextFromView:

key longint = 22250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* string to display */

align word; /* reserved */

longint; /* property command */

integer; /* command parameter */

case StaticText:

key longint = 3250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

case EditText:

key longint = 8250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

case Bitmap:

key longint = 6250;

integer; /* size */

case Box:

key longint = 4750;/* class ID */

integer; /* box attributes */

case DefaultButton:

key longint = 7250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-125

pstring; /* label for button */

align word; /* reserved */

longint; /* property command */

case Button:

key longint = 21000;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* label for button */

align word; /* reserved */

longint; /* property command */

case CheckBox:

key longint = 21250;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* label for checkbox */

align word; /* reserved */

longint; /* property command */

case RadioButton:

key longint = 21500;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* label for button */

align word; /* reserved */

longint; /* property command */

integer; /* command parameter */

case Menu:

key longint = 5750;/* class ID */

integer; /* font ID */

integer; /* font size */

integer; /* justification */

integer; /* style */

pstring; /* label for pop-up menu */

align word; /* reserved */

C H A P T E R 5

AOCE Templates

5-126 AOCE Templates Reference

longint; /* property command */

integer; /* menu resource ID */

case EditPicture:

key longint = 0x00010000 + 24250; /* class ID */

integer; /* maximum pixel depth */

case Custom:

key longint = 6750;/* class ID */

integer; /* reference value for use by developer */

};

align word;

};

};

Here are the possible values for the flags field near the beginning of the 'detv' resource:

Flag Meaning

kDETNoFlags No flags.

kDETEnabled If set to 1, this view should be highlighted if the user selects the item
of which this view is a part. Not for use in sublists.

kDETHilightIfSelected If set to 1, highlight the view when the entry is selected. For items in
a sublist only.

kDETNumericOnly If set to 1, the user is allowed to enter only numbers into this item.
For editable text fields only.

kDETMultiLine If set to 1, the user or template can enter more than one line into the
field. If set to 0, pressing Return terminates text entry; if set to 1,
pressing Return enters a carriage return and starts a new line. For
text fields only. Note that you must set this flag to 1 for multiline
static text fields.

kDETDynamicSize If set to 1, a box appears around the item when the user clicks the
item or tabs into it. The CE sizes the box dynamically as the user
edits the text in the box. For editable text fields only.

kDETAllowNoColons If set to 1, the user is not allowed to enter colons as part of the text.
The CE substitutes a hyphen (-) for each colon (:) typed. For editable
text fields in which the user is expected to type a filename.

kDETPopupDynamicSize If set to 1, the CE automatically resizes a pop-up menu according to
its contents. For pop-up menus only.

kDETScaleToView If set to 1, a picture is scaled to the bounds of the view. If set to 0, the
picture is cropped. For EditPicture views only.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-127

Several constants are provided for use with fonts:

Here are the possible values for text styles:

Here are the possible values for text justification:

View types

StaticTextFromView
Text that cannot be edited by the user. The contents of the string
come from the view itself; that is, from the information page
template.

Constant Value

kDETApplicationFont 1

kDETApplicationFontSize 9

kDETAppFontLineHeight 12

kDETSystemFont 0

kDETSystemFontSize 12

kDETSystemFontLineHeight 16

kDETDefaultFont 1

kDETDefaultFontSize 9

kDETDefaultFontLineHeight 12

Constant Meaning

kDETNormal Normal font

kDETBold Bold

kDETItalic Italic

kDETUnderline Underlined

kDETOutline Outline style

kDETShadow Shadow style

kDETCondense Condensed

kDETExtend Extended

kDETIconStyle Same as normal text style for regular entries and as italic text
style for aliases

Value Meaning

kDETLeft Text in scripts written from left to right is left-justified; text in
scripts written from right to left is right-justified.

kDETCenter All text is centered in the text field.

kDETRight All text is right-justified.

kDETForceLeft All text is left-justified.

C H A P T E R 5

AOCE Templates

5-128 AOCE Templates Reference

StaticCommandTextFromView
Text that cannot be edited by the user. When the user clicks on the
text, the CE calls your code resource with the routine selector
kDETcmdPropertyCommand and with the property command and
command parameter from the view list. Most commonly, the code
resource does nothing in response to this property command;
instead, this view type is used to provide headings for sublist
columns, so that when the user clicks the column heading, the sort
criteria for the sublist is changed. To accomplish this, set the
property-command field to kDETChangeViewCommand and the
command parameter field to the negative of the property number of
the appropriate entry in the aspect’s kDETAspectViewMenu
resource (page 5-103). When you use kDETChangeViewCommand
as the property command, the CE handles the command without
calling your code resource. The contents of the string come from the
“string to display” field in the view itself.

StaticText Text that cannot be edited by the user. The contents of the string
come from the view property; that is, from the aspect.

EditText Text that the user can edit. The contents of the string come from the
view property; that is, from the aspect.

Bitmap An icon, taken from an icon suite in the aspect template. The CE
looks for an icon suite with a resource ID equal to the aspect
template’s base ID plus the property number. The property number
is in the property number field of the 'detv' structure. The size
field indicates the size of the icon: kDETLargeIcon,
kDETSmallIcon, or kDETMiniIcon.

Box A simple graphic rectangle or rounded rectangle, useful for
drawing dividing lines between view elements and boxes around
elements that do not normally have them, such as sublists. The Box
view type takes a single integer as a parameter. The dimensions of
the box are those of the view itself. The first 4 bytes of the integer
are flags, as follows:

Bit Flag Meaning

none kDETUnused No flags.

0 kDETBoxTakesContentClicks If this flag is set to
1 and the user
clicks in the box,
the CE calls your
code resource with
the property
number.

1 kDETBoxIsRounded Box is a rectangle
with rounded
corners.

2 kDETBoxIsGrayed Box is dimmed.

3 kDETBoxIsInvisible Box is invisible.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-129

DefaultButton A standard button with a heavy border indicating that this is the
default button; that is, pressing Return or Enter keys has the same
effect as clicking the button. Clicking a default button closes any
open edit-text field, whereas clicking a regular button does not. In
every other respect, a DefaultButton view is identical to a
Button view. You can have only one default button in a given
information page.

Button A standard button. You must use the button’s property number for
the property-command field of the 'detv' resource. Then, when
the user clicks the button, the CE calls your code resource with the
routine selector kDETcmdPropertyCommand and with the
property number of the button in the property field of the
parameter block. If your code resource does not handle this
command, the CE does nothing. If you use the property numbers
kDETAddNewItem, kDETRemoveSelectedItems, or
kDETOpenSelectedItems, the CE handles the command without
calling your code resource. These property numbers are described
in Table 5-3 on page 5-86.

Checkbox A standard dialog checkbox, which can be selected or not. The
property can be equal to 0 (checkbox is not selected) or 1 (checkbox
is selected). You must use the checkbox’s property number for the
property-command field of the 'detv' resource. Then when the
user clicks the checkbox, the CE sends the property number to your
code resource. If your code resource does not handle the command,
the CE changes the property value to toggle the checkbox off or on.

Note that if your code resource does handle this command, you
must call the kDETcmdDirtyProperty callback routine
(page 5-233) to force the CE to redraw the checkbox.

RadioButton A standard dialog radio button, which can be on or off, as selected
by the user. When multiple radio buttons are associated with the
same property, only one can be on at a time. You must use the
button’s property number for the property-command field of the
'detv' resource, and you should use a different value for the
command parameter field of each button associated with the same
property. Set the command parameter of the default button (the one
you want the CE to select when the view is first displayed) equal to
the value of the property. When the user clicks the radio button, the
CE first calls your code resource. If your code resource does not
handle the command, the CE sets the value of the property to the
value of the parameter for that button, thereby selecting that button
and deselecting all other radio buttons for that property.

Note that if your code resource does handle this command, you
must call the kDETcmdDirtyProperty callback routine
(page 5-233) to force the CE to redraw the radio button.

Menu A pop-up menu from which the user can select one item, which the
information page then displays as the “state” of the menu. The
menu resource ID field of the 'detv' resource indicates the
'fmnu' resource that specifies the contents of the menu. The menu
resource can have any resource ID. You must use the menu’s

C H A P T E R 5

AOCE Templates

5-130 AOCE Templates Reference

property number for the property-command field of the 'detv'
resource. Pop-up menus are limited to 31 items; if your 'fmnu'
resource includes more than 31 items, the pop-up menu will not
work properly. You cannot put a pop-up menu view in a sublist.

When the user chooses an item in the pop-up menu, the CE calls
your code resource with the routine selector
kDETcmdPropertyCommand and with the property number of the
menu in the property field of the parameter block. The CE gets
the value for the parameter field of the command’s parameter
block from the 'fmnu' resource; your code resource can use this
parameter to determine which item in the pop-up menu the user
has selected. You can use the kDETcmdAddMenu (page 5-238) and
kDETcmdRemoveMenu (page 5-240) callback routines to add and
remove menu items.

EditPicture A picture that the user can select and copy onto the Clipboard, cut,
or replace by pasting.

Custom A custom view defined by the code resource of the aspect
associated with the information page. A custom view can respond
to mouse-down events if you provide code to handle these events.
There is no way for the user to select the custom view, but if no
other view is selected, your code resource can receive keypress
events and interpret them as belonging to the custom view. See
“Custom Views and Custom Menus” beginning on page 5-192 for
more information about how code resources can handle custom
views. You can specify any value you wish for the reference-value
integer in the view list. Your code resource can use the
kDETcmdGetCustomViewUserReference callback routine
(page 5-242) to obtain this value.

Listing 5-15 shows a sample view list.

Listing 5-15 Sample view list

resource 'detv' (rMyInfoPage, purgeable) {

{

{kBitmapTop, kBitmapLeft, kBitmapBottom, kBitmapRight},

kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

{kStatTextTop, kStatTextLeft, kStatTextBottom, kStatTextRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

kDETRight, kDETBold, "Label:" };

{kEditTextTop, kEditTextLeft, kEditTextBottom, kEditTextRight},

kDETEnabled, prEditTextProperty,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-131

 kDETNormal};

{kCheckboxTop, kCheckboxLeft, kCheckboxBottom, kCheckboxRight},

kDETNoFlags, prCheckboxProperty,

CheckBox { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Check Me", prCheckboxProperty };

{kRadio1Top, kRadio1Left, kRadio1Bottom, kRadio1Right},

kDETNoFlags, prRadioProperty,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Radio 1", prRadioProperty, 0 };

{kRadio2Top, kRadio2Left, kRadio2Bottom, kRadio2Right},

kDETNoFlags, prRadioProperty,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Radio 2", prRadioProperty, 1 };

}

};

Implementing Conditional Views

Listing 5-16 shows a lookup table, information page signature resource, and view list

used to implement a conditional view. In Listing 5-16, the information page contains a

view-selection pop-up menu with three choices. When the user chooses an item from the

menu, the value of that item becomes the value of the property prMsgType. In the

'deti' resource, the value of prMsgType determines which view is active. In the

lookup table (the 'dett' resource), the value of prMsgType determines which

properties are processed. Note the use of block and conditional elements in the lookup

table (see “Conditional Element Types” on page 5-112 and “Block Elements” on

page 5-113) to achieve this end. There is one view list for the pop-up menu and one view

list for each of the conditional views.

Note

Listing 5-16 is not a complete, working set of templates. It is intended
only to illustrate the interaction of the information page signature
resource, lookup table, and view lists in the implementation of
conditional views. ◆

Listing 5-16 Implementing a conditional view

#define prMsgType kDETFirstDevProperty

#define prPMDate kDETFirstDevProperty + 1

#define prPMTime kDETFirstDevProperty + 2

#define prPMFrom kDETFirstDevProperty + 3

C H A P T E R 5

AOCE Templates

5-132 AOCE Templates Reference

#define prPMTo kDETFirstDevProperty + 4

#define prNMessage kDETFirstDevProperty + 5

#define prNReply kDETFirstDevProperty + 6

#define prIBOFrom kDETFirstDevProperty + 7

#define prIBOTo kDETFirstDevProperty + 8

#define prIBOBecause kDETFirstDevProperty + 9

resource 'deta' (kCondViewAspect, purgeable) {

0, // drop-operation order

dropCheckAlways, // drop-check flag

notMainAspect // not the main aspect

};

resource 'rstr' (kCondViewAspect + kDETTemplateName, purgeable) {

"WAVE Conditional view aspect" // Start with application signature

};

resource 'rstr' (kCondViewAspect + kDETRecordType, purgeable) {

"WAVE Conditional View" // Start with application signature

};

// Custom information page window with no default pop-up menu

resource 'detw' (kCondViewAspect + kDETAspectInfoPageCustomWindow, purgeable)

{

{0,0,224,224},

discludePopup

};

// Lookup table. Conditional elements correspond to conditional views.

resource 'dett' (kCondViewAspect + kDETAspectLookup, purgeable) {

{

{"aoce MailNote"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'long', prMsgType, 0;

'equa', prMsgType, kDETConstantProperty + 0;

'((((', kDETNoProperty, 0;

'rstr', prPMDate, 0;

'rstr', prPMTime, 0;

'))))', kDETNoProperty, 0;

'equa', prMsgType, kDETConstantProperty + 1;

'((((', kDETNoProperty, 0;

'rstr', prNMessage, 0;

'rstr', prNReply, 0;

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-133

'))))', kDETNoProperty, 0;

'equa', prMsgType, kDETConstantProperty + 2;

'((((', kDETNoProperty, 0;

'rstr', prIBOFrom, 0;

'rstr', prIBOTo, 0;

'rstr', prIBOBecause, 0;

'))))', kDETNoProperty, 0;

};

}

};

resource 'deti' (kCondViewInfoPage, purgeable) {

1000,

kDETNoSublistRect,

noSelectFirstText,

{

kDETNoProperty, kDETNoProperty, kCondViewInfoPage;

prMsgType, kDETConstantProperty + 0, kCondViewInfoPage + 1;

prMsgType, kDETConstantProperty + 1, kCondViewInfoPage + 2;

prMsgType, kDETConstantProperty + 2, kCondViewInfoPage + 3;

},

{

}};

resource 'rstr' (kCondViewInfoPage + kDETTemplateName, purgeable) {

"WAVE Conditional view info page"

};

resource 'rstr' (kCondViewInfoPage + kDETRecordType, purgeable) {

"WAVE Conditional view"

};

resource 'rstr' (kMNInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Conditional view aspect"

};

//View list for conditional-view-selection pop-up menu

resource 'detv' (kMNInfoPage, purgeable) {

{

kMenuTop, kMenuLeft, kMenuBottom, kMenuRight,

kDETNoFlags, prMsgType,

Menu {kDETSystemFont, kDETSystemFontSize, kDETCenter, kDETNormal, "",

prMsgType, kMNInfoPage};

C H A P T E R 5

AOCE Templates

5-134 AOCE Templates Reference

}

}

//Menu resource for conditional-view-selection pop-up menu

resource 'fmnu' (kMNInfoPage, purgeable)

{

kMNInfoPage,

{

0,”Phone Message”;

1,”Note”;

2,”I’ll Be Out”;

}

};

//View lists for conditional views

resource 'detv' (kMNInfoPage + 1, purgeable) {

{

{kTextTop, kLabelLeft, kTextTop + kOneLineHeight, kLabelRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"Date:" };

{kTextTop - 2, kTextColumnLeft, kTextTop + kOneLineHeight - 2,

kTextRight},

kDETEnabled, prPMDate,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

{kTextTop + kOneLineHeight + 2, kLabelLeft,

kTextTop + kOneLineHeight + 2 + kOneLineHeight, kLabelRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"Time:" };

{kTextTop + kOneLineHeight + 2 - 2, kTextColumnLeft,

kTextTop + kOneLineHeight + 2 + kOneLineHeight - 2, kTextRight},

kDETEnabled, prPMTime,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

};

};

resource 'detv' (kMNInfoPage + 2, purgeable) {

{

{kTextTop - 2, kTextLeft, kTextTop + kSixLineHeight - 2, kTextRight},

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-135

kDETMultiLine, rNMessage,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

{kTextTop + kSixLineHeight + 2, kLabelLeft, kTextTop + kSixLineHeight +

2 + kOneLineHeight, kLabelRight}, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"Reply:" };

{kTextTop + kSixLineHeight + 2 + kOneLineHeight + 2 -6, kTextLeft,

kTextBottom, kTextRight}, kDETMultiLine, rNReply,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

};

};

resource 'detv' (kMNInfoPage + 3, purgeable) {

{

{kTextTop, kLabelLeft, kTextTop + kOneLineHeight, kLabelRight},

kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"From:" };

{kTextTop - 2, kTextColumnLeft, kTextTop + kOneLineHeight - 2,

kTextRight}, kDETEnabled, rIBOFrom,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

{kTextTop + kOneLineHeight + 2, kLabelLeft, kTextTop + kOneLineHeight +

2 + kOneLineHeight, kLabelRight}, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle, "To:"

};

{kTextTop + kOneLineHeight + 2 - 2, kTextColumnLeft, kTextTop +

kOneLineHeight + 2 + kOneLineHeight - 2, kTextRight}, kDETEnabled, rIBOTo,

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

{kTextTop + kOneLineHeight + 2 + kOneLineHeight + 2, kLabelLeft,

kTextTop + kOneLineHeight + 2 + kOneLineHeight + 2 + kOneLineHeight,

kLabelRight}, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kLabelFont, kLabelSize, kDETRight, kLabelStyle,

"Because:" };

{kTextTop + kOneLineHeight + 2 + kOneLineHeight + 2 - 2,

kTextColumnLeft, kTextTop + kOneLineHeight + 2 + kOneLineHeight + 2 +

kTwoLineHeight - 2, kTextRight}, kDETEnabled, rIBOBecause,

C H A P T E R 5

AOCE Templates

5-136 AOCE Templates Reference

EditText { kTextFont, kTextSize, kDETLeft, kTextStyle };

};

};

Sublists

If the information page includes a sublist, the information page template includes a view

list that describes a line in the list. Each line in a sublist typically contains an icon, a

“name” field, and a “kind” field, and might contain other fields or controls. For each

item in the sublist, the Catalogs Extension takes the properties for the views from the

main aspect of that item.

Note that, if the sublist contains items of more than one type, each type of item has an

associated main aspect template. For example, if the sublist contains Direct Dialup mail

addresses, PowerTalk serverless mail addresses, and PowerShare server mail addresses,

there are three main aspect templates, one for each type of mail address. The CE uses the

appropriate main aspect template to create the main aspect for each item that appears in

the list. The CE uses a single view list in the information page template to format all of

the lines in the sublist but takes the values to display in the sublist from a separate main

aspect for each line.

The CE does not automatically draw a box around a sublist; if you want a box around a

sublist, you must draw it yourself.

View lists are described in the preceding section. Main aspect templates are described in

“Main Aspect Template Resources” beginning on page 5-88. Listing 5-4 on page 5-44

shows an information page template for an information page with a sublist.

Information Page Resources

In addition to view lists, an information page template contains resources that name the

template, specify the type of record or attribute to which the template applies, provide

the name of the associated aspect, and specify items for the Catalogs menu. The

information page template resources that are common to aspect templates are described

in “Template Names” on page 5-75 and “Specifying Record and Attribute Types for

Templates” on page 5-75. The remaining resources are described in this section. For a

complete list of information page resources, see Table 5-10 on page 5-120.

kDETInfoPageMainViewAspect

All property numbers listed by the view lists for the main portion of the information

page come from one aspect, the main view aspect. The main view aspect also provides the

list of objects to be included in the sublist (if any). Name the main view aspect with an

RString resource that has a resource ID with an offset of

kDETInfoPageMainViewAspect from the template’s base resource.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-137

Note
Do not confuse the main view aspect with a main aspect. A main aspect
provides the properties that describe an item in a sublist. A main view
aspect provides all of the properties needed by the information page
except the contents of the sublist. ◆

resource 'rstr' (rMyInfoPage + kDETInfoPageMainViewAspect, purgeable) {

"WAVE Associated Aspect Name"

};

IMPORTANT

If the information page template does not name a main view aspect, the
Catalogs Extension does not load the template. ▲

kDETInfoPageName

To specify the name of the information page that appears in the page-selection pop-up

menu, use an RString resource that has a resource ID with an offset of

kDETInfoPageName from the template’s base resource.

resource 'rstr' (rMyInfoPage + kDETInfoPageName, purgeable) {

"Information Page Pop-up Name"

};

You must include this resource in every information page template if the information

page window includes a page-selection pop-up menu. Only custom information pages

can exclude page-selection pop-up menus; see the description of the

kDETAspectInfoPageCustomWindow resource on page 5-97.

kDETInfoPageMenuEntries

You can use a resource of type 'detm' to add items to the Catalogs menu. Give the

resource an ID with an offset of kDETInfoPageMenuEntries from the template’s base

resource ID.

resource 'detm' (rMyInfoPage + kDETInfoPageMenuEntries, purgeable) {

rMyInfoPage + kDETInfoPageMenuEntries,

{

menuParameter1, "Entry 1";

menuParameter2, "Entry 2";

}

};

C H A P T E R 5

AOCE Templates

5-138 AOCE Templates Reference

When the user chooses an item, the Catalogs Extension calls the code resource in the

aspect with the routine selector kDETcmdCustomMenuSelected (page 5-195), passing

your code the menu parameter from the kDETInfoPageMenuEntries resource for the

item the user selected. Your code resource is also called (with the

kDETcmdCustomMenuEnabled routine selector described on page 5-194) to determine

if the menu item should be enabled.

Components of Forwarder Templates

Forwarder templates provide a list of names of aspect and information page templates

that can be used with the record or attribute type to which the template applies.

A forwarder template can contain the resources listed in Table 5-11.

Table 5-11 Resources in forwarder templates

Resource
type

Offset of resource ID from signature
resource ID Purpose of resource

'detf' 0 Identifies template as forwarder and provides a
base resource ID. Required for all forwarder
templates.

'rstr' kDETTemplateName Name of template. Required for all forwarder
templates.

'rstr' kDETRecordType Type of record to which the template applies.
Either this resource, the kDETAttributeType
resource, or both must be included.

'rstr' kDETAttributeType Type of attribute to which the template applies.
Either this resource, the kDETRecordType
resource, or both must be included.

'detn' kDETAttributeValueTag Attribute tag of attributes to which the template
applies. You can provide this resource if you
have also provided the kDETAttributeType
resource. If you don’t provide this resource the
template applies to attributes with any tag value.

'rst#' kDETForwarderTemplateNames A list of names of aspect and information page
templates that the CE can use with the record or
attribute type to which this forwarder template
applies.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-139

Forwarder Template Signature Resource

The forwarder template signature resource provides a base resource ID from which the

other resource IDs in the template are offset and provides the forwarder template

version number of the template.

'detf' Resource

Use a resource of type 'detf' for the forwarder template signature resource.

type 'detf' {

longInt = kDETForwarderVersion; /* template format version */

};

Forwarder Template Resources

A forwarder template contains resources that name the template, specify the type of

record or attribute to which the template applies, and specify the names of templates

that the Catalogs Extension can use with the record or attribute to which the template

applies. The forwarder template resources that are common to aspect and information

page templates are described in “Template Names” on page 5-75 and “Specifying Record

and Attribute Types for Templates” on page 5-75. The remaining resource is described in

this section. For a complete list of forwarder template resources, see Table 5-11 on

page 5-138.

kDETForwarderTemplateNames

To specify the templates that the Catalogs Extension can use with the record or attribute

to which the forwarder template applies, use a resource of type 'rst#' that has a

resource ID with an offset of kDETForwarderTemplateNames from the template’s

base resource.

resource 'rst#' (kForwarderTemplate + kDETForwarderTemplateNames,

purgeable) {

{ "WAVE Album", "WAVE Track" }

};

C H A P T E R 5

AOCE Templates

5-140 AOCE Templates Reference

Components of Killer Templates

A killer template provides a list of names of templates that the Catalogs Extension

should ignore. You can use killer templates to disable any type of template except

another killer template. A killer template can contain the resources listed in Table 5-12.

Killer Template Signature Resource

The killer template signature resource provides a base resource ID from which the other

resource IDs in the template are offset and provides the killer template version number

of the template.

'detk' Resource

Use a resource of type 'detk' for the killer template signature resource.

type 'detk' {

longInt = kDETKillerVersion; /* template format version */

};

Killer Template Resources

A killer template contains resources that name the template and specify the names of

templates that the Catalogs Extension should ignore. The killer template name resource

is described in “Template Names” on page 5-75. The other resource is described in this

section. For a complete list of killer template resources, see Table 5-12.

kDETKillerName

To specify the templates that the CE should disable, use a resource of type 'rst#' that

has a resource ID with an offset of kDETKillerName from the template’s base resource.

Table 5-12 Resources in killer templates

Resource
type

Offset of resource ID from
signature resource ID Purpose of resource

'detk' 0 Identifies template as killer and provides a base resource
ID. Required for all killer templates.

'rstr' kDETTemplateName Name of template. Required for all killer templates.

'rst#' kDETKillerName A list of names of templates to disable.

C H A P T E R 5

AOCE Templates

AOCE Templates Reference 5-141

resource 'rst#' (kKillerTemplate + kDETKillerName, purgeable) {

{ "WAVE Album", "WAVE Track" }

};

Components of File Type Templates

A file type template provides a list of file types that the Catalogs Extension should search

for AOCE templates. A file type template can contain the resources listed in Table 5-13.

File Type Template Signature Resource

The file type template signature resource provides a base resource ID from which the

other resource IDs in the template are offset, provides the file type template version

number of the template, and lists the file types that the CE is to search for templates.

'detx' Resource

Use a resource of type 'detx' for the file type template signature resource.

type 'detx' {

longInt = kDETFileTypeVersion; /* template format version */

integer = $$CountOf(ItemArray); /* count */

array ItemArray {

longInt; /* type of additional file */

};

};

File Type Template Resources

A file type template contains a resource that names the template. The file type template

name resource is described in “Template Names” on page 5-75.

Table 5-13 Resources in file type templates

Resource
type

Offset of resource ID from
signature resource ID Purpose of resource

'detx' 0 Identifies template as file type and provides a base
resource ID. Required for all file type templates.

'rstr' kDETTemplateName Name of template. Required for all file type templates.

5-142 Code Resources Reference

C H A P T E R 5

AOCE Templates

Code Resources Reference

This section describes the data types and CE-provided routines you can use in a code

resource (resource type 'detc'). It also describes the routines that your code resource

can provide and the circumstances in which the CE calls each of these routines.

Rules for Writing Code Resources

Because AOCE templates extend the Finder and are called by the Finder, it is possible for

a code resource routine to corrupt the Finder or cause it to crash. To make sure that your

code resource causes no problems, follow these rules:

■ Use as little memory as possible. Try to allocate all the memory you need when you
initialize the template (in your kDETcmdInit routine, page 5-150) and provide error
handling for insufficient-memory cases whenever you allocate memory.

■ Don’t use global variables. The CE does not maintain an A5 world for template code
resources. If your compiler uses global space for inline code, you must not use such
code in your routines.

■ Don’t assume that the CE locks down your code resource. In the interval between
calls by the CE to your code resource, your code is unlocked and purgeable. You
cannot use callback or completion routines for operations that don’t complete before
they return to the CE. If you must use a completion or callback routine for a function
that you call asynchronously, you must load your own code resource into memory
and lock it. Note, however, that doing so interferes with the Finder’s efficient use of
memory, causing problems for the user.

■ Before changing anything, always save the state of the system, including the graphics
state, resource chain, and current file, and restore them before returning to the CE or
calling any CE callback routines.

Data Types

The routines in an AOCE template code resource use the data types described in this

section.

Target Specifier

Many routines in an AOCE template code resource refer to a specific aspect. The AOCE

template target specifier specifies the aspect to which the routine applies. The target

specifier is defined by the DETTargetSpecification structure.

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-143

struct DETTargetSpecification

{

DETTargetSelector selector; /* target selector */

RStringPtr aspectName; /* aspect name */

long itemNumber; /* sublist index number */

PackedDSSpecPtr dsSpec; /* DSSpec */

};

Field descriptions

selector A value that indicates whether the specified aspect is the current
aspect (the one with which the code resource is associated) or some
other aspect. The possible values for this field are listed following
these field descriptions.

aspectName A pointer to the name of the aspect. You can specify nil for this
field if the target is a main aspect and the value of the selector
field is not kDETSelf. For target specifiers that the CE sends to
your code resource, however, this field is always filled in if the
target is an aspect, even if it’s a main aspect. If you receive a target
specifier with a nil in this field, the target is not an aspect (it might
be a template, for example).

itemNumber If the value of the selector field is kDETSublistItem, then the
itemNumber field contains the index number of an item in the
current aspect’s sublist. Item numbers start with 1. If the selector
field is set to kDETSelectedSublistItem, then the index
number counts only items in the sublist that the user has selected. If
the selector field is set to kDETAspectTemplate, then the
target is the aspect template indexed by the itemNumber field (the
CE assigns an index number to every template that it loads into
memory). If the selector field is set to
kDETInfoPageTemplate, the target is the information page
template indexed by the itemNumber field. If the selector field
is set to any other value, the CE ignores this field.

dsSpec A pointer to a DSSpec structure. If the selector field is set to
kDETDSSpec, then the dsSpec field indicates the target item. If the
selector field is set to any other value, the CE ignores this field.

enum DETTargetSelector {

kDETSelf = 0, /* the current item */

kDETSelfOtherAspect, /* another aspect of the current item */

kDETParent, /* the parent of the current item */

kDETSublistItem, /* the ith item in the sublist */

kDETSelectedSublistItem, /* the ith selected item in the sublist */

kDETDSSpec, /* DSSpec */

kDETAspectTemplate, /* specific aspect template */

C H A P T E R 5

AOCE Templates

5-144 Code Resources Reference

kDETInfoPageTemplate, /* specific info-page template */

kDETHighSelector = 0xF000 /* force type to be short */

};

typedef enum DETTargetSelector DETTargetSelector;

Constant descriptions

kDETSelf The target aspect is the current one; that is, the aspect that
originated the call to the code resource. The CE ignores all fields
other than the selector field. When the CE calls your code
resource to handle a targeted event, it sets the target selector type to
kDETSelf. If your code resource doesn’t handle the event and the
aspect is an attribute, the CE calls the aspect’s parent record and
sets the selector type to kDETSublistItem.

kDETSelfOtherAspect
The target is another aspect of the record or attribute to which the
current aspect applies. The aspectName field points to the name of
the target aspect.

kDETParent The target is an aspect of the object in whose sublist the current
object resides. That is, the current aspect is for an attribute, and the
target aspect is an aspect of the record that contains that attribute.
The aspectName field points to the name of the target aspect,
which can be any aspect of the parent.

kDETSublistItem
The target is an aspect of an item in the sublist of the current aspect.
The itemNumber field contains the index number of the item in the
sublist. Index numbers start with 1. The aspectName field points
to the name of the target aspect. When you call a routine provided
by the CE, you can set the aspectName field to nil to target the
main aspect. This selector type is useful for iterating through all of
the items in a sublist. When the CE calls your code resource to
handle a targeted event, it sets the target selector type to kDETSelf.
If your code resource doesn’t handle the event, the CE calls the
aspect’s parent and sets the selector type to kDETSublistItem.

kDETSelectedSublistItem
The target is an aspect of an item in the sublist of the current aspect.
The itemNumber field contains the index number of the item in the
sublist, counting only the items the user has selected. Index
numbers start with 1. The aspectName field points to the name of
the target aspect. When you call a routine provided by the CE, you
can set the aspectName field to nil to target the main aspect. This
selector type is useful for iterating through all of the items that the
user has selected in a sublist.

kDETDSSpec The target is the item specified by the dsSpec field. You must wait
until the kDETPastFirstLookup metaproperty changes to 1
before you can target a catalog object. Metaproperties are listed in
Table 5-3 on page 5-86.

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-145

kDETAspectTemplate
The target is the aspect template indexed by the itemNumber field.
The CE assigns an index number to every aspect template that it
loads into memory. You can use this target selector only with the
callback routines kDETcmdGetResource (page 5-207) and
kDETcmdGetTemplateFSSpec (page 5-206).

kDETInfoPageTemplate
The target is the information page template indexed by the
itemNumber field. The CE assigns an index number to every
information page template that it loads into memory. You can use
this target selector only with the callback routines
kDETcmdGetResource (page 5-207) and
kDETcmdGetTemplateFSSpec (page 5-206).

Forwarder List

Your kDETcmdDynamicForwarders code-resource routine (page 5-155) returns a

linked list of forwarder items, each of which contains the same information as a

forwarder template (see “Components of Forwarder Templates” beginning on

page 5-138). A forwarder item is defined by the DETForwarderListItem structure.

struct DETForwarderListItem {

struct DETForwarderListItem** next;/* handle to next item, or nil */

AttributeTag attributeValueTag; /* attribute value tag (0 for none) */

PackedPathName rstrs; /* forwarder list */

};

The rstrs field is a list of packed RString structures in the format defined by the

PackedPathName data type. This field contains the record type (an empty, or

zero-length, string if none), the attribute type (empty if none), and a list of template

names to forward to. The PackedPathName data type and functions for working with

PackedPathName and RString structures are defined in the chapter “AOCE Utilities”

in this book.

Call Block Headers

When the Catalogs Extension calls your code resource, it passes it a pointer to an AOCE

template call block. The call block indicates which event occurred and includes

additional parameters specific to each type of event. Every call block starts with the same

fields, described here. The fields specific to each event are listed and described with the

description of the code-resource routine that you must provide to handle the event. See

“Functions You Can Provide as Part of Your Code Resource” beginning on page 5-148 for

these descriptions.

There are three headers for call blocks: the AOCE template call block header, the AOCE

template call block targeted header, and the AOCE template call block property header.

These headers all have several fields in common. All of the fields are described in this

section following the header definitions.

C H A P T E R 5

AOCE Templates

5-146 Code Resources Reference

#define DETCallBlockHeader \

DETCallFunctions reqFunction; /* requested function */\

DETCallBack callBack; /* pointer to callback routine */\

long callBackPrivate; /* private data for the callback routine */\

long templatePrivate; /* private data stored in template */

#define DETCallBlockTargetedHeader \

DETCallFunctions reqFunction; /* requested function */\

DETCallBack callBack; /* pointer to callback routine */\

long callBackPrivate; /* private data for the callback routine */\

long templatePrivate; /* private data stored in template */\

long instancePrivate; /* private data stored in aspect */\

DETTargetSpecification target;/* the target (originator) of the call */\

Boolean targetIsMainAspect; /* true if the target is the main aspect */

#define DETCallBlockPropertyHeader \

DETCallFunctions reqFunction; /* requested function */\

DETCallBack callBack; /* pointer to callback routine */\

long callBackPrivate; /* private data for the callback routine */\

long templatePrivate; /* private data stored in template */\

long instancePrivate; /* private data stored in aspect */\

DETTargetSpecification target;/* the target (originator) of the call */\

Boolean targetIsMainAspect; /* true if the target is the main aspect */\

 short property; /* the property number the call refers to */

Field descriptions

reqFunction A routine selector that tells you which of your code resource
routines to execute. For a list of the routine selectors and a
description of the routines, see “Functions You Can Provide as Part
of Your Code Resource” beginning on page 5-148.

callBack A pointer to the CE’s entry point for CE routines that you can call
from your code resource. If you want to call one of the CE’s callback
routines, pass the parameters described with that routine to the
routine at the address in this field. You can use the CallBackDET
macro described on page 5-197 for this purpose. The available
AOCE template callback routines are described in “CE-Provided
Functions That Your Code Resource Can Call” starting on
page 5-196.

callBackPrivate
Reserved.

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-147

templatePrivate
Private storage for use by the code resource. You provide a value for
this field when the code resource first calls your kDETcmdInit
routine. The CE saves this value until you execute your
kDETcmdExit routine and includes it in the parameter block every
time it calls the code for any aspect created from this aspect
template. Your code resource can change this value at any time.

instancePrivate
Private storage for use by the code resource. The CE maintains a
separate instancePrivate field for each instance of an aspect
template; that is, for each aspect. You provide a value for this field
when the code resource first calls your kDETcmdInstanceInit
routine. The CE saves this value until you execute your
kDETcmdInstanceExit routine and includes it in the parameter
block every time it calls the code for this aspect. Your code resource
can change this value at any time.

target A target specifier structure indicating which aspect was the original
target of the event. For example, if the CE calls the code resource for
an attribute and that code resource doesn’t handle the event, the CE
calls the code resource for the record that contains the attribute. In
that case, the target specifier identifies the attribute that was called
initially. See “Target Specifier” on page 5-142.

targetIsMainAspect
A Boolean value that indicates whether the target is a main aspect
(true) or not (false).

property The property number of the property the routine refers to.

Callback Block Headers

When your code resource calls a function supplied by the Catalogs Extension, the code

resource passes a pointer to an AOCE template callback block. The callback block

indicates which routine it wants the CE to execute and includes additional parameters

specific to each type of routine. Every callback block starts with the same fields,

described here. The fields specific to each routine are listed and described with the

description of the callback routine. See “CE-Provided Functions That Your Code

Resource Can Call” beginning on page 5-196 for these descriptions.

There are three headers for callback blocks: the AOCE template callback block header,

the AOCE template callback block targeted header, and the AOCE template callback

block property header.

#define DETCallBackBlockHeader \

DETCallBackFunctions reqFunction; /* requested function */

C H A P T E R 5

AOCE Templates

5-148 Code Resources Reference

#define DETCallBackBlockTargetedHeader \

DETCallBackFunctions reqFunction; /* requested function */\

DETTargetSpecification target; /* the target for the request */

#define DETCallBackBlockPropertyHeader \

DETCallBackFunctions reqFunction; /* requested function */\

DETTargetSpecification target; /* the target for the request */\

short property; /* the property to apply the

 request to */

Functions You Can Provide as Part of Your Code Resource

The AOCE Catalogs Extension calls your code resource when certain events occur, such

as a change in an attribute value or a mouse-down event in a custom view. Your code

resource must be reentrant. The CE might call the routines in your code resource at any

time and in any order (except for a few routines, such as your initialization and exit

routines, as indicated in this chapter).

If your code resource does not handle an event, it must return the kDETDidNotHandle

result code. If it successfully handles the event, your code resource should return the

noErr result code. You can return any negative number as a result code to indicate an

error.

If an attribute does not have a code resource, or your code resource for the attribute

doesn’t handle an event, the CE calls the code resource (if any) in the aspect for the

record that is the parent of the code resource it called originally.

The CE passes to your code resource a pointer to a parameter block. The fields of the

parameter block are described in the preceding section and in the individual routine

descriptions in this section. The function prototype for your code resource’s main routine

is

pascal OSErr MyCode(DETCallBlockPtr callBlockPtr);

The DETCallBlock structure is a union of all the parameter blocks for the code resource

routines. The routine selector is specified by the reqFunction field of the parameter

block header. You can read this field as follows:

callBlockPtr->protoCall.reqFunction

IMPORTANT

The CE does not save your code resource’s A5 world. You cannot use
application global variables in your code resource. ▲

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-149

Call-For Mask

Most code resources do not need to respond to the majority of events for which the

Catalogs Extension can call your code resource. To avoid being called unnecessarily, each

template’s code resource has a “call-for” mask that indicates the events for which it

should be invoked. Your code-resource initialization routine must return the call-for

mask when it is called for initialization. In addition, your code resource can use the

kDETcmdChangeCallFors callback routine (page 5-198) to change the call-for mask.

Not every possible event has a corresponding bit in the call-for mask. There are two

classes of events excepted from the call-for mask: events that occur very infrequently

(such as initialization), and events that occur only because the template specifically

caused them (for instance, by including a custom view in an information page view list).

Your code resource is always called for all such events unless you specify a value

of kDETCallForNothing for your call-for mask. To be called only for such events,

specify kDETCallForOther.

A parent object is not given calls that its children failed to handle unless the

kDETCallForEscalation bit is set in the call-for mask.

/* Call-for list: */

#define kDETCallForOther 1 /* call for events not listed below */

#define kDETCallForIdle 2 /* kDETcmdIdle */

#define kDETCallForCommands 4 /* kDETcmdPropertyCommand,

 kDETcmdSelfOpen */

#define kDETCallForViewChanges 8 /* kDETcmdViewListChanged,

 kDETcmdPropertyDirtied,

 kDETcmdMaximumTextLength */

#define kDETCallForDrops 0x10 /* kDETcmdDropQuery,

 kDETcmdDropMeQuery */

#define kDETCallForAttributes 0x20 /* kDETcmdAttributeCreation,

 kDETcmdAttributeNew,

 kDETcmdAttributeChange,

 kDETcmdAttributeDelete */

#define kDETCallForValidation 0x40 /* kDETcmdValidateSave */

#define kDETCallForKeyPresses 0x80 /* kDETcmdKeyPress and

 kDETcmdPaste */

#define kDETCallForSyncing 0x200 /* kDETcmdShouldSync, kDETcmdDoSync */

#define kDETCallForResources 0x100 /* kDETcmdDynamicResource */

#define kDETCallForEscalation 0x8000/* all calls escalated to the

 next level */

#define kDETCallForNothing 0 /* do not call */

#define kDETCallForEverything 0xFFFFFFFF /* all of the above */

C H A P T E R 5

AOCE Templates

5-150 Code Resources Reference

Initializing and Removing Templates

The Catalogs Extension calls the code resource routines in this section when it loads

aspect templates into memory (kDETcmdInit), creates aspects

(kDETcmdInstanceInit), creates attributes or records (kDETcmdItemNew), removes

an aspect template from memory (kDETcmdExit), and removes an aspect from memory

(kDETcmdInstanceExit).

kDETcmdInit

The CE calls your code resource with this routine selector when the CE first loads the

template.

struct DETInitBlock {

DETCallBlockHeader

long newCallFors;

};

Parameter block

DESCRIPTION

The Catalogs Extension calls your code resource with the kDETcmdInit routine selector

only when the Finder loads your aspect template during template initialization (such as

during system initialization or the first time the CE needs a template after you have

called the kDETcmdUnloadTemplates callback routine). You should use this

opportunity to initialize the call-for mask for your template and to allocate any memory

your template needs. Return the call-for mask in the newCallFors field. Place a pointer

to your template’s data in the templatePrivate field of the parameter block.

You can call the CE callback routines kDETcmdGetTemplateFSSpec, kDETcmdBeep,

or kDETcmdAboutToTalk. You should use the routine kDETcmdAboutToTalk only if

you need to report a problem to the user.

Return the noErr result code if you return a new call-for list. If you set the call-for mask

to kDETCallForEverything, return the kDETDidNotHandle result code. If for some

reason you do not want the template to be loaded (for example, if you cannot allocate the

memory you need), return an error code.

→ reqFunction DETCallFunctions kDETcmdInit
↔ templatePrivate long Data stored in template
→ callBack DETCallBack Callback pointer
← newCallFors long Call-for list

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-151

SPECIAL CONSIDERATIONS

Because the CE has not yet created any aspects, you cannot call any targeted callback

routines from your initialization routine.

Because the CE might not have loaded all main aspect templates, the Standard Catalog

Package does not yet have information on the icons, record types, and record categories

available. Therefore, your initialization routine cannot call the Standard Catalog Package

functions SDPGetIconByType, SDPGetDSSpecIcon, SDPGetCategories, and

SDPGetCategoryTypes.

Because the Collaboration toolbox might not yet be available, do not call any

Collaboration toolbox functions unless you have used the Gestalt Manager to check for

its availability.

CALL-FOR MASK VALUE

None

SEE ALSO

Call-for masks are described in “Call-For Mask” on page 5-149.

All Standard Catalog Package functions are described in the chapter “Standard Catalog

Package” in this book.

kDETcmdExit

The CE calls your code resource with this routine selector before it removes the template.

struct DETExitBlock{

DETCallBlockHeader

};

Parameter block

DESCRIPTION

The Catalogs Extension calls your exit routine just before it removes your template. The

CE removes templates when the system shuts down or when you call the

kDETcmdUnloadTemplates callback routine. Your exit routine should free any

memory you allocated. You can call the CE callback routines

kDETcmdGetTemplateFSSpec, kDETcmdBeep, or kDETcmdAboutToTalk. You

→ reqFunction DETCallFunctions kDETcmdExit
→ templatePrivate long Data stored in template
→ callBack DETCallBack Callback pointer

C H A P T E R 5

AOCE Templates

5-152 Code Resources Reference

should use the routine kDETcmdAboutToTalk only if you need to report a problem to

the user.

Your exit routine should return the noErr or kDETDidNotHandle result code or a

specific error code.

SPECIAL CONSIDERATIONS

Because the AOCE toolbox might have already been shut down, your exit routine should

not call any AOCE functions.

CALL-FOR MASK VALUE

None

kDETcmdInstanceInit

The CE calls your code resource with this routine selector when it creates an aspect from

your aspect template.

struct DETInstanceInitBlock {

DETCallBlockTargetedHeader

};

Parameter block

DESCRIPTION

The Catalogs Extension calls your instance-initialization routine once each time it creates

an aspect from your aspect template. You should allocate any memory needed by this

aspect and place a pointer to the aspect’s data in the instancePrivate field of the

parameter block.

If your routine returns an error (any negative result code), the CE disables your code

resource and does not call it again for this aspect. In all other respects the aspect

continues to function normally, and the CE can still call your code resource for other

aspects for the same template.

If your routine returns either the noErr or kDETDidNotHandle result codes, the CE

processes the aspect normally.

→ reqFunction DETCallFunctions kDETcmdInstanceInit
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-153

The CE can remove this aspect from memory at any time that the aspect is not in use and

the Finder needs the memory. In that case, the CE calls your kDETcmdInstanceExit

routine. The CE will then call your kDETcmdInstanceInit routine again whenever it

needs the aspect, such as when the user opens a record or causes a catalog folder

window to redraw.

CALL-FOR MASK VALUE

None

SEE ALSO

The kDETcmdInstanceExit routine is described on page 5-154.

kDETcmdItemNew

The CE calls your code resource with this routine selector when it creates a new record

or attribute.

struct DETItemNewBlock{

DETCallBlockTargetedHeader

};

Parameter block

DESCRIPTION

After the Catalogs Extension creates an aspect and calls your kDETcmdInstanceInit

routine, the CE calls your new item routine each time it creates a new record or attribute.

You can use this opportunity to specify initial values for attributes or perform other

actions appropriate to a new attribute or record of the type supported by this aspect.

CALL-FOR MASK VALUE

None

SEE ALSO

The kDETcmdInstanceInit routine is described on page 5-152.

→ reqFunction DETCallFunctions kDETcmdItemNew
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?

C H A P T E R 5

AOCE Templates

5-154 Code Resources Reference

kDETcmdInstanceExit

The CE calls your code resource with this routine selector before it removes an aspect

from memory.

struct DETInstanceExitBlock {

DETCallBlockTargetedHeader

};

Parameter block

DESCRIPTION

The Catalogs Extension can remove an aspect from memory at any time the aspect is not

in use and the Finder needs additional memory. Your instance exit routine should release

any memory allocated by the kDETcmdInstanceInit routine for this aspect. The CE

ignores the result code your instance exit routine returns.

CALL-FOR MASK VALUE

None

SEE ALSO

The kDETcmdInstanceInit routine is described on page 5-152.

Dynamic Creation of Resources

Your code resource can extend the use of your templates much as a forwarder template

does. Your code resource can also substitute resources for those in the template file.

Because the Catalogs Extension loads resources as needed, it can call your code resource

at any time for this purpose. The CE calls the code resource routines described in this

section to achieve these ends.

→ reqFunction DETCallFunctions kDETcmdInstanceExit
↔ templatePrivate long Data stored in template
→ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-155

kDETcmdDynamicForwarders

The CE calls your code resource with this routine selector to allow you to apply the

template to additional record or attribute types.

struct DETDynamicForwardersBlock {

DETCallBlockHeader

DETForwarderListHandle forwarders;

};

Parameter block

DESCRIPTION

When the Catalogs Extension is loading your template, after it calls your kDETcmdInit

routine, it calls your kDETcmdDynamicForwarders routine to allow you to add record

or attribute types to those to which the template applies. The forwarders field is a

handle to a linked list of elements of type DETForwarderListItem. Each contains the

same information as is found in a forwarder template: a record type, attribute type, or

both; an attribute value tag (0 for none); and a list of template names (including both

aspect and information page templates).

Your kDETcmdDynamicForwarders routine must allocate the handles containing the

returned data, but the CE disposes of them when done.

If your routine returns kDETDidNotHandle or an error, the CE does not process the

forwarders list.

CALL-FOR MASK VALUE

None

SEE ALSO

The DETForwarderListItem structure is defined in “Forwarder List” on page 5-145.

The forwarder template is described in “Components of Forwarder Templates”

beginning on page 5-138.

→ reqFunction DETCallFunctions kDETcmdDynamicForwarders
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
← forwarders DETForwarderListHandle List of forwarders

C H A P T E R 5

AOCE Templates

5-156 Code Resources Reference

kDETcmdDynamicResource

The CE calls your code resource with this routine selector when it is about to load a

resource from your template file to give you the opportunity to substitute a different

resource.

struct DETDynamicResourceBlock {

DETCallBlockTargetedHeader

ResType resourceType;

short propertyNumber;

short resourceID;

Handle theResource;

};

Parameter block

DESCRIPTION

Before the Catalogs Extension loads a resource from your template file, it calls your

kDETcmdDynamicResource routine to give you the opportunity to substitute a

different resource for the one in the file. The CE calls this routine for any resource except

the aspect template signature resource ('deta') and those used by a forwarder template

or the kDETcmdDynamicForwarders routine (the attribute value tag, attribute type,

and record type resources; see Table 5-11 on page 5-138.)

The resourceType field contains the type of resource required. The propertyNumber

field contains the property number of the resource, and the resourceID field contains

the resource ID of the resource (that is, the base template resource ID plus the property

number).

If you want to substitute a different resource for the one in the template file, return a

handle to the new resource in the theResource field. You must allocate the handle; the

CE disposes of it when finished with it.

If your routine returns kDETDidNotHandle or an error, then the CE uses the resource

from the template file.

→ reqFunction DETCallFunctions kDETcmdDynamicResource
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ resourceType ResType Type of resource being

requested
→ propertyNumber short Property number of requested

resource
→ resourceID short Resource ID
← theResource Handle Replacement resource

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-157

SPECIAL CONSIDERATIONS

Do not allocate a resource handle for the theResource field; you must own this handle.

Because the CE calls your kDETcmdDynamicResource routine every time it loads a

resource, you should include such a routine only if you have a specific reason to do so.

Otherwise, use the call-for mask to avoid having the CE call your code resource for

resource loading.

CALL-FOR MASK VALUE

kDETCallForResources

SEE ALSO

Before loading resources from a forwarder template file, the CE calls your

kDETcmdDynamicForwarders routine (page 5-155).

Processing Idle-Time Tasks

When an information page that uses your aspect template is the frontmost window, the

CE calls your code resource periodically with the kDETcmdIdle routine selector.

kDETcmdIdle

The CE calls your code resource with this routine selector periodically during idle times.

struct DETInstanceIdleBlock {

DETCallBlockTargetedHeader

};

Parameter block

DESCRIPTION

The Catalogs Extension calls your code resource with this routine selector during idle

times when an information page that uses your aspect template is the Finder’s frontmost

window and the Finder is the frontmost application. An aspect code resource cannot

perform an idle-time task unless its window is frontmost.

→ reqFunction DETCallFunctions kDETcmdIdle
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?

C H A P T E R 5

AOCE Templates

5-158 Code Resources Reference

The CE ignores the result code returned by this routine. Therefore, the CE does not call

the parent record’s code resource when the aspect for an attribute returns

kDETDidNotHandle.

CALL-FOR MASK VALUE

kDETCallForIdle

Property and Information Page Functions

The routines in this section interact directly with an information page. The Catalogs

Extension calls your kDETcmdOpenSelf routine, described next, to give you the

opportunity to override the standard behavior when the user opens an information

page. Your kDETcmdPropertyCommand routine (page 5-159) processes a command sent

by an information page property, such as a button or menu item. Your

kDETcmdKeyPress (page 5-163) and kDETcmdPaste (page 5-164) routines handle

keypresses and paste operations that occur when the user is using your information

page.

Your kDETcmdMaximumTextLength routine (page 5-166) specifies the maximum

permitted length for a text string in an information page.

The CE calls your kDETcmdViewListChanged routine (page 5-166) when the list of

enabled views has changed in an information page. The CE calls your

kDETcmdPropertyDirtied routine (page 5-167) to give you an opportunity to update

the information page display when a property value changes. The CE calls your

kDETcmdValidateSave routine (page 5-168) when the CE is about to save property

values.

kDETcmdOpenSelf

The CE calls your code resource with this routine selector before it opens an information

page to give you the opportunity to override the normal behavior.

struct DETOpenSelfBlock {

DETCallBlockTargetedHeader

short modifiers;

};

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-159

Parameter block

DESCRIPTION

When a user attempts to open a catalog object for which you provided the main aspect,

the Catalogs Extension calls the code resource of that main aspect with the

kDETcmdOpenSelf routine selector before opening the information page. You can use

this opportunity to do something other than opening the information page or to set

default values for the information page before it opens.

Because the target is always a main aspect when you receive this routine selector, the

value of targetIsMainAspect is always true.

If your routine returns the kDETDidNotHandle result code, the CE opens the

information page normally. If it returns noErr, the CE does not open the information

page. If it returns an error, the CE displays a Finder error dialog box and does not open

the information page.

CALL-FOR MASK VALUE

kDETCallForCommands

kDETcmdPropertyCommand

The CE calls your code resource with this routine selector when the user takes certain

actions in an information page.

struct DETPropertyCommandBlock {

DETCallBlockPropertyHeader

long parameter;

};

→ reqFunction DETCallFunctions kDETcmdOpenSelf
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ modifiers short Modifier keys

C H A P T E R 5

AOCE Templates

5-160 Code Resources Reference

Parameter block

DESCRIPTION

The Catalogs Extension calls your property-command routine when the user clicks a

button or checkbox in an information page, selects an item in a pop-up menu, or clicks

on static command text. The CE also calls your property-command routine when you

return a property number in response to a drop operation that affects your aspect or

when you call the kDETcmdDoPropertyCommand callback command.

When it calls your property command, the CE always includes a value in the property

field of the parameter block. This is always a number you have supplied; either in the

command field of the 'detv' resource for the view that originated the property

command, or as a parameter to your kDETcmdDropQuery routine or the

kDETcmdDoPropertyCommand callback routine. Most commonly, you use the property

number of the view as the value of the command field of the 'detv' resource so that

your code resource can tell which view sent the property command. Some property

commands, such as those related to drop operations, do not originate from views. In this

case, you use the value of the property field of the parameter block as a routine

selector rather than as a property number.

Some property commands include a parameter in the parameter field of the parameter

block; for example, if the user selects an item in a pop-up menu, the CE includes the

number of the menu item in the parameter field of the parameter block when it calls

your property-command routine. Table 5-14 shows the various property commands that

you can handle in your code resource and describes the origin of the value in the

property and parameter fields of the parameter block for each type of property

command.If your routine returns a result code of noErr, the CE assumes that you have

handled the command and takes no further action. If your routine returns a result code

of kDETDidNotHandle, the CE calls the code resource of the parent of the object whose

code resource was called originally (that is, if the code resource was for an attribute, the

CE calls the code resource, if any, of the record that contains that attribute). If your

routine returns a value in the parameter field when it returns a result code of

kDETDidNotHandle for radio buttons, checkboxes, and pop-up menus, the CE sets the

value of the property equal to the value in the parameter field.

If your routine returns an error code (any nonzero result code), the CE displays a dialog

box specifying the error and leaves the value of the property unchanged.

→ reqFunction DETCallFunctions kDETcmdPropertyCommand
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
↔ parameter long Command parameter

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-161

Table 5-14 Property commands

Source of command
property field of parameter
block

parameter field of parameter
block

Button Value in the property-command
field of the 'detv' resource for
the button; this must equal the
property number of the button.

Not used.

NOTE If your routine returns kDETDidNotHandle, the CE ignores the
button click. If you use the property numbers kDETAddNewItem,
kDETRemoveSelectedItems, or kDETOpenSelectedItems, the CE
handles the command without calling your code resource (see Table 5-3 on
page 5-86).

Default button Value in the property-command
field of the 'detv' resource for
the button; this must equal the
property number of the button.

Not used.

NOTE If your routine returns kDETDidNotHandle, the CE ignores the
button click.

Radio button Value in the property-command
field of the 'detv' resource for
the button; this must equal the
property number of the button.

Value in the command-parameter
field of the 'detv' resource for
the button. Each button in a set of
radio buttons must have a distinct
value.

NOTE The button displayed as “on” is the one for which the
command-parameter field is equal to the value of the property. If your
property-command routine returns kDETDidNotHandle, the CE sets the
value of the property equal to the value in the parameter field of the
parameter block. Therefore, if you do not alter the value in the
parameter field, the button the user clicked is displayed as “on.”

If you do handle the radio-button command yourself, you must call the
kDETcmdDirtyProperty callback routine (page 5-233) to force the CE to
redraw the radio button.

Checkbox Value in the property-command
field of the 'detv' resource for
the checkbox; this must equal the
property number of the checkbox.

Set by the CE to the opposite of
the current property value (that is,
1 if the property value is 0, or 0 if
the property value is 1).

NOTE The property value for a checkbox can be equal to 0 or 1; the
checkbox is off if this value is 0 and on if 1. If your code resource returns
kDETDidNotHandle, the CE sets the property value to equal the value in
the parameter field, toggling the checkbox off or on.

If you do handle the checkbox command yourself, you must call the
kDETcmdDirtyProperty callback routine (page 5-233) to force the CE to
redraw the checkbox.

continued

C H A P T E R 5

AOCE Templates

5-162 Code Resources Reference

Pop-up menu Value in the property-command
field of the 'detv' resource for
the menu; this must equal the
property number of the menu.

Value in the command-ID field of
the 'fmnu' resource that defines
the menu. There is a distinct
command-ID value for each menu
item.

NOTE Your code resource can use the command parameter to determine
which item in the pop-up menu the user has chosen.

Static command text
from view

Value in the property-command
field of the 'detv' resource for
the view.

Value in the command-parameter
field of the 'detv' resource for
the view.

NOTE If you use the value kDETChangeViewCommand for the
property-command field of the 'detv' resource, the CE uses this
property command to sort a sublist and does not call your code resource.

Drop-operation
command

Value you specified in the
commandID parameter to your
kDETcmdDropQuery routine.
Treat this value as a routine
selector to determine what course
of action to take.

The location of the cursor when
the mouse button was released, in
global coordinates, as two shorts
in the order x, y.

NOTE When the user drops one or more objects on a catalog object for
which you have provided an aspect template, the CE calls your
kDETcmdDropQuery routine once for each item dropped. If your routine
returns a property number, the CE calls your property-command routine.
The CE combines all of the drop operations that return the same property
number and calls your property command only once. You can then call the
kDETcmdGetCommandSelectionCount callback routine to determine
how many objects are being dropped and the
kDETcmdGetCommandItemN callback routine to determine the nature of
each object being dropped.

Drop-me operation
command

Value you specified in the
commandID parameter to your
kDETcmdDropMeQuery routine.
Treat this value as a routine
selector to determine what course
of action to take.

The location of the cursor when
the mouse button was released, in
global coordinates, as two shorts
in the order x, y.

NOTE When the user drags and drops a catalog object for which you have
provided an aspect template, the CE calls your kDETcmdDropMeQuery
routine. If your routine returns a property number, the CE calls your
property-command routine. You can then call the
kDETcmdGetCommandItemN callback routine to determine the nature of
the object upon which the item is being dropped.

Table 5-14 Property commands (continued)

Source of command
property field of parameter
block

parameter field of parameter
block

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-163

CALL-FOR MASK VALUE

None

SEE ALSO

To force the CE to redraw a view after you handle a property event, use the

kDETcmdDirtyProperty callback routine (page 5-233).

The aspect’s kDETAspectViewMenu resource is described on page 5-103.

View types are described on page 5-127.

The kDETcmdDropMeQuery routine is described on page 5-170. The

kDETcmdDropQuery routine is described on page 5-172.

Use the kDETcmdGetCommandSelectionCount callback routine (page 5-201) to

determine how many objects are being dropped and the kDETcmdGetCommandItemN

callback routine (page 5-202) to determine the nature of each object dropped.

To initiate a property command from a code resource, use the

kDETcmdDoPropertyCommand routine (page 5-245).

kDETcmdKeyPress

The CE calls your code resource with this routine selector when the user presses a key

while using an information page.

struct DETKeyPressBlock {

DETCallBlockPropertyHeader

EventRecord *theEvent;

};

Do-property-command
callback

Value you specified in the
property parameter to the
kDETcmdDoPropertyCommand
callback routine.

Value you specified in the
parameter parameter to the
kDETcmdDoPropertyCommand
callback routine.

NOTE The kDETcmdDoPropertyCommand callback routine allows your
code resource to send a property command to any code resource you can
target.

Table 5-14 Property commands (continued)

Source of command
property field of parameter
block

parameter field of parameter
block

C H A P T E R 5

AOCE Templates

5-164 Code Resources Reference

Parameter block

DESCRIPTION

You can use your kDETcmdKeyPress routine to respond to a keypress that occurs while

the user is using your information page. If the user is editing a text view, the property

field identifies the view. If the cursor is not in a text view, the property field contains

the value kDETNoProperty. The Catalogs Extension does not call your

kDETcmdKeyPress routine for Command-key keypress combinations.

If your routine returns kDETDidNotHandle, the CE handles the keypress. If your

routine returns an error, the CE displays an error dialog box. If your routine returns

noErr, the CE assumes you handled the keypress and does no further processing.

You can use this routine, for example, to prevent the user from entering certain

characters in a text field.

CALL-FOR MASK VALUE

None

SEE ALSO

To control what a user pastes into your information page, use the kDETcmdPaste

routine, described next.

kDETcmdPaste

The CE calls your code resource with this routine selector when the user attempts to

paste text while using your information page.

struct DETPasteBlock {

DETCallBlockPropertyHeader

short modifiers;

};

→ reqFunction DETCallFunctions kDETcmdKeyPress
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
→ theEvent EventRecord The event record for the keypress

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-165

Parameter block

DESCRIPTION

The Catalogs Extension calls your kDETcmdPaste routine when the user chooses Paste

from the Edit menu (or presses Command-V when Paste is enabled) while the user is

using your information page. If the user is editing a text view, the property field

identifies the view. If the cursor is not in a text view, the property field contains the

value kDETNoProperty.

If your routine returns kDETDidNotHandle, the CE handles the paste. If your routine

returns an error, the CE displays an error dialog box. If your routine returns noErr, the

CE assumes you handled the paste and does no further processing.

You can use this routine, for example, to prevent the user from pasting certain characters

in a text field.

CALL-FOR MASK VALUE

None

SEE ALSO

To determine what the user is attempting to paste you must read the data in the scrap.

For information on how to read the scrap, see the chapter “Scrap Manager” in Inside
Macintosh: More Macintosh Toolbox.

→ reqFunction DETCallFunctions kDETcmdPaste
↔ templatePrivate long Data stored in

template
↔ instancePrivate long Data stored in

aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main

aspect?
→ property short Property

number
→ modifiers short Modifier keys at

time of paste

C H A P T E R 5

AOCE Templates

5-166 Code Resources Reference

kDETcmdMaximumTextLength

The CE calls your code resource with this routine selector to determine the maximum

permitted length of a property that is displayed in an editable text view.

struct DETMaximumTextLengthBlock {

DETCallBlockPropertyHeader

long maxSize;

};

Parameter block

DESCRIPTION

If the user tries to type more into an editable text view than the maximum you specify

with your kDETcmdMaximumTextLength routine, the Catalogs Extension displays a

dialog box informing the user that the text has reached its maximum length. The

maximum size you can specify in the maxSize field is 255 bytes. When counting the

length of a text string for this routine, count the first byte as 1, not as 0. If your routine

returns an error or a result code of kDETDidNotHandle, the CE limits the text string to

255 bytes. If your routine returns noErr, the CE limits the text string to the length you

specify.

CALL-FOR MASK VALUE

kDETCallForViewChanges

kDETcmdViewListChanged

The CE calls your code resource with this routine selector when the list of enabled views

has changed in one of the information pages associated with this aspect.

struct DETViewListChangedBlock {

DETCallBlockTargetedHeader

};

→ reqFunction DETCallFunctions kDETcmdMaximumTextLength
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
← maxSize long Maximum text length

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-167

Parameter block

DESCRIPTION

The list of enabled views in an information page changes when the Catalogs Extension

displays a conditional view. The list also changes when the page is first opened, either

because the record has just been opened or because the user has used the pop-up menu

to select a different information page.

CALL-FOR MASK VALUE

kDETCallForViewChanges

SEE ALSO

Conditional views are described in “Conditional Views” on page 5-26 and in

“Information Page Template Signature Resource” beginning on page 5-121.

kDETcmdPropertyDirtied

The CE calls your code resource with this routine selector when you call the

kDETcmdDirtyProperty callback routine and when the kDETPastFirstLookup

metaproperty changes.

struct DETPropertyDirtiedBlock {

DETCallBlockPropertyHeader

};

Parameter block

→ reqFunction DETCallFunctions kDETcmdViewListChanged
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?

→ reqFunction DETCallFunctions kDETcmdPropertyDirtied
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number

C H A P T E R 5

AOCE Templates

5-168 Code Resources Reference

DESCRIPTION

The Catalogs Extension calls your kDETcmdPropertyDirtied routine when you call

the kDETcmdDirtyProperty callback routine to indicate that a property value has

changed, requiring a view to be redrawn. The CE also calls this routine when the CE

completes its first catalog lookup and the kDETPastFirstLookup metaproperty

changes to 1. Although the CE updates the display when you call the

kDETcmdDirtyProperty callback routine and when it completes a catalog search, you

might want to redraw other property views that are dependent on the one that changed

initially. Also, if your routine returns the kDETDidNotHandle result code when the CE

calls your code resource for an attribute with the kDETcmdPropertyDirtied routine

selector, the CE calls the code resource for the record that contains that attribute. You can

use this technique to inform a parent of a change that occurred in a child. The CE ignores

any other function results of this routine.

CALL-FOR MASK VALUE

kDETCallForViewChanges

SEE ALSO

The kDETcmdDirtyProperty callback routine is described on page 5-233.

Metaproperties are listed in Table 5-3 on page 5-86.

kDETcmdValidateSave

The CE calls your code resource with this routine selector when the CE is about to save

the property values associated with an aspect.

struct DETValidateSaveBlock {

DETCallBlockTargetedHeader

RStringHandle errorString;

};

Parameter block

→ reqFunction DETCallFunctions kDETcmdValidateSave
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
← errorString RStringHandle Handle to error string

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-169

DESCRIPTION

If you wish to allow the Catalogs Extension to save the new data entered into an

information page, return a result code of noErr or kDETDidNotHandle. If you do not

want the CE to save the data, return an error (a negative result code) and, in the

errorString parameter, specify a handle to an error string telling why the information

page should not be saved. You must allocate the handle to the error string; the CE

deallocates it. The CE displays the error string in a dialog box to inform the user why the

data could not be saved.

Normally, the CE saves new property values only when the user leaves the aspect; that

is, when the user closes the information page or flips to another information page that

uses a different aspect. You can call the kDETcmdSaveProperty command to save a

property value at any time.

The CE does not call your kDETcmdValidateSave routine when someone changes a

sublist field or the name of a stand-alone attribute, or when your code resource calls the

kDETcmdSaveProperty command.

CALL-FOR MASK VALUE

kDETCallForValidation

SEE ALSO

Call the kDETcmdSaveProperty command (page 5-234) to save a property value.

Supporting Drops

If the standard drop-operation resources are not adequate for your needs, you can

provide a code-resource routine to handle drops. You can write a

kDETcmdDropMeQuery routine for the aspect template of the object being dropped and

a kDETcmdDropQuery routine for the aspect template of the destination for the drop.

The Catalogs Extension calls the code resource of the object being dropped first and then

the code resource of the destination. Thus, the code resource of the destination can

override that of the object being dropped.

Drags and drops are described in “Drags and Drops” on page 5-28 and drop-operation

resources are described in “Supporting Drags and Drops” beginning on page 5-98.

C H A P T E R 5

AOCE Templates

5-170 Code Resources Reference

kDETcmdDropMeQuery

The CE calls your code resource with this routine selector when the user attempts to

drop the object to which your aspect template applies onto another object.

struct DETDropMeQueryBlock {

DETCallBlockTargetedHeader

short modifiers;

long commandID;

AttributeType destinationType;

Boolean copyToHFS;

};

Parameter block

DESCRIPTION

When the user drags an AOCE catalog object and drops it onto another catalog object or

onto an HFS object, the Catalogs Extension calls the code resource in the aspect of the

dragged object with the kDETcmdDropMeQuery routine selector. (If a dragged

attribute’s aspect does not contain a code resource or if its code resource returns the

kDETDidNotHandle result code, the CE calls the code resource of the aspect for the

record that contains that attribute.) You can call the kDETcmdGetCommandItemN

callback routine to get information about the destination object.

The modifiers field indicates which modifier keys, if any, the user was pressing when

the mouse button was released.

The commandID and destinationType fields contain the CE’s best guess as to the

correct drop action. Possible values for the commandID parameter are as follows:

#define kDETDoNothing 'xxx0'

#define kDETMove 'move'

#define kDETDrag 'drag'

#define kDETAlias 'alis'

→ reqFunction DETCallFunctions kDETcmdDropMeQuery
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ modifiers short Modifier keys at drop time
↔ commandID long Command ID
↔ destinationType AttributeType Attribute type of new attribute
← copyToHFS Boolean Copy to HFS?

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-171

Constant descriptions

kDETDoNothing Do nothing. The CE has no standard behavior for a drop of this sort.
For example, the user might try dragging an attribute from a sublist
and dropping it onto an application.

kDETMove Move the object to a new location. For example, if the user drags an
attribute from one sublist to another on the same volume, the CE’s
default behavior is to change the location of the attribute.

kDETDrag Make a copy of the object. For example, if the user drags an
attribute from a sublist on one volume to a sublist on another
volume, the CE copies the attribute.

kDETAlias Make an alias to the object. For example, if the user drags a record
from a catalog folder and drops it onto another record, the CE
creates an alias to the record and places it in an attribute in the
destination record.

The destinationType field indicates the attribute type of the attribute that the CE

creates as a result of the drop if the CE copies an attribute or creates an alias to a record.

If your routine returns a result code of kDETDidNotHandle or an error, the CE

continues to try to determine the appropriate action. If the dragged object is an attribute,

the CE looks for a code resource in an aspect of the parent record. Then the CE looks for

code resources in the aspects of the destination object and in the parent of the destination

object, if any.

If you wish, you can set new values for the commandID and destinationType fields

and return a result code of noErr. The CE then uses the values you set for these

parameters as input to any other code resources it finds. If no other aspect or code

resource overrides these values, the CE carries out the action you specified. If the CE

can’t carry out the specified action, it displays a dialog box describing the problem.

You can also specify a number in the developers’ property-number range (that is,

kDETFirstDevProperty through 249) for the commandID parameter. In this case, the

CE sends a property command (kDETcmdPropertyCommand) with that number to the

target aspect (that is, the code resource of the aspect that the CE indicated as the target

when it called your code resource). Your property-command routine can then call the

kDETcmdGetCommandItemN callback routine to determine the nature of the destination

object.

If you set the copyToHFS parameter to true, the CE displays a dialog box asking the

user to copy the object to the desktop (that is, to create an HFS version of the object)

before performing the operation. For example, if the item is a record and you set the

copyToHFS parameter to true, the CE asks the user to create an information card

before performing the operation. Your property-command routine can use the

kDETcmdGetCommandItemN callback routine to get the file system specification

(FSSpec structure) for the information card. If you set the copyToHFS parameter to

true, you must set the commandID parameter to a property number; otherwise, the CE

ignores the copyToHFS parameter.

C H A P T E R 5

AOCE Templates

5-172 Code Resources Reference

Note
In future versions of the AOCE software, the CE might create the HFS
version of the object rather than requesting the user to do so. ◆

CALL-FOR MASK VALUE

kDETCallForDrops

SEE ALSO

For more information on how the CE handles drags and drops, see “Drags and Drops”

on page 5-28.

If the object on which the AOCE catalog object was dropped is also a catalog object, the

CE calls the destination object with the kDETcmdDropQuery routine selector, described

next.

Your property command can use the kDETcmdGetCommandSelectionCount callback

routine (page 5-201) to determine how many objects are being dropped.

You can use the kDETcmdGetCommandItemN callback routine (page 5-202) to determine

the nature of the object on which the item is being dropped.

The kDETcmdPropertyCommand routine is described on page 5-159.

kDETcmdDropQuery

The CE calls your code resource with this routine selector when the user attempts to

drop an object on the object to which your aspect template applies.

struct DETDropQueryBlock {

DETCallBlockTargetedHeader

short modifiers;

long commandID;

AttributeType destinationType;

Boolean copyToHFS;

};

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-173

Parameter block

DESCRIPTION

When the user drags an AOCE catalog object or HFS object and drops it onto a catalog

object, the Catalogs Extension calls the code resource in the aspect of the destination

object with the kDETcmdDropQuery routine selector. (If a destination attribute’s aspect

does not contain a code resource or if its code resource returns the kDETDidNotHandle

result code, the CE calls the code resource of the aspect for the record that contains that

attribute.) The modifiers parameter indicates which modifier keys, if any, the user was

pressing when the mouse button was released.

If the user drops more than one object simultaneously on a destination, the CE calls the

code resource for the destination’s aspect once for each object dropped. You can call the

kDETcmdGetCommandItemN callback routine to get information about the item being

dropped.

The commandID and destinationType fields contain the CE’s best guess as to the

correct drop action. Possible values for the commandID parameter are a property

number or the constants kDETDoNothing, kDETMove, kDETDrag, or kDETAlias (see

page 5-171). Note that because the CE calls any code resource for the dragged object with

the kDETcmdDropMeQuery routine selector before calling the code resource for the

destination object, the values in the commandID and destinationType fields might

have been provided by another code resource rather than by the CE itself.

The destinationType field indicates the attribute type of the attribute that the CE

creates as a result of the drop if the CE copies an attribute or creates an alias to a record.

If your routine returns a result code of kDETDidNotHandle, the CE continues to try to

determine the appropriate action. If the destination object is an attribute, the CE looks for

a code resource in an aspect of the parent record.

If you wish, you can set new values for the commandID and destinationType fields

and return a result code of noErr. The CE then uses the values you set for these

parameters as input to any other code resources it finds. If no other aspect or code

resource overrides these values, the CE carries out the action you specified. If the CE

can’t carry out the specified action, it displays a dialog box describing the problem.

→ reqFunction DETCallFunctions kDETcmdDropQuery
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ modifiers short Modifier keys at drop time
↔ commandID long Command ID
↔ destinationType AttributeType Attribute type of new attribute
← copyToHFS Boolean Copy to HFS?

C H A P T E R 5

AOCE Templates

5-174 Code Resources Reference

You can also specify a number in the developers’ property-number range (that is,

kDETFirstDevProperty through 249) for the commandID parameter. The CE then

sends a property command (kDETcmdPropertyCommand) with that number to the

target aspect (that is, the code resource of the aspect that the CE indicated as the target

when it called your code resource). Note that your code resource’ property-command

routine should treat this property number as a routine selector to determine what course

of action to take. The property number you use for this purpose need not correspond to

any view in the information page.

The CE combines drop operations whenever possible. Therefore, if your

kDETcmdDropQuery routine returns the same property command for two or more

dragged objects, the CE calls your code resource only once with a property command

(kDETcmdPropertyCommand). Your property-command routine then must use the

kDETcmdGetCommandSelectionCount and kDETcmdGetCommandItemN callback

routines to determine which objects are being dragged and perform the appropriate

action.

If you set the copyToHFS parameter to true, the CE displays a dialog box asking the

user to copy the object to the desktop (that is, to create an HFS version of the object)

before performing the operation. For example, if the item is a record and you set the

copyToHFS parameter to true, the CE asks the user to create an information card

before performing the operation. Your property-command routine can use the

kDETcmdGetCommandItemN callback routine to get the file system specification

(FSSpec structure) for the information card. If you set the copyToHFS parameter to

true, you must set the commandID parameter to a property number; otherwise, the CE

ignores the copyToHFS parameter.

CALL-FOR MASK VALUE

kDETCallForDrops

SEE ALSO

If the object being dragged is also a catalog object, the CE first calls the dragged object

with the kDETcmdDropMeQuery routine selector, described on page 5-170.

Your property command can use the kDETcmdGetCommandSelectionCount callback

routine (page 5-201) to determine how many objects are being dropped.

You can use the kDETcmdGetCommandItemN callback routine (page 5-202) to determine

the nature of each object being dropped.

The kDETcmdPropertyCommand routine is described on page 5-159.

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-175

Attribute-Related Commands

The Catalogs Extension calls one of the code resource routines described in this section

before the CE creates, changes, or deletes an attribute value.

kDETcmdAttributeCreation

The CE calls your code resource with this routine selector when it is about to add a new

attribute value to a sublist.

struct DETAttributeCreationBlock {

DETCallBlockHeader

PackedDSSpecPtr parent;

short refNum;

AuthIdentity identity;

AttributeType attrType;

AttributeTag attrTag;

Handle value;

};

Parameter block

DESCRIPTION

When the user clicks the Add button in an information page to add a new attribute value

to a sublist, the Catalogs Extension calls the code resource for the main aspect template

for attributes of that type with the kDETcmdAttributeCreation routine selector. The

attrType, attrTag, and value parameters indicate the default values for the new

attribute type, attribute tag, and attribute value. You can return different values for any

of these parameters if you wish. Whether or not you change any of these values, return

→ reqFunction DETCallFunctions kDETcmdAttributeCreation
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ parent PackedDSSpecPtr Record in which the CE creates the new attribute
→ refNum short Reference number for the catalog containing the

record that will contain the attribute (used only
if the catalog is a personal catalog; only personal
catalogs use reference numbers)

→ identity AuthIdentity Authentication identity used when gaining
access to the parent record

↔ attrType AttributeType Type of attribute being created
↔ attrTag AttributeTag Tag of attribute being created
↔ value Handle Value to write (preallocated to the size of

the default attribute value, if any, or to 1 if no
default; resize as needed)

C H A P T E R 5

AOCE Templates

5-176 Code Resources Reference

the kDETDidNotHandle result code if you want the CE to create the new attribute

value. If your routine returns noErr, the CE assumes you used the Catalog Manager to

create the new attribute value and does not create it for you. Likewise, if your routine

returns an error, the CE does not create the attribute value.

After the CE calls your kDETcmdAttributeCreation routine and before it creates the

attribute value, it calls your kDETcmdAttributeNew routine.

Note that the CE does not specify a target when it calls your

kDETcmdAttributeCreation routine because the object hasn’t been created yet; it

always calls the code resource of the template that will be the object’s main aspect

template.

SPECIAL CONSIDERATIONS

You should limit sublist items to one line. Multiline sublist items are not guaranteed to

work correctly.

CALL-FOR MASK VALUE

kDETCallForAttributes

SEE ALSO

When the CE is about to create a new attribute value, whether in a sublist or not, it calls

the kDETcmdAttributeNew routine, described next.

You can use the Catalog Manager’s DirAddAttributeValue function to add an

attribute value; see the chapter “Catalog Manager” in this book for details.

kDETcmdAttributeNew

The CE calls your code resource with this routine selector when it is about to add a new

attribute value to a record.

struct DETAttributeNewBlock {

DETCallBlockTargetedHeader

PackedDSSpecPtr parent;

short refNum;

AuthIdentity identity;

AttributeType attrType;

AttributeTag attrTag;

Handle value;

};

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-177

Parameter block

DESCRIPTION

When the user adds a new attribute value to a record, the Catalogs Extension calls the

code resource for the parent record with the kDETcmdAttributeNew routine selector.

The user can add a new attribute value by clicking the Add button in a template to add a

new attribute value to a sublist, dragging an attribute value and dropping it onto a

record, or editing a property that has not been previously edited (that is, whose value is

the default value assigned by the template). The CE adds the new attribute value when

the user closes the information page or when you call the kDETcmdSaveProperty

callback routine.

The attrType, attrTag, and value parameters indicate the default values for the new

attribute type, attribute tag, and attribute value. You can return different values for any

of these parameters if you wish. Whether or not you change any of these values, return

the kDETDidNotHandle result code if you want the CE to create the new attribute

value. If your routine returns noErr, the CE assumes you used the Catalog Manager to

create the new attribute value and does not create it for you. Likewise, if your routine

returns an error, the CE does not create the attribute value.

The target selector in the DETTargetSpecification structure is always kDETSelf

when the CE calls your kDETcmdAttributeNew routine; the target is the aspect of the

record that will contain the attribute.

When the user adds a new attribute value to a sublist, the CE calls your

kDETcmdAttributeCreation routine before it calls your kDETcmdAttributeNew

routine.

→ reqFunction DETCallFunctions kDETcmdAttributeNew
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ parent PackedDSSpecPtr Record to which the CE adds the

new attribute value
→ refNum short Reference number for the catalog

containing the record that contains
the attribute (used only if the catalog
is a personal catalog; only personal
catalogs use reference numbers)

→ identity AuthIdentity Authentication identity used when
gaining access to the parent record

↔ attrType AttributeType Type of attribute being created
↔ attrTag AttributeTag Tag of attribute being created
↔ value Handle Value to write (preallocated to

default attribute size; resize as
needed)

C H A P T E R 5

AOCE Templates

5-178 Code Resources Reference

SPECIAL CONSIDERATIONS

If there is no input pattern for an attribute type that has an output pattern

(a lookup-table element that has the useForOutput flag set), the CE has no

way of knowing an attribute value already exists; therefore the CE calls your

kDETcmdAttributeNew routine every time it processes the output pattern. If

your kDETcmdAttributeNew routine returns the kDETDidNotHandle result code, the

record ends up containing multiple attribute values corresponding to a single set of

properties. Therefore, if you do not include an input pattern for an attribute type for

which you provide an output pattern, your kDETcmdAttributeNew routine should

return the noErr result code when called for that attribute type.

CALL-FOR MASK VALUE

kDETCallForAttributes

SEE ALSO

If the attribute value is being added to a sublist, the CE calls your
kDETcmdAttributeCreation routine (page 5-175) before calling

the kDETcmdAttributeNew routine.

You can use the Catalog Manager’s DirAddAttributeValue function to add an

attribute value; see the chapter “Catalog Manager” in this book for details.

kDETcmdAttributeChange

The CE calls your code resource with this routine selector when it is about to change an

existing attribute value.

struct DETAttributeChangeBlock {

DETCallBlockTargetedHeader

PackedDSSpecPtr parent;

short refNum;

AuthIdentity identity;

AttributeType attrType;

AttributeTag attrTag;

AttributeCreationID attrCID;

Handle value;

};

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-179

Parameter block

DESCRIPTION

When the user changes an attribute value, the Catalogs Extension calls the code resource

of the aspect that’s writing the attribute with the kDETcmdAttributeChange routine

selector. The user can change an attribute value by editing a property that has been

previously edited. The CE updates the attribute value when the user closes the

information page or when you call the kDETcmdSaveProperty callback routine.

The attrType, attrTag, and value parameters indicate the new values for the

attribute type, attribute tag, and attribute value. You can return different values for the

attribute tag and attribute value parameters if you wish. Whether or not you change

either of these values, return the kDETDidNotHandle result code if you want the CE to

change the attribute value. If your routine returns noErr, the CE assumes you used the

Catalog Manager to change the attribute value and does not change it for you. Likewise,

if your routine returns an error, the CE does not change the attribute value.

SPECIAL CONSIDERATIONS

If there is no input pattern for an attribute type that has an output pattern (a

lookup-table element that has the useForOutput flag set), the CE has no way of

knowing an attribute value already exists. Therefore, every time it processes the output

pattern, the CE calls your kDETcmdAttributeNew routine rather than your

kDETcmdAttributeChange routine.

→ reqFunction DETCallFunctions kDETcmdAttributeChange
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ parent PackedDSSpecPtr Record containing the attribute
→ refNum short Reference number for the catalog

containing the record that contains
the attribute (used only if the catalog
is a personal catalog; only personal
catalogs use reference numbers)

→ identity AuthIdentity Authentication identity used when
gaining access to the parent record

→ attrType AttributeType Type of attribute being changed
↔ attrTag AttributeTag Tag of attribute being changed
↔ attrCID AttributeCreationID CID of attribute being changed
↔ value Handle Value to write (preallocated to the

size of the proposed attribute value;
resize as needed)

C H A P T E R 5

AOCE Templates

5-180 Code Resources Reference

CALL-FOR MASK VALUE

kDETCallForAttributes

SEE ALSO

When the CE is about to create a new attribute value, it calls your

kDETcmdAttributeNew routine (page 5-176).

You can use the Catalog Manager’s DirChangeAttributeValue function to change

an attribute value; see the chapter “Catalog Manager” in this book for details.

kDETcmdAttributeDelete

The CE calls your code resource with this routine selector when it is about to delete an

existing attribute value.

struct DETAttributeDeleteBlock {

DETCallBlockTargetedHeader

PackedDSSpecPtr dsSpec;

short refNum;

AuthIdentity identity;

};

Parameter block

→ reqFunction DETCallFunctions kDETcmdAttributeDelete
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ dsSpec PackedDSSpecPtr Catalog system specifier of the

attribute value about to be deleted
→ refNum short Reference number for the catalog

containing the record that contains
the attribute (used only if the catalog
is a personal catalog; only personal
catalogs use reference numbers)

→ identity AuthIdentity Authentication identity used when
gaining access to the parent record

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-181

DESCRIPTION

When the Catalogs Extension is about to delete an attribute value, it calls the code

resource of the main aspect of the attribute that’s about to be deleted with the

kDETcmdAttributeDelete routine selector. You can use the DSSpec structure

provided in the parameter block to determine exactly which attribute value is about to

be deleted.

Return the kDETDidNotHandle result code if you want the CE to delete the attribute

value. If your routine returns noErr, the CE assumes you used the Catalog Manager to

delete the attribute value and does not delete it for you. Likewise, if your routine returns

an error, the CE does not delete the attribute value.

The DSSpec structure that describes attribute values has a type of 'entn' and the

following extension value:

OSType 'spat'

AttributeCreationID attributeCreationID

AttributeType attributeName

The attribute creation ID uniquely identifies a specific attribute value even if there is

more than one value of the same attribute type.

The AttributeType structure is defined as follows:

struct AttributeType {

RStringHeader

Byte body[kAttributeTypeMaxBytes];

};

The attributeName field must be packed and padded to an even number of bytes. The

AttributeType structure is equivalent to an RString structure that has a length of

kAttributeTypeMaxBytes bytes.

CALL-FOR MASK VALUE

kDETCallForAttributes

SEE ALSO

You can use the Catalog Manager’s DirDeleteAttributeValue function to delete an

attribute value; see the chapter “Catalog Manager” in this book for details.

The DSSpec, PackedDSSpec,AttributeType, and RString structures are described

in the chapter “AOCE Utilities” in this book. That chapter also describes utility routines

that you can use to pack, unpack, and manipulate these structures.

Attribute creation IDs are returned by the DirAddAttributeValue function, the

DirVerifyAttributeValue function, and the DirFindValue function. All of these

functions are described in the chapter “Catalog Manager” in this book.

C H A P T E R 5

AOCE Templates

5-182 Code Resources Reference

Processing Custom Lookup-Table Pattern Elements

The Catalogs Extension passes to your code resource any lookup-table attribute pattern

element types that start with an uppercase letter. When the CE is processing an attribute

value to set a property value and encounters a custom pattern element type, it calls your

kDETcmdPatternIn routine. When the CE is processing a property value to create an

attribute value, it calls your kDETcmdPatternOut routine.

kDETcmdPatternIn

The CE calls your code resource with this routine selector when it needs to use a custom

lookup-table pattern element to set the value of a property.

struct DETPatternInBlock {

DETCallBlockPropertyHeader

long elementType;

long extra;

AttributePtr attribute;

long dataOffset;

short bitOffset;

};

Parameter block

DESCRIPTION

The Catalogs Extension passes to your code resource any lookup-table attribute pattern

element types that start with an uppercase letter. The property, elementType, and

extra fields contain the corresponding parts of the pattern element. The attribute

field is a pointer to the attribute value being parsed. The dataOffset field is the byte

offset into the attribute data of the byte to be parsed. The bitOffset field is the bit

offset within the byte of the next bit to be parsed. The data in the attribute value is at

callBlockPtr->patternIn.attribute->value.bytes

→ reqFunction DETCallFunctions kDETcmdPatternIn
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
→ elementType long Element type
→ extra long Extra field
→ attribute AttributePtr Attribute being parsed
↔ dataOffset long Offset to next byte
↔ bitOffset short Bit offset

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-183

The next bit to parse is

*(callBlockPtr->patternIn.attribute->value.bytes +

 callBlockPtr->patternIn.dataOffset)>>callBlockPtr->

 patternIn.bitOffset++

Your kDETcmdPatternIn routine should parse the specified attribute data starting at

the byte and bit specified by the dataOffset and bitOffset fields. You can create as

many properties as you wish from the attribute data. Use the

kDETcmdSetPropertyNumber, kDETcmdSetPropertyRString, or

kDETcmdSetPropertyBinary callback routines to set property values. When you are

finished processing the attribute data, update the dataOffset and bitOffset fields to

point to the next bit to be processed and return the noErr result code.

You should check the access mask of the item you are processing and set the

propertyEditable flag accordingly.

If your routine returns the kDETDidNotHandle result code, the CE calls the code

resource of the parent record for the attribute. If your routine returns an error, the CE

stops processing attribute data.

SPECIAL CONSIDERATIONS

When the CE creates or changes attribute values, it processes only those properties that

have changed and that are included in the list of properties in the lookup table.

Therefore, you must use the 'prop' pattern element in your lookup table to list each

property that your code resource processes.

CALL-FOR MASK VALUE

None

SEE ALSO

Lookup-table patterns and pattern elements are described in “The Lookup-Table

Resource” beginning on page 5-105.

You can use the kDETcmdSetPropertyNumber callback routine (page 5-227), the

kDETcmdSetPropertyRString callback routine (page 5-228), or the

kDETcmdSetPropertyBinary callback routine (page 5-229) to set property values.

You can use the kDETcmdSetPropertyEditable callback routine (page 5-232) to set

the propertyEditable flag.

C H A P T E R 5

AOCE Templates

5-184 Code Resources Reference

kDETcmdPatternOut

The CE calls your code resource with this routine selector when it needs to use a custom

lookup-table pattern element to write an attribute value from a property.

struct DETPatternOutBlock {

DETCallBlockPropertyHeader

long elementType;

long extra;

AttributePtr attribute;

Handle data;

long dataOffset;

short bitOffset;

};

Parameter block

DESCRIPTION

The Catalogs Extension passes to the code resource any lookup-table attribute pattern

element types that start with an uppercase letter. The property, elementType, and

extra fields contain the corresponding parts of the pattern element. The attribute

field points to the attribute being created (the attribute value already has an attribute tag

assigned, but the data length and data fields of the value have not yet been filled in). The

data field is a handle that you can use to contain the data portion of the attribute value

(and which you should resize as needed to hold the value). The dataOffset field is the

byte offset into the attribute of the byte currently being parsed. The bitOffset field is

the offset within the byte of the next bit to be parsed. You can change these offsets as

necessary.

You can use the callback routines described in “Getting Information About Properties”

beginning on page 5-213 to determine the property value. You then return the attribute

data in the data field, resizing it as needed, and updating the dataOffset and

bitOffset fields appropriately.

→ reqFunction DETCallFunctions kDETcmdPatternOut
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
→ elementType long Element type
→ extra long Extra field
↔ attribute AttributePtr Attribute being created
↔ data handle Attribute data
↔ dataOffset long Offset to next byte to write
↔ bitOffset short Bit offset

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-185

SPECIAL CONSIDERATIONS

Because when creating or changing attribute values, the CE processes only those

properties that have changed and that are included in the list of properties in the lookup

table, you must use the 'prop' pattern element in your lookup table to list each

property that your code resource processes.

CALL-FOR MASK VALUE

None

SEE ALSO

lookup-table patterns and pattern elements are described in “The Lookup-Table

Resource” beginning on page 5-105.

You can use the callback routines in “Getting Information About Properties” beginning

on page 5-213 to determine property values.

Synchronizing Property Values

If you derive any of your property values (including sublist items) from data outside the

catalog system or from records or attributes other than the one to which your aspect

applies, you can use the code resource routines described in this section to ensure that

your property values are updated whenever the Catalogs Extension updates the

property values that it maintains.

kDETcmdShouldSync

The CE calls your code resource with this routine selector to check whether the code

resource wants to update all property values.

struct DETShouldSyncBlock {

DETCallBlockTargetedHeader

Boolean shouldSync;

};

Parameter block

→ reqFunction DETCallFunctions kDETcmdOpenSelf
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
← shouldSync Boolean Should CE update data?

C H A P T E R 5

AOCE Templates

5-186 Code Resources Reference

DESCRIPTION

The Catalogs Extension checks a catalog system flag periodically (and whenever

someone calls the kDETcmdRequestSync callback routine) to see if the data in the

catalog system has changed. If it has, the CE recalculates all the properties derived from

the catalog system and updates aspects and information pages accordingly. At the time

the CE checks for changes, it calls your code resource with the kDETcmdShouldSync

routine selector. If you have derived any properties from data outside the catalog system

or from records or attributes other than the one to which your aspect applies and you

have reason to believe their values have changed, you should return true in the

shouldSync field of the parameter block. In response, the CE updates all the properties

whether data in the catalog system has changed or not, giving your code resource a

chance to update all of its property values.

You can use this routine, for example, to maintain sublist items that are not directly from

the catalog system.

If your routine returns the kDETDidNotHandle result code or an error, the CE ignores

the shouldSync field and behaves as if its value were false.

CALL-FOR MASK VALUE

kDETCallForSyncing

SEE ALSO

When the CE updates property values, it sends the kDETcmdDoSync routine selector,

described next, to your code resource.

You can call the kDETcmdRequestSync callback routine (page 5-237) at any time to

force the CE to check immediately whether the sublist or any properties need updating.

kDETcmdDoSync

The CE calls your code resource with this routine selector to give your code resource a

chance to read in and parse its attributes.

struct DETDoSyncBlock {DETCallBlockTargetedHeader

};

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-187

Parameter block

DESCRIPTION

When the Catalogs Extension updates all the property values in an aspect—either

because data in the catalog system has changed or because you returned true in the

shouldSync field of the parameter block for the kDETcmdShouldSync routine—the

CE calls your code resource with the kDETcmdDoSync routine selector. If you have

derived any of your properties from outside the catalog system or from a record or

attribute other than the one to which your aspect applies, you should call the

kDETcmdBreakAttribute routine to update your sublist items and the

kDETcmdBreakAttribute routine and the set-property routines to update your other

properties.

The CE ignores the result code returned by this routine.

CALL-FOR MASK VALUE

kDETCallForSyncing

SEE ALSO

Call the kDETcmdBreakAttribute routine (page 5-224) to send to the lookup table an

attribute value from outside the catalog system or from a record or attribute other than

the one to which your aspect applies.

Use the set-property routines (see “Setting Value, Type, and Other Features of

Properties” beginning on page 5-223) to set property values, types, and so forth for

properties not derived from the catalog system or from the record or attribute to which

your aspect applies

You can call the kDETcmdRequestSync callback routine (page 5-237) at any time to

force the CE to check immediately whether the sublist or any properties need updating.

→ reqFunction DETCallFunctions kDETcmdOpenSelf
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?

C H A P T E R 5

AOCE Templates

5-188 Code Resources Reference

Custom Property-Type Conversions

You can assign a custom property type to a property value. When the Catalogs Extension

encounters a property with a custom type that it has to use as a number or as a string, or

when it encounters a number or a string that it has to store as a property with a custom

type, the CE calls one of the code resource routines described in this section.

kDETcmdConvertToNumber

The CE calls your code resource with this routine selector when it encounters a property

with a custom type that it has to use as a number in a view or when you call the

kDETcmdGetPropertyNumber callback routine for a property with a custom type.

struct DETConvertToNumberBlock {

DETCallBlockPropertyHeader

long theValue;

};

Parameter block

DESCRIPTION

If you assign a custom property type to a property and then use that property in a view

where a number is called for (as in a radio button, checkbox, or pop-up menu), the

Catalogs Extension calls your code resource with the kDETcmdConvertToNumber

routine selector. The CE also calls this routine if you call the

kDETcmdGetPropertyNumber callback routine and specify your custom property. The

property field of the parameter block indicates the property number of the custom

property. You must convert the property value to a number and return it in the field

theValue.

If your routine returns the kDETDidNotHandle result code or an error, the CE uses 0 as

the value of the custom property. If your routine returns the noErr result code, the CE

uses the number your routine returns in the theValue field.

CALL-FOR MASK VALUE

None

→ reqFunction DETCallFunctions kDETcmdConvertToNumber
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
← theValue long Converted value

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-189

SEE ALSO

You can use the 'styp' and 'byte' lookup-table element types (see “Overriding

Default Property-Type Assignments” on page 5-119) or the kDETcmdSetPropertyType

callback routine (page 5-225) to assign a custom property type to a property.

You use the kDETcmdGetPropertyNumber callback routine (page 5-216) to get the

value of a number-type property.

Property types are discussed in “Properties” beginning on page 5-84. The property types

currently defined by Apple Computer, Inc., are shown in Table 5-2 on page 5-85.

kDETcmdConvertToRString

The CE calls your code resource with this routine selector when it encounters a property

with a custom type that it has to use as a string in a view or when you call the

GetPropertyRString callback routine for a property with a custom type.

struct DETConvertToRStringBlock {

DETCallBlockPropertyHeader

RStringHandle theValue;

};

Parameter block

DESCRIPTION

If you assign a custom property type to a property and then use that property in a view

that calls for a string (editable or static text), the Catalogs Extension calls your code

resource with the kDETcmdConvertToRString routine selector. The CE also calls this

routine if you call the kDETcmdGetPropertyRString callback routine and specify

your custom property. The property field of the parameter block indicates the property

number of the custom property. You must convert the property value to an RString

structure, allocate a handle to the RString, and return the handle in the field

theValue. The CE disposes of the handle when it no longer needs it.

If your routine returns the kDETDidNotHandle result code or an error, the CE uses an

empty RString structure as the value of the property. If your routine returns the noErr

result code, the CE uses the RString your routine returns in the theValue field.

→ reqFunction DETCallFunctions kDETcmdConvertToRString
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
← theValue RStringHandle Handle to converted value

C H A P T E R 5

AOCE Templates

5-190 Code Resources Reference

CALL-FOR MASK VALUE

None

SEE ALSO

You can use the 'styp' and 'byte' lookup-table element types (see “Overriding

Default Property-Type Assignments” on page 5-119) or the kDETcmdSetPropertyType

callback routine (page 5-225) to assign a custom property type to a property.

You use the kDETcmdGetPropertyRString callback routine (page 5-217) to get the

value of a number-type property.

Property types are discussed in “Properties” beginning on page 5-84. The property types

currently defined by Apple Computer, Inc., are shown in Table 5-2 on page 5-85.

kDETcmdConvertFromNumber

The CE calls your code resource with this routine selector when it needs to write a

number to a property that has a custom property type.

struct DETConvertFromNumberBlock {

DETCallBlockPropertyHeader

long theValue;

};

Parameter block

DESCRIPTION

If you have assigned a custom property type to a property and then use that property in

a view where the Catalogs Extension uses a number (as in a radio button, checkbox, or

pop-up menu), the CE calls your code resource with the kDETcmdConvertFromNumber

routine selector when it needs to update the property value. The CE also calls this

routine if you call the kDETcmdSetPropertyNumber callback routine and specify your

custom property. The property field of the parameter block indicates the property

number of the custom property. The theValue field contains the value of the property

in the form of a number (unsigned long word). You must convert the property value to

your custom property type and use the kDETcmdSetPropertyBinary callback routine

→ reqFunction DETCallFunctions kDETcmdConvertFromNumber
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
→ theValue UNSIGNED long Value to convert

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-191

to write the result directly to the property. The CE ignores the function result of this

routine.

CALL-FOR MASK VALUE

None

SEE ALSO

You can use the 'styp' and 'byte' lookup-table element types (see “Overriding

Default Property-Type Assignments” on page 5-119) or the kDETcmdSetPropertyType

callback routine (page 5-225) to assign a custom property type to a property.

You use the kDETcmdSetPropertyNumber callback routine (page 5-227) to set the

value of a number-type property.

You use the kDETcmdSetPropertyBinary callback routine (page 5-229) to write an

uninterpreted binary block to a property.

Property types are discussed in “Properties” beginning on page 5-84. The property types

currently defined by Apple Computer, Inc., are shown in Table 5-2 on page 5-85.

kDETcmdConvertFromRString

The CE calls your code resource with this routine selector when it needs to write a string

to a property that has a custom property type.

struct DETConvertFromRStringBlock {

DETCallBlockPropertyHeader

RStringHandle theValue;

};

Parameter block

DESCRIPTION

If you have assigned a custom property type to a property and then use that property in

a view where the Catalogs Extension uses a string (as in a text field), the CE calls your

code resource with the kDETcmdConvertFromRString routine selector when it needs

→ reqFunction DETCallFunctions kDETcmdConvertFromRString
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
→ theValue RStringHandle Handle to value to convert

C H A P T E R 5

AOCE Templates

5-192 Code Resources Reference

to update the property value. The CE also calls this routine if you call the

kDETcmdSetPropertyRString callback routine and specify your custom property.

The property field of the parameter block indicates the property number of the custom

property. The theValue field contains a handle to the value of the property in the form

of an RString structure. You must convert the property value to your custom property

type and use the kDETcmdSetPropertyBinary callback routine to write the result

directly to the property. The CE ignores the function result of this routine.

CALL-FOR MASK VALUE

None

SEE ALSO

You can use the 'styp' and 'byte' lookup-table element types (see “Overriding

Default Property-Type Assignments” on page 5-119) or the kDETcmdSetPropertyType

callback routine (page 5-225) to assign a custom property type to a property.

You use the kDETcmdSetPropertyRString callback routine (page 5-228) to set the

value of a string-type property.

You use the kDETcmdSetPropertyBinary callback routine (page 5-229) to write an

uninterpreted binary block to a property.

Property types are discussed in “Properties” beginning on page 5-84. The property types

currently defined by Apple Computer, Inc., are shown in Table 5-2 on page 5-85.

Custom Views and Custom Menus

You can add a custom view to a view list, and you can add custom items to the Catalogs

menu. The Catalogs Extension calls the code resource routines in this section to draw

custom views, handle mouse-down events in custom views, determine whether a

custom menu item should be enabled, and handle the selection of your custom menu

items.

kDETcmdCustomViewDraw

The CE calls your code resource with this routine selector when it needs you to draw

your custom view.

struct DETGetCustomViewDrawBlock {

DETCallBlockPropertyHeader

};

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-193

Parameter block

DESCRIPTION

If you include a custom view in a view list, the Catalogs Extension calls your

kDETcmdCustomViewDraw routine when it is drawing or updating the information

page that includes your custom view and when you call the kDETcmdDirtyProperty

callback routine to indicate that the property value associated with the custom view has

changed. The property field identifies the view to be drawn. The CE sets the graphics

port to the window containing the view before calling your routine.

The CE ignores the function result for this routine.

SPECIAL CONSIDERATIONS

Your routine that draws your custom view must leave the QuickDraw state unchanged.

If you change the QuickDraw state (pen pattern, background color, and so forth) while

drawing your custom view, you must restore it to its original values before returning.

CALL-FOR MASK VALUE

None

SEE ALSO

View lists are described in “View Lists” beginning on page 5-123.

The kDETcmdDirtyProperty callback routine is described on page 5-233.

kDETcmdCustomViewMouseDown

The CE calls your code resource with this routine selector when a mouse-down event

occurs in your custom view.

struct DETCustomViewMouseDownBlock {

DETCallBlockPropertyHeader

EventRecord *theEvent;

};

→ reqFunction DETCallFunctions kDETcmdCustomViewDraw
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number

C H A P T E R 5

AOCE Templates

5-194 Code Resources Reference

Parameter block

DESCRIPTION

If you include a custom view in a view list, the Catalogs Extension calls your

kDETcmdCustomViewMouseDown routine when a mouse-down event occurs in your

custom view. The mouse coordinates in the event record are global; you can use the

GlobalToLocal QuickDraw routine to obtain the local coordinates.

 The CE sets the graphics port to the window containing the view before calling your

routine.

The property field identifies the view in which the event occurred.

If your routine returns an error, the CE displays an error dialog box. If your routine

returns noErr or kDETDidNotHandle, the CE does no further processing of the event.

CALL-FOR MASK VALUE

None

SEE ALSO

View lists are described in “View Lists” beginning on page 5-123.

kDETcmdCustomMenuEnabled

The CE calls your code resource with this routine selector to determine whether to

enable a menu item that you have added to the Catalogs menu.

struct DETCustomMenuEnabledBlock {

DETCallBlockTargetedHeader

short menuTableParameter;

Boolean enable;

};

→ reqFunction DETCallFunctions kDETcmdCustomViewMouseDown
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ property short Property number
→ theEvent EventRecord The event record for the mouse-down

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-195

Parameter block

DESCRIPTION

If you add a custom menu item to the Catalogs menu by including a

kDETInfoPageMenuEntries resource in your information page template, the Catalogs

Extension calls your kDETcmdCustomMenuEnabled routine when the user opens the

Catalogs menu. To enable the menu item identified by the menuTableParameter field,

return noErr with the enable parameter set to true or return kDETDidNotHandle.

To disable the menu item, return noErr with the enable parameter set to false or

return an error.

CALL-FOR MASK VALUE

None

SEE ALSO

If you enable the menu item and the user chooses it, the CE calls your code resource with

the kDETcmdCustomMenuSelected routine selector, described next.

The kDETInfoPageMenuEntries resource is described on page 5-137.

kDETcmdCustomMenuSelected

The CE calls your code resource with this routine selector when the user chooses a menu

item that you have added to the Catalogs menu.

struct DETCustomMenuSelectedBlock {

DETCallBlockTargetedHeader

short menuTableParameter;

};

→ reqFunction DETCallFunctions kDETcmdCustomMenuSelected
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ menuTableParameter short property field from custom menu

table
← enable Boolean Enable the menu item?

C H A P T E R 5

AOCE Templates

5-196 Code Resources Reference

Parameter block

DESCRIPTION

If you add a custom menu item to the Catalogs menu by including a

kDETInfoPageMenuEntries resource in your information page template, the Catalogs

Extension calls your kDETcmdCustomMenuSelected routine when the user chooses

your menu item. The menuTableParameter field contains the menu parameter from

the kDETInfoPageMenuEntries resource for the item the user chose.

If your routine returns an error, the CE displays an error dialog box. If your routine

returns noErr or kDETDidNotHandle, the CE does no further processing of the menu

selection.

CALL-FOR MASK VALUE

None

SEE ALSO

The kDETInfoPageMenuEntries resource is described on page 5-137.

The CE calls your kDETcmdCustomMenuEnabled routine (page 5-194) to determine

whether to enable your menu item.

CE-Provided Functions That Your Code Resource Can Call

Your code resource can call certain routines within the AOCE Catalogs Extension to

perform such functions as changing the call-for mask, returning information from the

CE, or changing the value of a variable maintained by the CE.

Note

Because the CE first calls your code resource, and then your code calls
the CE back to perform these functions, these routines are referred to
here as “callback routines.” ◆

→ reqFunction DETCallFunctions kDETcmdCustomMenuSelected
↔ templatePrivate long Data stored in template
↔ instancePrivate long Data stored in aspect
→ callBack DETCallBack Callback pointer
→ target DETTargetSpecification Target specifier
→ targetIsMainAspect Boolean Is target main aspect?
→ menuTableParameter short property field from custom menu

table

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-197

Calling CE-Provided Functions

The parameter block that the Catalogs Extension passes to your code resource includes

the address of the entry point for CE callback routines. To execute one of these routines,

you can use the CallBackDET macro, described in this section.

▲ W A R N I N G

Because the parameter block passed by the CE to your code resource
contains data that is private to the CE in addition to data intended for
your code resource, it is essential that you pass back to the CE the same
parameter block that it passed you without altering any of the reserved
fields. You cannot reuse a parameter block you saved from a previous
time that the CE called your code resource; doing so can cause the
Finder to crash. ▲

IMPORTANT

When you call a template callback routine, you must make sure that the
system is in the same state as it was in when the CE called your code
resource. Changing such things as the current resource or the heap zone
will cause the callback routine to fail. ▲

CallBackDET

The CallBackDET macro calls any AOCE template callback routine.

CallBackDET(callBlockPtr, callBackBlockPtr);

callBlockPtr
A pointer to the parameter block that the CE passed to your code resource.

callBackBlockPtr
A pointer to the parameter block that you are providing to the CE
callback routine.

The CallBackDET macro passes the parameter blocks you provide to the Catalogs

Extension callback routine entry point. The function gets the address for this entry point

from the callBack field of the AOCE template call block that the CE passes to your

code resource.

ASSEMBLY-LANGUAGE INFORMATION

The CallBackDET macro is implemented entirely in the interface file. There is no trap

that corresponds to this macro.

C H A P T E R 5

AOCE Templates

5-198 Code Resources Reference

Testing Your Code Resource

The Catalogs Extension provides the kDETcmdBeep callback routine so that you can

make sure your code resource is being called correctly and is making callbacks correctly.

kDETcmdBeep

This callback routine calls the toolbox SysBeep routine.

struct DETBeepBlock {

DETCallBackBlockHeader

};

Parameter block

DESCRIPTION

You can use the kDETcmdBeep callback routine to test that your code resource and its

callback routines are working as you expect.

RESULT CODES

Changing the Call-For Mask

You can use the kDETcmdChangeCallFors callback routine to modify the call-for mask

and therefore change the list of events that result in calls to your code resource.

kDETcmdChangeCallFors

This callback routine changes the call-for mask to a new value.

struct DETChangeCallForsBlock {

DETCallBackBlockTargetedHeader;

long newCallFors;

};

→ reqFunction DETCallBackFunctions kDETcmdBeep

noErr 0 No error

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-199

Parameter block

DESCRIPTION

You can modify the call-for mask for the code resource associated with your aspect

template at any time. You use the target parameter to specify the aspect template

whose code resource is your target and the newCallFors parameter to provide a new

call-for mask. The Catalogs Extension uses the same the call-for mask for every aspect

created from the aspect template.

Most code resources set the call-for mask at template initialization time and never

change it. However, you might want to change the call-for mask before you call a

callback that might result in additional unwanted calls to your code resource. In that

case you can set the call-fors mask to kDETCallForNothing, call the callback routine,

and then reset the call-for mask to its former value.

RESULT CODES

SEE ALSO

The target specifier is described in “Target Specifier” on page 5-142.

The call-for mask is described in “Call-For Mask” on page 5-149.

Process Control

The routines in this section give you some control over process switching on the user’s

computer. You should use the kDETcmdAboutToTalk callback routine when you want

to display a dialog box or otherwise interact with the user outside of an information

page. You can use the kDETcmdBusy routine to initiate a process switch to allow some

other process to complete before returning control to you.

→ reqFunction DETCallBackFunctions kDETcmdChangeCallFors
→ target DETTargetSpecification Target specifier
→ newCallFors long New call-for mask

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect

C H A P T E R 5

AOCE Templates

5-200 Code Resources Reference

kDETcmdAboutToTalk

This callback routine brings the Finder to the front and disables the watch cursor.

struct DETAboutToTalkBlock {

DETCallBackBlockHeader

};

Parameter block

DESCRIPTION

You should call this routine whenever you are about to display a dialog box or interact

with the user in any way outside of the information page. When your code resource

returns control to the CE, the CE terminates this state.

RESULT CODES

kDETcmdBusy

This callback routine initiates a process switch and prevents user action.

struct DETBusyBlock {

DETCallBackBlockHeader

};

Parameter block

DESCRIPTION

The kDETcmdBusy callback routine initiates a process switch; its effect is similar to that

of the WaitNextEvent function. It sounds a system beep if the user presses the mouse

button or a key. You can use this routine to give other processes some time to complete

an operation.

In general, code resource routines should complete operation quickly and return. You

should use this routine only if you have a special need to cause a process switch before

returning control to the Finder.

→ reqFunction DETCallBackFunctions kDETcmdAboutToTalk

noErr 0 No error

→ reqFunction DETCallBackFunctions kDETcmdBusy

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-201

RESULT CODES

SEE ALSO

The WaitNextEvent function is described in the “Event Manager” chapter of Inside
Macintosh: Macintosh Toolbox Essentials.

Handling Drags and Drops

When the user drags one or more objects and drops them onto another object, the

Catalogs Extension calls your code resource if either object was an AOCE catalog object

for which you provided an aspect template. Your code resource can use the routines in

this section to determine the number of objects dropped and the natures of the objects

involved.

kDETcmdGetCommandSelectionCount

This callback routine returns the command selection count.

struct DETGetCommandSelectionCountBlock {

DETCallBackBlockHeader

long count;

};

Parameter block

DESCRIPTION

When the user drops one or more objects onto a catalog object for which you have

provided an aspect template, the Catalogs Extension calls your code resource (if any)

with the kDETcmdDropQuery routine selector. Your code resource returns a value

telling the CE how to handle the drop. One possible value you can return is a property

number, which causes the CE to call your code resource with a property command.

When the CE calls your code resource with the kDETcmdPropertyCommand routine

selector resulting from a drop, you can call the kDETcmdGetCommandSelectionCount

callback routine to find out how many objects are being dropped. Then for each item, call

the kDETcmdGetCommandItemN callback routine to determine the nature of the object

being dropped.

The count of objects begins with 1; that is, if one object is being dropped, the count field

contains a 1.

noErr 0 No error

→ reqFunction DETCallBackFunctions kDETcmdGetCommandSelectionCount
← count long Command selection count

C H A P T E R 5

AOCE Templates

5-202 Code Resources Reference

RESULT CODES

SEE ALSO

Call the kDETcmdGetCommandItemN callback routine (described next) to determine the

nature of the object being dropped.

The kDETcmdDropQuery routine is described on page 5-172.

The kDETcmdPropertyCommand routine is described on page 5-159.

kDETcmdGetCommandItemN

This callback routine returns a specific command selection item.

struct DETGetCommandItemNBlock {

DETCallBackBlockHeader

long itemNumber;

DETItemType itemType;

union {

DETFSInfo** fsInfo;

struct {

PackedDSSpecPtr* dsSpec;

short refNum;

AuthIdentity identity;

} ds;

PackedDSSpecPtr* dsSpec;

LetterSpec** ltrSpec;

} item;

};

Parameter block

DESCRIPTION

When the user drops one or more objects onto a catalog object for which you have

provided an aspect template, the Catalogs Extension calls your code resource (if any)

with the kDETcmdDropQuery routine selector once for each object dropped. Your

noErr 0 No error

→ reqFunction DETCallBackFunctions kDETcmdGetCommandItemN
→ itemNumber long Number of item to retrieve,

starting at 1
← itemType DETItemType Type of item to be returned
← item union Address or letter specifier of

item

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-203

drop-query routine can call the kDETcmdGetCommandItemN callback routine to

determine the nature of the object being dropped. When the user drags a catalog object

and drops it onto another catalog object or onto an HFS object, the CE calls the code

resource in the aspect of the dragged object with the kDETcmdDropMeQuery routine

selector. Your drop-me query routine can call the kDETcmdGetCommandItemN callback

routine to determine the nature of the destination object. Both your drop-query and

drop-me query routines return a value telling the CE how to handle the drop.

One possible value you can return is a property number, which causes the CE to call

your code resource with a property command. The CE groups all property commands

that use the same property number resulting from a drop and calls your code resource

once. When the CE calls your code resource with the kDETcmdPropertyCommand

routine selector resulting from a drop, you can call the

kDETcmdGetCommandSelectionCount callback routine to find out how many items

are being dropped. Then for each item, call the kDETcmdGetCommandItemN callback

routine to determine the nature of the object being dropped.

The kDETcmdGetCommandItemN callback routine returns information about the item

you specify in the format you specify with the itemType parameter. The possible values

of the itemType parameter are as follows:

enum DETItemType {

kDETHFSType = 0, /* HFS item type */

 kDETDSType, /* catalog service item type */

 kDETMailType, /* mail (letter) item type */

kDETMoverType, /* sounds, fonts, etc., from inside

 a suitcase or system file */

 kDETLastItemType = 0xF0000000 /* force itemType to be a long */

};

typedef enum DETItemType DETItemType;

The item parameter is a union of several structures, as shown in the

DETGetCommandItemNBlock structure at the beginning of this routine description.

If you request an HFS item type, the routine returns a handle to a file system information

structure. This structure includes the file system specification structure for the HFS

object, plus its file type, file creator, and Finder flags. The file system information

structure is defined by the DETFSInfo data type.

struct DETFSInfo {

 OSType fileType; /* file type */

 OSType fileCreator; /* file creator */

 unsigned short fdFlags; /* Finder flags */

 FSSpec fsSpec; /* FSSpec */

};

typedef struct DETFSInfo DETFSInfo;

C H A P T E R 5

AOCE Templates

5-204 Code Resources Reference

If you request a catalog service item type, the routine returns a ds structure.

 struct {

PackedDSSpecPtr* dsSpec; /* DSSpec for item */

short refNum; /* refnum for returned address */

AuthIdentity identity; /* identity for returned address */

} ds;

This structure includes a handle to a catalog service specification structure (DSSpec) that

identifies the item, a personal catalog reference number if the item is in a personal

catalog, and an authentication identity if the item is in a catalog other than a personal

catalog. The CE allocates the handle to the DSSpec structure but you must dispose of the

handle when you are finished with it.

If you request a mail item type, the routine returns a handle to a letter-specification

(ltrSpec) structure. The CE allocates the handle but you must dispose of the handle

when you are finished with it. You can use the letter-specification structure in the

SMPGetLetterInfo function to get information about the letter. The letter-specification

structure is defined by the LetterSpec data type.

struct LetterSpec {

unsigned long spec[3];

};

Your kDETcmdDropQuery or kDETcmdDropMeQuery routine might receive a

kDETMoverType item type, indicating a Finder object, such as a font or sound, that is

inside a suitcase or system file. To manipulate such objects, you must set the copyToHFS

parameter to true in your kDETcmdDropQuery or kDETcmdDropMeQuery routine so

that the user will copy them to HFS objects and try the drop again.

If the object for which you request information is not available in the format you request,

the routine returns the kDETRequestedTypeUnavailable result code.

It is generally best to request item types in the order you prefer to deal with them. For

example, if you want to do something with a catalog object, you might ask first for an

item of type kDETDSType. If there are no such objects and your code resource can

handle HFS objects (such as information cards), you might next try the kDETHFSType

item type.

RESULT CODES

noErr 0 No error
kDETInvalidCommandItemNumber –15007 Command item number out of

range
kDETUnableToGetCommadnItemSpec –15008 Unable to retrieve information

about item (possibly out of
memory)

kDETRequestedTypeUnavailable –15009 Item could not be represented
in the specified format

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-205

SEE ALSO

The kDETcmdDropQuery routine is described on page 5-172.

The kDETcmdPropertyCommand routine is described on page 5-159.

You can use the letter-specification structure in the SMPGetLetterInfo function to get

information about the letter; the SMPGetLetterInfo function is described in the

chapter “Standard Mail Package” in this book.

Working With Templates

The routines in this section allow your code resource to determine how many templates

have been loaded by the system, to locate template files and template resources, and to

close and unload all templates.

kDETcmdTemplateCounts

This callback routine returns the numbers of aspect and information page templates in

the system.

struct DETTemplateCounts {

DETCallBackBlockHeader

long aspectTemplateCount;

long infoPageTemplateCount;

};

Parameter block

DESCRIPTION

You can use the information returned by the DETcmdTemplateCounts callback routine

if you want to iterate through all of the templates in the system; for example, to search

for a custom resource of a specific type.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdTemplateCounts
← aspectTemplateCount long Number of aspect templates
← infoPageTemplateCount long Number of information page

templates

noErr 0 No error

C H A P T E R 5

AOCE Templates

5-206 Code Resources Reference

kDETcmdGetTemplateFSSpec

This callback routine returns the file system specification for a template file.

struct DETGetTemplateFSSpecBlock {

DETCallBackBlockTargetedHeader

FSSpec fsSpec;

short baseID;

long aspectTemplateNumber;

};

Parameter block

DESCRIPTION

The kDETcmdGetTemplateFSSpec callback routine returns an FSSpec structure for

the file containing the target template.

You can use a template index number (the number that the Catalogs Extension assigned

to this aspect template when it loaded the template into memory) for the target specifier

in the target field. Whatever type of target selector you use, this function returns the

index number of the template.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdGetTemplateFSSpec
→ target DETTargetSpecification Target specifier
← fsSpec FSSpec FSSpec of file containing the

template
← baseID short Base resource ID of this template
← aspectTemplateNumber long The template number for this

aspect template

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-207

SEE ALSO

The FSSpec structure is described in the chapter “Introduction to File Management” in

Inside Macintosh: Files.

Target selectors are described in “Target Specifier” on page 5-142.

kDETcmdGetResource

This callback routine returns a template resource.

struct DETGetResourceBlock {

DETCallBackBlockPropertyHeader

ResType resourceType;

Handle theResource;

};

Parameter block

DESCRIPTION

The kDETcmdGetResource callback routine returns a handle to a resource. This

resource has a resource ID equal to the property number plus the template’s base ID and

has the resource type you specify. If the call-for mask is set appropriately, the routine

calls your code resource with the kDETcmdDynamicResource routine selector for all

resources except those listed in a forwarder template. It takes the record type resource (at

offset kDETRecordType), attribute type resource (kDETAttributeType), and attribute

value tag resource (kDETAttributeValueTag) from the version of the template that’s

stored in memory, because these resources might have been added by a forwarder

template or by the kDETcmdDynamicForwarders code-resource routine.

You can use the kDETAspectTemplate and kDETInfoPageTemplate target selectors

in the target specifier you use with this callback routine. These target selectors allow you

to specify the index number of the template assigned by the Catalogs Extension when it

loads the template into memory. You might want to use these target selectors, for

example, to search for every template in memory that contains a resource of a specific

type.

If the targeted template does not contain the specified resource, the routine returns the

resNotFound result code.

You must dispose of the resource handle when you have finished using it.

→ reqFunction DETCallBackFunctions kDETcmdGetResource
→ target DETTargetSpecification Target specifier
→ property short Property number
→ resourceType ResType Resource type
← theResource Handle Handle to the resource

C H A P T E R 5

AOCE Templates

5-208 Code Resources Reference

RESULT CODES

SEE ALSO

The kDETcmdDynamicResource routine is described on page 5-156.

Target selectors are described in “Target Specifier” on page 5-142.

Forwarder templates are described in “Components of Forwarder Templates” on

page 5-138, and the kDETcmdDynamicForwarders code-resource routine is described

on page 5-155.

kDETcmdUnloadTemplates

This callback routine unloads all templates from memory.

struct DETUnloadTemplatesBlock {

DETCallBackBlockHeader

};

Parameter block

DESCRIPTION

This callback routine causes the Catalogs Extension to close all template-related

windows, release all memory used by templates, and delete all templates and

template-related data structures from memory. At that point, you can put templates and

new versions of templates in the Extensions folder. The CE loads the new templates the

next time they are needed.

noErr 0 No error
resNotFound –192 Could not find specified

resource
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect

→ reqFunction DETCallBackFunctions kDETcmdUnloadTemplates

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-209

This routine should not normally be called by a template. It is provided for the

convenience of template developers so that you don’t need to reboot your test system

every time you want to try a new version of a template or add a new template to the

system.

RESULT CODES

Working With Catalog Objects

The routines in this section return a catalog system specification for an object and let

your code resource open a catalog object.

kDETcmdGetDSSpec

This callback routine returns a catalog system specification structure for the targeted

object.

struct DETGetDSSpecBlock {

DETCallBackBlockTargetedHeader

PackedDSSpecPtr* dsSpec;

short refNum;

AuthIdentity identity;

Boolean isAlias;

Boolean isRecordRef;

};

Parameter block

noErr 0 No error

→ reqFunction DETCallBackFunctions kDETcmdGetDSSpec
→ target DETTargetSpecification Target specifier
← dsSpec PackedDSSpecPtr* Handle to DSSpec
← refNum short Reference number for the catalog

containing the object (used only
if the catalog is a personal catalog;
only personal catalogs use reference
numbers)

← identity AuthIdentity Authentication identity used to gain
access to the catalog containing the object

← isAlias Boolean True if this DSSpec is for an alias to a
record

← isRecordRef Boolean Reserved

C H A P T E R 5

AOCE Templates

5-210 Code Resources Reference

DESCRIPTION

The Catalogs Extension allocates the handle to store the PackedDSSpec structure

returned by this function. Your code resource must deallocate the handle when done.

RESULT CODES

SEE ALSO

The PackedDSSpec structure and functions that you can use to unpack it are described

in the chapter “AOCE Utilities” in this book.

You can use the kDETcmdOpenDSSpec callback routine (described next) to open the

object described by the DSSpec structure.

kDETcmdOpenDSSpec

This callback routine opens the object for which you supply a catalog specification

(DSSpec) structure.

struct DETOpenDSSpecBlock {

DETCallBackBlockHeader

PackedDSSpecPtr dsSpec;

};

Parameter block

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect

→ reqFunction DETCallBackFunctions kDETcmdOpenDSSpec
→ dsSpec PackedDSSpecPtr DSSpec of object to be

opened

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-211

DESCRIPTION

You can use the kDETcmdOpenDSSpec callback routine to open any object for which

you have a catalog specification structure (DSSpec). The exact effect of opening the

object depends on the object; the Catalogs Extension might open an information page, or

the object’s code resource might perform some other action. The CE does not actually

open the object until after your code resource returns.

RESULT CODES

SEE ALSO

You can use the preceding routine, kDETcmdGetDSSpec, to obtain the DSSpec structure

for a catalog object.

Edit-Text Routines

The callback routines in this section give your code resource some control over edit-text

views. The first routine, kDETcmdGetOpenEdit, returns the property number of an

edit-text view. The kDETcmdCloseEdit routine closes a specific edit-text view.

kDETcmdGetOpenEdit

This callback routine returns the property number of the edit-text view that the user is

currently editing.

struct DETGetOpenEditBlock {

DETCallBackBlockTargetedHeader

short viewProperty;

};

Parameter block

noErr 0 No error
kDETInvalidDSSpec –15010 Could not resolve DSSpec

→ reqFunction DETCallBackFunctions kDETcmdGetOpenEdit
→ target DETTargetSpecification Target specifier
← viewProperty short The property number of

the view being edited

C H A P T E R 5

AOCE Templates

5-212 Code Resources Reference

DESCRIPTION

If no edit-text view is currently being edited, this function returns the value

kDETNoProperty in the viewProperty field.

Note that, because this routine can be targeted, you can use it in the code resource for a

parent to get information about the information page of a child.

RESULT CODES

kDETcmdCloseEdit

This callback routine closes the currently open edit-text view.

struct DETCloseEditBlock {

DETCallBackBlockTargetedHeader

};

Parameter block

DESCRIPTION

This callback routine removes the focus box (if any) from the currently open edit-text

view, removes the insertion point from the view, and finalizes the edit. After you call this

routine, the user must click again within the view to reopen the edit text. The

information page must be open when you call this routine; if it is not, the function

returns the kDETInfoPageNotOpen result code.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETNoSuchView –15013 No view found with specified

property number

→ reqFunction DETCallBackFunctions kDETcmdCloseEdit
→ target DETTargetSpecification Target specifier

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-213

Note that, because this routine can be targeted, you can use it in the code resource for a

parent to affect the information page of a child.

RESULT CODES

SEE ALSO

To determine the property number of the currently open edit-text view, use the

kDETcmdGetOpenEdit callback routine (page 5-211).

Getting Information About Properties

The routines described in this section provide information about properties. Note that

because the Catalogs Extension looks up information in catalogs asynchronously, it

might not have found the information you are asking for if it has not had time to

complete its search. You can use the value of the property kDETPastFirstLookup to

determine whether the CE has completed its catalog search. This property value equals 0

until the search is complete, after which it equals 1.

When your code resource requests the value of a property, you use the

kDETcmdGetPropertyNumber, kDETcmdGetPropertyRString, or

kDETcmdGetPropertyBinary callback routine to obtain the property as a specific

type. If the actual property containing the value is of a different type, the CE

automatically converts the value to the requested type, calling the template code

resource if the source property is a custom type.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETInfoPageNotOpen –15012 Information page not open

C H A P T E R 5

AOCE Templates

5-214 Code Resources Reference

Table 5-15 summarizes the CE’s actions when you request a property value. See Table

5-16 on page 5-223 for the conversions the CE performs when you set a property value.

The kDETcmdGetPropertyChanged and kDETcmdGetPropertyEditable routines

get the values of the property-changed and property-editable flags for a specific property.

kDETcmdGetPropertyType

This callback routine returns the type of the specified property.

struct DETGetPropertyTypeBlock {

DETCallBackBlockPropertyHeader

short propertyType;

};

Table 5-15 Property-type conversions on requesting a property value

Callback routine
Property
type Conversion

kDETcmdGetPropertyNumber Number None

kDETcmdGetPropertyNumber String Interprets as number, ignoring
non-numeric characters

kDETcmdGetPropertyNumber Binary Takes first 4 bytes of binary data

kDETcmdGetPropertyNumber Custom Calls code resource
kDETcmdConvertToNumber
routine

kDETcmdGetPropertyRString Number Converts unsigned number to string

kDETcmdGetPropertyRString String None

kDETcmdGetPropertyRString Binary Interprets binary data as an
RString structure

kDETcmdGetPropertyRString Custom Calls code resource
kDETcmdConvertToRString
routine

kDETcmdGetPropertyBinary Number None

kDETcmdGetPropertyBinary String None

kDETcmdGetPropertyBinary Binary None

kDETcmdGetPropertyBinary Custom None

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-215

Parameter block

DESCRIPTION

Standard property types are kDETPrTypeNumber for numbers, kDETPrTypeString

for strings, or kDETPrTypeBinary for binary blocks. You can also define your own

property types. If you have never explicitly set the type of a property—either by using a

lookup-table pattern element, by using a resource type for the property that confers a

default property type ('rstr', 'detn', or 'detb'), or by using the

kDETcmdSetPropertyType callback routine—then the property is of type

kDETPrTypeBinary.

RESULT CODES

SEE ALSO

Property types are described in “Properties” beginning on page 5-84.

Code-resource routines that you can provide to convert custom property types to and

from standard property types are described in “Custom Property-Type Conversions”

beginning on page 5-188.

You can use lookup-table elements to set property types. Lookup tables are described in

“The Lookup-Table Resource” beginning on page 5-105.

You can use the kDETcmdSetPropertyType callback routine (page 5-225) to change

the type of a property.

→ reqFunction DETCallBackFunctions kDETcmdGetPropertyType
→ target DETTargetSpecification Target specifier
→ property short Property number
← propertyType short Property type

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found

C H A P T E R 5

AOCE Templates

5-216 Code Resources Reference

kDETcmdGetPropertyNumber

This callback routine returns the value of a property as a number.

struct DETGetPropertyNumberBlock {

DETCallBackBlockPropertyHeader

unsigned long propertyValue;

};

Parameter block

DESCRIPTION

A property of type kDETPrTypeNumber is stored internally as an unsigned long word,

and this function returns that value.

If the property is of type kDETPrTypeString, the kDETcmdGetPropertyNumber

function removes all nonnumeric characters and returns the remaining string as a

number. The function does not recognize minus signs (–), hexadecimal signs ($ or 0x), or

other special symbols when converting strings to numbers.

If the property is of type kDETPrTypeBinary, the function returns the first 4 bytes of

the property value as a number.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdGetPropertyNumber
→ target DETTargetSpecification Target specifier
→ property short Property number
← propertyValue long Property value

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-217

SEE ALSO

You can use the kDETcmdGetPropertyType callback routine (page 5-214) to determine

the type of a property before you get its value.

To get a property value as a string, use the kDETcmdGetPropertyRString callback

routine, described next.

To get a property value as a binary block, use the kDETcmdGetPropertyBinary

callback routine (page 5-219).

kDETcmdGetPropertyRString

This callback routine returns the value of a property as an RString structure.

struct DETGetPropertyRStringBlock {

DETCallBackBlockPropertyHeader

RStringHandle propertyValue;

};

Parameter block

DESCRIPTION

A property of type kDETPrTypeString is stored internally as an RString structure,

and this callback routine returns that value. If the property is of type

kDETPrTypeNumber, this routine converts the number to an RString. If the property is

of type kDETPrTypeBinary, this routine assumes the binary block contains an

RString and returns it as such.

When this callback routine completes with the noErr result code, the Catalogs

Extension allocates the handle in the propertyValue field. It is your responsibility to

deallocate it when done. The function always returns a valid handle, even if the string is

of length 0.

→ reqFunction DETCallBackFunctions kDETcmdGetPropertyRString
→ target DETTargetSpecification Target specifier
→ property short Property number
← propertyValue RStringHandle Handle to property value

C H A P T E R 5

AOCE Templates

5-218 Code Resources Reference

RESULT CODES

SEE ALSO

You can use the kDETcmdGetPropertyType callback routine (page 5-214) to determine

the type of a property before you get its value.

To get a property value as a number, use the kDETcmdGetPropertyNumber callback

routine (page 5-216).

To get a property value as a binary block, use the kDETcmdGetPropertyBinarySize

callback routine, described next.

kDETcmdGetPropertyBinarySize

This callback routine returns the size of a property value.

struct DETGetPropertyBinarySizeBlock {

DETCallBackBlockPropertyHeader

long propertyBinarySize;

};

Parameter block

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found

→ reqFunction DETCallBackFunctions kDETcmdGetPropertyBinarySize
→ target DETTargetSpecification Target specifier
→ property short Property number
← propertyBinarySize long Property size

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-219

DESCRIPTION

This function treats the property as a binary block regardless of the property type,

returning the number of bytes in the property value. You can use this function to

determine how many bytes of data will be returned by the

kDETcmdGetPropertyBinary function.

RESULT CODES

SEE ALSO

This function tells you how many bytes of data will be returned by the

kDETcmdGetPropertyBinary function (described next) for a given property.

kDETcmdGetPropertyBinary

This callback routine returns the value of a property as a binary block.

struct DETGetPropertyBinaryBlock {

DETCallBackBlockPropertyHeader

Handle propertyValue;

};

Parameter block

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found

→ reqFunction DETCallBackFunctions kDETcmdGetPropertyBinary
→ target DETTargetSpecification Target specifier
→ property short Property number
← propertyValue Handle Handle to property value

C H A P T E R 5

AOCE Templates

5-220 Code Resources Reference

DESCRIPTION

The kDETcmdGetPropertyBinary function returns the value of a property as an

uninterpreted binary block, regardless of the type of the property. If the property is of

type kDETPrTypeString, for example, this function returns the RString character set

and data length fields along with the string itself as binary data.

When this callback routine completes with the noErr result code, the Catalogs

Extension allocates the handle in the propertyValue field. It is your responsibility to

deallocate the handle when done.

SPECIAL CONSIDERATIONS

The size of the handle returned by this routine is not the size of the property value. Use

the kDETcmdGetPropertyBinarySize callback routine to determine the size of a

property value.

RESULT CODES

SEE ALSO

You can use the kDETcmdGetPropertyType callback routine (page 5-214) to determine

the type of a property before you get its value.

You can use the kDETcmdGetPropertyBinarySize callback routine (page 5-218) to

determine the size of a property value before calling the kDETcmdGetPropertyBinary

function.

To get a property value as a number, use the kDETcmdGetPropertyNumber callback

routine (page 5-216).

To get a property value as a string, use the kDETcmdGetPropertyRString callback

routine (page 5-217).

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-221

kDETcmdGetPropertyChanged

This callback routine indicates whether a property value has been changed.

struct DETGetPropertyChangedBlock {

DETCallBackBlockPropertyHeader

Boolean propertyChanged;

};

Parameter block

DESCRIPTION

This function returns the value of the property-changed flag, which indicates whether

the user has changed this property.

If the property-changed flag for this property is set, the Catalogs Extension saves the

value of the property when the user closes the information page. You can check the value

of this field and save the property value yourself if you have a special need to do so. In

addition, if other portions of your display depend on the value of this property, you can

use this knowledge to update the display.

RESULT CODES

SEE ALSO

You can use the kDETcmdSetPropertyChanged callback routine (page 5-231) to set the

property-changed flag for a property.

→ reqFunction DETCallBackFunctions kDETcmdGetPropertyChanged
→ target DETTargetSpecification Target specifier
→ property short Property number
← propertyChanged Boolean Is property-changed flag set?

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found

C H A P T E R 5

AOCE Templates

5-222 Code Resources Reference

kDETcmdGetPropertyEditable

This callback routine indicates whether a property can be edited by the user or whether a

control view is enabled.

struct DETGetPropertyEditableBlock {

DETCallBackBlockPropertyHeader

Boolean propertyEditable;

};

Parameter block

DESCRIPTION

The access controls for the dNode, record, and attribute determine whether a property is

editable. You can also use the kDETcmdSetPropertyEditable callback routine to

make a text view uneditable or to disable a control view. Note that if a property is not

editable, neither is a text view based on that property. Also, controls that would change

the value of that property are not enabled.

RESULT CODES

SEE ALSO

You can use the kDETcmdSetPropertyEditable callback routine (page 5-232) to set

or clear the property-editable flag.

→ reqFunction DETCallBackFunctions kDETcmdGetPropertyEditable
→ target DETTargetSpecification Target specifier
→ property short Property number
← propertyEditable Boolean Is property editable?

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-223

Setting Value, Type, and Other Features of Properties

The routines in this section let your code resource set property values and other property

features. The first routine, kDETcmdBreakAttribute, sends an attribute to the lookup

table to create or update one or more properties. The kDETcmdSetPropertyType

routine sets the type of a property. The kDETcmdSetPropertyNumber,

kDETcmdSetPropertyRString, and kDETcmdSetPropertyBinary commands set

the values of properties, converting the types of the values as shown in Table 5-16. See

Table 5-15 on page 5-214 for the conversions the Catalogs Extension performs when you

get a property value.

The kDETcmdSetPropertyChanged and kDETcmdSetPropertyEditable routines

set the property-changed and property-editable flags for a specific property. The

kDETcmdDirtyProperty routine causes the CE to redraw the view associated with a

property. The kDETcmdSaveProperty causes the CE to save a property immediately.

Table 5-16 Property-type conversions on setting a property value

Callback routine
Property
type Conversion

kDETcmdSetPropertyNumber Number None

kDETcmdSetPropertyNumber String Converts unsigned number to string

kDETcmdSetPropertyNumber Binary Sets type to number, then sets value

kDETcmdSetPropertyNumber Custom Calls code resource
kDETcmdConvertFromNumber
routine

kDETcmdSetPropertyRString Number Interprets as number, ignoring
non-numeric characters

kDETcmdSetPropertyRString String None

kDETcmdSetPropertyRString Binary Sets type to string, then sets value

kDETcmdSetPropertyRString Custom Calls code resource
kDETcmdConvertFromRString
routine

kDETcmdSetPropertyBinary Number Sets value, leaving type as number

kDETcmdSetPropertyBinary String Sets value, leaving type as string

kDETcmdSetPropertyBinary Binary None

kDETcmdSetPropertyBinary Custom Sets value, leaving custom type as
defined by developer

C H A P T E R 5

AOCE Templates

5-224 Code Resources Reference

kDETcmdBreakAttribute

This callback routine causes the CE to parse an attribute.

struct DETBreakAttributeBlock {

DETCallBackBlockTargetedHeader

AttributePtr breakAttribute;

Boolean isChangeable;

};

Parameter block

DESCRIPTION

The Catalogs Extension uses the lookup table of the target aspect to process the attribute

pointed to by the breakAttribute field. This routine allows you to use an attribute

value from a different record or from outside the catalog system. The isChangeable

field indicates whether the user can edit the value so that the CE can set the

property-editable flag for the property.

Note
A lookup table can contain only one input pattern and one output
pattern for each attribute type. Therefore, although the CE places no
restriction on the number of attribute values that can be assigned to each
attribute type, lookup-table patterns are designed to work only for those
multivalued attributes that appear in sublists. ◆

SPECIAL CONSIDERATIONS

If your kDETcmdDoSync code resource routine uses the kDETcmdBreakAttribute

callback to supply sublist items from outside the AOCE catalog system, you must supply

a unique type and CID to each item, and you must use the same type and CID for that

item every subsequent time the CE calls your kDETcmdDoSync routine. Otherwise, the

CE deletes the item as obsolete.

→ reqFunction DETCallBackFunctions kDETcmdBreakAttribute
→ target DETTargetSpecification Target specifier
→ breakAttribute AttributePtr Attribute to parse
→ isChangeable Boolean Can user change value?

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-225

RESULT CODES

SEE ALSO

You must call the kDETcmdBreakAttribute callback routine from your

kDETcmdDoSync code resource routine (page 5-186) if you are providing attribute

values from outside the AOCE catalog system.

Lookup tables are described in “The Lookup-Table Resource” beginning on page 5-105.

kDETcmdSetPropertyType

This callback routine sets a property’s type.

struct DETSetPropertyTypeBlock {

DETCallBackBlockPropertyHeader

short newType;

};

Parameter block

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect

→ reqFunction DETCallBackFunctions kDETcmdSetPropertyType
→ target DETTargetSpecification Target specifier
→ property short Property number
→ newType short New property type

C H A P T E R 5

AOCE Templates

5-226 Code Resources Reference

DESCRIPTION

You can use the kDETcmdSetPropertyType callback routine to set the type of a

property. The standard AOCE property types are kDETPrTypeNumber for numbers,

kDETPrTypeString for strings, or kDETPrTypeBinary for binary blocks. You can

also define your own property types. Because Apple Computer, Inc., reserves all

property-type values less than or equal to 0, you must give your property type a positive

value.

Note that this routine just sets the property’s type; it does not convert the property value

to the new type. You should convert the property value or redraw the display as

appropriate.

RESULT CODES

SEE ALSO

Property types are described in “Properties” beginning on page 5-84.

You can use the kDETcmdGetPropertyType callback routine (page 5-214) to determine

the type of a property.

You can use the kDETcmdDirtyProperty callback routine (page 5-233) to cause the CE

to redraw the view.

Whenever the CE needs to convert to or from one of your private property types, it calls

your code resource. Code resource routines that you can provide to convert custom

property types to and from standard property types are described in “Custom

Property-Type Conversions” beginning on page 5-188.

You can use lookup-table elements to set property types. Lookup tables are described in

“The Lookup-Table Resource” beginning on page 5-105.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETPropertyBusy –15020 Specified property is being

edited

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-227

kDETcmdSetPropertyNumber

This callback routine sets the value of a property using a number as input.

struct DETSetPropertyNumberBlock {

DETCallBackBlockPropertyHeader

unsigned long newValue;

};

Parameter block

DESCRIPTION

This routine sets the value of a property to the value in the newValue field and causes

the affected views to be redrawn. If the property is of type kDETPrTypeString, the

Catalogs Extension converts the unsigned number in the newValue field to an

RString. If the property is of type kDETPrTypeBinary, the CE sets the property type

to kDETPrTypeNumber before setting its value. If the property is a custom type, the CE

calls the code resource’s kDETcmdConvertFromNumber routine to convert the value

and does not change the property’s type.

Note that setting the value of a property does not automatically set its changed flag. You

must call the kDETcmdSetPropertyChanged callback routine to set the changed flag if

you want the CE to save the new value when the user closes the information page.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdSetPropertyNumber
→ target DETTargetSpecification Target specifier
→ property short Property number
→ newValue long New property value

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETPropertyBusy –15020 Specified property is being

edited

C H A P T E R 5

AOCE Templates

5-228 Code Resources Reference

SEE ALSO

You can use the kDETcmdGetPropertyNumber callback routine (page 5-216) to

determine the value of a number property.

To cause the CE to save the new property value, call the

kDETcmdSetPropertyChanged callback routine (page 5-231).

kDETcmdSetPropertyRString

This callback routine sets the value of a property using an RString as input.

struct DETSetPropertyRStringBlock {

DETCallBackBlockPropertyHeader

RStringPtr newValue;

};

Parameter block

DESCRIPTION

This routine sets the value of a property to the value in the newValue field and causes

the affected views to be redrawn. If the property is of type kDETPrTypeNumber, the

Catalogs Extension removes all nonnumeric characters and uses the remaining number

to set the property value. The function does not recognize minus signs (–), hexadecimal

signs ($ or 0x), or other special symbols when converting strings to numbers. If the

property is of type kDETPrTypeBinary, the CE sets the property type to

kDETPrTypeString before setting its value. If the property is a custom type, the CE

calls the code resource’s kDETcmdConvertFromRString routine to convert the value

and does not change the property’s type.

Note that setting the value of a property does not automatically set its changed flag. You

must call the kDETcmdSetPropertyChanged callback routine to set the changed flag if

you want the CE to save the new value when the user closes the information page.

→ reqFunction DETCallBackFunctions kDETcmdSetPropertyRString
→ target DETTargetSpecification Target specifier
→ property short Property number
→ newValue RStringPtr Pointer to new property value

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-229

RESULT CODES

SEE ALSO

You can use the kDETcmdGetPropertyRString callback routine (page 5-217) to

determine the value of a string property.

To cause the CE to save the new property value, call the

kDETcmdSetPropertyChanged callback routine (page 5-231).

kDETcmdSetPropertyBinary

This callback routine sets the value of a property using a binary value as input.

struct DETSetPropertyBinaryBlock {

DETCallBackBlockPropertyHeader

Ptr newValue;

long newValueSize;

};

Parameter block

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETPropertyBusy –15020 Specified property is being

edited

→ reqFunction DETCallBackFunctions kDETcmdSetPropertyBinary
→ target DETTargetSpecification Target specifier
→ property short Property number
→ newValue Ptr Pointer to new property value
→ newValueSize long Size of new value

C H A P T E R 5

AOCE Templates

5-230 Code Resources Reference

DESCRIPTION

This routine sets the value of a property to the value in the newValue field and causes

the affected view to be redrawn. If the property is of type kDETprTypeNumber, the

Catalogs Extension assumes the binary value is a number and sets the property length

accordingly. If the property is of type kDETprTypeString, the CE uses the

newValueSize parameter as the length of the property but and sets the property value

to the binary block you provide. (Note that the CE will subsequently assume this

property value to be an RString structure, interpreting the first 4 bytes as the charSet

and dataLength fields.) If the property is a custom type, the CE sets the property

length to the size in the newValueSize parameter and does not change the property’s

type.

Note that setting the value of a property does not automatically set its changed flag. You

must call the kDETcmdSetPropertyChanged callback routine to set the changed flag if

you want the CE to save the new value when the user closes the information page.

RESULT CODES

SEE ALSO

You can use the kDETcmdGetPropertyBinary callback routine (page 5-219) to

determine the value of a binary property.

To cause the CE to save the new property value, call the

kDETcmdSetPropertyChanged callback routine (described next).

The RString data structure is defined in the chapter “AOCE Utilities” in this book.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETPropertyBusy –15020 Specified property is being

edited

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-231

kDETcmdSetPropertyChanged

This callback routine sets or clears the property-changed flag for a specified property.

struct DETSetPropertyChangedBlock {

DETCallBackBlockPropertyHeader

Boolean propertyChanged;

};

Parameter block

DESCRIPTION

If you set the propertyChanged field to true, the Catalogs Extension saves the

property the next time the user closes the information page. Note that setting the value

of a property does not automatically set its changed flag.

RESULT CODES

SEE ALSO

You can use the kDETcmdGetPropertyChanged callback routine (page 5-221) to

determine the current value of a property’s changed flag.

→ reqFunction DETCallBackFunctions kDETcmdSetPropertyChanged
→ target DETTargetSpecification Target specifier
→ property short Property number
→ propertyChanged Boolean Property-changed flag

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETPropertyBusy –15020 Specified property is being

edited

C H A P T E R 5

AOCE Templates

5-232 Code Resources Reference

kDETcmdSetPropertyEditable

This callback routine sets the property-editable flag for a specific property.

struct DETSetPropertyEditableBlock {

DETCallBackBlockPropertyHeader

Boolean propertyEditable;

};

Parameter block

DESCRIPTION

The Catalogs Extension normally sets the value of the property-editable flag for a

property based on the user’s authentication identity and the access control settings of the

dNode (catalog folder), record, and attribute. The property-editable flag determines

whether an edit-text view is editable or a control in an information page is enabled. You

can set the propertyEditable field to false to disable an edit-text view or a control,

overriding the default setting, or to true to reenable a view or control once you have

disabled it.

The setting of the propertyEditable flag persists only as long as the aspect remains

in memory.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdSetPropertyEditable
→ target DETTargetSpecification Target specifier
→ property short Property number
→ propertyEditable Boolean Property-editable flag

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETPropertyBusy –15020 Specified property is being

edited

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-233

SEE ALSO

You can use the kDETcmdGetPropertyEditable callback routine (page 5-222) to

determine the current setting of the property-editable flag.

kDETcmdDirtyProperty

This callback routine causes the CE to redraw a view and calls the code resource for the

target with the kDETcmdPropertyDirtied routine selector.

struct DETDirtyPropertyBlock {

DETCallBackBlockPropertyHeader

};

Parameter block

DESCRIPTION

When you make a change that affects the view associated with a property (by adding an

item to a pop-up menu, for example), you can call the kDETcmdDirtyProperty

callback routine to cause the Catalogs Extension to redraw the views associated with the

property. This routine also calls the code resource for the target with the

kDETcmdPropertyDirtied routine selector, giving you the opportunity to redraw

other views affected by the views that were just redrawn.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdDirtyProperty
→ target DETTargetSpecification Target specifier
→ property short Property number

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETPropertyBusy –15020 Specified property is being

edited

C H A P T E R 5

AOCE Templates

5-234 Code Resources Reference

SEE ALSO

Calling the kDETcmdDirtyProperty routine does not cause the CE to save a property;

when you change the value of a property, call the kDETcmdSetPropertyChanged

routine (page 5-231) to cause the CE to save the new value.

kDETcmdSaveProperty

This callback routine saves the value of the specified property.

struct DETSavePropertyBlock {

DETCallBackBlockPropertyHeader

};

Parameter block

DESCRIPTION

Normally, the Catalogs Extension saves all changed property values (that is, all property

values for which the changed flag is set) when the user closes the information page. You

can use the kDETcmdSaveProperty callback routine to force the CE to save a specific

property immediately. The CE applies all the appropriate lookup-table patterns and

writes the property values to the attributes specified by the lookup table.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdSaveProperty
→ target DETTargetSpecification Target specifier
→ property short Property number

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Could not find or change

property

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-235

SEE ALSO

Lookup tables are described in “The Lookup-Table Resource” beginning on page 5-105.

Working With Sublists

The routines in this section return information about sublists and force the Catalogs

Extension to update a sublist. Note that the CE looks up information in catalogs

asynchronously. Thus, it might not have finished setting up a sublist because it has not

had time to complete its search. You can use the value of the property

kDETPastFirstLookup to determine whether the CE has completed its catalog search.

This property equals 0 until the search is complete, after which it equals 1.

kDETcmdSublistCount

This callback routine returns the number of items in the targeted aspect’s sublist.

struct DETSublistCountBlock {

DETCallBackBlockTargetedHeader

long count;

};

Parameter block

DESCRIPTION

You can use this routine to determine the total number of items in your aspect’s sublist

when you are using a targeted callback routine to iterate through every item in the

sublist.

→ reqFunction DETCallBackFunctions kDETcmdSublistCount
→ target DETTargetSpecification Target specifier
← count long The number of items in

the targeted aspect’s
sublist

C H A P T E R 5

AOCE Templates

5-236 Code Resources Reference

RESULT CODES

SEE ALSO

The target-specifier structure requires you to specify the index number of a sublist item.

The target specifier is described in “Target Specifier” on page 5-142.

Use the kDETcmdSelectedSublistCount callback routine (described next) to

determine the number of selected items in the sublist.

kDETcmdSelectedSublistCount

This callback routine returns the number of items that the user has selected in the

targeted aspect’s sublist.

struct DETSelectedSublistCountBlock {

DETCallBackBlockTargetedHeader

long count;

};

Parameter block

DESCRIPTION

You can use this routine to determine the number of selected items in your aspect’s

sublist when you are using a targeted callback routine to iterate through all the selected

items in the sublist.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect

→ reqFunction DETCallBackFunctions kDETcmdSelectedSublistCount
→ target DETTargetSpecification Target specifier
← count long The number of selected items in the

targeted aspect’s sublist

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-237

RESULT CODES

SEE ALSO

The target-specifier structure requires you to specify the index number of a sublist item.

The target specifier is described in “Target Specifier” on page 5-142.

Use the kDETcmdSublistCount callback routine (page 5-235) to determine the total

number of items in the sublist.

kDETcmdRequestSync

This callback routine causes the CE to synchronize a sublist and properties with the

catalog system.

struct DETRequestSyncBlock {

DETCallBackBlockTargetedHeader

};

Parameter block

DESCRIPTION

This routine forces the Catalogs Extension to check immediately whether the sublist or

any properties in the targeted aspect need updating to match what’s present in the

catalog system. Normally, the CE performs this operation periodically. You can use this

callback routine if you need the synchronization done immediately; for example, if you

use a Catalog Manager function to add something to the sublist and want it displayed

without delay.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect

→ reqFunction DETCallBackFunctions kDETcmdRequestSync
→ target DETTargetSpecification Target specifier

C H A P T E R 5

AOCE Templates

5-238 Code Resources Reference

RESULT CODES

SEE ALSO

When you call the kDETcmdRequestSync callback routine, the CE calls your

kDETcmdShouldSync routine (page 5-185) to determine whether any of your properties

need updating.

Working With Pop-Up Menus

The commands in this section add and remove dynamic pop-up menu items and return

the text of a pop-up menu item.

kDETcmdAddMenu

This callback routine adds an item to a dynamic pop-up menu.

struct DETAddMenuBlock {

DETCallBackBlockPropertyHeader

RString* name;

long parameter;

long addAfter;

};

Parameter block

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect

→ reqFunction DETCallBackFunctions kDETcmdAddMenu
→ target DETTargetSpecification Target specifier
→ property short Property number
→ name RString* Pointer to name of new menu item
→ parameter long Parameter to return to code resource

when this item is selected
→ addAfter long Parameter of menu item to add this item

after, or –1 to add item at end of menu

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-239

DESCRIPTION

Provide a pointer to the text for the new menu item in the name field. The Catalogs

Extension sends the value in the parameter field to your code resource as a parameter

to the kDETcmdPropertyCommand routine when the user chooses this menu item. Use

the addAfter parameter to indicate where in the menu to add the item: immediately

after the menu item whose parameter you specify, or at the end of the menu if you

specify –1.

SPECIAL CONSIDERATIONS

You cannot call this routine for a menu that is not visible: the information page must be

open and, if the menu is in a conditional view, that view must be currently drawn.

If you have a dynamic pop-up menu in a conditional view, you must set up the menu

each time the conditional view appears.

Pop-up menus are limited to 31 items. If you try to add more than 31 items, the

kDETcmdAddMenu callback routine returns the kDETCouldNotAddMenuItem result

code.

RESULT CODES

SEE ALSO

Use the kDETcmdDirtyProperty callback routine (page 5-233) to cause the CE to

redraw the menu when you add a new menu item.

Pop-up menus are described in “View Lists” beginning on page 5-123.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETInfoPageNotOpen –15012 Information page not open
kDETNoSuchView –15013 No view found with specified

property number
kDETCouldNotAddMenuItem –15014 Could not add item to menu
kDETCouldNotFindMenuItem –15016 Could not find menu item

C H A P T E R 5

AOCE Templates

5-240 Code Resources Reference

kDETcmdRemoveMenu

This callback routine removes an item from a dynamic pop-up menu.

struct DETRemoveMenuBlock {

DETCallBackBlockPropertyHeader

long itemToRemove;

};

Parameter block

DESCRIPTION

This routine removes the item that has the parameter value specified in the

itemToRemove field.

SPECIAL CONSIDERATIONS

You cannot call this routine for a menu that is not visible: the information page must be

open and, if the menu is in a conditional view, that view must be currently drawn.

If you have a dynamic pop-up menu in a conditional view, you must set up the menu

each time the conditional view appears.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdRemoveMenu
→ target DETTargetSpecification Target specifier
→ property short Property number
→ itemToRemove long Parameter of menu item

to remove

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETInfoPageNotOpen –15012 Information page not open

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-241

SEE ALSO

Use the kDETcmdDirtyProperty callback routine (page 5-233) to cause the CE to

redraw the menu when you remove a menu item.

Pop-up menus are described in “View Lists” beginning on page 5-123.

kDETcmdMenuItemRString

This callback routine returns the text of an item in a dynamic pop-up menu.

struct DETMenuItemRStringBlock {

DETCallBackBlockPropertyHeader

long itemParameter;

RStringHandle rString;

};

Parameter block

DESCRIPTION

Use the itemParameter field to specify the parameter of the menu item whose text you

want. The Catalogs Extension allocates the handle for the rString field. It is your

responsibility to deallocate the handle when it is no longer needed.

SPECIAL CONSIDERATIONS

You cannot call this routine for a menu that is not visible: the information page must be

open and, if the menu is in a conditional view, that view must be currently drawn.

If you have a dynamic pop-up menu in a conditional view, you must set up the menu

each time the conditional view appears.

kDETNoSuchView –15013 No view found with specified
property number

kDETCouldNotRemoveMenuItem –15015 Could not remove item from
dynamic menu

kDETCouldNotFindMenuItem –15016 Could not find menu item

→ reqFunction DETCallBackFunctions kDETcmdMenuItemRString
→ target DETTargetSpecification Target specifier
→ property short Property number
→ itemParameter long Parameter of menu item for which

you want the text string
← rString RStringHandle Handle to string containing text of

menu item

C H A P T E R 5

AOCE Templates

5-242 Code Resources Reference

RESULT CODES

SEE ALSO

Pop-up menus are described in “View Lists” beginning on page 5-123.

Custom Views

The routines in this section return information about custom views. The first routine,

kDETcmdGetCustomViewUserReference, returns the reference value associated with

a custom view. The kDETcmdGetCustomViewBounds routine returns the bounds for a

custom view.

kDETcmdGetCustomViewUserReference

This callback routine returns the reference value that you set in the view list for a custom

view.

struct DETGetCustomViewUserReferenceBlock {

DETCallBackBlockPropertyHeader

short userReference;

};

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETInfoPageNotOpen –15012 Information page not open
kDETNoSuchView –15013 No view found with specified

property number
kDETCouldNotFindMenuItem –15016 Could not find menu item

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-243

Parameter block

DESCRIPTION

The view list specification for a custom view includes an integer that you can set to any

value you wish. The kDETcmdGetCustomViewUserReference callback routine

returns this value for a specific custom view.

SPECIAL CONSIDERATIONS

You cannot call this routine for a custom view that is not visible: the information page

must be open and, if the custom view is in a conditional view, that view must be

currently drawn.

RESULT CODES

SEE ALSO

The view list specifier for a custom view is described in “View Lists” beginning on

page 5-123.

For more information about how to implement custom views, see “Custom Views and

Custom Menus” beginning on page 5-192.

→ reqFunction DETCallBackFunctions kDETcmdGetCustomViewUserReference
→ target DETTargetSpecification Target specifier
→ property short Property number
← userReference short User reference value

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETInfoPageNotOpen –15012 Information page not open
kDETNoSuchView –15013 No view found with specified

property number
kDETCouldNotFindCustomView –15017 Could not find custom view

C H A P T E R 5

AOCE Templates

5-244 Code Resources Reference

kDETcmdGetCustomViewBounds

This callback routine returns the bounds of a custom view.

struct DETGetCustomViewBoundsBlock {

DETCallBackBlockPropertyHeader

Rect bounds;

};

Parameter block

DESCRIPTION

You can use this routine to determine the bounds of a specific custom view so that you

don’t have to store the bounds for every custom view you define.

SPECIAL CONSIDERATIONS

You cannot call this routine for a custom view that is not visible: the information page

must be open and, if the custom view is in a conditional view, that view must be

currently drawn.

RESULT CODES

→ reqFunction DETCallBackFunctions kDETcmdGetCustomViewBounds
→ target DETTargetSpecification Target specifier
→ property short Property number
← bounds rect Bounds of the view in local window

coordinates

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found
kDETInfoPageNotOpen –15012 Information page not open
kDETNoSuchView –15013 No view found with specified

property number
kDETCouldNotFindCustomView –15017 Could not find custom view

C H A P T E R 5

AOCE Templates

Code Resources Reference 5-245

SEE ALSO

The view list specifier for a custom view is described in “View Lists” beginning on

page 5-123.

For more information about how to implement custom views, see “Custom Views and

Custom Menus” beginning on page 5-192.

Sending a Property Command

The kDETcmdDoPropertyCommand callback routine sends a property command to a

code resource.

kDETcmdDoPropertyCommand

This callback routine sends a property command to the targeted code resource.

struct DETDoPropertyCommandBlock {

DETCallBackBlockPropertyHeader

long parameter;

};

Parameter block

DESCRIPTION

When you call this routine, the Catalogs Extension calls your code resource’s property

command (kDETcmdPropertyCommand) routine. The CE passes the property number

and parameter value you specify to your property command. The effect is the same as

when the CE initiates a property command.

→ reqFunction DETCallBackFunctions kDETcmdDoPropertyCommand
→ target DETTargetSpecification Target specifier
→ property short Property number
→ parameter long Parameter of property command

C H A P T E R 5

AOCE Templates

5-246 Code Resources Reference

RESULT CODES

SEE ALSO

The kDETcmdPropertyCommand routine is described on page 5-159.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named

in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector

out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an

aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector

could not be resolved
kDETUnknownTargetSelector –15004 Selector type in target selector

invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an

aspect
kDETUnableToAccessProperty –15011 Property could not be found

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-247

Summary of AOCE Templates

C Summary

Constants and Data Types

/* Current versions of all the different template types */

#define kDETAspectVersion -976

#define kDETInfoPageVersion -976

#define kDETKillerVersion -976

#define kDETForwarderVersion -976

#define kDETFileTypeVersion -976

/* Suggested separation for template IDs within a file */

#define kDETIDSep 250

/* Predefined base IDs */

#define kDETFirstID (1000)

#define kDETSecondID (1000 + kDETIDSep)

#define kDETThirdID (1000 + 2 * kDETIDSep)

#define kDETFourthID (1000 + 3 * kDETIDSep)

#define kDETFifthID (1000 + 4 * kDETIDSep)

/* Template resource ID offsets */

#define kDETTemplateName 0

#define kDETRecordType 1

#define kDETKillerName 1

#define kDETAttributeType 2

#define kDETAttributeValueTag 3

#define kDETAspectCode 4

#define kDETInfoPageName 4

#define kDETForwarderTemplateNames 4

#define kDETAspectMainBitmap 5

#define kDETInfoPageMainViewAspect 5

#define kDETAspectName 6

#define kDETInfoPageMenuName 6

#define kDETAspectCategory 7

#define kDETInfoPageMenuEntries 7

C H A P T E R 5

AOCE Templates

5-248 Summary of AOCE Templates

#define kDETAspectExternalCategory 8

#define kDETAspectKind 9

#define kDETAspectGender 10

#define kDETAspectWhatIs 11

#define kDETAspectAliasKind 12

#define kDETAspectAliasGender 13

#define kDETAspectAliasWhatIs 14

#define kDETAspectBalloons 15

#define kDETAspectNewMenuName 16

#define kDETAspectNewEntryName 17

#define kDETAspectNewValue 18

#define kDETAspectSublistOpenOnNew 19

#define kDETAspectLookup 20

#define kDETAspectDragInString 21

#define kDETAspectDragInVerb 22

#define kDETAspectDragInSummary 23

#define kDETAspectRecordDragIn 24

#define kDETAspectRecordCatDragIn 25

#define kDETAspectAttrDragIn 26

#define kDETAspectAttrDragOut 27

#define kDETAspectViewMenu 28

#define kDETAspectReverseSort 29

#define kDETAspectInfoPageCustomWindow 30

/* Properties */

#define kDETNoProperty -1

#define kDETFirstLocalProperty 0

#define kDETLastLocalProperty (kDETFirstLocalProperty + 249)

#define kDETFirstDevProperty 40

#define kDETFirstConstantProperty 250

#define kDETLastConstantProperty (kDETFirstConstantProperty + 249)

#define kDETConstantProperty kDETFirstConstantProperty

#define kDETZeroProperty (kDETConstantProperty + 0)

#define kDETOneProperty (kDETConstantProperty + 1)

#define kDETFalseProperty (kDETConstantProperty + 0)

#define kDETTrueProperty (kDETConstantProperty + 1)

/* Name and kind properties */

#define kDETPrName 3050

#define kDETPrKind 3051

#define kDETPastFirstLookup 26550

#define kDETInfoPageNumber 27050

#define kDETAspectTemplateNumber 26551

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-249

#define kDETInfoPageTemplateNumber 26552

#define kDETOpenSelectedItems 26553 /* open selected sublist items */

#define kDETAddNewItem 26554 /* add new sublist item */

#define kDETRemoveSelectedItems 26555 /* remove selected sublist items */

/* Access masks */

#define kDETDNodeAccessMask 25825 /* the DNode access mask */

#define kDETRecordAccessMask 25826 /* the record access mask */

#define kDETAttributeAccessMask 25827 /* the attribute access mask */

#define kDETPrimaryMaskByBit 25828 /* a set of 16 properties

 to access all bits of the

 primary mask */

#define kDETPrimarySeeMask kDETPrimaryMaskByBit

#define kDETPrimaryAddMask (kDETPrimaryMaskByBit + 1)

#define kDETPrimaryDeleteMask (kDETPrimaryMaskByBit + 2)

#define kDETPrimaryChangeMask (kDETPrimaryMaskByBit + 3)

#define kDETPrimaryRenameMask (kDETPrimaryMaskByBit + 4)

#define kDETPrimaryChangePrivsMask (kDETPrimaryMaskByBit + 5)

#define kDETPrimaryTopMaskBit (kDETPrimaryMaskByBit + 15)

/* Property types */

#define kDETPrTypeNumber -1 /* a number */

#define kDETPrTypeString -2 /* a string */

#define kDETPrTypeBinary -3 /* a binary block */

/* Rez-compatible attribute-tag types */

#define typeRString 'rstr'

#define typePackedDSSpec 'dspc'

#define typeBinary 'bnry'

/* Constants used in view lists */

#define kDETNoFlags 0

#define kDETEnabled (1 << 0) /* main view field enabled */

#define kDETHilightIfSelected (1 << 0) /* hilight when entry is selected */

#define kDETNumericOnly (1 << 3) /* allow digits only */

#define kDETMultiLine (1 << 4) /* allow multiple lines in view */

#define kDETDynamicSize (1 << 9) /* don't draw box around text

 until user clicks in it,

 then auto-size it */

#define kDETAllowNoColons (1 << 10)/* don't allow colons */

C H A P T E R 5

AOCE Templates

5-250 Summary of AOCE Templates

#define kDETPopupDynamicSize (1 << 8) /* automatically resize pop-up */

#define kDETScaleToView (1 << 8) /* scale picture to view bounds */

#define kDETLargeIcon 0

#define kDETSmallIcon 1

#define kDETMiniIcon 2

#define kDETLeft 0

#define kDETCenter 1

#define kDETRight -1

#define kDETForceLeft -2

#define kDETUnused 0

#define kDETBoxTakesContentClicks (1 << 0)

#define kDETBoxIsRounded (1 << 1)

#define kDETBoxIsGrayed (1 << 2)

#define kDETBoxIsInvisible (1 << 3)

#define kDETApplicationFont 1

#define kDETApplicationFontSize 9

#define kDETAppFontLineHeight 12

#define kDETSystemFont 0

#define kDETSystemFontSize 12

#define kDETSystemFontLineHeight 16

#define kDETDefaultFont 1

#define kDETDefaultFontSize 9

#define kDETDefaultFontLineHeight 12

#define kDETNormal 0

#define kDETBold 1

#define kDETItalic 2

#define kDETUnderline 4

#define kDETOutline 8

#define kDETShadow 0x10

#define kDETCondense 0x20

#define kDETExtend 0x40

#define kDETIconStyle -3 /* normal text style for

 regular sublist entries,

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-251

 italic text style for aliases */

#define kDETChangeViewCommand 'view' /* change the view */

/* Default information-page layouts */

/* Default record information-page size */

#define kDETRecordInfoWindHeight 228

#define kDETRecordInfoWindWidth 400

/* Default attribute information-page size */

#define kDETAttributeInfoWindHeight 250

#define kDETAttributeInfoWindWidth 230

/* Page identifying icon */

#define kDETSubpageIconTop 8

#define kDETSubpageIconLeft 8

#define kDETSubpageIconBottom (kDETSubpageIconTop + 32)

#define kDETSubpageIconRight (kDETSubpageIconLeft + 32)

#define kDETSubpageIconRect {kDETSubpageIconTop,\

 kDETSubpageIconLeft,\

 kDETSubpageIconBottom,\

 kDETSubpageIconRight}

/* The following rectangle can be used in a 'deti' with no sublist: */

#define kDETNoSublistRect {0, 0, 0, 0}

/* Reserved category names */

#define kDETCategoryAllItems "aoce All Items" /* everything */

#define kDETCategoryAddressItems "aoce Address Items" /* all addresses */

#define kDETCategoryMisc "aoce Miscellaneous" /* things that

don't have their own category */

/* Target selectors */

enum DETTargetSelector {

kDETSelf = 0, /* the "current" item */

kDETSelfOtherAspect, /* another aspect of the current item */

kDETParent, /* the parent of the current item */

kDETSublistItem, /* the ith item in the sublist */

kDETSelectedSublistItem, /* the ith selected item in the sublist */

kDETDSSpec, /* DSSpec */

kDETAspectTemplate, /* specific aspect template */

kDETInfoPageTemplate, /* specific info-page template */

kDETHighSelector = 0xF000 /* force type to be short */

C H A P T E R 5

AOCE Templates

5-252 Summary of AOCE Templates

};

typedef enum DETTargetSelector DETTargetSelector;

/* Return value for code resources */

#define kDETDidNotHandle 1

/* Valid commandIDs for DETDropQueryBlock and DETDropMeQueryBlock (in

 addition to property numbers) */

#define kDETDoNothing 'xxx0'

#define kDETMove 'move'

#define kDETDrag 'drag'

#define kDETAlias 'alis'

/* Item types */

enum DETItemType {

kDETHFSType = 0, /* HFS item type */

 kDETDSType, /* catalog service item type */

 kDETMailType, /* mail (letter) item type */

kDETMoverType, /* sounds, fonts, etc., from inside

 a suitcase or system file */

 kDETLastItemType = 0xF0000000 /* force itemType to be a long */

};

typedef enum DETItemType DETItemType;

struct DETFSInfo {

 OSType fileType; /* file type */

 OSType fileCreator; /* file creator */

 unsigned short fdFlags; /* Finder flags */

 FSSpec fsSpec; /* FSSpec */

};

typedef struct DETFSInfo DETFSInfo;

struct {

PackedDSSpecPtr* dsSpec; /* DSSpec for item */

short refNum; /* refnum for returned address */

AuthIdentity identity; /* identity for returned address */

} ds;

/* Application-defined routines */

enum DETCallFunctions {

kDETcmdSimpleCall = 0,

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-253

kDETcmdInit,

kDETcmdExit,

kDETcmdAttributeCreation,

kDETcmdDynamicForwarders,

kDETcmdTargetedCall = 1000,

kDETcmdInstanceInit,

kDETcmdInstanceExit,

kDETcmdIdle,

kDETcmdViewListChanged,

kDETcmdValidateSave,

kDETcmdDropQuery,

kDETcmdDropMeQuery,

kDETcmdAttributeNew,

kDETcmdAttributeChange,

kDETcmdAttributeDelete,

kDETcmdItemNew,

kDETcmdOpenSelf,

kDETcmdDynamicResource,

kDETcmdShouldSync,

kDETcmdDoSync,

kDETcmdPropertyCall = 2000,

kDETcmdPropertyCommand,

kDETcmdMaximumTextLength,

kDETcmdPropertyDirtied,

kDETcmdPatternIn,

kDETcmdPatternOut,

kDETcmdConvertToNumber,

kDETcmdConvertToRString,

kDETcmdConvertFromNumber,

kDETcmdConvertFromRString,

kDETcmdCustomViewDraw,

kDETcmdCustomViewMouseDown,

kDETcmdKeyPress,

kDETcmdPaste,

kDETcmdCustomMenuSelected,

kDETcmdCustomMenuEnabled,

kDETcmdHighCall = 0xF0000000/* force the type to be long */

};

typedef enum DETCallFunctions DETCallFunctions;

C H A P T E R 5

AOCE Templates

5-254 Summary of AOCE Templates

/* Callback functions */

enum DETCallBackFunctions {

kDETcmdSimpleCallback = 0,

kDETcmdBeep,

kDETcmdBusy,

kDETcmdChangeCallFors,

kDETcmdGetCommandSelectionCount,

kDETcmdGetCommandItemN,

kDETcmdOpenDSSpec,

kDETcmdAboutToTalk,

kDETcmdUnloadTemplates,

kDETcmdTemplateCounts,

kDETcmdTargetedCallback = 1000,

kDETcmdGetDSSpec,

kDETcmdSublistCount,

kDETcmdSelectedSublistCount,

kDETcmdRequestSync,

kDETcmdBreakAttribute,

kDETcmdGetTemplateFSSpec,

kDETcmdGetOpenEdit,

kDETcmdCloseEdit,

kDETcmdPropertyCallback = 2000,

kDETcmdGetPropertyType,

kDETcmdGetPropertyNumber,

kDETcmdGetPropertyRString,

kDETcmdGetPropertyBinarySize,

kDETcmdGetPropertyBinary,

kDETcmdGetPropertyChanged,

kDETcmdGetPropertyEditable,

kDETcmdSetPropertyType,

kDETcmdSetPropertyNumber,

kDETcmdSetPropertyRString,

kDETcmdSetPropertyBinary,

kDETcmdSetPropertyChanged,

kDETcmdSetPropertyEditable,

kDETcmdDirtyProperty,

kDETcmdDoPropertyCommand,

kDETcmdAddMenu,

kDETcmdRemoveMenu,

kDETcmdMenuItemRString,

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-255

kDETcmdSaveProperty,

kDETcmdGetCustomViewUserReference,

kDETcmdGetCustomViewBounds,

kDETcmdGetResource,

kDETcmdHighCallback = 0xF0000000 /* force type to be long */

};

typedef enum DETCallBackFunctions DETCallBackFunctions;

Target Specifier

struct DETTargetSpecification

{

DETTargetSelector selector; /* target selector */

RStringPtr aspectName; /* aspect name */

long itemNumber; /* sublist index number */

PackedDSSpecPtr dsSpec; /* DSSpec */

};

typedef struct DETTargetSpecification DETTargetSpecification;

Forwarder List

struct DETForwarderListItem {

struct DETForwarderListItem** next;/* handle to next item, or nil */

AttributeTag attributeValueTag; /* attribute value tag (0 for none) */

PackedPathName rstrs; /* forwarder list */

};

Call Block Headers

#define DETCallBlockHeader \

DETCallFunctions reqFunction; /* requested function */\

DETCallBack callBack; /* pointer to callback routine */\

long callBackPrivate; /* private data for the callback routine */\

long templatePrivate; /* private data stored in template */

#define DETCallBlockTargetedHeader \

DETCallFunctions reqFunction; /* requested function */\

DETCallBack callBack; /* pointer to callback routine */\

long callBackPrivate; /* private data for the callback routine */\

long templatePrivate; /* private data stored in template */\

C H A P T E R 5

AOCE Templates

5-256 Summary of AOCE Templates

long instancePrivate; /* private data stored in aspect */\

DETTargetSpecification target;/* the target (originator) of the call */\

Boolean targetIsMainAspect; /* true if the target is the main aspect */

#define DETCallBlockPropertyHeader \

DETCallFunctions reqFunction; /* requested function */\

DETCallBack callBack; /* pointer to callback routine */\

long callBackPrivate; /* private data for the callback routine */\

long templatePrivate; /* private data stored in template */\

long instancePrivate; /* private data stored in aspect */\

DETTargetSpecification target;/* the target (originator) of the call */\

Boolean targetIsMainAspect; /* true if the target is the main aspect */\

 short property; /* the property number the call refers to */

struct DETProtoCallBlock {

DETCallBlockPropertyHeader

};

typedef struct DETProtoCallBlock DETProtoCallBlock;

Call Block Union Structure

union DETCallBlock {

DETProtoCallBlock protoCall;

DETInitBlock init;

DETExitBlock exit;

DETInstanceInitBlock instanceInit;

DETInstanceExitBlock instanceExit;

DETInstanceIdleBlock instanceIdle;

DETPropertyCommandBlock propertyCommand;

DETMaximumTextLengthBlock maximumTextLength;

DETViewListChangedBlock viewListChanged;

DETPropertyDirtiedBlock propertyDirtied;

DETValidateSaveBlock validateSave;

DETDropQueryBlock dropQuery;

DETDropMeQueryBlock dropMeQuery;

DETAttributeCreationBlock attributeCreationBlock;

DETAttributeNewBlock attributeNew;

DETAttributeChangeBlock attributeChange;

DETAttributeDeleteBlock attributeDelete;

DETItemNewBlock itemNew;

DETPatternInBlock patternIn;

DETPatternOutBlock patternOut;

DETShouldSyncBlock shouldSync;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-257

DETDoSyncBlock doSync;

DETOpenSelfBlock openSelf;

DETConvertToNumberBlock convertToNumber;

DETConvertToRStringBlock convertToRString;

DETConvertFromNumberBlock convertFromNumber;

DETConvertFromRStringBlock convertFromRString;

DETCustomViewDrawBlock customViewDraw;

DETCustomViewMouseDownBlock customViewMouseDown;

DETKeyPressBlock keyPress;

DETPasteBlock paste;

DETCustomMenuSelectedBlock customMenuSelected;

DETCustomMenuEnabledBlock customMenuEnabled;

DETDynamicForwardersBlock dynamicForwarders;

DETDynamicResourceBlock dynamicResource;

};

typedef union DETCallBlock DETCallBlock;

typedef DETCallBlock* DETCallBlockPtr;

Callback Block Headers

#define DETCallBackBlockHeader \

DETCallBackFunctions reqFunction; /* requested function */

#define DETCallBackBlockTargetedHeader \

DETCallBackFunctions reqFunction; /* requested function */\

DETTargetSpecification target; /* the target for the request */

#define DETCallBackBlockPropertyHeader \

DETCallBackFunctions reqFunction; /* requested function */\

DETTargetSpecification target; /* the target for the request */\

short property; /* the property to apply the

 request to */

struct DETProtoCallBackBlock {

DETCallBackBlockPropertyHeader

};

typedef struct DETProtoCallBackBlock DETProtoCallBackBlock;

C H A P T E R 5

AOCE Templates

5-258 Summary of AOCE Templates

Callback Block Union Structure

union DETCallBackBlock {

DETProtoCallBackBlock protoCallBack;

DETBeepBlock beep;

DETBusyBlock busy;

DETChangeCallForsBlock changeCallFors;

DETGetCommandSelectionCountBlock getCommandSelectionCount;

DETGetCommandItemNBlock getCommandItemN;

DETGetDSSpecBlock getDSSpec;

DETGetTemplateFSSpecBlock getTemplateFSSpec;

DETGetOpenEditBlock getOpenEdit;

DETCloseEditBlock closeEdit;

DETGetPropertyTypeBlock getPropertyType;

DETGetPropertyNumberBlock getPropertyNumber;

DETGetPropertyRStringBlock getPropertyRString;

DETGetPropertyBinarySizeBlock getPropertyBinarySize;

DETGetPropertyBinaryBlock getPropertyBinary;

DETGetPropertyChangedBlock getPropertyChanged;

DETGetPropertyEditableBlock getPropertyEditable;

DETSetPropertyTypeBlock setPropertyType;

DETSetPropertyNumberBlock setPropertyNumber;

DETSetPropertyRStringBlock setPropertyRString;

DETSetPropertyBinaryBlock setPropertyBinary;

DETSetPropertyChangedBlock setPropertyChanged;

DETSetPropertyEditableBlock setPropertyEditable;

DETDirtyPropertyBlock dirtyProperty;

DETDoPropertyCommandBlock doPropertyCommand;

DETSublistCountBlock sublistCount;

DETSelectedSublistCountBlock selectedSublistCount;

DETRequestSyncBlock requestSync;

DETAddMenuBlock addMenu;

DETRemoveMenuBlock removeMenu;

DETMenuItemRStringBlock menuItemRString;

DETOpenDSSpecBlock openDSSpec;

DETAboutToTalkBlock aboutToTalk;

DETBreakAttributeBlock breakAttribute;

DETSavePropertyBlock saveProperty;

DETGetCustomViewUserReferenceBlock getCustomViewUserReference;

DETGetCustomViewBoundsBlock getCustomViewBounds;

DETGetResourceBlock getResource;

DETTemplateCounts templateCounts;

DETUnloadTemplatesBlock unloadTemplates;

};

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-259

typedef union DETCallBackBlock DETCallBackBlock;

typedef DETCallBackBlock* DETCallBackBlockPtr;

typedef pascal OSErr (*DETCallBack) (union DETCallBlock* callBlockPtr,

 DETCallBackBlockPtr callBackBlockPtr);

Call-For Mask

/* Call-for list: */

#define kDETCallForOther 1 /* call for events not listed below */

#define kDETCallForIdle 2 /* kDETcmdIdle */

#define kDETCallForCommands 4 /* kDETcmdPropertyCommand,

 kDETcmdSelfOpen */

#define kDETCallForViewChanges 8 /* kDETcmdViewListChanged

 kDETcmdPropertyDirtied,

 kDETcmdMaximumTextLength */

#define kDETCallForDrops 0x10 /* kDETcmdDropQuery,

 kDETcmdDropMeQuery */

#define kDETCallForAttributes 0x20 /* kDETcmdAttributeCreation,

 kDETcmdAttributeNew,

 kDETcmdAttributeChange,

 kDETcmdAttributeDelete */

#define kDETCallForValidation 0x40 /* kDETcmdValidateSave */

#define kDETCallForKeyPresses 0x80 /* kDETcmdKeyPress and

 kDETcmdPaste */

#define kDETCallForSyncing 0x200 /* kDETcmdShouldSync, kDETcmdDoSync */

#define kDETCallForResources 0x100 /* kDETcmdDynamicResource */

#define kDETCallForEscalation 0x8000/* all calls escalated to the

 next level */

#define kDETCallForNothing 0 /* do not call */

#define kDETCallForEverything 0xFFFFFFFF /* all of the above */

typedef pascal OSErr (*DETCall) (DETCallBlockPtr callBlockPtr);

C H A P T E R 5

AOCE Templates

5-260 Summary of AOCE Templates

Functions You Can Provide as Part of Your Code Resource

Initializing and Removing Templates

struct DETInitBlock {

DETCallBlockHeader

long newCallFors;

};

struct DETExitBlock{

DETCallBlockHeader

};

struct DETInstanceInitBlock {

DETCallBlockTargetedHeader

};

struct DETItemNewBlock{

DETCallBlockTargetedHeader

};

struct DETInstanceExitBlock {

DETCallBlockTargetedHeader

};

Dynamic Creation of Resources

struct DETDynamicForwardersBlock {

DETCallBlockHeader

DETForwarderListHandle forwarders;

};

struct DETDynamicResourceBlock {

DETCallBlockTargetedHeader

ResType resourceType;

short propertyNumber;

short resourceID;

Handle theResource;

};

Processing Idle-Time Tasks

struct DETcmdInstanceIdleBlock {

DETCallBlockTargetedHeader

};

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-261

Property and Information Page Routines

struct DETOpenSelfBlock {

DETCallBlockTargetedHeader

short modifiers;

};

struct DETPropertyCommandBlock {

DETCallBlockPropertyHeader

long parameter;

};

struct DETKeyPressBlock {

DETCallBlockPropertyHeader

EventRecord *theEvent;

};

struct DETPasteBlock {

DETCallBlockPropertyHeader

short modifiers;

};

struct DETMaximumTextLengthBlock {

DETCallBlockPropertyHeader

long MaxSize;

};

struct DETViewListChangedBlock {

DETCallBlockTargetedHeader

};

struct DETPropertyDirtiedBlock {

DETCallBlockPropertyHeader

};

struct DETValidateSaveBlock {

DETCallBlockTargetedHeader

RStringHandle errorString;

};

Supporting Drops

struct DETDropMeQueryBlock {

DETCallBlockTargetedHeader

short modifiers;

C H A P T E R 5

AOCE Templates

5-262 Summary of AOCE Templates

long commandID;

AttributeType destinationType

Boolean copyToHFS;

};

struct DETDropQueryBlock {

DETCallBlockTargetedHeader

short modifiers;

long commandID;

AttributeType destinationType

Boolean copyToHFS;

};

Attribute-Related Commands

struct DETAttributeCreationBlock {

DETCallBlockHeader

PackedDSSpecPtr parent;

short refNum;

AuthIdentity identity;

AttributeType attrType;

AttributeTag attrTag;

Handle value;

};

struct DETAttributeNewBlock {

DETCallBlockTargetedHeader

PackedDSSpecPtr parent;

short refNum;

AuthIdentity identity;

AttributeType attrType;

AttributeTag attrTag;

Handle value;

};

struct DETAttributeChangeBlock {

DETCallBlockTargetedHeader

PackedDSSpecPtr parent;

short refNum;

AuthIdentity identity;

AttributeType attrType;

AttributeTag attrTag;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-263

AttributeCreationID attrCID;

Handle value;

};

struct DETAttributeDeleteBlock {

DETCallBlockTargetedHeader

PackedDSSpecPtr dsSpec;

short refNum;

AuthIdentity identity;

};

Processing Custom Lookup-Table Pattern Elements

struct DETPatternInBlock {

DETCallBlockPropertyHeader

long elementType;

long extra;

AttributePtr attribute;

long dataOffset;

short bitOffset;

};

struct DETPatternOutBlock {

DETCallBlockPropertyHeader

long elementType;

long extra;

AttributePtr attribute;

Handle data;

long dataOffset;

short bitOffset;

};

Synchronizing Property Values

struct DETShouldSyncBlock {

DETCallBlockTargetedHeader

Boolean shouldSync;

};

struct DETDoSyncBlock {

DETCallBlockTargetedHeader;

};

C H A P T E R 5

AOCE Templates

5-264 Summary of AOCE Templates

Custom Property-Type Conversions

struct DETConvertToNumberBlock {

DETCallBlockPropertyHeader

long theValue;

};

struct DETConvertToRStringBlock {

DETCallBlockPropertyHeader

RStringHandle theValue;

};

struct DETConvertFromNumberBlock {

DETCallBlockPropertyHeader

long theValue;

};

struct DETConvertFromRStringBlock {

DETCallBlockPropertyHeader

RStringHandle theValue;

};

Custom Views and Custom Menus

struct DETGetCustomViewDrawBlock {

DETCallBlockPropertyHeader

};

struct DETCustomViewMouseDownBlock {

DETCallBlockPropertyHeader

EventRecord *theEvent;

};

struct DETCustomMenuEnabledBlock {

DETCallBlockTargetedHeader

short menuTableParameter

Boolean enable;

};

struct DETCustomMenuSelectedBlock {

DETCallBlockTargetedHeader

short menuTableParameter;

);

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-265

CE-Provided Functions That Your Code Resource Can Call

Calling CE-Provided Functions

CallBackDET(callBlockPtr, callBackBlockPtr);

Testing Your Code Resource

struct DETBeepBlock {

DETCallBackBlockHeader

};

Changing the Call-For Mask

struct DETChangeCallForsBlock {

DETCallBackBlockTargetedHeader

long newCallFors;

};

Process Control

struct DETAboutToTalkBlock {

DETCallBackBlockHeader

};

struct DETBusyBlock {

DETCallBackBlockHeader;

};

Handling Drags and Drops

struct DETGetCommandSelectionCountBlock {

DETCallBackBlockHeader;

long count;

};

struct DETGetCommandItemNBlock {

DETCallBackBlockHeader;

long itemNumber;

DETItemType itemType;

union {

DETFSInfo** fsInfo;

struct {

PackedDSSpecPtr* dsSpec;

C H A P T E R 5

AOCE Templates

5-266 Summary of AOCE Templates

short refNum;

AuthIdentity identity;

} ds;

PackedDSSpecPtr* dsSpec;

LetterSpec** ltrSpec;

} item;

};

Working With Templates

struct DETTemplateCounts {

DETCallBackBlockHeader

long aspectTemplateCount;

long infoPageTemplateCount;

};

struct DETGetTemplateFSSpecBlock {

DETCallBackBlockTargetedHeader

FSSpec fsSpec;

short baseID;

long aspectTemplateNumber;

};

struct DETGetResourceBlock {

DETCallBackBlockPropertyHeader

ResType resourceType;

Handle theResource;

};

struct DETUnloadTemplatesBlock {

DETCallBackBlockHeader

};

Working With Catalog Objects

struct DETGetDSSpecBlock {

DETCallBackBlockTargetedHeader

PackedDSSpecPtr* dsSpec;

short refNum;

AuthIdentity identity;

Boolean isAlias;

Boolean isRecordRef;

};

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-267

struct DETOpenDSSpecBlock {

DETCallBackBlockHeader

PackedDSSpecPtr dsSpec;

};

Edit-Text Routines

struct DETGetOpenEditBlock {

DETCallBackBlockTargetedHeader

short viewProperty;

};

struct DETCloseEditBlock {

DETCallBackBlockTargetedHeader

};

Getting Information About Properties

struct DETGetPropertyTypeBlock {

DETCallBackBlockPropertyHeader

short propertyType;

};

struct DETGetPropertyNumberBlock {

DETCallBackBlockPropertyHeader

unsigned long propertyValue;

};

struct DETGetPropertyRStringBlock {

DETCallBackBlockPropertyHeader

RStringHandle propertyValue;

};

struct DETGetPropertyBinarySizeBlock {

DETCallBackBlockPropertyHeader

long propertyBinarySize;

};

struct DETGetPropertyBinaryBlock {

DETCallBackBlockPropertyHeader

Handle propertyValue;

};

C H A P T E R 5

AOCE Templates

5-268 Summary of AOCE Templates

struct DETGetPropertyChangedBlock {

DETCallBackBlockPropertyHeader

Boolean propertyChanged;

};

struct DETGetPropertyEditableBlock {

DETCallBackBlockPropertyHeader

Boolean propertyEditable;

};

Setting Value, Type, and Other Features of Properties

struct DETBreakAttributeBlock {

DETCallBackBlockTargetedHeader

AttributePtr breakAttribute;

Boolean isChangeable;

};

struct DETSetPropertyTypeBlock {

DETCallBackBlockPropertyHeader

short newType;

};

struct DETSetPropertyNumberBlock {

DETCallBackBlockPropertyHeader

unsigned long newValue;

};

struct DETSetPropertyRStringBlock {

DETCallBackBlockPropertyHeader

RStringPtr newValue;

};

struct DETSetPropertyBinaryBlock {

DETCallBackBlockPropertyHeader

Ptr newValue;

long newValueSize;

};

struct DETSetPropertyChangedBlock {

DETCallBackBlockPropertyHeader

Boolean propertyChanged;

};

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-269

struct DETSetPropertyEditableBlock {

DETCallBackBlockPropertyHeader

Boolean propertyEditable;

};

struct DETDirtyPropertyBlock {

DETCallBackBlockPropertyHeader

};

struct DETSavePropertyBlock {

DETCallBackBlockPropertyHeader

};

Working With Sublists

struct DETSublistCountBlock {

DETCallBackBlockTargetedHeader

long count;

};

struct DETSelectedSublistCountBlock {

DETCallBackBlockTargetedHeader

long count;

};

struct DETRequestSyncBlock {

DETCallBackBlockTargetedHeader

};

Working With Pop-Up Menus

struct DETAddMenuBlock {

DETCallBackBlockPropertyHeader

RString* name;

long parameter;

long addAfter;

};

struct DETRemoveMenuBlock {

DETCallBackBlockPropertyHeader

long itemToRemove;

};

C H A P T E R 5

AOCE Templates

5-270 Summary of AOCE Templates

struct DETMenuItemRStringBlock {

DETCallBackBlockPropertyHeader

long itemParameter;

RStringHandle rString;

};

Custom Views

struct DETGetCustomViewUserReferenceBlock {

DETCallBackBlockPropertyHeader

short userReference;

};

struct DETGetCustomViewBoundsBlock {

DETCallBackBlockPropertyHeader

Rect bounds;

};

Sending a Property Command

struct DETDoPropertyCommandBlock {

DETCallBackBlockPropertyHeader

long parameter;

};

Pascal Summary

Constants

{Current versions of all the different template types}

CONST

kDETAspectVersion = -976;

kDETInfoPageVersion = -976;

kDETKillerVersion = -976;

kDETForwarderVersion = -976;

kDETFileTypeVersion = -976;

{Suggested separation for template IDs within a file}

kDETIDSep = 250

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-271

{Predefined base IDs}

kDETFirstID = (1000);

kDETSecondID = (1000 + kDETIDSep);

kDETThirdID = (1000 + 2 * kDETIDSep);

kDETFourthID = (1000 + 3 * kDETIDSep);

kDETFifthID = (1000 + 4 * kDETIDSep);

{Template resource ID offsets}

kDETTemplateName = 0;

kDETRecordType = 1;

kDETKillerName = 1;

kDETAttributeType = 2;

kDETAttributeValueTag = 3;

kDETAspectCode = 4;

kDETInfoPageName = 4;

kDETForwarderTemplateNames = 4;

kDETAspectMainBitmap = 5;

kDETInfoPageMainViewAspect = 5;

kDETAspectName = 6;

kDETInfoPageMenuName = 6;

kDETAspectCategory = 7;

kDETInfoPageMenuEntries = 7;

kDETAspectExternalCategory = 8;

kDETAspectKind = 9;

kDETAspectGender = 10;

kDETAspectWhatIs = 11;

kDETAspectAliasKind = 12;

kDETAspectAliasGender = 13;

kDETAspectAliasWhatIs = 14;

kDETAspectBalloons = 15;

kDETAspectNewMenuName = 16;

kDETAspectNewEntryName = 17;

kDETAspectNewValue = 18;

kDETAspectSublistOpenOnNew = 19;

kDETAspectLookup = 20;

kDETAspectDragInString = 21;

kDETAspectDragInVerb = 22;

kDETAspectDragInSummary = 23;

kDETAspectRecordDragIn = 24;

kDETAspectRecordCatDragIn = 25;

kDETAspectAttrDragIn = 26;

kDETAspectAttrDragOut = 27;

C H A P T E R 5

AOCE Templates

5-272 Summary of AOCE Templates

kDETAspectViewMenu = 28;

kDETAspectReverseSort = 29;

kDETAspectInfoPageCustomWindow = 30;

{Properties};

kDETNoProperty -1;

kDETFirstLocalProperty 0;

kDETLastLocalProperty (kDETFirstLocalProperty + 249);

kDETFirstDevProperty 40;

kDETFirstConstantProperty 250;

kDETLastConstantProperty (kDETFirstConstantProperty + 249);

kDETConstantProperty kDETFirstConstantProperty;

kDETZeroProperty (kDETConstantProperty + 0);

kDETOneProperty (kDETConstantProperty + 1);

kDETFalseProperty (kDETConstantProperty + 0);

kDETTrueProperty (kDETConstantProperty + 1);

{Name and kind properties}

kDETPrName 3050;

kDETPrKind 3051;

kDETPastFirstLookup 26550;

kDETInfoPageNumber 27050;

kDETAspectTemplateNumber 26551;

kDETInfoPageTemplateNumber 26552;

kDETOpenSelectedItems 26553;{open selected sublist items}

kDETAddNewItem 26554;{add new sublist item}

kDETRemoveSelectedItems 26555;{remove selected sublist items}

{Access masks}

kDETDNodeAccessMask 25825;{the DNode access mask}

kDETRecordAccessMask 25826;{the record access mask}

kDETAttributeAccessMask 25827;{the attribute access mask}

kDETPrimaryMaskByBit 25828;{a set of 16 properties

 to access all bits of the

 primary mask}

kDETPrimarySeeMask kDETPrimaryMaskByBit;

kDETPrimaryAddMask (kDETPrimaryMaskByBit + 1);

kDETPrimaryDeleteMask (kDETPrimaryMaskByBit + 2);

kDETPrimaryChangeMask (kDETPrimaryMaskByBit + 3);

kDETPrimaryRenameMask (kDETPrimaryMaskByBit + 4);

kDETPrimaryChangePrivsMask (kDETPrimaryMaskByBit + 5);

kDETPrimaryTopMaskBit (kDETPrimaryMaskByBit + 15);

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-273

{Property types}

kDETPrTypeNumber -1 {a number}

kDETPrTypeString -2 {a string}

kDETPrTypeBinary -3 {a binary block}

{Rez-compatible attribute-tag types}

typeRString 'rstr';

typePackedDSSpec 'dspc';

typeBinary 'bnry';

{Constants used in view lists}

kDETNoFlags $0000;

kDETEnabled $0001; {main view field enabled}

kDETHilightIfSelected $0001; {hilight when entry is selected}

kDETNumericOnly $0008; {allow digits only}

kDETMultiLine $0010; {allow multiple lines in view}

kDETDynamicSize $0200; {don't draw box around text

 until user clicks in it,

 then auto-size it}

kDETAllowNoColons $0400; {don't allow colons}

kDETPopupDynamicSize $0100; {automatically resize pop-up}

kDETScaleToView $0100; {scale picture to view bounds}

kDETLargeIcon 0;

kDETSmallIcon 1;

kDETMiniIcon 2;

kDETLeft 0;

kDETCenter 1;

kDETRight -1;

kDETForceLeft -2;

kDETUnused 0;

kDETBoxTakesContentClicks $0001;

kDETBoxIsRounded $0002;

kDETBoxIsGrayed $0004;

kDETBoxIsInvisible $0008;

kDETApplicationFont 1;

kDETApplicationFontSize 9;

C H A P T E R 5

AOCE Templates

5-274 Summary of AOCE Templates

kDETAppFontLineHeight 12;

kDETSystemFont 0;

kDETSystemFontSize 12;

kDETSystemFontLineHeight 16;

kDETDefaultFont 1;

kDETDefaultFontSize 9;

kDETDefaultFontLineHeight 12;

kDETNormal 0;

kDETBold 1;

kDETItalic 2;

kDETUnderline 4;

kDETOutline 8;

kDETShadow $10;

kDETCondense $20;

kDETExtend $40;

kDETIconStyle -3; {normal text style for

 regular sublist entries,

 italic text style for aliases}

kDETChangeViewCommand 'view'; {change the view}

{Default information page layouts}

{Default record information page size}

kDETRecordInfoWindHeight 228;

kDETRecordInfoWindWidth 400;

{Default attribute information page size}

kDETAttributeInfoWindHeight 250;

kDETAttributeInfoWindWidth 230;

{Page identifying icon}

kDETSubpageIconTop 8;

kDETSubpageIconLeft 8;

kDETSubpageIconBottom (kDETSubpageIconTop + 32);

kDETSubpageIconRight (kDETSubpageIconLeft + 32);

*(#define kDETSubpageIconRect (kDETSubpageIconTop,\

 kDETSubpageIconLeft,\

 kDETSubpageIconBottom,\

 kDETSubpageIconRight) *)

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-275

{The following rectangle can be used in a 'deti' with no sublist:}

(* #define kDETNoSublistRect {0, 0, 0, 0} *)

{Reserved category names}

kDETCategoryAllItems 'aoce All Items'; {everything}

kDETCategoryAddressItems 'aoce Address Items';{all addresses}

kDETCategoryMisc 'aoce Miscellaneous';{things that

don't have their own category}

{Target selectors}

enum DETTargetSelector {

kDETSelf = 0; {the "current" item}

kDETSelfOtherAspect = 1; {another aspect of the current item}

kDETParent = 2; {the parent of the current item}

kDETSublistItem = 3; {the ith item in the sublist}

kDETSelectedSublistItem = 4; {the ith selected item in the sublist}

kDETDSSpec = 5; {DSSpec}

kDETAspectTemplate = 6; {specific aspect template}

kDETInfoPageTemplate = 7; {specific info-page template}

kDETHighSelector = $F000 {force type to be short}

};

{Return value for code resources}

CONST kDETDidNotHandle = 1;

{Valid commandIDs for DETDropQueryBlock and DETDropMeQueryBlock (in

 addition to property numbers)}

CONST

kDETDoNothing = 'xxx0';

kDETMove = 'move';

kDETDrag = 'drag';

kDETAlias = 'alis';

{Application-defined routines}

CONST

kDETcmdSimpleCall = 0;

kDETcmdInit = 1;

kDETcmdExit = 2;

kDETcmdAttributeCreation = 3;

kDETcmdDynamicForwarders = 4;

kDETcmdTargetedCall = 1000;

kDETcmdInstanceInit = 1001;

C H A P T E R 5

AOCE Templates

5-276 Summary of AOCE Templates

kDETcmdInstanceExit = 1002;

kDETcmdIdle = 1003;

kDETcmdViewListChanged = 1004;

kDETcmdValidateSave = 1005;

kDETcmdDropQuery = 1006;

kDETcmdDropMeQuery = 1007;

kDETcmdAttributeNew = 1008;

kDETcmdAttributeChange = 1009;

kDETcmdAttributeDelete = 1010;

kDETcmdItemNew = 1011;

kDETcmdOpenSelf = 1012;

kDETcmdDynamicResource = 1013;

kDETcmdShouldSync = 1014;

kDETcmdDoSync = 1015;

kDETcmdPropertyCall = 2000

kDETcmdPropertyCommand = 2001;

kDETcmdMaximumTextLength = 2002;

kDETcmdPropertyDirtied = 2003 ;

kDETcmdPatternIn = 2004;

kDETcmdPatternOut = 2005;

kDETcmdConvertToNumber = 2006;

kDETcmdConvertToRString = 2007;

kDETcmdConvertFromNumber = 2008;

kDETcmdConvertFromRString = 2009;

kDETcmdCustomViewDraw = 2010;

kDETcmdCustomViewMouseDown = 2011;

kDETcmdKeyPress = 2012;

kDETcmdPaste = 2013;

kDETcmdCustomMenuSelected = 2014;

kDETcmdCustomMenuEnabled = 2015;

kDETcmdHighCall = $F0000000 {force the type to be long}

};

{Callback functions}

CONST

kDETcmdSimpleCallback = 0;

kDETcmdBeep = 1;

kDETcmdBusy = 2;

kDETcmdChangeCallFors = 3;

kDETcmdGetCommandSelectionCount = 4;

kDETcmdGetCommandItemN = 5;

kDETcmdOpenDSSpec = 6;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-277

kDETcmdAboutToTalk = 7;

kDETcmdUnloadTemplates = 8;

kDETcmdTemplateCounts = 9;

kDETcmdTargetedCallback = 1000;

kDETcmdGetDSSpec = 1001;

kDETcmdSublistCount = 1002;

kDETcmdSelectedSublistCount = 1003;

kDETcmdRequestSync = 1004;

kDETcmdBreakAttribute = 1005;

kDETcmdGetTemplateFSSpec = 1006;

kDETcmdGetOpenEdit = 1007;

kDETcmdCloseEdit = 1008;

kDETcmdPropertyCallback = 2000;

kDETcmdGetPropertyType = 2001;

kDETcmdGetPropertyNumber = 2002;

kDETcmdGetPropertyRString = 2003;

kDETcmdGetPropertyBinarySize = 2004;

kDETcmdGetPropertyBinary = 2005;

kDETcmdGetPropertyChanged = 2006;

kDETcmdGetPropertyEditable = 2007;

kDETcmdSetPropertyType = 2008;

kDETcmdSetPropertyNumber = 2009;

kDETcmdSetPropertyRString = 2010;

kDETcmdSetPropertyBinary = 2011;

kDETcmdSetPropertyChanged = 2012;

kDETcmdSetPropertyEditable = 2013;

kDETcmdDirtyProperty = 2014;

kDETcmdDoPropertyCommand = 2015;

kDETcmdAddMenu = 2016;

kDETcmdRemoveMenu = 2017;

kDETcmdMenuItemRString = 2018;

kDETcmdSaveProperty = 2019;

kDETcmdGetCustomViewUserReference = 2020;

kDETcmdGetCustomViewBounds = 2021;

kDETcmdGetResource = 2022;

kDETcmdHighCallback = $F0000000; {force type to be LongInt}

CONST

{Values of DETItemType}

kDETHFSType = 0; {HFS item type}

kDETDSType = 1; {Catalog Service item type}

C H A P T E R 5

AOCE Templates

5-278 Summary of AOCE Templates

kDETMailType = 2; {Mail (letter) item type}

kDETMoverType = 3; {sounds, fonts, etc., from inside a

 suitcase or system file}

kDETLastItemType = $F0000000; {force it to be a LongInt}

Call-For Mask

CONST

kDETCallForOther = 1; {call for events not listed below}

kDETCallForIdle = 2; {kDETcmdIdle}

kDETCallForCommands = 4; {kDETcmdPropertyCommand, kDETcmdSelfOpen}

kDETCallForViewChanges = 8; {kDETcmdViewListChanged,

 kDETcmdPropertyDirtied,

 kDETcmdMaximumTextLength}

kDETCallForDrops = $10; {kDETcmdDropQuery, kDETcmdDropMeQuery}

kDETCallForAttributes = $20; {kDETcmdAttributeCreation,

 kDETcmdAttributeNew,

 kDETcmdAttributeChange,

 kDETcmdAttributeDelete}

kDETCallForValidation = $40; {kDETcmdValidateSave}

kDETCallForKeyPresses = $80; {kDETcmdKeyPress, kDETcmdPaste}

kDETCallForResources = $100; {kDETcmdDynamicResource}

kDETCallForSyncing = $200; {kDETcmdShouldSync, kDETcmdDoSync}

kDETCallForEscalation = $8000; {all calls escalated to the next level}

kDETCallForNothing = 0; {none of the above}

kDETCallForEverything = $FFFFFFFF; {all of the above}

Data Types

TYPE

DETTargetSelector = Integer;

DETCallBackFunctions = LongInt;

DETCallFunctions = LongInt;

DETCall = ProcPtr;

DETItemType = LongInt;

{FSSpec plus additional info}

DETFSInfo =

RECORD

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-279

fileType: OSType; {File type}

fileCreator: OSType; {File creator}

fdFlags: Integer; {Finder flags}

fsSpec: FSSpec; {FSSpec}

END;

DETFSInfoPtr = ^DETFSInfo;

LetterSpecPtr = ^LetterSpec;

LetterSpecHandle = ^LetterSpecPtr;

Target Specifier

TYPE

DETTargetSelector = Integer

DETTargetSpecification =

RECORD

selector: DETTargetSelector; {target selector}

aspectName: RStringPtr; {aspect name}

itemNumber: LongInt; {sublist index number}

dsSpec: PackedDSSpecPtr; {DSSpec}

END;

Forwarder List

TYPE

DETForwarderListItem = RECORD

next: ^DETForwarderListPtr; {handle to next item, or nil}

attributeValueTag: AttributeTag; {attribute value tag (0 for none)}

rstrs: PackedPathName; {forwarder list}

END;

DETForwarderListPtr = ^DETForwarderListItem;

DETForwarderListHandle = ^DETForwarderListPtr;

Call Block Headers

TYPE

DETCallBlockHeader =

RECORD

reqFunction: DETCallFunctions;{requested function}

callBack: DETCallBack; {pointer to callback routine}

C H A P T E R 5

AOCE Templates

5-280 Summary of AOCE Templates

callBackPrivate: LongInt; {private data for the callback routine}

templatePrivate: LongInt; {private data stored in template}

END;

DETCallBlockTargetedHeader =

RECORD

reqFunction: DETCallFunctions;{requested function}

callBack: DETCallBack; {pointer to callback routine}

callBackPrivate: LongInt; {private data for the callback routine}

templatePrivate: LongInt; {private data stored in template}

instancePrivate: LongInt; {private data stored in aspect}

target: DETTargetSpecification;{the target (originator) of the call}

targetIsMainAspect: Boolean; {TRUE if the target is the main aspect}

END;

DETCallBlockPropertyHeader =

RECORD

reqFunction: DETCallFunctions;{requested function}

callBack: DETCallBack; {pointer to callback routine}

callBackPrivate: LongInt; {private data for the callback routine}

templatePrivate: LongInt; {private data stored in template}

instancePrivate: LongInt; {private data stored in aspect}

target: DETTargetSpecification;{the target (originator) of the call}

targetIsMainAspect: Boolean; {TRUE if the target is the main aspect}

property: Integer; {the property number the call refers to}

END;

DETProtoCallBlock = DETCallBlockPropertyHeader;

Call Block Case Statement

TYPE

DETCallBlock =

RECORD

CASE Integer OF

 1: (protoCall: DETProtoCallBlock);

 2: (init: DETInitBlock);

 3: (exit: DETExitBlock);

 4: (instanceInit: DETInstanceInitBlock);

 5: (instanceExit: DETInstanceExitBlock);

 6: (instanceIdle: DETInstanceIdleBlock);

 7: (propertyCommand: DETPropertyCommandBlock);

 8: (maximumTextLength: DETMaximumTextLengthBlock);

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-281

 9: (viewListChanged: DETViewListChangedBlock);

10: (propertyDirtied: DETPropertyDirtiedBlock);

11: (validateSave: DETValidateSaveBlock);

12: (dropQuery: DETDropQueryBlock);

13: (dropMeQuery: DETDropMeQueryBlock);

14: (attributeCreationBlock: DETAttributeCreationBlock);

15: (attributeNew: DETAttributeNewBlock);

16: (attributeChange: DETAttributeChangeBlock);

17: (attributeDelete: DETAttributeDeleteBlock);

18: (itemNew: DETItemNewBlock);

19: (patternIn: DETPatternInBlock);

20: (patternOut: DETPatternOutBlock);

21: (shouldSync: DETShouldSyncBlock);

22: (doSync: DETDoSyncBlock);

23: (openSelf: DETOpenSelfBlock);

24: (convertToNumber: DETConvertToNumberBlock);

25: (convertToRString: DETConvertToRStringBlock);

26: (convertFromNumber: DETConvertFromNumberBlock);

27: (convertFromRString: DETConvertFromRStringBlock);

28: (customViewDraw: DETCustomViewDrawBlock);

29: (customViewMouseDown: DETCustomViewMouseDownBlock);

30: (keyPress: DETKeyPressBlock);

31: (paste: DETPasteBlock);

32: (customMenuSelected: DETCustomMenuSelectedBlock);

33: (customMenuEnabled: DETCustomMenuEnabledBlock);

34: (dynamicForwarders: DETDynamicForwardersBlock);

35: (dynamicResource: DETDynamicResourceBlock);

END;

DETCallBlockPtr = ^DETCallBlock;

Callback Block Headers

TYPE

DETCallBackBlockHeader =

RECORD

reqFunction: DETCallBackFunctions; {requested function}

END;

DETCallBackBlockTargetedHeader =

RECORD

reqFunction: DETCallBackFunctions; {requested function}

target: DETTargetSpecification; {the target for the request}

C H A P T E R 5

AOCE Templates

5-282 Summary of AOCE Templates

END;

DETCallBackBlockPropertyHeader =

RECORD

reqFunction: DETCallBackFunctions; {requested function}

target: DETTargetSpecification; {the target for the request}

property: Integer; {the property to apply the

 request to}

END;

DETProtoCallBackBlock = DETCallBackBlockPropertyHeader;

Callback Block Case Statement

TYPE

DETCallBackBlock =

RECORD

CASE Integer OF

1: (protoCallBack: DETProtoCallBackBlock);

2: (beep: DETBeepBlock);

3: (busy: DETBusyBlock);

4: (changeCallFors: DETChangeCallForsBlock);

5: (getCommandSelectionCount: DETGetCommandSelectionCountBlock);

6: (getCommandItemN: DETGetCommandItemNBlock);

7: (getDSSpec: DETGetDSSpecBlock);

8: (getTemplateFSSpec: DETGetTemplateFSSpecBlock);

9: (getOpenEdit: DETGetOpenEditBlock);

10: (closeEdit: DETCloseEditBlock);

11: (getPropertyType: DETGetPropertyTypeBlock);

12: (getPropertyNumber: DETGetPropertyNumberBlock);

13: (getPropertyRString: DETGetPropertyRStringBlock);

14: (getPropertyBinarySize: DETGetPropertyBinarySizeBlock);

15: (getPropertyBinary: DETGetPropertyBinaryBlock);

16: (getPropertyChanged: DETGetPropertyChangedBlock);

17: (getPropertyEditable: DETGetPropertyEditableBlock);

18: (setPropertyType: DETSetPropertyTypeBlock);

19: (setPropertyNumber: DETSetPropertyNumberBlock);

20: (setPropertyRString: DETSetPropertyRStringBlock);

21: (setPropertyBinary: DETSetPropertyBinaryBlock);

22: (setPropertyChanged: DETSetPropertyChangedBlock);

23: (setPropertyEditable: DETSetPropertyEditableBlock);

24: (dirtyProperty: DETDirtyPropertyBlock);

25: (doPropertyCommand: DETDoPropertyCommandBlock);

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-283

26: (sublistCount: DETSublistCountBlock);

27: (selectedSublistCount: DETSelectedSublistCountBlock);

28: (requestSync: DETRequestSyncBlock);

29: (addMenu: DETAddMenuBlock);

30: (removeMenu: DETRemoveMenuBlock);

31: (menuItemRString: DETMenuItemRStringBlock);

32: (openDSSpec: DETOpenDSSpecBlock);

33: (aboutToTalk: DETAboutToTalkBlock);

34: (breakAttribute: DETBreakAttributeBlock);

35: (saveProperty: DETSavePropertyBlock);

36: (getCustomViewUserReference: DETGetCustomViewUserReferenceBlock);

37: (getCustomViewBounds: DETGetCustomViewBoundsBlock);

38: (getResource: DETGetResourceBlock);

39: (templateCounts: DETTemplateCounts);

40: (unloadTemplates: DETUnloadTemplatesBlock);

END;

DETCallBackBlockPtr = ^DETCallBackBlock;

Functions You Can Provide as Part of Your Code Resource

Initializing and Removing Templates

TYPE

DETInitBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

newCallFors: LongInt;

END;

DETExitBlock = DETCallBlockHeader;

DETInstanceInitBlock = DETCallBlockTargetedHeader;

DETItemNewBlock = DETCallBlockTargetedHeader;

DETInstanceExitBlock = DETCallBlockTargetedHeader;

C H A P T E R 5

AOCE Templates

5-284 Summary of AOCE Templates

Dynamic Creation of Resources

TYPE

DETDynamicForwardersBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

forwarders: DETForwarderListHandle;

END;

DETDynamicResourceBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

resourceType: ResType;

propertyNumber: Integer;

resourceID: Integer;

theResource: Handle;

END;

Processing Idle-Time Tasks

TYPE

DETInstanceIdleBlock = DETCallBlockTargetedHeader;

Property and Information Page Routines

TYPE

DETOpenSelfBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-285

targetIsMainAspect: Boolean;

modifiers: Integer;

END;

DETPropertyCommandBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

parameter: LongInt;

END;

DETKeyPressBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

theEvent: ^EventRecord;

END;

DETPasteBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

modifiers: Integer;

END;

C H A P T E R 5

AOCE Templates

5-286 Summary of AOCE Templates

DETMaximumTextLengthBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

maxSize: LongInt;

END;

DETViewListChangedBlock = DETCallBlockTargetedHeader;

DETPropertyDirtiedBlock = DETCallBlockPropertyHeader;

DETValidateSaveBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

errorString: RStringHandle;

END;

Supporting Drops

TYPE

DETDropMeQueryBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

modifiers: Integer;

commandID: LongInt;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-287

destinationType: AttributeType;

copyToHFS: Boolean;

END;

DETDropQueryBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

modifiers: Integer;

commandID: LongInt;

destinationType: AttributeType;

copyToHFS: Boolean;

END;

Attribute-Related Commands

TYPE

DETAttributeCreationBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

parent: PackedDSSpecPtr;

refNum: Integer;

identity: AuthIdentity;

attrType: AttributeType;

attrTag: AttributeTag;

value: Handle;

END;

DETAttributeNewBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

C H A P T E R 5

AOCE Templates

5-288 Summary of AOCE Templates

targetIsMainAspect: Boolean;

parent: PackedDSSpecPtr;

refNum: Integer;

identity: AuthIdentity;

attrType: AttributeType;

attrTag: AttributeTag;

value: Handle;

END;

DETAttributeChangeBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

parent: PackedDSSpecPtr;

refNum: Integer;

identity: AuthIdentity;

attrType: AttributeType;

attrTag: AttributeTag;

attrCID: AttributeCreationID;

value: Handle;

END;

DETAttributeDeleteBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

dsSpec: PackedDSSpecPtr;

refNum: Integer;

identity: AuthIdentity;

END;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-289

Processing Custom Lookup-Table Pattern Elements

TYPE

DETPatternInBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

elementType: LongInt;

extra: LongInt;

attribute: AttributePtr;

dataOffset: LongInt;

bitOffset: Integer;

END;

DETPatternOutBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

elementType: LongInt;

extra: LongInt;

attribute: AttributePtr;

data: Handle;

dataOffset: LongInt;

bitOffset: Integer;

END;

Synchronizing Property Values

TYPE

DETShouldSyncBlock =

RECORD

reqFunction: DETCallFunctions;

C H A P T E R 5

AOCE Templates

5-290 Summary of AOCE Templates

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

shouldSync: Boolean;

END;

DETDoSyncBlock = DETCallBlockTargetedHeader;

Custom Property-Type Conversions

TYPE

DETConvertToNumberBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

theValue: LongInt;

END;

DETConvertToRStringBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

property: Integer;

theValue: RStringHandle;

END;

DETConvertFromNumberBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-291

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

theValue: LongInt;

END;

DETConvertFromRStringBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

theValue: RStringPtr;

END;

Custom Views and Custom Menus

TYPE

DETCustomViewDrawBlock = DETCallBlockPropertyHeader;

DETCustomViewMouseDownBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

property: Integer;

theEvent: ^EventRecord;

END;

DETCustomMenuEnabledBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

C H A P T E R 5

AOCE Templates

5-292 Summary of AOCE Templates

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

menuTableParameter: Integer;

enable: Boolean;

END;

DETCustomMenuSelectedBlock =

RECORD

reqFunction: DETCallFunctions;

callBack: DETCallBack;

callBackPrivate: LongInt;

templatePrivate: LongInt;

instancePrivate: LongInt;

target: DETTargetSpecification;

targetIsMainAspect: Boolean;

menuTableParameter: Integer;

END;

CE-Provided Functions That Your Code Resource Can Call

Calling CE-Provided Functions

{There is no Pascal equivalent to the C macro for calling callback routines.

Testing Your Code Resource

DETBeepBlock = DETCallBackBlockHeader;

DETBusyBlock = DETCallBackBlockHeader;

DETChangeCallForsBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

newCallFors: LongInt;

END;

DETGetCommandSelectionCountBlock =

RECORD

reqFunction: DETCallBackFunctions;

count: LongInt;

END;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-293

DETGetCommandItemNBlock =

RECORD

reqFunction: DETCallBackFunctions;

itemNumber: LongInt;

itemType: DETItemType;

CASE Integer OF

1: (fsInfo: ^DETFSInfoPtr);

2: (ds: RECORD

dsSpec: ^PackedDSSpecPtr;{

refNum: Integer;

identity: AuthIdentity;

END);

3: (dsSpec: ^PackedDSSpecPtr);

4: (ltrSpec: LetterSpecHandle);

END;

DETGetDSSpecBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

dsSpec: ^PackedDSSpecPtr;

refNum: Integer;

identity: AuthIdentity;

isAlias: Boolean;

isRecordRef: Boolean;

END;

DETGetTemplateFSSpecBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

fsSpec: FSSpec;

baseID: Integer;

aspectTemplateNumber: LongInt;

END;

DETGetOpenEditBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

viewProperty: Integer;

END;

C H A P T E R 5

AOCE Templates

5-294 Summary of AOCE Templates

DETCloseEditBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

END;

DETGetPropertyTypeBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

propertyType: Integer;

END;

DETGetPropertyNumberBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

propertyValue: LongInt;

END;

DETGetPropertyRStringBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

propertyValue: RStringHandle;

END;

DETGetPropertyBinarySizeBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

propertyBinarySize: LongInt;

END;

DETGetPropertyBinaryBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-295

property: Integer;

propertyValue: Handle;

END;

DETGetPropertyChangedBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

propertyChanged: Boolean;

END;

DETGetPropertyEditableBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

propertyEditable: Boolean;

END;

DETSetPropertyTypeBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

newType: Integer;

END;

DETSetPropertyNumberBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

newValue: LongInt;

END;

DETSetPropertyRStringBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

newValue: RStringPtr;

END;

C H A P T E R 5

AOCE Templates

5-296 Summary of AOCE Templates

DETSetPropertyBinaryBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

newValue: Ptr;

newValueSize: LongInt;

END;

DETSetPropertyChangedBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

propertyChanged: Boolean;

END;

DETSetPropertyEditableBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

propertyEditable: Boolean;

END;

DETDirtyPropertyBlock = DETCallBackBlockPropertyHeader;

DETDoPropertyCommandBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

parameter: LongInt;

END;

DETSublistCountBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

count: LongInt;

END;

DETSelectedSublistCountBlock =

RECORD

reqFunction: DETCallBackFunctions;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-297

target: DETTargetSpecification;

count: LongInt;

END;

DETRequestSyncBlock = DETCallBackBlockTargetedHeader;

DETAddMenuBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

name: ^RString;

parameter: LongInt;

addAfter: LongInt;

END;

DETRemoveMenuBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

itemToRemove: LongInt;

END;

DETMenuItemRStringBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

itemParameter: LongInt;

rString: RStringHandle;

END;

DETOpenDSSpecBlock =

RECORD

reqFunction: DETCallBackFunctions;

dsSpec: PackedDSSpecPtr;

END;

DETAboutToTalkBlock = DETCallBackBlockHeader;

DETBreakAttributeBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

C H A P T E R 5

AOCE Templates

5-298 Summary of AOCE Templates

breakAttribute: AttributePtr;

isChangeable: Boolean;

END;

DETSavePropertyBlock = DETCallBackBlockPropertyHeader;

DETGetCustomViewUserReferenceBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

userReference: Integer;

END;

DETGetCustomViewBoundsBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

bounds: Rect;

END;

DETGetResourceBlock =

RECORD

reqFunction: DETCallBackFunctions;

target: DETTargetSpecification;

property: Integer;

resourceType: ResType;

theResource: Handle;

END;

DETTemplateCounts =

RECORD

reqFunction: DETCallBackFunctions;

aspectTemplateCount: LongInt;

infoPageTemplateCount: LongInt;

END;

DETUnloadTemplatesBlock = DETCallBackBlockHeader;

C H A P T E R 5

AOCE Templates

Summary of AOCE Templates 5-299

Result Codes
Result codes in the range of –15000 to –15039 are reserved for AOCE templates.

noErr 0 No error
kDETInvalidTargetAspectName –15000 Could not find aspect named in target selector
kDETInvalidTargetItemNumber –15001 Item number in target selector out of range
kDETInvalidTargetFromNonAspect –15002 Targeted item doesn’t have an aspect
kDETInvalidTargetDSSpec –15003 DSSpec in target selector could not be

resolved
kDETUnknownTargetSelector –15004 Selector type in target selector invalid
kDETInvalidTarget –15005 Target selector invalid
kDETTargetNotAnAspect –15006 Specified target object not an aspect
kDETInvalidCommandItemNumber –15007 Command item number out of range
kDETUnableToGetCommandItemSpec –15008 Unable to retrieve information about item

(possibly out of memory)
kDETRequestedTypeUnavailable –15009 Item could not be represented in the specified

format
kDETInvalidDSSpec –15010 Could not resolve DSSpec
kDETUnableToAccessProperty –15011 Property could not be found
kDETInfoPageNotOpen –15012 Information page not open
kDETNoSuchView –15013 No view found with specified property

number
kDETCouldNotAddMenuItem –15014 Could not add item to menu
kDETCouldNotRemoveMenuItem –15015 Could not remove item from dynamic menu
kDETCouldNotFindMenuItem –15016 Could not find menu item
kDETCouldNotFindCustomView –15017 Could not find custom view
kDETInvalidReqFunction –15018 Invalid callback routine selector
kDETInvalidCallBack –15019 Invalid callback (for reasons other than those

above)
kDETPropertyBusy –15020 Specified property is being edited

Contents 6-1

C H A P T E R 6

Contents

Digital Signature Manager

About Digital Signatures 6-3

Cryptography and Digital Signatures 6-4

Components of a Full Signature 6-5

The Digital Signature 6-5

The Certificate Set 6-6

Creating and Verifying Signatures 6-8

About Public-Key Certificates 6-8

Using the Digital Signature Manager 6-11

Determining the Version Number of the Digital Signature Manager 6-11

Using a Context 6-12

Creating a Full Signature 6-14

Verifying a Full Signature 6-16

Creating a Simple (Unencrypted) Digest 6-19

Getting Information From a Signature or Certificate 6-19

Dealing With Standard Signatures in Files 6-22

Digital Signature Manager Reference 6-23

Constants and Data Types 6-23

Signer Information Structure 6-23

Certificate Information Structure 6-25

Standard Signature Icon Suite 6-26

Name Attribute Information Structure 6-26

Digital Signature Manager Functions 6-27

Assembly-Language Interface 6-27

Creating and Disposing of a Context 6-28

Processing Data to Generate a Digest 6-30

Creating a Signature 6-31

Verifying a Signature 6-38

Creating a Digest 6-43

Getting Information From a Signature or Certificate 6-45

Application-Defined Function 6-54

C H A P T E R 6

6-2 Contents

Summary of the Digital Signature Manager 6-56

C Summary 6-56

Constants and Data Types 6-56

Digital Signature Manager Functions 6-58

Pascal Summary 6-60

Constants and Data Types 6-60

Digital Signature Manager Functions 6-62

Assembly-Language Summary 6-63

Result Codes 6-64

C H A P T E R 6

About Digital Signatures 6-3

Digital Signature Manager

This chapter describes the Digital Signature Manager, one of the AOCE security services.

The Digital Signature Manager is a set of routines that allows you to add electronic

signature capabilities to your application.

Read this chapter if you plan to let your users sign documents or other data

electronically, so that recipients can be confident of the authenticity of the signature and

the integrity of the signed data.

Note that other AOCE components provide limited use of digital signatures; the AOCE

Standard Mail Package allows users to add digital signatures to electronic mail and to

check the signatures of received mail. The Interprogram Messaging (IPM) Manager

provides an application program interface to add digital signatures to IPM messages and

to verify such signatures. A user who has the AOCE software installed can use the

Finder to add a digital signature to any file. If, however, you want to allow a user to sign

a file or verify a signature from within your application, you must use the routines

described in this chapter.

This chapter first introduces the concept of digital signatures, including a brief

introduction to public-key cryptography. It goes on to explain public-key certificates—

necessary documents for creating digital signatures. It then explains how to use the

Digital Signature Manager to create a signature for a file or portion of a file, and to verify

a signature. It also explains how to get information from a digital signature.

About Digital Signatures

A digital signature is an encrypted number that is associated with a particular set of

data. It has two purposes. First, it uniquely identifies the individual or entity that signed

or authorized the content of the data. Second, it ensures the integrity of the data; the

signature contains coded information that can be used to detect any changes made to the

data after the creation of the signature.

A digital signature can be applied to an entire set of data or to any portion of it; anything

that can be represented as a stream of bytes can be given a digital signature. You can use

the functions in this chapter to sign a file, one or more fields in a form, data in memory,

or even another digital signature. In terms of security and integrity, an item with a

verifiable digital signature is comparable to a paper document that is signed and

notarized. In most ways, digital signatures can provide better security than signed paper

forms, because a digital signature cannot be forged and because a digitally signed

document cannot be altered without the alteration being detected.

The digital signature capability is useful in networked organizations. Users on the

network can fill out forms and route them electronically for signature, thus saving time

and effort and enhancing security. Even users of computers that are not on a network can

sign electronic forms before mailing them or physically delivering them. Digital

signatures can also be used with data that is not transmitted at all; a user can assign a

digital signature to important data left on a computer or server to ensure that the data is

not tampered with. This capability could be used to detect viruses, for example.

C H A P T E R 6

Digital Signature Manager

6-4 About Digital Signatures

Cryptography and Digital Signatures
The digital signature technology used by the AOCE toolbox involves the use of two

keys, large unique numbers that are computationally applied to data to encrypt or

decrypt it.

The Digital Signature Manager does not encrypt documents; encryption and decryption

are applied to the digital signature only. When you send an electronically signed

document, the contents of the document are as public as the channel over which you

transmit.

Common cryptographic techniques typically involve a single key, one that both decrypts

and encrypts information. Any holder of the key used in the encryption can use it to

decrypt the information. Those wishing to exchange information must keep the key a

secret among themselves. This type of cryptography is called secret-key cryptography.

The AOCE services use another cryptographic technique, called public-key
cryptography. In this technique, key holders use a pair of keys to encrypt and decrypt

information. Each key pair consists of a private key and a public key. A key holder must

keep its private key secret and not share that key with anyone else. At the same time, it

may freely publish and exchange its public key without compromising security.

Both the private and public keys can be used to encrypt information and decrypt

information. Information encrypted with a private key can be decrypted only with its

paired public key. Similarly, information encrypted with a public key can be decrypted

only with its paired private key. Figure 6-1 illustrates the concept of public-key

encryption.

Figure 6-1 Principles of public-key encryption

C H A P T E R 6

Digital Signature Manager

About Digital Signatures 6-5

The sender, Wendy, uses her own private key to encrypt an item. The receiver, Pablo, can

decrypt the item and read it because he has access to Wendy’s public key. Wendy’s

public key is widely available, so the contents of the item are not hidden to anyone with

the key. But because only Wendy’s public key can decrypt the item, anyone who

successfully decrypts the item knows that it must have come from Wendy.

Components of a Full Signature
As implemented by the Digital Signature Manager, an electronically signed item consists

of (1) the item itself, any collection of data; and (2) a full digital signature, a stream of

bytes that can be used to verify the integrity of the item’s data and that uniquely

identifies the signer.

A full signature has two components: the digital signature itself and the certificate set of

the signer. Figure 6-2 illustrates the components of a full signature. Certificate sets

provide the signer’s public key, verification of the authenticity of that key, and the

identity of the signer. They are described in “The Certificate Set” on page 6-6.

Figure 6-2 The components of a full signature

The Digital Signature

A digital signature is an encrypted digest. A digest is a 16-byte number, calculated by

the Digital Signature Manager from a set of data, that reflects the content of that data.

The digest is like a sophisticated checksum but far more reliable in verifying the integrity

of data. It is very nearly impossible for any two sets of data that differ in any way to

yield the same digest. The digest, therefore, ensures the integrity of the data; if someone

changes even a single bit of a signed item, a recalculation of that item’s digest will yield a

different number from the digest contained in the signature.

C H A P T E R 6

Digital Signature Manager

6-6 About Digital Signatures

Once the digest is created, it is encrypted. The encrypted digest (or signed digest) is the

digital signature. The Digital Signature Manager encrypts the digest by applying the

signer’s private key to it. The encrypted digest is called a signed digest because it could

have been created only by the signer (the holder of that private key).

Verifying a digital signature requires decrypting the encrypted digest and comparing it

to a new digest of the same data. To decrypt the digest, the recipient of the signed data

applies the signer’s public key to it. Because an item encrypted with an individual’s

private key can be decrypted only with that same individual’s public key, the very act of

correctly decrypting a signature proves the identity of the signer.

Verifying a signature also requires making sure that the data has not changed since it

was signed. The Digital Signature Manager creates a digest of the data in its present state

and compares it with the decrypted digest from the signature. If they match, the signed

data is unchanged.

Finally, verifying a signature requires establishing the authenticity of the public key used

for the decryption. To allow for that, the Digital Signature Manager affixes a certificate

set (described next) to every digital signature it creates.

The Certificate Set

The second part of a full signature—the certificate set—has three purposes: it provides

the signer’s public key to allow decryption of the signature, it allows verification of the

authenticity of that public key, and it provides the identity of the signer.

Suppose, for example, that Mary (an impostor) claims to be Joe. She signs a document

with her own private key and sends it off as a document from Joe. If Mary also sends

along her own public key as Joe’s public key, then the recipient of the document might

use Mary’s public key, thinking it was Joe’s, to decrypt the signature. The decryption

would be successful—because Mary’s private key had performed the encryption—and

the recipient would mistakenly think the message had been signed by Joe.

As a safeguard against deceptions of this kind, each public key in use is registered with a

mutually trusted official issuing organization (such as a corporation or government

bureau). That agency publishes a public-key certificate, which includes not only the

public key itself but the name of the owner of the key and the name of the organization

that issued the certificate (as well as other information; see “About Public-Key

Certificates” beginning on page 6-8). See the AOCE user documentation for information

on how a user obtains a public-key certificate.

As a guarantee of authenticity, each public-key certificate is itself digitally signed by the

issuer of the certificate; it then becomes a signed certificate. No change to the name or

the public key in a signed certificate can go undetected.

The signature on a certificate must itself be verified before the certificate can be

considered authentic. For that reason each issuer also has a public-key certificate, signed

by its issuer. Verifying the signature on a certificate thus leads to another certificate

whose signature must be verified, and so on.

For each digital signature this chain of certificates, or certificate set, leads from the signer

through all intermediate issuers and up to the prime issuing organization. Verifying a

C H A P T E R 6

Digital Signature Manager

About Digital Signatures 6-7

digital signature requires verifying the signatures on all the certificates in the certificate

set associated with that signer. This certification process ensures that every public key in

every certificate is authentic, as long as one public key—that of the prime issuer—is

trusted.

For example, assume Joe has a certificate issued by Apple Computer, Inc. Joe’s certificate

includes his name and public key, and it is digitally signed by Apple. Apple’s certificate

includes Apple’s name and public key, and like Joe’s it is digitally signed. If, in this

example, RSA Data Security, Inc., had issued Apple’s certificate, then the certificate set in

Joe’s signed certificate would consist of two certificates, as shown in Figure 6-3.

Figure 6-3 A certificate set consisting of two signed certificates

RSA has no certificate because there is no authorizing agency to issue it. RSA in this case

is the prime issuer, so its public key cannot be verified. It must be trusted for reasons

other than verifiability, such as wide public availability. The Digital Signature Manager

has access to RSA’s public key, so the key is available on every user’s Macintosh

computer.

In summary, when a recipient verifies the signature, the Digital Signature Manager (1)

decrypts the digital signature with the public key provided in the certificate and

compares the resulting digest with one it recalculates from the data; and (2) verifies all

the digital signatures on the certificate set. If all the verifications are successful, the

signer’s public key is considered authentic.

Note

Because the number of attributes in a certificate is not limited, a full
digital signature can be fairly large—as much as several kilobytes. ◆

C H A P T E R 6

Digital Signature Manager

6-8 About Public-Key Certificates

Creating and Verifying Signatures
With the Digital Signature Manager you can let users sign documents, and you can

verify the signatures on documents received by users. The Digital Signature Manager

also provides routines with which you can get information from the certificate set.

When the user wants to sign a document, you call routines that prompt the user for

private-key and certificate information, create a digest of the document, and append the

user’s certificate set to make the full signature. You then attach or otherwise associate the

full signature with the document—in a way appropriate to your application—and it is

ready to be sent to its recipient by any normal means.

When the user wants to validate a signed document, you locate the full signature by

methods appropriate to your application, and you then call routines that verify the

signature by decrypting the encrypted digest, creating a new digest from the document

and comparing it with the decrypted one, and verifying the authenticity of the public

keys in the certificate set. To process a digital signature created in another application,

you must know how the other application created the signature.

You may also wish to record or provide the user with additional information, such as

who signed the document and when they signed it. To get that information you can

make calls that return information about a specified certificate within the full signature.

Note

Users can sign any file by dragging the file onto their signer file. They
can verify the signature in a file by clicking the button in the Get Info
window for the file. See “Dealing With Standard Signatures in Files” on
page 6-22 for information on how to deal with this possibility. ◆

About Public-Key Certificates

Public-key certificates are an integral part of the digital signature concept. Only with an

authentic public key can a signature be verified with confidence; the set of signed

public-key certificates that accompany every signature is used to ensure that authenticity.

A public-key certificate is an electronic document that verifies the identity of a signer. A

public-key certificate contains the following information:

■ identifying information for the certificate owner—the entity, person, or organization
that is authorized to use the certificate

■ the public key of the owner of the certificate

■ a time period (range of dates) during which the certificate is valid

■ identifying information for the organization that issued the certificate

■ a serial number (assigned by the issuer)

C H A P T E R 6

Digital Signature Manager

About Public-Key Certificates 6-9

A public-key certificate is not valid unless it is digitally signed by the issuing

organization of that certificate. It then becomes a signed certificate. The signature assures

the authenticity of the certificate owner’s name and public key.

A certificate can be owned by a person not affiliated with any organization, a person

who is a member of an organization, an organizational role (such as vice president or

administrator), or an issuer (a certified authority). A distinguished name is a set of

attributes that fully specify the owner or issuer of a certificate. For example, the

distinguished name of a private certificate owner consists of a common name (typically

the proper name by which the person is known), a country, a state or province, a locality

(such as a city), a zip code, and sometimes a street address.

The 1988 CCITT Recommendation X.520 sets guidelines for the definition and attributes

of a distinguished name. The Digital Signature Manager supports a subset of the

recommendation. Table 6-1 summarizes the attribute conventions supported by the

Digital Signature Manager.

As the table shows, for example, every certification authority (issuing organization) must

have either a country name or an organization name—and may have both—but cannot

have a common name. Conversely, an individual residential certificate owner must have

a common name but cannot have an organizational name or title.

IMPORTANT

When you display a distinguished name, be sure to show the entire set
of attributes for that distinguished name. If you show only a portion of
the distinguished name, the user might incorrectly identify the owner of
the certificate. There may be two identical names, for example, two
certificate owners named John Smith. ▲

Table 6-1 Conventions governing attributes of a distinguished name

Mandatory attributes Optional attributes Prohibited attributes

Attributes of a certification authority

Country or organization Country Title

Organization Common name

State or province

Locality

Organizational unit

Street address

Zip code

continued

C H A P T E R 6

Digital Signature Manager

6-10 About Public-Key Certificates

A distinguished name can have one or more attributes of each mandatory or optional

type, and the attributes can be arranged in a hierarchy to help indicate their

relationships. You can use this hierarchy when you display the distinguished name for a

user. Figure 6-4 illustrates a hierarchically arranged distinguished name of an

organizational person.

Attributes of a residential person

Country Street address Organization

State or province Organizational unit

Locality Title

Common name

Zip code

Attributes of an organizational person

Organization Country

Common name State or province

Locality

Street address

Organizational unit

Title

Zip code

Attributes of an organizational role

Organization Country Common name

Title State or province

Locality

Organizational unit

Street address

Zip code

Table 6-1 Conventions governing attributes of a distinguished name (continued)

Mandatory attributes Optional attributes Prohibited attributes

C H A P T E R 6

Digital Signature Manager

Using the Digital Signature Manager 6-11

Figure 6-4 Hierarchically arranged distinguished name

Using the Digital Signature Manager

In using the Digital Signature Manager, the main tasks your application needs to

perform are allowing the user to sign a document and verifying the signature on a

document that the user receives.

Other Digital Signature Manager features give you added convenience in extracting

certificate information—such as the name of the signer—from full signatures.

Note

Because the Digital Signature Manager is loaded into memory when it is
used, in general it is a good idea to keep your calls to the Digital
Signature Manager close together so that the memory is used only when
it is needed. For example, if you call the SIGNewContext function
when your application starts up, call several Digital Signature Manager
routines sometime later, and call the SIGDisposeContext function
when your application shuts down, the manager code segment remains
in memory the whole time. ◆

Determining the Version Number of the Digital Signature
Manager
To determine what version of the Digital Signature Manager is available, call the

Gestalt function, using the selector value gestaltDigitalSignatureVersion.

Upon completion of the call, the response parameter contains the version number in its

low-order word. For example, a value of 0x0101 indicates version 1.0.1.

Country: USA

Organization: Apple Computer, Inc.

Organizational unit: Research and Development

Organizational unit: Collaborative Software

Common name: Pablo Calamera

Common name: ID number 123456

Title: Software Engineer

C H A P T E R 6

Digital Signature Manager

6-12 Using the Digital Signature Manager

Using a Context
The Digital Signature Manager uses a private data structure called a context to hold

information and the results of calculations while it is processing data. Before you call

Digital Signature Manager routines to perform a specific task, you must call the

SIGNewContext function (see page 6-28) to create a context. This function returns a

pointer of type SIGContextPtr. You must provide this pointer to each subsequent

routine that you call to perform that task. When you first create a context, it can be used

for any task; however, once you pass a context to another routine (SIGSignPrepare,

SIGVerifyPrepare, or SIGDigestPrepare), it can be used only for that specific task.

For example, to create a signature you first call the SIGNewContext function to create a

context, then pass that context to the SIGSignPrepare, SIGProcessData, and

SIGSign functions (see the following section for details). When you are finished

creating the signature, you call the SIGDisposeContext function to dispose of the

context. Once you have passed the context pointer to the SIGSignPrepare function,

you cannot use that context to verify a signature or create a digest; you must create a

new context for each such operation.

Table 6-2 summarizes the Digital Signature Manager tasks and the functions required to

perform each task. The “Optional functions” column lists functions that you can call

with the same context you used for the preceding function in the “Required functions”

column.

Table 6-2 Digital Signature Manager tasks and functions

Task Required functions Optional functions

Creating a signature SIGNewContext

SIGSignPrepare SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGProcessData

SIGSign SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGDisposeContext

C H A P T E R 6

Digital Signature Manager

Using the Digital Signature Manager 6-13

Signing a file SIGNewContext

SIGSignPrepare SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGSignFile SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGDisposeContext

Checking for a standard
signature

SIGFileIsSigned

Verifying a file SIGNewContext

SIGVerifyPrepare

SIGProcessData

SIGVerify SIGShowSigner

SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGDisposeContext

Verifying a signature SIGNewContext

SIGVerifyFile SIGShowSigner

SIGGetSignerInfo

SIGGetCertInfo

SIGGetCertNameAttributes

SIGGetCertIssuerNameAttributes

SIGDisposeContext

continued

Table 6-2 Digital Signature Manager tasks and functions (continued)

Task Required functions Optional functions

C H A P T E R 6

Digital Signature Manager

6-14 Using the Digital Signature Manager

Creating a Full Signature
When the user wants to sign a document or a portion of a document, you are responsible

for knowing the location and extent of the data to be signed and for attaching or

associating the full signature with that data once the signature is created. The Digital

Signature Manager expects you to provide a pointer to the data, a pointer to a memory

block where it is to place the full signature, and a context pointer.

To create a signature, follow these steps:

1. First, call the SIGNewContext function to allocate and initialize a context. The
function returns a context pointer. If the Digital Signature Manager is not already in
memory, the Operating System loads it into memory.

2. Call the SIGSignPrepare function, passing it the context pointer. It opens the signer
file you specify; if you do not specify one, it opens the default signer file, which is the
last signer file used. If there is no default signer file, it prompts the user for a
signer-file location. It also prompts the user for the password needed to decrypt the
signer’s private key. It returns to you the size that the full signature will be.

3. Call the SIGProcessData function as many times as necessary to process all of the
data to be signed. Either move a pointer through the data each time you call the
function, or create a buffer and put blocks of data into it. The SIGProcessData
function creates a digest of the data to be signed.

4. Create a properly sized memory block to hold the signature, and call the SIGSign
function. It encrypts the digest, assembles the full signature, and puts it in the
memory block you allocated. The SIGSign function periodically calls a callback
routine that you may provide, so that you can notify the user of the progress of the
signing operation or perform other background tasks.

5. If you are finished creating signatures for the current signer, go on to the next step. If
you are creating additional signatures on different data sets for the same signer, repeat
steps 3 and 4 for each signature in turn. The user will not be prompted for a password
or signer-file location as each additional signature is created.

6. When you are finished creating signatures for the current user, call the
SIGDisposeContext function to release the memory used by the signing routines
and to release the Digital Signature Manager from memory. The next time you call
SIGSignPrepare, the user is prompted once more for a password.

Creating a digest SIGNewContext

SIGDigestPrepare

SIGProcessData

SIGDigest

SIGDisposeContext

Table 6-2 Digital Signature Manager tasks and functions (continued)

Task Required functions Optional functions

C H A P T E R 6

Digital Signature Manager

Using the Digital Signature Manager 6-15

Listing 6-1 shows an example of a function that creates a full signature for a piece of

data. This function requires an application-defined function named

DoGetDataToProcess, which cycles through all the data that is to be signed. At the

end of the SignData function is a call to another application-defined function named

DoSaveSignature, which controls how and where to save the signature.

Listing 6-1 A sample signature-creation routine

OSErr SignData()

{

OSErr error;

Boolean moreToSign;

Size signatureSize;

Size dataSize;

SIGSignaturePtr signature = NULL;

SIGContextPtr context = NULL;

Ptr dataBuffer = NULL;

do {

/* Allocate a new context and prepare it for signing. */

if ((error = SIGNewContext(&context)) != noErr)

break;

if ((error = SIGSignPrepare(context, (FSSpecPtr)NULL, "\p",

&signatureSize)) != noErr)

break;

/* Retrieve the data to be signed, in your application-specific way

and pass it to the toolbox to generate the digest for our

signature. */

/* NOTE: DoGetDataToProcess can be the same function for signing and

verifying. */

do {

if (error = DoGetDataToProcess(&dataBuffer, &dataSize, &moreToSign))

break;

if (error = SIGProcessData(context, dataBuffer, dataSize))

break;

} while (moreToSign);

if (error != noErr)/* if encountered error above, go all the way out */

break;

C H A P T E R 6

Digital Signature Manager

6-16 Using the Digital Signature Manager

/* Allocate a buffer of the size returned from SIGSignPrepare to hold

the signature and create the signature by passing the buffer to

SIGSign. */

signature = (SIGSignaturePtr)NewPtr(signatureSize);

if (error = MemError())

break;

if (error = SIGSign(context, signature, (SIGStatusProcPtr)NULL))

break;

/* Save the signature in your application-specific way. */

error = DoSaveSignature(signature, signatureSize);

} while (0);

/* Free the context now, which forces user to reenter the password next

time the SIGSignPrepare call is made. */

if (context != NULL) SIGDisposeContext(context);

if (dataBuffer != NULL) DisposPtr(dataBuffer);

if (signature != NULL) DisposPtr((Ptr)signature);

return error;

}

Verifying a Full Signature
When the user wants to verify the signature on a document or a portion of a document,

you are responsible for knowing the location, processing order, and extent of the data to

be verified, and for locating the full signature that applies to that data. The Digital

Signature Manager expects you to provide a pointer to the data, a pointer to the full

signature, the signature size, and a context pointer.

To verify a signature, follow these steps:

1. First, call the SIGNewContext function to allocate and initialize a context. The
function returns a context pointer. If the Digital Signature Manager is not already in
memory, the Operating System loads it into memory.

2. Call the SIGVerifyPrepare function, passing it a pointer to the signature to be
verified, the signature size, and the context pointer. The SIGVerifyPrepare
function periodically calls a callback routine that you may provide, so that you can
notify the user of the progress of the operation or perform other background tasks.

C H A P T E R 6

Digital Signature Manager

Using the Digital Signature Manager 6-17

The SIGVerifyPrepare function verifies the authenticity and currency of all
certificates in the certificate set and returns the kSIGSignerErr result code if any of
the certificates have been altered.

3. Call the SIGProcessData function as many times as necessary to process all of your
data. Either move a pointer through your data each time you call the function, or
create a buffer and put blocks of data into it. The SIGProcessData function creates a
digest of the data whose signature is to be verified.

4. Call the SIGVerify function. It completes the digest and compares it with the digest
in the signature.

5. Check the result code returned by the SIGVerify function to see if the verification
was successful. A result code of noErr means the verification was successful and the
signature is valid. A result code of kSIGInvalidCredentialErr means the
verification was successful but the signer’s credential is either pending or expired. A
result code of kSIGVerifyFailedErr means the verification failed.

6. Call the SIGDisposeContext function to release the memory used by the
verification routines and to release the Digital Signature Manager from memory. To
verify another signature, you must start over from step 1.

After verifying a signature, you may want to get information about it and present that to

the user. See “Getting Information From a Signature or Certificate” beginning on

page 6-19.

Listing 6-2 shows an example of a function that verifies a signature. At the beginning of

this function is a call to DoRetrieveSignature, an application-defined function that

loads the signature in from where it is stored. The DoVerifyData function also requires

an application-defined function named DoGetDataToProcess to cycle through all the

data to be verified.

Listing 6-2 A sample signature-verification routine

OSErr DoVerifyData()

{

OSErr error;

Boolean moreToVerify;

Size signatureSize;

Size dataSize;

SIGSignaturePtr signature = NULL;

SIGContextPtr context = NULL;

Ptr dataBuffer = NULL;

do {

/* Get the signature and its size from wherever your application saved

it. */

C H A P T E R 6

Digital Signature Manager

6-18 Using the Digital Signature Manager

if (error = DoRetrieveSignature(&signature, &signatureSize))

break;

/* Allocate a new context and prepare it for verifying. */

if (error = SIGNewContext(&context))

break;

if (error = SIGVerifyPrepare(context, signature, signatureSize,

(SIGStatusProcPtr)NULL))

break;

/* Get the data to be verified in your application-specific way, and

pass it to the toolbox to generate a digest for verification. */

/* NOTE: DoGetDataToProcess can be the same function for signing and

verifying. */

do {

if (error = DoGetDataToProcess(&dataBuffer, &dataSize,

&moreToVerify))

break;

if (error = SIGProcessData(context, dataBuffer, dataSize))

break;

} while (moreToVerify);

if (error)/* if encountered error above, go all the way out */

break;

/* Now, perform verification. */

if (error = SIGVerify(context))

break;

/* Finally, display the name of the signer of the data. NOTE: you can

call SIGShowSigner even if a kSIGInvalidCredentialErr was returned

from SIGVerify. */

error = SIGShowSigner(context, "\p");

} while (0);

/* Free the context. */

if (context) SIGDisposeContext(context);

if (dataBuffer) DisposPtr(dataBuffer);

C H A P T E R 6

Digital Signature Manager

Using the Digital Signature Manager 6-19

if (signature) DisposPtr((Ptr)signature);

return error;

}

Creating a Simple (Unencrypted) Digest
As a convenience utility, the Digital Signature Manager allows you to create a digest of a

document (or any stream of data you manipulate). The digest thus created cannot be

encrypted or turned into a signature of the document, but its value as a sophisticated

checksum makes it useful for other purposes, such as checking reliability in data

transmission. And, like any data, the digest itself can be signed to ensure its integrity.

As one example, assume you are transmitting a massive document in separate blocks

across a network. You want to ensure that the blocks are assembled in the right order at

the receiving end. You can construct digests of individual blocks as they are sent and,

after all the blocks have been sent, concatenate all the digests into a single file and send

it. If the recipient has built a file of concatenated digests as the received blocks are

reassembled, the concatenated digests should match each other if there has been no

transmission or reassembly error. This method avoids the necessity of processing

massive amounts of data at once, as would be necessary to create or verify a single

signature on the entire document.

Creating a digest is similar to creating a signature. You first call the SIGNewContext

function, then you call the SIGDigestPrepare function. Next you call

SIGProcessData as many times as necessary to process all of your data. Finally you

call SIGDigest, which returns the finished digest to you.

To create another digest, call the SIGProcessData as many times as necessary, then call

the SIGDigest function. When you are finished creating digests, call the

SIGDisposeContext function.

Getting Information From a Signature or Certificate
When you add a signature to a block of data or verify a signature, you are informed only

of the success or failure of the operation. Neither you nor the user has direct access to

any information in the signature—not even the name of the signer.

If you want to know (or tell the user) who created a signature, when it was signed, who

issued the certificate to the signer, whether the signer’s certificate has expired, or any

other information available from the signature, you can call Digital Signature Manager

routines that return that information.

After you successfully verify a signature, you can display a dialog box containing the full

distinguished name of the signer by calling the SIGShowSigner function (page 6-46).

After you successfully verify a signature, after you call the SIGSignPrepare function

to initiate the signing process, or after you call the SIGSign function to sign a block of

data, you can call the SIGGetSignerInfo function (page 6-48) to determine when a

block of data was signed and how many certificates constitute the certificate set for the

C H A P T E R 6

Digital Signature Manager

6-20 Using the Digital Signature Manager

signature. The SIGGetSignerInfo function also tells you whether the entire certificate

set is valid and, if not, whether it has expired or has not yet become valid.

You can use the SIGGetCertInfo function (page 6-49) to obtain the beginning and

ending dates of a certificate’s validity, and the total number of attributes in the

distinguished names of the certificate’s signer and issuer.

You can use the SIGGetCertNameAttributes function (page 6-51) and the

SIGGetCertIssuerNameAttributes function (page 6-52) to obtain the attributes

that compose the distinguished names of the certificate’s signer and issuer.

To obtain complete information on a newly applied or verified signature, you might

follow a procedure something like this:

1. Call the SIGGetSignerInfo function to get the date of the signing and the total
number of certificates in the full signature.

2. Call the SIGGetCertInfo function for the first certificate in the signature to get the
dates for which the certificate is valid, the serial number of the certificate, and the
number of name attributes in the distinguished name of the certificate.

3. Call the SIGGetCertNameAttributes function once for each name attribute in the
certificate to get the full distinguished name for each certificate. This function returns
the string for each attribute and the type of the attribute. It also specifies whether the
attribute is the same level in the name hierarchy as the previous attribute (See “About
Public-Key Certificates” beginning on page 6-8 for a description of distinguished
names.)

4. Repeat steps 2 and 3 for each additional certificate in the certificate set. The certificates
are always in order: the signer’s certicate is first, the issuer of the signer’s certificate is
next, and so forth.

5. You can use the SIGGetCertIssuerNameAttributes function to get the full
distinguished name of the prime issuer.

Listing 6-3 is an example of a function that extracts information from a certificate set. The

DoDisplayCertificateSet sample function displays the name of the signer of a

verified signature and searches through a certificate set, displaying information about

the owner of each certificate. The DoDisplayCertificateSet function assumes that

the input is a valid context that has gone through a successful call to either the

SIGVerify, SIGSignPrepare, or SIGSign functions.

In addition, the DoDisplayCertificateSet function requires the following support

functions to actually display the data to the user: DoDisplaySignatureInfo,

DoDisplayCertificateInfo, and DoDisplayCertNameAttribute.

C H A P T E R 6

Digital Signature Manager

Using the Digital Signature Manager 6-21

Listing 6-3 A sample routine that returns information in a certificate set

OSErr DoDisplayCertificateSet(SIGContextPtr context)

{

unsigned short attrIndex;

SIGNameAttributesInfo attrInfo;

unsigned short certIndex;

SIGCertInfo certInfo;

SIGSignerInfo signerInfo;

OSErr error;

do {

/* Get and display general signature information first. */

if (error = SIGGetSignerInfo(context, &signerInfo))

break;

DoDisplaySignatureInfo(&signerInfo);

/* Traverse entire certificate set and for each certificate, display

its certificate information. Then traverse the name attribute

information for that certificate and display the attributes. */

for (certIndex = kSIGSignerCertIndex; certIndex < signerInfo.certCount;

certIndex++)

{

if (error = SIGGetCertInfo(context, certIndex, &certInfo))

break;

DoDisplayCertificateInfo(&certInfo);

for (attrIndex = 0; attrIndex < certInfo.certAttributeCount;

attrIndex++)

{

if (error = SIGGetCertNameAttributes(context, certIndex,

attrIndex, &attrInfo))

break;

DoDisplayCertNameAttribute(&attrInfo);

}

}

/* Finally, display the root issuers' name attributes. */

C H A P T E R 6

Digital Signature Manager

6-22 Using the Digital Signature Manager

/* NOTE: there's no certificate information for the root; it's always

valid.*/

for (attrIndex = 0; attrIndex < certInfo.issuerAttributeCount;

attrIndex++)

{

if (error = SIGGetCertIssuerNameAttributes(context, certIndex-1,

attrIndex, &attrInfo))

break;

DoDisplayCertNameAttribute(&attrInfo);

}

} while (0);

return error;

}

Dealing With Standard Signatures in Files
On the desktop, a user can add a standard signature to any file by dragging the icon for

the file to be signed onto the icon of his or her signer file. When a user signs a file this

way, the Digital Signature Manager adds a resource of type 'dsig' to the resource fork

of the file. Whenever you open a file, you should use the SIGFileIsSigned function to

determine if the file contains such a signature. If a file contains a standard signature, you

should not allow the user to alter the file without first displaying a dialog box warning

that the file has been signed and that changing the file in any way will invalidate the

signature. You should also not make any changes of your own to the file, such as saving

a new window position, unless the user has chosen to allow changes that invalidate the

signature.

All resources in the file are also signed, except any resources of type 'nods' (no digital

signature). You can store anything that you don’t want to be signed in this resource, such

as a new window position, and verification will still work.

Note

The 'dsig' resource is mentioned here for your information only and
may change in the future. Therefore, any attempt to manipulate this
resource directly could cause incompatibilities with future versions of
the Digital Signature Manager. ◆

You can verify a standard signature by calling the SIGVerifyFile function. You can

add a standard signature to a file from within your application or replace an existing

standard signature in a file by calling the SIGSignFile function. A user can also use

the Finder to verify the signature in a file signed in this way.

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-23

You must call the SIGNewContext function before you call either the SIGSignFile

function or the SIGVerifyFile function. To add a standard signature to a file, you

must call the SIGSignPrepare function and the SIGSignFile function. The

SIGSignFile function processes the data and adds the signature to the file. To verify a

standard signature, you call the SIGVerifyFile function. You do not have to call the

SIGProcessData function when you are working with standard signatures in files. You

cannot add a standard signature to a file or verify such a signature if the file is in use.

Digital Signature Manager Reference

This section describes the data types and routines provided by the Digital Signature

Manager and the interface to a status callback routine that you may provide.

Constants and Data Types

This section describes the constants and data types that are used by the

SIGGetSignerInfo and SIGGetCertInfo functions to return information about

signers and certificates. The SIGDigestData data type is described with the

SIGDigest routine on page 6-44.

Signer Information Structure

The SIGGetSignerInfo function (page 6-48) uses a signer information structure to

return information about a signature. The signer information structure is defined by the

SIGSignerInfo data type.

struct SIGSignerInfo

{

unsigned long signingTime; /* local sign time */

unsigned long certCount; /* # of certificates

in the set */

unsigned long certSetStatusTime;/* expiration time*/

SIGSignatureStatus signatureStatus; /* certificate status */

};

C H A P T E R 6

Digital Signature Manager

6-24 Digital Signature Manager Reference

Field descriptions

signingTime The time at which the data was signed. The time is in standard
Macintosh format: the number of seconds elapsed since Midnight,
January 1, 1904. The time is converted from Greenwich Mean Time
(GMT) to the local time of the user’s Macintosh. To convert to local
time, the AOCE toolbox uses the local system clock and Map control
panel on the signer’s Macintosh computer. Thus, the time cannot be
considered reliable.

certCount The number of certificates in the certificate set.

certSetStatusTime
If all the certificates in the certificate set are valid, this field holds
the expiration time of the certificate that will be the first to expire. If
one or more certificates have expired, this field holds the time when
the first certificate in the set expired. If none of the certificates have
expired but one or more is not yet valid, this field holds the time
that the last pending certificate will become valid. The time is given
as the number of seconds elapsed since midnight, January 1, 1904.

signatureStatus
If all the certificates in the certificate set are valid, this field holds
the value kSIGValid. If any of the certificates have expired since
the data was signed, this field holds the value kSIGExpired. If any
of the certificates had already expired before the data was signed,
this field holds the value kSIGInvalid. If none of the certificates
have expired but any have not yet become valid, this field holds the
value kSIGPending.

This field can have any of the following values:

enum {

kSIGValid, /* all valid */

kSIGPending, /* none expired; some pending

or unknown */

kSIGExpired, /* some expired, unknown, or

pending */

kSIGInvalid /* some invalid, pending, expired

or unknown */

};

typedef unsigned short SIGSignatureStatus;

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-25

Certificate Information Structure

The SIGGetCertInfo function (page 6-49) uses a certificate information structure to

return information about a specific certificate in a signature. The certificate information

structure is defined by the SIGCertInfo data type.

struct SIGCertInfo

{

unsigned long startDate; /* validity start date */

unsigned long endDate; /* validity end date */

SIGCertStatus certStatus; /* certificate status */

unsigned long certAttributeCount; /* number of name

attributes in cert*/

unsigned long issuerAttributeCount;/* # of name attributes

in cert’s issuer */

Str255 serialNumber; /* cert serial number */

};

Field descriptions

startDate The time at which the certificate became (or will become) valid. The
time is in standard Macintosh format: the number of seconds
elapsed since midnight, January 1, 1904.

endDate The expiration time of the certificate in seconds since midnight,
January 1, 1904.

certStatus The status of the certificate: kSIGValid, kSIGPending, or
kSIGExpired.

certAttributeCount
The number of attributes in the distinguished name for this
certificate (see Table 6-1 on page 6-9). You can use the
SIGGetCertNameAttributes function (page 6-51) to list the
attributes.

issuerAttributeCount
The number of attributes in the distinguished name of the issuer of
this certificate (see Table 6-1 on page 6-9). You can use the
SIGGetCertIssuerNameAttributes function (page 6-52) to list
the attributes.

serialNumber A certificate number assigned by the issuer.

C H A P T E R 6

Digital Signature Manager

6-26 Digital Signature Manager Reference

Standard Signature Icon Suite

The Digital Signature Manager provides an icon suite that you use to represent a digital

signature in your document. This suite contains all bit depths and sizes.

#define kSIGSignatureIconResID -16797

#define kSIGValidSignatureIconResID -16799

#define kSIGInvalidSignatureIconResID -16798

Name Attribute Information Structure

The SIGGetCertNameAttributes function (page 6-51) and the

SIGGetCertIssuerNameAttributes function (page 6-52) use a name attribute

information structure to return information about a name attribute. The name attribute

information structure is defined by the SIGNameAttributesInfo data type.

struct SIGNameAttributesInfo

{

Boolean onNewLevel;

SIGNameAttributeType attributeType;

ScriptCode attributeScript;

Str255 attribute;

};

Field descriptions

onNewLevel A Boolean value that indicates whether the name attribute is at the
same level of the name hierarchy as the previous value returned.

attributeType The type of attribute returned.

attributeScript
The script code for the name attribute. Script codes are defined by
the Script Manager.

attribute The name attribute value.

The attributeType field can have any of the following values:

enum {

kSIGCountryCode,

kSIGOrganization,

kSIGStreetAddress,

kSIGState,

kSIGLocality,

kSIGCommonName,

kSIGTitle,

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-27

kSIGOrganizationUnit,

kSIGPostalCode

};

typedef unsigned short SIGNameAttributeType;

You can use the hierarchy information in the onNewLevel parameter to arrange the

distinguished name for display to the user.

Distinguished names and name hierarchies are described in detail in “About Public-Key

Certificates” beginning on page 6-8.

Digital Signature Manager Functions

You can use Digital Signature Manager functions to perform the following tasks: creating

a signature (page 6-31), verifying a signature (page 6-38), creating an unencrypted digest

(page 6-43), signing a file (page 6-36), and verifying a file (page 6-41). All of these tasks,

except signing and verifying a file, require you to process data (page 6-30). You begin

each of these operations by creating a new context and end the operation by disposing of

the context (page 6-28). After you prepare a context for a signature, create a signature, or

verify a signature, you can extract information from the certificate or signature

(page 6-45).

Assembly-Language Interface

To call a Digital Signature Manager function from assembly language, you must do the

following:

1. Allot space for the function result and all routine parameters (in Pascal
calling-convention order) on the stack.

2. In the D0 register, put a long word consisting of the parameter word count for the
routine followed by the routine selector. The parameter word count indicates how
many words of parameters you are placing on the stack; for example, if the function
has two parameters and each is a pointer, the parameter word count for the function is
$0004.

3. Call the Digital Signature Manager trap, $AA5D.

Each routine description in the following sections lists the parameter word count and

routine selector for that routine.

C H A P T E R 6

Digital Signature Manager

6-28 Digital Signature Manager Reference

Creating and Disposing of a Context

The Digital Signature Manager uses a private data structure called a context to hold

information and the results of calculations while it is processing data. Before you call

Digital Signature Manager routines to perform a specific task, you must call the

SIGNewContext function to create a context and obtain a context pointer. To free the

memory used by the context, call the SIGDisposeContext function.

You can use a new context for any type of operation; however, once you have called the

first task-specific function (SIGSignPrepare, SIGVerifyPrepare, or

SIGDigestPrepare), you can use the context only with other functions associated with

that task. Table 6-2 on page 6-12 summarizes the Digital Signature Manager tasks and

the functions required to perform each task.

SIGNewContext

The SIGNewContext function creates a new context and returns a context pointer.

pascal OSErr SIGNewContext (SIGContextPtr *context);

context A pointer to the new context created by this function.

DESCRIPTION

You must pass the context pointer returned by this function to either the

SIGSignPrepare, SIGVerifyPrepare, or SIGDigestPrepare function.

SPECIAL CONSIDERATIONS

This function causes the Digital Signature Manager to be loaded into memory if it is not

already in memory.

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0002 $076C

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-29

SEE ALSO

Use the SIGDisposeContext function (described next) to dispose of a context.

The SIGNewContext function is normally followed by either the SIGSignPrepare

function (page 6-31), the SIGVerifyPrepare function (page 6-38), or the

SIGDigestPrepare function (page 6-43).

SIGDisposeContext

The SIGDisposeContext function frees the memory used by a context.

pascal OSErr SIGDisposeContext (SIGContextPtr context));

context A pointer to the context you wish to dispose of.

DESCRIPTION

You must call the SIGDisposeContext function to dispose of a context when you are

finished creating a signature, verifying a signature, creating a digest, or extracting

information from a signature or certificate.

SPECIAL CONSIDERATIONS

Because this function removes the Digital Signature Manager (as well as the context)

from memory, you must call this function even if the previous function returned an error.

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0002 $076D

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGOperationIncompatibleErr –1970 Context in use for different type

of operation

C H A P T E R 6

Digital Signature Manager

6-30 Digital Signature Manager Reference

Processing Data to Generate a Digest

To process data during the creation or verification of a signature, or during the creation

of a digest, call the SIGProcessData function one or more times.

SIGProcessData

The SIGProcessData function processes the data passed to it and revises the digest

accordingly.

pascal OSErr SIGProcessData (SIGContextPtr context,

const void *data, Size dataSize);

context A pointer to the context that you passed to the SIGSignPrepare,
SIGVerifyPrepare, or SIGDigestPrepare function.

data A pointer to a buffer containing the data to be processed.

dataSize The number of bytes of data to be processed.

DESCRIPTION

Call the SIGProcessData function to generate a digest for a set of data. If you have

more data than is convenient to process all at once, you can call the function several

times, passing it a block of any size each time. Note, however, that it is more efficient to

process data in large blocks than in small blocks.

You can place each block of data into a buffer, or you can change the data parameter

each time to point at the next starting position in your data. You are responsible for

keeping track of where the data is and how much of it to process during each call to the

SIGProcessData function, and for knowing when all the data has been processed.

The data must be processed in the same order during the corresponding sign and verify

operations but need not be processed in blocks of the same size. To the

SIGProcessData function, the data is a continuous byte stream.

SPECIAL CONSIDERATIONS

You can call the SIGProcessData function at interrupt time; it does not move or purge

memory.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0006 $0774

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-31

RESULT CODES

SEE ALSO

The SIGProcessData function is preceded by a call to SIGSignPrepare (page 6-31),

SIGVerifyPrepare (page 6-38), or SIGDigestPrepare (page 6-43).

After calling SIGProcessData, you call either SIGSign (page 6-34), SIGVerify

(page 6-40), or SIGDigest (page 6-44).

Creating a Signature

To create a full signature, first call the SIGNewContext function (page 6-28) to create a

new context, then call the SIGSignPrepare function (described next).

Next, to sign some portion of the data in a file, call the SIGProcessData function

(page 6-30) as many times as necessary to process all the data. When you are finished

processing the data, call the SIGSign function (page 6-34). To create additional

signatures for the same signer, you can call the SIGProcessData and SIGSign

functions again, without first creating a new context or calling the SIGSignPrepare

function.

If you want to add a standard signature to a file, call the SIGSignFile function

(page 6-36) instead of the SIGProcessData and SIGSign functions. To add signatures

to additional files, you can call the SIGSignFile function again, without first creating a

new context or calling the SIGSignPrepare function.

When you no longer need the context you used for creating the signatures, call the

SIGDisposeContext function (page 6-29).

This section describes the SIGSignPrepare, SIGSign, and SIGSignFile functions.

SIGSignPrepare

The SIGSignPrepare function notifies the Digital Signature Manager that you are

about to create a signature.The function returns the size that the full signature will be

when it is created.

pascal OSErr SIGSignPrepare (SIGContextPtr context,

const FSSpec *signerFile,

ConstStr255Param prompt,

Size *signatureSize);

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGOperationIncompatibleErr –1970 Context in use for different type

of operation
kSIGInternalsErr –1977 Bad digest, context, or signature

C H A P T E R 6

Digital Signature Manager

6-32 Digital Signature Manager Reference

context A pointer to the context that the Digital Signature Manager will use while
creating the signature. Call the SIGNewContext function to obtain the
context pointer.

signerFile
A pointer to a file-specification structure for the user’s signer file. If you
specify NULL for this parameter, the function opens the previously used
signer file, or, if there is no record of a previously used signer file, the
function displays a Standard File dialog box prompting the user for the
location of a signer file.

prompt A string to display in the dialog box that prompts the user for a
password. Pass a zero-length Pascal-style string to use the default prompt.

signatureSize
A pointer to the size of the signature that is to be created. The function
returns this parameter.

DESCRIPTION

The SIGSignPrepare function displays a password-prompting dialog box into which

the user types the private-key password. The function displays a Standard File dialog

box prompting the user for a signer file if you do not specify a signer file in the

signerFile parameter and there is no default signer file.

If you pass NULL in the signerFile parameter, the first time the user signs something,

the function displays a Standard File dialog box prompting the user for the location of

the signer file. The Digital Signature Manager then stores an alias to that file in the user’s

Preferences folder. The next time you specify NULL in the signerFile parameter, the

SIGSignPrepare function uses that signer file as the default and does not display the

standard file dialog box.

If you already know the location of the user’s signer file, you can bypass the Standard

File dialog box by passing a pointer to the signer file’s file-specification structure in the

signerFile parameter. You can also use this procedure to override the default signer

file.

The prompt parameter can contain whatever string you wish displayed in the dialog

box to prompt the user for a private-key password. Use the parameter-text designator ^1

for the user’s name; the Digital Signature Manager replaces ^1 in your string with the

user’s common name or title (depending on whether the user is signing as a person or as

an organizational role—see Table 6-1 on page 6-9) as it appears in the signer file. If you

pass a zero-length string, the function uses the default string.

The password-prompting dialog box also contains a Signer button that allows the user to

select a different signer file. Figure 6-5 shows how the dialog box would appear to a user

whose common name is Pablo Calamera.

Note

If you specify a signer file to use, the password dialog box does not
contain a Signer button allowing users to switch signer files. ◆

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-33

Figure 6-5 The password-prompting dialog box

This function returns the size the signature will be once it is created. Use the result to

allocate memory for the signature before calling the SIGSign function.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

This function is stack-intensive, requiring approximately 7 KB of memory for its stack.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0008 $076E

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled password-prompt

dialog box
kSIGOperationIncompatibleErr –1970 Context in use for different type

of operation
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGPasswordErr –1976 Password is incorrect
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGContextPrepareErr –1979 Context already prepared by

SIGVerifyPrepare,
SIGSignPrepare, or
SIGDigestPrepare

kSIGConversionErr –1981 Unable to convert an attribute to
Macintosh format

kSIGSignerNotValidErr –1982 Signer file has either expired or
is not yet valid

C H A P T E R 6

Digital Signature Manager

6-34 Digital Signature Manager Reference

SEE ALSO

Before you call the SIGSignPrepare function, you must call the SIGNewContext

function (page 6-28) to create a new context.

After calling the SIGSignPrepare function, you can extract information from the

certificate set; see “Getting Information From a Signature or Certificate” beginning on

page 6-45.

After you call the SIGSignPrepare function, call the SIGProcessData function

(page 6-30) as many times as necessary to process all the data.

SIGSign

The SIGSign function creates a full signature for the data most recently processed by

the SIGProcessData function, using signer-file information from the most recent call

to the SIGSignPrepare function.

pascal OSErr SIGSign (SIGContextPtr context,

SIGSignaturePtr signature,

SIGStatusProcPtr statusProc);

context The context pointer that you passed to the SIGSignPrepare function.

signature A pointer to a buffer you provide to hold the signature returned by the
function. Use the result of the SIGSignPrepare function to allocate a
buffer of the correct size.

statusProc
A pointer to a callback routine you may provide to notify the user of the
progress of the signature creation or to perform other background tasks.
Specify NULL for this parameter if you do not wish to provide a callback
routine.

DESCRIPTION

Call this function after having called the SIGProcessData function enough times to

finish processing the document or data that is to be signed. After creating a signature,

SIGSign places it in the buffer pointed to by the signature parameter.

Because the SIGSign function can take a long time to complete, you can provide a

pointer to a callback routine to notify the user of the progress of the operation, allow the

user to cancel it, and perform background tasks such as spinning the cursor.

To create additional signatures for the same signer, you can call the SIGProcessData

and SIGSign functions again, without first creating a new context or calling the

SIGSignPrepare function. Call the SIGDisposeContext function when you have

finished creating signatures with that signer.

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-35

Note
You should call the SIGDisposeContext function as soon as possible
after you finish creating signatures so that the Operating System can free
the memory used by the Digital Signature Manager. ◆

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You call the SIGSign function after calling SIGSignPrepare (page 6-31) to initiate the

signing process and SIGProcessData (page 6-30) to process the data.

You may provide a callback status routine when you call the SIGSign function; see

“Application-Defined Function” on page 6-54.

After calling the SIGSign function, you can extract information from the signature; see

“Getting Information From a Signature or Certificate” beginning on page 6-45.

As soon as possible after you finish creating signatures, call the SIGDisposeContext

(page 6-29) function to dispose of the context and to allow the Operating System to

remove the Digital Signature Manager from memory.

Parameter count Routine selector

$0006 $076F

noErr 0 No error
paramErr –50 Illegal parameter value
userCanceledErr –128 User canceled signing process
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGInternalsErr –1977 Bad digest, context, or signature

C H A P T E R 6

Digital Signature Manager

6-36 Digital Signature Manager Reference

SIGSignFile

The SIGSignFile function adds a standard signature to a file.

pascal OSErr SIGSignFile (SIGContextPtr context,

Size signatureSize,

const FSSpec *fileSpec,

SIGStatusProcPtr statusProc);

context The context pointer that you passed to the SIGSignPrepare function.

signatureSize
The size of the signature as returned by the SIGSignPrepare function.

fileSpec A pointer to the file system specification structure for the file to which
you want to add a signature.

statusProc
A pointer to a callback routine you may provide to notify the user of the
progress of the signature creation or to perform other background tasks.
Specify NULL for this parameter if you do not wish to provide a callback
routine.

DESCRIPTION

The SIGSignFile function processes a signature for a complete file and places it in the

resource fork of the file as a resource of type 'dsig'. You must call the

SIGSignPrepare function before calling the SIGSignFile function.

Note
The 'dsig' resource is mentioned here for your information only.
Because it may change in the future, you should not attempt to
manipulate this resource directly. Any change could cause
incompatibilities with future versions of the Digital Signature
Manager. ◆

A signature you add to a file using this function is identical to one added by the Finder

when the user drags the icon for the file onto the icon of their signer file. If the file is

already signed, the SIGSignFile function creates a new signature and replaces the old

one.

All resources in the file are also signed, except any resources of type 'nods' (no digital

signature). You can store anything that you don’t want to be signed in this resource, such

as a new window position, and verification will still work.

Because the SIGSignFile function can take a long time to complete, you can provide a

pointer to a callback routine to perform background tasks such as spinning the cursor

and to allow the user to cancel the operation.

To sign additional files for the same signer, you can call the SIGSignFile function

again, without first creating a new context or calling the SIGSignPrepare function.

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-37

Call the SIGDisposeContext function when you are finished signing files for that

signer.

Note

You should call the SIGDisposeContext function as soon as possible
after you finish creating signatures so that the Operating System can free
the memory used by the Digital Signature Manager. ◆

IMPORTANT

The SIGSignFile function will not work on a file that is open. ▲

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You call the SIGSignFile function after initiating the signing process with the

SIGSignPrepare function (page 6-31).

Parameter count Routine selector

$0008 $09C5

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad name error
tmfoErr –42 Too many files open
fnfErr –43 File not found
fBsyErr –47 File is busy
opWrErr –49 File already open with write

permission
paramErr –50 Illegal parameter value
wrPermErr –61 File not available
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
userCanceledErr –128 User canceled signing process
addResFailed –194 Adding resource failed
rmvResFailed –196 Removing resource failed
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGInternalsErr –1977 Bad digest, context, or signature
afpAccessDenied –5000 Disk full

C H A P T E R 6

Digital Signature Manager

6-38 Digital Signature Manager Reference

You may provide a callback status routine when you call the SIGSign function; see

“Application-Defined Function” on page 6-54.

You can use the SIGFileIsSigned function (page 6-45) to determine if a file already

contains a standard signature.

As soon as possible after you finish creating signatures, call the SIGDisposeContext

function (page 6-29) to dispose of the context and to allow the Operating System to

remove the Digital Signature Manager from memory.

Verifying a Signature

When you use the Digital Signature Manager to verify a signature, it checks the validity

of the certificate set, creates a digest of the data whose signature you wish to verify, and

compares that digest to the digest in the signature.

To verify a signature of some portion of data in a file, first call the SIGNewContext

function (page 6-28), then call the SIGVerifyPrepare function (described next). Next,

call the SIGProcessData function (page 6-30) as many times as necessary to prepare a

digest of the data. When you have finished processing the data, call the SIGVerify

function (page 6-40) to compare the digest you prepared with the one in the signature.

To verify a standard signature in a file (that is, one added by the Finder or by the

SIGSignFile function), first call the SIGNewContext function to create a new context,

then call the SIGVerifyFile function (page 6-41).

When you are finished with the context you used for verifying the signature, call the

SIGDisposeContext function (page 6-29).

This section describes the SIGVerifyPrepare function, the SIGVerify function, and

the SIGVerifyFile function.

SIGVerifyPrepare

The SIGVerifyPrepare function notifies the Digital Signature Manager that you have

a signature to be verified and initializes the verification process.

pascal OSErr SIGVerifyPrepare (SIGContextPtr context,

SIGSignaturePtr signature,

Size signatureSize,

SIGStatusProcPtr statusProc);

context A pointer to the context that the Digital Signature Manager will use while
verifying the signature. Call the SIGNewContext function to obtain the
context pointer.

signature A pointer to the full signature that is to be verified.

signatureSize
The size of the signature that is to be verified.

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-39

statusProc
A pointer to a callback routine you may provide to notify the user of the
progress of the verification operation or perform other background tasks.
Specify NULL for this parameter if you do not wish to provide a callback
routine.

DESCRIPTION

You must provide the SIGVerifyPrepare function with a pointer to the signature to

be verified and the size of the signature. You may release the memory used by the

signature after the SIGVerifyPrepare function has completed.

Because the SIGVerifyPrepare function verifies each certificate in the certificate set

and reads in the digest, it can take a long time to complete. You can provide a pointer to

a callback routine to perform background tasks such as spinning the cursor and to allow

the user to cancel the operation.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

This function is stack-intensive, requiring approximately 7 KB of memory for its stack.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Before you call the SIGVerifyPrepare function, you must call the SIGNewContext

function (page 6-28) to create a new context.

You may provide a callback status routine when you call the SIGVerifyPrepare

function; see “Application-Defined Function” on page 6-54.

Parameter count Routine selector

$0008 $0770

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap zone
kSIGSignerErr –1975 Problem with the signer file or signature
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGContextPrepareErr –1979 Context already prepared by

SIGVerifyPrepare, SIGSignPrepare,
or SIGDigestPrepare

kSIGNoDigestErr –1980 No digest in the signature

C H A P T E R 6

Digital Signature Manager

6-40 Digital Signature Manager Reference

After you call the SIGVerifyPrepare function, call the SIGProcessData function

(page 6-30) as many times as necessary to process all the data whose signature you wish

to verify.

SIGVerify

The SIGVerify function tests the validity of the specified signature. To do so, it

compares the digest in the signature with the digest you prepared by calling the

SIGProcessData function. It also checks the validity of the credentials in the

signature’s certificate set.

pascal OSErr SIGVerify (SIGContextPtr context);

context The context pointer that you passed to the SIGVerifyPrepare function.

DESCRIPTION

Call this function after having called the SIGProcessData function enough times to

finish processing data whose signature is to be verified. Note that you must process the

data in the same sequence that it was processed when the signature was created.

Check the result code from this function to see if the signature verification was successful.

Note
You should call the SIGDisposeContext function as soon as possible
after you finish verifying a signature so that the Operating System can
free the memory used by the Digital Signature Manager. ◆

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0002 $0771

noErr 0 No error
ParamErr –50 Illegal parameter value
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGVerifyFailedErr –1972 Verification failed
kSIGInvalidCredentialErr –1973 Verified OK but credential pending

or expired
kSIGInternalsErr –1977 Bad digest, context, or signature

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-41

SEE ALSO

You call the SIGVerify function after calling SIGVerifyPrepare (page 6-38) to

initiate the signing process and SIGProcessData (page 6-30) to process the data.

After a successful verification, you can extract information from the signature; see

“Getting Information From a Signature or Certificate” beginning on page 6-45.

As soon as possible after calling the SIGVerify function, call the

SIGDisposeContext (page 6-29) function to dispose of the context and allow the

Operating System to remove the Digital Signature Manager from memory.

SIGVerifyFile

The SIGVerifyFile function verifies a standard signature in a file.

pascal OSErr SIGVerifyFile (SIGContextPtr context,

const FSSpec *fileSpec,

SIGStatusProcPtr statusProc);

context A pointer to the context that the Digital Signature Manager will use while
verifying the signature. Call the SIGNewContext function to obtain the
context pointer.

fileSpec A pointer to the file system specification structure for the file whose
signature you want to verify.

statusProc
A pointer to a callback routine you may provide to notify the user of the
progress of the verification operation or perform other background tasks.
Specify NULL for this parameter if you do not wish to provide a callback
routine.

DESCRIPTION

If a file contains a standard signature, you can use the SIGVerifyFile function to

verify it.

Because the SIGVerifyFile function verifies each certificate in the certificate set and

reads in the digest, it can take a long time to complete. You can provide a pointer to a

callback routine to perform background tasks such as spinning the cursor and to allow

the user to cancel the operation.

Note
You should call the SIGDisposeContext function as soon as possible
after you finish verifying a signature so that the Operating System can
free the memory used by the Digital Signature Manager. ◆

C H A P T E R 6

Digital Signature Manager

6-42 Digital Signature Manager Reference

IMPORTANT

You cannot use the SIGVerifyFile function on a file that is in use by
another application. ▲

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Before you call the SIGVerifyFile function, you must call the SIGNewContext

function (page 6-28) to create a new context.

You may provide a callback status routine when you call the SIGVerifyFile function;

see “Application-Defined Function” on page 6-54.

You can call the SIGFileIsSigned function (page 6-45) to determine if a file contains a

standard signature.

Parameter count Routine selector

$0006 $09C6

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad name error
tmfoErr –42 Too many files open
fnfErr –43 File not found
fBsyErr –47 File is busy
opWrErr –49 File already open with write permission
paramErr –50 Illegal parameter value
permErr –54 Permissions error on file open
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGContextPrepareErr –1979 Context already prepared by

SIGVerifyPrepare, SIGSignPrepare,
or SIGDigestPrepare

kSIGNoDigestErr –1980 No digest in the signature
kSIGNoSignature –1983 Standard file signature not found

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-43

Creating a Digest

You can create an unencrypted digest of a document without creating a digital signature.

To create a digest, first call the SIGNewContext function (page 6-28) to create a new

context, then call the SIGDigestPrepare function (described next). Next, call the

SIGProcessData function (page 6-30) as many times as necessary to process all the

data. When you have finished processing the data, call the SIGDigest function

(page 6-44). To create additional digests, you can call the SIGProcessData and

SIGDigest functions again, without first creating a new context or calling the

SIGDigestPrepare function. When you no longer need the context you used for

creating the digests, call the SIGDisposeContext function (page 6-29).

This section describes the SIGDigestPrepare function and the SIGDigest function.

SIGDigestPrepare

The SIGDigestPrepare function notifies the Digital Signature Manager that you are

about to create a digest.

pascal OSErr SIGDigestPrepare (SIGContextPtr context);

context A pointer to the context that the Digital Signature Manager will use while
creating the digest. Call the SIGNewContext function to obtain the
context pointer.

DESCRIPTION

The SIGDigestPrepare function notifies the Digital Signature Manager that the

context is to be used to create a digest.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0002 $0772

C H A P T E R 6

Digital Signature Manager

6-44 Digital Signature Manager Reference

RESULT CODES

SEE ALSO

Before you call the SIGDigestPrepare function, you must call the SIGNewContext

function (page 6-28) to create a new context.

After you call the SIGDigestPrepare function, call the SIGProcessData function

(page 6-30) as many times as necessary to process all the data.

SIGDigest

The SIGDigest function returns a pointer to a digest of the data most recently

processed by the SIGProcessData function.

pascal OSErr SIGDigest (SIGContextPtr context,

SIGDigestData digest);

context The context pointer that you passed to the SIGDigestPrepare function.

digest A SIGDigestData array that you provide to hold the result of this
function.

DESCRIPTION

You can call the SIGProcessData function and the SIGDigest function as many times

as you wish to prepare digests of data without calling the SIGDigestPrepare function

again or creating a new context.

You must allocate a SIGDigestData structure to hold the digest before calling this

function.

#define kSIGDigestSize 16

typedef Byte SIGDigestData[kSIGDigestSize], *SIGDigestDataPtr;

Note
You should call the SIGDisposeContext function as soon as possible
after you finish making digests so that the Operating System can free the
memory used by the Digital Signature Manager. ◆

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap zone
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGContextPrepareErr –1979 Context already prepared by

SIGVerifyPrepare, SIGSignPrepare,
or SIGDigestPrepare

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-45

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You call the SIGDigest function calling SIGDigestPrepare (page 6-43) to initiate the

digest process and SIGProcessData (page 6-30) to process the data.

As soon as possible after you finish preparing digests, call the SIGDisposeContext

(page 6-29) function to dispose of the context and to allow the Operating System to

remove the Digital Signature Manager from memory.

Getting Information From a Signature or Certificate

The first routine in this section, SIGFileIsSigned, indicates whether a file includes a

standard signature. Use the other routines in this section to get information about the

date, size, or contents of a full signature and its components.

SIGFileIsSigned

The SIGFileIsSigned function indicates whether a file contains a standard signature.

pascal OSErr SIGFileIsSigned(const FSSpec *fileSpec);

fileSpec A pointer to the file system specification structure for the file that you
want to check for a signature.

DESCRIPTION

A file that has been signed by the finder or by the SIGSignFile function contains a

digital signature in the form of a resource of type 'dsig'. The SIGFileIsSigned

function checks a file for this resource and returns a result code of noErr if it finds one.

If the function finds no such resource, it returns the result code kSIGNoSignature.

Parameter count Routine selector

$0004 $0773

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGInternalsErr –1977 Bad digest, context, or signature

C H A P T E R 6

Digital Signature Manager

6-46 Digital Signature Manager Reference

Note
The 'dsig' resource is mentioned here for your information only.
Because it may change in the future, you should not attempt to
manipulate this resource directly. Any change could cause
incompatibilities with future versions of the Digital Signature
Manager. ◆

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SIGVerifyFile function (page 6-41) to verify a standard signature in a

file.

You can add a standard signature to a file by calling the SIGSignFile function

(page 6-36).

SIGShowSigner

The SIGShowSigner function displays the entire distinguished name of the signer of a

block of data. You can call this function only after successfully verifying a signature.

pascal OSErr SIGShowSigner(SIGContextPtr context,

ConstStr255Param prompt);

context The context pointer you used the last time you called the SIGVerify or
SIGVerifyFile function.

prompt The prompt you want to appear in the dialog box displayed by the
SIGShowSigner function. If you specify a zero-length Pascal string for
this parameter, the function displays a default string.

Parameter count Routine selector

$0002 $09C4

noErr 0 File is signed
kSIGNoSignature –1983 Standard file signature not found

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-47

DESCRIPTION

After you call the SIGVerify function and it returns either the noErr or the

kSIGInvalidCredentialErr result code, you can call the SIGShowSigner function

to display a modal dialog box with the full distinguished name of the signer. Figure 6-6

shows an example of this dialog box.

Note

The time displayed is the local time determined by the user’s local
system clock and Map control panel. ◆

Figure 6-6 Show-signer dialog box

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Parameter count Routine selector

$0004 $0775

noErr 0 No error
paramErr –50 Illegal parameter value
memFullErr –108 Not enough room in heap zone
kSIGOperationIncompatibleErr –1970 Context in use for different type of

operation
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGConversionErr –1981 Unable to convert to Macintosh

format

C H A P T E R 6

Digital Signature Manager

6-48 Digital Signature Manager Reference

SEE ALSO

You cannot call the SIGShowSigner function until after you have called the

SIGVerify function (page 6-40) or the SIGVerifyFile function (page 6-41).

Distinguished names are defined in Table 6-1 on page 6-9.

SIGGetSignerInfo

The SIGGetSignerInfo function returns information about a signer.

pascal OSErr SIGGetSignerInfo (SIGContextPtr context,

SIGSignerInfo *signerInfo);

context The context pointer you used the last time you called the SIGVerify,
SIGVerifyFile, SIGSignPrepare, or SIGSign function.

signerInfo
A pointer to a signer information structure returning information about
the signer. You must allocate this structure.

DESCRIPTION

The SIGGetSignerInfo function returns information about the signer whose context

pointer you provide to the function. You can call the SIGGetSignerInfo function after

you call the SIGSignPrepare function, the SIGSign function, the SIGVerify

function, or the SIGVerifyFile function.

You allocate a signer information structure, and the function fills it in. The signer

information structure tells you the time (and date) that the data was signed, the number

of certificates in the certificate set, and the status of the certificate set. (Note that if you

call the SIGGetSignerInfo function immediately after calling the SIGSignPrepare

function, the time of signing is meaningless because the data has not yet been signed.) If

all the certificates are valid, the structure lists the earliest expiration date for any

certificate in the set. If one or more certificates have expired, the structure lists the

expiration date of the one that expired first. If none of the certificates have expired but

one or more are not yet valid, the structure lists the date at which the last certificate to

become valid will do so.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-49

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SIGGetSignerInfo function after you call the SIGSignPrepare

function (page 6-31), the SIGSign function (page 6-34), the SIGVerify function

(page 6-40), or the SIGVerifyFile function (page 6-41).

The signer information structure is described on page 6-23.

You can call the SIGShowSigner function (page 6-46) to display a modal dialog box

showing the distinguished name of the signer of a verified signature.

You can call SIGGetCertInfo function (described next) to get more information about

any certificate in the certificate set, including that of the signer.

SIGGetCertInfo

The SIGGetCertInfo function returns information about a specific certificate in a

certificate set.

pascal OSErr SIGGetCertInfo (SIGContextPtr context,

unsigned long certIndex,

SIGCertInfo *certInfo);

context The context pointer you used the last time you called the SIGVerify,
SIGVerifyFile, SIGSignPrepare, or SIGSign function.

certIndex The index number of the certificate about which you want information.
The certificates are always in order: the signer’s certicate has index
number 0, the issuer of the signer’s certificate has index number 1, and so
forth. You can use the SIGGetSignerInfo function to determine the
total number of certificates in the certificate set.

certInfo A pointer to a certificate information structure returning information
about the certificate. You must allocate this structure.

Parameter count Routine selector

$0004 $0776

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGCertificateQueryDenied –1971 Can’t query certificates with this

context
kSIGSignerErr –1975 Problem with the signer file or

signature
kSIGInternalsErr –1977 Bad digest, context, or signature

C H A P T E R 6

Digital Signature Manager

6-50 Digital Signature Manager Reference

DESCRIPTION

The SIGGetCertInfo function returns information about one certificate in the

certificate set of the signer whose context pointer you provide to the function. You

allocate a certificate information structure and specify the index number of the certificate

about which you want information, and the function fills in the structure. The certificate

information structure tells you the beginning and ending dates for the validity period of

the certificate, the status of the certificate (pending, expired, or valid), the number of

attributes in the distinguished name of the signer of the certificate, the number of

attributes in the distinguished name of the issuer of the certificate, and the serial number

of the certificate.

The serial number and issuer name together uniquely identify a certificate. This

information may be of use to a user who needs to contact the issuing organization (for

example, to ensure a certificate has not been revoked).

The certificate of the signer of the data always has index number 0. You can use the

following constant for this number:

#define kSIGSignerCertIndex 0

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SIGGetCertInfo function after you call the SIGSignPrepare

function (page 6-31), the SIGSign function (page 6-34), the SIGVerify function

(page 6-40), or the SIGVerifyFile function (page 6-41).

Call the SIGGetSignerInfo function (page 6-48) to determine the total number of

certificates in the certificate set.

The certificate information structure is described on page 6-25.

Parameter count Routine selector

$0006 $0777

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGCertificateQueryDenied –1971 Can’t query certificates with this

context
kSIGIndexErr –1974 Index value is outside allowable

range
kSIGInternalsErr –1977 Bad digest, context, or signature

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-51

You can use the SIGGetCertNameAttributes function (described next) to obtain the

contents of each attribute in the distinguished name of the signer of the certificate.

You can use the SIGGetCertIssuerNameAttributes function (page 6-52) to obtain

the contents of each attribute in the distinguished name of the issuer of the certificate.

The attributes that compose a distinguished name are shown in Table 6-1 on page 6-9.

SIGGetCertNameAttributes

The SIGGetCertNameAttributes function returns information about a specific

attribute of a distinguished name in a specific certificate of a signature.

pascal OSErr SIGGetCertNameAttributes (SIGContextPtr context,

unsigned long certIndex,

unsigned long attributeIndex,

SIGNameAttributesInfo *attributeInfo);

context The context pointer you used the last time you called the SIGVerify,
SIGVerifyFile, SIGSignPrepare, or SIGSign function.

certIndex The index number of the certificate about which you want information.
The certificates are always in order: the signer’s certicate has index
number 0, the issuer of the signer’s certificate has index number 1, and so
forth. You can use the SIGGetSignerInfo function to determine the
total number of certificates in the certificate set.

attributeIndex
The index number of the name attribute about which you want
information. The SIGGetCertInfo function returns the total number of
attributes in a certificate.

attributeInfo
A pointer to a SIGNameAttributesInfo structure.

DESCRIPTION

After you use the SIGGetCertInfo function to determine the total number of

attributes in the distinguished name of a certificate, you can use the

SIGGetCertNameAttributes function to obtain the attribute strings.

The SIGNameAttributesInfo structure returns information about the hierarchical

level of the attribute, the type of name attribute, and the script code of the attribute, as

well as returning the attribute string. You can use the hierarchy information to arrange

the distinguished name for display to the user.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

C H A P T E R 6

Digital Signature Manager

6-52 Digital Signature Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can call the SIGGetNameAttributes function after you call the

SIGSignPrepare function (page 6-31), the SIGSign function (page 6-34), the

SIGVerify function (page 6-40), or the SIGVerifyFile function (page 6-41).

Call the SIGGetCertInfo function (page 6-49) to determine the total number of

attributes in the distinguished name. You can use the SIGGetSignerInfo function

(page 6-48) to determine the total number of certificates in the certificate set.

The SIGNameAttributesInfo structure is described on page 6-26.

You can use the SIGGetCertIssuerNameAttributes function (described next) to

obtain the contents of each attribute in the distinguished name of the issuer of the

certificate.

Distinguished names and name hierarchies are described in detail in “About Public-Key

Certificates” beginning on page 6-8.

SIGGetCertIssuerNameAttributes

The SIGGetCertIssuerNameAttributes function returns information about a

specific attribute of the distinguished name of the issuer of a specific certificate of a

signature.

pascal OSErr SIGGetCertIssuerNameAttributes

(SIGContextPtr context,

unsigned long certIndex,

unsigned long attributeIndex,

SIGNameAttributesInfo *attributeInfo);

Parameter count Routine selector

$0008 $0778

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGCertificateQueryDenied –1971 Can’t query certificates with this

context
kSIGIndexErr –1974 Index value is outside allowable

range
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGConversionErr –1981 Unable to convert an attribute to

Macintosh format

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-53

context The context pointer you used the last time you called the SIGVerify,
SIGVerifyFile, SIGSignPrepare, or SIGSign function.

certIndex The index number of the certificate about for whose issuer you want
information. The certificates are always in order: the signer’s certicate has
index number 0, the issuer of the signer’s certificate has index number 1,
and so forth. You can use the SIGGetSignerInfo function to determine
the total number of certificates in the certificate set.

attributeIndex
The index number of the name attribute about which you want
information. The SIGGetCertInfo function returns the total number of
attributes in the issuer of a certificate.

attributeInfo
A pointer to a SIGNameAttributesInfo structure.

DESCRIPTION

After you use the SIGGetCertInfo function to determine the total number of

attributes in the distinguished name of the issuer of a certificate, you can use the

SIGGetCertIssuerNameAttributes function to obtain the attribute strings.

The SIGNameAttributesInfo structure returns information about the hierarchical

level of the attribute, the type of name attribute, and the script code of the attribute, as

well as returning the attribute string. You can use the hierarchy information to arrange

the distinguished name for display to the user.

This function is useful if you want information about the issuer of a certificate. If you are

using the SIGCertInfo and SIGCertNameAttributes functions to obtain

information about all the certificates in a certificate set, then you must use the

SIGGetCertIssuerNameAttributes function to determine the prime issuer.

SPECIAL CONSIDERATIONS

This function may move or purge memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Parameter count Routine selector

$0008 $0779

C H A P T E R 6

Digital Signature Manager

6-54 Digital Signature Manager Reference

RESULT CODES

SEE ALSO

You can call the SIGGetNameAttributes function after you call the

SIGSignPrepare function (page 6-31), the SIGSign function (page 6-34), the

SIGVerify function (page 6-40), or the SIGVerifyFile function (page 6-41).

Call the SIGGetCertInfo function (page 6-49) to determine the total number of

attributes in the distinguished name. You can use the SIGGetSignerInfo function

(page 6-48) to determine the total number of certificates in the certificate set.

The SIGNameAttributesInfo structure is described on page 6-26.

You can use the SIGGetCertNameAttributes function (page 6-51) to obtain the

contents of each attribute in the distinguished name of the signer of the certificate.

Distinguished names and name hierarchies are described in detail in “About Public-Key

Certificates” beginning on page 6-8.

Application-Defined Function

The SIGSign, SIGSignFile, SIGVerifyPrepare, and SIGVerifyFile functions all

take a statusProc parameter, which is a pointer to a callback routine. You may provide

this routine to notify the user of the progress of the signing or verification process. Your

routine may perform typical “busy-notification” actions, such as spinning the cursor, or

it may offer the user the opportunity to cancel the operation.

MyStatusCallBack

Your status callback function can perform background tasks during the signing and

verification processes.

pascal Boolean MyStatusCallBack (void);

noErr 0 No error
paramErr –50 Illegal parameter value
kSIGCertificateQueryDenied –1971 Can’t query certificates with this

context
kSIGIndexErr –1974 Index value is outside allowable

range
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGConversionErr –1981 Unable to convert an attribute to

Macintosh format

C H A P T E R 6

Digital Signature Manager

Digital Signature Manager Reference 6-55

DESCRIPTION

To provide a status callback function, pass a pointer (of type SIGStatusProcPtr) to

your function in the statusProc parameter of the SIGSign, SIGSignFile,

SIGVerifyPrepare, and SIGVerifyFile functions. If you return false as your

function result, the Digital Signature Manager halts the signing or verifying operation.

This interface is available because the signing and verifying operations can take a

relatively long time to complete. Your status callback function should provide some sort

of feedback to the user, such as a spinning cursor or a dialog box, that indicates that the

process is proceeding. This function should poll for Command-period keystrokes and

return false if it detects one. Your status callback function can also perform any other

background tasks you wish.

In addition to this routine, you may wish to have other progress-notification routines

that are not callback routines. For example, you may wish to have a routine that keeps

the user posted of progress between calls to SIGProcessData.

Note

It is impossible to determine ahead of time how many times your
callback routine will be executed. ◆

SPECIAL CONSIDERATIONS

If you return false to halt the signing or verifying operation, the state of the context is

undefined.

On entry, this routine restores the A5 register to the value it had when the routine was

first called.

SEE ALSO

The SIGSign function is described on page 6-34.

The SIGSignFile function is described on page 6-36.

The SIGVerifyPrepare function is described on page 6-38.

The SIGVerifyFile function is described on page 6-41.

The SIGProcessData function is described on page 6-30.

C H A P T E R 6

Digital Signature Manager

6-56 Summary of the Digital Signature Manager

Summary of the Digital Signature Manager

C Summary

Constants and Data Types

#define kSIGDigestSize 16

#define kSIGSignerCertIndex 0

#define kSIGSignatureIconResID –16797

#define kSIGValidSignatureIconResID –16799

#define kSIGInvalidSignatureIconResID –16798

/* Name attribute types returned from SIGGetCertNameAttributes or

SIGGetCertIssuerNameAttributes */

typedef enum

{

kSIGCountryCode,

kSIGOrganization,

kSIGStreetAddress,

kSIGState,

kSIGLocality,

kSIGCommonName,

kSIGTitle,

kSIGOrganizationUnit,

kSIGPostalCode

} ;

typedef unsigned short SIGNameAttributeType;

/* Signature status codes returned in SIGCertInfo or SIGSignerInfo */

typedef enum {

kSIGValid, /* all valid */

kSIGPending, /* none expired; some pending or unknown */

kSIGExpired, /* some expired, unknown, or pending */

C H A P T E R 6

Digital Signature Manager

Summary of the Digital Signature Manager 6-57

kSIGInvalid /* some invalid, pending, expired, or unknown */

};

typedef unsigned short SIGCertStatus;

typedef unsigned short SIGSignatureStatus;

#define gestaltDigitalSignatureVersion 'dsig'

typedef Byte SIGDigestData[kSIGDigestSize], *SIGDigestDataPtr;

struct SIGSignerInfo

{

unsigned long signingTime; /* time of signing */

unsigned long certCount; /* number of certs in cert set */

unsigned long certSetStatusTime;/* expiration time */

SIGSignatureStatus signatureStatus; /* certificate status */

};

typedef struct SIGSignerInfo SIGSignerInfo;

typedef SIGSignerInfo *SIGSignerInfoPtr;

struct SIGCertInfo

{

unsigned long startDate; /* cert start validity date */

unsigned long endDate; /* cert end validity date */

SIGCertStatus certStatus; /* certificate status*/

unsigned long certAttributeCount; /* number of name attributes in cert*/

unsigned long issuerAttributeCount;/* number of name attributes in

 cert’s issuer */

Str255 serialNumber; /* cert serial number */

};

typedef struct SIGCertInfo SIGCertInfo;

typedef SIGCertInfo *SIGCertInfoPtr;

typedef Ptr SIGContextPtr;

typedef Ptr SIGSignaturePtr;

struct SIGNameAttributesInfo

{

Boolean onNewLevel;

SIGNameAttributeType attributeType;

ScriptCode attributeScript;

Str255 attribute;

};

C H A P T E R 6

Digital Signature Manager

6-58 Summary of the Digital Signature Manager

typedef struct SIGNameAttributesInfo SIGNameAttributesInfo;

typedef SIGNameAttributesInfo *SIGNameAttributesInfoPtr;

Digital Signature Manager Functions

Creating and Disposing of a Context

pascal OSErr SIGNewContext (SIGContextPtr *context);

pascal OSErr SIGDisposeContext
(SIGContextPtr context));

Processing Data to Generate a Digest

pascal OSErr SIGProcessData
(SIGContextPtr context,
const void *data,
Size dataSize);

Creating a Signature

pascal OSErr SIGSignPrepare
(SIGContextPtr context,
const FSSpec *signerFile,
ConstStr255Param prompt,
Size *signatureSize);

pascal OSErr SIGSign (SIGContextPtr context,
SIGSignaturePtr signature,
SIGStatusProcPtr statusProc);

pascal OSErr SIGSignFile (SIGContextPtr context,
Size signatureSize,
const FSSpec *fileSpec,
SIGStatusProcPtr statusProc)

Verifying a Signature

pascal OSErr SIGVerifyPrepare
(SIGContextPtr context,
SIGSignaturePtr signature,
Size signatureSize,
SIGStatusProcPtr statusProc);

pascal OSErr SIGVerify (SIGContextPtr context);

C H A P T E R 6

Digital Signature Manager

Summary of the Digital Signature Manager 6-59

pascal OSErr SIGVerifyFile (SIGContextPtr context,
const FSSpec *fileSpec,
SIGStatusProcPtr statusProc)

Creating a Digest

pascal OSErr SIGDigestPrepare
(SIGContextPtr context);

pascal OSErr SIGDigest (SIGContextPtr context,
SIGDigestData digest);

Getting Information From a Signature or Certificate

pascal OSErr SIGFileIsSigned
(const FSSpec *fileSpec);

pascal OSErr SIGShowSigner (SIGContextPtr context,
ConstStr255Param prompt);

pascal OSErr SIGGetSignerInfo
(SIGContextPtr context,
SIGSignerInfo *signerInfo);

pascal OSErr SIGGetCertInfo (SIGContextPtr context,
unsigned long certIndex,
SIGCertInfo *certInfo);

pascal OSErr SIGGetCertNameAttributes
(SIGContextPtr context,
unsigned long certIndex,
unsigned long attributeIndex,
SIGNameAttributesInfo *attributeInfo);

pascal OSErr SIGGetCertIssuerNameAttributes
(SIGContextPtr context,
unsigned long certIndex,
unsigned long attributeIndex,
SIGNameAttributesInfo *attributeInfo);

Application-Defined Function

pascal Boolean MyStatusCallBack
(void);

C H A P T E R 6

Digital Signature Manager

6-60 Summary of the Digital Signature Manager

Pascal Summary

Constants and Data Types

CONST

{ Number of bytes needed for a digest record when using SIGDigest }

kSIGDigestSize = 16;

kSIGSignerCertIndex = 0;

kSIGSignatureIconResID = –16197

kSIGValidSignatureIconResID = –16799

kSIGInvalidSignatureIconResID = –16798

{ values of SIGNameAttributeType }

kSIGCountryCode = 0;

kSIGOrganization = 1;

kSIGStreetAddress = 2;

kSIGState = 3;

kSIGLocality = 4;

kSIGCommonName = 5;

kSIGTitle = 6;

kSIGOrganizationUnit = 7;

kSIGPostalCode = 8;

{ values for SIGCertStatus or SIGSignatureStatus }

kSIGValid = 0; { possible for either a SIGCertStatus or

SIGSignatureStatus }

kSIGPending = 1; { possible for either a SIGCertStatus or

 SIGSignatureStatus }

kSIGExpired = 2; { possible for either a SIGCertStatus or

 SIGSignatureStatus }

kSIGInvalid = 3; { possible only for a SIGSignatureStatus }

{ Gestalt selector code - returns toolbox version in low-order word }

gestaltDigitalSignatureVersion = 'dsig';

C H A P T E R 6

Digital Signature Manager

Summary of the Digital Signature Manager 6-61

TYPE

SIGNameAttributeType = INTEGER;

SIGCertStatus = INTEGER;

SIGSignatureStatus = INTEGER;

SIGDigestData = PACKED ARRAY[1..kSIGDigestSize] OF Byte;

SIGDigestDataPtr = ^SIGDigestData;

SIGSignerInfo = RECORD

signingTime: LONGINT; { time of signing }

certCount: LONGINT; { number of certificates in cert set }

certSetStatusTime:LONGINT; { expiration time }

signatureStatus: SIGSignatureStatus;{ status of the certificate }

END;

SIGSignerInfoPtr = ^SIGSignerInfo;

SIGCertInfo = RECORD

startDate: LONGINT; { cert start validity date }

endDate: LONGINT; { cert end validity date }

certStatus: SIGCertStatus; { signature status}

certAttributeCount: LONGINT; { number of name attributes in this cert }

issuerAttributeCount: LONGINT;{ # of name attributes in certs issuer }

serialNumber: Str255; { cert serial number }

END;

SIGCertInfoPtr = ^SIGCertInfo;

SIGContextPtr = Ptr;

SIGSignaturePtr = Ptr;

SIGStatusProcPtr = ProcPtr; { FUNCTION SIGStatusProcPtr(): BOOLEAN;}

SIGNameAttributesInfo = RECORD

onNewLevel: BOOLEAN;

attributeType: SIGNameAttributeType;

attributeScript: ScriptCode;

attribute: Str255;

END;

SIGNameAttributesInfoPtr = ^SIGNameAttributesInfo;

C H A P T E R 6

Digital Signature Manager

6-62 Summary of the Digital Signature Manager

Digital Signature Manager Functions

Creating and Disposing of a Context

FUNCTION SIGNewContext (VAR context: SIGContextPtr): OSErr;

FUNCTION SIGDisposeContext (context: SIGContextPtr): OSErr;

Processing Data to Generate a Digest

FUNCTION SIGProcessData (context: SIGContextPtr; data: UNIV Ptr;
dataSize: Size): OSErr;

Creating a Signature

FUNCTION SIGSignPrepare (context: SIGContextPtr; signerFile: FSSpecPtr;
prompt: StringPtr; VAR signatureSize: Size):
OSErr;

FUNCTION SIGSign (context: SIGContextPtr; signature:
SIGSignaturePtr;statusProc: SIGStatusProcPtr):
OSErr;

FUNCTION SIGSignFile (context: SIGContextPtr; signatureSize: Size;
fileSpec: FSSpec;statusProc:
SIGStatusProcPtr): OSErr;

Verifying a Signature
FUNCTION SIGVerifyPrepare (context: SIGContextPtr; signature:

SIGSignaturePtr; signatureSize: Size;
statusProc: SIGStatusProcPtr): OSErr;

FUNCTION SIGVerify (context: SIGContextPtr): OSErr;

FUNCTION SIGVerifyFile (context: SIGContextPtr; fileSpec: FSSpec;
statusProc: SIGStatusProcPtr): OSErr;

Creating a Digest

FUNCTION SIGDigestPrepare (context: SIGContextPtr): OSErr;

FUNCTION SIGDigest (context: SIGContextPtr; digest:
SIGDigestData): OSErr;

Getting Information From a Signature or Certificate

FUNCTION SIGFileIsSigned (fileSpec: FSSpec): OSErr;

FUNCTION SIGShowSigner (context: SIGContextPtr; prompt: StringPtr):
OSErr;

FUNCTION SIGGetSignerInfo (context: SIGContextPtr;
VAR signerInfo: SIGSignerInfo): OSErr;

C H A P T E R 6

Digital Signature Manager

Summary of the Digital Signature Manager 6-63

FUNCTION SIGGetCertInfo (context: SIGContextPtr; certIndex: LONGINT;
VAR certInfo: SIGCertInfo): OSErr;

FUNCTION SIGGetCertNameAttributes
(context: SIGContextPtr; certIndex: LONGINT;
attributeIndex: LONGINT; VAR attributeInfo:
SIGNameAttributesInfo): OSErr;

FUNCTION SIGGetCertIssuerNameAttributes
(context: SIGContextPtr; certIndex: LONGINT;
attributeIndex: LONGINT; VAR attributeInfo:
SIGNameAttributesInfo): OSErr;

Application-Defined Function

FUNCTION MyStatusCallBack (): BOOLEAN;

Assembly-Language Summary

Trap Macros Requiring Routine Selectors

$AA5D

Selector Count Routine

$076C 2 SIGNewContext

$076D 2 SIGDisposeContext

$076E 8 SIGSignPrepare

$076F 6 SIGSign

$0770 8 SIGVerifyPrepare

$0771 2 SIGVerify

$0772 2 SIGDigestPrepare

$0773 4 SigDigest

$0774 6 SIGProcessData

$0775 4 SIGShowSigner

$0776 4 SIGGetSignerInfo

$0777 6 SIGGetCertInfo

$0778 8 SIGGetCertNameAttributes

$0779 8 SIGGetCertIssuerNameAttributes

$09C4 2 SIGFileIsSigned

$09C5 8 SIGSignFile

$09C6 6 SIGVerifyFile

C H A P T E R 6

Digital Signature Manager

6-64 Summary of the Digital Signature Manager

Result Codes
In addition to standard Macintosh Operating System errors such as memFullErr and

paramErr, the Digital Signature Manager returns the result codes listed in this section.

Result codes in the range of –1970 to –1999 are reserved for the Digital Signature

Manager.

kSIGOperationIncompatibleErr –1970 Context in use for different type of operation
kSIGCertificateQueryDenied –1971 Can’t query certificates with this context
kSIGVerifyFailedErr –1972 Verification failed
kSIGInvalidCredentialErr –1973 Verified OK but credential either pending or

expired
kSIGIndexErr –1974 Index given is outside the range of allowable

values
kSIGSignerErr –1975 Problem with the signer file or signature
kSIGPasswordErr –1976 Password is incorrect
kSIGInternalsErr –1977 Bad digest, context, or signature
kSIGToolboxNotPresentErr –1978 For servers; not returned by the toolbox
kSIGContextPrepareErr –1979 Context either corrupted or already prepared

with SIGVerifyPrepare, SIGSignPrepare,
or SIGDigestPrepare

kSIGNoDigestErr –1980 No digest in the signature
kSIGConversionErr –1981 Unable to convert an attribute to Macintosh

format
kSIGSignerNotValidErr –1982 Signer file has either expired or is not yet valid
kSIGNoSignature –1983 Standard file signature not found

Contents 7-1

C H A P T E R 7

Interprogram Messaging

Contents

Manager

About the IPM Manager 7-3

About AOCE Interprogram Messages 7-4

Message Queues 7-8

Addresses 7-9

Report Messages 7-9

Addressing IPM Messages 7-10

Direct Addressing 7-11

AppleTalk Direct Addressing 7-12

Telephone Direct Addressing 7-12

Indirect Addressing 7-14

Attribute-Type Indirect Addressing 7-15

Queue-Name Format for Attribute Values 7-16

Using the IPM Manager 7-17

Determining Whether the Collaboration Toolbox is Available 7-17

Determining the Version of the Collaboration Toolbox 7-17

Error Handling 7-18

Creating a Message 7-18

Initiating the Message-Creation Process 7-18

Adding Information to the Message 7-19

Ending a Message 7-20

Creating and Managing Message Queues 7-20

Creating and Opening a Queue 7-20

Specifying a Queue Filter and Enumerating a Queue 7-21

Closing a Queue 7-22

Reading Messages 7-22

IPM Manager Reference 7-24

Data Types 7-24

C H A P T E R 7

7-2 Contents

Message Addressing Structures 7-24

Message and Block Types 7-26

Delivery Notification 7-28

Filter Structures 7-34

Message Information Structure 7-36

Header Information Structures 7-37

Sender Structure 7-39

Interprogram Messaging Parameter Block Header 7-40

Asynchronous or Synchronous Operations 7-41

Completion Routines and Polling Options 7-41

IPM Manager Functions 7-42

Calling an IPM Function From Assembly Language 7-43

Creating a New Message 7-43

Managing Message Queues 7-68

Listing and Reading Messages 7-80

Deleting Messages 7-105

Utility Functions 7-107

Application-Defined Functions 7-114

Summary of the IPM Manager 7-117

C Summary 7-117

Constants and Data Types 7-117

IPM Manager Functions 7-133

Pascal Summary 7-135

Constants 7-135

Data Types 7-138

IPM Manager Functions 7-153

Assembly-Language Summary 7-156

Result Codes 7-157

C H A P T E R 7

About the IPM Manager 7-3

Interprogram Messaging Manager

This chapter describes the AOCE Interprogram Messaging (IPM) Manager. The IPM

Manager provides a low-level interface to the AOCE store-and-forward messaging

service.

You can use the IPM Manager to send a message from one AOCE-aware application to

another. There are no restrictions on the contents of AOCE interprogram messages.

However, if you want to send or read messages intended to be read by people, you

should use the Standard Mail Package instead of the IPM Manager. Such messages are

referred to as letters. The Standard Mail Package provides a high-level interface to the

AOCE store-and-forward messaging service specifically to support letters. It is described

in the chapter “Standard Mail Package” in this book.

This chapter assumes that you are familiar with AOCE catalog concepts, including

catalog records, attribute types, and attribute values, as described in the chapter

“Catalog Manager” in this book.

This chapter provides an introduction to AOCE interprogram messages and the IPM

Manager and then discusses how you can use the IPM Manager to

■ create and send a message to one or more recipients

■ manage the queues in which the IPM Manager places messages

■ list and read the messages that you receive

About the IPM Manager

The Apple Open Collaboration Environment provides a store-and-forward messaging

service that can deliver a message from one application to another regardless of whether

the applications are simultaneously connected to a network, or, in fact, regardless of

whether they are connected to a network at all. In addition to general application-to-

application messages, the Apple Open Collaboration Environment defines a special

category of messages, called letters, that are intended to be read by people. The sending

and receiving of letters by AOCE-aware applications is referred to as the AOCE mail
service. The IPM Manager provides a low-level interface to AOCE messaging services.

The Standard Mail Package is a client of the IPM Manager that provides a high-level

interface to AOCE mail services.

The IPM Manager application interface is the same no matter what transport medium is

being used to carry the message. Apple Computer, Inc., provides interfaces between the

IPM Manager and an AppleTalk network with and without a mail and messaging server.

Apple also provides the Direct Dialup mail and messaging service access module

(MSAM), which allows the IPM Manager to use a modem to send messages over

telephone lines. Other developers can provide MSAMs that allow the IPM Manager to

use other transport media and messaging services, such as Ethernet networks or fax

modems.

The IPM Manager maintains output and input queues on the local hard disk to store

messages waiting to be forwarded or to be read. The IPM Manager can use the output

queue, for example, to store a message until the telephone-connection MSAM can

C H A P T E R 7

Interprogram Messaging Manager

7-4 About the IPM Manager

establish a modem-to-modem connection. Any number of applications can use the same

queue. You can ask for a list of messages filtered by creator, so you need not sort through

all of the messages intended for other applications. However, if you have a need to do

so, you can also create any number of input queues for the use of your application.

When you send a message, you must specify the addresses of one or more recipients. If a

recipient or group of recipients has an associated record in an AOCE catalog, you can

specify the record ID and the attribute containing the address, and the IPM Manager

looks up the address in the catalog. Alternatively, you can specify the type of connection

and provide specific information about the address of the recipient, such as the

telephone number and modem information or the AppleTalk network address.

You can use the IPM Manager to

■ create a new message

■ add blocks to a message

■ write data to a message block

■ nest a message within a message

■ address a message

■ send a message or save it to a disk file

■ create input queues

■ open input queues

■ obtain a list of received messages

■ filter received-message lists by such attributes as priority, message type, or script code

■ read message-header information

■ read message blocks

■ delete messages from an input queue

■ close input queues

About AOCE Interprogram Messages
The AOCE store-and-forward messaging service implemented by the IPM Manager uses

messages that consist of a header plus any number of message blocks. The header

contains addressing information, a table of contents of the message blocks, other

information of interest to the receiving application (such as the message type and

priority), and information used solely by the IPM Manager. Each message block can be

of any length less than 232 bytes and can contain any type of data. Apple Computer has

defined a few message types and message block types, such as the

standard-letter-content block type used by the Standard Mail Package. You can define

any message block types you wish.

Figure 7-1 illustrates the basic structure of a message. Note that the message header is

actually located at the end of the message, after all the message blocks.

C H A P T E R 7

Interprogram Messaging Manager

About the IPM Manager 7-5

Figure 7-1 Structure of an AOCE message

When a block contains a message, the message inside the block is called a nested
message. A message can contain any number of nested messages, and any nested

message can contain other nested messages. The structure of a nested message is exactly

the same as the structure of a message. Figure 7-2 illustrates a message containing a

nested message.

Note
If you are using the IPM Manager to send letters to the Standard Mail
Package, you should avoid sending any nested letters that contain
standard content. If the Standard Mail Package receives a letter that
contains a nested letter, it ignores any content (standard interchange
format or image format) within the nested letter. It displays the header
and nesting information of the nested letter as a forwarded mailer. ◆

Figure 7-2 An AOCE message containing a nested message

C H A P T E R 7

Interprogram Messaging Manager

7-6 About the IPM Manager

Figure 7-3 illustrates the contents of a message header. Note that Figure 7-3 does not

show the size or true sequence of fields in the message header. You must use IPM

Manager routines to read and write message-header information.

Figure 7-3 Contents of an AOCE message header

Although all of the public message-header fields are described in detail in the reference

section of this chapter, several fields of general interest are briefly described here.

The sender of a message assigns a priority (low, normal, or high) to it. The IPM Manager

does not read the contents of the priority field; it is up to the receiving application to

determine how to handle messages of different priorities.

When you send a message, you can request delivery and nondelivery reports. The

delivery notification field in the message header tells the IPM Manager what kinds of

reports you want to receive. Reports are AOCE messages and can include the original

message as a nested message if you request that option. Report messages are described

in “Report Messages” on page 7-9.

The message type consists of a creator field and a type field. The sending application

assigns the message type, and the receiving application uses it to help determine how to

interpret the contents of the message. Apple Computer has defined some standard

message types for report messages and letters. You can define other message types for

whatever purpose you wish.

C H A P T E R 7

Interprogram Messaging Manager

About the IPM Manager 7-7

The message family is a class of messages. Apple Computer has defined some standard

message family types for mail and reserves all message family types consisting entirely

of lowercase characters. You can define your own message family types, but Apple

Computer does not register or otherwise control developer-defined message family

types.

The process hint is a character string that you can use for any purpose, such as

discriminating among subtypes of messages of the same type or internal routing of

messages.

When you send a message, you must specify location information for each recipient. You

can specify the record ID of a user record if the recipient’s address is stored in an AOCE

catalog, or you can specify the actual delivery address of the recipient.

The reply queue is the address to which the IPM Manager should return delivery and

nondelivery reports and to which reply messages should be sent.

The table of contents specifies the type and location of each block. The block type

includes a creator field and a type field. Apple Computer has defined some standard

block types for such things as nested messages and standard-letter-content blocks. You

can define other block types for your own use.

In the case of an authenticated message, the sender field is filled in by the IPM Manager

and identifies the authenticated originator of the message. In the case of an

unauthenticated message, such as a message sent over a serverless network or over a

dialup connection, the originator of the message fills in the sender field. In this case, the

field should give some indication of who originated the message, but the IPM Manager

can not ensure its accuracy or usefulness.

The reference constant is a numeric reference value that the creator of the message

provides for the message. You might use this field, for example, to indicate that the

message includes blocks of a certain type so that the receiving application can allocate

the memory resources it will need to read the message. The table of contents (TOC

information) for each block also contains a reference constant that you can use for any

purpose you wish.

The IPM Manager sets the authentication information field to indicate whether the

message was sent over a secure, authenticated connection. In the case of a message that

passes through more than one store-and-forward server, the IPM Manager sets this field

to true only if the identities of the original sender and of every server in the routing

chain were authenticated. The authentication field does not reflect the authentication

status of the communication link that the addressee uses to read the message from the

last server’s message queue. The chapter “Authentication Manager” in this book

describes the authentication process in detail.

If the sending application adds a digital signature to a message, the IPM Manager adds a

signature block to the message and sets the signature field of the message header to

true.

C H A P T E R 7

Interprogram Messaging Manager

7-8 About the IPM Manager

Message Queues
The IPM Manager delivers a message to a message queue, which is maintained by the

IPM Manager on the recipient’s disk or by a server on the disk of the server computer.

Any application can create message queues. Before you can list the messages in a

message queue or read a message in a queue, you must open the queue.

Each queue can be opened any number of times, by any number of applications. Each

time an application opens a queue the IPM Manager assigns a queue reference number.

Each time you list the messages in the queue, open a message, read information from a

message, close a message, or delete a message, you must specify a queue reference

number.

When you list the messages in a queue, you can specify a filter that limits the messages

included in the list. For example, you can filter a queue list for messages with a specific

creator to limit it to messages sent by your own application. You can also filter queue

lists by message priority or process hint (an application-defined value). When you open

a queue (and so obtain a queue reference number), you can specify a default queue filter

to be associated with that queue reference number. You can change the default queue

filter at any time.

If you open a queue three times to get three queue reference numbers, it appears as

though you have three queues, especially if you specify a different queue filter each time

you open the queue. Note, however, that these three “queues” are all actually views of

the same physical queue and so may list some or all of the same messages. To

distinguish between the queue on disk and the apparent queues you get when you open

the queue, this book refers to the physical queue on disk and to virtual queues

associated with that physical queue. Each queue reference number identifies one virtual

queue. A physical queue can have any number of associated virtual queues. When you

close a virtual queue, the IPM Manager automatically closes all the messages that were

opened through that virtual queue.

You can use a virtual queue to open and close messages regardless of whether the same

messages are already open through another virtual queue. However, when you delete a

message, it is deleted from the physical queue and so from all the virtual queues

associated with that physical queue. (The IPM Manager prevents you from deleting a

message as long as it is open through any virtual queue.)

The primary reason the IPM Manager provides virtual queues is to allow more than one

application to use the same physical queue simultaneously. However, you can also use

virtual queues to help organize your bookkeeping. You can use multiple virtual queues

as a convenient way to group messages, especially if your message groups are based on

message type or creator, script code, priority, or process hint.

For example, an application for stockbrokers might receive two types of IPM messages:

notices about stock prices and orders sent by clients. Such an application might maintain

two virtual queues to make it easier to list, open, and close the two message types

independently.

In much the same way that virtual queues link together messages that you might want

to list, open, or close together, each virtual queue is associated with a queue context. You

C H A P T E R 7

Interprogram Messaging Manager

About the IPM Manager 7-9

must open at least one queue context before you can open a queue, and each time you

open a queue you must specify to which context the virtual queue is to belong. When

you close a queue context, the IPM Manager automatically closes all of the queues

associated with that context. If you are using several virtual queues to organize

messages, you might want to use more than one queue context to add another

hierarchical level to the organization.

To extend the previous illustration, for example, suppose the stockbrokers’ application

has separate virtual queues for low-, normal-, and high-priority buy-or-sell orders, and

links these three queues together by assigning them all to the same context. Then the

application could close all the high-priority orders by closing one virtual queue, or it

could close all of the orders of all priorities by closing the queue context to which they

belong.

Addresses
When you send an AOCE message, you must specify the address to which the message

is to be delivered. The address can specify an entity (such as a person), an exact location

(such as a queue on a specific AppleTalk node), or a group (which must be resolved into

individual addresses).

An IPM message can contain two types of addresses: direct addresses and indirect

addresses. A direct address specifies the exact location and queue name to which you

want the message sent. An indirect address specifies the person or group to which you

want the message sent and relies on IPM to determine the actual location and queue

name of each addressee. AOCE addressing is described in two sections: “Direct

Addressing,” beginning on page 7-11, and “Indirect Addressing,” beginning on

page 7-14.

Report Messages
When you send a message, you can request that the IPM Manager return recipient report

messages. You have several options for report messages. You can request that the IPM

Manager

■ return report messages when the message is delivered

■ return report messages when the message cannot be delivered

■ return both delivery and nondelivery reports

■ include the original message in the report message

■ include the original message only in nondelivery reports

■ send a separate report message for each recipient, sending each one as soon as its
delivery status is known for that recipient

■ wait until the delivery status of the message is known for all recipients and then send
a single summary report

C H A P T E R 7

Interprogram Messaging Manager

7-10 Addressing IPM Messages

Figure 7-4 illustrates the contents of a report message. Note that Figure 7-4 does not

show the size or true sequence of fields in the report message. You must use IPM

Manager functions to read report message information.

The report message contains a recipient report block, which includes a header and report

data. The header, an IPMReportBlockHeader structure, includes the message ID of

the original message and the time that the IPM Manager generated the report. The report

data, an OCERecipientReport structure, indicates the outcome of the delivery to each

recipient to which the report applies.

Because reports are messages, they are delivered to queues just as all messages are.

Report messages are always delivered to the reply queue specified in the original

message. If no reply queue was specified in the original message, then the IPM Manager

does not issue report messages. When you send a message, you have the option of

specifying whether you want the IPM Manager to issue delivery and nondelivery

reports.

Figure 7-4 An IPM report message

For more information on how to read a report, see the descriptions of the

IPMReportBlockHeader structure on page 7-33 and the OCERecipientReport

structure on page 7-33.

Addressing IPM Messages

The IPM Manager uses a single data type, the OCERecipient structure, to specify any

type of address. Figure 7-5 shows the components of an OCERecipient structure. The

OCERecipient structure has three parts: record location information (RLI), a local

record identifier, and an extension. The record location information and local record

identifier make up a record ID. Which of these parts are used in a specific address

depends on the type of address, as described in the following sections. The

OCERecipient structure is defined on page 7-24. For more information on the

C H A P T E R 7

Interprogram Messaging Manager

Addressing IPM Messages 7-11

RecordID, LocalRecordID, and RLI structures, see the chapter “AOCE Utilities” in

this book.

Figure 7-5 Contents of an OCERecipient structure

Direct Addressing
In direct addressing, the OCERecipient structure specifies the location of the recipient

and the queue to which you want the message sent. (All AOCE messages are delivered

to a specific queue at a specific location.) This information is contained in the extension

part of the OCERecipient structure.

Apple Computer, Inc., has defined address formats for its built-in transport media,

which are described in the following sections. Personal and Server MSAMs allow the

transport address space to be extended, and each transport medium has a unique set of

addresses. Generally, the record location information (RLI) in the RecordID field is used

for routing, the name and type are used for display, and the extension contains the native

transport address as a displayable RString. The list of accessible RLIs is available via

the DirGetExtendedDirectoriesInfo function, which is defined by the Catalog

Manager.

The AOCE software defines two types of direct addresses: the AppleTalk type and the

telephone type, described in the following two sections.

C H A P T E R 7

Interprogram Messaging Manager

7-12 Addressing IPM Messages

AppleTalk Direct Addressing

You can use AppleTalk direct addressing to specify the location on an AppleTalk internet

to which a message should be delivered. You can use the Name Binding Protocol (NBP)

AppleTalk routines to obtain the addresses of entities on an AppleTalk network. For

more information on NBP and AppleTalk networking, see Inside Macintosh: Networking.

The IPM Manager recognizes an AppleTalk direct address by the value 'alan' in the

extensionType field of the OCERecipient structure. In this case, the extension

portion of the OCERecipient structure contains the entire address; the IPM Manager

ignores the record ID portion of the structure. The extensionValue field of the

OCERecipient structure is defined as follows:

Str32 objectName

Str32 typeName

Str32 zoneName

Str32 queueName

All four of the fields are required, and all are packed. The first three fields are in the exact

format used by the NBP EntityName structure. As is usual for AppleTalk, you can

specify a zero-length string or the wildcard character * to indicate the local zone.

You must fill in the queueName field with the name of the specific queue to which the

message is to be delivered. The messaging applications on both the sending and

receiving computers have to open input queues and must somehow exchange queue

names. You have to determine the protocol for achieving this yourself. The easiest way to

know the recipient’s queue name is for your application to use the same queue name

always. If you need to send messages to multiple queues or have other reasons to allow

more than one possible queue name, you have to implement your own process for

determining which queues are available and what their names are.

Telephone Direct Addressing

You can use telephone direct addressing to specify an address for use by PowerTalk

Direct Dialup. You must specify a telephone number and the recipient queue name. The

IPM Manager delivers the message to the queue with the specified name on the node

that is connected to a modem at the specified telephone number. To receive and route the

message correctly, the receiving computer must have Direct Dialup installed and the

modem set to answer the telephone.

Note

The telephone direct addressing type of OCERecipient structure
described here is created by the Direct Dialup template when the user
adds a Direct Dialup mail address to an information card. You can use
the information in this section to create your own Direct Dialup
addresses to use with messaging applications. The IPM Manager
provides no facilities for using communications software other than
Direct Dialup to send messages over telephone lines. ◆

C H A P T E R 7

Interprogram Messaging Manager

Addressing IPM Messages 7-13

The IPM Manager recognizes a telephone direct address by the value 'aphn' in the

extensionType field of the OCERecipient structure.

You should use the string “Direct Dialup” for the catalog name field of the

OCERecipient structure. This is the name of the personal catalog used by the Direct

Dialup software for setup information. The Direct Dialup catalog contains access

numbers for local calls (such as 9, used to obtain an outside line in some telephone

systems), long distance calls (such as 8 to obtain a long-distance outside line), and

international calls (when calling from the United States, this is generally 011, the

international access code) and can specify a credit card number to be used. The IPM

Manager ignores the other fields in the record ID portion of the OCERecipient

structure.

When you use telephone direct addressing, the extensionType field must contain the

value 'aphn' and the extensionValue field is defined as follows:

RString phoneNumber /* telephone number */

RString modemType /* reserved */

Str32 queueName /* recipient’s queue name */

All three fields are required. The phoneNumber and modemType fields must be padded

to an even number of bytes, and all fields must be packed.

The phoneNumber field is composed of several subfields. Each subfield must be packed

and padded to an even number of bytes.

short subType;

RString countryCode;

RString areaCode;

RString phone;

RString postFix;

RString nonHandyDialString;

Field descriptions

subType A byte that specifies whether the Direct Dialup software should use
the information in the Direct Dialup setup catalog when it forms the
dialing string. If you specify the value kOCEUseHandyDial for this
field, the Direct Dialup software uses the Direct Dialup catalog to
obtain special access numbers and optionally a charge card number.
If you specify kOCEDontUseHandyDial for this field, the Direct
Dialup software uses only the exact dialing string you specify in the
nonHandyDialString field and ignores the other subfields.

countryCode The ASCII value of the country code needed to dial an international
number. For example, the country code for the United Kingdom is
ASCII 44. For long-distance calls from and within North America,
use the long distance prefix, ASCII 1.

areaCode The ASCII value of the US area code or, for international calls, the
city code.

C H A P T E R 7

Interprogram Messaging Manager

7-14 Addressing IPM Messages

phone The telephone number including any other special modem control
characters you may need. For example, you could include the “,”
character as one of the characters in the phone string to cause the
modem to pause briefly before dialing the rest of a number.

postFix Reserved. You must specify an RString structure of zero length
and an empty data string ("").

nonHandyDialString
The dialing string used by the Direct Dialup software when you set
the subType field to kOCEDontUseHandyDial. When this is the
case all of the other fields of the extension value are ignored when
the dialing string is formed. If the subType field has a value of
kOCEUseHandyDial, then Direct Dialup ignores this field.

The modemType field of the extension value is reserved and must be set to an empty

RString; that is, an RString structure with a length of 0 and an empty data string ("").

You must fill in the queueName field of the extension value with the name of the specific

queue to which the message is to be delivered. The messaging applications on both the

sending and receiving computers have to open input queues and must somehow

exchange queue names. You have to determine the protocol for achieving this yourself.

The easiest way to know the recipient’s queue name is for your application to always use

the same queue name. If you need to send messages to multiple queues or have other

reasons to allow more than one possible queue name, you have to implement your own

process for determining which queues are available and what their names are.

Indirect Addressing

You can use indirect addressing when you want to specify the entity to which a message

should go, instead of the exact location and queue name to which the message should be

delivered. In indirect addressing you specify a record—and optionally a specific attribute

within the record—that contains the location and queue information that the IPM

Manager needs to deliver the message. In mail applications, for example, the user

typically selects a user record from a catalog or information card as the addressee. The

IPM Manager then looks up the address of the recipient in that user record.

To use indirect addressing, fill in the record ID portion of the OCERecipient structure

with the record ID of the record containing the address and set the extensionType

field to the value 'entn'. Extensions of type 'entn' include a subtype field, which can

have the following values:

enum {

kOCEAddrXtn= 'addr', /* reserved */

kOCEQnamXtn= 'qnam', /* queue-name form */

kOCEAttrXtn= 'attr', /* attribute-type form */

kOCESpAtXtn= 'spat' /* reserved */

};

C H A P T E R 7

Interprogram Messaging Manager

Addressing IPM Messages 7-15

To specify an indirect address, you must use the attribute-type ('attr') subtype. The

queue-name subtype of an OCERecipient structure is used for attribute values (see

“Queue-Name Format for Attribute Values” on page 7-16). The other two subtypes are

reserved for use by the IPM Manager.

Both the attribute-type and queue-name subtypes require the record ID portion of the

OCERecipient structure to contain a valid reference to a record.

The fields that are required in the record ID portion of the OCERecipient structure are

as follows:

■ If the creation ID value is sufficient to identify the record in the catalog then the
recordName and recordType fields are not required and can be nil.

■ If the creation ID is not sufficient to specify the record or is null, then the
recordName and recordType fields are required.

■ If you include both the creation ID and the record name and type, they must specify
the same record.

You can use the Catalog Manager functions to create and modify records and record

attribute values. See the chapter “Catalog Manager” in this book for more information.

For information on record IDs, attributes, attribute values, and the creation ID, see the

chapter “AOCE Utilities” in this book.

Attribute-Type Indirect Addressing

You use attribute-type indirect addressing when you want to specify the entity that is to

receive a message rather than the specific location and queue to which a message is to be

delivered. The IPM Manager obtains the location and queue name to which the message

is to be delivered from an attribute in the record you specify. If you are specifying a

standard AOCE user record or group record into which the system administrator placed

messaging addresses, then the IPM Manager creates the attribute containing the address,

and you do not have to be concerned with the format of the attribute value. If, however,

you want to create your own record or attribute type and place addresses in it yourself,

then you need to be familiar with address formats for attributes, discussed in the

following section, “Queue-Name Format for Attribute Values.”

The simplest form of an attribute-type OCERecipient structure has an extension type

of 'entn', an extension size of 0, and no extension value. In this case, the IPM Manager

uses the preferred messaging queue as specified in the default messaging attribute in the

record. The preferred messaging queue is created and designated by the catalog

administrator.

To specify an attribute type, use an extension type of 'entn' and a subtype of 'attr'.

The extension value is defined as follows:

OSType 'attr'

AttributeType attributeName

C H A P T E R 7

Interprogram Messaging Manager

7-16 Addressing IPM Messages

The AttributeType structure is defined as follows:

struct AttributeType {

RStringHeader

Byte body[kAttributeTypeMaxBytes];

};

The attributeName field must be packed and padded to an even number of bytes. The

AttributeType structure is equivalent to an RString structure that has a length of

kAttributeTypeMaxBytes bytes. For more information on the AttributeType and

RString structures, see the chapter “AOCE Utilities” in this book.

Setting the subtype to 'attr' and the body field of the AttributeType structure to

the value kPrefMsgQAttrTypeBody has the same effect as leaving out the extension

value entirely: the IPM Manager uses the preferred messaging queue in the record as the

address to which to deliver the message.

If you specify another attribute type, then the IPM Manager looks for the address in that

attribute type. If there is more than one attribute value in the record with the attribute

type you specify, the IPM Manager chooses one of the values. The method that the IPM

Manager uses to decide which attribute value to use is private. Therefore, you should

use a multivalued attribute type to hold an indirect address only when you do not care

at which address a recipient receives the message.

Queue-Name Format for Attribute Values

If you want to define your own record type or attribute type to hold addresses for

indirect addressing, you must format the attribute value as an OCERecipient structure.

You use the queue name form of the OCERecipient structure for the attribute value.

The recipient must have an account on an AOCE messaging server, such as a

PowerShare server. The queue name form specifies the messaging server and queue

name to which to deliver the message.

In the queue name form of the OCERecipient structure, the extensionType field has

a value of 'entn', the extension subtype field has a value of 'qnam', and the extension

data is a queue name string. The extensionValue portion of the OCERecipient

structure is defined as follows:

OSType 'qnam'

Str32 queueName

The record ID portion of the OCERecipient structure specifies the catalog and record

ID of the catalog record that contains information about the messaging server. (When the

system administrator installs a messaging server, the setup software creates a catalog

record containing information about the messaging server.)

 As with other AOCE addressing formats that require the name of a queue, you must

implement your own method for obtaining the queue name because the AOCE toolbox

does not provide you with a mechanism for doing so.

C H A P T E R 7

Interprogram Messaging Manager

Using the IPM Manager 7-17

Here is one possible procedure for indirect addressing using queue name attribute

values:

1. Create your own new record type, or create a new attribute for an existing record type.

2. Log on to the messaging server as an administrator and create a queue with the name
you want to use. You use the IPMCreateQueue function (page 7-69) for this purpose.

3. Put the name and location of the queue you just created into the new attribute in a
queue-name-format OCERecipient structure.

4. Once you have created the queue and you have placed the queue name and location
information into an attribute, then both ends of your connection can obtain the queue
name from the record. Both the recipient and the sender of the message must know
before the message is sent which record and attribute in the catalog contains the
queue name.

Using the IPM Manager

This section describes how to create messages, create and manage message queues, and

read messages.

Determining Whether the Collaboration Toolbox is Available
Before calling any of the Interprogram Messaging Manager functions, you should verify

that the Collaboration toolbox is available by calling the Gestalt function with the

selector gestaltOCEToolboxAttr. If the Collaboration Toolbox is present but not

running (for example, if the user deactivated it from the PowerTalk Setup control panel),

the Gestalt function sets the bit gestaltOCETBPresent in the response parameter. If

the Collaboration Toolbox is running and available, the function sets the bit

gestaltOCETBAvailable in the response parameter. The Gestalt Manager is

described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

If you want to be informed when the Interprogram Messaging Manager starts up or

shuts down, you can install an entry in the AppleTalk Transition Queue (ATQ). Then the

AppleTalk LAP Manager calls your ATQ routine with the transition selector

ATTransIPMStart when the IPM Manager has finished starting up and with the

selector ATTransIPMShutdown when the IPM Manager has started to shut down. The

ATQ is described in the “Link-Access Protocol (LAP) Manager” chapter of Inside
Macintosh: Networking.

Determining the Version of the Collaboration Toolbox
To determine the version of the Collaboration Toolbox that is available, call the Gestalt

function with the selector gestaltOCEToolboxVersion. The function returns the

version number of the Collaboration toolbox in the low-order word of the response

parameter. For example, a value of 0x0101 indicates version 1.0.1. If you are using the

Collaboration toolbox on a computer that has a PowerShare server, the function returns

C H A P T E R 7

Interprogram Messaging Manager

7-18 Using the IPM Manager

the version number of the server in the high-order word of the response parameter.

If the Collaboration Toolbox or server is not present and available, the Gestalt function

returns 0 for the relevant version number. You can use the constant gestaltOCETB for

AOCE Collaboration Toolbox version 1.0.

Note that the version number of the Collaboration toolbox is not necessarily the same as

that returned by the IPMReadHeader function (page 7-89) for the IPM Manager. The

IPMReadHeader function returns a version number in the version field of the

IPMFixedHdrInfo structure (page 7-38).

Error Handling
If the ASDSP connection between the Collaboration toolbox and the server shuts down

for any reason, the next IPM Manager function you call that requires communications

with the server fails with the result code kOCEConnectionClosed. To correct this

condition, call the IPMCloseQueue function (page 7-76) to close the messaging queue

and then call the IPMOpenQueue function (page 7-72) to reopen the queue.

If either end of the IPM connection crashes during message transmission, the IPM

Manager might send a duplicate copy of a message that was already successfully

delivered. Although such an occurrence is very rare, your application should be capable

of handling the receipt of duplicate messages.

Creating a Message
A message is created in three steps:

1. Initiate the message-creation process.

2. Add information to the message.

3. End the process.

Initiating the Message-Creation Process

Before you start to create a message, you must decide whether you intend to send the

message, save it to disk, or nest it in another message. These processes are independent

of one another. If you want to both send a message and save the same message to disk,

for example, you must create the message twice.

■ To begin the process of creating a new message to be sent to a recipient, call the
IPMNewMsg function (page 7-43).

■ To start a new message to be saved to disk, call the IPMNewHFSMsg function
(page 7-47).

■ To start a new nested message, call the IPMNewNestedMsgBlock function
(page 7-56).

You provide each of these functions with information for the message header and an

authentication identity of the creator of the message. You can specify the reply message

queue and one recipient message queue at this time, or you can add this address

C H A P T E R 7

Interprogram Messaging Manager

Using the IPM Manager 7-19

information later, as described in the following section. Each of the new-message

functions returns a message reference number that you must use when you call

other functions to build the message.

Adding Information to the Message

Once you have started the message, you can add information to the message. You can

call the IPMAddRecipient (page 7-50) and IPMAddReplyQueue (page 7-52) functions

at any time during the message-creation process to add recipients and a reply queue to

the message header. To add a new message block, you first call either the IPMNewBlock

function (page 7-53) to start a new message block, or the IPMNewNestedMsgBlock

function to start a new nested-message block. You then call the IPMWriteMsg function

(page 7-61) to add data to a message block. You can also use the IPMNestMsg function

(page 7-59) to add an existing message as a message block. You can’t modify such a

nested message. You can add as many message blocks and nested messages as you wish

to a message.

Note

Although the IPM Manager allows you to add any number of
nested-message blocks at the same nesting level in a message, the
messaging service access module (MSAM) interface supports only one
nested-message block at a given nesting level. Therefore, if you want
your message to be compatible with MSAMs, you must not add more
than one nested-message block at a given level of nesting. You can,
however, nest a message within another nested message to as many
nesting levels as disk and memory resources allow. ◆

The IPMWriteMsg function adds data at a specific offset in a message. You can specify

an offset from the start of the currently open message block, from the start of the

message, or from the end of the last byte written. A message block can be any length.

Each time you call the IPMNewBlock function or the IPMNewNestedMsgBlock

function, the IPM Manager closes the current message block and starts a new message

block, putting the offset to the beginning of the new block into the message header.

Therefore, once you start a new message block, you cannot extend the length of any

message blocks you added earlier. You can write over the data in a block you wrote

earlier, but you can’t extend the block.

If you call the IPMNewNestedMsgBlock function to add a nested-message block to a

message, each subsequent call to the IPMNewBlock or IPMNewNestedMsgBlock

functions adds another block to the nested message, not a new block to the enclosing

message. Once you have started a nested message, you must call the IPMEndMsg

function (page 7-65) to complete the nested message before you can add any more

information to the enclosing message. After you call the IPMEndMsg function to end the

nested message, you cannot add any recipients or blocks to the nested message.

C H A P T E R 7

Interprogram Messaging Manager

7-20 Using the IPM Manager

Ending a Message

When you are finished adding address information, blocks, and nested messages to your

message, you call the IPMEndMsg function. This function sends the message, saves it to

disk, or ends a nested message, depending on which function you used to start the

message. You can also choose to add a digital signature to the message at this time and

you can request delivery and nondelivery reports.

Creating and Managing Message Queues
The IPM Manager provides functions to perform the following tasks:

■ create a new physical queue

■ open a queue context

■ open a physical queue to establish a virtual queue

■ change the default message filter for a virtual queue

■ enumerate the messages in a queue

■ close a queue context

■ close a virtual queue

■ delete a physical queue

Creating and Opening a Queue

Before another client of IPM can send messages to your application or process, you must

establish the input messaging queue to which the messages will be sent and from which

you can read them. You can use the default messaging queue created by the PowerShare

system administrator for the user as described in “Attribute-Type Indirect Addressing”

on page 7-15.

The administrator of a PowerShare messaging server can create any number of queues

on the server computer. Each such queue has a creator (the administrator who created

the queue) and an owner, assigned by the administrator. The owner can open a queue

and the administrator can delete a queue. An administrator typically creates a queue for

each user who has an account on the server.

However, if you want to create and maintain your own messaging queues, you must use

the functions described in “Managing Message Queues” on page 7-68.

C H A P T E R 7

Interprogram Messaging Manager

Using the IPM Manager 7-21

To establish a messaging queue, follow these steps:

1. Call the IPMCreateQueue function to create a new physical queue. When you call
the IPMCreateQueue function (page 7-69), the IPM Manager sets up a new physical
input queue with the name and address you specify. Other users of IPM can send
messages to that queue (assuming they know its name and address) at any time.

Note

You must be authenticated as the administrator to add a queue to a
PowerShare server. ◆

2. Call the IPMOpenContext function to create a new queue context. A queue context
links together virtual queues so that, by closing the context, you can simultaneously
close all of the queues associated with that context. You use the IPMOpenContext
function (page 7-70) to create a new context and the IPMCloseContext function
(page 7-77) to close one. The IPMOpenContext function returns a context reference
number that you use when you call the IPMOpenQueue function to open a new
virtual queue.

3. Call the IPMOpenQueue function to establish a new virtual queue. Whereas the
IPMCreateQueue function creates a physical message queue, the IPMOpenQueue
function (page 7-72) opens the physical queue to establish a virtual queue (see
“Message Queues” on page 7-8 for a discussion of physical and virtual message
queues). You cannot read messages from a queue until you open it. When you call the
IPMOpenQueue function, you must specify the queue context to which the new
virtual queue will belong. You can call the IPMOpenQueue function any number of
times to establish distinct virtual queues associated with the same physical input
queue. Each time you call this function, the IPM Manager returns a unique queue
reference number.

Specifying a Queue Filter and Enumerating a Queue

When you call the IPMOpenQueue function to establish a virtual queue, you can specify

a default message filter for that virtual queue. You can filter messages by priority,

message type, or other attributes, as described in “Filter Structures” on page 7-34.

For example, you can open an input queue three times to create three virtual queues,

each with its own filter: one that passes only high-priority messages, one that passes

only messages specifically intended for your application, and one that passes all

messages in the physical input queue. You can use the IPMChangeQueueFilter

function (page 7-74) to change the default message filter for a specific virtual queue.

When you call the IPMEnumerateQueue function (page 7-80), you specify a queue

reference number and you can specify a queue filter. The IPM Manager uses the message

filter to determine which messages in the physical queue to list. If you do not provide a

message filter with the IPMEnumerateQueue function, the function uses the default

filter for that virtual queue.

C H A P T E R 7

Interprogram Messaging Manager

7-22 Using the IPM Manager

Closing a Queue

You can close an individual virtual queue or you can close a queue context to

simultaneously close all of the virtual queues associated with that context. When you

open a message, you specify the reference number for an open virtual queue. This virtual

queue must belong to the physical queue that actually contains the message and its filter

must pass the specific message you wish to open. When you call the IPMCloseQueue

function (page 7-76) to close a virtual queue, the IPM Manager closes all of the messages

opened using that virtual queue’s reference number and removes the virtual queue from

its context. When you call the IPMCloseContext function (page 7-77) to close a

context, the IPM Manager closes all of the messages opened for all the virtual queues

associated with that context before it closes the virtual queues and removes the context.

Call the IPMDeleteQueue function (page 7-78) to delete a physical queue that you own.

Before you delete a physical queue, you must close all of the virtual queues that belong

to that physical queue.

Reading Messages
To read a message, follow these steps:

1. Enumerate the queue or determine the location of the message on disk. Use the
IPMEnumerateQueue function (page 7-80) to list the messages in a virtual queue;
that is, the messages that meet the filter criteria for the queue. If you wish, you can
specify a filter that is in effect only for a single execution of the function; otherwise,
the function uses the current filter for the virtual queue. In addition to the sequence
number of each message, the IPMEnumerateQueue function provides information
about the message such as the message length and priority.

A queue can contain any number of messages. The IPM Manager assigns a sequence
number to each message when it adds the message to the physical queue. The IPM
Manager uses a monotonically increasing series of sequence numbers and does not
reuse a sequence number when a message is deleted from the queue. Therefore, when
you request a list of all the messages in the queue, some sequence numbers might be
missing, but the message with the highest sequence number is always the last one
added to the queue.

Use File Manager or Standard File Package routines to locate a message on disk. The
File Manager and Standard File Package are described in Inside Macintosh: Files.

2. Open the message. Use the IPMOpenMsg function (page 7-82) to open a message in an
input queue or the IPMOpenHFSMsg function (page 7-84) to open a message that has
been saved in a file on disk. These functions return a message reference number that
you must provide to the various message-reading functions.

If a message contains a nested-message block, you can use the IPMOpenBlockAsMsg
function (page 7-86) to open that block as a message. You must open the containing
message and determine the offsets of the nested-message block before you can open a
nested message. You use the IPMGetBlkIndex function (page 7-96) to get the index
numbers and block types of the blocks in a message.

C H A P T E R 7

Interprogram Messaging Manager

Using the IPM Manager 7-23

3. Read the message header. The IPM Manager reads certain fields of the headers of
messages in an input queue and saves this information in local memory. You can use
the IPMGetMsgInfo function (page 7-87) to read this information. The
IPMGetMsgInfo function returns the same information about a message as that
returned by the IPMEnumerateQueue function. To get more information about a
message or to read header information from a message on disk or a nested message,
use the IPMReadHeader function (page 7-89).

The creator of a message adds one or more recipients to the message header. Some or
all of these recipients might be group addresses or references to catalog records that
the IPM Manager must resolve before delivering the message. The
IPMReadRecipient function (page 7-92) returns only the original list of recipients.

4. Call the IPMGetBlkIndex function (page 7-96) to get the index numbers and block
types of the blocks in the message. If you are interested only in blocks of a certain
type, such as nested-message blocks, you can use this function to list only those blocks.

5. Use the IPMReadMsg function (page 7-98) to read any message block other than a
nested-message block.

Call the IPMOpenBlockAsMsg function to open a nested-message block as a message
and then use the other functions in this section to read it as you would read any other
message. Before you use this function, you must open the containing message (which
can also be a nested message) and you must know the index number of the
nested-message block within the containing message. A nested message has a creator
type of kIPMSignature and a block type of kIPMEnclosedMsgType.

If the message includes a digital-signature block, you can use the
IPMVerifySignature function (page 7-102) to verify the signature.

6. When you have finished reading the message, call the IPMCloseMsg function
(page 7-104) to close the message and release the memory the IPM Manager reserved
for the message when you opened it. Closing a message does not automatically close
any nested messages that you have opened with the IPMOpenBlockAsMsg function;
you must call the IPMCloseMsg function once for every nested message you open.
You can also close messages by closing the message queue or the queue context to
which that message belongs.

C H A P T E R 7

Interprogram Messaging Manager

7-24 IPM Manager Reference

IPM Manager Reference

This section describes the data types and routines provided by the IPM Manager.

Data Types

The IPM Manager routines use the data types described in this section. Included are

structures for message addressing, message and block types, delivery notification,

filter structures, message information structures, header information structures, sender

structures, and interprogram messaging parameter blocks.

Message Addressing Structures

You must use the OCERecipient structure to specify a message address. This section

also shows some structures you can use for extensions to OCERecipient structures. See

“Addressing IPM Messages,” beginning on page 7-10 for more information about

addressing.

OCERecipient

The OCERecipient structure is defined as a DSSpec data type.

struct DSSpec {

RecordID *entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

typedef struct DSSpec DSSpec;

typedef DSSpec OCERecipient;

The OCERecipient structure can specify a specific attribute in a specific record in a

catalog from which the IPM Manager reads the recipient address, or it can hold the

actual queue address. The various forms of the OCERecipient structure are described

in “Addressing IPM Messages,” beginning on page 7-10.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-25

All of the components of the DSSpec data type are defined in the chapter “OCE

Utilities” in this book. Figure 7-5 on page 7-11 illustrates the contents of an

OCERecipient structure. Note that this figure does not show the true size or location of

the fields in an OCERecipient structure, and that the actual structure contains packed

fields. You must use the utility routines provided by the IPM Manager to create and read

these structures. The utility routines are described in “Utility Functions,” beginning on

page 7-107.

OCEPackedRecipient

The IPM Manager often uses a packed form of the OCERecipient structure, defined by

the OCEPackedRecipient data type.

define OCEPackedRecipientHeader\

unsigned short dataLength;

struct ProtoOCEPackedRecipient{

OCEPackedRecipientHeader;

};

typedef struct ProtoOCEPackedRecipient ProtoOCEPackedRecipient;

define kOCEPackedRecipientMAXBYTES\

(4096 - sizeof(ProtoOCEPackedRecipient))

struct OCEPackedRecipient {

OCEPackedRecipientHeader

Byte data[kOCEPackedRecipientMaxBytes];

};

typedef struct OCEPackedRecipient OCEPackedRecipient;

The dataLength field at the beginning of the structure specifies the length of the data

field that follows. The data field of the OCEPackedRecipient structure contains an

OCERecipient structure in packed format. Use the utility routines provided by the IPM

Manager to pack and unpack OCERecipient structures.

C H A P T E R 7

Interprogram Messaging Manager

7-26 IPM Manager Reference

IPMEntityNameExtension

You can use the following data type when creating an extension to an OCERecipient

structure:

struct IPMEntityNameExtension {

OSType subExtensionType;

union {

IPMEntnSpecificAttributeExtension specificAttribute;

IPMEntnAttributeExtension attribute;

IPMEntnQueueExtension queue;

} u;

};

The specific attribute type is reserved for use by the IPM Manager.

IPMEntnAttributeExtension

The attribute type is defined by the IPMEntnAttributeExtension structure.

struct IPMEntnAttributeExtension { /* kOCEAttrXtn */

AttributeType attributeName;

};

IPMEntnQueueExtension

The queue type is defined by the IPMEntnQueueExtension data structure.

struct IPMEntnQueueExtension {

Str32 queueName;

};

Message and Block Types

Each IPM message has an associated message type. Each block in a message has a block

type. A message type can have either of two formats: the creator/type format contains a

creator field and a type field; the string format contains a length field and a string. A

block type always has the creator/type format. As illustrated in Figure 7-6, the first field

in a message type structure is a 2-byte tag that specifies the format of the structure. The

block type structure does not include this tag.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-27

Figure 7-6 The two forms of the message type structure

IMPORTANT

Apple Computer, Inc., reserves all message type values and all block
type values that consist entirely of lowercase letters. ▲

OCECreatorType

The block type and the creator/type portion of a message type are defined by the

OCECreatorType data type.

struct OCECreatorType {

OSType msgCreator;

OSType msgType;

};

Field descriptions
msgCreator The creator of the message or block. You can specify any

four-character value in this field; usually it is the signature of your
application. For example, a message or block created by the IPM
Manager has a creator type of kIPMSignature.

msgType The type of the message or block. For example, an enclosed message
block has a block type of kIPMEnclosedMsgType. You can define
your own four-character block types to serve your own purposes.
Apple Computer, Inc., reserves all block types consisting entirely of
lowercase letters.

C H A P T E R 7

Interprogram Messaging Manager

7-28 IPM Manager Reference

IPMMsgType

The message type structure is defined by the IPMMsgType data type.

/* values of IPMMsgFormat */

enum {

kIPMOSFormatType = 1,

kIPMStringFormatType = 2

};

typedef Str32 IPMStringMsgType;

struct IPMMsgType {

IPMMsgFormat format; /* IPMMsgFormat */

union{

OCECreatorType msgOSType;

IPMStringMsgType msgStrType;

}theType;

};

typedef struct IPMMsgType IPMMsgType;

IPMBlockType

The block type structure is defined by the IPMBlockType data type.

typedef OCECreatorType IPMBlockType;

Delivery Notification

The IPM Manager uses a delivery notification flag byte in the message header to

determine when to generate recipient report messages and whether to include the

original message in any report messages that are returned by the recipients. Report

messages include a header (the IPMReportBlockHeader structure on page 7-33) and

an array of delivery results (the OCERecipientReport structure on page 7-33). Report

messages are described in “Report Messages” on page 7-9.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-29

Nondelivery Codes

The nondelivery result codes that can be returned by an MSAM or the IPM Manager in a

recipient report message are shown here. A personal MSAM can define its own result

codes in addition to the ones listed here. (If a server MSAM returns a nonstandard result

code, the IPM Manager is unable to convert it to a string meaningful to the user.)

enum {

kIPMNoSuchRecipient = 0x0001,

kIPMRecipientMalformed = 0x0002,

kIPMRecipientAmbiguous = 0x0003,

kIPMRecipientAccessDenied = 0x0004,

kIPMGroupExpansionProblem = 0x0005,

kIPMMsgUnreadable = 0x0006,

kIPMMsgExpired = 0x0007,

kIPMMsgNoTranslatableContent = 0x0008,

kIPMRecipientReqStdCont = 0x0009,

kIPMRecipientReqSnapShot = 0x000A,

kIPMNoTransferDiskFull = 0x000B,

kIPMNoTransferMsgRejectedbyDest = 0x000C,

kIPMNoTransferMsgTooLarge = 0x000D

}

Constant descriptions

kIPMNoSuchRecipient
The IPM Manager or MSAM has determined that the specified
recipient does not exist. For example, the recipient might have no
record in the catalog (and therefore no account on the mail server)
or have no account on the MSAM’s mail or messaging system.

kIPMRecipientMalformed
The recipient address in the message was not formatted correctly.
The problem can be any of the following: The name and record
creation ID don’t match; both the dNode number and pathname are
specified in the record location information (RLI) structure; a dialup
address is missing a phone number; an NBP address is missing a
zone name; the RLI for a catalog is missing a discriminator; the
extension value of the OCERecipient structure is not properly
formed (as determined by the MSAM interpreting the address).

kIPMRecipientAmbiguous
The IPM Manager or MSAM has been unable to resolve, look up, or
find the specified recipient. The recipient may exist but has been
unavailable (for example, it has an AppleTalk address but has not
been logged on to AppleTalk), or there may be duplicate addresses
and the IPM Manager or MSAM cannot determine which to use.

C H A P T E R 7

Interprogram Messaging Manager

7-30 IPM Manager Reference

kIPMRecipientAccessDenied
In the process of attempting to deliver the message to the specified
recipient, access to some critical information was prevented. The
address may be valid and the recipient might exist, but the agent
responsible for delivering the message doesn’t have access to the
recipient’s record.

kIPMGroupExpansionProblem
The IPM Manager or MSAM was unable to expand a group address
fully. Some of the recipients in the group might have received the
message.

kIPMMsgUnreadable
The MSAM was unable to read (and thus to translate) a message
(the message might be corrupted or the content missing), and
therefore the message was never delivered to the specified recipient.

kIPMMsgExpired
The IPM Manager was unable to confirm delivery of this message
before the specified expiration time (currently set at 5 days for
PowerShare servers, Direct AppleTalk, and server MSAMs). The
server makes several attempts to deliver a message before the
message delivery time expires. This result code does not necessarily
mean that all the attempts at delivery failed— it means that the
server has not been able to determine the success or failure of any of
the previous attempts to deliver the message and will make no
further attempts.

kIPMMsgNoTranslatableContent
The message is missing a piece of information that is considered
critical for its delivery. For example, the message might be missing a
subject or a type of content required by the MSAM.

kIPMRecipientReqStdCont
The MSAM cannot deliver messages that don’t contain a
standard-interchange-format block, and such a block was not
present.

kIPMRecipientReqSnapShot
The MSAM required the message to contain a standard image
format block (or snapshot) in order to deliver it, and such a block
was not present.

kIPMNoTransferDiskFull
The recipient could not receive the message because there was
insufficient room on the disk to hold it. The recipient might be a
user’s computer in the case of Direct AppleTalk or a server in the
case of an MSAM. If a PowerShare disk is full, the IPM Manager
periodically makes new attempts to send the message.

kIPMNoTransferMsgRejectedbyDest
The destination system refused delivery without specifying a
reason.

kIPMNoTransferMsgTooLarge
The destination system has a limit to the size of message it accepts,
and this message exceeded that limit.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-31

IPMNotificationType

The IPM delivery notification setting is specified by the IPMNotificationType data

type.

typedef Byte IPMNotificationType;

The bits in the notification byte are defined as follows:

enum {

kIPMDeliveryNotificationBit = 0,

kIPMNonDeliveryNotificationBit = 1,

kIPMEncloseOriginalBit = 2,

kIPMSummaryReportBit = 3,

kIPMOriginalOnlyOnErrorBit = 4

};

You can use a combination of the following values to set the flags in the

IPMNotificationType data type:

enum {

kIPMNoNotificationMask = 0x00,

kIPMDeliveryNotificationMask = 1<<kIPMDeliveryNotificationBit,

kIPMNonDeliveryNotificationMask = 1<<kIPMNonDeliveryNotificationBit,

kIPMDontEncloseOriginalMask = 0x00,

kIPMEncloseOriginalMask = 1<<kIPMEncloseOriginalBit,

kIPMImmediateReportMask = 0x00,

kIPMSummaryReportMask = 1<<kIPMSummaryReportBit,

kIPMOriginalOnlyOnErrorMask = 1<<kIPMOriginalOnlyOnErrorBit,

kIPMEncloseOriginalOnErrorMask =

(kIPMOriginalOnlyOnErrorMask|kIPMEncloseOriginalMask)

};

Constant descriptions

kIPMNoNotificationMask
Do not deliver any report messages. This setting is overridden
when combined with any setting that requests reports.

kIPMDeliveryNotificationMask
Generate a report message when the message arrives at the
recipient queue.

kIPMNonDeliveryNotificationMask
Generate a report message if the IPM Manager cannot deliver the
message to a recipient.

C H A P T E R 7

Interprogram Messaging Manager

7-32 IPM Manager Reference

kIPMDontEncloseOriginalMask
Don’t enclose the original message in the report message. This is the
default setting for this feature; this setting is overridden by the
kIPMEncloseOriginalMask setting.

kIPMEncloseOriginalMask
Enclose the original message in a report message. This value must
be combined with the kIPMSummaryReportMask value.

kIPMImmediateReportMask
Generate a report message for each recipient as soon as there is any
information to report. This is the default setting for this feature; this
setting is overridden by the kIPMSummaryReportMask setting.

kIPMSummaryReportMask
Return a single report message for all recipients.

kIPMOriginalOnlyOnErrorMask
Return the original message only in nondelivery reports. For this
setting to have an effect, it must be combined with the
kIPMEncloseOriginalMask value. The
kIPMEncloseOriginalOnErrorMask value provides this
combination.

kIPMEncloseOriginalOnErrorMask
A combination of the kIPMEncloseOriginalMask and
kIPMOriginalOnlyOnErrorMask values, resulting in the
original message being included only in nondelivery reports.

The bit kIPMSummaryReportBit in the IPMNotificationType byte determines

whether the report messages that the sending application receives contain information

about a single recipient or all of the recipients of the message. If the bit

kIPMSummaryReportBit is not set, the IPM Manager returns a report message about

each recipient as soon as it is generated. If that bit is set, the IPM Manager creates a

single report message that summarizes the requested delivery notification for all of the

recipients.

IPMMsgID

The message ID is a unique identifier of the message you sent. The message ID is

returned by the IPMEndMsg function (page 7-65).

struct IPMMsgID {

unsigned long id[4];

};

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-33

IPMReportBlockHeader

A recipient report message (message creator kIPMSignature, message type

kIPMReportInfo) includes a report block (which also has a creator of

kIPMSignature and a type of kIPMReportInfo). The report block starts with

a header, followed by the report data (see Figure 7-4 on page 7-10). The report block

header is defined by the IPMReportBlockHeader data type.

struct IPMReportBlockHeader {

IPMMsgID msgID; /* message ID of the original */

UTCTime creationTime; /* creation time of the report */

};

Field descriptions

msgID The message ID of the message you sent originally. The recipient
report message carries information about this message. The
message ID is returned by the IPMEndMsg function (page 7-65).

UTCTime The time at which the report was generated. The UTCTime data
type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

OCERecipientReport

A recipient report message (message creator kIPMSignature, message type

kIPMReportInfo) includes a report block (which also has a creator of

kIPMSignature and a type of kIPMReportInfo). The report block starts with a

header, followed by the report data (see Figure 7-4 on page 7-10). The report data

consists of an array of recipients and delivery results defined by the

OCERecipientReport data type.

struct OCERecipientReport {

unsigned short rcptIndex; /* index of recipient in

original message */

OSErr result; /* result of sending letter to

this recipient */

};

Field descriptions

rcptIndex The index number of the recipient in the header of the original
message. In the case of group addresses, the delivery report tells
you only that the group address was expanded; you don’t receive
information on delivery to individual members of a group.

result The result of the attempt to deliver the message to this recipient.
The standard values returned in this field are shown on page 7-29;
in addition, each personal MSAM can define its own result codes.

C H A P T E R 7

Interprogram Messaging Manager

7-34 IPM Manager Reference

To calculate the number of recipients in a report, divide the size of the block (minus the

header size) by the size of an OCERecipientReport structure.

numRecipients = (pmPB.readMsgPB.actualCount

 - sizeof (IPMReportBlockHeader)) / sizeof (OCERecipientReport);

Filter Structures

When you open a message queue or enumerate the messages in the queue, you can

apply a filter to the queue so that the IPM Manager lists only the messages that match

your filter criteria.

The IPM Manager defines a queue filter as an array of single filters. It performs an OR

operation on all of the single filters you specify for a queue filter. For example, if you set

one single filter in the filter array to pass high-priority messages of type 'high' and

another single filter to pass low-priority messages of type 'low ', the queue filter

passes messages of both descriptions. The OR operation is performed on the entire single

filters, not on the individual fields in the single filters; thus the filter in this example

would not pass a low-priority message of type 'high'.

This section provides the data structures that define single filters and queue filters.

IPMSingleFilter

The IPMSingleFilter data type describes the contents of a single filter. You must pack

and word-align each field of the structure before you pass it to an IPM routine.

struct IPMSingleFilter{

IPMPriority priority;

Byte padByte;

OSType family; /* family to which this msg belongs */

ScriptCode script; /* language identifier */

IPMProcHint hint;

IPMMsgType msgType;

};

Field descriptions

priority The priority of the message. You can set the priority to any of the
following values:

kIPMAnyPriority
kIPMNormalPriority
kIPMLowPriority
kIPMHighPriority

If you set the filter priority to kIPMAnyPriority, the queue does
not filter messages according to their priority settings.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-35

family The message family to which the message belongs. You can use the
wildcard value kIPMFamilyWildCard for all families.

script Reserved.

hint A process hint value. A process hint is a string of up to 32
characters, defined by the creator of the message.

msgType A message type. The message type is assigned by the creator of the
message. You can use the wildcard value kIPMTypeWildCard for
either or both fields of the IPMMsgType structure to pass messages
with any creator or any type. The IPMMsgType data type is defined
on page 7-28.

The IPM Manager defines the following message family types:

#define kIPMFamilyUnspecified 0 /* any message */

#define kIPMFamilyWildCard 0x3F3F3F3FL /* '????' */

In addition, the AOCE MSAM interface defines the following message family types:

#define kMailFamily 'mail' /* "mail" msgs: content, header, etc */

#define kMailFamilyFile 'file' /* "direct display" msgs */

In addition to the types shown here, Apple Computer reserves for its own use any

message family type consisting entirely of lowercase letters.

IPMFilter

A full queue filter is a packed array of single filters. The contents of a filter are shown by

the IPMFilter data type.

struct IPMFilter{

unsigned short count;

IPMSingleFilter sFilters[1];

};

Field descriptions

count The number of single filters in this queue filter.

sFilters An array of single filters.

C H A P T E R 7

Interprogram Messaging Manager

7-36 IPM Manager Reference

Message Information Structure

When you call the IPMEnumerateQueue function (page 7-80) or the IPMGetMsgInfo

function (page 7-87), the function returns the information about the message in an

message information structure.

IPMMsgInfo

The message information structure is defined by the IPMMsgInfo data type.

struct IPMMsgInfo{

IPMSeqNum sequenceNum;

unsigned long userData;

unsigned short respIndex;

Byte padByte;

IPMPriority priority;

unsigned long msgSize;

unsigned short originalRcptCount;

unsigned short reserved;

UTCTime creationTime;

IPMMsgID msgID;

OSType family; /* family of this msg */

IPMProcHint procHint;/* packed and even-length padded */

IPMMsgType msgType; /* packed and even-length padded */

};

The IPMEnumerateQueue function lets you specify whether the returned IPMMsgInfo

structure includes the procHint or msgType fields. Because these fields are of variable

length, the offset to the msgType field depends on the presence and length of the

procHint field.

Field descriptions

sequenceNum A sequence number that uniquely identifies a particular message in
the queue.

userData Reserved.

respIndex Reserved.

priority The priority setting of the message. This field can be set to
kIPMNormalPriority, kIPMLowPriority, or
kIPMHighPriority.

msgSize The length of the entire message.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-37

originalRcptCount
The number of recipients that the sending application originally
specified for the message. This value may differ from the actual
number of recipients if the message was sent to one or more groups.

reserved Reserved.

creationTime The date and time that the message was created. The UTCTime data
type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

msgID A unique identifier of the message. The message ID is returned by
the IPMEndMsg function (page 7-65).

family The message family to which the message belongs. Possible values
for this field are shown on page 7-35.

procHint An optional field of varied length. If this field is present, it contains
the process hint for the message, which is a Pascal-type string of up
to 32 characters, defined by the creator of the message. The
information in the field is packed. If the field contains an odd
number of bytes (including the length byte), the IPM Manager adds
a pad byte following the field. Therefore, the maximum length of
this field (including the length byte and the pad byte) is 34 bytes.

 msgType An optional parameter that contains the message type of the
message. The IPMMsgType data type is defined on page 7-28. Like
the procHint field, the msgType field is packed and padded if
necessary to contain an even number of bytes.

Header Information Structures

The IPMReadHeader function (page 7-89) uses the data structures in this section to

return information from a message header.

IPMTOC

When you specify the value kIPMTOC for the fieldSelector field in the parameter

block used by the IPMReadHeader function, the function returns an array of TOC

information structures—one for each block in the message. The TOC information

structure is defined by the IPMTOC data type.

struct IPMTOC

{

IPMBlockType blockType;

long blockOffset;

unsigned long blockSize;

unsigned long blockRefCon;

};

C H A P T E R 7

Interprogram Messaging Manager

7-38 IPM Manager Reference

Field descriptions

blockType The creator and type of the block.

blockOffset The offset from the start of the message to the start of the block.

blockSize The size, in bytes, of the block.

blockRefCon The block’s reference constant. The application that creates the
message specifies this value when it adds the block to the message.
The meaning of this reference constant is defined by the application
that creates the message.

IPMFixedHdrInfo

When you specify the value kIPMFixedInfo for the fieldSelector field of the

parameter block used by the IPMReadHeader function, the function returns

information about the message header in a fixed header information structure. The fixed

header information structure is defined by the IPMFixedHdrInfo data type.

struct IPMFixedHdrInfo {

unsigned short version; /* IPM Manager version */

Boolean authenticated; /* was message authenticated? */

Boolean signatureEnclosed;/* digital signature enclosed? */

unsigned long msgSize; /* size of message */

IPMNotificationType notification; /* notification type requested */

IPMPriority priority; /* message priority */

unsigned short blockCount; /* number of blocks */

unsigned short originalRcptCount;/* original number of recipients */

unsigned long refCon; /* application-defined data */

unsigned short reserved; /* reserved */

UTCTime creationTime; /* message creation time */

IPMMsgID msgID; /* message ID */

OSType family; /* family of this msg */

};

Field descriptions

version The version number of the IPM Manager that created the message.
This is not necessarily the same version number as that returned by
the Gestalt function for the Collaboration toolbox (see page 7-17).

authenticated A Boolean value that indicates whether the message was
authenticated. In the case of a message that passes through more
than one store-and-forward server, the IPM Manager sets this field
to true only if the identities of the original sender and of every
server in the routing chain were authenticated.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-39

signatureEnclosed
A Boolean value indicating whether the message includes a digital
signature. If this field is set to true, the message includes a block
with a creator of kIPMSignature and a type of
kIPMDigitalSignature containing a digital signature. You can
use the IPMVerifySignature function (page 7-102) to verify the
digital signature.

msgSize The length, in bytes, of the message.

notification The delivery notification requested by the application that sent the
message. See “Delivery Notification,” beginning on page 7-28, for
more information about this value.

priority The priority setting of the message. Values for this field can be
kIPMNormalPriority, kIPMLowPriority, or
kIPMHighPriority.

blockCount The number of blocks in the message. You can use the
IPMGetBlkIndex function (page 7-96) to list the creator, type, and
position of each block in the message.

originalRcptCount
The number of recipients in the recipient list that the sending
application originally specified for the message. Because the IPM
Manager might have expanded groups in the original recipient list,
the number of recipients in the current recipient list might be
different from this.

refCon A numeric reference value that the sending application provides for
the message when it calls the IPMNewMsg function (page 7-43), the
IPMNewHFSMsg function (page 7-47), or the
IPMNewNestedMsgBlock function (page 7-56).

reserved Reserved.

creationTime The date and time that the message was created. The UTCTime data
type is an unsigned long containing Greenwich Mean Time in
seconds since 00:00 hours, January 1, 1904.

msgID A unique identifier of the message. The message ID is returned by
the IPMEndMsg function (page 7-65).

family The family the message belongs to.

Sender Structure

When you create a new message or read a message header, the name of the originator of

the message is held in a sender structure, described in this section. In the case of an

application-to-application message, the sender would be an application name. In the

case of a message or letter sent by a user, the sender might be the user’s name or a record

ID that identifies the user record for the sender.

C H A P T E R 7

Interprogram Messaging Manager

7-40 IPM Manager Reference

IPMSender

The sender structure contains either the sender’s name in RString format or a catalog

record ID that identifies the user record for the sender of the message. The sender

structure is defined by the IPMSender data type.

struct IPMSender {

IPMSenderTag sendTag;

union {

RString rString;

PackedRecordID rid;

} theSender;

};

enum {

kIPMSenderRStringTag,

kIPMSenderRecordIDTag

};

typedef unsigned short IPMSenderTag;

Interprogram Messaging Parameter Block Header

All IPM Manager function declarations include a pointer to a parameter block. Each

parameter block begins with the following fields:

#define IPMParamHeader \

Ptr qLink; \

long reservedH1; \

long reservedH2; \

ProcPtr ioCompletion; \

OSErr ioResult; \

long saveA5; \

short reqCode;

Field descriptions

qLink Reserved.

reservedH1 Reserved.

reservedH2 Reserved.

ioCompletion A pointer to a completion routine that you provide. If you provide a
pointer to a completion routine in this field, the function calls your
completion routine when it completes execution. Completion
routines are described in“Application-Defined Functions,”
beginning on page 7-114. Specify nil for this parameter if you do
not want to supply a completion routine.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-41

ioResult The function result. If you call the function asynchronously, it sets
this field to 1 to indicate that the request was queued successfully.
The function sets this field to the function result when it completes
execution.

saveA5 Reserved.

reqCode Reserved.

The individual routine descriptions at the end of this reference contain information

about any additional parameters that are specific to the routine.

Asynchronous or Synchronous Operations

You can call the IPM Manager routines either synchronously or asynchronously. If you

call the function asynchronously, it returns control to you immediately and completes

execution incrementally as it is given time by the system. If you call it synchronously, it

completes execution before returning control to you.

IMPORTANT

You must specify asynchronous operation when you call any IPM
function at interrupt time. Because a function might not complete
successfully, calling it synchronously might cause the computer to
hang. ▲

Completion Routines and Polling Options

When you call an IPM function asynchronously, you can specify a completion routine.

The IPM Manager calls your completion routine when the function completes execution.

If you write you completion routine in Pascal or C, it must take a single argument, which

is a pointer to the parameter block.

For example, to declare a completion routine in Pascal, you could use the following

statement:

PROCEDURE MyCompletionRoutine (paramBlk: Ptr);

To declare a completion routine in C, you could use the following statement:

pascal void MyCompletionRoutine (Ptr paramBlk);

If you write your completion routine in assembly language, you can find a pointer to the

parameter block in the A0 register and the function result in the D0 register.

The IPM Manager saves the value of your A5 register at the time you call an IPM

function and restores the A5 value before calling your completion routine.

C H A P T E R 7

Interprogram Messaging Manager

7-42 IPM Manager Reference

If you do not provide a completion routine, you can poll the ioResult field of the

parameter block. The IPM Manager sets the value of the ioResult field to 1 when you

first call a function asynchronously, indicating that the function was successfully queued.

When the function completes execution, the IPM Manager changes the ioResult value

to the actual function result.

IPM Manager Functions

This section describes all of the functions provided by the IPM Manager except for those

specifically for use by MSAMs; see the chapter “Messaging Service Access Modules” in

Inside Macintosh: AOCE Service Access Modules for descriptions of MSAM functions.

In the functions described here, you must completely specify any data structure that you

provide to a function unless the description states otherwise.

All of the functions take a pointer to an IPMParamBlock parameter block as input. Each

function description includes a list of the fields in the parameter block that are used by

the function.

Most functions in the IPM API have the following form:

pascal OSErr function (IPMParamBlockPtr paramBlock,

Boolean async);

Some functions can be called only synchronously or only asynchronously; therefore, they

do not have the asyncFlag parameter. The form of those functions is

pascal OSErr function (IPMParamBlockPtr paramBlock);

The function returns its result code in the ioResult field of the parameter block. When

you call a function synchronously, it returns its result both as the function result and in

the ioResult field of the MailParamBlockHeader structure. Note that the function

also clears the ioCompletion field.

When you call a function asynchronously and the function has successfully queued the

request, it returns noErr and sets the ioResult field to 1. After the call completes, the

function sets the ioResult field to the actual result and calls your completion routine if

you specified one. There is one exception to this behavior: if the IPM Manager is not

currently ready to accept a request, it may return corErr as the function result. In this

case, the ioResult field has an indeterminate value and the completion routine is not

called.

IMPORTANT

If you choose to poll the ioResult field to determine if the request has
completed, it is safest to check that its value has changed from 1 to some
other value. Although the IPM Manager does not return positive error
codes, system utilities may return positive error codes and these may be
passed through. ▲

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-43

Calling an IPM Function From Assembly Language

You can call a function from assembly language. Listing 7-1 illustrates one way to do this

for a function that takes both the parameter block pointer and the async flag as

parameters. (If a function can be called only synchronously or only asynchronously, the

assembly code would not manipulate the async value.)

Listing 7-1 Calling an MSAM function from assembly language

_oceTBDispatch OPWORD $AA5E

SUBQ #2,A7 ; make room for function result

MOVEA paramBlock,-(SP) ; push the param block pointer onto stack

MOVEQ asyncFlag, D0 ; move async flag into D0

MOVE.B D0,-(SP) ; push the flag (byte) onto stack

MOVEQ #opCode, D0 ; move op code into D0

MOVE.W D0,-(SP) ; place the op code on the stack

_oceTBDispatch ; trap call

MOVE.W (SP)+, D0 ; get result code

Note

The functions described in the section “Utility Functions,” beginning on
page 7-107 use a different assembly-language calling convention,
described on page 7-107. ◆

Creating a New Message

This section describes the functions that you use to create a new message and either send

it or save it to disk. See “Creating a Message,” beginning on page 7-18 for information

about the sequence in which you use these functions to create a message.

IPMNewMsg

The IPMNewMsg function starts the process of creating a new message to be sent to a

recipient.

pascal OSErr IPMNewMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

C H A P T E R 7

Interprogram Messaging Manager

7-44 IPM Manager Reference

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

recipient A pointer to an OCERecipient structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

Set this field to nil if you intend to use the IPMAddRecipient
function to add all the recipient addresses later.

replyQueue A pointer to an OCERecipient structure that specifies the queue in
which you receive your incoming messages. The OCERecipient
structure can specify the reply queue directly, or can specify a
record in a catalog that contains the reply queue information.

If you specify nil for this field and a local identity for the
identity field, the IPM Manager uses the PowerTalk Setup
catalog to fill in the reply queue field in the message header at the
time the message is sent.

You can also set this field to nil if you intend to use the
IPMAddReplyQueue function to specify the reply queue later.

procHint A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
message header. You can use this field, for example, to provide
information that helps your recipients determine how to process the
message.

msgType A pointer to an IPMMsgType structure, which specifies the type of
message that you are creating. The IPM Manager and other AOCE
components do not read the message type; it is for the use of
applications only. Note, however, that the Finder might display the
contents of the message header’s message-type field if the user
displays the Info dialog box for the message while the message is in
the Out Tray.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ recipient OCERecipient* Pointer to the recipient’s queue

address.
→ replyQueue OCERecipient* Pointer to the queue address for

message replies.
→ procHint StringPtr Pointer to character string for your

use.
→ msgType IPMMsgType* Pointer to the message type.
→ refCon unsigned long Reserved for your use.
← newMsgRef IPMMsgRef Message reference number.
→ identity AuthIdentity Authentication identity.
→ sender IPMSender* Pointer to the sender’s name.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-45

refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the message header. You can use this
field, for example, to indicate that the message has content of some
particular type.

newMsgRef A reference number returned by the function. You must use this
number when you call other functions to complete the process of
creating the message.

identity The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

sender A pointer to an IPMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for the identity
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the IPMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity for the identity field, the function ignores the sender
field.

DESCRIPTION

You must call the IPMNewMsg function to begin the process of creating a new message

that is to be sent to a recipient. (Use the IPMNewHFSMsg function to start a message to be

saved on disk.) The IPM Manager uses information that you provide in the parameter

block of IPMNewMsg to fill in fields of the message header of the new message.

The IPM Manager uses the information you provide in the recipient field to

determine where to send the message and returns any delivery or nondelivery reports to

the queue that you specify in the replyQueue field. If you do not know the recipient at

the time you call IPMNewMsg function, or if you have more than one recipient, you can

use the IPMAddRecipient function to provide the recipients. If you do not know the

reply queue at the time you call the IPMNewMsg function, you can use the

IPMAddReplyQueue function to add the reply queue later.

If the recipient or replyQueue fields specify a record in a PowerShare catalog, the

IPM Manager looks up the catalog records at the time it sends the message.

Note

Because the PowerShare server acts as a trusted agent when resolving
addresses in catalogs, the sender of the message need not have the
access privileges necessary to read these addresses. ◆

The IPM Manager uses any specific identity you provide in the identity field to fill in

the sender field in the message header. If the IPM Manager and each intervening

store-and-forward server can authenticate the message, the recipient can then rely on the

sender field to indicate the authenticated originator of the message. If you specify 0 or a

local identity for the identity field, then you should provide a meaningful value for

the sender field, such as the name of the originator of the message.

C H A P T E R 7

Interprogram Messaging Manager

7-46 IPM Manager Reference

Note
If you specify either a local identity or 0 for the identity field, the IPM
Manager stores the message on the local computer until transmitting it.
If you provide a specific identity, the IPM Manager creates the message
on the computer containing the PowerShare server to which that
identity provides access. ◆

You can use the SDPPromptForIdentity function to obtain an identity for the

originator of the message. This function allows the user to decide whether to provide a

local identity, a specific identity, or no identity (guest access). The

SDPPromptForIdentity function returns to your application the identity plus a value

that tells you which kind of identity it is. To obtain a local identity without displaying a

dialog box, use the AuthGetLocalIdentity function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about

the format and contents of an OCERecipient structure.

The IPMSender structure is described on page 7-39.

You can use the IPMAddRecipient function (page 7-50) to add recipient addresses to a

message.

You can use the IPMAddReplyQueue function (page 7-52) to specify the reply queue.

Trap macro Selector

_oceTBDispatch $0402

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidProcHint –15092 Process hint is invalid
kIPMMsgTypeReserved –15095 Message type reserved for system use
kIPMNestedMsgOpened –15097 Nested message opened; cannot do

operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be

message
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMInvalidSender –15103 Sender is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-47

See “Message and Block Types” on page 7-26 for more information about the

IPMMsgType structure.

The RString structure and record IDs are described in the chapter “Introduction to the

Apple Open Collaboration Environment” in this book.

You can use the SDPPromptForIdentity function to obtain an identity. That function

is described in the chapter “Standard Catalog Package” in this book. You can use the

AuthGetLocalIdentity function to obtain a local identity. See the chapter

“Authentication Manager” in this book for a description of the

AuthGetLocalIdentity function.

Use the IPMNewHFSMsg function, described next, to start a message to be saved on disk.

IPMNewHFSMsg

The IPMNewHFSMsg function starts the process of creating a new message to be saved as

an HFS file on disk.

pascal OSErr IPMNewHFSMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ hfsPath FSSpec* Specifier of the file in which to save

the message.
→ recipient OCERecipient* Pointer to the recipient’s queue

address.
→ replyQueue OCERecipient* Pointer to the queue address for

message replies.
→ procHint StringPtr Pointer to a character string for your

use.
→ msgType IPMMsgType* Pointer to the message type.
→ refCon unsigned long Reserved for your use.
← newMsgRef IPMMsgRef Message reference number.
→ identity AuthIdentity Authentication identity.
→ sender IPMSender* Pointer to the sender’s name.

C H A P T E R 7

Interprogram Messaging Manager

7-48 IPM Manager Reference

Field descriptions

hfsPath A pointer to the file system specification structure that describes the
file in which you wish to save the message.

recipient A pointer to an OCERecipient structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

Set this field to nil if you intend to use the IPMAddRecipient
function to add all the recipient addresses later.

replyQueue A pointer to an OCERecipient structure that specifies the queue in
which you receive your incoming messages. The OCERecipient
structure can specify the reply queue directly, or can specify a
record in a catalog that contains the reply queue information.

Set this field to nil if you intend to use the IPMAddReplyQueue
function to specify the reply queue later.

procHint A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
message header. You can use this field, for example, to provide
information that helps your recipients determine how to process the
message.

msgType A pointer to an IPMMsgType structure, which specifies the type of
message that you are creating. The IPM Manager and other AOCE
components do not read the message type; it is for the use of
applications only.

refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the message header. You can use this
field, for example, to indicate that the message has content of some
particular type.

newMsgRef A reference number returned by the function. You must use this
number when you call other functions to complete the process of
creating the message.

identity The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

sender A pointer to an IPMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for the identity
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the IPMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity value for the identity field, the function ignores the
sender field.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-49

DESCRIPTION

You must call the IPMNewHFSMsg function to begin the process of creating a new

message that is to be saved to a file on disk. (Use the IPMNewMsg function to start a

message to be sent to a recipient.) The IPM Manager fills in fields of the message header

of the new message from information that you provide in the parameter block of the

IPMNewHFSMsg function.

The IPM Manager uses any specific identity you provide in the identity field to fill in

the sender field in the message header. If you specify 0 or a local identity for the

identity field, then you should provide a meaningful value for the sender field, such

as the name of the originator of the message.

Note

The IPM Manager does not provide any way to send a message that has
been saved on disk. If you want to send a message and in addition save
it to disk, you must build the message twice, once using the
IPMNewHFSMsg function and once using the IPMNewMsg function. ◆

You can use the SDPPromptForIdentity function to obtain an identity for the

originator of the message. This function allows the user to decide whether to provide a

local identity, a specific identity, or no identity (guest access). The

SDPPromptForIdentity function returns to your application the identity plus a value

that tells you which kind of identity it is. To obtain a local identity without displaying a

dialog box, use the AuthGetLocalIdentity function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about

the format and contents of an OCERecipient structure.

The IPMSender structure is described on page 7-39.

You can use the IPMAddRecipient function (page 7-50) to add recipient addresses to a

message.

Trap macro Selector

_oceTBDispatch $041E

noErr 0 No error
kOCEParamErr –50 Invalid parameter

C H A P T E R 7

Interprogram Messaging Manager

7-50 IPM Manager Reference

You can use the IPMAddReplyQueue function (page 7-52) to specify the reply queue.

See “Message and Block Types” on page 7-26 for more information about the

IPMMsgType structure.

The RString structure and record IDs are described in the chapter “Introduction to the

Apple Open Collaboration Environment” in this book.

You can use the SDPPromptForIdentity function to obtain an identity. That function

is described in the chapter “Standard Catalog Package” in this book. You can use the

AuthGetLocalIdentity function to obtain a local identity. See the chapter

“Authentication Manager” in this book for a description of the

AuthGetLocalIdentity function.

Use the IPMNewMsg function (page 7-43) to start a message to be sent.

IPMAddRecipient

The IPMAddRecipient function adds a recipient to a new message that you are

creating.

pascal OSErr IPMAddRecipient(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Parameter block

Field descriptions

msgRef The message reference number of the message or nested-message
block to which you want to add a recipient. This number is returned
by the IPMNewMsg function for a message you intend to send, by
the IPMNewHFSMsg function for a message you intend to save to
disk, and by the IPMNewNestedMsgBlock function for a
nested-message block.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ recipient OCERecipient* Pointer to the recipient’s queue

address.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-51

recipient A pointer to an OCERecipient structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

DESCRIPTION

You can call the IPMAddRecipient function at any time during the message-creation

process to add a recipient to the message. You repeat this call for each recipient that you

add to the message (except for recipients that belong to a group; see “Message

Addressing Structures” on page 7-24). You can add only one recipient to a message when

you call the IPMNewMsg or IPMNewHFSMsg function; if you want to add more than one

recipient to a message, you must call the IPMAddRecipient function.

When you call the IPMAddRecipient function for a new message, the function adds

the specified recipient to the message header. If you are working with a nested message,

the function adds the recipient to the header of the nested message.

If the recipient parameter specifies a record in a catalog, the IPMAddRecipient

function does not look up the address of the recipient in the catalog. The IPM Manager

looks up catalog records when you send the message.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about

the format and contents of an OCERecipient structure.

Trap macro Selector

_oceTBDispatch $0403

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMCorruptDataStructures –15099 Message is corrupt

C H A P T E R 7

Interprogram Messaging Manager

7-52 IPM Manager Reference

IPMAddReplyQueue

The IPMAddReplyQueue function adds the reply queue to the header of a new message

that you are creating.

pascal OSErr IPMAddReplyQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested-message
block to which you want to add the reply queue. This number is
returned by the IPMNewMsg function for a message you intend to
send, by the IPMNewHFSMsg function for a message you intend to
save to disk, and by the IPMNewNestedMsgBlock function for a
nested-message block.

replyQueue A pointer to an OCERecipient structure that specifies the queue in
which you receive your incoming messages. The OCERecipient
structure can specify the reply queue directly or specify a record in
a catalog that contains the reply queue information.

If you specify nil for this field and specified a local identity for the
identity field in the IPMNewMsg function, the IPM Manager uses
the PowerTalk Setup catalog to fill in the reply queue field in the
message header at the time the message is sent.

DESCRIPTION

You can call the IPMAddReplyQueue function at any time during the message-creation

process. When you call the IPMAddRecipient function for a new message, the function

adds the specified reply queue to the message header. If you are working with a nested

message, the function adds the reply queue to the header of the nested message.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ replyQueue OCERecipient* Pointer to the queue address for

message replies.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-53

Each message or nested message has only one reply queue. If you have already specified

a reply queue for the message that you specify in the msgRef field, the

IPMAddReplyQueue function returns the kOCEParamErr result code.

If the replyQueue parameter specifies a record in a catalog, the IPMAddRecipient

function does not look up the address of the reply queue in the catalog. The IPM

Manager resolves addresses in catalog records at the time a message is sent.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about

the format and contents of an OCERecipient structure.

IPMNewBlock

The IPMNewBlock function creates a new block at the end of the message or nested

message that you are currently recording and returns the offset to its starting point.

pascal OSErr IPMNewBlock(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $041D

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMCorruptDataStructures –15099 Message is corrupt

C H A P T E R 7

Interprogram Messaging Manager

7-54 IPM Manager Reference

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested message to
which you want to add the block. This number is returned by the
IPMNewMsg function for a message you intend to send, by the
IPMNewHFSMsg function for a message you intend to save to disk,
and by the IPMNewNestedMsgBlock function for a nested
message.

blockType A pointer to an IPMBlockType data type that specifies the type of
block that you are adding to the message.

refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the TOC field of the message header.
You can use this field, for example, to identify block subtypes for
your own use.

startingOffset
The offset, in bytes, from the start of the message body to the start
of the new block. This value is returned by the function. You can use
this offset as a starting point when you call the IPMWriteMsg
function to add data to the block.

DESCRIPTION

You can call the IPMNewBlock function at any time during the message-creation process

to create a new message block.

The IPMNewBlock function creates the new block at the end of the message, records the

offset to the new block, and then returns the offset to you. You can use this value to

determine the offset to provide to the IPMWriteMsg function when you add data to the

block or overwrite data in the block.

Note

The IPM Manager does not allow you to modify the starting point of a
block. When you call the IPMNewBlock function to create a new block,
you freeze the size of the previous block. You can use the IPMWriteMsg
function to overwrite data in an existing block, but if you try to write
more data than was originally in the block, you write over the block
boundary into the following block. ◆

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ blockType IPMBlockType Type of block you are adding.
→ refCon unsigned long Reserved for your use.
← startingOffset long Offset to new block.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-55

A nested message is contained entirely within a single block of the enclosing message

and has exactly the same structure as any other message (see Figure 7-2 on page 7-5).

Once you have called the IPMNewNestedMsgBlock function to start a nested message,

you must call the IPMEndMsg function to end the nested message before adding another

block to the outer message. If you specify the message reference of an outer message

before completing a nested message, the IPMNewBlock function returns the

kIPMNestedMsgOpened result code.

SPECIAL CONSIDERATIONS

If you specify kIPMSignature as the creator of the block in the IPMBlockType data

type, the function returns the kIPMMsgTypeReserved result code.

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMBlockType data type is defined on page 7-28.

You start a new message by calling the IPMNewMsg function (page 7-43) or the

IPMNewHFSMsg function (page 7-47). You start a new nested message by calling the

IPMNewNestedMsgBlock function (next).

You can use the IPMWriteMsg function (page 7-61) to add data to the block.

Trap macro Selector

_oceTBDispatch $0404

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMMsgTypeReserved –15095 The blockType parameter specifies

a block type reserved for system use
kIPMNestedMsgOpened –15097 The message reference in the msgRef

parameter specifies an outer
message, but nested message is not
yet closed

kIPMCorruptDataStructures –15099 Message is corrupt

C H A P T E R 7

Interprogram Messaging Manager

7-56 IPM Manager Reference

IPMNewNestedMsgBlock

The IPMNewNestedMsgBlock function starts a new nested message from information

that you provide to the function. Use this function to begin recording a new nested

message that you create from scratch.

pascal OSErr IPMNewNestedMsgBlock(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested message
into which you want to insert the new nested message. This number
is returned by the IPMNewMsg function for a message you intend to
send, by the IPMNewHFSMsg function for a message you intend to
save to disk, and by the IPMNewNestedMsgBlock function for a
nested message.

recipient A pointer to an OCERecipient structure that either specifies a
destination message queue or that identifies a catalog record from
which the IPM Manager can obtain the destination queue address.

Set this field to nil if you intend to use the IPMAddRecipient
function to add all the recipient addresses later.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ recipient OCERecipient* Pointer to the recipient’s queue

address.
→ replyQueue OCERecipient* Pointer to the queue address for

message replies.
→ procHint StringPtr Pointer to character string for your

use.
→ msgType IPMMsgType* Pointer to the message type.
→ refCon unsigned long Reserved for your use.
← newMsgRef IPMMsgRef Message reference number.
← startingOffset long Offset to the start of the nested

message.
→ identity AuthIdentity Authentication identity.
→ sender IPMSender* Pointer to sender’s name.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-57

replyQueue A pointer to an OCERecipient structure that specifies the queue in
which you receive your incoming message reports. In most cases,
you have only one message queue.

Set this field to nil if you intend to use the IPMAddReplyQueue
function to specify the reply queue later.

procHint A pointer to a process hint, which is a string of up to 32 characters,
reserved for your use. The IPM Manager puts this string into the
nested-message header. You can use this field, for example, to
provide information that helps your recipients determine how to
process the nested message.

msgType A pointer to an IPMMsgType structure, which specifies the type of
nested message that you are creating. This value is application
dependent and is not read by any AOCE component.

refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the nested-message header.

newMsgRef A reference number returned by the function. You must use this
number when you call the IPMAddRecipient,
IPMAddReplyQueue, IPMNewBlock, IPMWriteMsg,
IPMNestMsg, IPMNewNestedMsgBlock, and IPMEndMsg
functions to complete the process of creating this nested message.

startingOffset
The offset in bytes to the start of the new nested-message block
from the start of the enclosing message body. This value is returned
by the function.

identity The authentication identity of the creator of the message. If you
provide a nonzero value for this field, the IPM Manager uses this
information to fill in the sender field in the message header.

sender A pointer to an IPMSender structure, which identifies the sender of
the message. If you specify 0 or a local identity for the identity
field, you should provide a meaningful value for the sender. For an
application-to-application message, you might use the application
name as the sender. To specify an individual as a sender, you can
put the user’s name in the IPMSender structure or you can provide
the record ID of the sender’s user record. If you specify a specific
identity in the identity field, the function ignores the sender
field.

DESCRIPTION

You can call the IPMNewNestedMsgBlock function at any time during the

message-creation process to start a new nested message.

The IPMNewNestedMsgBlock function first creates a new block at the end of the

message. The msgCreator field of the block type of the new block is equal to the

constant kIPMSignature and the msgType field is equal to kIPMEnclosedMsgType.

The IPMNewNestedMsgBlock function then fills in fields of the message header of the

new nested message from information that you provide in the parameter block of the

IPMNewNestedMsgBlock function.

C H A P T E R 7

Interprogram Messaging Manager

7-58 IPM Manager Reference

Note that, because the header of the nested message is located within a block of the

enclosing message, the IPM Manager does not read the nested-message header and so

does not use the information in its message-delivery process.

The IPM Manager uses any specific identity you provide in the identity field to fill in

the sender field in the message header. If you specify 0 or a local identity for the

identity field, then you should provide a meaningful value for the sender field, such

as the name of the originator of the message.

After you call the IPMNewNestedMsgBlock function to start a nested message, you can

call the IPMNewBlock function to add a new block to the nested message, the

IPMNewNestedMsgBlock function to nest another message within the nested message,

or any of the functions that add information to the message header or to the body of the

message. When you call any of these functions, you must pass the message reference

value returned by the IPMNewNestedMsgBlock function.

You must call the IPMEndMsg function to complete the nested message before you can

add any more information to the enclosing message. After you call the IPMEndMsg

function to end the nested message, you cannot add any recipients or blocks to the

nested message.

SPECIAL CONSIDERATIONS

Although the IPM Manager allows you to add any number of nested-message blocks at

the same nesting level in a message, the MSAM interface does not support this feature.

Therefore, if you want your message to be compatible with MSAMs, you must not add

more than one nested-message block at a given level of nesting. You can, however, nest a

message within another nested message to as many nesting levels as disk and memory

resources allow.

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_oceTBDispatch $0405

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidProcHint –15092 Process hint is invalid
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMInvalidSender –15103 Sender is invalid

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-59

SEE ALSO

See “Message Addressing Structures” on page 7-24 for more detailed information about

the format and contents of an OCERecipient structure.

The IPMSender structure is described in “Sender Structure” on page 7-39.

You can use the IPMAddRecipient function (page 7-50) to add recipient addresses to a

message.

You can use the IPMAddReplyQueue function (page 7-52) to specify the reply queue.

See “Message and Block Types” on page 7-26 for more information about the

IPMMsgType structure.

IPMNestMsg

The IPMNestMsg function creates a new block at the end of the specified new message

and stores the existing message that you specify into the new block.

pascal OSErr IPMNestMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message to which you want to
add a nested message. This number is returned by the IPMNewMsg
function for a message you intend to send, by the IPMNewHFSMsg
function for a message you intend to save to disk, and by the
IPMNewNestedMsgBlock function for a nested message.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ refCon unsigned long Reserved for your use.
→ msgToNest IPMMsgRef Message reference number of the

message to nest.
← startingOffset long Offset to the start of the nested

message.

C H A P T E R 7

Interprogram Messaging Manager

7-60 IPM Manager Reference

refCon An unsigned 4-byte number, reserved for your use. The IPM
Manager puts this value into the nested-message header.

msgToNest This parameter contains the message reference number of an
existing message that you want to nest within the message that you
specify in the msgRef field. This number is returned by the
IPMOpenMsg function for a message you have read, by the
IPMOpenHFSMsg function for a message you have read from disk,
or by the IPMOpenBlockAsMsg for a nested message.

startingOffset
The offset, in bytes, to the start of the new nested-message block
from the start of the body of the enclosing message. You can use this
value if you want to create your own table of contents for a message
you are creating.

DESCRIPTION

You can call the IPMNestMsg function at any time during the message-creation process.

The IPMNestMsg function adds an existing message as a nested message at the end of

the message that you specify in the msgRef field. Before you call the IPMNestMsg

function, you must use the IPMOpenMsg, IPMOpenHFSMsg, or IPMOpenBlockAsMsg

function to open the message to be nested.

The IPMNestMsg function first creates a new block at the end of the message. The

msgCreator field of the block type of the new block is equal to the constant

kIPMSignature and the msgType field is equal to kIPMEnclMsgType. The function

then writes the specified message into the new block.

The IPMNestMsg function returns, in the startingOffset parameter, the offset to the

start of the new block. The function provides this offset for your information only. You

should not call IPMWriteMsg to make changes to this nested message.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0406

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-61

RESULT CODES

SEE ALSO

See “Message and Block Types” on page 7-26 for more information about the

IPMMsgType structure.

You can obtain a message reference number from the IPMOpenMsg function (page 7-82),

the IPMOpenHFSMsg function (page 7-84), or the IPMOpenBlockAsMsg (page 7-86).

IPMWriteMsg

The IPMWriteMsg function writes data to the specified location within the body of a

message.

pascal OSErr IPMWriteMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidProcHint –15092 Process hint is invalid
kIPMMsgTypeReserved –15095 Message type reserved for system use
kIPMNestedMsgOpened –15097 Nested message opened; cannot do

operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be

message
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMInvalidSender –15103 Sender is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

7-62 IPM Manager Reference

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested message to
which you want to write. This number is returned by the
IPMNewMsg function for a message you intend to send, by the
IPMNewHFSMsg function for a message you intend to save to disk,
and by the IPMNewNestedMsgBlock function for a nested
message.

mode The mode in which the offset parameter is to be interpreted. The
function uses this field to determine whether to begin writing data
at the end of the last data written or to use the offset value to
calculate another starting point relative to the beginning of the
message, the end of the message, or the current location. See the
discussion following these field descriptions for details.

offset An offset that the function uses when it calculates the starting point
of the write operation. See the following discussion for details.

count The number of bytes of data that you want the function to write
from the buffer into the message.

buffer A pointer to your data buffer.

actualCount The number of bytes of data the function actually wrote into the
message.

currentBlock A Boolean value that specifies whether you want the entire write
operation to occur within the current block. The current block is
always the last block to be added to the message. If you set this field
to true but the values you specify for the mode and offset fields
require the function to write data into another block, the function
cancels the write operation and returns the kIPMInvalidOffset
result code.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ mode IPMAccessMode The mode in which the function

interprets the offset value.
→ offset long Offset at which to begin writing.
→ count unsigned long Number of bytes of data to write.
→ buffer Ptr Pointer to the data buffer.
← actualCount unsigned long Number of bytes of data written.
→ currentBlock Boolean Set to true to restrict writing to the

current block.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-63

DESCRIPTION

The IPM Manager uses a marker (referred to as the message mark) that points to the

current location within a message that you are creating. After the IPMNewBlock

function completes, the message mark points to the first byte in the new block. After the

IPMWriteMsg function completes, the mark points to the end of the last byte written.

Note

The way you use the message mark, mode, and offset to read and write
messages is similar to the way you use the file mark, positioning mode,
and positioning offset to read and write files. See Inside Macintosh: Files
for more information about how the File Manager treats these
parameters. ◆

You use the mode and offset parameters to specify the point in the message at which

the IPMWriteMsg function starts writing. The mode parameter indicates whether you

want the IPMWriteMsg function to begin writing at the current position of the mark or

to calculate another starting point relative to the beginning of the message, the end of the

message, or the current mark location. (In the case of a nested message, offsets are

relative to the start or end of the nested message, not the enclosing message.) You can set

the mode parameter to any one of the following values:

enum {

kIPMAtMark,

kIPMFromStart,

kIPMFromLEOM,

kIPMFromMark

};

Constant descriptions

kIPMAtMark The IPMWriteMsg function starts writing at the current position of
the mark. In this case, the function ignores the offset value. This
mode is useful, for example, for writing data in sequence into a new
block.

kIPMFromStart If the currentBlock parameter is set to true, the function
interprets the value in the offset parameter as an offset from the
beginning of the current block. If the currentBlock parameter is
set to false, the function interprets the value in the offset
parameter as an offset from the beginning of the message body. If
you want to start writing at the beginning of the second block in the
message, for example, you can set currentBlock to false and
use the offset that the IPMNewBlock function returned when you
created the second block. When you use this mode, you cannot set
the offset parameter to a negative value.

kIPMFromLEOM The function interprets the value in the offset parameter as an
offset from the current end of the message.

C H A P T E R 7

Interprogram Messaging Manager

7-64 IPM Manager Reference

kIPMFromMark The function interprets the value in the offset parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark.

If the mark is at the end of the last block, the function extends the end of the block and

the end of the message as it writes data into the block.

Note

If you use a positive offset to position the mark past the current end of
the message, the function extends the end of the message and writes the
data in the location you requested. In this case, you incorporate into the
message whatever happened to be on disk between the previous end of
the message and the location at which you start writing. ◆

If you set the currentBlock parameter to true, the IPMWriteMsg function returns an

error rather than starting to write in a block other than the last block to be added to the

message.

Note that the IPM Manager places the offset to each block in the message header when

you first create the block. You cannot change this information in the message header

after the block is created. Therefore, when you call the IPMNewBlock function to create

a new block, you freeze the size of the previous block. You can use the IPMWriteMsg

function to write over data in an existing block, but you cannot change the size of the

block. If you write too much data to fit in an existing block, the function writes over

the block boundary into the following block.

When you call the IPMWriteMsg function, it first calculates the starting position of the

write request. The function then checks the value of the currentBlock parameter to

determine if it is in conflict with the starting position. That is, if you set currentBlock

to true and specify a write location that falls in another block of the message, the

IPMWriteMsg function returns the kIPMInvalidOffset error.

If the currentBlock setting is not in conflict with the specified starting position, the

function writes the data from the buffer into the message and returns, in the

actualCount field, the number of bytes written.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0407

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-65

RESULT CODES

SEE ALSO

The IPMNewMsg function (page 7-43), the IPMNewHFSMsg function (page 7-47), and the

IPMNewNestedMsgBlock function (page 7-56) all return message reference numbers.

The IPMNewBlock function (page 7-53) and the IPMNewNestedMsgBlock function

(page 7-56) return the offset to the start of a new block.

IPMEndMsg

The IPMEndMsg function ends the message-creation process for the message or nested

message that you specify. It can also provide a digital signature for the message.

pascal OSErr IPMEndMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMNotInABlock –15096 The specified starting point does not fall

within the body of the message
kIPMNestedMsgOpened –15097 The message reference in the msgRef

parameter specifies an outer message, but
nested message is not yet closed

kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
← msgID IPMMsgID Message ID.
→ msgTitle RString* Message title.
→ deliveryNotification IPMNotificationType Delivery report specifier.
→ priority IPMPriority Message priority.
→ cancel Boolean Cancel the message?
→ signature SIGSignaturePtr Pointer to a digital signature.
→ signatureSize Size Size of the digital signature.
→ signatureContext SIGContextPtr Pointer to digital signature

context.

C H A P T E R 7

Interprogram Messaging Manager

7-66 IPM Manager Reference

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message or nested message
that you want to complete. This number is returned by the
IPMNewMsg function for a message you intend to send, by the
IPMNewHFSMsg function for a message you intend to save to disk,
and by the IPMNewNestedMsgBlock function for a nested
message.

msgID The message ID, a unique identifier assigned to the message by the
IPM Manager. You can use this value to identify a message.

msgTitle The message title. Because the Finder displays this title for the user
for any message in the Out Tray, the message title should reflect the
subject, contents, or purpose of the message. The maximum size of
this title is 32 bytes (that is, an RString32 structure).

deliveryNotification
The types of delivery reports you want to receive. See “Delivery
Notification,” beginning on page 7-28, for more information about
this value.

priority The priority of the message. Set this parameter to any one of the
following values: kIPMNormalPriority, kIPMLowPriority, or
kIPMHighPriority.

cancel A Boolean value that specifies whether to cancel the message. Set
this field to true to cancel the message or to false to send the
message. If the IPMEndMsg function applies to a nested message,
the function ignores the value of this field.

signature A pointer to a digital signature. You must allocate a buffer for the
signature and pass a pointer to it in this field. If you specify nil for
the signatureContext field, the function ignores the signature
field. See the following discussion for more information about
digital signatures.

signatureSize The size of the digital signature. This value is returned by the
SIGSignPrepare function.

signatureContext
A pointer to the signature context you obtained from the
SIGNewContext function and provided to the SIGSignPrepare
function. Specify nil for this pointer if you do not want a digital
signature added to the message.

DESCRIPTION

When you call the IPMEndMsg function, it checks the setting of the cancel parameter to

see if you are canceling the message. If so, the function destroys the message. Otherwise,

the function completes the message-creation process for the specified message. If the

message reference number you specify applies to a nested-message block, the IPM

Manager ends the nested-message block and applies any subsequent functions that you

call to the enclosing message. The enclosing message can be another nested message or

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-67

the top-level message (that is, the message you started with the IPMNewMsg or

IPMNewHFSMsg function). To completely finish the message-creation process, you must

call the IPMEndMsg function once for each nested message and once for the top-level

message.

IMPORTANT

You cannot close an enclosing message until any messages nested within
it have been closed. ▲

Once you have called the IPMEndMsg function to close the top-level message, you

cannot make any more changes to the message. If you created the message with the

IPMNewHFSMsg function, the IPM Manager saves the message to the disk file you

specified when you called the IPMNewHFSMsg function. If you created the message with

the IPMNewMsg function, the IPM Manager sends the message to each recipient and

generates any requested reports.

The IPM Manager uses the value of the deliveryNotification parameter to

determine when to generate report messages and whether to include the original

message in any reply messages that are returned by the recipients.

If you want to add a digital signature to the message, you must call the

SIGNewContext and SIGSignPrepare functions before you call the IPMEndMsg

function. You can then allocate a buffer for the signature, or specify nil for the

signature parameter, in which case the Digital Signature Manager allocates the buffer

for you on your application heap. The size needed for the buffer is returned by the

SIGSignPrepare function. Pass a pointer to the buffer in the signature parameter to

the IPMEndMsg function, the size of the buffer in the signatureSize parameter, and a

pointer to the signature context (returned by the SIGNewContext function) in the

signatureContext parameter.

Note

If you are adding a digital signature to a large message, the IPMEndMsg
function can take a long time to complete (up to several minutes on
some computers). You should display a dialog box informing the user of
this possibility. ◆

The IPMEndMsg function places the signature in a block with a creator of

kIPMSignature and a type of kIPMDigitalSignature. A message can contain only

one block of this type, and you must use the IPMEndMsg function to create this block.

Note

The signature context used to create a digital signature has no
relationship to the contexts discussed in “Managing Message Queues”
starting on page 7-68 and elsewhere in this chapter. ◆

SPECIAL CONSIDERATIONS

If you want to add a digital signature to the message (that is, you pass a non-nil value

for the signatureContext parameter), you must call the IPMEndMsg function

synchronously. There must also be at least 8.5 KB of stack space available.

C H A P T E R 7

Interprogram Messaging Manager

7-68 IPM Manager Reference

If you pass nil for the signatureContext parameter, there must be enough space in

your application heap to hold the signature.

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You start creating a message with the IPMNewMsg function (page 7-43) or the

IPMNewHFSMsg function (page 7-47), and start a nested-message block with the

IPMNewNestedMsgBlock function (page 7-56).

See “Delivery Notification,” beginning on page 7-28, for more information about the

delivery notification flag byte.

Digital signatures and the SIGNewContext and SIGSignPrepare functions are

discussed in the chapter “Digital Signature Manager” in this book.

Managing Message Queues

You can create any number of local input message queues for your own use. This section

describes the functions you can use to create input message queues, open queues,

enumerate their contents, and close them.

Trap macro Selector

_oceTBDispatch $0408

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMNestedMsgOpened –15097 The message reference in the msgRef

parameter specifies an outer
message, but nested message is not
yet closed

kIPMA1HdrCorrupt –15098 Message is corrupt; may not be
message

kIPMCorruptDataStructures –15099 Message is corrupt
kIPMAbortOfNestedMsg –15100 Adding nested message was canceled
kIPMInvalidSender –15103 Sender is invalid
kIPMNoRecipientsYet –15104 Require recipient to send
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-69

IPMCreateQueue

The IPMCreateQueue function creates a physical queue at the specified location.

pascal OSErr IPMCreateQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

queue A pointer to an OCERecipient structure that specifies the name
and location of the new queue. You must use the queue-name form
of the OCERecipient structure for this field.

identity The authentication identity of the creator of the queue. If you are
creating the queue on a server computer, the messaging server uses
this identity to verify that you have the privileges necessary to
create a queue. Only the administrator of that server can create
queues.

The function ignores this field if you specify the local computer as
the location of the new queue.

owner A pointer to the packed record ID of the owner of the queue. If you
are creating a queue on a remote computer, you must specify an
owner of the queue in this field. Only the creator of the queue and
the owner of the queue can open or delete the queue.

The function ignores this field if you specify the local computer as
the location of the new queue.

DESCRIPTION

You can create a new queue at any time. You can create a queue on the local computer or

on a server computer.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queue OCERecipient* Name and location of the new

queue.
→ identity AuthIdentity Authentication identity.
→ owner PackedRecordID* Owner of the queue.

C H A P T E R 7

Interprogram Messaging Manager

7-70 IPM Manager Reference

IMPORTANT

You should use restraint in creating queues because the IPM Manager
provides no interface for listing and managing queues. Also, each queue
uses memory and disk resources. ▲

Once you have used the IPMCreateQueue function to create a physical queue, you

must open one or more virtual queues to list and open the messages in the queue. Use

the IPMOpenQueue function to open a virtual queue.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

“Message Addressing Structures” on page 7-24 defines the OCERecipient structure.

The queue-name form of this structure is described in “Queue-Name Format for

Attribute Values” on page 7-16.

You must use the IPMOpenQueue function (page 7-72) to open a queue before you can

open the messages in the queue. You must have an open queue context before you can

open a queue; use the IPMOpenContext function, described next, to open a context.

IPMOpenContext

The IPMOpenContext function creates a new queue context.

pascal OSErr IPMOpenContext(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $0411

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMBadQName –15112 Invalid queue name

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-71

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

contextRef The context reference number for the new context. You must use
this number when opening a queue or closing the context.

DESCRIPTION

You must specify a context reference number when you open a virtual queue. You must

specify a virtual-queue reference number when you open a message. When you close a

context, the IPM Manager closes all of the virtual queues that belong to that context and

all of the open messages that belong to those queues. You can create as many contexts as

you wish; in any case, you must call the IPMOpenContext function at least once to

obtain a context reference number before you can open any queues.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the IPMOpenQueue function, discussed next, to open a virtual queue and add it to a

context.

Use the IPMCloseContext function (page 7-77) to close all the virtual queues and open

messages associated with a context.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
← contextRef IPMContextRef Context reference number.

Trap macro Selector

_oceTBDispatch $0400

noErr 0 No error
kOCEParamErr –50 Invalid parameter

C H A P T E R 7

Interprogram Messaging Manager

7-72 IPM Manager Reference

IPMOpenQueue

The IPMOpenQueue function opens the specified queue and associates it with the

specified context.

pascal OSErr IPMOpenQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

contextRef A context reference number. When you close the context specified
by this reference number, the IPM Manager closes all of the virtual
queues that you opened using this reference number.

queue A pointer to an OCERecipient structure that specifies the name
and location of the queue that you want to open. To open a user’s
default messaging queue, just specify the user record of that user. To
open a queue that you created, use the same OCERecipient
structure that you used to create the queue.

identity The authentication identity of the opener of the queue. If the
physical queue is on a server computer, only the server
administrator and the owner of the physical queue can open a new
virtual queue.

filter A pointer to the message filter for this virtual queue.

Set this field to nil if you do not want the IPM Manager to
associate any filter with this queue.

→ ioCompletion ProcPtr Pointer to a completion
routine.

← ioResult OSErr Result of the function.
→ contextRef IPMContextRef Context reference number.
→ queue OCERecipient* Queue that you want to open.
→ identity AuthIdentity Authentication identity.
→ filter IPMFilter* Pointer to the queue filter.
← newQueueRef IPMQueueRef Virtual-queue reference

number.
→ notificationProc IPMNoteProcPtr Reserved; set to nil.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-73

newQueueRef The reference number for the queue. You must use this reference
number when you change the queue filter or list, open, close, or
delete messages.

notificationProc
Reserved. You must set this field to nil.

DESCRIPTION

The IPMOpenQueue function opens the message queue you specify, creating a virtual

queue with the message filter you provide. The function returns a reference number that

uniquely identifies this virtual queue. When you call this function, you must specify a

message-context reference number. The context links together several queues so that you

can simultaneously close them simply by closing the context. If you have not already

created the message context to which you want this queue to belong, you must call the

IPMOpenContext function before calling the IPMOpenQueue function. You can open

the same physical queue any number of times, creating a new virtual queue each time.

You specify a virtual-queue reference number whenever you list or open messages. Once

you have opened a message, you must provide the same queue reference number when

you call the IPMCloseMsg function or the IPMCloseQueue function. If you call the

IPMCloseQueue function, the IPM Manager simultaneously closes all the messages that

you opened with that queue reference number. If you call the IPMCloseContext

function, the IPM Manager simultaneously closes all the messages associated with all the

queues that belong to that context, and closes all of those queues.

The message filter determines which messages in the physical queue are listed by the

IPMEnumerateQueue function when you provide the reference number for this virtual

queue, which messages you can open through the queue, and which messages you can

close and delete through the queue. For example, you can open a virtual queue for the

default input queue with a filter that passes only high-priority messages. Then, when

you call the IPMOpenMsg function with that queue reference number, the function

allows you to open only the high-priority messages in the default input queue. If you do

not provide a filter for the queue, these functions operate on all the messages in the

physical queue.

SPECIAL CONSIDERATIONS

Although you allocate the pointer to the queue filter, the IPM Manager owns the pointer

until you close the queue or call the IPMChangeQueueFilter function to replace the

filter. Do not reuse or dispose of this pointer until you close the queue or replace the filter.

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

C H A P T E R 7

Interprogram Messaging Manager

7-74 IPM Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To create a new queue before opening it, use the IPMCreateQueue function (page 7-69).

You can change the queue filter by calling the IPMChangeQueueFilter function,

described next. See “Filter Structures” on page 7-34 for information on queue filters.

Call the IPMCloseQueue function (page 7-76) to close a virtual queue.

IPMChangeQueueFilter

The IPMChangeQueueFilter function sets a new filter for a specific virtual queue.

pascal OSErr IPMChangeQueueFilter(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Trap macro Selector

_oceTBDispatch $0409

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidFilter –15105 The specified filter is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
kIPMBadQName –15112 Invalid queue name
kIPMBadContext –15118 Invalid context reference
kIPMContextIsClosing –15119 The specified context is closing

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Virtual-queue reference number.
↔ filter IPMFilter* Pointer to the queue filter.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-75

Field descriptions

queueRef The virtual-queue reference number returned by the
IPMOpenQueue function. This number identifies the virtual queue
to which the request applies.

filter A pointer to an IPMFilter structure that specifies the new filter
that you want the IPM Manager to apply to the queue. Set this field
to nil to remove all filters from this queue.

When the IPMChangeQueueFilter function completes execution,
it returns a pointer to the filter that was in effect when you called
the function. The IPM Manager has no further use for this pointer,
and you can now dispose of it.

DESCRIPTION

The IPMChangeQueueFilter function applies the filter specified in the filter

parameter to the virtual queue indicated by the queueRef parameter. If you set the

filter parameter to nil, the function sets the filter for the virtual queue to the default

filter, which matches all messages in the physical queue.

SPECIAL CONSIDERATIONS

Although you allocate the pointer to the queue filter, the IPM Manager owns the pointer

until you close the queue or call the IPMChangeQueueFilter function to replace the

filter. Do not reuse or dispose of this pointer until you close the queue or replace the filter.

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “Filter Structures” on page 7-34 for information on queue filters.

You set the queue filter initially when you open the queue; see the description of the

IPMOpenQueue function on page 7-72.

Trap macro Selector

_oceTBDispatch $0414

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidFilter –15105 Filter is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

7-76 IPM Manager Reference

IPMCloseQueue

The IPMCloseQueue function closes the specified virtual message queue.

pascal OSErr IPMCloseQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

queueRef The virtual-queue reference number returned by the
IPMOpenQueue function. This number identifies the virtual queue
you wish to close.

DESCRIPTION

You can call the IPMCloseQueue function at any time that the specified virtual queue is

open. When you call this function, the function first closes any messages that you

opened using the queue reference number for this queue. The function then closes the

virtual queue and disassociates the queue from its context.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Virtual-queue reference number.

Trap macro Selector

_oceTBDispatch $040A

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-77

RESULT CODES

SEE ALSO

You use the IPMOpenQueue function (page 7-72) to open a virtual queue.

You can use the IPMCloseMsg function (page 7-104) to close an individual message.

You can use the IPMCloseContext function, described next, to close simultaneously all

of the queues associated with a specific context.

You can use the IPMDeleteQueue function (page 7-78) to delete a physical queue after

you have closed all of its associated virtual queues.

IPMCloseContext

The IPMCloseContext function closes all of the messages and queues that are

associated with the specified context and then eliminates that context.

pascal OSErr IPMCloseContext(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

contextRef The context reference number returned by the IPMOpenContext
function. This number identifies the context you wish to close.

DESCRIPTION

When you open a virtual queue, you provide a context reference number that specifies

the context to which that queue belongs. When you close a context, the

IPMCloseContext function first closes all of the messages that you opened for the

queues that belong to that context. Next, it closes all of the queues that belong to the

noErr 0 No error
kOCEParamErr –50 Invalid parameter

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ contextRef IPMQueueRef Context reference number.

C H A P T E R 7

Interprogram Messaging Manager

7-78 IPM Manager Reference

context, and finally, it eliminates the context itself, so that the context reference number is

no longer valid.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the IPMOpenContext function (page 7-70) to create a context.

You use the IPMOpenQueue function (page 7-72) to open a queue and associate it with a

specific context.

You can use the IPMCloseMsg function (page 7-104) to close a specific message and the

IPMCloseQueue function (page 7-76) to close a specific queue.

IPMDeleteQueue

The IPMDeleteQueue function deletes the specified physical message queue.

pascal OSErr IPMDeleteQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $0401

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMBadContext –15118 Invalid context reference
kIPMContextIsClosing –15119 The specified context is already closed

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-79

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

queue A pointer to an OCERecipient structure that specifies the name
and location of the queue that you want to delete.

identity The authentication identity of the owner of the queue or of the
server administrator if this queue is on a server computer.

The IPM Manager ignores this field if the queue is on the local
computer.

owner A pointer to the packed record ID of the owner of the queue. If the
queue is on a remote computer, you must specify the owner of the
queue in this field.

The IPM Manager ignores this field if the queue is on the local
computer.

DESCRIPTION

Before you can delete a physical queue, you must close any open virtual queues

associated with that physical queue. You can delete a queue at any time that the queue is

not open, provided it is on the local computer or, if it is on a server computer, you have

the appropriate access privileges. The AOCE server allows only the server administrator

to delete a queue.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queue OCERecipient* Queue that you want to delete.
→ identity AuthIdentity Authentication identity.
→ owner PackedRecordID* Owner of the queue.

Trap macro Selector

_oceTBDispatch $0412

C H A P T E R 7

Interprogram Messaging Manager

7-80 IPM Manager Reference

RESULT CODES

SEE ALSO

You use the IPMCreateQueue function (page 7-69) to create a physical queue and the

IPMOpenQueue function (page 7-72) to open a virtual queue.

You use the IPMCloseQueue function (page 7-76) to close a virtual queue.

Listing and Reading Messages

A queue can contain any number of messages. This section describes the functions you

can use to list the messages in a message queue, open a message or a nested-message

block, read a message header and message blocks, and close a message.

IPMEnumerateQueue

The IPMEnumerateQueue function returns a list of messages in the specified queue that

match the filter criteria that you provide in the function.

pascal OSErr IPMEnumerateQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMBadQName –15112 Invalid queue name
kIPMQBusy –15126 Queue busy; cannot delete

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Queue reference number.
→ startSeqNum IPMSeqNum First message to list.
→ getProcHint Boolean List process hints?
→ getMsgType Boolean List message types?
→ filter IPMFilter* Pointer to queue filter.
→ numToGet unsigned short Number of messages to list.
← numGotten unsigned short Number of messages listed.
→ enumCount unsigned long Buffer size.
→ enumBuffer Ptr Pointer to buffer.
← actEnumCount unsigned long Number of bytes returned in buffer.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-81

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

queueRef A pointer to an OCERecipient structure that specifies the name
and location of the virtual queue that you want to enumerate.

startSeqNum The sequence number of the first message for which you want the
function to return information. Sequence numbers start with 1.

getProcHint A Boolean value that indicates whether you want the function to
include the process hint of each listed message. You can specify a
process hint for a message when you call the IPMNewMsg,
IPMNewHFSMsg, or IPMNewNestedMsgBlock function to start the
message.

getMsgType A Boolean value that indicates whether you want the function to
include the message type of each listed message.

filter A pointer to the filter to use for this enumeration of the queue. If
you provide a valid pointer to a filter, the function uses it only for
this enumeration; the current filter for this virtual queue remains in
effect after the function completes execution. (The current filter is
the one you specified most recently with the IPMOpenQueue or
IPMChangeQueueFilter function.) Set the filter field to nil to
use the current filter. Set this field to –1 to ignore all filters and list
all the messages in the physical queue.

numToGet The number of messages that you want listed.

numGotten The number of messages that the function actually listed in your
buffer.

enumCount The size, in bytes, of the buffer you are providing.

enumBuffer A pointer to the buffer that you are providing.

actEnumCount The number of bytes of data that the function wrote to your buffer.

DESCRIPTION

For each message in the physical input queue that matches your filter criteria, the

IPMEnumerateQueue function places a structure of type IPMMsgInfo in your buffer.

You must allocate a buffer large enough to hold at least one complete IPMMsgInfo

structure. The last two fields in this structure, procHint and msgType, are present only

if you specify true for the getProcHint and getMsgType parameters of the

IPMEnumerateQueue function. Both the procHint and msgType fields, if present, are

packed structures and can be anywhere from 0 to 33 bytes in size.

You can use the numToGet parameter to specify the total number of messages you want

listed. In the numGotten parameter, the function returns the actual number of messages

listed and, in the actEnumCount parameter, the number of bytes it wrote to your buffer.

The function does not return partial IPMMsgInfo structures.

The first time you call the IPMEnumerateQueue function to list the messages in a

queue, specify 1 for the startSeqNum parameter. If the function returns information for

as many messages as you requested in the numToGet parameter or puts as many

C H A P T E R 7

Interprogram Messaging Manager

7-82 IPM Manager Reference

IPMMsgInfo structures in your buffer as the buffer will hold, you can assume that the

queue holds more messages to be listed. In this case, increment the number in the

startSeqNum parameter by the number of messages listed (that is, by the number

returned in the numGotten parameter) and call the function again.

Note

Do not call the IPMEnumerateQueue function any more often than
necessary; every user connected to a server periodically requests a list of
messages, and a server’s overall performance can be noticeably affected
if it has to process too many enumeration requests. ◆

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMEnumerateQueue function places structures of type IPMMsgInfo in your

buffer. The IPMMsgInfo data type is described in “Message Information Structure” on

page 7-36.

IPMOpenMsg

The IPMOpenMsg function opens the specified message in the specified queue.

pascal OSErr IPMOpenMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $0413

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidFilter –15105 Filter is invalid
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
kIPMeoQ –15120 No more messages

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-83

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

queueRef The queue reference number of the virtual queue containing the
message that you want to open.

sequenceNum The sequence number of the message you wish to open, or, if you
set the exactMatch field to false, the sequence number at which
you want the function to start looking for a message to open.
Sequence numbers start with 1.

newMsgRef The message reference number of the opened message. You must
use this number when you call the IPMVerifySignature
function to verify a signature, when you call the IPMCloseMsg
function to close the message, and any time you read information
from the message.

actualSeqNum The actual sequence number of the message opened by the function.
This value always equals the number you specify in the
sequenceNum field unless you set the exactMatch field to false,
in which case the message opened might have a sequence number
higher than the one you requested.

exactMatch A Boolean value that specifies whether the sequence number of the
message opened must be exactly the same as the number you
specify in the sequenceNum field. If you set the exactMatch field
to false, the function opens the next message that has a sequence
number equal to or greater than the one you specify in the
sequenceNum field and that passes the current filter criteria for the
queue.

DESCRIPTION

You must call the IPMOpenMsg function before you can read any of the information in a

message in a message queue.

The IPM Manager assigns a sequence number to each message in a physical queue when

it adds that message to the queue. Because the IPM Manager does not reuse the number

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Queue reference number.
→ sequenceNum IPMSeqNum Message sequence number requested.
← newMsgRef IPMMsgRef Message reference number.
← actualSeqNum IPMSeqNum Sequence number of message actually

opened.
→ exactMatch Boolean Match requested sequence number

exactly?

C H A P T E R 7

Interprogram Messaging Manager

7-84 IPM Manager Reference

of a message that is removed from the queue, some sequence numbers might be missing

from the queue.

The IPMOpenMsg function opens a message only if it meets the current filter criteria for

the virtual queue. If you specify a message sequence number for a message that does not

meet the filter criteria and set the exactMatch field to true, the IPMOpenMsg function

returns the kIPMEltNotFound result code.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the IPMEnumerateQueue function (page 7-80) to list the messages in a

queue.

Use the IPMOpenHFSMsg function, described next, to open a message on disk.

Use the IPMOpenBlockAsMsg function (page 7-86) to open a nested message.

IPMOpenHFSMsg

The IPMOpenHFSMsg function opens the specified HFS file as a message.

pascal OSErr IPMOpenHFSMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $040B

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-85

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

hfsPath The file system specification structure for the file you wish to open
as a message.

newMsgRef The message reference number of the opened message. You must
use this number when you read information from the message,
when you call the IPMVerifySignature function to verify a
signature, or when you call the IPMCloseMsg function to close the
message.

DESCRIPTION

You must call the IPMOpenHFSMsg function before you can read any of the information

in a message that is in an HFS file on disk.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the IPMOpenMsg function (page 7-82) to open a message in a message queue.

Use the IPMOpenBlockAsMsg function, described next, to open a nested message.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ hfsPath FSSpec* Specifier of the file to open.
← newMsgRef IPMMsgRef Message reference number.

Trap macro Selector

_oceTBDispatch $0417

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

7-86 IPM Manager Reference

IPMOpenBlockAsMsg

The IPMOpenBlockAsMsg function opens a nested message.

pascal OSErr IPMOpenBlockAsMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header,” beginning on page 7-40, for

descriptions of the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message that contains the
nested message you want to read. This number is returned by the
IPMOpenMsg, IPMOpenHFSMsg, or IPMOpenBlockAsMsg function
when you open the containing message.

newMsgRef The message reference number of the opened nested message. You
must use this number when you read information from the
message, when you call the IPMVerifySignature function to
verify a signature, or when you call the IPMCloseMsg function to
close the message.

blockIndex The sequential position of the block that you want to open as a
message. For example, if you want to open the tenth block, you set
blockIndex to 10. You can use the IPMGetBlkIndex function to
get the index number of a block.

DESCRIPTION

The IPMOpenBlockAsMsg function opens a nested message so that you can use other

IPM Manager functions to read information from it. Before you use this function, you

must open the containing message (which can also be a nested message), and you must

know the index number of the nested-message block within the containing message. A

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number of the

enclosing message.
← newMsgRef IPMMsgRef Message reference number of the

nested message.
→ blockIndex unsigned short Index value of block containing

nested message.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-87

nested message has a creator type of kIPMSignature and a block type of

kIPMEnclosedMsgType.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the IPMGetBlkIndex function (page 7-96) to get the index number of a block.

IPMGetMsgInfo

The IPMGetMsgInfo function returns information about a message in a message queue.

pascal OSErr IPMGetMsgInfo(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

Trap macro Selector

_oceTBDispatch $040F

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMBlockIsNotNestedMsg –15101 Block is not message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
↔ info IPMMsgInfo* Pointer to returned information.

C H A P T E R 7

Interprogram Messaging Manager

7-88 IPM Manager Reference

See “Interprogram Messaging Parameter Block Header,” beginning on page 7-40, for

descriptions of the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message about which you
want information. This number is returned by the IPMOpenMsg
function when you open the message.

info A pointer to an IPMMsgInfo structure in which the function
returns information about the message. You must allocate this
structure. The function always returns the full IPMGetMsgInfo
structure, which is of variable length and packed; the maximum
size of this structure is 130 bytes.

DESCRIPTION

You can call the IPMGetMsgInfo function after you open a message in a queue. You

cannot use the IPMGetMsgInfo function to obtain information about a message stored

in a file on disk or to get information about a nested message.

The IPMGetMsgInfo function returns the same information about a message as the

IPMEnumerateQueue function returns.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMGetMsgInfo function returns the same information about a message as the

IPMEnumerateQueue function (page 7-80) returns.

The IPMGetMsgInfo function returns information in an IPMGetMsgInfo structure,

described in “Message Information Structure” on page 7-36.

Trap macro Selector

_oceTBDispatch $0419

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-89

Use the IPMReadHeader function, described next, to obtain header information from

nested messages and messages stored on disk, or to get information from header fields

not returned by the IPMGetMsgInfo function.

IPMReadHeader

The IPMReadHeader function reads the contents of a specified header field of a

message.

pascal OSErr IPMReadHeader(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message whose header you
want to read. This number is returned by the IPMOpenMsg,
IPMOpenHFSMsg, or IPMOpenBlockAsMsg function when you
open the message.

fieldSelector The message-header field or fields that you want to read. You can
set the fieldSelector field to the values shown in the
description section that follows.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ fieldSelector unsigned short Message header field selector.
→ offset long Offset to header field.
→ count unsigned long The size, in bytes, of the output

buffer.
→ buffer Ptr Pointer to your buffer.
← actualCount unsigned long Number of bytes of data read.
← remaining unsigned long Number of bytes of data

remaining to be read.

C H A P T E R 7

Interprogram Messaging Manager

7-90 IPM Manager Reference

offset The offset to the header field at which you want to start reading. Set
this field to 0 to start reading a header field at the beginning. If the
IPMReadHeader function returns a value in the remaining field,
you can increment the value in the offset field by the value
returned in the actualCount field and call the function again to
continue reading from the header field.

count The size, in bytes, of the buffer you provide.

buffer A pointer to your buffer.

actualCount The number of bytes of data actually written to your buffer.

remaining The number of bytes of data in this header field remaining to be
read.

DESCRIPTION

The IPMReadHeader function returns information about one or more fields of a

message header. If the buffer you provide is not large enough to hold all the data you

request, the function returns, in the remaining parameter, the number of bytes

remaining. You can then increment the value in the offset parameter by the value in

the actualCount parameter and call the function again. You must open the message

with the IPMOpenMsg, IPMOpenHFSMsg, or IPMOpenBlockAsMsg function before you

can call the IPMReadHeader function.

Use the fieldSelector parameter to indicate the field of the message header that you

want to read. You can set this parameter to any of the following values:

enum {

kIPMTOC = 0,

kIPMSender = 1,

kIPMProcessHint = 2,

kIPMMessageTitle = 3,

kIPMMessageType = 4,

kIPMFixedInfo = 7

};

typedef Byte IPMHeaderSelector;

Constant descriptions

kIPMTOC The message table of contents (TOC). The TOC contains information
about each block in the message. The IPMReadHeader function
returns an array of IPMTOC structures, each containing information
about one block. The IPMTOC structure is described on page 7-37.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-91

kIPMSender The sender of the message, in an IPMSender structure. If the
message is authenticated, the IPM Manager fills in this field from
the identity of the originator of the message, and this field provides
the authenticated originator of the message. If the message is not
authenticated, the creator of the message specifies the contents of
this field. The IPMSender structure is described on page 7-40. The
IPMFixedHdrInfo structure (page 7-38) includes an
authenticated field.

kIPMProcessHint
The process hint of the message, which is a Pascal string of up to 32
characters. The value of meaning of the process hint is defined by
the creator of the message.

kIPMMessageTitle
The message title. This title is specified by the creator of the
message and normally indicates the subject, purpose, or content of
the message.

kIPMMessageType
The message type, in an IPMMsgType structure (page 7-28).

kIPMFixedInfo A standard subset of the fields in the header, in an
IPMFixedHdrInfo structure (page 7-38). When you set the
fieldSelector parameter to kIPMFixedInfo, the IPM Manager
ignores the offset and count fields.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMSender structure is described in “Sender Structure” on page 7-39.

The IPMTOC structure is described on page 7-37.

Trap macro Selector

_oceTBDispatch $040E

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

7-92 IPM Manager Reference

The IPMMsgType structure is described on page 7-28.

The IPMFixedHdrInfo structure is described on page 7-38.

IPMReadRecipient

The IPMReadRecipient function reads a recipient from a message header.

pascal OSErr IPMReadRecipient(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message whose recipient data
you want to read. This number is returned by the IPMOpenMsg,
IPMOpenHFSMsg, or IPMOpenBlockAsMsg function when you
open the message.

rcptIndex The index number of the recipient you want to read. Recipient
index numbers are sequential, starting with 1.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ rcptIndex unsigned short Recipient index number.
→ offset long Offset to recipient data.
→ count unsigned long Buffer size.
→ buffer Ptr Pointer to your buffer.
← actualCount unsigned long Number of bytes of data read.
→ reserved short Must be 0.
← remaining unsigned long Number of bytes of data

remaining to be read.
← originalIndex unsigned short Original recipient index.
← OCERecipientOffsetFlags recipientOffsetFlags Recipient-type flags.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-93

offset The offset to the data for the specified recipient at which to start
reading. The first time you call the IPMReadRecipient function
for a given recipient you should set this field to 0. If your buffer is
not large enough to hold all of the recipient data, you can increment
the value in the offset field by the value returned in the
actualCount field and call the function again.

count The size, in bytes, of your buffer.

buffer A pointer to your buffer. The function places the information about
the recipient in your buffer in the form of an
OCEPackedRecipient structure.

actualCount The number of bytes of data the function wrote to your buffer.

reserved Reserved; you must set this field to 0.

remaining The number of bytes of data remaining to be read. If this field
returns a nonzero value, you should increment the value in the
offset field by the value returned in the actualCount field and
call the function again.

originalIndex The index of this recipient in the original recipient list (that is, the
recipient list before the IPM Manager resolves any group addresses).

OCERecipientOffsetFlags
A flag byte that provides information about the recipient.

DESCRIPTION

The IPMReadRecipient function returns recipient information from the header of a

message. If the original message header contained recipient addresses that were groups

or that identified records containing the address of the actual recipient, the

IPMReadRecipient function returns the final recipients of the message.

The OCERecipientOffsetFlags field contains the following bits:

enum {

kIPMFromDistListBit = 0,

kIPMDummyRecBit = 1,

kIPMFeedbackRecBit = 2,

kIPMReporterRecBit = 3,

kIPMBCCRecBit = 4

};

Flag descriptions

kIPMFromDistListBit
Reserved.

kIPMDummyRecBit
If this flag is set to 1, the IPM Manager delivered the message to this
recipient.

kIPMFeedbackRecBit
Reserved.

C H A P T E R 7

Interprogram Messaging Manager

7-94 IPM Manager Reference

kIPMReporterRecBit
Reserved.

kIPMBCCRecBit If this flag is set to 1, this is a “bcc” (blind carbon copy) recipient; in
other words, this recipient is not included in the recipient list
received by the other recipients of the message. You can receive this
flag only if you sent the letter or if you were the bcc recipient.

You can use the following mask values to test these flags:

enum {

kIPMFromDistListMask= 1<<kIPMFromDistListBit,

kIPMDummyRecMask= 1<<kIPMDummyRecBit,

kIPMFeedbackRecMask= 1<<kIPMFeedbackRecBit,

kIPMReporterRecMask= 1<<kIPMReporterRecBit,

kIPMBCCRecMask= 1<<kIPMBCCRecBit

};

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMReadRecipient function places the information about the recipient in your

buffer in the form of an OCEPackedRecipient structure (page 7-25).

Trap macro Selector

_oceTBDispatch $0410

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-95

IPMReadReplyQueue

The IPMReadReplyQueue function reads the reply queue field of the message header.

pascal OSErr IPMReadReplyQueue(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message whose reply queue
data you want to read. This number is returned by the
IPMOpenMsg, IPMOpenHFSMsg, or IPMOpenBlockAsMsg function
when you open the message.

offset The offset to the data at which to start reading. The first time you
call the IPMReadReplyQueue function, you should set this value
to 0. If your buffer is not large enough to hold all of the reply queue
data, you can increment the value in the offset field by the value
returned in the actualCount field and call the function again.

count The size, in bytes, of your buffer.

buffer A pointer to your buffer. The function places the information about
the reply queue in your buffer in the form of an
OCEPackedRecipient structure.

actualCount The number of bytes of data the function wrote to your buffer.

reserved Reserved; you must set this field to 0.

remaining The number of bytes of data remaining to be read. If this field
returns a nonzero value, you should increment the value in the
offset field by the value returned in the actualCount field and
call the function again.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ offset long Offset to reply queue data.
→ count unsigned long Buffer size.
→ buffer Ptr Pointer to your buffer.
← actualCount unsigned long Number of bytes of data read.
→ reserved short Must be 0.
← remaining unsigned long Number of bytes of data remaining

to be read.

C H A P T E R 7

Interprogram Messaging Manager

7-96 IPM Manager Reference

DESCRIPTION

The reply queue is the address to which the IPM Manager returns delivery and

nondelivery reports and to which you should address reply messages.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMReadReplyQueue function places the information about the reply queue in

your buffer in the form of an OCEPackedRecipient structure (page 7-25).

IPMGetBlkIndex

The IPMGetBlkIndex function returns the block type and index value for the first

block encountered that matches the specifications you provide.

pascal OSErr IPMGetBlkIndex(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $0421

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMAttrNotInHdr –15106 No reply queue in message header
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-97

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message from which you
want information. This number is returned by the IPMOpenMsg,
IPMOpenHFSMsg, or IPMOpenBlockAsMsg function when you
open the message.

blockType The creator and type of the block for which you want an index
value. You can use the kIPMTypeWildCard wildcard value for the
creator field, the type field, or both.

index The number of matches the function should find before it returns
the index and type of a block. For example, if you set the index
field to 5, the function returns the index and type of the fifth block it
finds that matches the value you specify in the blockType field.

startingFrom The index number of the block at which to begin the search. Index
numbers start at 1.

actualBlockType
The creator and type of the block that matches all of your search
criteria.

actualBlockIndex
The index number of the block that matches all of your search
criteria.

DESCRIPTION

Each IPM message can contain message blocks. You can use the IPMGetBlkIndex

function to determine the type and creator of each block, or the sequential position

(referred to as the index number) of blocks that have specific types.

If you want to get information about every block in the message, you can specify the

wildcard value kIPMTypeWildCard for the creator and type and call the function

repeatedly, incrementing the value in the startingFrom field each time. If you want to

get information about every block of a specific type or with a specific creator, put that

type or creator in the blockType field and call the function repeatedly, incrementing the

value in the index field each time.

→ ioCompletion ProcPtr Pointer to a completion
routine.

← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ blockType IPMBlockType Block types to return.
→ index unsigned short Number of matches to find

before returning information.
→ startingFrom unsigned short Starting index.
← actualBlockType IPMBlockType Block type of block returned.
← actualBlockIndex unsigned short Index value of block returned.

C H A P T E R 7

Interprogram Messaging Manager

7-98 IPM Manager Reference

If the function does not find any more matches to your criteria, it returns the

kOCEInvalidIndex result code.

You can use the value returned in the actualBlockIndex field to identify a block you

want to read when you call the IPMReadMsg function.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To read a message block, call the IPMReadMsg function, described next.

IPMReadMsg

The IPMReadMsg function reads data from an IPM message.

pascal OSErr IPMReadMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Trap macro Selector

_oceTBDispatch $0418

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMBlkNotFound –15107 Specified block nonexistent
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-99

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message you want to read.
This number is returned by the IPMOpenMsg, IPMOpenHFSMsg, or
IPMOpenBlockAsMsg function when you open the message.

mode The mode in which the offset parameter is to be interpreted. The
function uses this field to determine whether to begin reading data
relative to the end of the last data read, to the beginning of the
block, or to the end of the block. See the discussion following these
field descriptions for details.

offset An offset that the function uses when it calculates the starting point
of the read operation. Set this value to 0 when you start reading a
block from the beginning. See the following discussion for details.

count The size, in bytes, of the buffer that you are providing.

buffer A pointer to your buffer.

actualCount The number of bytes of data actually written to your buffer.

blockIndex The sequential position of the block that you want to read. For
example, if you want to read the tenth block, you set blockIndex
to 10. You can use the IPMGetBlkIndex function to get the creator,
block type, and index number of a block.

If you set the blockIndex field to 0, the IPMReadMsg function
treats all the blocks in the message, including the message header,
as a single unit, ignoring all block boundaries.

remaining The number of bytes of data remaining to be read. If this field
returns a nonzero value, you can increment the value in the offset
field by the value in the actualCount field and call the
IPMReadMsg function again to read the next portion of data.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ mode IPMAccessMode Mode in which the offset should be

interpreted.
→ offset long Offset to the starting point of the

read.
→ count unsigned long Buffer size.
→ buffer Ptr Pointer to your buffer.
← actualCount unsigned long Number of bytes of data read.
→ blockIndex unsigned short Index number of the block to read.
← remaining unsigned long Number of bytes of data remaining

to be read.

C H A P T E R 7

Interprogram Messaging Manager

7-100 IPM Manager Reference

DESCRIPTION

The IPMReadMsg function can treat the entire message body as a single unit (if you set

the blockIndex parameter to 0) or can read a specific message block.

The IPM Manager uses a marker (referred to as the message mark) that points to the

current location within a message that you are reading. After the IPMReadMsg function

completes, the message mark points to the byte following the last byte read.

You use the mode and offset parameters to specify the point in the message at which

the IPMReadMsg function starts reading. The mode parameter indicates whether you

want the IPMReadMsg function to begin reading at the current position of the mark or to

calculate another starting point relative to the beginning of the message, the beginning of

the block, the end of the message, or the current mark location. You can set the mode

parameter to any one of the following values:

enum {

kIPMAtMark,

kIPMFromStart,

kIPMFromLEOM,

kIPMFromMark

};

Constant descriptions

kIPMAtMark The IPMReadMsg function starts reading at the current position of
the mark. In this case, the function ignores the offset value. This
mode is useful, for example, for reading in sequence through a
block.

kIPMFromStart The function interprets the value in the offset parameter as an
offset from the beginning of the block you specify by the
blockIndex parameter. If you specify 0 for the blockIndex
parameter, the function interprets the value in the offset
parameter as an offset from the beginning of the message body.

If you want to start reading at the 100th byte of the second block in
the message, for example, set the blockIndex parameter to 2, the
mode parameter to kIPMFromStart, and the offset parameter to
100. When you use this mode, you cannot set the offset
parameter to a negative value or you will be reading data that is not
part of the message.

kIPMFromLEOM The function interprets the value in the offset parameter as an
offset from the end of the block you specify by the blockIndex
parameter. If you specify 0 for the blockIndex parameter, the
function interprets the value in the offset parameter as an offset
from the end of the message. When you use this mode, the offset
parameter must be a negative value or you will be reading data that
is not part of the message.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-101

kIPMFromMark The function interprets the value in the offset parameter as an
offset from the current position of the mark. Use a negative offset
value to indicate a starting point prior to the current position of the
mark and a positive offset value to indicate a starting point
following the current position of the mark.

A message block that has a creator type of kIPMSignature and a block type of

kIPMEnclosedMsgType contains a nested message. To read the contents of such a

block, first use the IPMOpenBlockAsMsg function to open the nested message and then

use the other functions in this section to read its contents.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the IPMGetBlkIndex function (page 7-96) to get the creator, block type, and index

number of a block.

Use the IPMOpenBlockAsMsg function (page 7-86) to read a block containing a nested

message.

Trap macro Selector

_oceTBDispatch $040D

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be

message
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

7-102 IPM Manager Reference

IPMVerifySignature

The IPMVerifySignature function verifies a digital signature for a message.

pascal OSErr IPMVerifySignature(IPMParamBlockPtr paramBlock);

paramBlock
A pointer to a parameter block.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for a description of

the ioResult field.

Field descriptions

msgRef The message reference number of the message from which you
want information. This number is returned by the IPMOpenMsg,
IPMOpenHFSMsg, or IPMOpenBlockAsMsg function when you
open the message.

signatureContext
The signature context you obtained from the SIGNewContext
function and provided to the SIGVerifyPrepare function.

DESCRIPTION

If the creator of the message used the IPMEndMsg function to add a digital signature to

the message, you can use the IPMVerifySignature function to verify the signature.

You can use the IPMReadHeader function to determine whether a message has a digital

signature. The IPMEndMsg function places the digital signature in a block with a creator

of kIPMSignature and a type of kIPMDigitalSignature.

To verify a signature, use the IPMGetBlkIndex function to get the index number of the

signature block and the IPMReadMsg function to read the signature into a buffer. Then

call the SIGNewContext and SIGVerifyPrepare functions to begin the process of

verifying the signature. When you pass a pointer to the signature context (returned by

the SIGNewContext function) in the signatureContext parameter to the

IPMVerifySignature function, the function verifies the signature.

Note
The signature context used to create a digital signature has no
relationship to the contexts discussed in “Managing Message Queues”
starting on page 7-68 and elsewhere in this chapter. ◆

← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ signatureContext SIGContextPtr Signature context.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-103

Because the IPM Manager modifies some fields in the message header during message

transmission and delivery, not all header fields can be signed. For example, the final

number of recipients, resolution count, and hop count fields are not signed. All message

blocks except the signature block itself are signed.

SPECIAL CONSIDERATIONS

You cannot execute the IPMVerifySignature function asynchronously; therefore, you

can not call this function at interrupt time.

There must also be at least 8.5 KB of stack space available when you call this function.

If you are verifying a digital signature for a large message, the IPMVerifySignature

function can take a long time to complete (up to several minutes on some computers).

You should display a dialog box informing the user of this possibility.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the IPMEndMsg function (page 7-65) to add a digital signature to a message.

You can use the IPMReadHeader function (page 7-89) to determine if a message has

been signed.

Use the IPMGetBlkIndex function (page 7-96) to get the index number of the signature

block and the IPMReadMsg function (page 7-98) to read the signature block.

Digital signatures and the SIGNewContext and SIGVerifyPrepare functions are

discussed in the chapter “Digital Signature Manager” in this book.

Trap macro Selector

_oceTBDispatch $0422

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMBlkNotFound –15107 Specified block nonexistent
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed

C H A P T E R 7

Interprogram Messaging Manager

7-104 IPM Manager Reference

IPMCloseMsg

The IPMCloseMsg function closes a message, invalidating the message reference

number, and can delete the message.

pascal OSErr IPMCloseMsg(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

msgRef The message reference number of the message you want to close.
This number is returned by the IPMOpenMsg, IPMOpenHFSMsg, or
IPMOpenBlockAsMsg function when you open the message.

deleteMsg A Boolean value specifying whether you want to delete the message
after closing it. If you set this field to true for a message in a
message queue, the IPM Manager removes the message from the
physical queue. If you set this field to true for a message that is an
HFS file, the IPM Manager deletes the file. If the message is a nested
message, the IPMCloseMsg function ignores this field.

DESCRIPTION

When you have finished reading information from a message, you should call the

IPMCloseMsg function so that the IPM Manager can release the memory it allocates

when you open a message. You can set the deleteMsg parameter to true to have the

IPM Manager delete the message after it closes it. (The IPMCloseMsg function will

always close a message that was opened through the queue you specify with the

message reference number, but if the same message is also open through another virtual

queue, the function does not delete it. In that case, the function returns the

kIPMEltBusy result code.) If you do not delete the message, it remains in the message

queue or on disk and you can open it again at any time.

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ msgRef IPMMsgRef Message reference number.
→ deleteMsg Boolean Delete the message?

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-105

After you close a message, its message reference number is no longer valid.

You can close a message containing an open nested message; however, you can’t delete

such a message.

When you call the IPMCloseQueue function to close a message queue, the function

automatically closes all of the messages that you opened through that queue’s reference

number. When you call the IPMCloseContext function to close a context, it first closes

all of the messages that you opened for the queues that belong to that context.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the IPMOpenMsg (page 7-82), IPMOpenHFSMsg (page 7-84), or

IPMOpenBlockAsMsg (page 7-86) function to open a message.

The IPMCloseQueue function (page 7-76) closes all the messages associated with a

specific virtual queue. The IPMCloseContext function (page 7-77) closes all the

messages associated with a context.

You can use the IPMDeleteMsgRange function (page 7-106) to delete one or more

messages in a specific virtual queue.

Deleting Messages

You can use the IPMDeleteMsgRange function, described in this section, to delete one

or more messages in a message queue. The IPMCloseMsg function (page 7-104) can

delete a single message after closing it.

Trap macro Selector

_oceTBDispatch $040C

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMEltBusy –15116 Message is in use

C H A P T E R 7

Interprogram Messaging Manager

7-106 IPM Manager Reference

IPMDeleteMsgRange

The IPMDeleteMsgRange function deletes one or more messages from a message

queue.

pascal OSErr IPMDeleteMsgRange(IPMParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A Boolean value that specifies whether the IPM Manager should execute
the function asynchronously. Set this parameter to true for asynchronous
execution.

Parameter block

See “Interprogram Messaging Parameter Block Header” on page 7-40 for descriptions of

the ioCompletion and ioResult fields.

Field descriptions

queueRef The virtual-queue reference number returned by the
IPMOpenQueue function. This number identifies the virtual queue
to which the request applies.

startSeqNum The sequence number of the first message that you want the
function to delete.

endSeqNum The sequence number of the last message that you want the
function to delete.

lastSeqNum The sequence number of the next message that remains in the queue
following the last deleted message.

If the function is unable to delete all of the requested messages, this
field contains the sequence number of the message that the function
was attempting to delete when the error occurred.

DESCRIPTION

The IPMDeleteMsgRange function deletes one or more messages from the physical

message queue. To be deleted, a message must match the current filter for the virtual

queue you specify with the queueRef parameter and have a sequence number falling

within the range you specify with the startSeqNum and endSeqNum parameters. Note

that the sequence numbers are inclusive; for instance, if you set the startSeqNum

→ ioCompletion ProcPtr Pointer to a completion routine.
← ioResult OSErr Result of the function.
→ queueRef IPMQueueRef Queue reference number.
→ startSeqNum IPMSeqNum The starting message sequence number.
→ endSeqNum IPMSeqNum The ending message sequence number.
← lastSeqNum IPMSeqNum The sequence number of the next

message.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-107

parameter to 5 and the endSeqNum parameter to 10, messages with sequence numbers 5

and 10 (if present in the specified virtual queue) are both deleted.

If the function cannot delete a particular message for some reason, the IPM Manager

cancels the function without proceeding any further. In this case, the function returns the

sequence number of the message that it was attempting to delete when the error

occurred and also returns a result code that indicates the error. The

IPMDeleteMsgRange function does not delete a message if it is open through any

virtual queue. If you have closed the message through the virtual queue but still receive

the kIPMEltBusy result code, the message might be open through another virtual

queue. If the message is closed but contains a nested message that is still open, the

function does not delete the message and returns the kIPMEltBusy result code.

Once you have deleted a message, you cannot open it again.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. If you call it asynchronously, you can call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the IPMCloseMsg function (page 7-104) to delete a single message from a

queue.

Utility Functions

You can use the routines in this section to work with OCERecipient structures.

The functions described in this section use a different assembly-language calling

sequence from the other IPM Manager routines (see page 7-43). Listing 7-2 illustrates one

way to do this.

Trap macro Selector

_oceTBDispatch $0415

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
kIPMEltBusy –15116 Message is in use

C H A P T E R 7

Interprogram Messaging Manager

7-108 IPM Manager Reference

Listing 7-2 Calling an MSAM utility function from assembly language

_oceMessaging OPWORD $AA5C

SUBQ #2,A7 ; make room for function result

MOVEA param1,-(SP) ; push the first parameter onto stack

... ; push additional parameters onto stack

MOVEQ asyncFlag, D0 ; move async flag into d0

MOVE.B D0,-(SP) ; push the flag (byte) onto stack

MOVEQ #opCode, D0 ; move op code into d0

MOVE.W D0,-(SP) ; push the op code onto stack

_oceMessaging ; trap call

MOVE.W (SP)+, D0 ; get result code

OCESizePackedRecipient

The OCESizePackedRecipient function computes the number of bytes of memory

needed to hold a packed OCERecipient structure.

pascal unsigned short OCESizePackedRecipient(

const OCERecipient *rcpt);

rcpt A pointer to an OCERecipient structure whose size, when packed, you
want to determine.

DESCRIPTION

The OCESizePackedRecipient function computes the number of bytes required to

hold the information contained in an OCERecipient structure when it is packed. The

number of bytes returned by the OCESizePackedRecipient function includes the

dataLength field of the OCEPackedRecipient structure.

SPECIAL CONSIDERATIONS

The OCESizePackedRecipient function does not pad the value contained in the

extensionSize field of the OCERecipient structure pointed to by the rcpt

parameter. For this reason, the OCESizePackedRecipient function might return an

odd value rather than an even one. Therefore, you need to pad the necessary fields in the

OCERecipient structure yourself before using it as an address for a message or before

passing it to any of the IPM Manager functions that require an OCERecipient structure

of even size.

This function does not purge or move memory.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-109

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The OCERecipient structure is defined on page 7-24.

The OCEPackedRecipient structure is defined on page 7-25.

To pack an OCERecipient structure, use the OCEPackRecipient function, described

next.

OCEPackRecipient

The OCEPackRecipient function forms an OCEPackedRecipient structure from an

OCERecipient structure.

pascal unsigned short OCEPackRecipient(const OCERecipient *rcpt,

void* buffer);

rcpt A pointer to the OCERecipient structure you want to pack.

buffer A pointer to the buffer in which the packed data is placed by the
OCEPackRecipient function. You must allocate this structure.

DESCRIPTION

The OCEPackRecipient function packs the contents of an OCERecipient structure

into an OCEPackedRecipient structure. The OCEPackedRecipient structure must

be large enough to contain the packed RecordID information and any extension value

of the OCERecipient structure. You obtain the buffer size needed by calling the

OCESizePackedRecipient function (page 7-108).

SPECIAL CONSIDERATIONS

This function does not purge or move memory.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The OCERecipient structure is defined on page 7-24.

Trap Selector

_OCEMessaging $033E

Trap macro Selector

_OCEMessaging $033F

C H A P T E R 7

Interprogram Messaging Manager

7-110 IPM Manager Reference

The OCEPackedRecipient structure is defined on page 7-25.

For information on unpacking an OCEPackedRecipient structure, see the

OCEUnpackRecipient function, described next.

OCEUnpackRecipient

The OCEUnpackRecipient function unpacks an OCEPackedRecipient structure.

pascal OSErr OCEUnpackRecipient(const void* buffer,

OCERecipient *rcpt,

RecordID *entitySpecifier);

buffer A pointer to the OCEPackedRecipient structure you want to unpack.

rcpt A pointer to an OCERecipient structure. You must allocate this
structure.

entitySpecifier
A pointer to a RecordID structure. The OCEUnpackRecipient function
extracts the record identifier information from the
OCEPackedRecipient structure and places it in this RecordID
structure. You must allocate this structure.

DESCRIPTION

The OCEUnpackRecipient function extracts the information from an

OCEPackedRecipient structure and places it in an OCERecipient structure and

a RecordID structure. The OCEUnpackRecipient function extracts the record

identifier (if any) and places it in the RecordID structure, places the rest of

the information in the OCERecipient structure, and then sets the entitySpecifier

field of the OCERecipient structure to point to the RecordID structure. The

OCEUnpackRecipient function returns, in the extensionValue field of

the OCERecipient structure, a pointer to the extension (if any), and returns the length

of that extension in the extensionSize field of the OCERecipient structure. If there

is no extension, the OCEUnpackRecipient function sets the extensionValue field of

the OCERecipient structure to nil.

SPECIAL CONSIDERATIONS

This function does not move or purge memory.

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-111

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCERecipient structure is defined on page 7-24.

The OCEPackedRecipient structure is defined on page 7-25.

To pack an OCERecipient structure, see the OCEPackRecipient function

(page 7-109).

OCEStreamRecipient

The OCEStreamRecipient function converts an OCERecipient structure from a

pointer-based structure into a stream of bytes.

pascal OSErr OCEStreamRecipient(const OCERecipient* rcpt,

 OCERecipientStreamer stream,

long userData,

unsigned long* actualCount);

rcpt A pointer to the OCERecipient structure you want to process.

stream A pointer to a stream function that you supply.

userData Data supplied by you that is passed to your stream function. The
userData parameter can contain anything your particular stream
method needs.

actualCount
A pointer to the total number of bytes (streamed out) by the
OCEStreamRecipient function.

DESCRIPTION

The OCEStreamRecipient function converts an OCERecipient structure into a

stream of bytes by calling the stream function that you provide. You can use this function

anytime that you want to write the contents of an OCERecipient structure as a series of

bytes to a file, into a buffer in memory, or any other place.

Trap macro Selector

_OCEMessaging $0340

noErr 0 No error
kOCEParamErr –50 Invalid parameter

C H A P T E R 7

Interprogram Messaging Manager

7-112 IPM Manager Reference

The stream function that you provide contains the specific code that writes out the data.

The OCEStreamRecipient function calls your recipient stream function repeatedly

and passes your function the current portion of the data that needs to be streamed, the

length of this data, an eof flag that is set by the OCEStreamRecipient function if this

is the last of the data to be streamed, and a userData parameter containing any

application-specific data that you define. For example, if you were writing a stream

function that wrote out an OCERecipient structure to a file on a hard disk, you might

want to store a pointer in the userData parameter to a block of data that contains such

information as the filename and size of the file.

If your stream function sends the OCEStreamRecipient function an error in the valid

range for AOCE error codes, OCEStreamRecipient halts execution and returns the

error as its result code.

SPECIAL CONSIDERATIONS

This function does not move or purge memory. However, it calls the recipient stream

function that you supply in the stream parameter, and the stream function could move

memory.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCERecipient structure is defined on page 7-24.

OCESetRecipientType

Given a creation ID, the OCESetRecipientType function sets the extension type of an

OCERecipient structure.

pascal void OCESetRecipientType(OSType extensionType,

CreationID *cid);

extensionType
The type you wish to specify in an OCERecipient structure’s
extensionType field.

Trap macro Selector

_OCEMessaging $0341

noErr 0 No error
kOCEParamErr –50 Invalid parameter

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-113

cid A pointer to a CreationID structure identifying a record. The
OCERecipient structure for that record is the one modified by this
function.

DESCRIPTION

The OCESetRecipientType function sets an OCERecipient structure’s

extensionType field to the value in the extensionType parameter. The

OCERecipient is determined from the specified cid parameter.

If the extensionType field has a value of 'entn', then the cid parameter is assumed

to be a valid extension and is not modified. If the extensionType field’s value is

anything else besides 'entn', then this routine sets the CreationID structure’s

source field to 0.

SPECIAL CONSIDERATIONS

The OCESetRecipientType function does not check whether the cid pointer is set to

nil. Calling this function with the cid parameter set to nil has an indeterminate but

harmful result.

This function does not move or purge memory.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The OCERecipient structure is defined on page 7-24.

To get the extension type of an OCERecipient structure, see the

OCEGetRecipientType function, described next.

OCEGetRecipientType

Given a creation ID, the OCEGetRecipientType function returns the extension type of

an OCERecipient structure.

pascal OSType OCEGetRecipientType(const CreationID *cid);

cid A pointer to a CreationID structure identifying a record. The
OCERecipient structure for that record is the one read by this function.

Trap macro Selector

_OCEMessaging $0343

C H A P T E R 7

Interprogram Messaging Manager

7-114 IPM Manager Reference

DESCRIPTION

If you used the OCESetRecipientType function (page 7-112) to set the extension type

of an OCERecipient structure, you can use the OCEGetExtensionType function to

read the extension type.

SPECIAL CONSIDERATIONS

This function does not purge or move memory.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The OCERecipient structure is defined on page 7-24.

The CreationID structure is defined in the chapter “AOCE Utilities” in this book.

To set the extension type of an OCERecipient structure, see the

OCESetRecipientType function (page 7-112).

Application-Defined Functions

This section describes routines that you can provide to be called by the IPM Manager in

specific circumstances. The MyCompletionRoutine function is a completion routine

called when an IPM Manager routine that you call asynchronously completes execution.

The MyRecipientStreamer function is a stream-processing function that you supply

to the OCEStreamRecipient function.

MyCompletionRoutine

When you call an IPM Manager function asynchronously, you can provide a pointer to a

completion routine.

pascal void MyCompletionRoutine (Ptr paramBlk);

paramBlk A pointer to the parameter block you used when you called the IPM
Manager function.

Trap macro Selector

_OCEMessaging $0342

C H A P T E R 7

Interprogram Messaging Manager

IPM Manager Reference 7-115

Parameter block

Other fields returned depend on the function that called the completion routine; see the

other function descriptions in this chapter for details.

DESCRIPTION

When the IPM Manager function you called asynchronously completes execution, it calls

your completion routine. Your completion routine can check the function result plus any

parameters returned by the function and take appropriate action.

SPECIAL CONSIDERATIONS

The IPM Manager saves the value of your A5 register at the time you call the function

and then restores the A5 value before calling your completion routine.

ASSEMBLY-LANGUAGE INFORMATION

The A0 register contains a pointer to the parameter block. You can look for the result

code either in the ioResult field of the parameter block or in the D0 register.

MyRecipientStreamer

Your recipient stream function provides a method for processing data from the

OCEStreamRecipient function.

pascal OSErr MyRecipientStreamer(void* buffer,

 unsigned long count, Boolean eof,

long userData);

buffer A pointer to the data that your stream method processes. This is supplied
by the OCEStreamRecipient function each time it calls your recipient
stream function.

count The length, in bytes, of the current data in the buffer.

eof A flag that the OCEStreamRecipient function sets when it last calls
your recipient stream function. This flag signals that the
OCEStreamRecipient function has finished processing the
OCERecipient structure.

userData The data that you supply in the userData parameter to the
OCEStreamRecipient function. This data is passed directly to your
recipient stream function.

→ ioResult OSErr Result of the function.

C H A P T E R 7

Interprogram Messaging Manager

7-116 IPM Manager Reference

DESCRIPTION

The OCEStreamRecipient function (page 7-111) calls your recipient stream function to

process the data from an OCERecipient structure in discrete segments. You write this

routine to process the data in the way that you want. The OCEStreamRecipient

function calls your recipient stream function various times and passes your function

progress information as well as the current portion of the OCERecipient to process.

Any errors returned by this function are passed to the OCEStreamRecipient function.

SEE ALSO

The OCERecipient data structure is defined on page 7-24.

The OCEStreamRecipient function is described on page 7-111.

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-117

Summary of the IPM Manager

C Summary

Constants and Data Types

/* values of IPMPriority */

enum {

kIPMAnyPriority = 0,

kIPMNormalPriority = 1,

kIPMLowPriority,

kIPMHighPriority

};

typedef Byte IPMPriority;

/* values of IPMAccessMode */

enum {

kIPMAtMark,

kIPMFromStart,

kIPMFromLEOM,

kIPMFromMark

};

typedef unsigned short IPMAccessMode;

enum {

kIPMUpdateMsgBit = 4,

kIPMNewMsgBit = 5,

kIPMDeleteMsgBit = 6

};

/* values of IPMNotificationType */

enum {

kIPMUpdateMsgMask = 1<<kIPMUpdateMsgBit,

kIPMNewMsgMask = 1<<kIPMNewMsgBit,

kIPMDeleteMsgMask = 1<<kIPMDeleteMsgBit

C H A P T E R 7

Interprogram Messaging Manager

7-118 Summary of the IPM Manager

};

typedef Byte IPMNotificationType;

/* values of IPMSenderTag */

enum {

kIPMSenderRStringTag,

kIPMSenderRecordIDTag

};

typedef unsigned short IPMSenderTag;

enum {

kIPMFromDistListBit = 0,

kIPMDummyRecBit = 1,

kIPMFeedbackRecBit = 2,

kIPMReporterRecBit = 3,

kIPMBCCRecBit = 4

};

/* values of OCERecipientOffsetFlags */

enum {

kIPMFromDistListMask = 1<<kIPMFromDistListBit,

kIPMDummyRecMask = 1<<kIPMDummyRecBit,

kIPMFeedbackRecMask = 1<<kIPMFeedbackRecBit,

kIPMReporterRecMask = 1<<kIPMReporterRecBit,

kIPMBCCRecMask = 1<<kIPMBCCRecBit

};

typedef Byte OCERecipientOffsetFlags;

#define kIPMTypeWildCard 'ipmw'

#define kIPMFamilyUnspecified 0

#define kIPMFamilyWildCard 0x3F3F3F3FL /* '????' */

/* well-known signature */

#define kIPMSignature 'ipms' /* base type */

/* well-known message types */

#define kIPMReportNotify 'rptn' /* routing feedback */

/* well-known message block types */

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-119

#define kIPMEnclosedMsgType 'emsg' /* enclosed (nested) message */

#define kIPMReportInfo 'rpti' /* recipient information */

#define kIPMDigitalSignature 'dsig' /* digital signature */

/* values of IPMMsgFormat */

enum {

kIPMOSFormatType = 1,

kIPMStringFormatType = 2

};

typedef unsigned short IPMMsgFormat;

/*

Following are the known extension values for IPM addresses handled by Apple

Computer, Inc.

*/

enum {

kOCEalanXtn= 'alan',

kOCEentnXtn= 'entn', /* 'entn' = entity name (aka DSSpec) */

kOCEaphnXtn= 'aphn'

};

/* 'entn' extension forms */

enum {

kOCEAddrXtn= 'addr', /* reserved */

kOCEQnamXtn= 'qnam', /* queue-name form */

kOCEAttrXtn= 'attr', /* an attribute specification */

kOCESpAtXtn= 'spat' /* specific attribute */

};

/* phoneNumber subtype constants */

enum {

kOCEUseHandyDial = 1,

kOCEDontUseHandyDial = 2

};

/* addresses with kIPMNBPXtn should specify this nbp type */

#define kIPMWSReceiverNBPType "\pMsgReceiver"

/* values of IPMHeaderSelector */

enum {

kIPMTOC = 0,

kIPMSender = 1,

kIPMProcessHint = 2,

C H A P T E R 7

Interprogram Messaging Manager

7-120 Summary of the IPM Manager

kIPMMessageTitle = 3,

kIPMMessageType = 4,

kIPMFixedInfo = 7

};

typedef Byte IPMHeaderSelector;

enum {

kIPMDeliveryNotificationBit = 0,

kIPMNonDeliveryNotificationBit = 1,

kIPMEncloseOriginalBit = 2,

kIPMSummaryReportBit = 3,

kIPMOriginalOnlyOnErrorBit = 4

};

typedef Byte IPMNotificationType;

enum {

kIPMNoNotificationMask = 0x00,

kIPMDeliveryNotificationMask = 1<<kIPMDeliveryNotificationBit,

kIPMNonDeliveryNotificationMask = 1<<kIPMNonDeliveryNotificationBit,

kIPMDontEncloseOriginalMask = 0x00,

kIPMEncloseOriginalMask = 1<<kIPMEncloseOriginalBit,

kIPMImmediateReportMask = 0x00,

kIPMSummaryReportMask = 1<<kIPMSummaryReportBit,

kIPMOriginalOnlyOnErrorMask = 1<<kIPMOriginalOnlyOnErrorBit,

kIPMEncloseOriginalOnErrorMask =

(kIPMOriginalOnlyOnErrorMask|kIPMEncloseOriginalMask)

};

/* standard nondelivery codes */

enum {

kIPMNoSuchRecipient = 0x0001,

kIPMRecipientMalformed = 0x0002,

kIPMRecipientAmbiguous = 0x0003,

kIPMRecipientAccessDenied = 0x0004,

kIPMGroupExpansionProblem = 0x0005,

kIPMMsgUnreadable = 0x0006,

kIPMMsgExpired = 0x0007,

kIPMMsgNoTranslatableContent = 0x0008,

kIPMRecipientReqStdCont = 0x0009,

kIPMRecipientReqSnapShot = 0x000A,

kIPMNoTransferDiskFull = 0x000B,

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-121

kIPMNoTransferMsgRejectedbyDest = 0x000C,

kIPMNoTransferMsgTooLarge = 0x000D

};

typedef unsigned long IPMContextRef;

typedef unsigned long IPMQueueRef;

typedef unsigned long IPMMsgRef;

typedef unsigned long IPMSeqNum;

typedef Str32 IPMProcHint;

typedef Str32 IPMQueueName;

typedef OCECreatorType IPMBlockType;

Message Addressing Structures

typedef DSSpec OCERecipient;

/* format of a packed form recipient */

#define OCEPackedRecipientHeader\

unsigned short dataLength;

struct ProtoOCEPackedRecipient {

OCEPackedRecipientHeader

};

typedef struct ProtoOCEPackedRecipient ProtoOCEPackedRecipient;

define kOCEPackedRecipientMAXBYTES (4096 - sizeof(ProtoOCEPackedRecipient))

struct OCEPackedRecipient {

OCEPackedRecipientHeader

Byte data[kOCEPackedRecipientMaxBytes];

};

typedef struct OCEPackedRecipient OCEPackedRecipient;

struct IPMEntnQueueExtension {

Str32 queueName;

};

typedef struct IPMEntnQueueExtension IPMEntnQueueExtension;

C H A P T E R 7

Interprogram Messaging Manager

7-122 Summary of the IPM Manager

struct IPMEntnAttributeExtension {/* kOCEAttrXtn */

AttributeType attributeName;

};

typedef struct IPMEntnAttributeExtension IPMEntnAttributeExtension;

struct IPMEntnSpecificAttributeExtension { /* reserved */

AttributeCreationID attributeCreationID;

AttributeType attributeName;

};

typedef struct IPMEntnSpecificAttributeExtension

IPMEntnSpecificAttributeExtension;

struct IPMEntityNameExtension {

OSType subExtensionType;

union {

IPMEntnSpecificAttributeExtension specificAttribute;

IPMEntnAttributeExtension attribute;

IPMEntnQueueExtension queue;

} u;

};

typedef struct IPMEntityNameExtension IPMEntityNameExtension;

Message and Block Types

struct OCECreatorType {

OSType msgCreator;

OSType msgType;

};

typedef struct OCECreatorType OCECreatorType;

typedef Str32 IPMStringMsgType;

struct IPMMsgType {

IPMMsgFormat format;/* IPMMsgFormat*/

union{

OCECreatorType msgOSType;

IPMStringMsgType msgStrType;

}theType;

};

typedef struct IPMMsgType IPMMsgType;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-123

Delivery Notification

struct IPMMsgID {

unsigned long id[4];

};

typedef struct IPMMsgID IPMMsgID;

struct IPMReportBlockHeader {

IPMMsgID msgID; /* message ID of the original */

UTCTime creationTime; /* creation time of the report */

};

typedef struct IPMReportBlockHeader IPMReportBlockHeader;

struct OCERecipientReport {

unsigned short rcptIndex; /* index of recipient in original message */

OSErr result; /* result of sending letter to recipient */

};

typedef struct OCERecipientReport OCERecipientReport;

Filter Structures

struct IPMSingleFilter { /* each field should be packed and word aligned */

IPMPriority priority;

Byte padByte;

OSType family; /* family of this msg, '????' for all */

ScriptCode script; /* language identifier */

IPMProcHint hint;

IPMMsgType msgType;

};

typedef struct IPMSingleFilter IPMSingleFilter;

struct IPMFilter {

unsigned short count;

IPMSingleFilter sFilters[1];

};

typedef struct IPMFilter IPMFilter;

Message Information Structure

struct IPMMsgInfo { /* master message info */

IPMSeqNum sequenceNum;

unsigned long userData;

unsigned short respIndex;

C H A P T E R 7

Interprogram Messaging Manager

7-124 Summary of the IPM Manager

Byte padByte;

IPMPriority priority;

unsigned long msgSize;

unsigned short originalRcptCount;

unsigned short reserved;

UTCTime creationTime;

IPMMsgID msgID;

OSType family; /* family of this msg (e.g., mail) */

IPMProcHint procHint; /* packed and even-length padded */

IPMMsgType msgType; /* packed and even-length padded */

};

typedef struct IPMMsgInfo IPMMsgInfo;

Header Information Structures

struct IPMTOC {

IPMBlockType blockType;

long blockOffset;

unsigned long blockSize;

unsigned long blockRefCon;

};

typedef struct IPMTOC IPMTOC;

struct IPMFixedHdrInfo {

unsigned short version; /* IPM Manager version */

Boolean authenticated; /* was message authenticated? */

Boolean signatureEnclosed;/* digital signature enclosed? */

unsigned long msgSize; /* size of message */

IPMNotificationType notification; /* notification type requested */

IPMPriority priority; /* message priority */

unsigned short blockCount; /* number of blocks */

unsigned short originalRcptCount;/* original number of recipients */

unsigned long refCon; /* application-defined data */

unsigned short reserved; /* reserved */

UTCTime creationTime; /* message creation time */

IPMMsgID msgID; /* message ID */

OSType family; /* family of this msg */

};

Sender Structure

struct IPMSender {

IPMSenderTag sendTag;

union{

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-125

RString rString;

PackedRecordID rid;

} theSender;

};

typedef struct IPMSender IPMSender;

Parameter Block Header

#define IPMParamHeader \

Ptr qLink; \

long reservedH1; \

long reservedH2; \

ProcPtr ioCompletion; \

OSErr ioResult; \

long saveA5; \

short reqCode;

Parameter Blocks for Creating a New Message

struct IPMNewMsgPB {

IPMParamHeader

unsigned long filler;

OCERecipient* recipient;

OCERecipient* replyQueue;

StringPtr procHint;

unsigned short filler2;

IPMMsgType* msgType;

unsigned long refCon;

IPMMsgRef newMsgRef;

unsigned short filler3;

long filler4;

AuthIdentity identity;

IPMSender* sender;

unsigned long internalUse;

unsigned long internalUse2;

};

typedef struct IPMNewMsgPB IPMNewMsgPB;

struct IPMNewHFSMsgPB {

IPMParamHeader

FSSpec* hfsPath;

OCERecipient* recipient;

OCERecipient* replyQueue;

StringPtr procHint;

C H A P T E R 7

Interprogram Messaging Manager

7-126 Summary of the IPM Manager

unsigned short filler2;

IPMMsgType* msgType;

unsigned long refCon;

IPMMsgRef newMsgRef;

unsigned short filler3;

long filler4;

AuthIdentity identity;

IPMSender* sender;

unsigned long internalUse;

unsigned long internalUse2;

};

typedef struct IPMNewHFSMsgPB IPMNewHFSMsgPB;

typedef struct IPMAddRecipientPB {

IPMParamHeader

IPMMsgRef msgRef;

OCERecipient* recipient;

long reserved;

};

typedef struct IPMAddRecipientPB IPMAddRecipientPB;

struct IPMAddReplyQueuePB {

IPMParamHeader

IPMMsgRef msgRef;

long filler;

OCERecipient* replyQueue;

};

typedef struct IPMAddReplyQueuePB IPMAddReplyQueuePB;

struct IPMNewBlockPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMBlockType blockType;

unsigned short filler[5];

unsigned long refCon;

unsigned short filler2[3];

long startingOffset;

};

typedef struct IPMNewBlockPB IPMNewBlockPB;

struct IPMNewNestedMsgBlockPB {

IPMParamHeader

IPMMsgRef msgRef;

OCERecipient* recipient;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-127

OCERecipient* replyQueue;

StringPtr procHint;

unsigned short filler1;

IPMMsgType* msgType;

unsigned long refCon;

IPMMsgRef newMsgRef;

unsigned short filler2;

long startingOffset;

AuthIdentity identity;

IPMSender* sender;

unsigned long internalUse;

unsigned long internalUse2;

};

typedef struct IPMNewNestedMsgBlockPB IPMNewNestedMsgBlockPB;

struct IPMNestMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

unsigned short filler[9];

unsigned long refCon;

IPMMsgRef msgToNest;

unsigned short filler2;

long startingOffset;

};

typedef struct IPMNestMsgPB IPMNestMsgPB;

struct IPMWriteMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMAccessMode mode;

long offset;

unsigned long count;

Ptr buffer;

unsigned long actualCount;

Boolean currentBlock;

};

typedef struct IPMWriteMsgPB IPMWriteMsgPB;

struct IPMEndMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMMsgID msgID;

RString* msgTitle;

IPMNotificationType deliveryNotification;

C H A P T E R 7

Interprogram Messaging Manager

7-128 Summary of the IPM Manager

IPMPriority priority;

Boolean cancel;

Byte padByte;

long reserved;

SIGSignaturePtr signature;

Size signatureSize;

SIGContextPtr signatureContext;

OSType family; /* family of this msg

 use kIPMFamilyUnspecified by default */

};

typedef struct IPMEndMsgPB IPMEndMsgPB;

Parameter Blocks for Managing Message Queues

struct IPMCreateQueuePB {

IPMParamHeader

long filler1;

OCERecipient* queue;

AuthIdentity identity;/* used only if queue is remote */

PackedRecordID* owner; /* used only if queue is remote */

};

typedef struct IPMCreateQueuePB IPMCreateQueuePB;

struct IPMOpenContextPB {

IPMParamHeader

IPMContextRef contextRef;

};

typedef struct IPMOpenContextPB IPMOpenContextPB;

struct IPMOpenQueuePB {

IPMParamHeader

IPMContextRef contextRef;

OCERecipient* queue;

AuthIdentity identity;

IPMFilter* filter;

IPMQueueRef newQueueRef;

IPMNoteProcPtr notificationProc; /* must be nil */

unsigned long userData; /* reserved */

IPMNotificationType noteType; /* reserved */

Byte padByte; /* reserved */

long reserved;

long reserved2;

};

typedef struct IPMOpenQueuePB IPMOpenQueuePB;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-129

typedef IPMEnumerateQueuePB IPMChangeQueueFilterPB;

typedef IPMOpenContextPB IPMCloseContextPB;

struct IPMCloseQueuePB {

IPMParamHeader

IPMQueueRef queueRef;

};

typedef struct IPMCloseQueuePB IPMCloseQueuePB;

typedef IPMCreateQueuePB IPMDeleteQueuePB;

Parameter Blocks for Listing and Reading Messages

struct IPMEnumerateQueuePB {

IPMParamHeader

IPMQueueRef queueRef;

IPMSeqNum startSeqNum;

Boolean getProcHint;

Boolean getMsgType;

short filler;

IPMFilter* filter;

unsigned short numToGet;

unsigned short numGotten;

unsigned long enumCount;

Ptr enumBuffer; /* will be packed array of IPMMsgInfo */

unsigned long actEnumCount;

};

typedef struct IPMEnumerateQueuePB IPMEnumerateQueuePB;

struct IPMOpenMsgPB {

IPMParamHeader

IPMQueueRef queueRef;

IPMSeqNum sequenceNum;

IPMMsgRef newMsgRef;

IPMSeqNum actualSeqNum;

Boolean exactMatch;

Byte padByte;

long reserved;

};

typedef struct IPMOpenMsgPB IPMOpenMsgPB;

struct IPMOpenHFSMsgPB {

IPMParamHeader

FSSpec* hfsPath;

C H A P T E R 7

Interprogram Messaging Manager

7-130 Summary of the IPM Manager

long filler;

IPMMsgRef newMsgRef;

long filler2;

Byte filler3;

long reserved;

};

typedef struct IPMOpenHFSMsgPB IPMOpenHFSMsgPB;

struct IPMOpenBlockAsMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

unsigned long filler;

IPMMsgRef newMsgRef;

unsigned short filler2[7];

unsigned short blockIndex;

};

typedef struct IPMOpenBlockAsMsgPB IPMOpenBlockAsMsgPB;

struct IPMGetMsgInfoPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMMsgInfo* info;

};

typedef struct IPMGetMsgInfoPB IPMGetMsgInfoPB;

struct IPMReadHeaderPB {

IPMParamHeader

IPMMsgRef msgRef;

unsigned short fieldSelector;

long offset;

unsigned long count;

Ptr buffer;

unsigned long actualCount;

unsigned short filler;

unsigned long remaining;

};

typedef struct IPMReadHeaderPB IPMReadHeaderPB;

struct IPMReadRecipientPB {

IPMParamHeader

IPMMsgRef msgRef;

unsigned short rcptIndex;

long offset;

unsigned long count;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-131

Ptr buffer;

unsigned long actualCount;

short reserved; /* must be 0 */

unsigned long remaining;

unsigned short originalIndex;

OCERecipientOffsetFlags recipientOffsetFlags;

};

typedef struct IPMReadRecipientPB IPMReadRecipientPB;

typedef IPMReadRecipientPB IPMReadReplyQueuePB;

struct IPMGetBlkIndexPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMBlockType blockType;

unsigned short index;

unsigned short startingFrom;

IPMBlockType actualBlockType;

unsigned short actualBlockIndex;

};

typedef struct IPMGetBlkIndexPB IPMGetBlkIndexPB;

struct IPMReadMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

IPMAccessMode mode;

long offset;

unsigned long count;

Ptr buffer;

unsigned long actualCount;

unsigned short blockIndex;

unsigned long remaining;

};

typedef struct IPMReadMsgPB IPMReadMsgPB;

struct IPMVerifySignaturePB {

IPMParamHeader

IPMMsgRef msgRef;

SIGContextPtr signatureContext;

};

typedef struct IPMVerifySignaturePB IPMVerifySignaturePB;

C H A P T E R 7

Interprogram Messaging Manager

7-132 Summary of the IPM Manager

struct IPMCloseMsgPB {

IPMParamHeader

IPMMsgRef msgRef;

Boolean deleteMsg;

};

typedef struct IPMCloseMsgPB IPMCloseMsgPB;

Parameter Block for Deleting Messages

struct IPMDeleteMsgRangePB {

IPMParamHeader

IPMQueueRef queueRef;

IPMSeqNum startSeqNum;

IPMSeqNum endSeqNum;

IPMSeqNum lastSeqNum;

};

typedef struct IPMDeleteMsgRangePB IPMDeleteMsgRangePB;

Parameter Block Union Structure

union IPMParamBlock {

struct {IPMParamHeader} header;

IPMOpenContextPB openContextPB;

IPMCloseContextPB closeContextPB;

IPMCreateQueuePB createQueuePB;

IPMDeleteQueuePB deleteQueuePB;

IPMOpenQueuePB openQueuePB;

IPMCloseQueuePB closeQueuePB;

IPMEnumerateQueuePB enumerateQueuePB;

IPMChangeQueueFilterPB changeQueueFilterPB;

IPMDeleteMsgRangePB deleteMsgRangePB;

IPMOpenMsgPB openMsgPB;

IPMOpenHFSMsgPB openHFSMsgPB;

IPMOpenBlockAsMsgPB openBlockAsMsgPB;

IPMCloseMsgPB closeMsgPB;

IPMGetMsgInfoPB getMsgInfoPB;

IPMReadHeaderPB readHeaderPB;

IPMReadRecipientPB readRecipientPB;

IPMReadReplyQueuePB readReplyQueuePB;

IPMGetBlkIndexPB getBlkIndexPB;

IPMReadMsgPB readMsgPB;

IPMVerifySignaturePB verifySignaturePB;

IPMNewMsgPB newMsgPB;

IPMNewHFSMsgPB newHFSMsgPB;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-133

IPMNestMsgPB nestMsgPB;

IPMNewNestedMsgBlockPB newNestedMsgBlockPB;

IPMEndMsgPB endMsgPB;

IPMAddRecipientPB addRecipientPB;

IPMAddReplyQueuePB addReplyQueuePB;

IPMNewBlockPB newBlockPB;

IPMWriteMsgPB writeMsgPB;

};

typedef union IPMParamBlock IPMParamBlock;

typedef IPMParamBlock *IPMParamBlockPtr;

IPM Manager Functions

Creating a New Message

pascal OSErr IPMNewMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMNewHFSMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMAddRecipient
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMAddReplyQueue
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMNewBlock (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMNewNestedMsgBlock
(IPMParamBlockPtr paramBlock,
Boolean async);

pascal OSErr IPMNestMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMWriteMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMEndMsg (IPMParamBlockPtr paramBlock, Boolean async);

Managing Message Queues

pascal OSErr IPMCreateQueue
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenContext
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenQueue (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMChangeQueueFilter
(IPMParamBlockPtr paramBlock,
Boolean async);

pascal OSErr IPMCloseQueue (IPMParamBlockPtr paramBlock, Boolean async);

C H A P T E R 7

Interprogram Messaging Manager

7-134 Summary of the IPM Manager

pascal OSErr IPMCloseContext
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMDeleteQueue
(IPMParamBlockPtr paramBlock, Boolean async);

Listing and Reading Messages

pascal OSErr IPMEnumerateQueue
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenHFSMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMOpenBlockAsMsg
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMGetMsgInfo (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMReadHeader
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMReadRecipient
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMReadReplyQueue
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMGetBlkIndex
(IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMReadMsg (IPMParamBlockPtr paramBlock, Boolean async);

pascal OSErr IPMVerifySignature
(IPMParamBlockPtr paramBlock);

pascal OSErr IPMCloseMsg (IPMParamBlockPtr paramBlock, Boolean async);

Deleting Messages

pascal OSErr IPMDeleteMsgRange
(IPMParamBlockPtr paramBlock, Boolean async);

Utility Functions

pascal unsigned short OCESizePackedRecipient
(const OCERecipient *rcpt);

pascal unsigned short OCEPackRecipient
(const OCERecipient *rcpt, void* buffer);

pascal OSErr OCEUnpackRecipient
(const void* buffer, OCERecipient *rcpt,
RecordID *entitySpecifier);

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-135

pascal OSErr OCEStreamRecipient
(const OCERecipient* rcpt, OCERecipientStreamer
stream, long userData, unsigned long*
actualCount);

pascal OSType OCEGetRecipientType
(const CreationID *cid);

pascal void OCESetRecipientType
(OSType extensionType, CreationID *cid);

Application-Defined Functions

pascal void MyCompletionRoutine
(Ptr paramBlk);

pascal OSErr MyRecipientStreamer
(void* buffer, unsigned long count,
Boolean eof, long userData);

Pascal Summary

Constants

CONST

{ values of IPMPriority }

kIPMAnyPriority = 0; { for filter only}

kIPMNormalPriority = 1;

{ values of IPMAccessMode }

kIPMAtMark = 0;

kIPMFromStart = 1;

kIPMFromLEOM = 2;

kIPMFromMark = 3;

kIPMUpdateMsgBit = 4;

kIPMNewMsgBit = 5;

kIPMDeleteMsgBit = 6;

{ values of IPMNotificationType }

kIPMUpdateMsgMask = $10; {1<<kIPMUpdateMsgBit}

kIPMNewMsgMask = $20; {1<<kIPMNewMsgBit}

kIPMDeleteMsgMask = $40; {1<<kIPMDeleteMsgBit}

C H A P T E R 7

Interprogram Messaging Manager

7-136 Summary of the IPM Manager

{ values of IPMSenderTag }

kIPMSenderRStringTag = 0;

kIPMSenderRecordIDTag = 1;

kIPMFromDistListBit = 0;

kIPMDummyRecBit = 1;

kIPMFeedbackRecBit = 2; { redirect to feedback queue }

kIPMReporterRecBit = 3 { redirect to reporter original

 queue }

kIPMBCCRecBit = 4; { this recipient is blind to all

 recipients of message }

{ values of OCERecipientOffsetFlags }

kIPMFromDistListMask = $01; {1<<kIPMFromDistListBit}

kIPMDummyRecMask = $02; {1<<kIPMDummyRecBit}

kIPMFeedbackRecMask = $04; {1<<kIPMFeedbackRecBit}

kIPMReporterRecMask = $08; {1<<kIPMReporterRecBit}

kIPMBCCRecMask = $10; {1<<kIPMBCCRecBit}

kIPMTypeWildCard = 'ipmw';

kIPMFamilyUnspecified = 0;

kIPMFamilyWildCard = '????';

{ well known signature }

kIPMSignature = 'ipms';{ base type }

{ well known message types }

kIPMReportNotify = 'rptn';{ routing feedback }

{ well known message block types }

kIPMEnclosedMsgType = 'emsg';{ enclosed (nested) message }

kIPMReportInfo = 'rpti';{ recipient information }

kIPMDigitalSignature = 'dsig';{ digital signature }

{ values of IPMMsgFormat }

kIPMOSFormatType = 1;

kIPMStringFormatType = 2;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-137

{Following are the known extension values for IPM addresses handled by

Apple Computer, Inc.}

kOCEalanXtn = 'alan';

kOCEentnXtn = 'entn';{ 'entn' = entity name

(DSSpec: aka) }

kOCEaphnXtn = 'aphn';

{ 'entn' extension forms }

kOCEAddrXtn = 'addr';{ reserved }

kOCEQnamXtn = 'qnam';{queue-name form }

kOCEAttrXtn = 'attr';{ an attribute specification }

kOCESpAtXtn = 'spat';{ specific attribute }

{ phoneNumber subtype constants }

kOCEUseHandyDial = 1;

kOCEDontUseHandyDial = 2;

kOCEPackedRecipientMaxBytes =

(4096 - sizeof(ProtoOCEPackedRecipient));

{ addresses with kIPMNBPXtn should specify this nbp type }

kIPMWSReceiverNBPType = 'MsgReceiver';

{ values of IPMHeaderSelector }

kIPMTOC = 0;

kIPMSender = 1;

kIPMProcessHint = 2;

kIPMMessageTitle = 3;

kIPMMessageType = 4;

kIPMFixedInfo = 7;

kIPMDeliveryNotificationBit = 0;

kIPMNonDeliveryNotificationBit = 1;

kIPMEncloseOriginalBit = 2;

kIPMSummaryReportBit = 3;

kIPMOriginalOnlyOnErrorBit = 4;

kIPMNoNotificationMask = $00;

kIPMDeliveryNotificationMask = $01; {1<<kIPMDeliveryNotificationBit}

kIPMNonDeliveryNotificationMask = $02;

{1<<kIPMNonDeliveryNotificationBit}

kIPMDontEncloseOriginalMask = $00;

kIPMEncloseOriginalMask = $04; {1<<kIPMEncloseOriginalBit}

kIPMImmediateReportMask = $00;

C H A P T E R 7

Interprogram Messaging Manager

7-138 Summary of the IPM Manager

kIPMSummaryReportMask = $08; {1<<kIPMSummaryReportBit}

kIPMOriginalOnlyOnErrorMask = $10; {1<<kIPMOriginalOnlyOnErrorBit}

kIPMEncloseOriginalOnErrorMask =

kIPMOriginalOnlyOnErrorMask + kIPMEncloseOriginalMask;

{ standard Nondelivery codes }

kIPMNoSuchRecipient = $0001;

kIPMRecipientMalformed = $0002;

kIPMRecipientAmbiguous = $0003;

kIPMRecipientAccessDenied = $0004;

kIPMGroupExpansionProblem = $0005;

kIPMMsgUnreadable = $0006;

kIPMMsgExpired = $0007;

kIPMMsgNoTranslatableContent = $0008;

kIPMRecipientReqStdCont = $0009;

kIPMRecipientReqSnapShot = $000A;

kIPMNoTransferDiskFull = $000B;

kIPMNoTransferMsgRejectedbyDest = $000C;

kIPMNoTransferMsgTooLarge = $000D;

Data Types

TYPE

IPMPriority = Byte;

IPMAccessMode = INTEGER;

IPMNotificationType = Byte;

IPMSenderTag = INTEGER;

OCERecipientOffsetFlags = Byte;

IPMMsgFormat = INTEGER;

IPMHeaderSelector = Byte;

IPMContextRef = LONGINT;

IPMQueueRef = LONGINT;

IPMMsgRef = LONGINT;

IPMSeqNum = LONGINT;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-139

IPMProcHint = Str32;

IPMQueueName = Str32;

IPMBlockType = OCECreatorType;

Message Addressing Structures

OCERecipient = DSSpec;

ProtoOCEPackedRecipient = RECORD

dataLength: INTEGER;

END;

OCEPackedRecipient = RECORD

dataLength: INTEGER;

data: PACKED ARRAY[1..kOCEPackedRecipientMaxBytes] OF Byte;

END;

OCEPackedRecipientPtr = ^OCEPackedRecipient;

IPMEntnQueueExtension = RECORD

queueName: Str32;

END;

IPMEntnAttributeExtension = RECORD{ kOCEAttrXtn }

attributeName: AttributeType;

END;

IPMEntnSpecificAttributeExtension = RECORD{ kOCESpAtXtn }

attributeCreationID: AttributeCreationID;

attributeName: AttributeType;

END;

IPMEntityNameExtension = RECORD

subExtensionType: OSType;

CASE INTEGER OF

1: (specificAttribute: IPMEntnSpecificAttributeExtension);

2: (attribute: IPMEntnAttributeExtension);

3: (queue: IPMEntnQueueExtension);

END;

C H A P T E R 7

Interprogram Messaging Manager

7-140 Summary of the IPM Manager

Message and Block Types

OCECreatorType = RECORD

msgCreator: OSType;

msgType: OSType;

END;

IPMStringMsgType = Str32;

IPMMsgType = RECORD

format: IPMMsgFormat;{ IPMMsgFormat}

CASE INTEGER OF

1: (msgOSType: OCECreatorType);

2: (msgStrType: IPMStringMsgType);

END;

Delivery Notification Structures

IPMMsgID = RECORD

id: ARRAY[1..4] OF LONGINT;

END;

IPMReportBlockHeader = RECORD

msgID: IPMMsgID;{ message ID of the original }

creationTime: UTCTime;{ creation time of the report }

END;

OCERecipientReport = RECORD

rcptIndex: INTEGER;{ index of recipient in original message }

result: OSErr; { result of sending letter to this recipient}

END;

Filter Structures

IPMSingleFilter = PACKED RECORD

priority: IPMPriority;

padByte: Byte;

family: OSType; { family of this msg, '????' for all }

script: ScriptCode; { language identifier }

hint: IPMProcHint;

msgType: IPMMsgType;

END;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-141

IPMFilter = RECORD

count: INTEGER;

sFilters: ARRAY[1..1] OF IPMSingleFilter;

END;

Message Information Structure

IPMMsgInfo = PACKED RECORD

sequenceNum: IPMSeqNum;

userData: LONGINT;

respIndex: INTEGER;

padByte: Byte;

priority: IPMPriority;

msgSize: LONGINT;

originalRcptCount: INTEGER;

reserved: INTEGER;

creationTime: UTCTime;

msgID: IPMMsgID;

family: OSType; { family of this msg

 (e.g. mail) }

procHint: IPMProcHint; { packed and even-length padded }

msgType: IPMMsgType; { packed and even-length padded }

END;

Header Information Structures

IPMTOC = RECORD

blockType: IPMBlockType;

blockOffset: LONGINT;

blockSize: LONGINT;

blockRefCon: LONGINT;

END;

IPMFixedHdrInfo = PACKED RECORD

version: INTEGER; { IPM Manager version }

authenticated: BOOLEAN; { was message authenticated? }

signatureEnclosed: BOOLEAN; { digital signature enclosed? }

msgSize: LONGINT; { size of message }

notification: IPMNotificationType;{ notification type requested }

priority: IPMPriority; { message priority }

blockCount: INTEGER; { number of blocks }

originalRcptCount: INTEGER; { original number of recipients }

refCon: LONGINT; { application-defined data }

reserved: INTEGER; { reserved }

C H A P T E R 7

Interprogram Messaging Manager

7-142 Summary of the IPM Manager

creationTime: UTCTime; { message creation time }

msgID: IPMMsgID; { message ID }

family: OSType; { family of this msg }

END;

Sender Structure

IPMSender = RECORD

sendTag: IPMSenderTag;

CASE INTEGER OF

1: (rString: RString);

2: (rid: PackedRecordID);

END;

Parameter Block Header

IPMParamHeader = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

END;

Parameter Blocks for Creating a New Message

IPMNewMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

filler: LONGINT;

recipient: ^OCERecipient;

replyQueue: ^OCERecipient;

procHint: StringPtr;

filler2: INTEGER;

msgType: ^IPMMsgType;

refCon: LONGINT;

newMsgRef: IPMMsgRef;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-143

filler3: INTEGER;

filler4: LONGINT;

identity: AuthIdentity;

sender: ^IPMSender;

internalUse: LONGINT;

internalUse2: LONGINT;

END;

IPMNewHFSMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

hfsPath: ^FSSpec;

recipient: ^OCERecipient;

replyQueue: ^OCERecipient;

procHint: StringPtr;

filler2: INTEGER;

msgType: ^IPMMsgType;

refCon: LONGINT;

newMsgRef: IPMMsgRef;

filler3: INTEGER;

filler4: LONGINT;

identity: AuthIdentity;

sender: ^IPMSender;

internalUse: LONGINT;

internalUse2: LONGINT;

END;

IPMAddRecipientPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

recipient: ^OCERecipient;

reserved: LONGINT;

END;

C H A P T E R 7

Interprogram Messaging Manager

7-144 Summary of the IPM Manager

IPMAddReplyQueuePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

filler: LONGINT;

replyQueue: ^OCERecipient;

END;

IPMNewBlockPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

blockType: IPMBlockType;

filler: ARRAY[1..5] OF INTEGER;

refCon: LONGINT;

filler2: ARRAY[1..3] OF INTEGER;

startingOffset: LONGINT;

END;

IPMNewNestedMsgBlockPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

recipient: ^OCERecipient;

replyQueue: ^OCERecipient;

procHint: StringPtr;

filler1: INTEGER;

msgType: ^IPMMsgType;

refCon: LONGINT;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-145

newMsgRef: IPMMsgRef;

filler2: INTEGER;

startingOffset: LONGINT;

identity: AuthIdentity;

sender: ^IPMSender;

internalUse: LONGINT;

internalUse2: LONGINT;

END;

IPMNestMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

filler: ARRAY[1..9] OF INTEGER;

refCon: LONGINT;

msgToNest: IPMMsgRef;

filler2: INTEGER;

startingOffset: LONGINT;

END;

IPMWriteMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

mode: IPMAccessMode;

offset: LONGINT;

count: LONGINT;

buffer: Ptr;

actualCount: LONGINT;

currentBlock: BOOLEAN;

END;

C H A P T E R 7

Interprogram Messaging Manager

7-146 Summary of the IPM Manager

IPMEndMsgPB = PACKED RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

msgID: IPMMsgID;

msgTitle: ^RString;

deliveryNotification: IPMNotificationType;

priority: IPMPriority;

cancel: BOOLEAN;

padByte: Byte;

reserved: LONGINT;

signature: SIGSignaturePtr;

signatureSize: Size;

signatureContext: SIGContextPtr;

family: OSType; { family of this msg (e.g.,

 mail) use kIPMFamilyUnspecified

 by default }

END;

Parameter Blocks for Managing Message Queues

IPMCreateQueuePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

filler1: LONGINT;

queue: ^OCERecipient;

identity: AuthIdentity; { used only if queue is remote }

owner: ^PackedRecordID; { used only if queue is remote }

END;

IPMOpenContextPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-147

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

contextRef: IPMContextRef; { context reference to be used in

 further calls}

END;

IPMOpenQueuePB = PACKED RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

contextRef: IPMContextRef;

queue: ^OCERecipient;

identity: AuthIdentity;

filter: ^IPMFilter;

newQueueRef: IPMQueueRef;

notificationProc: IPMNoteProcPtr;

userData: LONGINT;

noteType: IPMNotificationType;

padByte: Byte;

reserved: LONGINT;

reserved2: LONGINT;

END;

IPMChangeQueueFilterPB = IPMEnumerateQueuePB;

IPMCloseContextPB = IPMOpenContextPB;

IPMCloseQueuePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

queueRef: IPMQueueRef;

END;

IPMDeleteQueuePB = IPMCreateQueuePB;

C H A P T E R 7

Interprogram Messaging Manager

7-148 Summary of the IPM Manager

Parameter Blocks for Listing and Reading Messages

IPMEnumerateQueuePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

queueRef: IPMQueueRef;

startSeqNum: IPMSeqNum;

getProcHint: BOOLEAN;

getMsgType: BOOLEAN;

filler: INTEGER;

filter: ^IPMFilter;

numToGet: INTEGER;

numGotten: INTEGER;

enumCount: LONGINT;

enumBuffer: Ptr; { will be packed array of IPMMsgInfo }

actEnumCount: LONGINT;

END;

IPMOpenMsgPB = PACKED RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

queueRef: IPMQueueRef;

sequenceNum: IPMSeqNum;

newMsgRef: IPMMsgRef;

actualSeqNum: IPMSeqNum;

exactMatch: BOOLEAN;

padByte: Byte;

reserved: LONGINT;

END;

IPMOpenHFSMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-149

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

hfsPath: ^FSSpec;

filler: LONGINT;

newMsgRef: IPMMsgRef;

filler2: LONGINT;

filler3: Byte;

reserved: LONGINT;

END;

IPMOpenBlockAsMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

filler: LONGINT;

newMsgRef: IPMMsgRef;

filler2: ARRAY[1..7] OF INTEGER;

blockIndex: INTEGER;

END;

IPMGetMsgInfoPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

info: ^IPMMsgInfo;

END;

IPMReadHeaderPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

C H A P T E R 7

Interprogram Messaging Manager

7-150 Summary of the IPM Manager

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

fieldSelector: INTEGER;

offset: LONGINT;

count: LONGINT;

buffer: Ptr;

actualCount: LONGINT;

filler: INTEGER;

remaining: LONGINT;

END;

IPMReadRecipientPB = PACKED RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

rcptIndex: INTEGER;

offset: LONGINT;

count: LONGINT;

buffer: Ptr;

actualCount: LONGINT;

reserved: INTEGER; { must be 0 }

remaining: LONGINT;

originalIndex: INTEGER;

recipientOffsetFlags: OCERecipientOffsetFlags;

END;

IPMReadReplyQueuePB = IPMReadRecipientPB;

IPMGetBlkIndexPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-151

blockType: IPMBlockType;

index: INTEGER;

startingFrom: INTEGER;

actualBlockType: IPMBlockType;

actualBlockIndex: INTEGER;

END;

IPMReadMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

mode: IPMAccessMode;

offset: LONGINT;

count: LONGINT;

buffer: Ptr;

actualCount: LONGINT;

blockIndex: INTEGER;

remaining: LONGINT;

END;

IPMVerifySignaturePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

msgRef: IPMMsgRef;

signatureContext: SIGContextPtr;

END;

IPMCloseMsgPB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

C H A P T E R 7

Interprogram Messaging Manager

7-152 Summary of the IPM Manager

reqCode: INTEGER;

msgRef: IPMMsgRef;

deleteMsg: BOOLEAN;

END;

Parameter Blocks for Deleting Messages

IPMDeleteMsgRangePB = RECORD

qLink: Ptr;

reservedH1: LONGINT;

reservedH2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

queueRef: IPMQueueRef;

startSeqNum: IPMSeqNum;

endSeqNum: IPMSeqNum;

lastSeqNum: IPMSeqNum;

END;

Parameter Block Union Structure

IPMParamBlock = RECORD

CASE INTEGER OF

 1:(header: IPMParamHeader);

 2:(openContextPB: IPMOpenContextPB);

 3:(closeContextPB: IPMCloseContextPB);

 4:(createQueuePB: IPMCreateQueuePB);

 5:(deleteQueuePB: IPMDeleteQueuePB);

 6:(openQueuePB: IPMOpenQueuePB);

 7:(closeQueuePB: IPMCloseQueuePB);

 8:(enumerateQueuePB: IPMEnumerateQueuePB);

 9:(changeQueueFilterPB: IPMChangeQueueFilterPB);

10:(deleteMsgRangePB: IPMDeleteMsgRangePB);

11:(openMsgPB: IPMOpenMsgPB);

12:(openHFSMsgPB: IPMOpenHFSMsgPB);

13:(openBlockAsMsgPB: IPMOpenBlockAsMsgPB);

14:(closeMsgPB: IPMCloseMsgPB);

15:(getMsgInfoPB: IPMGetMsgInfoPB);

16:(readHeaderPB: IPMReadHeaderPB);

17:(readRecipientPB: IPMReadRecipientPB);

18:(readReplyQueuePB: IPMReadReplyQueuePB);

19:(getBlkIndexPB: IPMGetBlkIndexPB);

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-153

20:(readMsgPB: IPMReadMsgPB);

21:(verifySignaturePB: IPMVerifySignaturePB);

22:(newMsgPB: IPMNewMsgPB);

23:(newHFSMsgPB: IPMNewHFSMsgPB);

24:(nestMsgPB: IPMNestMsgPB);

25:(newNestedMsgBlockPB: IPMNewNestedMsgBlockPB);

26:(endMsgPB: IPMEndMsgPB);

27:(addRecipientPB: IPMAddRecipientPB);

28:(addReplyQueuePB: IPMAddReplyQueuePB);

29:(newBlockPB: IPMNewBlockPB);

30:(writeMsgPB: IPMWriteMsgPB);

END;

IPMParamBlockPtr = ^IPMParamBlock;

IPM Manager Functions

Creating a New Message

FUNCTION IPMNewMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMNewHFSMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMAddRecipient (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMAddReplyQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMNewBlock (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMNewNestedMsgBlock
(paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMNestMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMWriteMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMEndMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

C H A P T E R 7

Interprogram Messaging Manager

7-154 Summary of the IPM Manager

Managing Message Queues

FUNCTION IPMCreateQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenContext (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMChangeQueueFilter
(paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMCloseQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMCloseContext (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMDeleteQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

Listing and Reading Messages

FUNCTION IPMEnumerateQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenHFSMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMOpenBlockAsMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMGetMsgInfo (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMReadHeader (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMReadRecipient (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMReadReplyQueue (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMGetBlkIndex (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

FUNCTION IPMReadMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-155

FUNCTION IPMVerifySignature
(paramBlock: IPMParamBlockPtr): OSErr;{ Always
synchronous }

FUNCTION IPMCloseMsg (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

Deleting Messages

FUNCTION IPMDeleteMsgRange (paramBlock: IPMParamBlockPtr; async: BOOLEAN):
OSErr;

Utility Routines

FUNCTION OCESizePackedRecipient
(rcpt: OCERecipient): INTEGER;

FUNCTION OCEPackRecipient (rcpt: OCERecipient; buffer: UNIV Ptr): INTEGER;

FUNCTION OCEUnpackRecipient
(buffer: UNIV Ptr; VAR rcpt: OCERecipient;
VAR entitySpecifier: RecordID): OSErr;

FUNCTION OCEStreamRecipient (rcpt: OCERecipient; stream:
OCERecipientStreamer;
userData: LONGINT; VAR actualCount: LONGINT):
OSErr;

FUNCTION OCEGetRecipientType
(cid: CreationID): OSType;

PROCEDURE OCESetRecipientType
(extensionType: OSType; VAR cid: CreationID);

Application-Defined Functions

FUNCTION MyCompletionRoutine
(paramBlk: Ptr);

FUNCTION MyRecipientStreamer
(VAR buffer: void; count: LONGINT; eof:
BOOLEAN; userData: LONGINT): OSErr;)

C H A P T E R 7

Interprogram Messaging Manager

7-156 Summary of the IPM Manager

Assembly-Language Summary

Trap Macros Requiring Routine Selectors

__OCETBDispatch

Selector Routine

$0400 IPMOpenContext

$0401 IPMCloseContext

$0402 IPMNewMsg

$0403 IPMAddRecipient

$0404 IPMNewBlock

$0405 IPMNewNestedMsgBlock

$0406 IPMNestMsg

$0407 IPMWriteMsg

$0408 IPMEndMsg

$0409 IPMOpenQueue

$040A IPMCloseQueue

$040B IPMOpenMsg

$040C IPMCloseMsg

$040D IPMReadMsg

$040E IPMReadHeader

$040F IPMOpenBlockAsMsg

$0410 IPMReadRecipient

$0411 IPMCreateQueue

$0412 IPMDeleteQueue

$0413 IPMEnumerateQueue

$0414 IPMChangeQueueFilter

$0415 IPMDeleteMsgRange

$0417 IPMOpenHFSMsg

$0418 IPMGetBlkIndex

$0419 IPMGetMsgInfo

$041D IPMAddReplyQueue

$041E IPMNewHFSMsg

$0421 IPMReadReplyQueue

$0422 IPMVerifySignature

C H A P T E R 7

Interprogram Messaging Manager

Summary of the IPM Manager 7-157

__OCEMessaging

Result Codes
The allocated range of result codes for the Interprogram Messaging Manager is –15090

through –15169. Routines may also return result codes from other AOCE managers and

standard Macintosh result codes such as noErr 0 (no error) and fnfErr –43 (file not

found).

Selector Routine

$033E OCESizePackedRecipient

$033F OCEPackRecipient

$0340 OCEUnpackRecipient

$0341 OCEStreamRecipient

$0342 OCEGetRecipientType

$0343 OCESetRecipientType

noErr 0 No error
kOCEParamErr –50 Parameter error
kOCEConnectionClosed –1513 Network connection has closed
kIPMCantCreateIPMCatEntry –15090 Internal error
kIPMInvalidMsgType –15091 Message type is invalid
kIPMInvalidProcHint –15092 Process hint is invalid
kIPMInvalidOffset –15093 Bad offset for read or write operation
kIPMUpdateCatFailed –15094 Internal error
kIPMMsgTypeReserved –15095 Message type reserved for system use
kIPMNotInABlock –15096 Specified starting point not within the message
kIPMNestedMsgOpened –15097 Nested message opened; cannot do operation
kIPMA1HdrCorrupt –15098 Message is corrupt; may not be message
kIPMCorruptDataStructures –15099 Message is corrupt
kIPMAbortOfNestedMsg –15100 Canceled nested message
kIPMBlockIsNotNestedMsg –15101 Block is not message (IPMOpenBlockAsMsg)
kIPMCacheFillError –15102 Internal error
kIPMInvalidSender –15103 Sender is invalid
kIPMNoRecipientsYet –15104 Require recipient to send
kIPMInvalidFilter –15105 Filter is invalid
kIPMAttrNotInHdr –15106 Specified attribute not in message header
kIPMBlkNotFound –15107 Specified block nonexistent
kIPMStreamErr –15108 Error on stream
kIPMPortClosed –15109 Stream closed
kIPMBinBusy –15110 Internal error
kIPMCorruptedBin –15111 IPM BIN is damaged
kIPMBadQName –15112 Invalid queue name
kIPMEndOfBin –15113 Internal error
kIPMBinNeedsConversion –15114 IPM BIN needs conversion
kIPMMgrInternalErr –15115 Internal error
kIPMEltBusy –15116 Message or letter opened (on delete operation)
kIPMEltClosedNotDeleted –15117 Element was closed but not deleted

C H A P T E R 7

Interprogram Messaging Manager

7-158 Summary of the IPM Manager

kIPMBadContext –15118 Invalid reference
kIPMContextIsClosing –15119 Reference is closing
kIPMeoQ –15120 No more messages (IPMEnumerateQueue)
kIPMEltNotFound –15122 No such item or message
kIPMQBusy –15126 Specified queue busy; cannot delete
kIPMLookupAttrTooBig –15129 Attribute in lookup is too big
kIPMAccessDenied –15141 Access denied
kIPMNoAttrsFound –15146 No attributes found in lookup
kIPMBadMailSlotAttrVal –15149 Invalid mail slot attribute value

Contents 8-1

C H A P T E R 8

Contents

Catalog Manager

Introduction to AOCE Catalogs 8-3

Catalog Nodes 8-4

Catalog Records and Attributes 8-6

Aliases and Pseudonyms 8-7

Access Controls 8-7

Identities and the PowerTalk Setup Catalog 8-8

About the Catalog Manager 8-9

Get/Parse Function Pairs 8-10

Callback Routines 8-10

Determining Features Supported 8-11

Getting Access Controls 8-11

Types of Requesters 8-11

Types of Access Privileges 8-13

Access Control Lists 8-14

Using the Catalog Manager 8-15

Determining Whether the Collaboration Toolbox Is Available 8-16

Determining the Version of the Catalog Manager 8-16

Getting Attribute Value Information 8-16

Getting Attribute Type Information 8-20

Getting Extended Catalog Information 8-24

Catalog Manager Reference 8-28

Feature Flag Bit Array 8-28

Data Types 8-32

The Parameter Block Header 8-32

The dNode ID 8-34

The Enumeration Choice Type 8-34

The Enumeration Specification 8-35

The Script Structure 8-36

The Matching Criteria Type 8-36

C H A P T E R 8

8-2 Contents

Catalog Manager Functions 8-37

Getting Information About Catalogs 8-37

Getting Information About dNodes 8-55

Maintaining the PowerTalk Setup Catalog 8-69

Creating, Opening, and Closing Personal Catalogs 8-80

Managing Records 8-87

Managing Attribute Types and Values 8-105

Reading Access Controls for dNodes, Records, and Attribute

Types 8-128

Cancelling a Catalog Manager Function 8-145

Application-Defined Functions 8-146

Summary of the Catalog Manager 8-161

C Summary 8-161

Constants and Data Types 8-161

Catalog Manager Functions 8-184

Pascal Summary 8-188

Constants and Data Types 8-188

Catalog Manager Functions 8-226

Assembly-Language Summary 8-230

Result Codes 8-233

C H A P T E R 8

8-3

Catalog Manager

This chapter describes the Catalog Manager, which provides access to AOCE catalogs,

including PowerShare server-based catalogs, personal catalogs, and external catalogs.

AOCE catalogs are repositories of information that have a standard interface defined

by AOCE system software. Although AOCE catalogs are commonly used to store

addresses for mail and messaging services, there are no restrictions on the type or

internal structure of the data they may contain. This chapter tells you how to use the

Catalog Manager to create, modify, and read information in AOCE catalogs.

You can add a catalog-browsing interface to your application with the routines described

in the chapter “Standard Catalog Package” in this book. Users can browse and modify

the information in AOCE catalogs through the Finder when they install PowerTalk

system software. The AOCE Catalogs Extension to the Finder is described in the chapter

“AOCE Templates,” which also tells you how to extend the catalog browser to handle

new types of data.

This chapter describes the nature and types of AOCE catalogs and presents the low-level

interface to AOCE catalogs. You can use the routines in this chapter if you want to

provide capabilities to access catalogs beyond those provided by the Standard Catalog

Package and the catalog browser. If you are creating an AOCE catalog service access

module for another type of catalog, you need the information in this chapter plus the

chapter “Catalog Service Access Modules,” in Inside Macintosh: AOCE Service Access
Modules.

This chapter starts with a general introduction to AOCE catalogs, followed by an

introduction to the Catalog Manager. Then it describes how you can use the Catalog

Manager to

■ get information about AOCE catalogs and catalog nodes

■ create, open, and close personal catalogs

■ manage the organization of an AOCE catalog

■ manage the content of an AOCE catalog

■ control access to a catalog and to the contents of a catalog

Apple’s PowerShare serves include a catalog and authentication server. The

authentication process determines whether a user should be granted access to a

PowerShare catalog. The application program interface (API) for the identification and

authentication of users is handled by the Authentication Manager, described in the

chapter “Authentication Manager” in this book.

For a general overview of AOCE, see the chapter “Introduction to the Apple Open

Collaboration Environment” in this book.

C H A P T E R 8

Catalog Manager

8-4 Introduction to AOCE Catalogs

Introduction to AOCE Catalogs

There are three types of AOCE catalogs: PowerShare server-based catalogs, personal

catalogs, and external catalogs. You use the same set of Catalog Manager routines to read

and modify the contents of any of these catalogs. The term “AOCE catalog” may refer to

any or all of these types of catalogs.

A PowerShare server uses the Apple Catalog and Authentication Protocol to

communicate with the AOCE Catalog and Authentication Managers. A PowerShare

server can be installed on an AppleTalk network to provide catalog services to any

number of entities on that network. In addition to providing a PowerShare catalog, a

PowerShare server can identify and authenticate users to ensure that only authorized

people or agents gain access to the catalog information. For each user, the server

administrator can restrict access to the entire catalog or to any portion of the data in the

catalog.

A personal catalog is an HFS (Hierarchical File System) file located on a user’s local

disk. A personal catalog can store anything that can be kept in a PowerShare catalog and

is often used to store frequently used information from such a catalog.

An information card is a type of personal catalog that contains a single record. Typically,

it contains all of a user’s electronic address information. Because it contains only one

record, it can be sent quickly and easily to other users as needed.

An external catalog is one that is accessible to your application through the Catalog

Manager API by means of a catalog service access module (CSAM). You access and use

an external catalog exactly as you do a PowerShare catalog. The services of the Catalog

Manager can be extended to any catalog through a catalog service access module. You do

not need to know about catalog service access modules to gain access to external catalogs

through the Catalog Manager.

Every catalog provides a set of capability flags that define which features of the Catalog

Manager API the catalog supports. In general, your application uses the capability flags

to determine what it can do relative to a given catalog; the underlying catalog type

(PowerShare, personal, or external) is, with few exceptions, irrelevant. The capability

flags are discussed in “Feature Flag Bit Array” beginning on page 8-28. That section also

contains information about what features are supported by all PowerShare catalogs and

all personal catalogs.

Each catalog is identified by a name and a reference number known as a catalog
discriminator. The combination of name and discriminator is almost certain to be

unique, and you must use both when calling Catalog Manager routines to address

PowerShare or external catalogs. The Catalog Manager returns a personal catalog reference
number when you open a personal catalog, and you use that number when addressing a

personal catalog through the Catalog Manager API.

C H A P T E R 8

Catalog Manager

Introduction to AOCE Catalogs 8-5

Catalog Nodes
AOCE catalogs contain information arranged in a hierarchical structure similar to that of

the Macintosh hierarchical file system (HFS). At the root level of the hierarchy is the

AOCE catalog itself. Each catalog can contain any number of nodes; a catalog node (or

dNode) is a container that can hold other dNodes, records, or both dNodes and records.

A dNode is analogous to an HFS folder, which can contain other folders, files, or both

folders and files. A record is analogous to an HFS file. A record contains the actual data

stored in the catalog.

You can identify a specific node within a catalog in three ways. You can specify a dNode

by its pathname. A pathname consists of the name of each dNode in the catalog tree

starting from the first node after the root node and including each intervening node to

the node in question. In addition, some catalogs assign a unique number, called a dNode
number, to each dNode. For such catalogs, you can use the dNode number rather than

the pathname to identify a particular dNode. A partial pathname specification is the

third way to identify a dNode. Not all catalogs accept a partial pathname. A partial
pathname consists of a dNode number plus the name of each dNode starting from the

one after the dNode specified by the dNode number and continuing to the node in

question.

Figure 8-1 on page 8-6 illustrates the structure of a sample AOCE catalog. In this

example, the catalog, named Forms, contains personnel and accounting forms for a small

company. The stacks of documents in the figure represent catalog nodes, and the

individual documents in the figure represent records containing forms. Immediately

under the catalog are two nodes, named Accounting and Personnel, and one record

containing a form to request new forms. Notice that any given node can contain both

records and other nodes. In this example, the pathname for the node containing

time-off-request forms is Personnel:Requests:Time off, and the pathname for the node

containing purchase orders is Accounting:Purchase. (The colons in the pathname are

included for readability only; they are not part of the actual pathname.)

Unlike HFS pathnames, which include the volume name, AOCE pathnames do not

include the name of the root catalog. Assume that the nodes named Personnel, Requests,

and Time off have the dNode numbers 10, 20, and 30, respectively. In this case, you can

either identify the node containing time-off-request forms with a partial pathname that

consists of the dNode number 10 and the path Requests:Time off or with the dNode

number 20 and the path Time off.

Note that a specific type of catalog might support all or only part of this model. For

example, a personal catalog contains only records, no dNodes. An external catalog may

support all or any part of this catalog structure.

C H A P T E R 8

Catalog Manager

8-6 Introduction to AOCE Catalogs

Figure 8-1 Structure of an AOCE catalog

Catalog Records and Attributes
A record is uniquely identified by a record ID that allows the Catalog Manager to

classify and locate the record. The Catalog Manager defines the structure of a record but

places no restrictions on the type of data it may contain.

A record ID consists of

■ record location information

■ a record name

■ the record type

■ a creation ID

The record location information consists of the catalog name and discriminator, the

dNode number, and the pathname for the dNode containing the record. The record

name can be any string of type RString (type RString is described in the chapter

“AOCE Utilities” in this book). The record type indicates the type of entity represented

by the record; for example, Printer, User, or Icon. Apple Computer, Inc., defines certain

C H A P T E R 8

Catalog Manager

Introduction to AOCE Catalogs 8-7

record types to facilitate collaboration within the AOCE environment; you can define

additional record types. The record creation ID, assigned by the catalog, is a number

that uniquely identifies the record within the catalog. Typically, a user interface uses the

record name and type to identify the record, whereas software uses the record creation

ID. Not all catalogs support record creation IDs. If a catalog does not support record

creation IDs, you use the record name and record type to identify a record.

The information in a record is stored in attribute. An attribute is completely specified by

an attribute type, an attribute creation ID, an attribute tag, and the actual attribute value.

Attribute values are grouped together by attribute type. The attribute type reflects the

type of data stored in the attribute value; for example, telephone number, mailing

address, or picture. Apple defines a number of attribute types; you can define additional

attribute types. An attribute type may have zero or more attribute values associated with

it. An attribute creation ID uniquely identifies the attribute value. Some catalogs may

not support attribute creation IDs. If a catalog does not support attribute creation IDs,

you use the attribute value itself and the attribute type to identify an attribute value. An

attribute tag indicates the format of the attribute value. Apple Computer has defined a

few attribute tags for use by Apple’s PowerShare catalogs; developers of catalog service

access modules can define their own attribute tags to support collaborative applications.

There is a maximum size for attribute values stored in PowerShare and personal

catalogs, but there are no restrictions on their content. The Attribute,

AttributeType and AttributeValue data types are described in the chapter “AOCE

Utilities” in this book.

Aliases and Pseudonyms
Some catalogs support the use of alternative names (or pseudonyms) for catalog records.

For example, the record “Sally Simon” might have the pseudonym “Simon, Sally”. You

can use a pseudonym in any Catalog Manager routine that requires a record name.

The Catalog Manager also allows you to create aliases for records. A record alias is itself

a record and so can be placed in any catalog. The Catalog Manager creates the record

and marks it as an alias. It is up to you to store the information that your application

requires to resolve the alias. For example, you might store the record location

information for the original record in an attribute value in the alias record. Not all

catalogs support the ability to create aliases.

Access Controls
The Catalog Manager defines access controls for dNodes, records, and attribute types.

Types of access privilege include the ability to add and delete attribute types within

records, to see attribute values, to add and delete records within dNodes, and so forth.

Service requesters are either authenticated, that is, represented by a record in the catalog

that contains the dNode, record, or attribute type to which they seek access, or they are

guests. There are several categories of authenticated requesters. Access controls are

discussed in more detail in the section “Getting Access Controls” on page 8-11.

C H A P T E R 8

Catalog Manager

8-8 Introduction to AOCE Catalogs

PowerShare catalogs support a full range of access controls. External catalogs can

support any level of access controls up to the full set defined by the Catalog Manager.

Personal catalogs do not support Catalog Manager access controls as such. Instead,

personal catalogs derive their access controls from the read and read/write privileges

allowed by the Macintosh file system. However, you can use the Catalog Manager to

read the access controls for a personal catalog. In that case, the Catalog Manager maps

file system settings into its own access control settings.

Identities and the PowerTalk Setup Catalog

The PowerTalk system software creates a special personal catalog called the PowerTalk

Setup catalog. The PowerTalk Setup catalog contains information about the catalogs and

electronic mail systems that are available to the principal user of the computer. The

PowerTalk Setup catalog is a personal catalog stored on the user’s local disk. The records

in the PowerTalk Setup catalog represent, among other things, PowerShare catalogs,

external catalogs, and catalog service access modules. Catalogs and catalog service

access modules represented by records in the PowerTalk Setup catalog are said to be

“listed in PowerTalk Setup.” The Catalog Manager provides routines that allow you to

add and remove records from this and other personal catalogs.

Most Catalog Manager routines take an identity as an input. An identity is a number

derived from a user name and password.

A “master” name and password protect the information in the PowerTalk Setup catalog.

When a user enters his or her name and password after starting up PowerTalk, the

Authentication Manager transforms the name and password into a special value called

the local identity. The local identity is a “master” identity that provides you with

transparent access to all of the specific names and passwords stored in the PowerTalk

Setup catalog. You can obtain the local identity by calling the Authentication Manager’s

AuthGetLocalIdentity function.

There is another type of identity called specific identity. A specific identity is derived

from the name and password of a user who has an account on a specific server. This user

can be the principle user of the computer or an alternate user (or visitor). Specific

identities make it possible for several people to use the same Macintosh to gain access to

their PowerShare catalog services. You can obtain a specific identity by calling the

Authentication Manager’s AuthBindIdentity function.

The identity that you provide is used to determine if the requester is authorized to make

the service request. In any Catalog Manager function, you may specify either a local

identity, a specific identity, or 0, which indicates guest access. If you specify the local

identity, you do not need to know the requester’s specific identity for a particular

catalog. The Catalog Manager uses the local identity to obtain the specific identity before

processing the request.

PowerShare catalogs require an identity for most service requests; external catalogs may

not. Personal catalogs do not require an identity with service requests.

For more information about the PowerTalk Setup catalog, see the chapter “Service

Access Module Setup” in Inside Macintosh: AOCE Service Access Modules. For more

C H A P T E R 8

Catalog Manager

About the Catalog Manager 8-9

information about local identity and specific identities, see the chapter “Authentication

Manager” in this book.

About the Catalog Manager

The Catalog Manager, the Interprogram Messaging Manager, and the Authentication

Manager together constitute the fundamental AOCE services. The Catalog Browser and

the Standard Catalog Package provide high-level interfaces to the Catalog Manager, and

catalog service access modules provide a way for developers to extend AOCE catalog

services to external catalogs. See the chapter “Introduction to the Apple Open

Collaboration Environment for a description of the position of the Catalog Manager

within the AOCE software architecture.

The Catalog Manager includes routines that provide the following services:

■ getting information about catalogs, including the catalogs that are listed in the
PowerTalk Setup catalog, getting information about a specific catalog’s capabilities,
getting information about the icons that represent a specific external catalog, and
obtaining the name of the network in which a catalog is located

■ getting information about a catalog hierarchy, including enumerating dNodes,
mapping dNode numbers to pathnames and vice versa, detecting changes in dNodes,
and getting information about a specific dNode

■ managing the PowerTalk Setup catalog, including listing a PowerShare catalog in
PowerTalk Setup, removing a PowerShare catalog from PowerTalk Setup, and
searching a network for PowerShare catalogs that you want to use

■ creating, opening, and closing personal catalogs

■ managing records, including adding and deleting records and aliases, listing records
and aliases, getting and setting the name and type of a record, getting information
about a record, and adding, deleting, and listing pseudonyms

■ managing attribute values and types, including adding and deleting attribute values,
changing attribute values, looking for specific attribute values, looking up attribute
values, and listing attribute types

■ determining access to dNodes, records, and attribute types

Note that the Catalog Manager API does not provide routines for catalog configuration

and administration that allow you to create a catalog, to name or rename a catalog, to

add and delete nodes, and so forth. These functions, unique to each type of catalog, are

handled by the catalog’s administration software and are beyond the scope of the

Catalog Manager.

Get/Parse Function Pairs
The Catalog Manager API supplies several get/parse function pairs that work together

to provide you with information about dNodes, records, access controls, and so forth.

The “get” routine of each of these pairs writes the data in a format that is private to the

C H A P T E R 8

Catalog Manager

8-10 About the Catalog Manager

Catalog Manager into a buffer that you supply. The corresponding “parse” routine

extracts the data from the buffer and passes it in logical chunks to a callback routine that

you supply.

For example, the DirEnumerateDirectoriesGet function stores in a buffer

information about all of the catalogs that are listed in the PowerTalk Setup catalog. The

DirEnumerateDirectoriesParse function parses that information and calls your

callback routine for each catalog about which there is information in the buffer. Each

time it calls your callback routine, the parse function passes it a catalog name, the catalog

discriminator, and information about the features supported by the catalog.

Callback Routines
When you call a Catalog Manager parse function, you pass it a pointer to a callback

routine that you provide. If you call the parse function synchronously, the same

execution environment (low-memory global variables, A5 world, stack, interrupt state,

and any programming restrictions) that was in effect when the Catalog Manager began

executing the parse function is also in effect when your callback routine is executed.

Therefore, if it is safe to allocate memory or make synchronous calls when you call the

parse routine, then your callback routine can also allocate memory or make synchronous

calls.

If you call the parse function asynchronously, it saves only the A5 world and restores it

when it calls your callback routine. In this case you have access to your application’s

global variables, but you cannot allocate memory or make synchronous calls.

Callback routines should not call Catalog Manager functions, call the WaitNextEvent

or SystemTask routines, invoke the Notification Manager, or call any function that calls

any of these routines.

One of the parameters a parse function passes to your callback routine is the value you

placed in the clientData field of the parse function’s parameter block. You can use this

value for whatever purpose you wish; for example, you can use it to distinguish between

asynchronous parse requests if you have more than one pending completion or use it to

point to a private data area.

The parameters that a parse function passes to a callback routine are described under

each routine in the section “Application-Defined Functions” beginning on page 8-150.

Every callback routine returns a Boolean result. If you want the parse function to

continue parsing the data in your buffer, return false; otherwise, return true.

Determining Features Supported

A catalog may not support all the features of the Catalog Manager API. You call the

DirGetDirectoryInfo function to determine the features that a catalog supports

before calling other Catalog Manager functions that address that catalog. The feature

information is specified in a feature flag bit array. The bits are defined in “Feature Flag

Bit Array” beginning on page 8-28.

C H A P T E R 8

Catalog Manager

About the Catalog Manager 8-11

Getting Access Controls
The information discussed in this section applies primarily to PowerShare catalogs.

Access controls for personal catalogs consist of read and read/write settings

implemented by the File Manager. These are mapped into the Catalog Manager access

control privileges when you ask for the access controls for a personal catalog.

Three interrelated components to the access controls are available through the Catalog

Manager. The first component is the container whose access is controlled. Consider

dNodes, records, and attribute types as sets of nested abstract containers. DNodes may

contain records, aliases, pseudonyms and other dNodes; records may contain attribute

types; and attribute types may contain attribute values. The second component is the

requester seeking access to a container. The third component is the kind of access

privilege that the requester seeks. DNodes, records, and attribute types are discussed in

“Access Controls” on page 8-7. Requesters and access privileges are discussed in the

following sections.

Types of Requesters

PowerShare catalogs classify all requesters into five categories. Each dNode, record, and

attribute type maintains a set of access privileges for each of the categories. A single

requester may fall into one or more categories.

An external catalog, by contrast, does not necessarily use requester categories. It may

maintain access privileges for each individual requester. Alternatively, it may use

categories different from those used by PowerShare catalogs.

You use a variable of type CategoryMask to specify the type of requestor about which

you want information.

typedef unsigned long CategoryMask;

The bits in the CategoryMask data type are defined as follows:

enum {

kThisRecordOwnerBit = 0,

kFriendsBit = 1,

kAuthenticatedInDNodeBit = 2,

kAuthenticatedInDirectoryBit = 3,

kGuestBit = 4,

kMeBit = 5

};

You can use the following values to set and test the bits in a variable of type

CategoryMask.

enum { /* Values of CategoryMask */

kThisRecordOwnerMask = (1L << kThisRecordOwnerBit),

kFriendsMask = (1L << kFriendsBit),

C H A P T E R 8

Catalog Manager

8-12 About the Catalog Manager

kAuthenticatedInDNodeMask = (1L << kAuthenticatedInDNodeBit),

kAuthenticatedInDirectoryMask = (1L << kAuthenticatedInDirectoryBit),

kGuestMask = (1L << kGuestBit),

kMeMask = (1L << kMeBit)};

Descriptions

kThisRecordOwnerMask
A requester in this category is the owner of the record or attribute
type to which the requester wants access. (This category has no
meaning at the dNode level.) At most, only one requester can
belong in this category for each record or attribute type. The owner
of a record is the person or process represented by the record. The
owner of an attribute type is the person or process represented by
the record that contains the attribute type. The creation ID of the
requester’s own record is the same as the creation ID of the record
to which access is sought. (Or the record names and record types
are the same in catalogs that do not support creation IDs.)

kFriendsMask A requester in this category is specially selected and may have
different (usually broader) access privileges to a dNode, record, or
attribute type than those available to requesters who belong to the
more general categories. For PowerShare catalogs, the attribute type
kOwnersAttrTypeNum is defined to identify persons or processes
as friends. An attribute value of attribute type
kOwnersAttrTypeNum is a DSSpec data structure that contains a
record ID. Every requester represented by such a value in the
kOwnersAttrTypeNum attribute type belongs by definition to the
friends category. You can add a person or process to the friends
category by adding a value specifying that person or process to the
kOwnersAttrTypeNum attribute type. Note that to do this you
need a level of access privilege that allows you to change the access
control privileges for a dNode, record, or attribute type as well as to
add values. In PowerShare catalogs, the requesters in the friends
category for any attribute type within a record are exactly the same
as the requesters in the friends category for the record itself.

kAuthenticatedInDNodeMask
A requester in this category is represented by a record located in the
same dNode as the dNode, record, or attribute type to which the
requester wants access.

kAuthenticatedInDirectoryMask
A requester in this category is represented by a record located in the
same catalog as the dNode, record, or attribute type to which the
requester wants access.

kGuestMask A requester in this category is not represented by a record that
resides in the same catalog as the dNode, record, or attribute type
that the requester wants to access.

C H A P T E R 8

Catalog Manager

About the Catalog Manager 8-13

kMeMask This is a quasi-category called “me.” The
DirGetxxxAccessControlGet functions provide it as an output
category when the requester asks only for information on his or her
own access privileges. It is a convenient way of providing access
privilege information that pertains to the requester regardless of the
categories to which that requester belongs.

Types of Access Privileges

The Catalog Manager defines different kinds of access privileges. These kinds of

privileges are specified by the access control bit masks that are described next.

Mask descriptions

kNoPrivs This mask specifies that the requester has no access to a dNode, a
record, or an attribute type.

kSeeMask When the container is a dNode, this mask specifies the ability to
view the records, aliases, and pseudonyms of the dNode. When the
container is a record, this mask specifies the ability to view the
contents of the record. When the container is an attribute type, this
mask specifies the ability to view the contents of the attribute type.

kAddMask When the container is a dNode, this mask specifies the ability to
add records, aliases, pseudonyms, and dNodes to the dNode. When
the container is a record, this mask specifies the ability to add
attribute types to the record. When the container is an attribute
type, this mask specifies the ability to add values to the attribute
type.

kDeleteMask When the container is a dNode, this mask specifies the ability to
delete records, aliases, pseudonyms, and dNodes from the dNode.
When the container is a record, this mask specifies the ability to
delete attribute types from the record. When the container is an
attribute type, this mask specifies the ability to delete values from
an attribute type.

kChangeMask When the container is a record, this mask specifies the ability to
change the contents of the record; that is, to replace some or all of
the record’s contents without changing the record’s creation ID.
When the container is an attribute type, this mask specifies the
ability to change the contents of an attribute type; that is, to replace
an attribute value without changing the attribute creation ID.
Changing the contents of a dNode is undefined and not supported.

kRenameMask When the container is a dNode or a record, this mask specifies the
ability to rename it by changing its record name and record type.
Renaming an attribute type is not supported.

C H A P T E R 8

Catalog Manager

8-14 About the Catalog Manager

kChangePrivsMask
This mask specifies the ability to change the access control
privileges for a dNode, a record, or an attribute type. The ability to
change access privileges for a container includes the ability to
change privileges for the content of the container as well. If you can
change access privileges for a dNode, you can also change access
privileges for the records and attribute types within the dNode.
Likewise, if you can change access privileges for a record, you can
also change access privileges for the attribute types within the
record.

kSeeFoldersMask
When the container is a dNode or a record, this mask specifies the
ability to view dNodes within the container dNode.

kAllPrivs This mask specifies the sum of all the specific access privileges just
described for a dNode, a record, or an attribute type.

Access Control Lists

PowerShare catalogs maintain an access control list for each dNode, record, and attribute

type in the catalog. Each entry in an access control list specifies a category and the

category’s access privileges with respect to that dNode, record, or attribute type. Each

access control list consists of five entries, one for each category.

The Catalog Manager API, however, does not restrict access control lists to the

PowerShare implementation. An external catalog may maintain access control lists that

consist of individual requesters and their access privileges, instead of categories of

requesters. Or it may consist of the PowerShare categories or different categories or some

combination of these. The access control list of an external catalog may have any number

of entries.

A personal catalog has a single entry in its access control list to which every requester

belongs. For a personal catalog, every requester has exactly the same access privileges.

Regardless of the type of access control list that a catalog maintains, all catalogs should

be able to provide a requester with the access privileges that apply to that requester.

(This is the quasi-category “me” for PowerShare catalogs.)

PowerShare catalogs implement access controls for most catalog service requests.

The PowerShare catalog identifies the categories to which the requester belongs and

determines if a requester in those categories has sufficient access to perform the

requested action.

The Catalog Manager provides a get/parse pair of functions for each type of container so

that you can obtain access control information about the container. A

DirGetxxxAccessControlGet function obtains access control information from the

access control list associated with a dNode, record, or attribute type and stores the

information in a buffer that you provide. A DirGetxxxAccessControlParse function

retrieves information for one access control list entry at a time from your buffer and

passes it to your callback routine. You can request access control information for every

entry on the access control list, for a subset of entries, or for only the requester (specified

in the identity field of the DirParamBlock parameter block).

C H A P T E R 8

Catalog Manager

Using the Catalog Manager 8-15

Note
The utility routine OCEGetAccessControlDSSpec converts a category
mask into the catalog service specification that you need to pass to a
DirGetxxxAccessControlGet function. This routine is described on
page 8-132. ◆

For PowerShare catalogs and personal catalogs, the information that a

DirGetxxxAccessControlParse function passes to your callback routine consists of a

catalog service specification that identifies a category plus the access control masks that

apply to that category. The access control masks may be described as either active or

default. An active access control mask is a mask that currently applies to a dNode,

record, or attribute type; it specifies which operations a requester in the category is

authorized to perform on the dNode, record, or attribute type. A default access control

mask is the mask that is applied to new objects within the container at the time they are

created. For example, any new records that are created within a dNode automatically

acquire the access controls that are specified by the dNode’s default access control mask

for records.

When you request dNode access control information, you get the active access control

mask for the dNode as well as the default access control masks that apply to newly

created records and attribute types within the dNode. When you request record access

control information, you get the active access control masks for the record and the

dNode containing the record. You also get the default access control mask that applies to

newly created attribute types within the record. When you request attribute type access

control information, you get the active access control masks for the attribute type as well

as the record and the dNode containing the attribute type.

Using the Catalog Manager

The Catalog Manager API supplies several get/parse function pairs that work together

to provide you with information about dNodes, records, access controls, and so forth.

The “get” routine of each of these pairs writes the data in a format that is private to the

Catalog Manager into a buffer that you supply. The corresponding “parse” routine

extracts the data from the buffer and passes it in logical chunks to a callback routine that

you supply.

If the initial buffer size is not sufficient to hold all the data, there are two different ways

in which the get/parse function pairs work—depending on which Catalog Manager

routines are called. The first example, “Getting Attribute Value Information” beginning

on page 8-16 shows how the DirLookupGet and DirLookupParse work together to

extract information. These two functions use identical parameter blocks They are the

only get/parse function pair that work this way.

The example, “Getting Attribute Type Information” beginning on page 8-20 illustrates

how all other get/parse function pairs work.

C H A P T E R 8

Catalog Manager

8-16 Using the Catalog Manager

There is also one “get” function, DirGetExtendedDirectoryInfo, that has no

corresponding “parse” routine. In this case, you must write your own “parse” routine.

See “Getting Extended Catalog Information” beginning on page 8-24 for an example that

shows how to do this.

Determining Whether the Collaboration Toolbox Is Available
Before calling any of the Catalog Manager functions, you should verify that the

Collaboration toolbox is available by calling the Gestalt function with the selector

gestaltOCEToolboxAttr. If the Collaboration toolbox is present but not running (for

example, if the user deactivated it from the PowerTalk Setup control panel), the

Gestalt function sets the bit gestaltOCETBPresent in the response parameter. If

the Collaboration toolbox is running and available, the function sets the bit

gestaltOCETBAvailable in the response parameter. The Gestalt Manager is

described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

If you want to be informed when the Catalog Manager starts up or shuts down, you can

install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk LAP

Manager calls your ATQ routine with the transition selector ATTransDirStart when

the Catalog Manager has finished starting up and with the selector

ATTransDirShutdown when the Catalog Manager has started to shut down. The ATQ

is described in the chapter “Link-Access Protocol (LAP) Manager” in Inside Macintosh:
Networking.

Determining the Version of the Catalog Manager
To determine the version of the Catalog Manager that is available, call the Gestalt

function with the selector gestaltOCEToolboxVersion. The function returns the

version number of the Collaboration toolbox in the low-order word of the response

parameter. For example, a value of 0x0101 indicates version 1.0.1. If you are using the

Collaboration toolbox on a computer that has a PowerShare server, the function returns

the version number of the server in the high-order word of the response parameter. If

the Collaboration toolbox or server is not present and available, the Gestalt function

returns 0 for the relevant version number. You can use the constant gestaltOCETB for

AOCE Collaboration toolbox version 1.0.

Getting Attribute Value Information
The DoProcessAttributeValues function in Listing 8-1 lists the attribute values for

a particular catalog. It uses two Catalog Manager routines: DirLookupGet (page 8-118)

and DirLookupParse (page 8-121). Because these two routines have the same

parameter block, you can call DirLookupGet as many times as necessary, using the

same parameter block you last passed to DirLookupParse, if the buffer you allocate is

too small to hold all the data that DirLookupGet returns. Listing 8-2 on page 8-21

shows how to use a pair of get/parse functions that have different parameter blocks.

C H A P T E R 8

Catalog Manager

Using the Catalog Manager 8-17

When DoProcessAttributeValues is called, it is passed two parameters, a pointer to

the catalog browser and a pointer to the current attribute type. It then calls the

DoEnumerateAttributeValues function, passing it parameters to specify the

identification of the requester; to identify the current catalog, record and attribute type;

to name a callback routine; and to match calls to this routine to particular calls to the

DirLookupParse function.

When DoEnumerateAttributeValues returns, DoProcessAttributeValues calls

DoSelectNthAttributeValue—which is not shown here—to extract the current

attribute value and display its contents.

The DoEnumerateAttributeValues function sets up the parameter block that

DirLookupGet uses and then sets the initial values. It includes a do/while loop in

which DirLookupGet and DirLookupParse do the work of extracting the attribute

value information. If the buffer is too small to hold all the data, the DirLookupParse

function returns kOCEMoreData, and the loop repeats. The same parameter block that

was passed to DirLookupParse is passed on subsequent calls to DirLookupGet. The

reason this works is that when DirLookupParse completes, it returns values in the

lastRecordIndex, lastAttributeIndex, and lastAttribute fields that are at

the same offsets in the parameter block as the values of the startingRecordIndex,

startingAttrTypeIndex, and startingAttribute fields on a subsequent call to

the DirLookupGet function. The DirLookupGet function continues retrieving

information from the point at which it stopped during its previous invocation.

The DirLookupParse function calls the callback routine MyForEachAttrValue for

each attribute value that it finds. The callback routine calls the DoAddAttribueValue

function—which is not shown here—passing it the data structure containing the

attribute values. The DoAddAttribueValue function stores the values.

Listing 8-1 Listing the attribute values for a catalog

 /* Enumerate all attribute types for the currently-selected

 catalog. Attribute types are added to the type list as

 they are found. */

static pascal Boolean MyForEachAttrValue(

long clientData,

const Attribute *theAttribute

);

 /* DoProcessAttributeValues is called when a new attribute type

 is selected.

 Globals

 DOC.currentDsRefNum

 Current personal directory RefNum

 DOC.currentRecordID

C H A P T E R 8

Catalog Manager

8-18 Using the Catalog Manager

Current record to examine */

void

DoProcessAttributeValues(

register CatalogBrowserPtr dbp,

const AttributeTypePtr attributeTypePtr

)

{

OSErr status;

 /* Make sure to start with a clean slate.*/

ClearAttributeValueList(dbp);

status = DoEnumerateAttributeValues(

DOC.userIdentity,

DOC.currentDsRefNum,

&DOC.currentRecordID,

attributeTypePtr,

MyForEachAttrValue,

(long) dbp

);

LOG(status, "\pDoEnumerateAttributeValues");

DoSelectNthAttributeValue(dbp, 0);

}

/* MyForEachAttrValue is called by the DirLookupParse function.

 The attribute value is an RString that is put into the list. */

static pascal Boolean

MyForEachAttrValue(

long clientData,

const Attribute *theAttribute

)

{

register CatalogBrowserPtr dbp;

Boolean stopParse;

dbp = (CatalogBrowserPtr) clientData;

stopParse = FALSE;

TRY {

AddAttributeValue(dbp, theAttribute);

}

CATCH {

C H A P T E R 8

Catalog Manager

Using the Catalog Manager 8-19

LOG(STATUS, "\pCan't add attribute value");

NO_PROPAGATE;

stopParse = TRUE;

}

ENDTRY;

return (stopParse);

}

#ifndef kMyBufferSize

#define kMyBufferSize 4096

#endif

/* DoEnumerateAttributeValues is called when a new attribute type

 is selected. */

OSErr

DoEnumerateAttributeValues(

AuthIdentity userIdentity,

short dsRefNum,

RecordIDPtr recordIDPtr,

const AttributeTypePtr theAttributeType,

ForEachAttrValue MyForEachAttrValue,

long clientData

)

{

OSErr status;

AttributeTypePtr attrTypeList[1];

RecordIDPtr recordIDList[1];

DirParamBlock dirParamBlock;

Ptr myBuffer;

#define GET (dirParamBlock.lookupGetPB)

#define PARSE (dirParamBlock.lookupParsePB)

myBuffer = NewPtr(kMyBufferSize);

if (myBuffer == NULL)

status = MemError();

else {

CLEAR(dirParamBlock);

recordIDList[0] = recordIDPtr;

attrTypeList[0] = theAttributeType;

GET.identity = userIdentity;

GET.ioCompletion = NULL;

GET.dsRefNum = dsRefNum;

GET.clientData = clientData;

C H A P T E R 8

Catalog Manager

8-20 Using the Catalog Manager

GET.aRecordList = recordIDList;

GET.attrTypeList = attrTypeList;

GET.recordIDCount = 1;

GET.attrTypeCount = 1;

GET.includeStartingPoint = FALSE;

GET.getBuffer = myBuffer;

GET.getBufferSize = kMyBufferSize;

GET.startingRecordIndex = 1;

GET.startingAttrTypeIndex = 1;

CLEAR(GET.startingAttribute);

do {

status = DirLookupGet(&dirParamBlock, SYNC);

if (status == noErr || status == kOCEMoreData) {

PARSE.eachRecordID = NULL;

PARSE.eachAttrType = NULL;

PARSE.eachAttrValue = MyForEachAttrValue;

status = DirLookupParse(&dirParamBlock, SYNC);

}

} while (status == kOCEMoreData);

DisposePtr(myBuffer);

}

return (status);

#undef GET

#undef PARSE

}

Getting Attribute Type Information

The routines in Listing 8-2 return the attribute types for a specified catalog. They use the

Catalog Manager DirEnumerateAttributeTypesGet (page 8-127) and

DirEnumerateAttributeTypesParse (page 8-130) functions. As the example shows,

if the buffer is too small to hold all the data returned by

DirEnumerateAttributeTypesGet, it can be called again in a loop, using the last

attribute type parameter that DirEnumerateAttributeTypesParse passed to the

callback routine. Listing 8-1 on page 8-17 shows how a different get/parse pair work

together.

The structure CallBackData is used to hold data including the current attribute type.

The DoEnumerateAttributeTypes function is called by a higher-level routine and is

passed parameters to authenticate the user; identify the catalog, the record, and the

current attribute; and to match calls to this routine to particular calls to the

DirEnumerateAttributeTypesParse function. It then allocates a buffer and sets up

the parameter block with initial values.

C H A P T E R 8

Catalog Manager

Using the Catalog Manager 8-21

The DoEnumerateAttributeTypes function contains a do/while loop that enables

DirEnumerateAttributeTypesGet and DirEnumerateAttributeTypesParse to

extract the attribute type information. For each attribute type extracted,

DirEnumerateAttributeTypesParse calls the

MyEnumerateEachAttributeType callback routine.

If the buffer is too small to hold all the information returned by

DirEnumerateAttributeTypesGet, the loop repeats. The

DirEnumerateAttributeTypesGet function uses as its starting attribute type, the

last attribute type that DirEnumerateAttributeTypesParse passed to the callback

routine.

The callback routine, MyEnumerateEachAttributeType, provides a data type to store

the attribute type information extracted by DirEnumerateAttributeTypesParse. It

also stores the last attribute type that it received from

DirEnumerateAttributeTypesParse in case it needs to pass it back to

DirEnumerateAttributeTypesGet for another run through the loop.

Listing 8-2 Listing the attribute types for a catalog

 /* Enumerate all attribute types for the specified catalog. The caller

 provides a callback function (which takes the same parameters as the AOCE

 DirEnumerateAttributeTypesParse function) that is called with each

 returned attribute type. */

#ifndef kMyBufferSize

#define kMyBufferSize4096

#endif

static pascal Boolean MyEnumerateEachAttributeType(

long clientData,

const AttributeType *aType

);

/* This data is passed to MyEnumerateEachAttributeType */

 typedef struct CallBackData {

ForEachAttrType eachAttrType;

long clientData;

AttributeType currentAttrType;

} CallBackData, *CallBackDataPtr;

/* DoEnumerateAttributeTypes is called when a new record is selected. It

 calls a user function for each attribute type stored in that record. */

OSErr

C H A P T E R 8

Catalog Manager

8-22 Using the Catalog Manager

DoEnumerateAttributeTypes(

AuthIdentity userIdentity,

short dsRefNum,

RecordIDPtr recordIDPtr,

ForEachAttrType eachAttrType,

long clientData

)

{

OSErr status;

Boolean first;

CallBackData callBackData;

DirParamBlock dirParamBlock;

Ptr myBuffer;

#define GET (dirParamBlock.enumerateAttributeTypesGetPB)

#define PARSE (dirParamBlock.enumerateAttributeTypesParsePB)

myBuffer = NewPtr(kMyBufferSize);

if (myBuffer == NULL)

status = MemError();

else {

callBackData.eachAttrType = eachAttrType;

callBackData.clientData = clientData;

CLEAR(callBackData.currentAttrType);

CLEAR(dirParamBlock);

first = TRUE;

do {

GET.identity = userIdentity;

GET.dsRefNum = dsRefNum;

GET.clientData = (long) &callBackData;

GET.aRecord = recordIDPtr;

if (first) {

GET.startingAttrType = NULL;

first = FALSE;

}

else {

/* This is the last attribute type that was fetched

 by the parser callback. */

GET.startingAttrType = &callBackData.currentAttrType;

}

GET.includeStartingPoint = FALSE;

GET.getBuffer = myBuffer;

GET.getBufferSize = kMyBufferSize;

status = DirEnumerateAttributeTypesGet(&dirParamBlock, SYNC);

C H A P T E R 8

Catalog Manager

Using the Catalog Manager 8-23

if (status != kOCEMoreData)

LOG(status, "\pDirEnumerateAttributeTypesGet");

if (status == noErr || status == kOCEMoreData) {

 /* There is a record, or there is a record and more

 data to read. Parse the data: this will call

 the callback function.*/

PARSE.eachAttrType = MyEnumerateEachAttributeType;

status = DirEnumerateAttributeTypesParse(&dirParamBlock,

SYNC);

if (status != kOCEMoreData)

LOG(status, "\pDirEnumerateAttributeTypesParse");

}

} while (status == kOCEMoreData);

DisposePtr(myBuffer);

}

return (status);

#undef GET

#undef PARSE

}

/* MyEnumerateEachAttributeType is called by the

 DirEnumerateAttributeTypesParse function. Remember the attribute type for

 the next call and call the application handler. */

static pascal Boolean

MyEnumerateEachAttributeType(

register long clientData,

const AttributeType *aType

)

{

Boolean stopParse;

#define CALLBACK(*((CallBackDataPtr) clientData))

 /* Grab a copy of the attribute type for the next "get more

 data" call. */

OCECopyRString(

(const RStringPtr) aType,

(RStringPtr) &CALLBACK.currentAttrType,

kAttributeTypeMaxBytes

);

C H A P T E R 8

Catalog Manager

8-24 Using the Catalog Manager

stopParse = CALLBACK.eachAttrType(CALLBACK.clientData, aType);

return (stopParse);

}

Getting Extended Catalog Information
The DirGetExtendedDirectoriesInfo function (page 8-54) returns extended

information about a catalog. The DirGetExtendedDirectoriesInfo function

returns a packed structure that you must unpack. The sample routines in Listing 8-3

show how to call the DirGetExtendedDirectoriesInfo function and how to

examine the information it returns.

The sample routines make use of the structure type, MyExtendedInfoType, which can

hold the extended information for a single catalog.

The DoProcessExtendedCatalogInfo routine declares two pointers: myBufferPtr,

the pointer to the data buffer that will be passed to the

DirGetExtendedDirectoriesInfo function, and extendedInfoPtr, a pointer to

an extended information structure (MyExtendedInfo). It sets both pointers to nil.

Next, the function calls the DoGetExtendedCatalogInfo routine to get the extended

information from the Catalog Manager. If the routine returns successfully,

DoProcessExtendedCatalogInfo allocates enough memory to store the extended

information for all of the catalogs on which the Catalog Manager has returned

information.

Then DoProcessExtendedCatalogInfo calls the

DoUnpackExtendedCatalogInfo routine to extract the extended information from

the data buffer and put it in the array of extended information structures. The

DoUtilizeExtendedCatalogInformation routine, not shown here, acts on the

extended information. You would include a similar routine to do whatever is

appropriate to your application. Finally, DoProcessExtendedCatalogInfo disposes

of the memory that has been allocated before it returns.

Unlike some Catalog Manager functions, DirGetExtendedDirectoriesInfo cannot

be called to retrieve a portion of the information and then called again to retrieve more.

It always attempts to return all of the information at once, and it completes with the

kOCEMoreData result code if the buffer you pass is too small. The purpose of the

DoGetExtendedCatalogInfo routine is to call the

DirGetExtendedDirectoriesInfo function with a buffer that is large enough to

hold all the information that DirGetExtendedDirectoriesInfo will return. The

DoGetExtendedCatalogInfo routine allocates a buffer of kWorkBufferSize bytes

and then calls the DirGetExtendedDirectoriesInfo function.

If DirGetExtendedDirectoriesInfo function returns kOCEMoreData,

DoGetExtendedCatalogInfo disposes of the buffer and allocates a larger one.

It does this repeatedly, increasing the size of the buffer in increments

of kWorkBufferSize bytes until the buffer is large enough to contain all

the information DirGetExtendedDirectoriesInfo can return. If

DirGetExtendedDirectoriesInfo completes successfully,

C H A P T E R 8

Catalog Manager

Using the Catalog Manager 8-25

DoGetExtendedCatalogInfo passes back via its actualEntriesPtr parameter the

number of catalogs for which extended information now exists in the buffer. Otherwise,

it disposes of the buffer.

The DoUnpackExtendedCatalogInfo routine extracts the extended information

about each catalog from the buffer and stores the information in MyExtendedInfo

structures. It does the same thing as the “parse” routines in Listing 8-1 on page 8-17 and

Listing 8-2 on page 8-21, but you have to write this routine yourself because

DirGetExtendedDirectoriesInfo has no corresponding “Parse” routine. Note that

variables in an extended information structure point to data in the packed buffer.

Because the data in the buffer is of variable length, the sizeof function is required to

determine the length of the data. The INCR macro aligns the data on a word boundary.

Listing 8-3 Getting extended information for a catalog

typedef struct MyExtendedInfo {

PackedRLIPtr pRLIPtr; /* Catalog’s packed RLI */

unsigned short pRLILength; /* Length of packed RLI */

OSType entnType; /* Catalog address type */

long hasMailSlot; /* Nonzero if mail slot */

RStringPtr realName; /* Catalog’s true name */

RStringPtr comment; /* More info for display */

long dataLength; /* Additional data length */

Ptr dataPtr; /* Additional information */

} MyExtendedInfoType, *MyExtendedInfoPtrType;

OSErr DoProcessExtendedCatalogInfo(void) {

OSErr status;

Ptr myBufferPtr;

MyExtendedInfoPtrType extendedInfoPtr;

unsigned long actualEntries;

myBufferPtr = nil;

extendedInfoPtr = nil;

status = DoGetExtendedCatalogInfo(&myBufferPtr, &actualEntries);

if (status == noErr) {

extendedInfoPtr = (MyExtendedInfoPtrType) NewPtrClear(actualEntries *

sizeof(MyExtendedInfo));

status = MemError();

}

if (status == noErr) {

status = DoUnpackExtendedCatalogInfo(myBufferPtr, extendedInfoPtr,

actualEntries);

C H A P T E R 8

Catalog Manager

8-26 Using the Catalog Manager

status = DoUtilizeExtendedCatalogInformation(extendedInfoPtr,

actualEntries);

}

if (extendedInfoPtr != nil)

DisposePtr((Ptr) extendedInfoPtr);

if (myBufferPtr != nil)

DisposePtr((Ptr) myBufferPtr);

return (status);

}

OSErr DoGetExtendedCatalogInfo(

Ptr *resultBuffer, /* address of ptr to buffer */

unsigned long *actualEntriesPtr)

{

#define kWorkBufferSize (512)

OSErr status;

DirParamBlock myParamBlock;

unsigned long bufferLength;

#define GET (myParamBlock.getExtendedDirectoriesInfoPB)

bufferLength = 0;

*resultBuffer = nil;

do {

if (*resultBuffer != nil)

DisposePtr(*resultBuffer);

bufferLength += kWorkBufferSize;

*resultBuffer = NewPtr(bufferLength);

if ((status = MemError()) != noErr)

break;

ClearMemory(&myParamBlock, sizeof myParamBlock);

GET.identity = gUserIdentity;

GET.buffer = *resultBuffer;

GET.bufferSize = bufferLength;

status = DirGetExtendedDirectoriesInfo(&myParamBlock, false);

} while (status == kOCEMoreData);

if (status == noErr)

*actualEntriesPtr = GET.actualEntries;

else if (*resultBuffer != nil) {

DisposePtr(*resultBuffer);

*resultBuffer = nil;

}

return (status);

#undef GET

}

C H A P T E R 8

Catalog Manager

Using the Catalog Manager 8-27

OSErr DoUnpackExtendedCatalogInfo(

register Ptr bufPtr, /* pointer to buffer

containing packed

extended catalog

information */

register MyExtendedInfoPtrType extendedInfoPtr, /* pointer to array

of MyExtendedInfo structures */

unsigned long actualEntries)

{

unsigned long dataLength; /* working value */

unsigned long i; /* current entry count */

/* Scan through the buffer to extract the extended catalog

 information. The INCR macro increments bufPtr by some amount,

 making sure that it is aligned on a word boundary. Its argument

 must not have side-effects.*/

#define INCR(v) (bufPtr += ((v) + ((v) & 0x01)))

#define RESULT (*extendedInfoPtr)

for (i = 0; i < actualEntries; i++, extendedInfoPtr++) {

RESULT.pRLIPtr = (PackedRLIPtr) bufPtr;

RESULT.pRLILength = pRLIPtr->dataLength;

INCR(pRLILength + sizeof (ProtoPackedRLI));

RESULT.entnType = *((OSType *) bufPtr);

INCR(sizeof (OSType));

RESULT.hasMailSlot = *((long *) bufPtr);

INCR(sizeof (long));

RESULT.realName = (RStringPtr) bufPtr;

dataLength = RESULT.realName->dataLength;

INCR(dataLength + sizeof (ProtoRString));

RESULT.comment = (RStringPtr) bufPtr;

dataLength = RESULT.comment->dataLength;

INCR(dataLength + sizeof (ProtoRString));

RESULT.dataLength = *((long *) bufPtr);

INCR(sizeof (long));

RESULT.dataPtr = (Ptr) bufPtr;

INCR(RESULT.dataLength); /* Step over the rest */

}

#undef INCR

#undef RESULT

}

8-28 Catalog Manager Reference

C H A P T E R 8

Catalog Manager

Catalog Manager Reference

This section describes the feature flag bit array, and the data types and functions

provided by the Catalog Manager.

Feature Flag Bit Array

Each catalog provides information so that you can determine which features it supports.

This information is specified in a feature flag bit array. The bits are defined next.

Bit name

kSupportsDNodeNumberBit

kSupportsRecordCreationIDBit

kSupportsAttributeCreationIDBit

kSupportsMatchAllBit

kSupportsBeginsWithBit

kSupportsExactMatchBit

kSupportsEndsWithBit

kSupportsContainsBit

kSupportsOrderedEnumerationBit

kCanSupportNameOrderBit

kCanSupportTypeOrderBit

kSupportSortBackwardsBit

kSupportIndexRatioBit

kSupportsEnumerationContinueBit

kSupportsLookupContinueBit

kSupportsEnumerateAttributeTypeContinueBit

kSupportsEnumeratePseudonymContinueBit

kSupportsAliasesBit

kSupportsPseudonymsBit

kSupportsPartialPathNamesBit

kSupportsAuthenticationBit

kSupportsProxiesBit

kSupportsFindRecordBit

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-29

Bit descriptions

kSupportsDNodeNumberBit
If this bit is set, you can reference a dNode by using a dNode
number in the RLI data structure and setting the pathname pointer
to nil. If this bit is not set, you can reference a dNode only by
specifying its pathname information in the RLI data structure; in
this case, you must set the dNode number to 0.

kSupportsRecordCreationIDBit
If this bit is set, you can reference a record by specifying its record
creation ID for most Catalog Manager functions. If this bit is not set,
you must reference a record by specifying its record name and
record type in its record ID.

kSupportsAttributeCreationIDBit
If this bit is set, you can reference an attribute value by specifying
its attribute creation ID and attribute type.

The next five bits indicate what combination of browsing, finding, and matching

capabilities a catalog supports when you enumerate the contents of a dNode in that

catalog.

kSupportsMatchAllBit
If this bit is set, a catalog supports browsing of record names and
record types. When you call the DirEnumerateGet function, such
a catalog can accept an enumeration specification with the
matchNameHow and matchTypeHow fields set to kMatchAll, in
which case, a search matches any record name or record type.

kSupportsBeginsWithBit
If this bit is set, a catalog supports finding record names and record
types beginning with a certain string. When you call the
DirEnumerateGet function, such a catalog can accept an
enumeration specification with the matchNameHow and
matchTypeHow fields set to kBeginsWith; in this case, a search
matches any record name or record type that begins with the string
pointed to by the recordName or typesList field, respectively.

kSupportsExactMatchBit
If this bit is set, a catalog supports finding a record based on an
exact match with a record name or record type. When you call the
DirEnumerateGet function, such a catalog can accept an
enumeration specification with the matchNameHow and
matchTypeHow fields set to kMatchExact; in this case, a search
matches only the record name or record type pointed to by the
recordName or typesList field, respectively.

kSupportsEndsWithBit
If this bit is set, a catalog supports finding record names and record
types ending with a certain string. When you call the
DirEnumerateGet function, such a catalog can accept an
enumeration specification with the matchNameHow and
matchTypeHow fields set to kEndingWith; in this case, a search
matches any record name or record type that ends with the string
pointed to by the recordName or typesList field, respectively.

C H A P T E R 8

Catalog Manager

8-30 Catalog Manager Reference

kSupportsContainsBit
If this bit is set, a catalog supports finding record names and record
types that contain a certain string. When you call the
DirEnumerateGet function, such a catalog can accept an
enumeration specification with the matchNameHow and
matchTypeHow fields set to kContaining; in this case, a search
matches any record name or record type that contains the string
pointed to by the recordName or typesList field, respectively.

kSupportsOrderedEnumerationBit
If this bit is set, a catalog returns requested information in a sorted
order when you call the DirEnumerateGet function. It may return
the information sorted by name or by type, in which case one of the
two following bits will also be set. The catalog may also return the
information in an unspecified sorted order.

kCanSupportNameOrderBit
If this bit is set, a catalog supports the sorting by name option in the
DirEnumerateGet function.

kCanSupportTypeOrderBit
If this bit is set, a catalog supports the sorting by type option in the
DirEnumerateGet function.

kSupportsSortBackwardsBit
If this bit is set, a catalog supports the backward sort direction
option in the DirEnumerateGet function.

kSupportIndexRatioBit
If this bit is set, a catalog supports the index ratio feature in the
DirEnumerateGet function. That is, the catalog can return the
approximate position of a record among all records that match the
search criteria in a dNode.

kSupportsEnumerationContinueBit
If this bit is set, a catalog supports the continue feature in the
DirEnumerateGet function.

kSupportsLookupContinueBit
If this bit is set, a catalog supports the continue feature in the
DirLookupGet function.

kSupportsEnumerateAttributeTypeContinueBit
If this bit is set, a catalog supports the continue feature in the
DirEnumerateAttributeTypesGet function.

kSupportsEnumeratePseudonymContinueBit
If this bit is set, a catalog supports the continue feature in the
DirEnumeratePseudonymGet function.

kSupportsAliasesBit
If this bit is set, a catalog supports the DirAddAlias function. It
also supports deleting an alias with the DirDeleteRecord
function and enumerating aliases with the DirEnumerateGet
function.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-31

kSupportsPseudonymsBit
If this bit is set, a catalog supports the DirAddPseudonym,
DirDeletePseudonym, and DirEnumeratePseudonymGet
functions. It also supports enumerating pseudonyms with the
DirEnumerateGet function.

kSupportsPartialPathnamesBit
If this bit is set, you can specify a catalog node by using the dNode
number of an intermediate dNode and a partial pathname starting
from the intermediate dNode to the target dNode.

kSupportsAuthenticationBit
If this bit is set, a catalog supports all Authentication Manager
functions except those that relate to proxies. Support for proxies is
specified by a separate bit.

kSupportsProxiesBit
If this bit is set, a catalog supports the Authentication Manager
functions that relate to proxies.

kSupportsFindRecordBit
If this bit is set, a catalog supports the DirFindRecordGet and
DirFindRecordParse functions.

You can use the following mask values to set the bits in a variable that specifies the

features supported by a given catalog. Such variables are of type DirGestalt.

enum {

kSupportsDNodeNumberMask = 1L<<kSupportsDNodeNumberBit,

kSupportsRecordCreationIDMask = 1L<<kSupportsRecordCreationIDBit,

kSupportsAttributeCreationIDMask = 1L<<kSupportsAttributeCreationIDBit,

kSupportsMatchAllMask = 1L<<kSupportsMatchAllBit,

kSupportsBeginsWithMask = 1L<<kSupportsBeginsWithBit,

kSupportsExactMatchMask = 1L<<kSupportsExactMatchBit,

kSupportsEndsWithMask = 1L<<kSupportsEndsWithBit,

kSupportsContainsMask = 1L<<kSupportsContainsBit,

kSupportsOrderedEnumerationMask = 1L<<kSupportsOrderedEnumerationBit,

kCanSupportNameOrderMask = 1L<<kCanSupportNameOrderBit,

kCanSupportTypeOrderMask = 1L<<kCanSupportTypeOrderBit,

kSupportSortBackwardsMask = 1L<<kSupportSortBackwardsBit,

kSupportIndexRatioMask = 1L<<kSupportIndexRatioBit,

kSupportsEnumerationContinueMask = 1L<<kSupportsEnumerationContinueBit,

kSupportsLookupContinueMask = 1L<<kSupportsLookupContinueBit,

kSupportsEnumerateAttributeTypeContinueMask =

1L<<kSupportsEnumerateAttributeTypeContinueBit,

kSupportsEnumeratePseudonymContinueMask =

1L<<kSupportsEnumeratePseudonymContinueBit,

kSupportsAliasesMask = 1L<<kSupportsAliasesBit,

kSupportsPseudonymsMask = 1L<<kSupportsPseudonymsBit,

kSupportsPartialPathNamesMask = 1L<<kSupportsPartialPathNamesBit,

C H A P T E R 8

Catalog Manager

8-32 Catalog Manager Reference

kSupportsAuthenticationMask = 1L<<kSupportsAuthenticationBit,

kSupportsProxiesMask = 1L<<kSupportsProxiesBit

kSupportsFindRecordMask = 1L<<kSupportsFindRecordBit

};

Data Types

This section describes the data types that are specific to the Catalog Manager. See the

chapter “AOCE Utilities” for descriptions of other data types that you use to provide

information to or obtain information from Catalog Manager functions.

The Parameter Block Header

Every Catalog Manager routine takes a pointer to a DirParamBlock parameter block as

input. The DirParamBlock parameter block defines a union of substructures, each of

which is a parameter block for one of the Catalog Manager routines. Each routine

description in “Catalog Manager Routines” starting on page 8-38 lists the fields of that

routine’s parameter block. Each parameter block contains the following header.

#define AuthDirParamHeader \

Ptr qLink; /* reserved */\

long reserved_H1; /* reserved */\

long reserved_H2; /* reserved */\

ProcPtr ioCompletion; /* your completion routine */\

OSErr ioResult; /* result code */\

unsigned long saveA5; /* reserved */\

short reqCode; /* CSAM request code*/\

long reserved[2]; /* reserved */\

AddrBlock serverHint; /* PowerShare server’s AppleTalk address */\

short dsRefNum; /* personal catalog reference number */\

unsigned long callID; /* reserved */\

AuthIdentity identity; /* requester’s authentication identity */\

long gReserved1; /* reserved */\

long gReserved2; /* reserved */\

long gReserved3; /* reserved */\

long clientData; /* you define this field */

Field descriptions

qLink Reserved.

reserved_H1 Reserved.

reserved_H2 Reserved.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-33

ioCompletion A pointer to a completion routine that you can provide. When a
Catalog Manager function that you called asynchronously
completes execution, it calls your completion routine. Set this field
to nil if you do not wish to provide a completion routine. The
function ignores this field if you call it synchronously.

ioResult The result of the function. When you execute the function
asynchronously, the function sets this field to 1 as soon as the
routine has been queued for execution. When the function
completes execution, it sets this field to the actual result code.

saveA5 Reserved.

reqCode This field is reserved when you call a Catalog Manager function.
However, when the Catalog Manager passes a DirParamBlock
parameter block to a CSAM, the reqCode field contains a constant
that identifies which member of the DirParamBlock union type
is being passed

reserved[2] Reserved.

serverHint The AppleTalk address of the PowerShare server to which you want
to direct your request. Normally, you specify nil for all fields of
this structure and the Catalog Manager directs the request to an
appropriate PowerShare server. However, PowerShare server
administration software (PowerShare Admin) may need to specify a
particular server, and the DirAddADAPDirectory function
requires a specific PowerShare server address. You can obtain the
AppleTalk address of a PowerShare server from the NBPLookup
function. The AddrBlock data structure is defined in Inside
Macintosh: Networking.

dsRefNum The reference number of the personal catalog to which the request
applies. The DirOpenPersonalDirectory function returns this
reference number when you open a personal catalog. If you are not
addressing a personal catalog, set this field to 0.

callID Reserved.

identity The authentication identity of the requester. The authentication
identity can be either the local identity of the owner of the computer
or a specific identity. Typically, you set this field to the local identity
to gain transparent access to all installed catalogs. You may also set
this field to a specific identity. You can obtain the local identity from
the Authentication Manager’s AuthGetLocalIdentity function
and a specific identity from the AuthBindIdentity function. See
the chapter “Authentication Manager” in this book for more
information about obtaining identities. Specify 0 for this field for
guest access; that is, no identity.
Functions that fail due to an insufficient level of access privilege
return either the kOCEReadAccessDenied or
kOCEWriteAccessDenied result code.

gReserved1 Reserved.

gReserved2 Reserved.

gReserved3 Reserved.

C H A P T E R 8

Catalog Manager

8-34 Catalog Manager Reference

clientData Reserved for your use. The Catalog Manager passes the value in
this field to your callback routines. If you have the same callback or
completion routine processing more than one asynchronous
request, your routine can use the clientData field to determine
for which request it is processing results.

The dNode ID

A dNode ID consists of a dNode number that uniquely identifies a dNode within a

catalog plus the name of the dNode. A dNode ID is defined by the DNodeID data

structure. In the Catalog Manager API, it is not used as a stand-alone data structure; it is

a member of the union part of the DirEnumSpec data structure, described on page 8-35.

struct DNodeID {

DNodeNum dNodeNumber; /* dNode number */

long reserved1; /* reserved */

RStringPtr name; /* name of the dNode */

long reserved2; /* reserved */

};

The Enumeration Choice Type

The bits in a variable of type DirEnumChoices indicate types of entities. You use a

variable of type DirEnumChoices to specify the type of entities about which you want

information when you call the DirEnumerateGet function.

typedef unsigned long DirEnumChoices;

The bits in the DirEnumChoices data type are defined as follows:

enum {

kEnumDistinguishedNameBit,

kEnumAliasBit,

kEnumPseudonymBit,

kEnumDNodeBit,

kEnumInvisibleBit

};

You can use the following values to set and test the bits in a variable of type

DirEnumChoices.

enum { /* values of DirEnumChoices */

kEnumDistinguishedNameMask = 1L<<kEnumDistinguishedNameBit,

kEnumAliasMask = 1L<<kEnumAliasBit,

kEnumPseudonymMask = 1L<<kEnumPseudonymBit,

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-35

kEnumDNodeMask = 1L<<kEnumDNodeBit,

kEnumInvisibleMask = 1L<<kEnumInvisibleBit

};

#define kEnumAllMask (kEnumDistinguishedNameMask | kEnumAliasMask |

kEnumPseudonymMask | kEnumDNodeMask |

kEnumInvisibleMask)

Descriptions

kEnumDistinguishedNameMask
This setting specifies a record.

kEnumAliasMask
This setting specifies an alias.

kEnumPseudonymMask
This setting specifies a pseudonym.

kEnumDNodeMask
This setting specifies a dNode.

kEnumInvisibleMask
As an input, this setting specifies all dNodes, records, aliases, and
pseudonyms, both visible and invisible. As an output, it is set in
conjunction with either kEnumDistinguishedNameMask,
kEnumAliasMask, kEnumPseudonymMask, or kEnumDNodeMask,
and indicates that the specified entity is invisible.

kEnumAllMask As an input, this setting specifies all visible records, aliases,
pseudonyms, and dNodes. It is not used as an output.

The Enumeration Specification

The DirEnumSpec data structure contains information about either a record, an alias, a

pseudonym, or a dNode. The value of the enumFlag field indicates the type of entity to

which the rest of the information applies as well as the format of that information.

When you want to enumerate the contents of a dNode starting from a specific dNode,

record, alias, or pseudonym, you provide a DirEnumSpec structure to the

DirEnumerateGet function that specifies the record, alias, pseudonym, or dNode at

which you want the DirEnumerateGet function to start the enumeration. The

DirEnumerateParse function passes a DirEnumSpec structure to your callback

routine for each record, alias, pseudonym, or dNode that it finds in the buffer.

struct DirEnumSpec {

DirEnumChoices enumFlag; /* type of entity */

unsigned short indexRatio; /* approximate record position */

union {

LocalRecordID recordIdentifier; /* record information */

C H A P T E R 8

Catalog Manager

8-36 Catalog Manager Reference

DNodeID dnodeIdentifier; /* dNode info */

}u;

};

Field descriptions

enumFlag A value that indicates the type of entity about which information is
provided in the u field. The following constants indicate whether
the information applies to a record, an alias, a pseudonym, or a
dNode: kEnumDistinguishedNameMask, kEnumAliasMask,
kEnumPseudonymMask, or kEnumDNodeMask. The
kEnumInvisibleMask constant indicates whether the entity is
invisible or visible.

indexRatio The approximate position, expressed as a percentile ranging from 1
to 100, of a record among all records in a dNode. This is a hint that
can be used with a scroll box (or some other mechanism) to show
how far you have moved through a list of records. If a catalog does
not support this feature, it sets this field to 0.

u.recordIdentifier
If the enumFlag field is set to kEnumDistinguishedNameMask,
kEnumAliasMask or kEnumPseudonymMask, this field contains a
LocalRecordID data structure. The local record ID specifies a
record’s name, type, and creation ID.

u.dnodeIdentifier
If the enumFlag field is set to kEnumDNodeMask, this field contains
a DNodeID data structure. A dNode ID specifies a dNode’s name
and its dNode number. If a catalog does not support dNode
numbers, the dNodeNumber field is set to 0.

The Script Structure

The script structure SLRV, returned by the DirEnumerateGet function, identifies the

script, language, and region that the function uses to sort the entries in your buffer.

struct SLRV {

ScriptCode script; /* script code in which entries are sorted */

short language; /* language code in which entries are sorted */

short regionCode; /* region code in which entries are sorted */

short version; /* version of AOCE sorting software */

};

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-37

Field descriptions

script The script code identifies the script that the DirEnumerateGet
function uses in sorting.

language The language code identifies the language that the
DirEnumerateGet function uses in sorting.

regionCode The region code identifies the region that the DirEnumerateGet
function uses in sorting.

version The constant kCurrentOCESortVersion. It identifies the version
of AOCE sorting software that the DirEnumerateGet function
uses.

The Matching Criteria Type

You use the DirMatchWith data type to indicate a matching mode when you

enumerate the contents of a dNode. You always use a variable of type DirMatchWith in

conjunction with a search string. The DirMatchWith variable specifies the criteria that

the DirEnumerateGet function uses to determine when it has found a match with your

search string.

typedef unsigned char DirMatchWith;

The possible values of the DirMatchWith data type are defined as follows:

enum { /* values of DirMatchWith */

kMatchAll,

kExactMatch,

kBeginsWith,

kEndingWith,

kContaining

};

Descriptions

kMatchAll Match any string.

kExactMatch Match only those strings that are exactly the same as the search
string.

kBeginsWith Match any string that begins with the search string.

kEndingWith Match any string that ends with the search string.

kContaining Match any string that contains the search string.

C H A P T E R 8

Catalog Manager

8-38 Catalog Manager Reference

Catalog Manager Functions

This section describes the Catalog Manager functions that provide services such as

getting information about catalogs and dNodes, managing the PowerTalk Setup catalog,

managing records and attribute values and types, and controlling access to dNodes,

records, and attribute types.

All of the Catalog Manager functions take a pointer to a catalog parameter block as

input. Each routine description includes a list of the fields in the parameter block that are

used by the function. Each list of parameter block fields has four columns. See the

Preface to this book for a description of the type of information that each column

contains.

To call a Catalog Manager function from assembly language, push the address of the

DirParamBlock parameter block and the async flag onto the stack using the Pascal

calling convention, and place the selector value for the _oceTBDispatch trap macro in

register D0. Each function description includes the selector value for that function. The

function returns its result code in the ioResult field of the parameter block.

Getting Information About Catalogs

You can use the functions in this section to get a variety of information about the

catalogs that are listed in the PowerTalk Setup catalog. The

DirEnumerateDirectoriesGet and DirEnumerateDirectoriesParse functions

work together to provide the catalog name, discriminator value, and feature flags for

some or all of the catalogs listed in the PowerTalk Setup catalog. You can discover the

features that a specific catalog supports by calling the DirGetDirectoryInfo

function. The DirGetLocalNetworkSpec function provides you with the name of the

network on which a PowerShare catalog is located. You can get information about the

icons that represent a catalog by calling the DirGetDirectoryIcon function. The

DirGetExtendedDirectoriesInfo function provides additional information about

an external catalog that is specific to that catalog.

DirEnumerateDirectoriesGet

The DirEnumerateDirectoriesGet function returns information about catalogs that

are listed in the PowerTalk Setup catalog.

pascal OSErr DirEnumerateDirectoriesGet

(DirParamBlockPtr paramBlock,

Boolean async);

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-39

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, and clientData fields.

Field descriptions

directoryKind A value that indicates the type of catalog about which you are
requesting information. Use the constant kDirADAPKind to request
information about PowerShare catalogs. Use the constant
kDirDSAMKind to request information about external catalogs. To
request information about both PowerShare and external catalogs,
use the constant kDirAllKinds. You can also supply a specific
signature value to get information on catalogs having that
signature. The function does not return information about personal
catalogs.

startingDirectoryName
A pointer to the name of the catalog at which you want the
DirEnumerateDirectoriesGet function to begin the
enumeration. Set this field to nil to start with the first catalog. If
the DirEnumerateDirectoriesGet function completes with the
kOCEMoreData result code, set this field to the value of the last
dirName parameter passed to your callback routine by the
DirEnumerateDirectoriesParse function to continue the
enumeration. You must coordinate the value you provide in this
field with the value you provide in the
startingDirDiscriminator field; that is, both values are
required, and both must apply to the same catalog.

startingDirDiscriminator
The discriminator value of the catalog at which you want the
DirEnumerateDirectoriesGet function to begin the
enumeration. Set the fields of this structure to 0 to start with the first
catalog. If the DirEnumerateDirectoriesGet function
completes with the kOCEMoreData result code, set this field to the
value of the last discriminator parameter passed to your

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
→ directoryKind OCEDirectoryKind Catalog type
→ startingDirectoryName DirectoryNamePtr Starting catalog name
→ startingDirDiscriminator DirDiscriminator Starting discriminator value
→ includeStartingPoint Boolean Begin enumeration with

starting point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

8-40 Catalog Manager Reference

callback routine by the DirEnumerateDirectoriesParse
function to continue the enumeration. You must coordinate the
value you provide in this field with the value you provide in the
startingDirectoryName field; that is, both values are required,
and both must apply to the same catalog

includeStartingPoint
A Boolean value that tells the DirEnumerateDirectoriesGet
function how to interpret the startingDirectoryName and
startingDirDiscriminator fields. Set this field to true if you
want the DirEnumerateDirectoriesGet function to return
information about catalogs beginning with the one specified by the
startingDirectoryName and startingDirDiscriminator
fields. If you set this field to false, the function returns
information starting with the catalog immediately after the one
specified by the startingDirectoryName and
startingDirDiscriminator fields.

getBuffer A pointer to the buffer in which the function stores the name, the
discriminator value, and the capability flags for each catalog listed
in the PowerTalk Setup catalog. You provide this buffer.

getBufferSize The number of bytes in the buffer.

DESCRIPTION

You call the DirEnumerateDirectoriesGet function to obtain information about

PowerShare catalogs and external catalogs that are listed in the PowerTalk Setup catalog.

You can request information about either PowerShare catalogs or external catalogs, or

about both. You can also request information about catalogs that share a specific

signature that you specify. For example, if there are several X.500 catalogs listed in the

PowerTalk Setup catalog and they used the same signature value, you could request

information about that set of catalogs.

For each catalog about which you have requested information, the function places the

catalog’s name, its discriminator value, and its feature flags in the buffer you provide. If

your buffer is not large enough to contain all of the information you requested, the

function places as many sets of catalog name, discriminator value, and feature flags as

will fit in your buffer and returns the kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you

can provide a pointer to your buffer to the DirEnumerateDirectoriesParse

function, which extracts the catalog information from the buffer and passes it to a

callback routine that you provide.

If your buffer is too small to hold all of the information you requested, you can continue

to obtain information by calling the DirEnumerateDirectoriesGet function again,

after calling the DirEnumerateDirectoriesParse function. For the values of the

startingDirectoryName and startingDirDiscriminator fields, use the values

that the DirEnumerateDirectoriesParse function last passed to the dirName and

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-41

discriminator parameters of your callback routine. The

DirEnumerateDirectoriesGet function will continue the enumeration starting with

the next catalog as determined by the value of the includeStartingPoint field.

Because personal catalogs are not listed in the PowerTalk Setup catalog, the

DirEnumerateDirectoriesGet function does not return information about them. To

obtain the name, discriminator value, and feature flags of a personal catalog, locate the

catalog using the routines in the Standard File Package; open the catalog by calling the

DirOpenPersonalDirectory function, and call the DirGetDirectoryInfo

function to get the information.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirEnumerateDirectoriesParse function is described next.

The DirGetDirectoryInfo function is described on page 8-48.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all

the information you requested, see “Getting Attribute Type Information” on page 8-20.

DirEnumerateDirectoriesParse

The DirEnumerateDirectoriesParse function parses the data returned by the

DirEnumerateDirectoriesGet function and returns information about catalogs, one

catalog at a time, by repeatedly calling your callback routine.

pascal OSErr DirEnumerateDirectoriesParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $011A

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-42 Catalog Manager Reference

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, and clientData fields.

Field descriptions

eachDirectory A pointer to your callback routine. The function declaration for this
routine is described on page 8-153.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirEnumerateDirectoriesGet function.

getBufferSize The number of bytes in the buffer. Use the same value that you
provided to the DirEnumerateDirectoriesGet function.

DESCRIPTION

You call the DirEnumerateDirectoriesParse function to extract the catalog

information placed in your buffer by the DirEnumerateDirectoriesGet function.

You must provide a callback routine that the DirEnumerateDirectoriesParse

function calls for each set of catalog information that it finds in the buffer. Each time it

calls your callback routine, the function passes it the name, discriminator value, and the

feature flags of a catalog.

The DirEnumerateDirectoriesParse function completes when it has finished

parsing the contents of your buffer or when your callback routine returns true. The

function returns the kOCEMoreData result code if it reaches the end of the buffer and

finds that the DirEnumerateDirectoriesGet function did not return all the data

requested. To continue the enumeration, call the DirEnumerateDirectoriesGet

function again. Get the values of the dirName and discriminator parameters that the

DirEnumerateDirectoriesParse function last passed to your callback routine. In

your next call to the DirEnumerateDirectoriesGet function, use these as the values

of the startingDirectoryName and startingDirDiscriminator fields.

If your callback routine returns true, the DirEnumerateDirectoriesParse function

completes with the noErr result code.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
→ eachDirectory ForEachDirectory Your callback routine
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-43

Because the DirEnumerateDirectoriesGet function returns information about

PowerShare and external catalogs only, the DirEnumerateDirectoriesParse

function can retrieve information only about these types of catalogs. To obtain the name,

discriminator value, and feature flags of a personal catalog, locate the catalog using the

routines in the Standard File Package; open the catalog by calling the

DirOpenPersonalDirectory function, and call the DirGetDirectoryInfo

function to get the information.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-153.

The DirGetDirectoryInfo function is described on page 8-48.

The DirEnumerateDirectoriesGet function is described on page 8-38.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesParse function) when the buffer is too small to hold

all the information you requested, see “Getting Attribute Type Information” on page 8-20.

DirFindRecordGet

The DirFindRecordGet function returns information about the records, aliases, and

pseudonyms contained in a catalog that you specify.

pascal OSErr DirFindRecordGet (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Trap macro Selector

_oceTBDispatch $0106

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-44 Catalog Manager Reference

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

startingPoint A pointer to the record, alias, or pseudonym at which you want the
function to start the enumeration. Set this field to nil when you
call the DirFindRecordGet function for the first time. If the
function completes with the kOCEMoreData result code, you can
set this field to the value of the last enumSpec parameter passed to
your callback routine by the DirFindRecordParse function to
continue the enumeration from the next record, alias, or pseudonym.

nameMatchString
A pointer to the name of the record, alias, or pseudonym about
which you want information. You specify the mode in which you
want the function to match the name in the matchNameHow field. If
you specify kMatchAll in the matchNameHow field, the function
ignores this field. The DirFindRecordGet function returns only
records, aliases, or pseudonyms whose names match the value that
you specify according to the match criteria that you specify.

typesList A pointer to an array of pointers. Each element in the array points
to a record type about which you want information. Your array may
include both AOCE-defined record types and record types that you
define. You specify the mode in which you want the function to
match the type in the matchTypeHow field. If you specify
kMatchAll in the matchTypeHow field, the function ignores this
field.

typeCount The number of pointers to record types in your array of types.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ startingPoint DirEnumSpec* Starting point for enumeration
→ nameMatchString RStringPtr Name of record, alias, or pseudonym you

want returned
→ typesList RStringPtr* List of types you want returned
→ typeCount unsigned long Number of types in the list
→ matchNameHow DirMatchWith Match criteria for names
→ matchTypeHow DirMatchWith Match criteria for types
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
→ directoryName DirectoryNamePtr Catalog name
→ discriminator Discriminator Discriminator value

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-45

matchNameHow A value that specifies the matching mode by which the function
determines matches with the name you provide in the
nameMatchString field. The possible values for exact and
wildcard matching are described on page 8-37.

matchTypeHow A value that specifies the matching mode by which the function
determines matches with the values you provide in the typesList
field. The possible values for exact and wildcard matching are
described on page 8-37. If you specify kMatchAll, the function
returns information on each record, alias, or pseudonym whose
name matches the value pointed to by the nameMatchString field.

getBuffer A pointer to the buffer in which the function stores the requested
information. You provide this buffer.

getBufferSize The number of bytes in the buffer.

directoryName A pointer to the name of the catalog whose records you want to
enumerate. You provide the name buffer.

discriminator A unique value associated with a catalog that distinguishes it from
other catalogs with the same name.

DESCRIPTION

You call the DirFindRecordGet function to obtain a list of records, aliases,

pseudonyms, or all of these for a catalog that you specify. This function allows you to

specify matching criteria for both names and types.

The sort order of the information returned by the function is undefined.

The DirFindRecordGet function places a local record ID for each record, alias, or

pseudonym that it finds in your buffer. The function provides only whole units of

information for each entity. That is, it will not provide the creation ID for a record

without also providing its name and type. If your buffer is not large enough to contain

all of the information requested, the DirFindRecordGet function provides complete

information on as many records, aliases, or pseudonyms as will fit and returns the

kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you

use a pointer to your buffer as input to the DirFindRecordParse function, which

extracts the information from the buffer.

If the DirFindRecordGet function returned the kOCEMoreData result code, you can

request additional information by calling it again after calling the

DirFindRecordParse function. Get the value of the enumSpec parameter that

the DirFindRecordParse function last passed to your callback routine. When you call

DirFindRecordParse again, use this value in the startingPoint field. Use the

same values for the nameMatchString and typesList fields that you used in your

original call to the DirFindRecordGet function. The DirFindRecordGet function

will continue the enumeration starting with the next record, alias, or pseudonym.

C H A P T E R 8

Catalog Manager

8-46 Catalog Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirFindRecordParse function is described next.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all

the information you requested, see “Getting Attribute Type Information” on page 8-20.

To obtain the value for the discriminator field, call the DirGetDirectoryInfo

function on page 8-48.

DirFindRecordParse

The DirFindRecordParse function parses the data returned by the

DirFindRecordGet function and returns information on each record, alias, or

pseudonym by repeatedly calling your callback routine.

pascal OSErr DirFindRecordParse (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0140

noErr 0 No error
kOCEMoreData –1623 More data available

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ startingPoint DirEnumSpec * Starting point for enumeration
→ nameMatchString RStringPtr Name of record, alias, or pseudonym you

want returned
→ typesList RStringPtr * List of types you want returned

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-47

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

startingPoint Use the value you provided in the startingPoint field of the
DirFindRecordGet function.

nameMatchString
Use the value you provided in the nameMatchString field of the
DirFindRecordGet function.

typesList Use the value you provided in the typesList field of the
DirFindRecordGet function.

typeCount Use the value you provided in the typeCount field of the
DirFindRecordGet function.

matchNameHow Use the value you provided in the matchNameHow field of the
DirFindRecordGet function.

matchTypeHow Use the value you provided in the matchTypeHow field of the
DirFindRecordGet function.

getBuffer Use the value you provided in the getBuffer field of the
DirFindRecordGet function.

getBufferSize Use the value you provided in the getBufferSize field of the
DirFindRecordGet function.

directoryName Use the value you provided in the directoryName field of the
DirFindRecordGet function.

discriminator Use the value you provided in the discriminator field of the
DirFindRecordGet function.

forEachRecordFunc
A pointer to your callback routine.

DESCRIPTION

You call the DirFindRecordParse function to extract the information that the

DirFindRecordGet function placed in your buffer. You must provide a callback

routine that the DirFindRecordParse function calls for each record, alias, or

pseudonym about which there is information in the buffer. The DirFindRecordParse

function provides a local record ID for each record, alias, or pseudonym. See the

description of your callback routine on page 8-159 for more information.

The DirFindRecordParse function completes when it has finished parsing the

contents of your buffer or when your callback routine returns true. The function returns

→ typeCount unsigned long Number of types in the list
→ matchNameHow DirMatchWith Match criteria for names
→ matchTypeHow DirMatchWith Match criteria for types
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
→ directoryName DirectoryNamePtr Catalog name
→ discriminator Discriminator Discriminator value
→ forEachRecordFunc ForEachRecord Your callback routine

C H A P T E R 8

Catalog Manager

8-48 Catalog Manager Reference

the kOCEMoreData result code if it reaches the end of the buffer and finds that the

DirFindRecordGet function did not return all the data requested. To continue the

enumeration, call the DirFindRecordGet function again. In your next call to the

DirFindRecordGet function, for the value of the startingPoint field, use the value

that your callback routine last received in the enumSpec parameter.

If your callback routine returns true, the DirFindRecordParse function completes

with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-159.

The DirFindRecordGet function is described on page 8-43.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesParse function) when the buffer is too small to hold

all the information you requested, see “Getting Attribute Type Information” on page 8-20.

DirGetDirectoryInfo

The DirGetDirectoryInfo function returns information about a catalog that you

specify.

pascal OSErr DirGetDirectoryInfo (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Trap macro Selector

_oceTBDispatch $0141

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-49

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

directoryName A pointer to the name of the catalog about which you want
information. You provide the name buffer. You specify the catalog
name unless you are requesting information about a personal
catalog. In that case, you may provide either the personal catalog’s
name and discriminator value or its reference number. If you
specify its reference number in the dsRefNum field, the function
returns, in the buffer supplied for the directoryName field, the
volume name on which the personal catalog resides. To obtain the
file specification for the personal catalog, call the
DirMakePersonalDirectoryRLI function first. Then call
OCEExtractAlias using the record location information you
obtained to extract the File Manager alias for the personal catalog.

discriminator A unique value that distinguishes a catalog from other catalogs
with the same name. You specify this field unless you are requesting
information about a personal catalog. In that case, you may provide
either the personal catalog’s name and discriminator value or its
reference number. If you specify its reference number in the
dsRefNum field, the function returns the discriminator value in this
field.

features A set of bit flags that describe the features that a catalog supports.
The function returns these flags for the catalog that you specify.

DESCRIPTION

You call the DirGetDirectoryInfo function to determine the features that a catalog

supports before calling other Catalog Manager functions that address that catalog.

In addition to returning a catalog’s feature flags, the DirGetDirectoryInfo function

may also return the name and discriminator value for a catalog. The function first

examines the dsRefNum field. If you specify a nonzero value for the dsRefNum field

(that is, if your target catalog is a personal catalog), the DirGetDirectoryInfo

function returns the name, the discriminator value, and the feature flags for the personal

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
↔ directoryName DirectoryNamePtr The name of the catalog
↔ discriminator DirDiscriminator Discriminator value
← features DirGestalt Feature flags

C H A P T E R 8

Catalog Manager

8-50 Catalog Manager Reference

catalog that you identified. If the dsRefNum field is set to 0, the function examines the

serverHint field. A special case arises when you request information about a

PowerShare catalog and you specify the AppleTalk address of a server for that catalog in

the serverHint field. In this case, you do not need to provide the catalog name and

discriminator. The function returns those values as well the feature flags.

To test the bits in the features field, you can use the mask values shown on page 8-31.

Note

The DirEnumerateDirectoriesGet function also returns the name,
discriminator value, and feature flags for PowerShare and external
catalogs. Unlike the DirGetDirectoryInfo function, which requires
that you know some information about a specific catalog before you can
request additional information about that catalog, the
DirEnumerateDirectoriesGet function returns catalog information
without you needing to provide any. However, the
DirEnumerateDirectoriesGet function returns information only
about the PowerShare and external catalogs listed in the PowerTalk
Setup catalog. ◆

SPECIAL CONSIDERATIONS

The DirFindADAPDirectoryByNetSearch and DirAddADAPDirectory functions

allow you to make a catalog available for your use without adding it to the PowerTalk

Setup catalog. You can call the DirGetDirectoryInfo function for any catalog that

you have made privately available.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirEnumerateDirectoriesGet function is described on page 8-38.

You obtain a reference number for a personal catalog from the

DirOpenPersonalDirectory function, which is described on page 8-84.

Trap macro Selector

_oceTBDispatch $0119

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-51

DirGetLocalNetworkSpec

The DirGetLocalNetworkSpec function returns the name of the network on which a

PowerShare catalog resides.

pascal OSErr DirGetLocalNetworkSpec (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

directoryName A pointer to the name of the PowerShare catalog to which the
request applies.

discriminator The discriminator value of the PowerShare catalog to which the
request applies. A catalog discriminator differentiates between two
or more catalogs with the same name.

networkSpec A pointer to a buffer in which the function places the name of the
network in which the catalog resides. You provide this buffer. The
buffer should be big enough to hold a maximum size
NetworkSpec data structure.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Discriminator value
↔ networkSpec NetworkSpecPtr Network name

C H A P T E R 8

Catalog Manager

8-52 Catalog Manager Reference

DESCRIPTION

You call the DirGetLocalNetworkSpec function when you want to know the name of

the network on which a specific ADAP catalog resides. You provide the catalog name

and discriminator value. The function returns in the networkSpec field a pointer to the

name of the network. The information that this function provides may be useful in an

environment containing multiple interconnected networks.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The NetworkSpec data structure is described in the chapter “AOCE Utilities” in this

book.

DirGetDirectoryIcon

The DirGetDirectoryIcon function returns information about an icon representing a

catalog that you specify.

pascal OSErr DirGetDirectoryIcon (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Trap macro Selector

_oceTBDispatch $0124

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-53

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

pRLI A pointer to packed record location information for the catalog
whose icon you want to obtain. The function ignores this field when
you provide a nonzero value in the dsRefNum field to specify a
personal catalog.

iconType The type of icon about which you want information. Specify one of
the following: 'ICN#', 'icl8', 'icl4', 'ics8' 'ics4', or 'ics#' .

iconBuffer A pointer to the buffer in which the function stores the icon data.
You provide this buffer.

bufferSize On input, you set this field to the size of the buffer pointed to by the
iconBuffer field. On output, the function sets this field to the size
of the icon it placed in your buffer. If the function completes with
the kOCEBufferTooSmall result code, it sets this field to the size
of the icon.

DESCRIPTION

You call the DirGetDirectoryIcon function to get icon information for a catalog so

that you may display the icon.

This function is not supported by PowerShare and personal catalogs. A catalog service

access module may support this function for its catalog.

If your buffer is not large enough to hold the icon you requested, the function returns the

kOCEBufferTooSmall result code. In that case, the bufferSize field contains the size

of the icon. You should increase the size of your buffer to the icon size and call the

function again.

SPECIAL CONSIDERATIONS

Apple Computer, Inc., does not publish the size of icon resources. They are subject to

change.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target catalog
→ iconType OSType The type of icon
↔ iconBuffer Ptr Your buffer
↔ bufferSize unsigned long Size of buffer on input; data bytes in

buffer on output

C H A P T E R 8

Catalog Manager

8-54 Catalog Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is

described in the chapter “AOCE Utilities” in this book.

For information about the different icon types and the format of the data associated with

those types, see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.

DirGetExtendedDirectoriesInfo

The DirGetExtendedDirectoriesInfo function returns extended information about

catalogs.

pascal OSErr DirGetExtendedDirectoriesInfo

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this to true if you want the function to be executed
asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0121

noErr 0 No error
kOCEBufferTooSmall –1503 Buffer too small for data requested

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
↔ buffer Ptr Your output buffer
→ bufferSize unsigned long Size of buffer;
← totalEntries unsigned long Number of catalogs found
← actualEntries unsigned long Number of entries returned

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-55

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

buffer A pointer to your buffer in which the function stores the
information you request.

bufferSize The number of bytes in your buffer. You set this field to the size of
your buffer in bytes.

totalEntries The total number of external catalogs that the
DirGetExtendedDirectoriesInfo function found listed in the
PowerTalk Setup catalog.

actualEntries The number of catalogs about which the function has returned
information in your buffer.

DESCRIPTION

You call the DirGetExtendedDirectoriesInfo function to get information about

catalogs. The function provides more information than is available from the

DirEnumerateDirectoriesGet function. For example, it might return information

on the addressing scheme used by an external catalog. Typically, an AOCE address

template calls this function to help construct an address for a messaging service access

module. Unlike the DirEnumerateDirectoriesGet function,

DirGetExtendedDirectoriesInfo has no associated parse routine. Thus, you must

parse the contents of the buffer yourself.

For each catalog, the DirGetExtendedDirectoriesInfo function stores information

in your buffer in the following format:

struct EachDirectoryData {

PackedRLI pRLI; /* packed RLI for catalog */

OSType entnType; /* address type */

long hasMailSlot; /* catalog has mail slot? */

ProtoRString realName; /* real name */

ProtoRString comment; /* comment for display */

long length; /* data length */

char data[length]; /* data */

};

Field descriptions

pRLI Packed record location information that identifies the catalog.

entnType The address type.

hasMailSlot The DirGetExtendedDirectoriesInfo function sets this field
to 1 if the catalog is associated with a mail slot. Otherwise, it sets
this field to 0.

realName The name of the catalog in its native environment. This may differ
from its catalog name within an AOCE system. It is word aligned.

C H A P T E R 8

Catalog Manager

8-56 Catalog Manager Reference

comment Information that the catalog provider stores in its record in the
PowerTalk Setup catalog for display to a user. Typically, this
information further identifies and describes the catalog to the user.
For example, it might say “This catalog is located in Paris, France.
You are connected to it via a public packet-switched network.” It is
word aligned.

length The number of bytes in the data field.

data Information about the catalog, padded to an even boundary.

Your buffer must be large enough to accommodate the total number of entries that the

function finds. If your buffer is not large enough to hold all of the information,

the function completes with the kOCEMoreData result code. In that case, use the value

of the totalEntries field as a guide in allocating a bigger buffer and then call the

function again. Because the function returns data that is of variable length for each

catalog, this is a trial-and-error method.

Note that there is no way to have the DirGetExtendedDirectoriesInfo function

return only data it has not previously returned. It always attempts to return information

on every catalog that it finds.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirEnumerateDirectoriesGet function is described on page 8-38.

For information on messaging service access modules, see the chapter “Messaging

Service Access Modules” in Inside Macintosh: AOCE Service Access Modules.

The chapter “Service Access Module Setup” in Inside Macintosh: AOCE Service Access
Modules describes address templates.

For an example of using the DirEnumerateDirectoriesGet function, see “Getting

Extended Catalog Information” beginning on page 8-24.

Getting Information About dNodes

You can use the functions in this section to get a variety of information about dNodes.

The DirEnumerateGet and DirEnumerateParse functions work together to provide

information about the contents of a dNode. You can detect changes in a dNode by calling

the DirGetDNodeMetaInfo function which indicates whether a specific dNode is a leaf

Trap macro Selector

_oceTBDispatch $0136

noErr 0 No error
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-57

node in a catalog tree. If you know the pathname information for a dNode, you can

obtain its dNode number and vice versa by using the functions

DirMapDNodeNumberToPathName and DirMapPathNameToDNodeNumber.

DirEnumerateGet

The DirEnumerateGet function returns information about the contents of a dNode

that you specify. The contents of a dNode include records, aliases, pseudonyms, and

dNodes.

pascal OSErr DirEnumerateGet (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRLI PackedRLIPtr Target dNode
→ startingPoint DirEnumSpec* Starting point for enumeration
→ sortBy DirSortOption Return data in name or type order
→ sortDirection DirSortDirection Search forward or backward for info
→ nameMatchString RStringPtr Name of record, alias, pseudonym,

or dNode you want returned
→ typesList RStringPtr* List of types you want returned
→ typeCount unsigned long Number of types in the list
→ enumFlags DirEnumChoices Types of entities about which you

want information
→ includeStartingPoint Boolean Begin enumeration with starting

point?
→ matchNameHow DirMatchWith Match criteria for names
→ matchTypeHow DirMatchWith Match criteria for types
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
← responseSLRV SLRV Script information

C H A P T E R 8

Catalog Manager

8-58 Catalog Manager Reference

Field descriptions

aRLI A pointer to packed record location information that identifies the
dNode for which you want a list of records, aliases, pseudonyms, or
dNodes. You use the enumFlags field to specify the type of entity
about which you want information. The function ignores the aRLI
field when you provide a nonzero value in the dsRefNum field to
specify a personal catalog.

startingPoint A pointer to the record, alias, pseudonym, or dNode at which you
want the function to start the enumeration. You specify the type of
entity in the enumFlag field of the DirEnumSpec data structure
and provide either a LocalRecordID or a DNodeID data structure
to identify the specific entity from which you want the function to
start returning information. Set this field to nil to start with the
first record, alias, pseudonym, or dNode in the dNode. If the
DirEnumerateGet function completes with the kOCEMoreData
result code, you can continue the enumeration as follows: Set the
startingPoint field to the value of the last enumSpec parameter
passed to your callback routine by the DirEnumerateParse
function.

sortBy A constant that specifies whether the function returns the records
and dNodes sorted by name or sorted by type. Set this field to the
constant kSortByName if you want the data ordered alphabetically
by name. Set this field to the constant kSortByType if you want
the data ordered alphabetically by type.

sortDirection A constant that specifies whether the function returns the
information you requested in forward sort order or reverse sort
order. Set this field to the constant kSortForwards if you want
your data in forward sort order. Set it to the constant
kSortBackwards if you want your data in reverse sort order.

nameMatchString
A pointer to the name of the record, alias, pseudonym, or dNode
about which you want information. Use the matchNameHow field to
specify the mode in which you want the function to match the
name. If you specify kMatchAll in the matchNameHow field, the
function ignores this field. The DirEnumerateGet function returns
only records, aliases, pseudonyms, or dNodes whose names match
the value that you specify according to the match criteria that you
specify.

typesList A pointer to an array of pointers. Each element in the array points
to a record type about which you want information. Your array may
include both AOCE-defined record types and record types that you
define. In the matchTypeHow field, specify the mode in which you
want the function to match the type. If you specify kMatchAll in
the matchTypeHow field, the function ignores this field.

typeCount The number of pointers to record types in your array of types.

enumFlags A mask value that specifies whether you want the
DirEnumerateGet function to return information about records,
aliases, pseudonyms, dNodes, or some combination of these. The
mask constants that you can specify are described in the section

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-59

“The Enumeration Choice Type” on page 8-34. With the enumFlag
field of the DirEnumSpec data structure and with either a
LocalRecordID or a DNodeID data structure that you provide in
that data structure, you identify the specific entity from which you
want the function to start returning information.

includeStartingPoint
A Boolean value that tells the function how to interpret the
startingPoint field. Set includeStartingPoint to true if
you want DirEnumerateGet to return information beginning with
the entity specified by the startingPoint field. Set this field to
false if you want the DirEnumerateGet function to return
information beginning with the entity immediately after the entity
specified by the startingPoint field.

matchNameHow A value that specifies the matching mode used to determine
matches with the name specified by nameMatchString. The
possible values for exact and wildcard matching are described on
page 8-37.

matchTypeHow A value that specifies the matching mode used to determine
matches with the values specified by typesList. The possible
values for matching are described in “The Matching Criteria Type”
on page 8-37. If you specify kMatchAll, the function returns
information on each instance of a target entity whose name matches
the value pointed to by the nameMatchString field. (You specify
target entities in the enumFlags field.)

getBuffer A pointer to the buffer in which the function stores the requested
information. You provide this buffer.

getBufferSize The number of bytes in the buffer.

responseSLRV A structure in which the function returns the script code, language
code, and region code of the character set that the function used to
sort the entries in your buffer.

DESCRIPTION

You call the DirEnumerateGet function to obtain a list of records, aliases, pseudonyms,

dNodes, or any combination of these for a dNode that you specify. This function allows

you to specify a starting point for the enumeration, a sort indicator (by name or by type),

and a sort direction, as well as matching criteria for both names and types.

Note that a given catalog may not support the sort indicator that you specify. For

example, a catalog may support an ordered enumeration by creation times, but not a sort

by name or by type. Your results would come back in an unspecified order. (A catalog

indicates its sorting capabilities through its feature flags. See “Feature Flag Bit Array”

beginning on page 8-28 for more information.)

The sort order of the data returned to you is determined by the target catalog’s sorting

capabilities and the value you provide in the sortDirection field. If the catalog

supports sorting by name or sorting by type, the data is sorted in alphabetical or

reverse-alphabetical order. If the catalog supports an unspecified ordered enumeration,

the catalog determines the meaning of a forward or backward order. For example, if a

C H A P T E R 8

Catalog Manager

8-60 Catalog Manager Reference

catalog supports only an ordered enumeration by creation times, it may return the data

in a most recent first or oldest first order.

PowerShare and personal catalogs do not provide secondary sorting. If you specify

sorting by name and there are several entities with the same name, those entities are not

additionally sorted by type. Similarly, if you specify sorting by type, entities of the same

type are not additionally sorted by name. Some external catalogs may have a secondary

sort capability; however, the DirEnumerateGet function does not provide a way for

you to specify a secondary sort order.

Note

The enumFlags field indicates the type of entity about which you want
information. You can set it to any combination of the mask constants
kEnumDistinguishedNameMask, kEnumAliasMask,
kEnumPseudonymMask, and kEnumDNodeMask to request information
about records, aliases, pseudonyms, and dNodes, respectively. If you
want information about all visible entities, set the mask to
kEnumAllMask. If you want information about all entities, visible and
invisible, set the mask to kEnumInvisibleMask. ◆

If the DirEnumerateGet function is enumerating dNodes, it obtains a dNode name

and number for each dNode and places the names and numbers in your buffer. If the

DirEnumerateGet function is enumerating records, aliases, or pseudonyms, it obtains

a local record ID for each record, alias, or pseudonym and places these IDs in your

buffer. The function provides only whole units of information for each entity. That is, it

will not provide the name for a dNode without also providing the dNode number.

Similarly, it will not provide the creation ID for a record without also providing its name

and type. If your buffer is not large enough to contain all of the information requested,

the DirEnumerateGet function provides complete information on as many records,

aliases, pseudonyms, or dNodes as will fit and returns the kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you

use a pointer to your buffer as input to the DirEnumerateParse function, which

extracts the information from the buffer.

If the DirEnumerateGet function returns the kOCEMoreData result code, you can

request additional information by calling it again after calling the DirEnumerateParse

function. In your next call to the DirEnumerateGet function, for the value of the

startingPoint field, use the value that your callback routine last received in the

enumSpec parameter. Use the same values for the aRLI, nameMatchString, and

typesList fields that you used in your original call to the DirEnumerateGet

function. The DirEnumerateGet function continues the enumeration starting with the

next entity as determined by the value of the includeStartingPoint field.

To enumerate the contents of the root node of a PowerShare or external catalog,

construct a PackedRLI data structure in which the dNode number is set to

kRootDNodeNumber and the pointer to the pathname is set to nil. Then set the aRLI

field to point to your PackedRLI data structure.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-61

SPECIAL CONSIDERATIONS

If you target a PowerShare or personal catalog and you specify sorting by type, you can

provide only one type in the types list. If you provide more than one type, the function

returns an error.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

To create a PackedRLI data structure use the OCEPackRLI utility routine, also

described in the chapter “AOCE Utilities.”

The DirEnumSpec data structure is described on page 8-35.

The DirEnumerateParse function is described next.

Feature flags are described in “Feature Flag Bit Array” beginning on page 8-28.

The enumeration mask constants are described in the section “The Enumeration Choice

Type” on page 8-34.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all

the information you requested, see “Getting Attribute Type Information” beginning on

page 8-20.

Trap macro Selector

_oceTBDispatch 0x111

noErr 0 No error
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCEUnknownID –1567 Authentication identity is not

valid
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEMoreData –1623 More data available
kOCEStreamCreationErr –1625 Error in creating connection to

server

C H A P T E R 8

Catalog Manager

8-62 Catalog Manager Reference

DirEnumerateParse

The DirEnumerateParse function parses the data returned by the DirEnumerateGet

function and returns information on each record, alias, pseudonym, or dNode by

repeatedly calling your callback routine.

pascal OSErr DirEnumerateParse (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRLI The pointer to the dNode for which you want a list of records,
aliases, pseudonyms, or dNodes. Use the same value that you
provided to the associated DirEnumerateGet function.

eachEnumSpec The pointer to your callback routine. The function declaration for
this routine is described on page 8-157.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the DirEnumerateGet function.

getBufferSize The number of bytes in the buffer. Use the same value that you
provided to the associated DirEnumerateGet function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRLI PackedRLIPtr Target dNode
→ eachEnumSpec ForEachDirEnumSpec Your callback routine
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-63

DESCRIPTION

You call the DirEnumerateParse function to extract the information placed in your

buffer by the DirEnumerateGet function. You must provide a callback routine that the

DirEnumerateParse function calls for each record, alias, pseudonym, or dNode about

which there is information in the buffer. The DirEnumerateParse function provides

the dNode name and number if the entity about which it returns information is a dNode.

It provides a local record ID if the entity is a record, an alias, or a pseudonym. See the

description of your callback routine on page 8-157 for more information.

The DirEnumerateParse function completes when it has finished parsing the contents

of your buffer or when your callback routine returns true. The function returns the

kOCEMoreData result code if it reaches the end of the buffer and finds that the

DirEnumerateGet function did not return all the data requested. To continue the

enumeration, call the DirEnumerateGet function again. For the value of the

startingPoint field, use the value that your callback routine last received in the

enumSpec parameter.

If your callback routine returns true, the DirEnumerateParse function completes

with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-157.

The DirEnumerateGet function is described on page 8-57.

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesParse function) when the buffer is too small to hold

all the information you requested, see “Getting Attribute Type Information” beginning

on page 8-20.

Trap macro Selector

_oceTBDispatch 0x101

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-64 Catalog Manager Reference

DirGetDNodeMetaInfo

The DirGetDNodeMetaInfo function returns a numeric value that you can use to

determine whether a dNode has changed since you last called this function.

pascal OSErr DirGetDNodeMetaInfo (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

pRLI A pointer to packed record location information that identifies the
dNode to which the request applies. The function ignores this field
when you provide a non-zero value in the dsRefNum field to
specify a personal catalog.

metaInfo A numeric value that the DirGetDNodeMetaInfo function
returns. The Catalog Manager updates this value when a catalog
node changes. You use it to determine if the catalog node has
changed.

DESCRIPTION

You call the DirGetDNodeMetaInfo function to find out if there has been a change in

the content of a dNode that you specify. The function returns the metaInfo value

associated with the dNode. You must call the function once to get an initial value. When

you call the function again, compare the initial value with the new value. If the values

match, the dNode has not changed since your previous call to the

DirGetDNodeMetaInfo function. Any change in the information associated with that

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target dNode
← metaInfo DirMetaInfo Comparison value

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-65

dNode causes the value of the metaInfo field to change. Records, aliases, pseudonyms,

or dNodes may have been added, deleted or renamed. Attribute types or attribute values

may have been added, deleted, or changed. Access controls for the dNode, its records, or

attribute types may have changed.

If you detect a change in a dNode, you should do whatever is appropriate in your

application to update the information you need. For example, you can call the

DirEnumerate function to retrieve current information for the dNode. If your

application is displaying information about the dNode, you can refresh your window.

The metaInfo field contains the following structure:

struct DirMetaInfo {

unsigned long info[4];

};

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is

also described in the chapter “AOCE Utilities.”

DirMapDNodeNumberToPathName

The DirMapDNodeNumberToPathName function returns pathname information for a

dNode that you specify.

pascal OSErr DirMapDNodeNumberToPathName (DirParamBlockPtr

 paramBlock,Boolean async);

Trap macro Selector

_oceTBDispatch 0x118

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode

C H A P T E R 8

Catalog Manager

8-66 Catalog Manager Reference

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

directoryName A pointer to the name of the catalog in which the target dNode
resides.

discriminator The discriminator value of the catalog in which the dNode resides.
This value differentiates two or more catalogs with the same name.

dNodeNumber The dNode number whose pathname you want to obtain.

path A pointer to a buffer in which the function stores packed pathname
information. You must provide a buffer big enough to hold all of the
path information that the function returns. A buffer size of
kPathNameMaxBytes can hold any packed pathname. Before you
can read the packed pathname information, you must unpack it
with the OCEUnpackPathName routine.

lengthOfPathName
This field is used for both input and output. You set this field to the
size of your buffer in bytes before you call the
DirMapDNodeNumberToPathName function. The function sets this
field to the number of bytes in the pathname information that you
requested. If the function completes successfully, this field
represents the number of bytes that the function placed in your
buffer. If your buffer is too small to hold the entire pathname, the
function returns a kOCEMoreData result code and does not store
any information in your buffer. If this occurs, the value in this field
represents the minimum size of a buffer capable of holding the
packed pathname information. You must increase the size of your
buffer to at least the minimum size and call the function again.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Discriminator value
→ dNodeNumber DNodeNum The dNode number
↔ path PackedPathNamePtr Your buffer
↔ lengthOfPathName unsigned short Length of your buffer, pathname

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-67

DESCRIPTION

You call the DirMapDNodeNumberToPathName function when you know a dNode

number and want to obtain the corresponding full pathname. If the catalog you specify

does not support dNode numbers (this includes all personal catalogs), the function

returns the kOCENoSuchDNode error.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCEUnpackPathName routine is described in the chapter “AOCE Utilities” in this

book.

The PackedPathName data structure is also described in the chapter “AOCE Utilities.”

To obtain the dNode number when you know the pathname, use the

DirMapPathNameToDNodeNumber function, described next.

DirMapPathNameToDNodeNumber

The DirMapPathNameToDNodeNumber function returns the dNode number for a

dNode identified by a pathname and catalog that you specify.

pascal OSErr DirMapPathNameToDNodeNumber

(DirParamBlockPtr paramBlock, Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch 0x123

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEUnknownID –1567 Authentication identity is not

valid
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEMoreData –1623 Buffer too small
kOCEStreamCreationErr –1625 Error in creating connection to

server

C H A P T E R 8

Catalog Manager

8-68 Catalog Manager Reference

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

directoryName The name of the catalog containing the dNode whose dNode
number you want to obtain.

discriminator The discriminator value of the catalog containing the dNode whose
dNode number you want to obtain. This value differentiates two or
more catalogs with the same name.

dNodeNumber A number that uniquely identifies a dNode within a catalog. The
function returns this number.

path A pointer to the buffer that contains the packed pathname for the
dNode whose dNode number you want to obtain. You create a
packed pathname with the OCEPackPathName utility routine.

DESCRIPTION

You call the DirMapPathNameToDNodeNumber function when you know the path of a

particular dNode and you want to obtain its dNode number. If the catalog you specify

does not support dNode numbers (this includes all personal catalogs), the function

returns the kOCENoSuchDNode error.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Discriminator value
← dNodeNumber DNodeNum DNode number
→ path PackedPathNamePtr Pathname

Trap macro Selector

_oceTBDispatch 0x122

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-69

RESULT CODES

SEE ALSO

The OCEPackPathName routine is described in the chapter “AOCE Utilities” in this

book.

The PackedPathName data structure is also described in the chapter “AOCE Utilities.”

To obtain the pathname when you know the DNode number, use the

DirMapDNodeNumberToPathName function, described on page 8-65.

DirGetDNodeInfo

The DirGetDNodeInfo function indicates whether a dNode that you specify can

contain records and whether it is a foreign node.

pascal OSErr DirGetDNodeInfo (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target dNode
← descriptor DirNodeKind DNode descriptor
↔ networkSpec NetworkSpecPtr Network name

C H A P T E R 8

Catalog Manager

8-70 Catalog Manager Reference

Field descriptions

pRLI A pointer to packed record location information that identifies the
catalog and dNode to which the request applies. The function
ignores this field when you provide a nonzero value in the
dsRefNum field to specify a personal catalog.

descriptor A value that the function returns by which you can determine
whether the dNode you specified can contain records and whether
it is a foreign node. Use the mask kCanContainRecords to
determine whether the dNode can contain records. To find out if the
dNode you specified is a foreign node, use the mask
kForeignNode.

networkSpec A pointer to the name of the network in which the dNode resides.
The function sets this field only if the dNode can contain records.

DESCRIPTION

The DirGetDNodeInfo function is usually called by PowerShare Admin software. Most

applications do not need to use this function. However, messaging service access

modules may call it to determine if a dNode is a foreign dNode. Foreign dNodes

represent external messaging systems that are connected to an AOCE system.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The NetworkSpec data structure is described in the chapter “AOCE Utilities” in this

book.

The PackedRLI data structure is also described in the chapter “AOCE Utilities.”

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is

also described in the chapter “AOCE Utilities.”

Trap macro Selector

_oceTBDispatch 0x125

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEStreamCreationErr –1625 Error in creating connection to

server

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-71

Maintaining the PowerTalk Setup Catalog

A catalog that is listed in the PowerTalk Setup catalog is available for use by any

application that uses the Catalog Manager. Setup templates use the

DirAddADAPDirectory and DirRemoveDirectory routines to add and remove

records that represent PowerShare catalogs from the PowerTalk Setup catalog. The

DirRemoveDirectory function also removes records that represent external catalogs.

For information on adding records that represent external catalogs, see the chapter

“Access Module Setup” in Inside Macintosh: AOCE Service Access Modules.

Note

A shorthand way of saying that a record representing a catalog is added
or removed from the PowerTalk Setup catalog is to say that the catalog is
added or removed from the PowerTalk Setup catalog. However, a
catalog itself is never added or removed from the PowerTalk Setup
catalog; only records that represent catalogs are added or removed. ◆

The DirNetSearchADAPDirectoryGet and DirNetSearchADAPDirectoryParse

routines work together to provide information about all of the PowerShare catalogs on a

network.

If you know a PowerShare catalog’s name and discriminator value, you can call the

DirFindADAPDirectoryByNetSearch function to locate a catalog and add it to the

PowerTalk Setup catalog if you choose.

The DirAddADAPDirectory and DirFindADAPDirectoryByNetSearch functions

provide the option of making a PowerShare catalog temporarily available for the

PowerTalk Key Chain’s use, without adding it to the PowerTalk Setup catalog. This

condition of private availability lasts only until the computer is restarted.

The DirGetOCESetupRefnum function provides the reference number of the

PowerTalk Setup catalog.

To get information about all of the catalogs that are listed in the PowerTalk Setup

catalog, you can call the DirEnumerateDirectoriesGet function. It is described in

the section “Getting Information About Catalogs” beginning on page 8-38.

DirAddADAPDirectory

The DirAddADAPDirectory function makes a PowerShare catalog that you specify

available for use with other Catalog Manager functions. At your option, it also adds the

catalog to the PowerTalk Setup catalog.

pascal OSErr DirAddADAPDirectory (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

C H A P T E R 8

Catalog Manager

8-72 Catalog Manager Reference

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, and clientData fields.

Field descriptions

directoryName A pointer to the name of the PowerShare catalog that you want to
use.

discriminator A value that differentiates two or more catalogs with the same
name.

addToOCESetup A Boolean value that specifies whether you want to add the catalog
to the PowerTalk Setup catalog. Set this field to true if you want to
add the catalog to the PowerTalk Setup catalog.

directoryRecordCID
The creation ID of the record representing the PowerShare catalog
that you specify in the directoryName and discriminator
fields. The function creates a record for the catalog, adds it to the
PowerTalk Setup catalog, and returns the record creation ID only
when you set addToOCESetup to true.

DESCRIPTION

You call the DirAddADAPDirectory function when you want to make a PowerShare

catalog that is not listed in the PowerTalk Setup catalog available for use with other

Catalog Manager functions. You must specify a valid AppleTalk address in the

serverHint field in the parameter block header for this function. If the serverHint

field is set to nil or does not point to a PowerShare server for that catalog, the

DirAddADAPDirectory function returns an error.

Note

The PowerTalk Key Chain uses this function. In general, there is no
reason for an application to use this function. ◆

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ clientData long You define this field
→ directoryName DirectoryNamePtr Name of the catalog
→ discriminator DirDiscriminator Discriminator value
→ addToOCESetup Boolean Add to PowerTalk Setup?
← directoryRecordCID CreationID Creation ID of catalog

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-73

When the function completes successfully, you can use the catalog with other Catalog

Manager functions. If you set the addToOCESetup field to true, the function adds the

catalog to the PowerTalk Setup catalog. All catalogs listed in the PowerTalk Setup

catalog are visible to the DirEnumerateDirectories function and thus available to

any application using the services of the Catalog Manager. Furthermore, the catalogs

listed in the PowerTalk Setup catalog remain available until they are explicitly removed

by the DirRemoveDirectory function.

If you set addToOCESetup to false, the DirAddADAPDirectory function makes the

catalog available to you privately, and you may specify it when you call other Catalog

Manager functions. This availability lasts until the computer is restarted. Once the

computer is restarted, the catalog is no longer available to you. A catalog that you do not

add to the PowerTalk Setup catalog is not visible to the DirEnumerateDirectories

function; therefore, it is not available to other applications nor is it visible to a user.

If you want to use a PowerShare catalog that is not listed in the PowerTalk Setup catalog,

but you do not know the address of a PowerShare server for that catalog, you can call

the DirFindADAPDirectoryByNetSearch function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirEnumerateDirectoriesGet function is described on page 8-38.

The DirFindADAPDirectoryByNetSearch function is described next.

The DirRemoveDirectory function is described on page 8-79.

For more information on the PowerTalk Setup catalog, see “Identities and the PowerTalk

Setup Catalog” on page 8-8.

Trap macro Selector

_oceTBDispatch 0x137

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEAlreadyExists –1510 The catalog being added

already exists
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available

C H A P T E R 8

Catalog Manager

8-74 Catalog Manager Reference

DirFindADAPDirectoryByNetSearch

The DirFindADAPDirectoryByNetSearch function locates a PowerShare catalog

that you specify on a network and makes it available for use with other Catalog Manager

functions. At your option, it also adds the catalog to the PowerTalk Setup catalog.

pascal OSErr DirFindADAPDirectoryByNetSearch

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, and clientData fields.

Field descriptions

directoryName The name of the PowerShare catalog that you want to find.

discriminator The discriminator value for the named catalog. This value
differentiates two or more catalogs with the same name.

addToOCESetup A Boolean value that indicates whether you want to add the catalog
to the PowerTalk Setup catalog. Set this field to true if you want to
the catalog to the PowerTalk Setup catalog.

directoryRecordCID
The creation ID of the record representing the catalog that you
specify in the directoryName and discriminator fields. The
function creates a record for the catalog, adds it to the PowerTalk
Setup catalog, and returns the record creation ID only when you set
addToOCESetup to true.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Discriminator value
→ addToOCESetup Boolean Add to setup list?
← directoryRecordCID CreationID Creation ID of catalog

record

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-75

DESCRIPTION

You call the DirFindADAPDirectoryByNetSearch function when you want to use a

PowerShare catalog and the catalog is not listed in the PowerTalk Setup catalog. You

must provide the catalog name and discriminator value. The function searches the

network for the catalog.

Note

The PowerTalk Key Chain uses this function. In general, there is no
reason for an application to use this function. ◆

If the function finds the catalog, you can use it with other Catalog Manager functions. If

you set the addToOCESetup field to true, the function adds the catalog to the

PowerTalk Setup catalog. All catalogs listed in the PowerTalk Setup catalog are visible to

the DirEnumerateDirectories function and thus are available to any application

using the services of the Catalog Manager. Furthermore, the catalogs listed in the

PowerTalk Setup catalog remain available until they are explicitly removed by the

DirRemoveDirectory function.

If you set addToOCESetup to false, the DirFindADAPDirectoryByNetSearch

function makes the catalog available to you privately and you may specify it when you

call other Catalog Manager functions. This availability lasts until the computer is

restarted. Once the computer is restarted, the catalog is no longer available to you.

Catalogs that you do not choose to add to the PowerTalk Setup catalog are not visible to

the DirEnumerateDirectories function; therefore, they are not available to other

applications nor are they visible to a user.

SPECIAL CONSIDERATIONS

The DirFindADAPDirectoryByNetSearch function makes a networkwide search for

the PowerShare catalog that you specify. Because this function consumes expensive

network resources, you should use it very sparingly. If you know a catalog’s name,

discriminator value, and the Apple talk address of a PowerShare server for the catalog,

you should use the DirAddADAPDirectory function. It too, makes a catalog available

for your use and can add it to the PowerTalk Setup catalog.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch 0x107

C H A P T E R 8

Catalog Manager

8-76 Catalog Manager Reference

RESULT CODES

SEE ALSO

The DirAddADAPDirectory function is described on page 8-71.

For more information on the PowerTalk Setup catalog, see “Identities and the PowerTalk

Setup Catalog” on page 8-8.

The DirRemoveDirectory function is described on page 8-79.

The DirNetSearchADAPDirectoriesGet function, described next, retrieves the

return address of a PowerShare catalog on a network. By saving and using this address

you can eliminate the need to search for a particular catalog with the

DirFindADAPDirectoryByNetSearch function each time the computer is rebooted.

DirNetSearchADAPDirectoriesGet

The DirNetSearchADAPDirectoriesGet function returns information about the

PowerShare catalogs on a network.

pascal OSErr DirNetSearchADAPDirectoriesGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, and clientData fields.

noErr 0 No error
kOCEAlreadyExists –1510 The catalog being added

already exists
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-77

Field descriptions

getBuffer A pointer to a buffer in which the function stores information about
each PowerShare catalog on the network: its name, discriminator
value, feature flags, and the AppleTalk address of its server. You
provide this buffer.

getBufferSize The number of bytes in the buffer.

DESCRIPTION

You call the DirNetSearchADAPDirectoriesGet function to obtain a list of the

PowerShare catalogs on a network.

If the buffer you provide is not large enough to contain all of the information, the

DirNetSearchADAPDirectoriesGet function returns the kOCEMoreData result

code.

If your buffer is too small to hold all of the information you requested, you must allocate

a bigger buffer and call the DirNetSearchADAPDirectoriesGet function again to

get it all. At each call, the function attempts to return all the information you have

requested, starting from the beginning. Therefore, you will get duplicate information on

subsequent calls.

When the function completes with either the noErr or kOCEMoreData result codes, you

use a pointer to your buffer as input to the DirNetSearchADAPDirectoriesParse

function, which extracts the catalog information from the buffer.

SPECIAL CONSIDERATIONS

The DirNetSearchADAPDirectoriesGet function makes a networkwide search for

PowerShare catalogs. Because this search consumes expensive network resources, you

should use this function very sparingly.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirNetSearchADAPDirectoriesParse function is described next.

Trap macro Selector

_oceTBDispatch 0x108

noErr 0 No error
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-78 Catalog Manager Reference

DirNetSearchADAPDirectoriesParse

The DirNetSearchADAPDirectoriesParse function parses the data returned by the

DirNetSearchADAPDirectoriesGet function and returns information on each

PowerShare catalog by repeatedly calling your callback routine.

pascal OSErr DirNetSearchADAPDirectoriesParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, and clientData fields.

Field descriptions

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirNetSearchADAPDirectoriesGet function.

getBufferSize The number of bytes in the buffer. Use the same value that you
provided to the DirNetSearchADAPDirectoriesGet function.

eachADAPDirectory
A pointer to your callback routine. The function declaration for this
routine is described on page 8-160.

DESCRIPTION

You call the DirNetSearchADAPDirectoriesParse function to extract the

information about PowerShare catalogs placed in your buffer by the

DirNetSearchADAPDirectoriesGet function. You must provide a callback routine

that the DirNetSearchADAPDirectoriesParse function calls for each set of catalog

information in the buffer. The DirNetSearchADAPDirectoriesParse function

passes your callback routine the following information about each catalog: a catalog

name and discriminator value, its feature flags, and the AppleTalk address of a

PowerShare server for that catalog.

→ ioCompletion ProcPtr Your completion
routine

← ioResult OSErr Result code
→ clientData long You define this field
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
→ eachADAPDirectory ForEachADAPDirectory Your callback routine

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-79

The DirNetSearchADAPDirectoriesParse function completes when it has finished

parsing the contents of your buffer or when your callback routine returns true. The

function returns the kOCEMoreData result code if it reaches the end of the buffer and

finds that the DirNetSearchADAPDirectoriesGet function did not return all the

data requested.

If your callback routine returns true, the DirNetSearchADAPDirectoriesParse

function completes with the noErr result code.

Once you have the name and discriminator value for a PowerShare catalog, you can call

the DirAddADAPDirectory function to make the catalog available for use and, if you

choose, to add it to the PowerTalk Setup catalog.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-160.

The DirNetSearchADAPDirectoriesGet function is described on page 8-76.

The DirAddADAPDirectory function is described on page 8-71.

DirRemoveDirectory

The DirRemoveDirectory function removes a record that represents a catalog from

the PowerTalk Setup catalog.

pascal OSErr DirRemoveDirectory (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch 0x105

noErr 0 No error
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-80 Catalog Manager Reference

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

directoryRecordCID
The creation ID of a record in the PowerTalk Setup catalog. This
record represents the catalog that you want to remove.

DESCRIPTION

You call the DirRemoveDirectory function to remove an external or PowerShare

catalog that you specify from the PowerTalk Setup catalog.

A catalog that you remove from the PowerTalk Setup catalog is no longer visible to the

DirEnumerateDirectoriesGet function. You cannot specify it in calls to other

Catalog Manager functions until you again add it to the PowerTalk Setup catalog or

make it available privately to your application through the DirAddADAPDirectory or

the DirFindADAPDirectoryByNetSearch function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the DirAddDSAMDirectory function, which is described in the chapter “Catalog

Service Access Modules” in Inside Macintosh: AOCE Service Access Modules, to add a

catalog to the PowerTalk Setup catalog.

You can also use the DirAddADAPDirectory function, which is described on page 8-71,

to add a catalog to the PowerTalk Setup catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ directoryRecordCID CreationID Creation ID of catalog

Trap macro Selector

_oceTBDispatch 0x135

noErr 0 No error
kOCEDirectoryNotFoundErr –7945 Can’t find specified catalog

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-81

The DirFindADAPDirectoryByNetSearch function is described on page 8-74.

The DirEnumerateDirectoriesGet function is described on page 8-38.

DirGetOCESetupRefnum

The DirGetOCESetupRefnum function returns the reference number of the PowerTalk

Setup catalog.

pascal OSErr DirGetOCESetupRefnum (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, dsRefNum, identity, and clientData fields.

Field descriptions

oceSetupRecordCID
The creation ID of the record identifying the PowerTalk Setup
catalog.

DESCRIPTION

You call the DirGetOCESetupRefnum function if you need to read from or write to the

PowerTalk Setup catalog. The function returns the dsRefNum value for the PowerTalk

Setup catalog. You need this value to perform operations on the PowerTalk Setup catalog.

The function also returns the creation ID of the record that contains summary

information about the contents of the PowerTalk Setup catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
← dsRefNum short PowerTalk Setup catalog

reference number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
← oceSetupRecordCID CreationID Creation ID of the record

identifying the PowerTalk
Setup catalog

C H A P T E R 8

Catalog Manager

8-82 Catalog Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For more information on the PowerTalk Setup catalog and local identity, see “Identities

and the PowerTalk Setup Catalog” on page 8-8 as well as the chapter “Authentication

Manager” in this book.

Creating, Opening, and Closing Personal Catalogs

A personal catalog is a Hierarchical File System (HFS) file. You can use the functions in

this section to create new personal catalogs as well as to open and close existing personal

catalogs. In addition, the DirMakePersonalDirectoryRLI function provides

information you can use to locate a personal catalog that you opened even if it has been

closed, moved, or renamed.

You can use File Manager functions to browse for a personal catalog. Use the constants

kPersonalDirectoryFileType and kPersonalDirectoryFileCreator to

specify the file type and file creator, respectively, for a personal catalog.

DirCreatePersonalDirectory

The DirCreatePersonalDirectory function creates a new personal catalog.

pascal OSErr DirCreatePersonalDirectory

(DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

Parameter block

See “The Parameter Block Header” on page 8-32 for a description of the ioResult field.

Trap macro Selector

_oceTBDispatch 0x128

noErr 0 No error

← ioResult OSErr Result code
→ fsSpec FSSpecPtr File system specification
→ fdType OSType File type
→ fdCreator OSType File creator

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-83

Field descriptions

fsSpec A pointer to the file system specification record that identifies the
personal catalog you want to create. You can obtain the file system
specification record from the FSMakeFSSpec function.

fdType The file type for the new personal catalog. If you want to create an
ordinary personal catalog, set this field to the constant
kPersonalDirectoryFileType. If you want to create an
information card, set this field to the constant
kBusinessCardFileType.

fdCreator The file creator for the new personal catalog. Set this field to the
constant kPersonalDirectoryFileCreator, for both an
ordinary personal catalog and an information card.

DESCRIPTION

You call the DirCreatePersonalDirectory function to create a personal catalog.

You can provide values for the file creator and file type other than those specified in the

field descriptions above. However, if you do so, the Finder and AOCE software will not

be able to display the icons that represent the personal catalog or information card to the

user.

To open the new personal catalog, use the DirOpenPersonalDirectory function,

described next.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

An information card is a personal catalog containing a single record. For more

information about information cards, see the section “Introduction to AOCE Catalogs”

beginning on page 8-4.

For information about file system specification records, see the chapter “File Manager” in

Inside Macintosh: Files.

Trap macro Selector

_oceTBDispatch 0x11F

noErr 0 No error
dupFNErr –48 Filename already exists
kOCEParamErr –50 Invalid parameter
dirNFErr –120 Catalog not found

C H A P T E R 8

Catalog Manager

8-84 Catalog Manager Reference

DirOpenPersonalDirectory

The DirOpenPersonalDirectory function opens a personal catalog and returns a

reference number for it.

pascal OSErr DirOpenPersonalDirectory

(DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

Parameter block

See “The Parameter Block Header” on page 8-32 for a description of the ioResult and

dsRefNum fields.

Field descriptions

fsSpec A pointer to a file system specification record for the personal
catalog that you want to open.

accessRequested
The access that you are requesting for this personal catalog. Set this
field to fsRdPerm if you are requesting permission to read the
personal catalog. If you also want permission to write to
the personal catalog, set this field to fsRdWrPerm.

accessGranted
The catalog access that the Catalog Manager grants. The function
returns either fsRdPerm or fsRdWrPerm in this field, granting you
read-only or read/write access, respectively.

features A set of bit flags indicating the features that the personal catalog
supports. The bit flags are described in “Feature Flag Bit Array”
beginning on page 8-28.

DESCRIPTION

You call the DirOpenPersonalDirectory function to open a personal catalog

(including information cards, which are a type of personal catalog). In the dsRefNum

field of the parameter block header, the function returns the reference number that

uniquely identifies the personal catalog. You must use this reference number in all

subsequent Catalog Manager requests directed to this personal catalog.

The function also returns the access that you have to the personal catalog file and a set of

bit flags that specify what features the personal catalog supports.

← ioResult OSErr Result code
← dsRefNum short Personal catalog reference number
→ fsSpec FSSpecPtr File system specification
→ accessRequested char Permissions requested
← accessGranted char Permissions granted
← features DirGestalt Feature flags

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-85

SPECIAL CONSIDERATIONS

If the user moves a personal catalog to a computer whose operating system uses a

different script system from the one last used to sort the catalog, the personal catalog

must be resorted before the Catalog Manager can open it. If the

DirOpenPersonalDirectory function returns the error kOCEVersionErr, you must

call the SDPSortPersonalDirectory function to resort the personal catalog and then

call the DirOpenPersonalDirectory function again to open the catalog.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For a description of catalog feature flags, see “Feature Flag Bit Array” beginning on

page 8-28.

To close a personal catalog that you have opened, use the

DirClosePersonalDirectory function, described next.

The SDPSortPersonalDirectory function is described in the chapter “Standard

Catalog Package” in this book.

For information about file system specifications, see the chapter “File Manager” in Inside
Macintosh: Files.

DirClosePersonalDirectory

The DirClosePersonalDirectory function closes an open personal catalog.

pascal OSErr DirClosePersonalDirectory

(DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

Trap macro Selector

_oceTBDispatch 0x11E

noErr 0 No error
tmfoErr –42 Too many files open
fnfErr –43 File not found
kOCEParamErr –50 Invalid parameter
permErr –54 Permissions error
dirNFErr –120 Catalog not found
kOCEVersionErr –1504 Need to sort personal catalog

C H A P T E R 8

Catalog Manager

8-86 Catalog Manager Reference

Parameter block

Field descriptions

ioResult The result of the function.

dsRefNum The catalog reference number that identifies the personal catalog to
be closed. After this function successfully completes execution, that
reference number is no longer valid.

DESCRIPTION

You call the DirClosePersonalDirectory function to close any personal catalog that

has been opened by the DirOpenPersonalDirectory function. This includes

information cards, which are a type of personal catalog.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirOpenPersonalDirectory function is described on page 8-84.

DirMakePersonalDirectoryRLI

The DirMakePersonalDirectoryRLI function provides you with packed record

location information for a personal catalog that you specify.

pascal OSErr DirMakePersonalDirectoryRLI

(DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

← ioResult OSErr Result code
→ dsRefNum short Reference number

Trap macro Selector

_oceTBDispatch 0x131

noErr 0 No error
kOCERefNumBad –1624 Reference number is not valid

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-87

Parameter block

See “The Parameter Block Header” on page 8-32 for a description of the ioResult and

dsRefNum fields.

Field descriptions

fromFSSpec A pointer to a file system specification record. It specifies the folder
within which the personal catalog must reside for the Alias
Manager to find it. Set this field to nil if you do not want to limit
the Alias Manager’s search.

pRLIBufferSize
The size, in bytes, of the buffer that you provide for the packed
record location information.

pRLISize The length of the packed record location information. If the function
returns the noErr result code, this is the number of bytes of data
that the function placed in your buffer. If the function returns the
kOCEMoreData result code, you can use the value of this field to
determine how large a buffer is required, allocate a buffer of that
size, and call the function again.

pRLI A pointer to the buffer in which the function stores the packed
record location information. You provide this buffer.

DESCRIPTION

You call the DirMakePersonalDirectoryRLI function to obtain record location

information for a personal catalog. You identify the personal catalog about which you

want record location information by setting the dsRefNum field in the parameter block

header to the personal catalog’s reference number. You obtain the reference number from

the DirOpenPersonalDirectory function.

You can use the record location information to find the personal catalog if it has been

closed, moved, or renamed. For example, if you are developing an electronic mail

application, you might have to handle the following sequence of events. A user may

open a personal catalog and copy an address from it to a letter being prepared. The user

may then close the personal catalog and send the letter at a later time. To send the letter,

you may need additional information from the personal catalog. You can locate it using

the record location information that the DirMakePersonalDirectoryRLI function

returns to you.

← ioResult OSErr Result code
→ dsRefNum short Reference number
→ fromFSSpec FSSpecPtr Catalog to search
→ pRLIBufferSize unsigned short Size of your buffer
← pRLISize unsigned short Size of the PackedRLI data

structure
↔ pRLI PackedRLIPtr Your buffer

C H A P T E R 8

Catalog Manager

8-88 Catalog Manager Reference

To make sure that you can locate a personal catalog even if it has been moved, renamed,

or closed, call the DirMakePersonalDirectoryRLI function after opening the

personal catalog. The function actually creates an alias for the personal catalog and

returns record location information for the alias. To find the personal catalog, pass the

PackedRLI data structure returned by the DirMakePersonalDirectoryRLI function

to the OCEExtractAlias utility routine, which returns an alias record. Pass that alias

record to the ResolveAlias function, which locates the personal catalog and returns its

file system specification. You can then open the personal catalog with the

DirOpenPersonalDirectory function using the FSSpec data structure returned by

the ResolveAlias function.

If you provided a file system specification record in the fromFSSpec field, the

ResolveAlias routine looks for the catalog only in that folder and any folders enclosed

within it. This results in a speedier search. However, if the personal catalog has been

moved elsewhere, the ResolveAlias routine cannot find it and returns an error.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is

also described in the chapter “AOCE Utilities.”

The OCEExtractAlias utility routine is also described in the chapter “AOCE Utilities.”

The ResolveAlias routine is described in the chapter “Alias Manager” in Inside
Macintosh: Files.

The DirOpenPersonalDirectory function is described on page 8-84.

Trap macro Selector

_oceTBDispatch 0x132

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available
kOCERefNumBad –1624 Reference number is not valid

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-89

Managing Records

The functions described in this section provide the following services:

■ adding and deleting records

■ adding and deleting pseudonyms

■ listing the pseudonyms for a record

■ detecting a change in a record

■ setting and obtaining a record’s name and type

■ adding an alias for a record

You can also list all of the records, pseudonyms, and aliases within a dNode. To do this,

use the DirEnumerateGet and DirEnumerateParse functions described in “Getting

Information About dNodes” beginning on page 8-56.

DirAddRecord

The DirAddRecord function adds a new record to a dNode in a catalog that you specify.

pascal OSErr DirAddRecord (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
↔ aRecord RecordIDPtr Target record
→ allowDuplicate Boolean Allow duplicate record name?

C H A P T E R 8

Catalog Manager

8-90 Catalog Manager Reference

Field descriptions

aRecord A pointer to a partially specified record ID for the record that you
want to add. If you want to add a record to a personal catalog, you
must provide the record’s name and type. If you want to add a
record to a PowerShare or external catalog, you must specify
everything in the record ID except the cid field. The function places
the creation ID for the new record in the cid field. If a catalog does
not support creation IDs, the function sets the cid field to 0.

allowDuplicate
A Boolean value specifying whether the function should create a
record if another record, alias, or pseudonym with the same name
and type already exists. Set this field to true if you want the
function to create the new record without checking the dNode for a
duplicate name and type. If you set the allowDuplicate field to
false, the function checks the name and type of all records, aliases,
and pseudonyms in the dNode and returns the
kOCENoDupAllowed result code if it finds a duplicate name.

DESCRIPTION

You call the DirAddRecord function to add a record to a dNode.

SPECIAL CONSIDERATIONS

If you set the allowDuplicate field to false, the function will not add the record if a

record with the same name and type already exists. However, this does not guarantee

that a duplicate record will not be created by a requester who sets the allowDuplicate

field to true. The prohibition on duplicates applies only at the time you call this

function; it does not guarantee that the record name and record type will be unique at a

later time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_oceTBDispatch $0109

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoDupAllowed –1641 Duplicate name and type

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-91

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

DirDeleteRecord

The DirDeleteRecord function deletes the record that you specify.

pascal OSErr DirDeleteRecord (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record you want to
delete. You must provide the record location information unless the
record exists in a personal catalog. If the catalog in which the record
resides supports record creation IDs, you must provide the creation
ID; otherwise, you must provide the record name and type.

DESCRIPTION

You call DirDeleteRecord to delete a record within a catalog. The function also

deletes any pseudonyms for the record. The function does not automatically delete

aliases that point to the record you want to delete.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record

C H A P T E R 8

Catalog Manager

8-92 Catalog Manager Reference

Note
Although, you can call the DirDeleteRecord function to delete a
record that is an alias for another record, there is no way to
automatically identify any aliases that point to a record you have
deleted. The situation is much the same as for HFS files. When a file is
deleted, its aliases remain intact, but of course the aliases return an error
if someone attempts to use them. ◆

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

DirGetRecordMetaInfo

The DirGetRecordMetaInfo function returns a numeric value that you can use to

determine if a record has changed since you last called this function.

pascal OSErr DirGetRecordMetaInfo (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $010A

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEBadRecordId –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-93

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record to which the
request applies. You must provide the record location information
unless the record exists in a personal catalog. If the catalog in which
the record resides supports record creation IDs, you must provide
the creation ID; otherwise, you must provide the record name and
type.

metaInfo A numeric value returned by DirGetRecordMetaInfo. The
Catalog Manager updates this value when the content of a record
changes. You use it to determine if the record has changed.

DESCRIPTION

You call the DirGetRecordMetaInfo function to find out if there has been a change in

the contents of a record that you specify. The function returns the metaInfo value

associated with the record. You must call the function once to get an initial value. When

you call the function again, compare the initial value with the new value. If the values

match, the record has not changed since your previous call to the

DirGetRecordMetaInfo function. Any change to the value of the metaInfo field
indicates a change in the information associated with that record. Attribute types may

have been added or deleted; attribute values may have been added, deleted, or changed;

or access controls for the records or its attribute types may have changed.

If you detect a change in a record, you should do whatever is appropriate in your

application to update the information you need. For example, you can call the

DirEnumerateAttributeTypes function, followed by the DirLookupGet and

DirLookupParse functions, to retrieve current information about attribute types and

values in the record. If your application is displaying information about the record, you

can refresh your window.

The metaInfo field contains the following structure:

struct DirMetaInfo {

long info[4];

};

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
← metaInfo DirMetaInfo Comparison value

C H A P T E R 8

Catalog Manager

8-94 Catalog Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

DirGetNameAndType

The DirGetNameAndType function returns a record’s name and type.

pascal OSErr DirGetNameAndType (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Trap macro Selector

_oceTBDispatch $0116

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEBadRecordID –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
↔ aRecord RecordIDPtr Target record

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-95

Field descriptions

aRecord A pointer to a record ID that identifies the record whose name and
type you are requesting. You must provide the record creation ID.
Unless the catalog containing the record is a personal catalog, you
must also provide packed record location information. The name
and type buffers that you provide must be large enough to hold a
maximum-length RString data structure. If the function is
successful, it places the record’s name and type in these buffers.

DESCRIPTION

If you know the creation ID of a record and the catalog and dNode in which it resides,

you can use the DirGetNameAndType function to obtain its name and type. A record’s

name and type may change, but its creation ID always remains the same. You can store

the record creation ID as an always valid value and use it as needed to retrieve the

changeable name and type.

You may also prefer to store only the record creation ID because it requires less memory

and use this function to retrieve the record name and type when you need it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The RString data structure is also described in the chapter “AOCE Utilities.”

You use the DirSetNameAndType function to change a record’s name and type. It is

described next.

Trap macro Selector

_oceTBDispatch $0114

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record

C H A P T E R 8

Catalog Manager

8-96 Catalog Manager Reference

DirSetNameAndType

The DirSetNameAndType function changes the name, the type, or both the name and

type of a record that you specify.

pascal OSErr DirSetNameAndType (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record whose name or
type you want to change.You must provide the record location
information unless the record exists in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

allowDuplicate
A Boolean value that specifies whether you want to change the
name and type even if this change results in a duplicate name and
type. If you set this field to true, the function does not check the
dNode for a duplicate name and type. It simply locates the record
and executes the change.

newName A pointer to a buffer that contains the new name for the record. You
provide this buffer.

newType A pointer to a buffer that contains the new type for the record. You
provide this buffer.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ allowDuplicate Boolean Are duplicate name and type OK?
→ newName RStringPtr New record name
→ newType RStringPtr New record type

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-97

DESCRIPTION

If allowDuplicate is set to false, the DirSetNameAndType function returns the

kOCENoDupAllowed result code if it finds another record with the same name and the

same type as the new name and type that you specified.

To change the record name without changing the type, set the value of the new type to

the current type. To change the record type without changing the name, set the value of

the new name to the current name.

If either the newName or newType field is set to nil, the function returns the

kOCEParamErr result code.

SPECIAL CONSIDERATIONS

If you set the allowDuplicate field to false, the function will not set the new name

and type if a record with the same name and type already exists. However, this does not

guarantee that a duplicate record will not be created by a requester who sets the

allowDuplicate field to true. The prohibition on duplicates applies only at the time

you call this function; it does not guarantee that the record name and record type will be

unique at a later time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

Trap macro Selector

_oceTBDispatch $0115

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCEBadRecordID –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record
kOCEOperationNotSupported –1626 Specified catalog does not

support this operation
kOCENoDupAllowed –1641 Duplicate name and type

C H A P T E R 8

Catalog Manager

8-98 Catalog Manager Reference

DirAddPseudonym

The DirAddPseudonym function adds an alternative name and type for a record that

you specify.

pascal OSErr DirAddPseudonym (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record for which you
want to add a pseudonym. You must provide the record location
information unless the record exists in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

pseudonymName A pointer to the alternative name that you want to add.

pseudonymType A pointer to the alternative type that you want to add.

allowDuplicate
A Boolean value that indicates whether the function will add a
name and type if another record, alias, or pseudonym with the same
name and type already exists in the dNode. Set this field to true if
you want the function to add the new pseudonym without checking
for a duplicate name and type. If you set the allowDuplicate
field to false, the function checks the name and type fields of all
records, aliases, and pseudonyms in the dNode and returns the
kOCENoDupAllowed result code if it finds a duplicate.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ pseudonymName RStringPtr Alternative name
→ pseudonymType RStringPtr Alternative type
→ allowDuplicate Boolean Are duplicate name and type OK?

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-99

DESCRIPTION

You call the DirAddPseudonym function when you want to add an alternative name

and type for a record. You can discover all of the existing pseudonyms for a record by

calling the DirEnumeratePseudonymGet and DirEnumeratePseudonymParse

functions.

 Pseudonyms are automatically deleted when the target record is deleted.

You must specify both a name and a type. If either the pseudonymName or

pseudonymType field is set to nil, the function returns the kOCEParamErr result code.

SPECIAL CONSIDERATIONS

If you set the allowDuplicate field to false, the function will not add the

pseudonym if a pseudonym with the same name and type already exists. However, this

does not guarantee that a duplicate pseudonym will not be created by a requester who

sets the allowDuplicate field to true. The prohibition on duplicates applies only at

the time you call this function; it does not guarantee that the pseudonym name and

pseudonym type will be unique at a later time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirEnumeratePseudonymGet and DirEnumeratePseudonymParse functions

are described on page 8-101 and page 8-104 respectively.

You can use the DirEnumerateGet and DirEnumerateParse functions, described on

page 8-57 and page 8-62, respectively, to enumerate all of the pseudonyms that exist in a

dNode.

Trap macro Selector

_oceTBDispatch $010F

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCEBadRecordID –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record
kOCEStreamCreationErr –1625 Error in connection to server
kOCENoDupAllowed –1641 Duplicate name and type

C H A P T E R 8

Catalog Manager

8-100 Catalog Manager Reference

To remove a pseudonym that you have added, use the DirDeletePseudonym function,

described next.

DirDeletePseudonym

The DirDeletePseudonym function deletes an alternative name and type of a record

that you specify.

pascal OSErr DirDeletePseudonym (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record whose alternative
name and type you want to delete. You must provide the record
location information unless the record exists in a personal catalog. If
the catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

pseudonymName A pointer to the alternative name that you want to delete.

pseudonymType A pointer to the alternative type that you want to delete.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ pseudonymName RStringPtr Alternative name
→ pseudonymType RStringPtr Alternative type

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-101

DESCRIPTION

If you no longer want to refer to a record by an alternate name or type, you can call this

function to delete the name and the type.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

To add a pseudonym to a record, use the DirAddPseudonym function, described on

page 8-98.

DirEnumeratePseudonymGet

The DirEnumeratePseudonymGet function returns information about the

pseudonyms for a record that you specify.

pascal OSErr DirEnumeratePseudonymGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0110

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCEBadRecordID –1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchPseudonym –1620 Can’t find specified

pseudonym
kOCEStreamCreationErr –1625 Error in creating connection to

server

C H A P T E R 8

Catalog Manager

8-102 Catalog Manager Reference

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record for which you
want to obtain pseudonyms. You must provide the record location
information unless the record is in a personal catalog. If the catalog
in which the record resides supports record creation IDs, you must
provide the creation ID; otherwise, you must provide the record
name and type.

startingName A pointer to the alternative name from which you want the function
to begin the enumeration. Set this field to nil to start with the first
alternative name for the record. If the
DirEnumeratePseudonymGet function completes with the
kOCEMoreData result code, you can continue the enumeration by
setting this field to the value of the name field in the last recordID
parameter passed to your callback routine from the
DirEnumeratePseudonymParse function. You must coordinate
the value you provide in this field with the value you provide in the
startingType field; that is, both values are required, and both
must belong to the same pseudonym.

startingType A pointer to the alternative type from which you want the function
to begin the enumeration. Set this field to nil to start with the first
alternative type for the record. If the
DirEnumeratePseudonymGet function completes with the
kOCEMoreData result code, you can continue the enumeration by
setting this field to the value of the type field in the last recordID
parameter passed to your callback routine from the
DirEnumeratePseudonymParse function. You must coordinate
the value you provide in this field with the value you provide in the
startingName field; that is, both values are required, and both
must belong to the same pseudonym.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ startingName RStringPtr Name to start enumeration from
→ startingType RStringPtr Type to start enumeration from
→ includeStartingPoint Boolean Begin enumeration with starting point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-103

includeStartingPoint
A Boolean value that tells the function how to interpret the
startingName and startingType fields. Set this field to true if
you want the DirEnumeratePseudonymGet function to return
information about pseudonyms beginning with the one specified by
the startingName and startingType fields. If you set this field
to false, the function returns information starting with the
pseudonym after the one specified by the startingName and
startingType fields.

getBuffer A pointer to the buffer in which the function stores the list of
pseudonyms that you requested. You provide this buffer.

getBufferSize The number of bytes in the buffer.

DESCRIPTION

You call the DirEnumeratePseudonymGet function to obtain a list of the pseudonyms

for a record that you specify.

If the buffer you provide is not large enough to contain all of the information you

requested, the DirEnumeratePseudonymGet function returns the kOCEMoreData

result code.

When the function completes with either the noErr or kOCEMoreData result codes, you

use a pointer to your buffer as input to the DirEnumeratePseudonymParse function,

which extracts the pseudonyms from the buffer.

If the DirEnumeratePseudonymGet function returns the kOCEMoreData result code,

you can request additional information by calling the DirEnumeratePseudonymGet

function again, after calling the DirEnumeratePseudonymParse function. As the

values of the startingName and startingType fields, use the values of the name and

type fields in the last recordID parameter passed to your callback routine from the

DirEnumeratePseudonymParse function. The DirEnumeratePseudonymGet

function will continue the enumeration starting with the next record as determined by

the value of the includeStartingPoint field.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0113

C H A P T E R 8

Catalog Manager

8-104 Catalog Manager Reference

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirEnumeratePseudonymParse function is described next.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all

the information you requested, see “Getting Attribute Type Information” beginning on

page 8-20.

DirEnumeratePseudonymParse

The DirEnumeratePseudonymParse function parses the data returned by the

DirEnumeratePseudonymGet function and returns a pointer to each pseudonym by

repeatedly calling your callback routine.

pascal OSErr DirEnumeratePseudonymParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can't find specified record
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-105

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record for which you
want to obtain pseudonyms. Use the same value that you provided
to the DirEnumeratePseudonymGet function.

eachRecordID A pointer to your callback routine. The function declaration for this
routine is described on page 8-151.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirEnumeratePseudonymGet function.

getBufferSize The number of bytes in the buffer. Use the same value that you
provided to the DirEnumeratePseudonymGet function.

DESCRIPTION

You call the DirEnumeratePseudonymParse function to extract the pseudonyms

placed in a buffer by the DirEnumeratePseudonymGet function. You must provide a

callback routine that the DirEnumeratePseudonymParse function calls for each

pseudonym it finds in the buffer.

The DirEnumeratePseudonymParse function completes when it has finished parsing

the contents of your buffer or when your callback routine returns true. The function

returns the kOCEMoreData result code if it reaches the end of the buffer and finds that

the DirEnumeratePseudonymGet function did not return all the data requested. If you

want to continue the enumeration, you can call the DirEnumeratePseudonymGet

function again. In your next call to the DirEnumeratePseudonymGet function, set the

startingName and startingType fields to the values of the name and type fields of

the last recordID parameter passed to your callback routine from the

DirEnumeratePseudonymParse function.

If your callback routine returns true, the DirEnumeratePseudonymParse function

completes with the noErr result code.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ eachRecordID ForEachRecordID Your callback routine
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

8-106 Catalog Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The function declaration for your callback routine is described on page 8-151.

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirEnumeratePseudonymGet function is described on page 8-101.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesParse function) when the buffer is too small to hold

all the information you requested, see “Getting Attribute Type Information” beginning

on page 8-20.

DirAddAlias

The DirAddAlias function adds an alias record to a catalog.

pascal OSErr DirAddAlias (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0104

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
↔ aRecord RecordIDPtr Target record
→ allowDuplicate Boolean Is duplicate name and type OK?

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-107

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a partially specified record ID for the alias record that
you want to add. If you want to add an alias record to a personal
catalog, you must provide the alias record’s name and type. If you
want to add an alias record to an external catalog, you must specify
everything in the record ID except the cid field. The function places
the creation ID for the new alias record in the cid field. If the
catalog does not support creation IDs, the function sets the cid
field to nil.

allowDuplicate
A Boolean value specifying whether the function should create an
alias if another record, alias, or pseudonym with the same name
and type already exists. Set this field to true if you want the
function to create the alias without checking the dNode for a
duplicate name and type. If you set the allowDuplicate field to
false, the function checks the name and type of all records, aliases,
and pseudonyms in the dNode and returns the
kOCENoDupAllowed result code if it finds a duplicate.

DESCRIPTION

This function works just like the DirAddRecord function in that it adds a record. It also

marks the new record as an alias. Your application is responsible for storing the

information you need to resolve the alias. You should add to the new alias record an

attribute whose type is referenced by the attribute type index kAliasAttrTypeNum

and whose value is a DSSpec structure that points to the record that this is an alias to.

You can enumerate aliases with the DirEnumerateGet and DirEnumerateParse

functions. You can use the DirDeleteRecord function to remove an alias record that

you added.

The catalog feature bit flag kSupportsAliasMask indicates whether a catalog supports

the DirAddAlias function.

SPECIAL CONSIDERATIONS

If you set the allowDuplicate field to false, the function will not add the alias if a

record, pseudonym, or alias with the same name and type already exists. However, this

does not guarantee that a duplicate alias will not be created by a requester who sets the

allowDuplicate field to true. The prohibition on duplicates applies only at the time

you call this function; it does not guarantee that the name and type will be unique at a

later time.

C H A P T E R 8

Catalog Manager

8-108 Catalog Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirDeleteRecord function is described on page 8-91.

For a description of catalog feature flags, see “Feature Flag Bit Array” beginning on

page 8-28.

The DirEnumerateGet function is described on page 8-57 and the
DirEnumerateParse function is described on page 8-62.

The DirAddRecord function is described on page 8-89.

For more information on aliases and pseudonyms, see “Aliases and Pseudonyms” on

page 8-7.

Managing Attribute Types and Values

The functions described in this section provide the following services:

■ adding and deleting attribute values

■ changing and verifying attribute values

■ searching for an occurrence of specific data in an attribute value

■ reading the attribute values in a record or records

■ deleting an attribute type

■ listing the attribute types in a record

Trap macro Selector

_oceTBDispatch $011C

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoDupAllowed –1641 Same name and type already

exists

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-109

DirAddAttributeValue

The DirAddAttributeValue function adds an attribute value to an existing record.

pascal OSErr DirAddAttributeValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record to which you
want to add an attribute value. You must provide the record
location information unless the record exists in a personal catalog. If
the catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

attr A pointer to an Attribute data structure. You must completely
specify the type and value substructures of the Attribute data
structure. The function returns the attribute creation ID.

DESCRIPTION

You call the DirAddAttributeValue function to add an attribute value to a record

that you specify. PowerShare and personal catalogs do not check for already existing

attributes having the same type and value; they simply add the attribute you specify.

Therefore, you may add duplicate attribute values to PowerShare and personal catalog

records. The Catalog Manager assigns them unique attribute creation IDs.

If the attribute type that you specify does not already exist within the record, the

function first adds the new attribute type and then adds the value.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
↔ attr AttributePtr Attribute structure

C H A P T E R 8

Catalog Manager

8-110 Catalog Manager Reference

For PowerShare and personal catalogs, you can specify an attribute value up to

kAttrValueMaxBytes bytes in length. If you specify an attribute value that is larger

than kAttrValueMaxBytes bytes, the function returns the

kOCEAttributeValueTooBig result code. The maximum size for an attribute value

stored in an external catalog is undefined.

SPECIAL CONSIDERATIONS

Note that there is no function in the Catalog Manager API that explicitly adds an

attribute type. To add a new attribute type to a record, begin by setting all fields of the

value substructure to 0 or nil and the type substructure to the attribute type that you

want to add. Then call the DirAddAttributeValue function. If that attribute type

already exists within the record, the function returns without an error result code.

Although the Catalog Manager imposes no restrictions on the number of attribute values

of a particular attribute type that you can add to a record, the Finder has limited ability

to display multivalued attribute types. See the chapter “AOCE Templates” in this book

for more information.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

You can delete an attribute value with the DirDeleteAttributeValue function,

described next.

You can delete an attribute type within a record with the DirDeleteAttributeType

function, described on page 8-126.

Trap macro Selector

_oceTBDispatch $010B

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can't find specified record
kOCEAttributeValueTooBig –1621 Attribute value larger than

kAttrValueMaxBytes bytes

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-111

DirDeleteAttributeValue

The DirDeleteAttributeValue function deletes an attribute value from a record that

you specify.

pascal OSErr DirDeleteAttributeValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute value is located. You must provide the record
location information unless the record exists in a personal catalog. If
the catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

attr A pointer to an Attribute data structure. If you want to delete an
attribute value from a catalog that supports attribute creation IDs,
you identify the attribute value to be deleted by specifying the
attribute creation ID and attribute type. To delete an attribute value
from a catalog that does not support attribute creation IDs, specify
the attribute type and attribute value.

DESCRIPTION

You call the DirDeleteAttributeValue function to delete an attribute value from a

record. Deleting the last attribute value of a given attribute type does not delete the

attribute type.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ attr AttributePtr Target attribute value

C H A P T E R 8

Catalog Manager

8-112 Catalog Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

You can add an attribute value to a record with the DirAddAttributeValue function,

described on page 8-109.

You can delete an attribute type with the DirDeleteAttributeType function,

described on page 8-126.

DirChangeAttributeValue

The DirChangeAttributeValue function changes an attribute value that you specify.

pascal OSErr DirChangeAttributeValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $010C

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeValue –1619 Can’t find specified attribute

value

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-113

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record containing the
attribute value that you want to change. You must provide the
record location information unless the record exists in a personal
catalog. If the catalog in which the record resides supports record
creation IDs, you must provide the creation ID; otherwise, you must
provide the record name and type.

currentAttr A pointer to the Attribute data structure that specifies the
attribute value that you want to change. For catalogs that support
attribute creation IDs, you identify the attribute value to change by
providing its attribute creation ID and attribute type; otherwise,
you need to provide the attribute value and attribute type.

newAttr A pointer to an Attribute data structure that contains the new
attribute value. In the value field, you provide the new attribute
value and its length in bytes. You must also provide a type in the
type field or a ParamErr is returned.

DESCRIPTION

You call the DirChangeAttributeValue function to change an attribute value

without changing its associated attribute creation ID. If you want to assign a new

attribute creation ID to the attribute value, use the DirDeleteAttributeValue

function to delete the old value and the DirAddAttributeValue function to add the

new value.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ currentAttr AttributePtr Existing attribute value
→ newAttr AttributePtr New attribute value

Trap macro Selector

_oceTBDispatch $010D

C H A P T E R 8

Catalog Manager

8-114 Catalog Manager Reference

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

DirVerifyAttributeValue

The DirVerifyAttributeValue function indicates whether the specified attribute

value exists in the record.

pascal OSErr DirVerifyAttributeValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeValue –1619 Can’t find specified attribute

value

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ attr AttributePtr Target attribute value

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-115

Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute value resides. You must provide the record location
information unless the record exists in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

attr A pointer to an Attribute data structure. You must specify the
type and value fields. You may also provide the attribute creation
ID if you know it. Otherwise, set the cid field of this structure to 0.

DESCRIPTION

If you provide the attribute creation ID, the DirVerifyAttributeValue function

verifies that an attribute value having the specified attribute type, attribute creation ID,

and actual attribute value exists in the record you specify.

SPECIAL CONSIDERATIONS

If you set the attribute creation ID to 0, the function verifies that an attribute value

having the specified actual attribute value and attribute type exists in the record you

specify and returns its attribute creation ID in the cid field of your Attribute data

structure. Note that duplicate attribute values may exist in the same record. The attribute

creation ID that the function returns may belong to any of the duplicate attribute values.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

Trap macro Selector

_oceTBDispatch $010E

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeValue –1619 Can’t find specified attribute

value

C H A P T E R 8

Catalog Manager

8-116 Catalog Manager Reference

DirFindValue

The DirFindValue function searches the records in a dNode that you specify for an

occurrence of an attribute value.

pascal OSErr DirFindValue (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRLI A pointer to the dNode in which you want to search for an attribute
value. The function ignores this field when you provide a nonzero
value in the dsRefNum field to specify a personal catalog.

aRecord A pointer to a local record ID. If you set this field to a nonzero
value, the search for matching data is restricted to the record you
specify here. Set this field to nil if you do not want to restrict your
search to a single record.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s

authentication identity
→ clientData long You define this field
→ aRLI PackedRLIPtr Target dNode
→ aRecord LocalRecordIDPtr Target record
→ attrType AttributeTypePtr Target attribute type
→ startingRecord LocalRecordIDPtr Record to start search from
→ startingAttribute AttributePtr Attribute value to start

search from
↔ recordFound LocalRecordIDPtr Record containing

matching data
← attributeFound Attribute Attribute containing

matching data
→ matchSize unsigned long Length of data to match
→ matchingData Ptr Data to match
→ sortDirection DirSortDirection Search forward or

backward?

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-117

attrType A pointer to an attribute type. If you set this field to a nonzero
value, the search for matching data is restricted to the attribute type
that you specify here. Set this field to nil if you do not want to
restrict your search to a single attribute type.

startingRecord
A pointer to a local record ID. Set this field to nil if you wish to
start the search with the first record in the dNode. If you have
already called the DirFindValue function and found an
occurrence of matching data, you can set this field to the value of
the recordFound field to search for the next occurrence.

startingAttribute
A pointer to an Attribute data structure. Set this field to nil if
you wish to start the search with the first attribute value in the first
record to be searched. If you have already called the
DirFindValue function, you can set this field to the value of the
attributeFound field to search for the next occurrence.

recordFound A pointer to the local record ID that identifies the record in which
the DirFindValue function found a matching attribute value. You
can set the startingRecord field to this field in a subsequent call
to the DirFindValue function.

attributeFound
An Attribute data structure that specifies the attribute value
within which the function found matching data. You can set the
startingAttribute field to the address of this structure in a
subsequent call to the DirFindValue function. If you are
searching a PowerShare or personal catalog, the function returns
only the attribute creation ID in the Attribute data structure. If
the catalog in which you are searching does not support attribute
creation IDs, the function may return a complete attribute value. In
that case, you must provide a buffer large enough to hold a
maximum size attribute value as part of your Attribute data
structure.

matchSize The number of bytes of data to be matched.

matchingData A pointer to a buffer that contains the data to be matched.

sortDirection A constant that specifies the search direction. Set this field to
kSortForwards to have the function search in a forward direction
through the dNode and the record for a match. Set this field to
kSortBackwards to have the function search in a backward
direction.

DESCRIPTION

The DirFindValue function examines up to the first 32 bytes of data in an attribute

value to find a match when it is searching in a PowerShare or personal catalog. The

match is to any string that begins with the search string.

The function returns the type and creation ID of the attribute value in which it finds a

match. You may call DirLookupGet to obtain the complete attribute value.

C H A P T E R 8

Catalog Manager

8-118 Catalog Manager Reference

IMPORTANT

Personal catalogs and the PowerShare catalog server do not support the
DirFindValue function. An external catalog may or may not support
this function, and it may match more or less than 32 characters. ▲

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirLookupGet function is described next.

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is

described in the chapter “AOCE Utilities.”

The LocalRecordID data structure is also described in the chapter “AOCE Utilities.”

The Attribute data structure is also described in the chapter “AOCE Utilities.”

DirLookupGet

The DirLookupGet function returns the attribute values of the attribute types that you

specify for a list of records that you provide.

pascal OSErr DirLookupGet (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0126

noErr 0 No error

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-119

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecordList A pointer to an array of pointers to record IDs. The record IDs
represent the records in which you want to look up attribute values.
You must provide record location information in each record ID
unless the record exists in a personal catalog. If the catalog in which
the record resides supports record creation IDs, you must provide
the record creation ID; otherwise, you must provide the record
name and type. The record IDs in your list should be unique.

For PowerShare catalogs, all of the records that you specify must
reside in the same dNode. This is not necessarily true for external
catalogs.

attrTypeList A pointer to an array of pointers to attribute types. The attribute
types are those for which you want to look up attribute values. The
attribute types in your list should be unique.

recordIDCount The number of elements in your array of pointers to record IDs.

attrTypeCount The number of elements in your array of pointers to attribute types.

includeStartingPoint
A Boolean value that determines how the DirLookupGet function
interprets the startingRecordIndex,
startingAttrTypeIndex, and startingAttribute fields. Set
this field to true if you want the DirLookupGet function to return
information from the record, attribute type, and attribute value
specified by the starting fields. If you set this field to false, the
function returns information starting with the record, attribute type,
and attribute value immediately following the one specified by the
starting fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock Address of the PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecordList RecordIDPtr* List of record IDs
→ attrTypeList AttributeTypePtr* List of attribute types
→ recordIDCount unsigned long Number of IDs in list
→ attrTypeCount unsigned long Number of types in list
→ includeStartingPoint Boolean Begin enumeration with starting

point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
→ startingRecordIndex unsigned long Record to start from
→ startingAttrTypeIndex unsigned long Attribute type to start from
→ startingAttribute Attribute Attribute value to start from

C H A P T E R 8

Catalog Manager

8-120 Catalog Manager Reference

getBuffer A pointer to the buffer in which the function stores the requested
information. You provide this buffer.

getBufferSize The number of bytes in the buffer.

startingRecordIndex
An index into the array of pointers to record IDs. It represents the
record at which the DirLookupGet function begins the lookup. To
start at the first record specified by the array, set this value to 1. The
value of the startingRecordIndex field must always be less
than or equal to the value of the recordIDCount field.

startingAttrTypeIndex
An index into the array of pointers to attribute types. It represents
the attribute type at which the function begins the lookup. To start
at the first attribute type specified by the array, set this value to 1.
The value of the startingAttrTypeIndex field must always be
less than or equal to the value of the attrTypeCount field.

startingAttribute
An Attribute data structure that specifies the attribute value at
which the DirLookupGet function begins the lookup. If the
catalog in which you are requesting the lookup supports creation
IDs, the attribute creation ID is a sufficient specification. If you set
the attribute creation ID to 0, the function begins the search from
the first attribute value of the type specified by the
startingAttrTypeIndex field. If you specify a nonzero attribute
creation ID and the function does not find an attribute value with a
matching creation ID, DirLookupGet terminates with a
kOCENoSuchAttributeValue result code. You should not call
DirLookupParse after getting this error.

If the catalog in which you are requesting the lookup does not
support attribute creation IDs, you must specify the entire structure.
Set every field in the structure to 0 if you want the function to begin
the search from the first attribute value of the type specified by the
startingAttrTypeIndex field.

DESCRIPTION

You call the DirLookupGet function to obtain the attribute values of particular attribute

types in records that you specify. You must specify a record, an attribute type, and an

attribute value at which you want the function to start the lookup.

The DirLookupGet function places the requested attribute values in your buffer. It also

provides the local record IDs identifying the records in which the attribute values are

located. Last, it provides the attribute type and associated access control information that

apply to each attribute value. If the buffer you provide is not large enough to contain all

of the information requested, the DirLookupGet function returns the kOCEMoreData

result code.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-121

When the DirLookupGet function completes with either the noErr or kOCEMoreData

result codes, call the DirLookupParse function to extract the attribute information

from your buffer. You can pass DirLookupParse the same parameter that you passed

to DirLookupGet.

If the DirLookupGet function completes with the kOCEMoreData result code, you may

wish to continue the lookup. When the DirLookupParse function completes, it returns

values in the lastRecordIndex, lastAttributeIndex, and lastAttribute fields.

You may use these as the values of the startingRecordIndex,

startingAttrTypeIndex, and startingAttribute fields on a subsequent call to

the DirLookupGet function. Therefore, you can simply pass the same parameter block

to the DirLookupGet function as you passed to the DirLookupParse function and

call the DirLookupGet function to continue retrieving information from the point at

which it stopped during its previous invocation.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirLookupParse function is described next.

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The Attribute data structure is also described in the chapter “AOCE Utilities.”

For an example of continuing the enumeration using the DirLookupGet function when

the buffer is too small to hold all the information you requested, see “Getting Attribute

Value Information” beginning on page 8-16.

Trap macro Selector

_oceTBDispatch $0117

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeValue –1619 Can’t find specified attribute

value
kOCEMoreData –1623 More data available
kOCEBadStartingRecord –1638 Starting record index out of

range
kOCEBadStartingAttribute –1639 Starting attribute index out of

range
kOCERLIsDontMatch –1645 RLIs of different records in the

record list are not the same

C H A P T E R 8

Catalog Manager

8-122 Catalog Manager Reference

DirLookupParse

The DirLookupParse function parses the data returned by the DirLookupGet

function and returns each attribute value to your application by repeatedly calling your

callback routine. It also returns information about record IDs and attribute types when

you specify callback routines for these purposes.

pascal OSErr DirLookupParse (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecordList RecordIDPtr* List of record IDs
→ attrTypeList AttributeTypePtr* List of attribute types
→ eachRecordID ForEachLookupRecordID Your callback routine for record

information
→ eachAttrType ForEachAttrTypeLookup Your callback routine for

attribute type information
→ eachAttrValue ForEachAttrValue Your callback routine for

attribute values
→ recordIDCount unsigned long Number of IDs in list
→ attrTypeCount unsigned long Number of types in list
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer
← lastRecordIndex unsigned long Last record ID retrieved
← lastAttributeIndex unsigned long Last attribute type retrieved
← lastAttribute Attribute Last attribute value retrieved
← attrSize unsigned long Length of the attribute value that

was too big to fit

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-123

Field descriptions

aRecordList A pointer to an array of pointers to record IDs. Use the same value
that you provided to the corresponding DirLookupGet function.

attrTypeList A pointer to an array of pointers to attribute types.Use the same
value that you provided to the corresponding DirLookupGet
function.

eachRecordID A pointer to your callback routine for record information. The
function declaration for this routine is described on page 8-154. The
DirLookupParse function calls this routine for each record ID in
the buffer. If you are looking up attribute values in a single record,
you may not want to provide this callback routine. Set this field to
nil if you do not want to specify this callback routine.

eachAttrType A pointer to your callback routine for attribute type information.
The DirLookupParse function passes your callback routine a
pointer to an attribute type and the access control mask that applies
to the requester for that attribute type. The attribute type always
belongs in the record identified in the most recent call to your
MyForEachRecordID routine. You may set this field to nil if you
do not want to specify this callback routine. If you are looking up
only one attribute type, or you prefer to read the type from the
Attribute data structure that the DirLookupParse function
passes to the MyForEachAttrValue routine, you may not want to
provide this callback routine. However, it is recommended that you
supply this callback routine to get the access control information for
a given attribute type. Access controls may prohibit you from
reading an attribute value. In that case, the DirLookupParse
function does not call your MyForEachAttrValue callback
routine even though the attribute value exists. If you do not supply
the MyForEachAttrType callback routine, you have no way of
knowing whether attribute values of the requested type exist for
which you are denied read access. The function declaration for this
routine is described on page 8-155.

eachAttrValue A pointer to your callback routine for attribute values
(MyForEachAttrValue). You must provide this callback routine.
The function declaration for this routine is described on page 8-156.

recordIDCount The number of elements in the array of pointers to record IDs. Use
the same value that you provided to the corresponding
DirLookupGet function.

attrTypeCount The number of elements in the array of pointers to attribute types.
Use the same value that you provided to the corresponding
DirLookupGet function.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the DirLookupGet function.

getBufferSize The number of bytes in the buffer.

lastRecordIndex
The index value of the last record that the DirLookupParse
function retrieved from your buffer.

C H A P T E R 8

Catalog Manager

8-124 Catalog Manager Reference

lastAttributeIndex
The index value of the last attribute type that the
DirLookupParse function retrieved from your buffer.

lastAttribute An Attribute data structure that specifies the last attribute value
that the DirLookupParse function retrieved from your buffer.

attrSize The length of an attribute value that is too large to fit in the buffer. If
your buffer is too small to hold an attribute value, the
DirLookupParse function sets this field to the length of the
attribute value that cannot fit in your buffer and returns the
kOCEMoreAttrValue result code. In this case, the value in this
field represents the minimum size of a buffer capable of holding the
attribute value. You must increase the size of your buffer to at least
the minimum size and call the DirLookupGet function again.
When the function does not return the kOCEMoreAttrValue result
code, this field is undefined.

DESCRIPTION

You call the DirLookupParse function to extract the information on attribute values,

attribute types, and records placed in a buffer by the DirLookupGet function.

When you provide callback routines for record and attribute type information, the

DirLookupGet function returns the record IDs and attribute types in the same order as

you provided in your list of record IDs and attribute types.

You should provide a callback routine for record information if you request information

on more than one record. All of the attribute values that the DirLookupParse function

passes to your callback routine for attribute values (MyForEachAttrValue) belong to

the record identified in the most recent call to your callback routine for record

information (MyForEachRecordID). If you do not provide this routine, you cannot

determine the record to which an attribute type or value belongs. In addition, a callback

routine for record information allows you to distinguish between the case where a record

exists but an attribute type does not exist and the case where a record does not exist.

Although it is optional, you should provide a callback routine for attribute types

(MyForEachAttrType) because it receives access control information about every

attribute type in your buffer. If you do not have read access to an attribute type, the

DirLookupParse function does not call your callback routine for the corresponding

attribute values even though those attribute values are present in your buffer. By

providing a callback routine for attribute types, you can detect the presence of attribute

values for which you do not have read access.

The DirLookupParse function returns the kOCEMoreData result code if it reaches the

end of the buffer and finds that the DirLookupGet function did not return all the data

requested. In this case, you can call the DirLookupGet function again to retrieve more

data. The DirLookupParse function sets the values of the lastRecordIndex,

lastAttributeIndex, and lastAttribute fields in the parameter block to indicate

the last items it retrieved from your buffer. These fields correspond to the

startingRecordIndex, startingAttrTypeIndex, and startingAttribute

fields in the DirLookupGet function’s parameter block. You can use the same

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-125

parameter block when you call the DirLookupGet function again, and it will continue

retrieving data at the point where it stopped the first time you called it.

If the DirLookupParse function returns the kOCEMoreAttrValue result code, you

must increase the size of your buffer before calling the DirLookupGet function again.

There are two conditions in which an attribute value may not fit in your buffer. The first

occurs when your buffer already contains some data and the remaining space is

insufficient to store the next Attribute data structure. In this case, DirLookupGet

returns the kOCEMoreData result code. Such an attribute value will be stored in your

buffer the next time you call the DirLookupGet function. The second condition occurs

when the size of an attribute value exceeds the size of your buffer. Such an attribute

value will not fit even when your buffer is empty. In this second case, the

DirLookupGet function completes with the kOCEMoreData result code; the

corresponding DirLookupParse function call stores the length of the oversized

attribute value in the attrSize field and returns the kOCEMoreAttrValue result code.

Before calling the DirLookupGet function again, you must increase the size of your

buffer to accommodate the oversized attribute value.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirLookupGet function is described on page 8-118.

The function declaration for your callback routine that processes record information is

described on page 8-154.

The function declaration for your callback routine that processes attribute type

information is described on page 8-155.

The function declaration for your callback routine that processes attribute value

information is described on page 8-156.

For an example of continuing the enumeration using the DirLookupParse function

when the buffer is too small to hold all the information you requested, see “Getting

Attribute Value Information” beginning on page 8-16.

Trap macro Selector

_oceTBDispatch $0102

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access privileges
kOCEMoreData –1623 More data available
kOCEMoreAttrValue –1640 Buffer too small for a single attribute value

C H A P T E R 8

Catalog Manager

8-126 Catalog Manager Reference

DirDeleteAttributeType

The DirDeleteAttributeType function deletes an attribute type and its associated

values from a particular record.

pascal OSErr DirDeleteAttributeType (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute type is located. You must provide the record location
information unless the record exists in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

attrType A pointer to the attribute type that you want to delete.

DESCRIPTION

You call the DirDeleteAttributeType function to delete an existing attribute type. If

any attribute values exist for that type, the function first deletes the values and then

deletes the attribute type. If you do not have access privileges to delete the attribute

type, the function returns the kOCEWriteAccessDenied result code.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ attrType AttributeTypePtr Target attribute type

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-127

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The AttributeType data structure is also described in the chapter “AOCE Utilities.”

Access controls are discussed in the section “Getting Access Controls” beginning on

page 8-11.

Records and attributes are described in the section “Catalog Records and Attributes”

beginning on page 8-6.

DirEnumerateAttributeTypesGet

The DirEnumerateAttributeTypesGet function returns information about the

attribute types in a record.

pascal OSErr DirEnumerateAttributeTypesGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0130

noErr 0 No error
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchAttributeType –1642 Can’t find specified attribute

type

C H A P T E R 8

Catalog Manager

8-128 Catalog Manager Reference

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record about which you
are requesting attribute type information. You must provide the
record location information unless the record exists in a personal
catalog. If the catalog in which the record resides supports record
creation IDs, you must provide the creation ID; otherwise, you must
provide the record name and type.

startingAttrType
A pointer to the attribute type within the record at which you want
the DirEnumerateAttributeTypesGet function to begin the
enumeration. Set this field to nil to start with the first attribute
type in the record. If the DirEnumerateAttributeTypesGet
function completes with the kOCEMoreData result code, you can
continue the enumeration by setting this field to the value of the last
attrType parameter passed to your callback routine by the
DirEnumerateAttributeTypesParse function.

includeStartingPoint
A Boolean value that determines how this function interprets the
startingAttrType field. Set this field to true if you want the
DirEnumerateAttributeTypesGet function to return
information about attribute types beginning with the one you
specify in the startingAttrType field. If you set this field to
false, the function returns information starting with the attribute
type immediately after the one specified by the
startingAttrType field.

getBuffer A pointer to the buffer in which the function stores the attribute
types it found in the specified record. You provide this buffer.

getBufferSize The number of bytes in the buffer.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ startingAttrType AttributeTypePtr Attribute type to start from
→ includeStartingPoint Boolean Begin enumeration with starting

point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-129

DESCRIPTION

You call the DirEnumerateAttributeTypesGet function to obtain a list of the

attribute types that are present in a particular record.

If your buffer is not large enough to contain all of the information requested, the

DirEnumerateAttributeTypesGet function returns the kOCEMoreData result code.

When the DirEnumerateAttributeTypesGet function completes with either the

noErr or kOCEMoreData result codes, you provide a pointer to your buffer to the

DirEnumerateAttributeTypesParse function, which extracts the attribute type

information from the buffer.

If your buffer is too small to hold all of the requested information, you can get additional

information by calling the DirEnumerateAttributeTypesGet function again. As the

value of the startingAttrType field, use the value of the last attrType parameter

passed to your callback routine by the DirEnumerateAttributeTypesParse

function. The DirEnumerateAttributeTypesGet function will continue the

enumeration starting with the next attribute type as determined by the value of the

includeStartingPoint field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The AttributeType data structure is also described in the chapter “AOCE Utilities.”

The DirEnumerateAttributeTypesParse function is described next.

For an example of continuing the enumeration using the

DirEnumerateAttributeTypesGet function when the buffer is too small to hold all

the information you requested, see “Getting Attribute Type Information” beginning on

page 8-20.

Trap macro Selector

_oceTBDispatch $0112

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCEMoreData –1623 More data available
kOCEDirectoryNotFoundErr –1630 Can’t find catalog

C H A P T E R 8

Catalog Manager

8-130 Catalog Manager Reference

DirEnumerateAttributeTypesParse

The DirEnumerateAttributeTypesParse function parses the data returned by the

DirEnumerateAttributeTypesGet function and returns each attribute type to your

application by repeatedly calling your callback routine.

pascal OSErr DirEnumerateAttributeTypesParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record about
which you want to obtain attribute type information.
Use the same value that you provided to the corresponding
DirEnumerateAttributeTypesGet function.

eachAttrType A pointer to your callback routine. The function declaration for this
routine is described on page 8-152.

getBuffer A pointer to the buffer containing the attribute types to parse.
Use the same buffer that you provided to the corresponding
DirEnumerateAttributeTypesGet function.

getBufferSize The number of bytes in the buffer. Use the same value
that you provided to the corresponding
DirEnumerateAttributeTypesGet function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ eachAttrType ForEachAttrType Your callback routine
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-131

DESCRIPTION

You call the DirEnumerateAttributeTypesParse function to extract the attribute

types placed in a buffer by the DirEnumerateAttributeTypesGet function. You

must provide a callback routine that the DirEnumerateAttributeTypesParse

function calls for each attribute type that it finds in the buffer.

The DirEnumerateAttributeTypesParse function completes when it has finished

parsing the contents of your buffer or when your callback routine returns true. The

function returns the kOCEMoreData result code if it reaches the end of the buffer and

finds that the DirEnumerateAttributeTypesGet function did not return all the data

requested. If you want to continue the enumeration, you can call the

DirEnumerateAttributeTypesGet function again. In your next call to the

DirEnumerateAttributeTypesGet function, set startingAttrType to the value

of the last attrType parameter passed to your callback routine by the

DirEnumerateAttributeTypesParse function.

If your callback routine returns true, the DirEnumerateAttributeTypesParse

function completes with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The function declaration for your callback routine is described on page 8-152.

The DirEnumerateAttributeTypesGet function is described on page 8-127.

For an example of continuing the enumeration using the

DirEnumerateAttributeTypesParse function when the buffer is too small to hold

all the information you requested, see “Getting Attribute Type Information” beginning

on page 8-20.

Trap macro Selector

_oceTBDispatch $0103

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-132 Catalog Manager Reference

Reading Access Controls for dNodes, Records, and Attribute Types

The functions in this section identify requestor categories and access controls. There are

five categories of requestors. You use the OCEGetAccessControlDSSpec function to

read category masks that identify the type of requestor about which you want

information. See the section “Getting Access Controls” beginning on page 8-11 for more

information on access controls and requestor categories.

You can use the other functions described in this section to read the access control masks

for a dNode, a record, or an attribute type.

OCEGetAccessControlDSSpec

The OCEGetAccessControlDSSpec function returns a DSSpec that you can use to get

access controls.

pascal DSSpec *OCEGetAccessControlDSSpec (const CategoryMask

categoryBitMask);

categoryBitMask
A value indicating the type of DSSpec you want
OCEGetAccessControlDSSpec to return.

DESCRIPTION

Given one of the categoryBitMask values, the OCEGetAccessControlDSSpec

function returns to you a pointer to a DSSpec structure that corresponds to the

particular categoryBitMask value. You can then use, in a

DirGetxxxAccessControlGet function, the DSSpec that is returned to you. The

categoryBitMask value identifies a type of requestor, such as owner or guest. For

more information on how to use the categoryBitMask value to obtain a DSSpec

structure, see “Types of Requesters” beginning on page 8-11.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

__OCEUtils $0345

noErr 0 No error

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-133

SEE ALSO

The CategoryMask data type is described in “Getting Access Controls” beginning on

page 8-11.

The DSSpec data structure is described in the chapter “Utility Manager” in this book.

DirGetDNodeAccessControlGet

The DirGetDNodeAccessControlGet function returns access control information for

a dNode that you specify.

pascal OSErr DirGetDNodeAccessControlGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target dNode
→ forCurrentUserOnly Boolean Return only requester’s access controls?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with starting

point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

8-134 Catalog Manager Reference

Field descriptions

pRLI A pointer to packed record location information that specifies the
dNode about which you want access control information. The
function ignores this field when you specify a personal catalog in
the dsRefNum field.

forCurrentUserOnly
A Boolean value that indicates what access control information the
function returns. Set this field to true if you want only access
control information for the requester specified in the identity
field. If you set this field to false, the function returns access
control information for each object on the dNode’s access control
list.

startingPoint A pointer to the object on the access control list from which the
function begins to retrieve information. Set this field to nil to start
with the first object. If the function completes with the
kOCEMoreData result code, you can set this field to the value that
DirGetDNodeAccessControlParse last passed to the dsObj
parameter of your callback routine. Then call
DirGetDNodeAccessControlGet again to continue to obtain
information. The function ignores this field if you set
forCurrentUserOnly to true.

includeStartingPoint
A Boolean value that determines how the function interprets the
startingPoint field. Set this field to true if you want the
function to return access control information beginning with the
object specified by the startingPoint field. If you set this field to
false, the function returns information starting with the object
after the one specified by the startingPoint field. The function
ignores this field if you set forCurrentUserOnly to true.

getBuffer A pointer to the buffer in which the function stores the access
control information for the dNode you specify. You provide this
buffer.

getBufferSize The size, in bytes, of your buffer.

DESCRIPTION

You call the DirGetDNodeAccessControlGet function to obtain access control

information for a dNode that you specify. The information consists of catalog service

specifications that identify the objects on the access control list and of the access control

masks that apply to these objects. The mask specifies which access privileges the object

possesses.

If the buffer you provide is not large enough to contain all of the information requested,

the function returns the kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you

use a pointer to your buffer as input to the DirGetDNodeAccessControlParse

function, which extracts the information from the buffer.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-135

If your buffer is too small to hold all of the requested information, you can get additional

information by calling the DirGetDNodeAccessControlGet function again, after

calling the DirGetDNodeAccessControlParse function. Set the startingPoint

field to the value that DirGetDNodeAccessControlParse last passed to the dsObj

parameter of your callback routine. The DirGetDNodeAccessControlGet function

will continue to return information starting with the next entry on the dNode’s access

control list as determined by the value of the includeStartingPoint field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

You can create a PackedRLI data structure with the OCEPackRLI utility routine. It is

also described in the chapter “AOCE Utilities.”

The catalog service specification, defined by the DSSpec data structure, is also described

in the chapter “AOCE Utilities.”

The DirGetDNodeAccessControlParse function is described next.

For information on the types of objects and the types of access controls specified in the

access control mask, see “Getting Access Controls” beginning on page 8-11.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all

the information you requested, see “Getting Attribute Type Information” beginning on

page 8-20.

Trap macro Selector

_oceTBDispatch $012A

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchdNode –1615 Can’t find specified dNode
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-136 Catalog Manager Reference

DirGetDNodeAccessControlParse

The DirGetDNodeAccessControlParse function parses the access control

information returned by the DirGetDNodeAccessControlGet function and returns a

pointer to each object and its access control mask by repeatedly calling your callback

routine.

pascal OSErr DirGetDNodeAccessControlParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

pRLI A pointer to packed record location information that specifies the
dNode about which you want access control information. Use the
same value that you provided to the
DirGetDNodeAccessControlGet function.

eachObject A pointer to your callback routine. The Catalog Manager passes
your callback routine the value that you provide in the
clientData field, a pointer to a catalog service specification that
identifies the object to which the access control masks apply, the

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ pRLI PackedRLIPtr Target dNode
→ eachObject ForEachDNodeAccessControl Your callback routine
→ forCurrentUserOnly Boolean Return only requester’s access

info?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with

starting point?
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-137

active access control mask for the target dNode, and the default
access control masks for newly created records and attribute types
within that dNode. The function declaration for this routine is
described on page 8-161.

forCurrentUserOnly
Use the same value that you provided to the
DirGetDNodeAccessControlGet function.

startingPoint Use the same value that you provided to the
DirGetDNodeAccessControlGet function.

includeStartingPoint
Use the same value that you provided to the
DirGetDNodeAccessControlGet function.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirGetDNodeAccessControlGet function.

getBufferSize The size, in bytes, of your buffer. Use the same value that you
provided to the DirGetDNodeAccessControlGet function.

DESCRIPTION

You call the DirGetDNodeAccessControlParse function to extract the access control

information placed in your buffer by the DirGetDNodeAccessControlGet function.

You must provide a callback routine that the DirGetDNodeAccessControlParse

function calls for each entry it finds in the buffer.

The DirGetDNodeAccessControlParse function completes when it has finished

parsing the contents of your buffer or when your callback routine returns true. The

function returns the kOCEMoreData result code if it reaches the end of the buffer and

finds that the DirGetDNodeAccessControlGet function did not return all the data

requested. If you want to continue to obtain information, you can call the

DirGetDNodeAccessControlGet function again. Set the value of the

startingPoint field to the value that DirGetDNodeAccessControlParse last

passed to the dsObj parameter of your callback routine.

If your callback routine returns true, the DirGetDNodeAccessControlParse

function completes with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_oceTBDispatch $012F

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-138 Catalog Manager Reference

SEE ALSO

The PackedRLI data structure is described in the chapter “AOCE Utilities” in this book.

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetDNodeAccessControlGet function is described on page 8-133.

The function declaration for your callback routine is described on page 8-161.

For information on the types of access controls specified in the access control mask, see

“Getting Access Controls” beginning on page 8-11.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesParse function) when the buffer is too small to hold

all the information you requested, see “Getting Attribute Type Information” beginning

on page 8-20.

DirGetRecordAccessControlGet

The DirGetRecordAccessControlGet function returns the access controls of a

record that you specify.

pascal OSErr DirGetRecordAccessControlGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of PowerShare server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ forCurrentUserOnly Boolean Return only requester’s access controls?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with starting point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-139

Field descriptions

aRecord A pointer to a record ID that identifies the record about which you
want access control information. You must provide the record
location information unless the record resides in a personal catalog.
If the catalog in which the record resides supports record creation
IDs, you must provide the record creation ID; otherwise, you must
provide the record name and type.

forCurrentUserOnly
A Boolean value that indicates what access control information the
function returns. Set this field to true if you want access controls
only for the user specified in the identity field. If you set this
field to false, the function returns access controls for each object
on the record’s access control list.

startingPoint A pointer to the object from which the function begins returning
information. Set this field to nil to start with the first object. If the
function completes with the kOCEMoreData result code, you can
set this field to the value of the last dsObj parameter passed to
your callback routine by the parse function and call the function
again to continue to obtain information. The function ignores this
field if you set forCurrentUserOnly to true.

includeStartingPoint
A Boolean value that determines how the function interprets the
startingPoint field. Set this field to true if you want the
function to return access control information beginning with the
object specified by the startingPoint field. If you set this field to
false, the function returns information starting with the object
after the one specified by the startingPoint field. The function
ignores this field if you set forCurrentUserOnly to true.

getBuffer A pointer to the buffer in which the function stores the access
control information for the record you specify. You provide this
buffer.

getBufferSize The size, in bytes, of your buffer.

DESCRIPTION

You call the DirGetRecordAccessControlGet function to obtain access control

information for a record that you specify. The information consists of catalog service

specifications that identify the objects on the access control list and of the access control

masks that apply to these objects. The mask specifies which access privileges the object

possesses.

If the buffer you provide is not large enough to contain all of the information requested,

the function returns the kOCEMoreData result code.

When the function completes with either the noErr or kOCEMoreData result codes, you

use a pointer to your buffer as input to the DirGetRecordAccessControlParse

function, which extracts the information from the buffer.

If your buffer is too small to hold all of the requested information, you can get additional

information by calling the DirGetRecordAccessControlGet function again, after

C H A P T E R 8

Catalog Manager

8-140 Catalog Manager Reference

calling the DirGetRecordAccessControlParse function. Set the value of the

startingPoint field to the value that DirGetRecordAccessControlParse last

passed to the dsObj parameter of your callback routine. The

DirGetRecordAccessControlGet function will continue to return information

starting with the next entry as determined by the value of the includeStartingPoint

field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetRecordAccessControlParse function is described next.

For information on the types of access controls specified in the access control mask, see

“Getting Access Controls” beginning on page 8-11.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all

the information you requested, see “Getting Attribute Type Information” beginning on

page 8-20.

DirGetRecordAccessControlParse

The DirGetRecordAccessControlParse function parses the access control

information returned by the DirGetRecordAccessControlGet function and returns

a pointer to each object and its access control mask by repeatedly calling your callback

routine.

pascal OSErr DirGetRecordAccessControlParse

(DirParamBlockPtr paramBlock,

Boolean async);

Trap macro Selector

_oceTBDispatch $012C

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchdNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-141

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record about which you
want access control information. Use the same value that you
provided to the DirGetRecordAccessControlGet function.

eachObject A pointer to your callback routine. The Catalog Manager passes
your callback routine the value that you provide in the
clientData field, a pointer to a catalog service specification that
identifies the object to which the access control masks apply, the
active access control masks for the target record and the dNode in
which it resides, and the default access control mask for newly
created attribute types within that record. The function declaration
for this routine is described on page 8-162.

forCurrentUserOnly
Use the same value that you provided to the
DirGetRecordAccessControlGet function.

startingPoint Use the same value that you provided to the
DirGetRecordAccessControlGet function.

includeStartingPoint
Use the same value that you provided to the
DirGetRecordAccessControlGet function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ eachObject ForEachRecordAccessControl Your callback routine
→ forCurrentUserOnly Boolean Return only requester’s

access info?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with

starting point?
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

8-142 Catalog Manager Reference

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirGetRecordAccessControlGet function.

getBufferSize The size, in bytes, of your buffer. Use the same value that you
provided to the DirGetRecordAccessControlGet function.

DESCRIPTION

You call the DirGetRecordAccessControlParse function to extract the access

control information placed in your buffer by the DirGetRecordAccessControlGet

function. You must provide a callback routine that the

DirGetRecordAccessControlParse function calls for each entry it finds in the

buffer.

The DirGetRecordAccessControlParse function completes when it has finished

parsing the contents of your buffer or when your callback routine returns true. The

function returns the kOCEMoreData result code if it reaches the end of the buffer and

finds that the DirGetRecordAccessControlGet function did not return all the data

requested. If you want to continue to obtain information, you can call the

DirGetRecordAccessControlGet function again. Set the value of the

startingPoint field to the value that DirGetRecordAccessControlParse last

passed to the dsObj parameter of your callback routine.

If your callback routine returns true, the DirGetRecordAccessControlParse

function completes with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetRecordAccessControlGet function is described on page 8-138.

The function declaration for your callback routine is described on page 8-162.

Trap macro Selector

_oceTBDispatch $0134

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-143

For information on the types of access controls specified in the access control mask, see

“Getting Access Controls” beginning on page 8-11.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesParse function) when the buffer is too small to hold

all the information you requested, see “Getting Attribute Type Information” beginning

on page 8-20.

DirGetAttributeAccessControlGet

The DirGetAttributeAccessControlGet function returns access control

information for an attribute type that you specify.

pascal OSErr DirGetAttributeAccessControlGet

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of PowerShare

server
→ dsRefNum short Personal catalog reference number
→ identity AuthIdentity Requester’s authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ aType AttributeTypePtr Target attribute type
→ forCurrentUserOnly Boolean Return only requester’s access info?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with starting

point?
↔ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

8-144 Catalog Manager Reference

Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute type resides. You must provide the record location
information unless the record resides in a personal catalog. If the
catalog in which the record resides supports record creation IDs,
you must provide the creation ID; otherwise, you must provide the
record name and type.

aType A pointer to the attribute type about which you are requesting
access control information.

forCurrentUserOnly
A Boolean value that indicates what access controls the function
returns. Set this field to true if you want access controls only for
the user specified in the identity field. If you set this field to
false, the function returns access controls for each object on the
attribute type’s access control list.

startingPoint A pointer to the object from which the function begins to return
information. Set this field to nil to start with the first object. If the
function completes with the kOCEMoreData result code, you can
set this field to the value of the last dsObj parameter passed to
your callback routine by the parse function and call the function
again to continue to obtain information. The function ignores this
field if you set forCurrentUserOnly to true.

includeStartingPoint
A Boolean value that determines how the function interprets the
startingPoint field. Set this field to true if you want the
function to return access control information beginning with the
object specified by the startingPoint field. If you set this field to
false, the function returns information starting with the object
after the one specified by the startingPoint field. The function
ignores this field if you set forCurrentUserOnly to true.

getBuffer A pointer to the buffer in which the function stores the access
control information for the attribute type you specify. You provide
this buffer.

getBufferSize The size, in bytes, of your buffer.

DESCRIPTION

You call the DirGetAttributeAccessControlGet function to obtain access control

information for an attribute type that you specify. The information consists of catalog

service specifications that identify the objects on the access control list and of the access

control masks that apply to these objects. The mask specifies which access privileges the

object possesses.

If the buffer you provide is not large enough to contain all of the information requested,

the function returns the kOCEMoreData result code.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-145

When the function completes with either the noErr or kOCEMoreData result code, you

use a pointer to your buffer as input to the DirGetAttributeAccessControlParse

function, which extracts the information from the buffer.

If your buffer is too small to hold all of the information requested, you can get additional

information by calling the DirGetAttributeAccessControlGet function again,

after calling the DirGetAttributeAccessControlParse function. Set the value of

the startingPoint field to the value that DirGetAttributeAccessControlParse

last passed to the dsObj parameter of your callback routine. The

DirGetAttributeAccessControlGet function will continue to return information

starting with the next object as determined by the value of the

includeStartingPoint field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The AttributeType data structure is also described in the chapter “AOCE Utilities.”

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetAttributeAccessControlParse function is described next.

For information on the types of access controls specified in the access control mask, see

“Getting Access Controls” beginning on page 8-11.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesGet function) when the buffer is too small to hold all

the information you requested, see “Getting Attribute Type Information” beginning on

page 8-20.

Trap macro Selector

_oceTBDispatch $012E

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCETargetDirectoryInaccessible –1613 Target catalog is not currently

available
kOCENoSuchdNode –1615 Can’t find specified dNode
kOCENoSuchRecord –1618 Can’t find specified record
kOCENoSuchPseudonym –1619 Can’t find specified

pseudonym
kOCEMoreData –1623 More data available

C H A P T E R 8

Catalog Manager

8-146 Catalog Manager Reference

DirGetAttributeAccessControlParse

The DirGetAttributeAccessControlParse function parses the access control

information returned by the DirGetAttributeAccessControlGet function and

returns a pointer to each object and its access control mask by repeatedly calling your

callback routine.

pascal OSErr DirGetAttributeAccessControlParse

(DirParamBlockPtr paramBlock,

Boolean async);

paramBlock
Pointer to a parameter block.

async A Boolean value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See “The Parameter Block Header” on page 8-32 for descriptions of the ioCompletion,

ioResult, serverHint, dsRefNum, identity, and clientData fields.

Field descriptions

aRecord A pointer to a record ID that identifies the record in which the
target attribute type resides. Use the same value that you provided
to the DirGetAttributeAccessControlGet function.

aType A pointer to an attribute type about which you are requesting
access control information. Use the same value that you provided to
the DirGetAttributeAccessControlGet function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog

reference number
→ identity AuthIdentity Requester’s

authentication identity
→ clientData long You define this field
→ aRecord RecordIDPtr Target record
→ aType AttributeTypePtr Target attribute type
→ eachObject ForEachAttributeAccessControl Your callback routine
→ forCurrentUserOnly Boolean Return only requester’s

access controls?
→ startingPoint DSSpec* Object to start from
→ includeStartingPoint Boolean Begin enumeration with

starting point?
→ getBuffer Ptr Your buffer
→ getBufferSize unsigned long Size of your buffer

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-147

eachObject A pointer to your callback routine. The Catalog Manager passes
your callback routine the value that you provide in the
clientData field, a pointer to a catalog service specification that
identifies the object to which the access control masks apply, and
the active access control masks for the target attribute type as well
as those for the dNode and record within which it resides. The
function declaration for this routine is described on page 8-161.

forCurrentUserOnly
Use the same value that you provided to the
DirGetAttributeAccessControlGet function.

startingPoint Use the same value that you provided to the
DirGetAttributeAccessControlGet function.

includeStartingPoint
Use the same value that you provided to the
DirGetAttributeAccessControlGet function.

getBuffer A pointer to the buffer containing the information to parse. Use the
same buffer that you provided to the
DirGetAttributeAccessControlGet function.

getBufferSize The size, in bytes, of your buffer. Use the same value that you
provided to the DirGetAttributeAccessControlGet function.

DESCRIPTION

You call the DirGetAttributeAccessControlParse function to extract the access

control information placed in your buffer by the

DirGetAttributeAccessControlGet function. You must provide a callback routine

that the DirGetAttributeAccessControlParse function calls for each entry it finds

in the buffer.

The DirGetAttributeAccessControlParse function completes when it has

finished parsing the contents of your buffer or when your callback routine returns true.

The function returns the kOCEMoreData result code if it reaches the end of the buffer

and finds that the DirGetAttributeAccessControlGet function did not return all

the data requested. If you want to continue to obtain information, you can call the

DirGetAttributeAccessControlGet function again. Set the value of the

startingPoint field to the value that DirGetAttributeAccessControlParse last

passed to the dsObj parameter of your callback routine.

If your callback routine returns true, the DirGetAttributeAccessControlParse

function completes with the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0138

C H A P T E R 8

Catalog Manager

8-148 Catalog Manager Reference

RESULT CODES

SEE ALSO

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The AttributeType data structure is also described in the chapter “AOCE Utilities.”

The DSSpec data structure is also described in the chapter “AOCE Utilities.”

The DirGetAttributeAccessControlGet function is described on page 8-143.

The function declaration for your callback routine is described on page 8-161.

For information on the types of access controls specified in the access control mask, see

“Getting Access Controls” beginning on page 8-11.

For an example of continuing the enumeration (using the

DirEnumerateAttributeTypesParse function) when the buffer is too small to hold

all the information you requested, see “Getting Attribute Type Information” beginning

on page 8-20.

Cancelling a Catalog Manager Function

You use the function described in this section to cancel a Catalog Manager function that

has not completed execution.

DirAbort

The DirAbort function cancels a currently executing Catalog Manager function.

pascal OSErr DirAbort (DirParamBlockPtr paramBlock);

paramBlock
Pointer to a parameter block.

Parameter block

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEMoreData –1623 More data available

← ioResult OSErr Result code
→ serverHint AddrBlock AppleTalk address of the

PowerShare server
→ dsRefNum short Personal catalog reference

number
→ identity AuthIdentity Requester’s authentication

identity
→ pb union DirParamBlock* Function to cancel

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-149

See “The Parameter Block Header” on page 8-32 for descriptions of the ioResult,

serverHint, dsRefNum, and identity fields.

Field descriptions

pb A pointer to the DirParamBlock parameter block for the function
you want to cancel.

DESCRIPTION

You call the DirAbort function to cancel a Catalog Manager function that has not

completed execution. If the function that you want to cancel addresses a PowerShare

catalog or a personal catalog, the Catalog Manager attempts the cancel operation. If the

function that you want to cancel addresses an external catalog, the CSAM driver

attempts the cancel operation. If the Catalog Manager or the CSAM driver does not

support the DirAbort function for the executing function that you specify, the function

returns the kOCEAbortNotSupportedForThisCall result code.

PowerShare and personal catalogs support the DirAbort function for the

DirFindADAPDirectoryByNetSearch and DirNetSearchADAPDirectoriesGet

functions only.

IMPORTANT

Because the DirAbort function makes references to fields in the
parameter block associated with the function that you want to cancel,
you must not alter or dispose of that parameter block before the
DirAbort function has completed. ▲

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The DirFindADAPDirectoryByNetSearch function is described on page 8-74.

The DirNetSearchADAPDirectoriesGet function is described on page 8-76.

Trap macro Selector

_oceTBDispatch $011B

noErr 0 No error
kOCEAbortNotSupportedForThisCall –1631 Abort not supported

C H A P T E R 8

Catalog Manager

8-150 Catalog Manager Reference

Application-Defined Functions

This section contains descriptions of the completion routine you can provide when you

call the Catalog Manager asynchronously and of the callback routines that you provide

to Catalog Manager functions that parse a buffer’s contents.

The information on callback routines in this introduction applies to all callback routines

and is not repeated in individual routine descriptions.

The Catalog Manager manages all of the buffers associated with pointers that it passes to

a callback routine. You must copy the data in these buffers if you want to refer to it after

your callback routine completes execution.

When a callback routine returns false, the parse function continues parsing the results

in your buffer. When a callback routine returns true, the parse function completes with

a noErr result code. If a parse function invokes a callback routine and passes it the last

item in the buffer and the callback routine returns false, the parse routine completes

with either a noErr or a kOCEMoreData result code, depending on the result code of

the corresponding “get” function.

A Catalog Manager function always calls a callback routine at deferred-task time so that

it will work properly if the computer is using virtual memory. Because these functions

restore the value of your application’s A5 register before calling a callback routine, a

callback routine has access to your application’s global variables. Your callback routine

can allocate memory if you make a synchronous call to the function that invokes it.

See “Callback Routines” on page 8-10 for more information about the restrictions that

apply to callback routines.

MyCompletionRoutine

You may provide a completion routine when you call a Catalog Manager function

asynchronously.

void MyCompletionRoutine (DirParamBlockPtr paramBlk);

paramBlk A pointer to the parameter block that you provided to the Catalog
Manager function that is calling your completion routine.

DESCRIPTION

You can provide a completion routine to any Catalog Manager functions that you can

call asynchronously by passing a pointer to the completion routine in the

ioCompletion field of the DirParamBlock parameter block. If you provide a

completion routine, it executes when the asynchronous request completes execution.

The Catalog Manager saves the value of your A5 register at the time you call a Catalog

Manager routine and then restores the A5 value before calling the completion routine.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-151

The Catalog Manager always calls completion routines in deferred-task time. Running at

deferred-task time is a safe practice when using virtual memory.

You can write your completion routine in C, Pascal, or assembly language.

To declare a completion routine in Pascal, use the following statement:

PROCEDURE MyCompletion(paramBlk: DirParamBlockPtr);

Note that if you do not want to specify a completion routine for an asynchronous

function call, you can specify nil in the ioCompletion field and poll the ioResult

field of the parameter block header. When you call a Catalog Manager function

asynchronously, the function sets the ioResult field in the parameter block to 1 to

indicate that the routine has not yet completed execution. When the routine completes

execution, it sets the ioResult field to the actual function result. If you poll, you should

do so within a loop that calls the WaitNextEvent routine so that other processes get

execution time. If you poll in a tight loop, you may cause a deadlock condition.

ASSEMBLY-LANGUAGE INFORMATION

If you write it in assembly language, your completion routine gets a pointer to the

parameter block in the A0 register and the Catalog Manager function result code in the

D0 register. The function result code is also available in the ioResult field of the

parameter block.

MyForEachRecordID

The MyForEachRecordID function is a callback routine you must provide if you call

the DirEnumeratePseudonymParse function.

pascal Boolean MyForEachRecordID (long clientData,

const RecordID *recordID);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirEnumeratePseudonymParse function.
You can use this parameter for whatever purpose you choose. For
example, if you make multiple asynchronous calls to the
DirEnumeratePseudonymParse function, you can use this parameter
to match calls to this routine with a particular call to the
DirEnumeratePseudonymParse function.

recordID A pointer to a record ID containing the name, the type, and the creation
ID of a pseudonym. The record location information is unspecified
because the pseudonym resides in the same catalog and dNode as the
target record.

C H A P T E R 8

Catalog Manager

8-152 Catalog Manager Reference

DESCRIPTION

The DirEnumeratePseudonymParse function calls your callback routine for each

pseudonym it finds in a buffer previously filled by the DirEnumeratePseudonymGet

function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The DirEnumeratePseudonymParse function is described on page 8-104.

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

MyForEachAttrType

The MyForEachAttrType function is a callback routine you must provide if you call

the DirEnumerateAttributeTypesParse function.

pascal Boolean MyForEachAttrType (long clientData,

const AttributeType *attrType);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirEnumerateAttributeTypesParse
function. You can use this field for whatever purpose you choose. For
example, if you make multiple asynchronous calls to the
DirEnumerateAttributeTypesParse function, you can use this field
to match calls to this routine with a particular call to the
DirEnumerateAttributeTypesParse function.

attrType A pointer to an AttributeType data structure.

DESCRIPTION

The DirEnumerateAttributeTypesParse function calls your callback routine for

each attribute type that it finds in a buffer previously filled by the

DirEnumerateAttributeTypesGet function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The DirEnumerateAttributeTypesParse function is described on page 8-130

The AttributeType data structure is described in the chapter “AOCE Utilities” in this

book.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-153

MyForEachDirectory

The MyForEachDirectory function is a callback routine you must provide if you call

the DirEnumerateDirectoriesParse function.

pascal Boolean MyForEachDirectory (long clientData,

const DirectoryName *dirName,

const DirDiscriminator *discriminator,

DirGestalt features);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirEnumerateDirectoriesParse
function. You can use this parameter for whatever purpose you choose.
For example, if you make multiple asynchronous calls to the
DirEnumerateDirectoriesParse function, you can use this
parameter to match calls to this routine with a particular call to the
DirEnumerateDirectoriesParse function.

dirName A pointer to the name of a catalog.

discriminator
A pointer to a DirDiscriminator data structure that differentiates
between catalogs that share the same name.

features A set of flags that indicates the features that the catalog supports.

DESCRIPTION

The DirEnumerateDirectoriesParse function calls your callback routine for each

catalog entry that it finds in a buffer previously filled by the

DirEnumerateDirectoriesGet function. Your callback routine receives a pointer to

the catalog’s name, a pointer to its discriminator value, and the feature flags that indicate

what features the catalog supports.

The DirEnumerateDirectoriesParse function does not supply information about

personal catalogs.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The DirEnumerateDirectoriesParse function is described on page 8-41.

The DirDiscriminator data structure is described in the chapter “AOCE Utilities” in

this book.

For a description of catalog feature flags, see “Feature Flag Bit Array” beginning on

page 8-28.

C H A P T E R 8

Catalog Manager

8-154 Catalog Manager Reference

MyForEachLookupRecordID

The MyForEachLookupRecordID function is a callback routine that you may provide

if you call the DirLookupParse function and you want to get record information.

pascal Boolean MyForEachLookupRecordID (long clientData,

const RecordID *recordID);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirLookupParse function. You can use this
parameter for whatever purpose you choose. For example, if you make
multiple asynchronous calls to the DirLookupParse function, you can
use this field to match calls to this routine with a particular call to the
DirLookupParse function.

recordID A pointer to a record ID.

DESCRIPTION

The DirLookupParse function calls your callback routine for each record ID that it

finds in a buffer previously filled by the DirLookupGet function.

This callback routine is optional. If you look up attribute values only in a single record,

you may not want to provide this routine. However, then you cannot distinguish

between the case where a record exists but an attribute type does not exist and the case

where a record does not exist.

If you look up attribute values in multiple records, you need to provide this routine to

associate attribute types and attribute values with the record to which they belong.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The RecordID data structure is described in the chapter “AOCE Utilities” in this book.

The DirLookupParse function is described on page 8-121.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-155

MyForEachAttrTypeLookup

The MyForEachAttrTypeLookup function is a callback routine which you may

provide if you call the DirLookupParse function and you want to retrieve attribute

type information.

pascal Boolean MyForEachAttrTypeLookup (long clientData,

const AttributeType *attrType,

AccessMask myAttrAccMask);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirLookupParse function. You can use this
parameter for whatever purpose you choose. For example, if you make
multiple asynchronous calls to the DirLookupParse function, you can
use this parameter to match calls to this routine with a particular call to
the DirLookupParse function.

attrType A pointer to an AttributeType data structure.

myAttrAccMask
The requester’s access control mask for this attribute type. If the
myAttrAccMask parameter indicates that you do not have read access
permission for this attribute type, the DirLookupParse function does
not call your MyForEachAttrValue callback routine for this attribute
type.

DESCRIPTION

The DirLookupParse function calls this callback routine for each attribute type that it

finds in a buffer previously filled by the DirLookupGet function.

 If you provided a callback routine for record ID information

(MyForEachLookupRecordID), you can associate the attribute type that the function

passes here with the record ID that the DirLookupParse function most recently passed

to your MyForEachLookupRecordID callback routine.

This callback routine is optional. However, it provides access control information about

each attribute type that you requested. If you do not have read access to an attribute type

that you requested, you can still detect the presence of attribute values of that type in a

record. However, you cannot read those attribute values because the DirLookupParse

function does not call your attribute value callback routine (MyForEachAttrValue)

when you lack read access to the attribute type. If you do not provide this routine, you

have no way of knowing that attribute values that you requested exist in a record when

you lack read access to their attribute type.

C H A P T E R 8

Catalog Manager

8-156 Catalog Manager Reference

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The AttributeType data structure is described in the chapter “AOCE Utilities” in this

book.

The values of the access mask are described in “Getting Access Controls” beginning on

page 8-11.

The DirLookupParse function is described on page 8-121.

The DirLookupGet function is described on page 8-118.

The MyForEachLookupRecordID routine is described on page 8-154.

The MyForEachAttrValue routine is described next.

MyForEachAttrValue

The MyForEachAttrValue function is a callback routine you must provide if you call

the DirLookupParse function.

pascal Boolean MyForEachAttrValue (long clientData,

const Attribute *attribute);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirLookupParse function. You can use this
parameter for whatever purpose you choose. For example, if you make
multiple asynchronous calls to the DirLookupParse function, you can
use this parameter to match calls to this routine with a particular call to
the DirLookupParse function.

attribute A pointer to an Attribute data structure that specifies an attribute
value. Note that this attribute value has the attribute type specified in the
most recent call to your MyForEachAttrTypeLookup callback routine,
and it is contained in the record specified by the most recent call to your
MyForEachLookupRecordID callback routine.

DESCRIPTION

The DirLookupParse function calls this callback routine for each attribute value that it

finds in a buffer previously filled by the DirLookupGet function.

If you provided a callback routine for record ID information

(MyForEachLookupRecordID), you can associate the attribute value that the function

passes here with the local record ID that the DirLookupParse function most recently

passed to your MyForEachLookupRecordID callback routine. If you did not provide a

callback routine for record ID information and you are looking up attribute values in

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-157

multiple records, you must devise your own system of matching attribute values with

the records to which they belong.

If you provided a callback routine for attribute type information

(MyForEachAttrTypeLookup), you can associate the attribute value that the function

passes here with the access controls that the DirLookupParse function most recently

passed to your MyForEachAttrTypeLookup callback routine. If you did not provide a

callback routine for attribute type information, you cannot detect the presence of

attribute values in a record when you lack read access to their attribute types. The

DirLookupParse function does not call this callback routine for an attribute value if

you do not have read access to its attribute type.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The DirLookupParse function is described on page 8-121.

The DirLookupGet function is described on page 8-118.

The Attribute data structure is described in the chapter “AOCE Utilities” in this book.

The MyForEachLookupRecordID routine is described on page 8-154.

The MyForEachAttrTypeLookup routine is described on page 8-155.

MyForEachDirEnumSpec

The MyForEachDirEnumSpec function is a callback routine you must provide if you

call the DirEnumerateParse function.

pascal Boolean MyForEachDirEnumSpec (long clientData,

const DirEnumSpec *enumSpec);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirEnumerateParse function.You can use
this parameter for whatever purpose you choose. For example, if you
make multiple asynchronous calls to the DirEnumerateParse function,
you can use this parameter to match calls to this routine with a particular
call to the DirEnumerateParse function.

enumSpec A pointer to an enumeration specification data structure. The value of the
enumFlag field of the DirEnumSpec data structure indicates the type of
entity about which information is being returned. Use the mask constants
kEnumDistinguishedNameMask, kEnumAliasMask,
kEnumPseudonymMask, and kEnumDNodeMask to determine if the

C H A P T E R 8

Catalog Manager

8-158 Catalog Manager Reference

entity is a record, alias, pseudonym, or dNode, respectively. Use the mask
constant kEnumInvisibleMask to determine if the entity is visible or
invisible.

If the DirEnumerateParse function is returning information about a
dNode or an invisible dNode, the u field of the DirEnumSpec structure
contains a DNodeID data structure. The dNode ID consists of the name of
the dNode and its dNode number. If the catalog does not support dNode
numbers, the dNode number is set to 0.

If the DirEnumerateParse function is returning information about a
record, an alias, or a pseudonym, the u field of the DirEnumSpec
structure contains a LocalRecordID data structure. The local record ID
consists of the record’s creation ID, name, and type. If the catalog does not
support creation IDs, the creation ID is set to 0.

DESCRIPTION

The DirEnumerateParse function calls your callback routine for each record, alias,

pseudonym, and dNode about which it finds information in a buffer previously filled by

the DirEnumerateGet function.

Invisible dNodes are typically foreign dNodes, that is, they represent external messaging

systems within an AOCE system. Invisible records are typically those that are used in

administering an AOCE system. Usually, you would not display information about these

to a user. It is up to your application to consider how to handle information about

invisible entities.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The DirEnumerateParse function is described on page 8-62.

The DirEnumerateGet function is described on page 8-57.

The LocalRecordID data structure is described in the chapter “AOCE Utilities” in this

book.

The DirEnumSpec data structure is described on page 8-35.

The DNodeID data structure is described on page 8-34.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-159

MyForEachRecord

The MyForEachRecord function is a callback routine you must provide if you call the

DirFindRecordParse function.

pascal Boolean MyForEachRecord (long clientData,

const DirEnumSpec *enumSpec,

pRLI PackedRLIPtr);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirFindRecordParse function.You can
use this parameter for whatever purpose you choose. For example, if you
make multiple asynchronous calls to the DirFindRecordParse
function, you can use this parameter to match calls to this routine with a
particular call to the DirFindRecordParse function.

enumSpec A pointer to an enumeration specification data structure. The value of the
enumFlag field of the DirEnumSpec data structure indicates the type of
entity about which information is being returned. Use the mask constants
kEnumDistinguishedNameMask, kEnumAliasMask, and
kEnumPseudonymMask to determine if the entity is a record, alias, or
pseudonym, respectively.

pRLI A pointer to packed record location information that specifies the dNode
within which the record, alias, or pseudonym is located.

DESCRIPTION

The DirFindRecordParse function calls your callback routine for each record, alias,

and pseudonym about which it finds information in a buffer previously filled by the

DirFindRecordGet function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The DirFindRecordParse function is described on page 8-46.

The DirFindRecordGet function is described on page 8-43.

The LocalRecordID data structure is described in the chapter “AOCE Utilities” in this

book.

The DirEnumSpec data structure is described on page 8-35.

C H A P T E R 8

Catalog Manager

8-160 Catalog Manager Reference

MyForEachADAPDirectory

The MyForEachADAPDirectory function is a callback routine you must provide if you

call the DirNetSearchADAPDirectoriesParse function.

pascal Boolean MyForEachADAPDirectory (long clientData,

const DirectoryName *directoryName,

const DirDiscriminator *discriminator,

DirGestalt features,

AddrBlock serverHint);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirNetSearchADAPDirectoriesParse
function. You can use this parameter for whatever purpose you choose.
For example, if you make multiple asynchronous calls to the
DirNetSearchADAPDirectoriesParse function, you can use this
parameter to match calls to this routine with a particular call to the
DirNetSearchADAPDirectoriesParse function.

directoryName
A pointer to the name of the catalog.

discriminator
A pointer to the value that differentiates two or more catalogs with the
same name.

features A set of feature bit flags for the catalog.

serverHint
The AppleTalk address of a PowerShare server that serves the catalog
specified in the directoryName and discriminator fields.

DESCRIPTION

The DirNetSearchADAPDirectoriesParse function calls your callback routine for

each PowerShare catalog that it finds in a buffer previously filled by the

DirNetSearchADAPDirectoriesGet function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The DirNetSearchADAPDirectoriesParse function is described on page 8-78.

The DirDiscriminator data structure is described in the chapter “AOCE Utilities” in

this book.

For a description of catalog feature flags, see “Feature Flag Bit Array” beginning on

page 8-28.

The AddrBlock data structure is described in the header file AppleTalk.h.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-161

MyForEachDNodeAccessControl

The MyForEachDNodeAccessControl function is a callback routine you must provide

when you call the DirGetDNodeAccessControlParse function.

pascal Boolean MyForEachDNodeAccessControl (long clientData,

const DSSpec *dsObj,

AccessMask activeDnodeAccMask,

AccessMask defaultRecordAccMask,

AccessMask defaultAttributeAccMask);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirGetDNodeAccessControlParse
function. You can use this parameter for whatever purpose you choose.
For example, if you make multiple asynchronous calls to the
DirGetDNodeAccessControlParse function, you can use this
parameter to match calls to this routine with a particular call to the
DirGetDNodeAccessControlParse function.

dsObj A pointer to the object to which the access control mask applies.

activeDnodeAccMask
A mask that specifies the access controls that apply to the object in
relation to the dNode.

defaultRecordAccMask
A mask that specifies the default access controls that apply to new records
within the dNode.

defaultAttributeAccMask
A mask that specifies the default access controls that apply to new
attribute types within records in the dNode.

DESCRIPTION

The DirGetDNodeAccessControlParse function calls your callback routine for each

entry that it finds in a buffer previously filled by the

DirGetDNodeAccessControlGet function.

SEE ALSO

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

The DirGetDNodeAccessControlGet function is described on page 8-133.

The DirGetDNodeAccessControlParse function is described on page 8-136.

The values of the access mask are described in “Getting Access Controls” beginning on

page 8-11.

C H A P T E R 8

Catalog Manager

8-162 Catalog Manager Reference

MyForEachRecordAccessControl

The MyForEachRecordAccessControl function is a callback routine you must

provide when you call the DirGetRecordAccessControlParse function.

pascal Boolean MyForEachRecordAccessControl (long clientData,

const DSSpec *dsObj,

AccessMask activeDnodeAccMask,

AccessMask activeRecordAccMask,

AccessMask defaultAttributeAccMask);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirGetRecordAccessControlParse
function. You can use this parameter for whatever purpose you choose.
For example, if you make multiple asynchronous calls to the
DirGetRecordAccessControlParse function, you can use this
parameter to match calls to this routine with a particular call to the
DirGetRecordAccessControlParse function.

dsObj A pointer to the object to which the access control mask applies.

activeDnodeAccMask
A mask that specifies the access controls that apply to the object in
relation to the dNode that contains the record.

activeRecordAccMask
A mask that specifies the access controls that apply to the object in
relation to the record.

defaultAttributeAccMask
A mask that specifies the default access controls that apply to new
attribute types within the record.

DESCRIPTION

The DirGetRecordAccessControlParse function calls your callback routine for

each entry that it finds in a buffer previously filled by the

DirGetRecordAccessControlGet function.

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

SEE ALSO

The DirGetRecordAccessControlGet function is described on page 8-138.

The DirGetRecordAccessControlParse function is described on page 8-140.

The values of the access mask are described in “Getting Access Controls” beginning on

page 8-11.

C H A P T E R 8

Catalog Manager

Catalog Manager Reference 8-163

MyForEachAttributeAccessControl

The MyForEachAttributeAccessControl function is a callback routine you must

provide when you call the DirGetAttributeAccessControlParse function.

pascal Boolean MyForEachAttributeAccessControl (long clientData,

const DSSpec *dsObj,

AccessMask activeDnodeAccMask,

AccessMask activeRecordAccMask,

AccessMask activeAttributeAccMask);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the DirGetAttributeAccessControlParse
function. You can use this field for whatever purpose you choose. For
example, if you make multiple asynchronous calls to the
DirGetAttributeAccessControlParse function, you can use this
field to match calls to this routine with a particular call to the
DirGetAttributeAccessControlParse function.

dsObj A pointer to the object to which the access control mask applies.

activeDnodeAccMask
A mask that specifies the access controls that apply to the object in
relation to the dNode containing the record that contains the attribute
type.

activeRecordAccMask
A mask that specifies the access controls that apply to the object in
relation to the record that contains the attribute type.

activeAttributeAccMask
A mask that specifies the access controls that apply to the object in
relation to the attribute type.

DESCRIPTION

The DirGetAttributeAccessControlParse function calls your callback routine for

each entry that it finds in a buffer previously filled by the

DirGetAttributeAccessControlGet function.

Read the introduction to “Application-Defined Functions” on page 8-150 for important

information that applies to all callback routines.

SEE ALSO

The DirGetAttributeAccessControlGet function is described on page 8-143.

The DirGetAttributeAccessControlParse function is described on page 8-146.

The values of the access mask are described in “Getting Access Controls” beginning on

page 8-11.

8-164 Summary of the Catalog Manager

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager

C Summary

Constants and Data Types

enum {

kThisRecordOwnerBit = 0,

kFriendsBit = 1,

kAuthenticatedInDNodeBit = 2,

kAuthenticatedInDirectoryBit = 3,

kGuestBit = 4,

kMeBit = 5

};

enum { /* Values of CategoryMask */

kThisRecordOwnerMask = (1L << kThisRecordOwnerBit),

kFriendsMask = (1L << kFriendsBit),

kAuthenticatedInDNodeMask = (1L << kAuthenticatedInDNodeBit),

kAuthenticatedInDirectoryMask = (1L << kAuthenticatedInDirectoryBit),

kGuestMask = (1L << kGuestBit),

kMeMask = (1L << kMeBit)

typedef unsigned long CategoryMask;

};enum {

kEnumDistinguishedNameBit,

kEnumAliasBit,

kEnumPseudonymBit,

kEnumDNodeBit,

kEnumInvisibleBit

};

enum {

/* values of DirEnumChoices */

kEnumDistinguishedNameMask = 1L<<kEnumDistinguishedNameBit,

kEnumAliasMask = 1L<<kEnumAliasBit,

kEnumPseudonymMask = 1L<<kEnumPseudonymBit,

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-165

kEnumDNodeMask = 1L<<kEnumDNodeBit,

kEnumInvisibleMask = 1L<<kEnumInvisibleBit

};

#define kEnumAllMask (kEnumDistinguishedNameMask | kEnumAliasMask |

 kEnumPseudonymMask | kEnumDNodeMask |

 EnumInvisibleMask)

typedef unsigned long DirEnumChoices;

/* values of DirSortOption */

enum {

kSortByName= 0,

kSortByType= 1

};

typedef unsigned short DirSortOption;

/* values of DirSortDirection */

enum {

kSortForwards= 0,

kSortBackwards= 1

};

typedef unsigned short DirSortDirection;

/* values of DirMatchWith */

enum {

kMatchAll,

kExactMatch,

kBeginsWith,

kEndingWith,

kContaining

};

typedef unsigned char DirMatchWith;

#define kCurrentOCESortVersion11

enum {

kSupportsDNodeNumberBit

kSupportsRecordCreationIDBit

kSupportsAttributeCreationIDBit

kSupportsMatchAllBit

kSupportsBeginsWithBit

C H A P T E R 8

Catalog Manager

8-166 Summary of the Catalog Manager

kSupportsExactMatchBit

kSupportsEndsWithBit

kSupportsContainsBit

kSupportsOrderedEnumerationBit

kCanSupportNameOrderBit

kCanSupportTypeOrderBit

kSupportsSortBackwardsBit

kSupportIndexRatioBit

kSupportsEnumerationContinueBit

kSupportsLookupContinueBit

kSupportsEnumerateAttributeTypeContinueBit

kSupportsEnumeratePseudonymContinueBit

kSupportsAliasesBit

kSupportsPseudonymsBit

kSupportsPartialPathnamesBit

kSupportsAuthenticationBit

kSupportsProxiesBit

kSupportsFindRecordBit

};

/* values of DirGestalt` */

enum {

kSupportsDNodeNumberMask = 1L<<kSupportsDNodeNumberBit,

kSupportsRecordCreationIDMask = 1L<<kSupportsRecordCreationIDBit,

kSupportsAttributeCreationIDMask = 1L<<kSupportsAttributeCreationIDBit,

kSupportsMatchAllMask = 1L<<kSupportsMatchAllBit,

kSupportsBeginsWithMask = 1L<<kSupportsBeginsWithBit,

kSupportsExactMatchMask = 1L<<kSupportsExactMatchBit,

kSupportsEndsWithMask = 1L<<kSupportsEndsWithBit,

kSupportsContainsMask = 1L<<kSupportsContainsBit,

kSupportsOrderedEnumerationMask = 1L<<kSupportsOrderedEnumerationBit,

kCanSupportNameOrderMask = 1L<<kCanSupportNameOrderBit,

kCanSupportTypeOrderMask = 1L<<kCanSupportTypeOrderBit,

kSupportSortBackwardsMask = 1L<<kSupportSortBackwardsBit,

kSupportIndexRatioMask = 1L<<kSupportIndexRatioBit,

kSupportsEnumerationContinueMask = 1L<<kSupportsEnumerationContinueBit,

kSupportsLookupContinueMask = 1L<<kSupportsLookupContinueBit,

kSupportsEnumerateAttributeTypeContinueMask =

1L<<kSupportsEnumerateAttributeTypeContinueBit,

kSupportsEnumeratePseudonymContinueMask =

1L<<kSupportsEnumeratePseudonymContinueBit,

kSupportsAliasesMask = 1L<<kSupportsAliasesBit,

kSupportsPseudonymsMask = 1L<<kSupportsPseudonymsBit,

kSupportsPartialPathNamesMask = 1L<<kSupportsPartialPathNamesBit,

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-167

kSupportsAuthenticationMask = 1L<<kSupportsAuthenticationBit,

kSupportsProxiesMask = 1L<<kSupportsProxiesBit,

kSupportsFindRecordMask = 1L<<kSupportsFindRecordBit

};

typedef unsigned long DirGestalt;

struct DNodeID {

DNodeNum dNodeNumber; /* dNode number */

long reserved1; /* reserved */

RStringPtr name; /* name of the dNode */

long reserved2; /* reserved */

};

typedef struct DNodeID DNodeID;

struct DirEnumSpec {

DirEnumChoices enumFlag;

unsigned short indexRatio; /* if supported, record position between 1

 and 100. 0 if not supported */

union {

LocalRecordID recordIdentifier;

DNodeID dNodeIdentifier;

}u;

};

typedef struct DirEnumSpec DirEnumSpec;

struct DirMetaInfo {

unsigned longinfo[4];

};

typedef struct DirMetaInfo DirMetaInfo;

struct SLRV {

ScriptCode script; /* script code in which entries are sorted */

short language; /* language code in which entries are sorted */

short regionCode; /* region code in which entries are sorted */

short version; /* version of AOCE sorting software */

};

typedef struct SLRV SLRV;

typedef unsigned long AuthIdentity;

C H A P T E R 8

Catalog Manager

8-168 Summary of the Catalog Manager

typedef pascal Boolean (*ForEachRecordID) (long clientData,

 const RecordID* recordID);

typedef pascal Boolean (*ForEachAttrType) (long clientData,

 const AttributeType *attrType);

{ FUNCTION ForEachLookupRecordID(clientData: long; recordID: RecordID): BOOL-

EAN;}

{ FUNCTION ForEachAttrTypeLookup(clientData: long; attrType:

AttributeTypePtr; myAttrAccMask: AccessMask): BOOLEAN;}

{ FUNCTION ForEachAttrValue(clientData: long; attribute: Attribute):

BOOLEAN;}

typedef pascal Boolean (*ForEachDNodeAccessControl) (long clientData,

const DSSpec *dsObj, AccessMask activeDnodeAccMask,

AccessMask defaultRecordAccMask,

AccessMask defaultAttributeAccMask);

#define AuthDirParamHeader

Ptr qLink; /* reserved */\

long reserved_H1; /* reserved */\

long reserved_H2; /* reserved */\

ProcPtr ioCompletion; /* your completion routine */\

OSErr ioResult; /* result code */\

unsigned long saveA5; /* reserved */\

short reqCode; /* CSAM request code*/\

long reserved[2]; /* reserved */\

AddrBlock serverHint; /* PowerShare server’s AppleTalk address */

short dsRefNum; /* personal catalog reference number */\

unsigned long callID; /* reserved */\

AuthIdentity identity; /* requester’s authentication identity */

long gReserved1; /* reserved */\

long gReserved2; /* reserved */\

long gReserved3; /* reserved */\

long clientData; /* you define this field */

struct DirEnumerateDirectoriesGetPB {

AuthDirParamHeader

OCEDirectoryKind directoryKind; /* enumerate catalogs

 bearing this signature */

DirectoryNamePtr startingDirectoryName; /* starting catalog */

DirDiscriminator startingDirDiscriminator; /* starting catalog

 discriminator */

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-169

long eReserved;

long fReserved;

long gReserved;

long hReserved;

Boolean includeStartingPoint; /* if true, return the

 catalog specified by

 starting point */

Byte padByte;

short i1Reserved;

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirEnumerateDirectoriesGetPB DirEnumerateDirectoriesGetPB;

struct DirEnumerateDirectoriesParsePB {

AuthDirParamHeader

long aReserved;

long bReserved;

long cReserved;

long dReserved;

ForEachDirectory eachDirectory;

long fReserved;

long gReserved;

long hReserved;

long iReserved;

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirEnumerateDirectoriesParsePB DirEnumerateDirectoriesParsePB;

struct DirFindRecordGetPB {

AuthDirParamHeader

RecordIDPtr startingPoint;

long reservedA[2];

RStringPtr nameMatchString;

RStringPtr* typesList;

unsigned long typeCount;

long reservedB;

short reservedC;

DirMatchWith matchNameHow;

DirMatchWith matchTypeHow;

Ptr getBuffer;

C H A P T E R 8

Catalog Manager

8-170 Summary of the Catalog Manager

unsigned long getBufferSize;

DirectoryNamePtr directoryName;

DirDiscriminator discriminator;

};

typedef struct DirFindRecordGetPB DirFindRecordGetPB;

struct DirFindRecordParsePB {

AuthDirParamHeader

RecordIDPtr startingPoint;

long reservedA[2];

RStringPtr nameMatchString;

RStringPtr* typesList;

unsigned long typeCount;

long reservedB;

short reservedC;

DirMatchWith matchNameHow;

DirMatchWith matchTypeHow;

Ptr getBuffer;

unsigned long getBufferSize;

DirectoryNamePtr directoryName;

DirDiscriminator discriminator;

ForEachRecord forEachRecordFunc;

};

typedef struct DirFindRecordParsePB DirFindRecordParsePB;

struct DirGetDirectoryInfoPB {

AuthDirParamHeader

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* descriminate between duplicate

 catalog names */

DirGestalt features; /* capability bit flags */

};

typedef struct DirGetDirectoryInfoPB DirGetDirectoryInfoPB;

struct DirGetLocalNetworkSpecPB {

AuthDirParamHeader

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* discriminator */

NetworkSpecPtr networkSpec; /* NetworkSpec */

};

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-171

typedef struct DirGetLocalNetworkSpecPB DirGetLocalNetworkSpecPB;

struct DirGetDirectoryIconPB {

AuthDirParamHeader

PackedRLIPtr pRLI; /* packed RLI for the catalog */

OSType iconType; /* type of icon requested */

Ptr iconBuffer; /* buffer to hold icon data */

unsigned long bufferSize; /* size of buffer to hold icon data */

};

typedef struct DirGetDirectoryIconPB DirGetDirectoryIconPB;

struct DirGetExtendedDirectoriesInfoPB {

AuthDirParamHeader

Ptr buffer; /* Pointer to a buffer where data

 will be returned */

unsigned long bufferSize; length of actual data will be

 returned here */

unsigned long totalEntries; /* total number of catalogs found */

unsigned long actualEntries; /* total number of catalog entries */

 returned */

};

typedef struct DirGetExtendedDirectoriesInfoPB

DirGetExtendedDirectoriesInfoPB;

typedef pascal Boolean (*ForEachDirectory) (

long clientData, const DirectoryName *dirName,

const DirDiscriminator *discriminator,DirGestalt features);

struct DirEnumerateGetPB {

AuthDirParamHeader

PackedRLIPtr aRLI; /* an RLI specifying the cluster

 to be enumerated */

DirEnumSpec *startingPoint;

DirSortOption sortBy;

DirSortDirection sortDirection;

long dReserved;

RStringPtr nameMatchString; /* name from which enumeration should

 start */

RStringPtr *typesList; /* list of entity types to be

 enumerated */

unsigned long typeCount; /* number of types in the list */

DirEnumChoices enumFlags; /* indicates what to enumerate */

Boolean includeStartingPoint;

C H A P T E R 8

Catalog Manager

8-172 Summary of the Catalog Manager

/* if true, return the record

 specified in starting point */

Byte padByte;

DirMatchWith matchNameHow; /* matching criteria for

 nameMatchString */

DirMatchWith matchTypeHow; /* matching riteria for typeList */

Ptr getBuffer;

unsigned long getBufferSize;

SLRV responseSLRV; /* response SLRV */

};c

typedef struct DirEnumerateGetPB DirEnumerateGetPB;

struct DirEnumerateParsePB {

AuthDirParamHeader

PackedRLIPtr aRLI; /* an RLI specifying the cluster to

 be enumerated */

long bReserved;

long cReserved;

ForEachDirEnumSpec eachEnumSpec;

long eReserved;

long fReserved;

long gReserved;

long hReserved;

long iReserved;

Ptr getBuffer;

unsigned long getBufferSize;

short l1Reserved;

short l2Reserved;

short l3Reserved;

short l4Reserved;

};

typedef struct DirEnumerateParsePB DirEnumerateParsePB;

struct DirGetDNodeMetaInfoPB {

AuthDirParamHeader

PackedRLIPtr pRLI;

DirMetaInfo metaInfo;

};

typedef struct DirGetDNodeMetaInfoPB DirGetDNodeMetaInfoPB;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-173

struct DirMapDNodeNumberToPathNamePB {

AuthDirParamHeader

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* discriminator */

DNodeNum dNodeNumber; /* dNode number to be mapped */

PackedPathNamePtr path; /* packed pathname returned */

unsigned short lengthOfPathName;

/* length of packed pathname

 structure*/

};

typedef struct DirMapDNodeNumberToPathNamePB DirMapDNodeNumberToPathNamePB;

struct DirMapPathNameToDNodeNumberPB {

AuthDirParamHeader

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* discriminator */

DNodeNum dNodeNumber; /* dNode number to the path */

PackedPathNamePtr path; /* pathname to be mapped */

};

typedef struct DirMapPathNameToDNodeNumberPB DirMapPathNameToDNodeNumberPB;

struct DirGetDNodeInfoPB {

AuthDirParamHeader

PackedRLIPtr pRLI; /* packed RLI whose info is requested */

DirNodeKind descriptor; /* dNode descriptor */

NetworkSpecPtr networkSpec; /* cluster's networkSpec if kIsCluster */

};

typedef struct DirGetDNodeInfoPB DirGetDNodeInfoPB;

struct DirAddADAPDirectoryPB {

AuthDirParamHeader

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* discriminate between duplicate

 catalog names */

Boolean addToOCESetup; /* add this catalog to PowerTalk

Setup */

Byte padByte;

CreationID directoryRecordCID;

/* creation ID for the catalog

record */

};

C H A P T E R 8

Catalog Manager

8-174 Summary of the Catalog Manager

typedef struct DirAddADAPDirectoryPB DirAddADAPDirectoryPB;

struct DirFindADAPDirectoryByNetSearchPB {

AuthDirParamHeader

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* discriminate between duplicate

 catalog names */

Boolean addToOCESetup; /* add this catalog to PowerTalk

 setup list */

Byte padByte;

CreationID directoryRecordCID;

/* creation ID for the catalog

record */

};

typedef struct DirFindADAPDirectoryByNetSearchPB

 DirFindADAPDirectoryByNetSearchPB;

struct DirNetSearchADAPDirectoriesGetPB {

AuthDirParamHeader

Ptr getBuffer;

unsigned long getBufferSize;

long cReserved;

};

typedef struct DirNetSearchADAPDirectoriesGetPB

DirNetSearchADAPDirectoriesGetPB;

struct DirNetSearchADAPDirectoriesParsePB {

AuthDirParamHeader

Ptr getBuffer;

unsigned long getBufferSize;

ForEachADAPDirectory eachADAPDirectory;

};

typedef struct DirNetSearchADAPDirectoriesParsePB

DirNetSearchADAPDirectoriesParsePB;

typedef pascal Boolean (*ForEachADAPDirectory) (

long clientData, const DirectoryName *dirName,

const DirDiscriminator *discriminator, DirGestalt features,

AddrBlock serverHint);

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-175

struct DirRemoveDirectoryPB {

AuthDirParamHeader

CreationID directoryRecordCID; /* creation ID for the catalog record */

};

typedef struct DirRemoveDirectoryPB DirRemoveDirectoryPB;

struct DirGetOCESetupRefNumPB {

AuthDirParamHeader

CreationID oceSetupRecordCID;/* creation ID for the catalog record */

};

typedef struct DirGetOCESetupRefNumPB DirGetOCESetupRefNumPB;

struct DirCreatePersonalDirectoryPB {

AuthDirParamHeader

FSSpecPtr fsSpec; /* FSSpec for the personal catalog */

OSType fdType; /* file type for the personal catalog */

OSType fdCreator; /* file creator for the personal catalog */

};

typedef struct DirCreatePersonalDirectoryPB DirCreatePersonalDirectoryPB;

struct DirOpenPersonalDirectoryPB {

AuthDirParamHeader

FSSpecPtr fsSpec; /* open an existing personal catalog */

char accessRequested; /* open: permissions requested(byte) */

char accessGranted; /* open: permissions (byte) (granted) */

DirGestalt features; /* features for personal catalog */

};

typedef struct DirOpenPersonalDirectoryPB DirOpenPersonalDirectoryPB;

struct DirClosePersonalDirectoryPB {

AuthDirParamHeader

};

typedef struct DirClosePersonalDirectoryPB DirClosePersonalDirectoryPB;

struct DirMakePersonalDirectoryRLIPB {

AuthDirParamHeader

FSSpecPtr fromFSSpec; /* FSSpec for creating relative alias */

unsigned short pRLIBufferSize; /* length of 'pRLI' buffer */

unsigned short pRLISize; /* length of actual 'pRLI' */

PackedRLIPtr pRLI; /* pRLI for the specified address book */

};

C H A P T E R 8

Catalog Manager

8-176 Summary of the Catalog Manager

typedef struct DirMakePersonalDirectoryRLIPB DirMakePersonalDirectoryRLIPB;

struct DirAddRecordPB {

AuthDirParamHeader

RecordIDPtr aRecord; /* Creation ID returned here */

Boolean allowDuplicate;

};

typedef struct DirAddRecordPB DirAddRecordPB;

struct DirDeleteRecordPB {

AuthDirParamHeader

RecordIDPtr aRecord;

};

typedef struct DirDeleteRecordPB DirDeleteRecordPB;

struct DirGetRecordMetaInfoPB {

AuthDirParamHeader

RecordIDPtr aRecord;

DirMetaInfo metaInfo;

};

typedef struct DirGetRecordMetaInfoPB DirGetRecordMetaInfoPB;

struct DirGetNameAndTypePB {

AuthDirParamHeader

RecordIDPtr aRecord;

};

typedef struct DirGetNameAndTypePB DirGetNameAndTypePB;

struct DirSetNameAndTypePB {

AuthDirParamHeader

RecordIDPtr aRecord;

Boolean allowDuplicate;

Byte padByte;

RStringPtr newName; /* new name for the record */

RStringPtr newType; /* new type for the record */

};

typedef struct DirSetNameAndTypePB DirSetNameAndTypePB;

struct DirAddPseudonymPB {

AuthDirParamHeader

RecordIDPtr aRecord; /* Record ID to be added to pseudonym */

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-177

RStringPtr pseudonymName; /* new name to be added as pseudonym */

RStringPtr pseudonymType; /* new name to be added as pseudonym */

Boolean allowDuplicate;

};

typedef struct DirAddPseudonymPB DirAddPseudonymPB;

struct DirDeletePseudonymPB {

AuthDirParamHeader

RecordIDPtr aRecord; /* Record ID to which pseudonym is

to be added */

RStringPtr pseudonymName; /* pseudonym name to be deleted */

RStringPtr pseudonymType; /* pseudonym type to be deleted */

};

typedef struct DirDeletePseudonymPB DirDeletePseudonymPB;

struct DirEnumeratePseudonymGetPB {

AuthDirParamHeader

RecordIDPtr aRecord;

RStringPtr startingName;

RStringPtr startingType;

long dReserved;

long eReserved;

long fReserved;

long gReserved;

long hReserved;

Boolean includeStartingPoint; /* if true, the pseudonym

 specified by starting point will

 be included */

Byte padByte;

short i1Reserved;

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirEnumeratePseudonymGetPB DirEnumeratePseudonymGetPB;

struct DirEnumeratePseudonymParsePB {

AuthDirParamHeader

RecordIDPtr aRecord; /* same as DirEnumerateAliasesGetPB */

long bReserved;

long cReserved;

ForEachRecordID eachRecordID;

long eReserved;

C H A P T E R 8

Catalog Manager

8-178 Summary of the Catalog Manager

long fReserved;

long gReserved;

long hReserved;

long iReserved;

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirEnumeratePseudonymParsePB DirEnumeratePseudonymParsePB;

struct DirAddAliasPB {

AuthDirParamHeader

RecordIDPtr aRecord;

Boolean allowDuplicate;

};

typedef struct DirAddAliasPB DirAddAliasPB;

struct DirAddAttributeValuePB {

AuthDirParamHeader

RecordIDPtr aRecord;

AttributePtr attr; /* AttributeCreationID returned here */

};

typedef struct DirAddAttributeValuePB DirAddAttributeValuePB;

struct DirDeleteAttributeValuePB {

AuthDirParamHeader

RecordIDPtr aRecord;

AttributePtr attr;

};

typedef struct DirDeleteAttributeValuePB DirDeleteAttributeValuePB;

struct DirChangeAttributeValuePB {

AuthDirParamHeader

RecordIDPtr aRecord;

AttributePtr currentAttr;

AttributePtr newAttr;

};

#ifndef __cplusplus

typedef struct DirChangeAttributeValuePB DirChangeAttributeValuePB;

#endif

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-179

struct DirVerifyAttributeValuePB {

AuthDirParamHeader

RecordIDPtr aRecord;

AttributePtr attr;

};

typedef struct DirVerifyAttributeValuePB DirVerifyAttributeValuePB;

struct DirFindValuePB {

AuthDirParamHeader

PackedRLIPtr aRLI; /* an RLI specifying the cluster to

 be enumerated */

LocalRecordIDPtr aRecord; /* if not nil, look only in this

 record */

AttributeTypePtr attrType; /* if not nil, look only in this

 attribute type */

LocalRecordIDPtr startingRecord; /* record in which to start

 searching */

AttributePtr startingAttribute; /* attribute in which to start

 searching */

LocalRecordIDPtr recordFound; /* record in which data was

 found */

Attribute attributeFound; /* attribute in which data was

 found */

unsigned long matchSize; /* length of matching bytes */

Ptr matchingData; /* data bytes to be matched in */

 search */

DirSortDirection sortDirection; /* sort direction (forward or */

 backward) */

};

typedef struct DirFindValuePB DirFindValuePB;

struct DirLookupGetPB {

AuthDirParamHeader

RecordIDPtr *aRecordList; /* an array of record ID pointers */

AttributeTypePtr *attrTypeList; /* an array of attribute types */

long cReserved;

long dReserved;

long eReserved;

long fReserved;

unsigned long recordIDCount;

unsigned long attrTypeCount;

Boolean includeStartingPoint;

C H A P T E R 8

Catalog Manager

8-180 Summary of the Catalog Manager

/* if true, return the value specified

 by the starting indices */

Byte padByte;

short i1Reserved;

Ptr getBuffer;

unsigned long getBufferSize;

unsigned long startingRecordIndex;

/* start from this record */

unsigned long startingAttrTypeIndex;

/* start from this attribute type */

Attribute startingAttribute;

/* start from this attribute value */

long pReserved;

};

typedef struct DirLookupGetPB DirLookupGetPB;

struct DirLookupParsePB {

AuthDirParamHeader

RecordIDPtr * aRecordList;

/* must be same from the corresponding Get call */

AttributeTypePtr * attrTypeList;

/* must be same from the corresponding Get call */

long cReserved;

ForEachLookupRecordID eachRecordID;

ForEachAttrTypeLookup eachAttrType;

ForEachAttrValue eachAttrValue;

unsigned long recordIDCount;

/* must be same from the corresponding Get call */

unsigned long attrTypeCount;

/* must be same from the corresponding Get call */

long iReserved;

Ptr getBuffer;

/* must be same from the corresponding Get call */

unsigned long getBufferSize;

/* must be same from the corresponding Get call */

unsigned long lastRecordIndex;

/* last record ID processed when parse

completed */

unsigned long lastAttributeIndex;

/* last attribute type processed when parse

 completed */

Attribute lastAttribute;

/* last attribute value (with this CreationID)

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-181

 processed when parse completed */

unsigned long attrSize;

/* length of the attribute that was not

returned */

};

typedef struct DirLookupParsePB DirLookupParsePB;

struct DirDeleteAttributeTypePB {

AuthDirParamHeader

RecordIDPtr aRecord;

AttributeTypePtr attrType;

};

typedef struct DirDeleteAttributeTypePB DirDeleteAttributeTypePB;

struct DirEnumerateAttributeTypesGetPB {

AuthDirParamHeader

RecordIDPtr aRecord;

AttributeTypePtr startingAttrType;

/* starting point */

long cReserved;

long dReserved;

long eReserved;

long fReserved;

long gReserved;

long hReserved;

Boolean includeStartingPoint;

/* if true, return the attrType

 specified by starting point */

Byte padByte;

short i1Reserved;

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirEnumerateAttributeTypesGetPB

DirEnumerateAttributeTypesGetPB;

struct DirEnumerateAttributeTypesParsePB {

AuthDirParamHeader

RecordIDPtr aRecord; /* Same as

 DirEnumerateAttributeTypesGetPB */

long bReserved;

long cReserved;

C H A P T E R 8

Catalog Manager

8-182 Summary of the Catalog Manager

long dReserved;

ForEachAttrType eachAttrType;

long fReserved;

long gReserved;

long hReserved;

long iReserved;

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirEnumerateAttributeTypesParsePB

 DirEnumerateAttributeTypesParsePB;

 struct DirGetDNodeAccessControlGetPB {

AuthDirParamHeader

PackedRLIPtr pRLI; /* RLI of the cluster whose access control

 list is sought */

long bReserved; /* unused */

long cReserved; /* unused */

long dReserved; /* unused */

long eResreved;

Boolean forCurrentUserOnly;

DSSpec *startingPoint;

/* starting point */

Boolean includeStartingPoint;

/* if true, return the DsObject

 specified in starting point */

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirGetDNodeAccessControlGetPB DirGetDNodeAccessControlGetPB;

struct DirGetDNodeAccessControlParsePB {

AuthDirParamHeader

PackedRLIPtr pRLI; /* RLI of the cluster */

long bReserved; /* unused */

long cReserved; /* unused */

long dReserved; /* unused */

ForEachDNodeAccessControl eachObject;

Boolean forCurrentUserOnly;

DSSpec *startingPoint; /* starting point */

Boolean includeStartingPoint;

/* if true, return the

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-183

 record specified in

 starting point */

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirGetDNodeAccessControlParsePB

 DirGetDNodeAccessControlParsePB;

struct DirGetRecordAccessControlGetPB {

AuthDirParamHeader

RecordIDPtr aRecord; /* ID of record whose access

 control list is sought */

long bReserved; /* unused */

long cReserved; /* unused */

long dReserved; /* unused */

long eReserved;

Boolean forCurrentUserOnly;

DSSpec *startingPoint; /* starting point */

Boolean includeStartingPoint;

/* if true, return the DsObject

 specified in starting point */

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirGetRecordAccessControlGetPB DirGetRecordAccessControlGetPB;

struct DirGetRecordAccessControlParsePB {

AuthDirParamHeader

RecordIDPtr aRecord; /* ID of record to which access

 control list is sought */

long bReserved; /* unused */

long cReserved; /* unused */

long dReserved; /* unused */

ForEachRecordAccessControl eachObject;

Boolean forCurrentUserOnly;

DSSpec *startingPoint;

/* starting point */

Boolean includeStartingPoint;

/* if true return the record

specified in starting point */

C H A P T E R 8

Catalog Manager

8-184 Summary of the Catalog Manager

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirGetRecordAccessControlParsePB

 DirGetRecordAccessControlParsePB;

struct DirGetAttributeAccessControlGetPB {

AuthDirParamHeader

RecordIDPtr aRecord; /* ID of record to which access control

 list is sought */

AttributeTypePtr aType; /* attribute type to which access

 controls are sought */

long cReserved; /* unused */

long dReserved; /* unused */

long eResrved;

Boolean forCurrentUserOnly;

DSSpec *startingPoint;

/* starting point */

Boolean includeStartingPoint;

/* if true return the DsObject */

/* specified in starting point */

Ptr getBuffer;

unsigned longgetBufferSize;

};

typedef struct DirGetAttributeAccessControlGetPB

 DirGetAttributeAccessControlGetPB;

struct DirGetAttributeAccessControlParsePB {

AuthDirParamHeader

RecordIDPtr aRecord; /* ID of record to which access

 control list is sought */

AttributeTypePtr aType; /* attribute type to which

 access controls are sought */

long cReserved; /* unused */

long dReserved; /* unused */

ForEachAttributeAccessControl eachObject;

Boolean forCurrentUserOnly;

DSSpec *startingPoint;

/* starting point */

Boolean includeStartingPoint;

/* if true, return the record

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-185

 specified in starting point */

Ptr getBuffer;

unsigned long getBufferSize;

};

typedef struct DirGetAttributeAccessControlParsePB

DirGetAttributeAccessControlParsePB;

struct DirAbortPB {

AuthDirParamHeader

union DirParamBlock *pb;/* parameter block for the call that must

 be aborted */

};

typedef struct DirAbortPB DirAbortPB;

typedef union AuthParamBlock AuthParamBlock;

typedef AuthParamBlock *AuthParamBlockPtr;

union DirParamBlock {

struct {AuthDirParamHeader} header;

DirAddRecordPB addRecordPB;

DirDeleteRecordPB deleteRecordPB;

DirEnumerateGetPB enumerateGetPB;

DirEnumerateParsePB enumerateParsePB;

DirFindRecordGetPB findRecordGetPB;

DirFindRecordParsePB findRecordParsePB;

DirLookupGetPB lookupGetPB;

DirLookupParsePB lookupParsePB;

DirAddAttributeValuePB addAttributeValuePB;

DirDeleteAttributeTypePB deleteAttributeTypePB;

DirDeleteAttributeValuePB deleteAttributeValuePB;

DirChangeAttributeValuePB changeAttributeValuePB;

DirVerifyAttributeValuePB verifyAttributeValuePB;

DirFindValuePB findValuePB;

DirEnumeratePseudonymGetPB enumeratePseudonymGetPB;

DirEnumeratePseudonymParsePB enumeratePseudonymParsePB;

DirAddPseudonymPB addPseudonymPB;

DirDeletePseudonymPB deletePseudonymPB;

DirAddAliasPB addAliasPB;

DirEnumerateAttributeTypesGetPB enumerateAttributeTypesGetPB;

DirEnumerateAttributeTypesParsePB enumerateAttributeTypesParsePB;

DirGetNameAndTypePB getNameAndTypePB;

DirSetNameAndTypePB setNameAndTypePB;

C H A P T E R 8

Catalog Manager

8-186 Summary of the Catalog Manager

DirGetRecordMetaInfoPB getRecordMetaInfoPB;

DirGetDNodeMetaInfoPB getDNodeMetaInfoPB;

DirGetDirectoryInfoPB getDirectoryInfoPB;

DirGetDNodeAccessControlGetPB getDNodeAccessControlGetPB;

DirGetDNodeAccessControlParsePB getDNodeAccessControlParsePB;

DirGetRecordAccessControlGetPB getRecordAccessControlGetPB;

DirGetRecordAccessControlParsePB getRecordAccessControlParsePB;

DirGetAttributeAccessControlGetPB getAttributeAccessControlGetPB;

DirGetAttributeAccessControlParsePB getAttributeAccessControlParsePB;

DirEnumerateDirectoriesGetPB enumerateDirectoriesGetPB;

DirEnumerateDirectoriesParsePB enumerateDirectoriesParsePB;

DirAddADAPDirectoryPB addADAPDirectoryPB;

DirRemoveDirectoryPB removeDirectoryPB;

DirNetSearchADAPDirectoriesGetPB netSearchADAPDirectoriesGetPB;

DirNetSearchADAPDirectoriesParsePB netSearchADAPDirectoriesParsePB;

DirFindADAPDirectoryByNetSearchPB findADAPDirectoryByNetSearchPB;

DirMapDNodeNumberToPathNamePB mapDNodeNumberToPathNamePB;

DirMapPathNameToDNodeNumberPB mapPathNameToDNodeNumberPB;

DirGetLocalNetworkSpecPB getLocalNetworkSpecPB;

DirGetDNodeInfoPB getDNodeInfoPB;

/* calls for personal catalogs */

DirCreatePersonalDirectoryPB createPersonalDirectoryPB;

DirOpenPersonalDirectoryPB openPersonalDirectoryPB;

DirClosePersonalDirectoryPB closePersonalDirectoryPB;

DirMakePersonalDirectoryRLIPB makePersonalDirectoryRLIPB;

/* calls for CSAM's */

DirAddDSAMPB addDSAMPB;

DirInstantiateDSAMPB instantiateDSAMPB;

DirRemoveDSAMPB removeDSAMPB;

DirAddDSAMDirectoryPB addDSAMDirectoryPB;

DirGetExtendedDirectoriesInfoPB getExtendedDirectoriesInfoPB;

DirGetDirectoryIconPB getDirectoryIconPB;

/* call to dsRefNum for system(PowerTalk Setup) personal catalog */

DirGetOCESetupRefNumPB dirGetOCESetupRefNumPB;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-187

/* abort a aysnchronous call */

DirAbortPB abortPB;

};

typedef union DirParamBlock DirParamBlock;

typedef DirParamBlock *DirParamBlockPtr;

Catalog Manager Functions

Getting Information About Catalogs

pascal OSErr DirEnumerateDirectoriesGet
(DirParamBlockPtr paramBlock,
Boolean async);

pascal OSErr DirEnumerateDirectoriesParse
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirFindRecordGet
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirFindRecordParse
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetDirectoryInfo
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetLocalNetworkSpec
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetDirectoryIcon
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetExtendedDirectoriesInfo
(DirParamBlockPtr paramBlock,Boolean async);

Getting Information About DNodes

pascal OSErr DirEnumerateGet
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirEnumerateParse
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetDNodeMetaInfo
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirMapDNodeNumberToPathName
(DirParamBlockPtrparamBlock,Boolean async);

pascal OSErr DirMapPathNameToDNodeNumber
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetDNodeInfo
(DirParamBlockPtr paramBlock,Boolean async);

C H A P T E R 8

Catalog Manager

8-188 Summary of the Catalog Manager

Maintaining the PowerTalk Setup Catalog

pascal OSErr DirAddADAPDirectory
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirFindADAPDirectoryByNetSearch
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr irNetSearchADAPDirectoriesGet
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirNetSearchADAPDirectoriesParse
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirRemoveDirectory
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetOCESetupRefnum
(DirParamBlockPtr paramBlock,Boolean async);

Creating, Opening, and Closing Personal Catalogs

pascal OSErr DirCreatePersonalDirectory
(DirParamBlockPtr paramBlock);

pascal OSErr DirOpenPersonalDirectory
(DirParamBlockPtr paramBlock);

pascal OSErr DirClosePersonalDirectory
(DirParamBlockPtr paramBlock);

pascal OSErr DirMakePersonalDirectoryRLI
(DirParamBlockPtr paramBlock);

Managing Records

pascal OSErr DirAddRecord (DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirDeleteRecord
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetRecordMetaInfo
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetNameAndType
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirSetNameAndType
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirAddPseudonym
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirDeletePseudonym
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirEnumeratePseudonymGet
(DirParamBlockPtr paramBlock,Boolean async);

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-189

pascal OSErr DirEnumeratePseudonymParse
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirAddAlias (DirParamBlockPtr paramBlock,Boolean async);

Managing Attribute Types and Values

pascal OSErr DirAddAttributeValue
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirDeleteAttributeValue
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirChangeAttributeValue
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirVerifyAttributeValue
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirFindValue (DirParamBlockPtr paramBlock, Boolean async);

pascal OSErr DirLookupGet (DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirLookupParse
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirDeleteAttributeType
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirEnumerateAttributeTypesGet
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirEnumerateAttributeTypesParse
(DirParamBlockPtr paramBlock,Boolean async);

Reading Access Controls for dNodes, Records, and Attribute Types

pascal DSSpec *OCEGetAccessControlDSSpec
(const CategoryMask categoryBitMask);

pascal OSErr DirGetDNodeAccessControlGet
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetDNodeAccessControlParse
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetRecordAccessControlGet
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetRecordAccessControlParse
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetAttributeAccessControlGet
(DirParamBlockPtr paramBlock,Boolean async);

pascal OSErr DirGetAttributeAccessControlParse
(DirParamBlockPtr paramBlock,Boolean async);

C H A P T E R 8

Catalog Manager

8-190 Summary of the Catalog Manager

Canceling a Catalog Manager Function

pascal OSErr DirAbort (DirParamBlockPtr paramBlock);

Application-Defined Functions

void MyCompletionRoutine (DirParamBlockPtr paramBlk);

pascal Boolean MyForEachRecordID
(long clientData,const RecordID *recordID);

pascal Boolean MyForEachAttrType
(long clientData,
const AttributeType *attrType);

pascal Boolean MyForEachDirectory
(long clientData,
const DirectoryName *dirName,
const DirDiscriminator *discriminator,
DirGestalt features);

pascal Boolean MyForEachLookupRecordID
(long clientData,const RecordID *recordID);

pascal Boolean MyForEachAttrTypeLookup
(long clientData,
const AttributeType *attrType,
AccessMask myAttrAccMask);

pascal Boolean MyForEachAttrValue
(long clientData, const Attribute *attribute);

pascal Boolean MyForEachDirEnumSpec
(long clientData, const DirEnumSpec *enumSpec);

pascal Boolean MyForEachRecord
(long clientData,
const DirEnumSpec *enumSpec,
pRLI PackedRLIPtr);

pascal Boolean MyForEachADAPDirectory
(long clientData,
const DirectoryName *directoryName,
const DirDiscriminator *discriminator,
DirGestalt features, AddrBlock serverHint);

pascal Boolean MyForEachDNodeAccessControl
(long clientData, const DSSpec *dsObj,
AccessMask activeDnodeAccMask,
AccessMask defaultRecordAccMask,
AccessMask defaultAttributeAccMask);

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-191

pascal Boolean MyForEachRecordAccessControl
(long clientData,const DSSpec *dsObj,
AccessMask activeDnodeAccMask,
AccessMask activeRecordAccMask,
AccessMask defaultAttributeAccMask);

pascal Boolean MyForEachAttributeAccessControl
(long clientData,const DSSpec *dsObj,
AccessMask activeDnodeAccMask,
AccessMask activeRecordAccMask,
AccessMask activeAttributeAccMask);

Pascal Summary

Constants and Data Types

CONST

{access categories bit numbers}

kThisRecordOwnerBit = 0;

kFriendsBit = 1;

kAuthenticatedInDNodeBit = 2;

kAuthenticatedInDirectoryBit = 3;

kGuestBit = 4;

kMeBit = 5;

{values of CategoryMask}

kThisRecordOwnerMask = $00000001; {1<<kThisRecordOwnerBit}

kFriendsMask = $00000002; {1<<kFriendsBit}

kAuthenticatedInDNodeMask = $00000004; {1<<kAuthenticatedInDNodeBit}

kAuthenticatedInDirectoryMask = $00000008;

 {1<<kAuthenticatedInDirectoryBit}

kGuestMask = $00000010; {1<<kGuestBit}

kMeMask = $00000020; {1<<kMeBit}

kEnumDistinguishedNameBit = 0;

kEnumAliasBit = 1;

kEnumPseudonymBit = 2;

kEnumDNodeBit = 3;

kEnumInvisibleBit = 4;

{values of DirEnumChoices}

kEnumDistinguishedNameMask = $00000001; {1<<kEnumDistinguishedNameBit}

kEnumAliasMask = $00000002; {1<<kEnumAliasBit}

C H A P T E R 8

Catalog Manager

8-192 Summary of the Catalog Manager

kEnumPseudonymMask = $00000004; {1<<kEnumPseudonymBit}

kEnumDNodeMask = $00000008; {1<<kEnumDNodeBit}

kEnumInvisibleMask = $00000010; {1<<kEnumInvisibleBit}

kEnumAllMask = (kEnumDistinguishedNameMask + kEnumAliasMask +

 kEnumPseudonymMask + kEnumDNodeMask + kEnumInvisibleMask);

{Values of DirSortOption}

kSortByName = 0;

kSortByType = 1;

{values of DirSortDirection}

kSortForwards = 0;

kSortBackwards = 1;

{values of DirMatchWith}

kMatchAll = 0;

kExactMatch = 1;

kBeginsWith = 2;

kEndingWith = 3;

kContaining = 4;

kCurrentOCESortVersion = 1;

kSupportsDNodeNumberBit = 0;

kSupportsRecordCreationIDBit = 1;

kSupportsAttributeCreationIDBit = 2;

kSupportsMatchAllBit = 3;

kSupportsBeginsWithBit = 4;

kSupportsExactMatchBit = 5;

kSupportsEndsWithBit = 6;

kSupportsContainsBit = 7;

kSupportsOrderedEnumerationBit = 8;

kCanSupportNameOrderBit = 9;

kCanSupportTypeOrderBit = 10;

kSupportSortBackwardsBit = 11;

kSupportIndexRatioBit = 12;

kSupportsEnumerationContinueBit = 13;

kSupportsLookupContinueBit = 14;

kSupportsEnumerateAttributeTypeContinueBit = 15;

kSupportsEnumeratePseudonymContinueBit = 16;

kSupportsAliasesBit = 17;

kSupportsPseudonymsBit = 18;

kSupportsPartialPathNamesBit = 19;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-193

kSupportsAuthenticationBit = 20;

kSupportsProxiesBit = 21;

kSupportsFindRecordBit = 22;

{ values of DirGestalt }

kSupportsDNodeNumberMask = $00000001;

{1<<kSupportsDNodeNumberBit}

kSupportsRecordCreationIDMask = $00000002;

{1<<kSupportsRecordCreationIDBit}

kSupportsAttributeCreationIDMask = $00000004;

{1<<kSupportsAttributeCreationIDBit}

kSupportsMatchAllMask = $00000008;

{1<<kSupportsMatchAllBit}

kSupportsBeginsWithMask = $00000010;

{1<<kSupportsBeginsWithBit}

kSupportsExactMatchMask = $00000020;

{1<<kSupportsExactMatchBit}

kSupportsEndsWithMask = $00000040;

{1<<kSupportsEndsWithBit}

kSupportsContainsMask = $00000080;

{1<<kSupportsContainsBit}

kSupportsOrderedEnumerationMask = $00000100;

{1<<kSupportsOrderedEnumerationBit}

kCanSupportNameOrderMask = $00000200;

{1<<kCanSupportNameOrderBit}

kCanSupportTypeOrderMask = $00000400;

{1<<kCanSupportTypeOrderBit}

kSupportSortBackwardsMask = $00000800;

{1<<kSupportSortBackwardsBit}

kSupportIndexRatioMask = $00001000;

{1<<kSupportIndexRatioBit}

kSupportsEnumerationContinueMask = $00002000;

{1<<kSupportsEnumerationContinueBit}

kSupportsLookupContinueMask = $00004000;

{1<<kSupportsLookupContinueBit}

kSupportsEnumerateAttributeTypeContinueMask = $00008000;

{1<<kSupportsEnumerateAttributeTypeContinueBit}

kSupportsEnumeratePseudonymContinueMask = $00010000;

{1<<kSupportsEnumeratePseudonymContinueBit}

kSupportsAliasesMask = $00020000;

{1<<kSupportsAliasesBit}

kSupportsPseudonymsMask = $00040000;

{1<<kSupportsPseudonymsBit}

kSupportsPartialPathNamesMask = $00080000;

C H A P T E R 8

Catalog Manager

8-194 Summary of the Catalog Manager

{1<<kSupportsPartialPathNamesBit}

kSupportsAuthenticationMask = $00100000;

{1<<kSupportsAuthenticationBit}

kSupportsProxiesMask = $00200000;

{1<<kSupportsProxiesBit}

kSupportsFindRecordMask = $00400000;

{1<<kSupportsFindRecordBit}

TYPE

DirEnumChoices = LONGINT;

DirMatchWith = BYTE;

DirSortDirection = INTEGER;

ForMyEachRecordID = ProcPtr;

ForMyEachLookupRecordID = ProcPtr;

ForMyEachAttrTypeLookup = ProcPtr;

ForMyEachAttrValue = ProcPtr;

ForMyEachAttrType = ProcPtr;

ForMyEachRecordID = ProcPtr;

ForMyEachDNodeAccessControl = ProcPtr;

ForMyEachRecordAccessControl = ProcPtr;

ForMyEachAttributeAccessControl = ProcPtr;

ForMyEachDirEnumSpec = ProcPtr;

ForMyEachDirectory = ProcPtr;

ForMyEachADAPDirectory = ProcPtr;

DNodeID = RECORD

dNodeNumber: DNodeNum; {dNode number}

reserved1: LONGINT;

name: RStringPtr;

reserved2: LONGINT;

END;

DirEnumSpec = RECORD

enumFlag: DirEnumChoices;

indexRatio: INTEGER; {if supported, approx Record Position

 between 1 and 100; 0 If not supported}

CASE INTEGER OF

1: (recordIdentifier: LocalRecordID);

2: (dNodeIdentifier: DNodeID);

END;

DirMetaInfo = RECORD

info: ARRAY[1..4] OF LONGINT;

END;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-195

SLRV = RECORD

script: ScriptCode; {script code in which entries are sorted}

language: INTEGER; {language code in which entries are sorted}

regionCode: INTEGER; {region code in which entries are sorted}

version: INTEGER; {version of AOCE sorting software }

END;

AuthDirParamHeader = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

END;

{Catalog types and operations}

AuthIdentity = LONGINT; {unique identifier for an identity}

LocalIdentity = AuthIdentity; {umbrella localIdentity}

DirEnumerateDirectoriesGetPB = PACKED RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

C H A P T E R 8

Catalog Manager

8-196 Summary of the Catalog Manager

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

directoryKind: OCEDirectoryKind; {enumerate catalogs

 bearing this signature}

startingDirectoryName: DirectoryNamePtr; {starting catalog name}

startingDirDiscriminator: DirDiscriminator; {starting catalog

 discriminator}

eReserved: LONGINT;

fReserved: LONGINT;

gReserved: LONGINT;

hReserved: LONGINT;

includeStartingPoint: BOOLEAN; {if true, return catalog

specified by starting

point}

padByte: Byte;

i1Reserved: INTEGER;

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirEnumerateDirectoriesParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aReserved: LONGINT;

bReserved: LONGINT;

cReserved: LONGINT;

dReserved: LONGINT;

eachDirectory: ForEachDirectory;

fReserved: LONGINT;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-197

gReserved: LONGINT;

hReserved: LONGINT;

iReserved: LONGINT;

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirFindRecordGetPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

startingPoint: RecordIDPtr;

reservedA: ARRAY[1..2] OF LONGINT;

nameMatchString: RStringPtr;

typesList: ^RStringPtr;

typeCount: LONGINT;

reservedB: LONGINT;

reservedC: INTEGER;

matchNameHow: DirMatchWith;

matchTypeHow: DirMatchWith;

getBuffer: Ptr;

getBufferSize: LONGINT;

directoryName: DirectoryNamePtr;

discriminator: DirDiscriminator;

END;

DirFindRecordParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

C H A P T E R 8

Catalog Manager

8-198 Summary of the Catalog Manager

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

startingPoint: RecordIDPtr;

reservedA: ARRAY[1..2] OF LONGINT;

nameMatchString: RStringPtr;

typesList: ^RStringPtr;

typeCount: LONGINT;

reservedB: LONGINT;

reservedC: INTEGER;

matchNameHow: DirMatchWith;

matchTypeHow: DirMatchWith;

getBuffer: Ptr;

getBufferSize: LONGINT;

directoryName: DirectoryNamePtr;

discriminator: DirDiscriminator;

forEachRecordFunc: ForEachRecord;

END;

DirGetDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-199

gReserved3: LONGINT;

clientData: LONGINT;

directoryName: DirectoryNamePtr; {catalog name}

discriminator: DirDiscriminator; discriminate between

duplicate catalog

names}

features: DirGestalt; {capability bit flags}

END;

DirGetLocalNetworkSpecPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

directoryName: DirectoryNamePtr; {catalog name}

discriminator: DirDiscriminator; {discriminator}

networkSpec: NetworkSpecPtr; {NetworkSpec}

END;

DirGetDirectoryIconPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

C H A P T E R 8

Catalog Manager

8-200 Summary of the Catalog Manager

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

pRLI: PackedRLIPtr; {packed RLI for the catalog}

iconType: OSType; {type of Icon requested}

iconBuffer: Ptr; {buffer to hold Icon Data}

bufferSize: LONGINT; {size of buffer to hold icon

 data}

END;

DirGetExtendedDirectoriesInfoPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

buffer: Ptr; {Pointer to a buufer

 where data is returned}

bufferSize: LONGINT; {Length of buffer in which

actual data is returned}

totalEntries: LONGINT; {total number of catalogs found}

actualEntries: LONGINT; {total number of catalog

 entries returned}

END;

ForEachDirectory = ProcPtr;

{FUNCTION ForEachDirectory(clientData: long; dirName: DirectoryNamePtr;

discriminator: DirDiscriminator; features: DirGestalt): BOOLEAN;}

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-201

DirEnumerateGetPB = PACKED RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRLI: PackedRLIPtr; {an RLI specifying the cluster

to be enumerated}

startingPoint: ^DirEnumSpec;

sortBy: DirSortOption;

sortDirection: DirSortDirection;

dReserved: LONGINT;

nameMatchString: RStringPtr; {name from which enumeration

should start}

typesList: ^RStringPtr; {list of entity types to be

enumerated}

typeCount: LONGINT; {number of types in the list}

enumFlags: DirEnumChoices; {indicates what to enumerate}

includeStartingPoint:BOOLEAN; {if true return the record

 specified in starting point}

padByte: Byte;

matchNameHow: DirMatchWith; {matching Criteria}

{for nameMatchString}

matchTypeHow: DirMatchWith; {matching criteria for typeList}

getBuffer: Ptr;

getBufferSize: LONGINT;

responseSLRV: SLRV; {response SLRV}

END;

DirEnumerateParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

C H A P T E R 8

Catalog Manager

8-202 Summary of the Catalog Manager

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRLI: PackedRLIPtr; {an RLI specifying the cluster

 to be enumerated}

bReserved: LONGINT;

cReserved: LONGINT;

eachEnumSpec: ForEachDirEnumSpec;

eReserved: LONGINT;

fReserved: LONGINT;

gReserved: LONGINT;

hReserved: LONGINT;

iReserved: LONGINT;

getBuffer: Ptr;

getBufferSize: LONGINT;

l1Reserved: INTEGER;

l2Reserved: INTEGER;

l3Reserved: INTEGER;

l4Reserved: INTEGER;

END;

DirGetDNodeMetaInfoPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-203

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

pRLI: PackedRLIPtr;

metaInfo: DirMetaInfo;

END;

DirMapDNodeNumberToPathNamePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

directoryName: DirectoryNamePtr; {catalog name}

discriminator: DirDiscriminator; {discriminator}

dNodeNumber: DNodeNum; {dNodenumber to be mapped}

path: PackedPathNamePtr; {packed path name returned}

lengthOfPathName: INTEGER; {length of packed pathname

 structure}

END;

DirMapPathNameToDNodeNumberPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

C H A P T E R 8

Catalog Manager

8-204 Summary of the Catalog Manager

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

directoryName: DirectoryNamePtr; {catalog name}

discriminator: DirDiscriminator; {discriminator}

dNodeNumber: DNodeNum; {dNode number to the path}

path: PackedPathNamePtr; {pathname to be mapped}

END;

DirGetDNodeInfoPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

pRLI: PackedRLIPtr; {packed RLI whose info is requested}

descriptor: DirNodeKind; {dNode descriptor}

networkSpec: NetworkSpecPtr; {cluster's networkSpec if kIsCluster}

END;

DirAddADAPDirectoryPB = PACKED RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-205

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

directoryName: DirectoryNamePtr; {catalog name}

discriminator: DirDiscriminator; {discriminate between}

duplicate catalog names}

addToOCESetup: BOOLEAN; {add this catalog to

 PowerTalk setup}

padByte: Byte;

directoryRecordCID: CreationID; {creation ID for the

catalog record}

END;

DirFindADAPDirectoryByNetSearchPB = PACKED RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

directoryName: DirectoryNamePtr; {catalog name}

discriminator: DirDiscriminator; {discriminate between

 duplicate names}

addToOCESetup: BOOLEAN; {add this catalog to PowerTalk

Setup list}

padByte: Byte;

directoryRecordCID: CreationID; {creation ID for the catalog

 record}

END;

C H A P T E R 8

Catalog Manager

8-206 Summary of the Catalog Manager

DirNetSearchADAPDirectoriesGetPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

getBuffer: Ptr;

getBufferSize: LONGINT;

cReserved: LONGINT;

END;

DirNetSearchADAPDirectoriesParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

getBuffer: Ptr;

getBufferSize: LONGINT;

eachADAPDirectory: ForEachADAPDirectory;

END;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-207

ForEachADAPDirectory = ProcPtr;

{FUNCTION ForEachADAPDirectory(

clientData: long;

dirName: DirectoryNamePtr;

discriminator: DirDiscriminator;

features: DirGestalt;

serverHint: AddrBlock): BOOLEAN;}

DirRemoveDirectoryPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

directoryRecordCID: CreationID; {creation ID for the catalog record}

END;

DirRemoveDirectoryPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

C H A P T E R 8

Catalog Manager

8-208 Summary of the Catalog Manager

clientData: LONGINT;

directoryRecordCID: CreationID; {creation ID for the catalog record}

END;

DirGetOCESetupRefNumPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

oceSetupRecordCID: CreationID; {creation ID for the catalog record}

END;

DirCreatePersonalDirectoryPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

fsSpec: FSSpecPtr; {FSSpec for the personal catalog}

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-209

fdType: OSType; {file type for the personal catalog}

fdCreator: OSType; {file creator for the personal catalog}

END;

DirOpenPersonalDirectoryPB = PACKED RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

fsSpec: FSSpecPtr; {open an existing personal catalog}

accessRequested: Char; {open: permissions requested (byte)}

accessGranted: Char; {open: permissions (byte) (Granted)

features: DirGestalt; {features for personal catalog}

END;

DirClosePersonalDirectoryPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

C H A P T E R 8

Catalog Manager

8-210 Summary of the Catalog Manager

gReserved3: LONGINT;

clientData: LONGINT;

END;

DirMakePersonalDirectoryRLIPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

fromFSSpec: FSSpecPtr; {FSSpec for creating relative alias}

pRLIBufferSize: INTEGER; {length of 'pRLI' buffer}

pRLISize: INTEGER; {length of actual 'pRLI'}

pRLI: PackedRLIPtr; {pRLI for the specified address book}

END;

DirAddRecordPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-211

aRecord: RecordIDPtr; {creation ID returned here}

allowDuplicate: BOOLEAN;

END;

DirDeleteRecordPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

END;

DirGetRecordMetaInfoPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

metaInfo: DirMetaInfo;

END;

C H A P T E R 8

Catalog Manager

8-212 Summary of the Catalog Manager

DirGetNameAndTypePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: Longint;

aRecord: RecordIDPtr;

END;

DirSetNameAndTypePB = PACKED RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

allowDuplicate: BOOLEAN;

padByte: Byte;

newName: RStringPtr; {new name for the record}

newType: RStringPtr; {new type for the record}

END;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-213

DirAddPseudonymPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr; {record ID to be added to pseudonym}

pseudonymName: RStringPtr; {new name to be added as pseudonym}

pseudonymType: RStringPtr; {new name to be added as pseudonym}

allowDuplicate: BOOLEAN;

END;

DirDeletePseudonymPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr; {record ID to which pseudonym is

 to be added}

C H A P T E R 8

Catalog Manager

8-214 Summary of the Catalog Manager

pseudonymName: RStringPtr; {pseudonymName to be deleted}

pseudonymType: RStringPtr; {pseudonymType to be deleted}

END;

DirEnumeratePseudonymGetPB = PACKED RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

startingName: RStringPtr;

startingType: RStringPtr;

dReserved: LONGINT;

eReserved: LONGINT;

fReserved: LONGINT;

gReserved: LONGINT;

hReserved: LONGINT;

includeStartingPoint: BOOLEAN; {if true, the pseudonym specified}

 by starting point will be included}

padByte: Byte;

i1Reserved: INTEGER;

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirEnumeratePseudonymParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-215

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr; {same as DirEnumerateAliasesGetPB}

bReserved: LONGINT;

cReserved: LONGINT;

eachRecordID: ForEachRecordID;

eReserved: LONGINT;

fReserved: LONGINT;

gReserved: LONGINT;

hReserved: LONGINT;

iReserved: LONGINT;

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirAddAliasPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

allowDuplicate: BOOLEAN;

END;

DirAddAttributeValuePB = RECORD

C H A P T E R 8

Catalog Manager

8-216 Summary of the Catalog Manager

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: Longint;

aRecord: RecordIDPtr;

attr: AttributePtr;

END;

DirDeleteAttributeValuePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

attr: AttributePtr;

END;

DirChangeAttributeValuePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-217

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

currentAttr: AttributePtr;

newAttr: AttributePtr;

END;

DirVerifyAttributeValuePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

attr: AttributePtr;

END;

DirFindValuePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

C H A P T E R 8

Catalog Manager

8-218 Summary of the Catalog Manager

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRLI: PackedRLIPtr; {an RLI specifying the cluster

 to be enumerated}

aRecord: LocalRecordIDPtr; {if not nil, look only in this

 record}

attrType: AttributeTypePtr; {if not nil, look only in this

 attribute type}

startingRecord: LocalRecordIDPtr; {record in which to start

 searching}

startingAttribute: AttributePtr; {attribute in which to start

 searching}

recordFound: LocalRecordIDPtr; {record in which data was found}

attributeFound: Attribute; {attribute in which data was

 found}

matchSize: LONGINT; {length of matching bytes}

matchingData: Ptr; {data bytes to be matched in

 search}

sortDirection: DirSortDirection; {sort direction (forwards or

 backwards)}

END;

DirLookupGetPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-219

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecordList: ^RecordIDPtr; {an array of record ID

 pointers}

attrTypeList: ^AttributeTypePtr;{an array of attribute types}

cReserved: LONGINT;

dReserved: LONGINT;

eReserved: LONGINT;

fReserved: LONGINT;

recordIDCount: LONGINT;

attrTypeCount: LONGINT;

includeStartingPoint: BOOLEAN; {if true, return the value

 specified by the starting

 indices}

{padByte: Byte;}

i1Reserved: INTEGER;

getBuffer: Ptr;

getBufferSize: LONGINT;

startingRecordIndex: LONGINT; {start from this record}

startingAttrTypeIndex: LONGINT; {start from this attribute

 type}

startingAttribute: Attribute; {start from this attribute

 value}

pReserved: LONGINT;

END;

DirLookupParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

C H A P T E R 8

Catalog Manager

8-220 Summary of the Catalog Manager

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecordList: ^RecordIDPtr; {must be same from the

 corresponding Get call}

attrTypeList: ^AttributeTypePtr;{must be same from the

 corresponding Get call}

cReserved: LONGINT;

eachRecordID: ForEachLookupRecordID;

eachAttrType: ForEachAttrTypeLookup;

eachAttrValue: ForEachAttrValue;

recordIDCount: LONGINT; {must be same from the

 corresponding Get call}

attrTypeCount: LONGINT; {must be same from the

 corresponding Get call}

iReserved: LONGINT;

getBuffer: Ptr; {must be same from the

 corresponding Get call}

getBufferSize: LONGINT; {must be same from the

 corresponding Get call}

lastRecordIndex: LONGINT; {last RecordID processed when

 parse completed}

lastAttributeIndex: LONGINT; {last Attribute Type processed

 when parse completed}

lastAttribute: Attribute; {last attribute value (with

 this creation ID) processed

 when parse completed}

attrSize: LONGINT; {length of the attribute that

 was not returned}

END;

DirDeleteAttributeTypePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-221

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

attrType: AttributeTypePtr;

END;

DirEnumerateAttributeTypesGetPB = PACKED RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;

startingAttrType: AttributeTypePtr;{starting point}

cReserved: LONGINT;

dReserved: LONGINT;

eReserved: LONGINT;

fReserved: LONGINT;

gReserved: LONGINT;

hReserved: LONGINT;

includeStartingPoint: BOOLEAN; {if true, return the attribute

 Type specified by starting point}

padByte: Byte;

i1Reserved: INTEGER;

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirEnumerateAttributeTypesParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

C H A P T E R 8

Catalog Manager

8-222 Summary of the Catalog Manager

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr;{Same as

 DirEnumerateAttributeTypesGetPB}

bReserved: LONGINT;

cReserved: LONGINT;

dReserved: LONGINT;

eachAttrType: ForEachAttrType;

fReserved: LONGINT;

gReserved: LONGINT;

hReserved: LONGINT;

iReserved: LONGINT;

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirGetDNodeAccessControlGetPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-223

clientData: LONGINT;

pRLI: PackedRLIPtr; {RLI of the cluster whose

 access control list is sought}

bReserved: LONGINT;

cReserved: LONGINT;

dReserved: LONGINT;

eResreved: LONGINT;

forCurrentUserOnly: BOOLEAN;

startingPoint: ^DSSpec; {starting point}

includeStartingPoint: BOOLEAN; {if true, return the DsObject

 specified in starting point}

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirGetDNodeAccessControlParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

pRLI: PackedRLIPtr; {RLI of the cluster}

bReserved: LONGINT; {unused}

cReserved: LONGINT; {unused}

dReserved: LONGINT; {unused}

eachObject: ForEachDNodeAccessControl;

forCurrentUserOnly: BOOLEAN;

startingPoint: ^DSSpec; {starting point}

includeStartingPoint: BOOLEAN; {if true, return

 the record

 specified in

 in starting point}

C H A P T E R 8

Catalog Manager

8-224 Summary of the Catalog Manager

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirGetRecordAccessControlGetPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr; {RecordID whose access

 control list is sought }

bReserved: LONGINT; {unused}

cReserved: LONGINT; {unused}

dReserved: LONGINT; {unused}

eResreved: LONGINT;

forCurrentUserOnly: BOOLEAN;

startingPoint: ^DSSpec; {starting Point}

includeStartingPoint: BOOLEAN; {if true, return the DsObject

 specified in starting point}

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirGetRecordAccessControlParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-225

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr; {RecordID whose access

 control list is sought}

bReserved: LONGINT; {unused}

cReserved: LONGINT; {unused}

dReserved: LONGINT; {unused}

eachObject: ForEachRecordAccessControl;

forCurrentUserOnly: BOOLEAN;

startingPoint: ^DSSpec; {starting point}

includeStartingPoint: BOOLEAN; {if true, return the

 record specified in}

{starting point}

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirGetAttributeAccessControlGetPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr; {RecordID whose access

 control list is sought}

aType: AttributeTypePtr; {attribute type to which

 access controls are sought}

C H A P T E R 8

Catalog Manager

8-226 Summary of the Catalog Manager

cReserved: LONGINT;

dReserved: LONGINT; {unused}

eResreved: LONGINT;

forCurrentUserOnly: BOOLEAN;

includeStartingPoint: BOOLEAN; {if true, return the DsObject

 specified in starting point}

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

DirGetAttributeAccessControlParsePB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

aRecord: RecordIDPtr; {record ID whose access

 control list is sought}

aType: AttributeTypePtr; {attribute type whose

 access controls are sought}

cReserved: LONGINT;

dReserved: LONGINT;

eachObject: ForEachAttributeAccessControl;

forCurrentUserOnly: BOOLEAN;

startingPoint: ^DSSpec; {starting Point }

includeStartingPoint: BOOLEAN; {if true, return the record

 specified in starting point}

getBuffer: Ptr;

getBufferSize: LONGINT;

END;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-227

DirAbortPB = RECORD

qLink: Ptr;

reserved1: LONGINT;

reserved2: LONGINT;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LONGINT;

reqCode: INTEGER;

reserved: ARRAY[1..2] OF LONGINT;

serverHint: AddrBlock;

dsRefNum: INTEGER;

callID: LONGINT;

identity: AuthIdentity;

gReserved1: LONGINT;

gReserved2: LONGINT;

gReserved3: LONGINT;

clientData: LONGINT;

pb: Ptr; {parameter block for the call that must be

 aborted {^DirParamBlock}}

END;

DirParamBlock = RECORD

CASE INTEGER OF

1: (header: AuthDirParamHeader);

2: (addRecordPB: DirAddRecordPB);

3: (deleteRecordPB: DirDeleteRecordPB);

4: (enumerateGetPB: DirEnumerateGetPB);

5: (enumerateParsePB: DirEnumerateParsePB);

6: (findRecordGetPB: DirFindRecordGetPB);

7: (findRecordParsePB: DirFindRecordParsePB);

8:(lookupGetPB: DirLookupGetPB);

9:(lookupParsePB: DirLookupParsePB);

10:(addAttributeValuePB: DirAddAttributeValuePB);

11:(deleteAttributeTypePB: DirDeleteAttributeTypePB);

12:(deleteAttributeValuePB: DirDeleteAttributeValuePB);

13:(changeAttributeValuePB: DirChangeAttributeValuePB);

14:(verifyAttributeValuePB: DirVerifyAttributeValuePB);

15:(findValuePB: DirFindValuePB);

16:(enumeratePseudonymGetPB: DirEnumeratePseudonymGetPB);

17:(enumeratePseudonymParsePB: DirEnumeratePseudonymParsePB);

18:(addPseudonymPB: DirAddPseudonymPB);

19:(deletePseudonymPB: DirDeletePseudonymPB);

20:(addAliasPB: DirAddAliasPB);

21:(enumerateAttributeTypesGetPB:DirEnumerateAttributeTypesGetPB);

C H A P T E R 8

Catalog Manager

8-228 Summary of the Catalog Manager

22:(enumerateAttributeTypesParsePB:

DirEnumerateAttributeTypesParsePB);

23:(getNameAndTypePB: DirGetNameAndTypePB);

24:(setNameAndTypePB: DirSetNameAndTypePB);

25:(getRecordMetaInfoPB: DirGetRecordMetaInfoPB);

26:(getDNodeMetaInfoPB: DirGetDNodeMetaInfoPB);

27:(getDirectoryInfoPB: DirGetDirectoryInfoPB);

28:(getDNodeAccessControlGetPB: DirGetDNodeAccessControlGetPB);

29:(getDNodeAccessControlParsePB:DirGetDNodeAccessControlParsePB);

30:(getRecordAccessControlGetPB: DirGetRecordAccessControlGetPB);

31:(getRecordAccessControlParsePB:

DirGetRecordAccessControlParsePB);

32:(getAttributeAccessControlGetPB:

DirGetAttributeAccessControlGetPB);

33:(getAttributeAccessControlParsePB:

DirGetAttributeAccessControlParsePB);

34: (enumerateDirectoriesGetPB: DirEnumerateDirectoriesGetPB);

35: (enumerateDirectoriesParsePB: DirEnumerateDirectoriesParsePB);

36: (addADAPDirectoryPB: DirAddADAPDirectoryPB);

37: (removeDirectoryPB: DirRemoveDirectoryPB);

38: (netSearchADAPDirectoriesGetPB:

DirNetSearchADAPDirectoriesGetPB);

39: (netSearchADAPDirectoriesParsePB:

DirNetSearchADAPDirectoriesParsePB);

40: (findADAPDirectoryByNetSearchPB:

DirFindADAPDirectoryByNetSearchPB);

41: (mapDNodeNumberToPathNamePB: DirMapDNodeNumberToPathNamePB);

42: (mapPathNameToDNodeNumberPB: DirMapPathNameToDNodeNumberPB);

43: (getLocalNetworkSpecPB: DirGetLocalNetworkSpecPB);

44: (getDNodeInfoPB: DirGetDNodeInfoPB);

{calls for personal catalogs}

45: (createPersonalDirectoryPB: DirCreatePersonalDirectoryPB);

46: (openPersonalDirectoryPB: DirOpenPersonalDirectoryPB);

47: (closePersonalDirectoryPB: DirClosePersonalDirectoryPB);

48: (makePersonalDirectoryRLIPB: DirMakePersonalDirectoryRLIPB);

{calls For CSAMs}

49: (addDSAMPB: DirAddDSAMPB);

50: (instantiateDSAMPB: DirInstantiateDSAMPB);

51: (removeDSAMPB: DirRemoveDSAMPB);

52: (addDSAMDirectoryPB: DirAddDSAMDirectoryPB);

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-229

53: (getExtendedDirectoriesInfoPB:

DirGetExtendedDirectoriesInfoPB);

54: (getDirectoryIconPB: DirGetDirectoryIconPB);

{call to dsRefNum for system(Setup: PowerTalk) personal catalog}

55: (dirGetOCESetupRefNumPB: DirGetOCESetupRefNumPB);

{abort a aysnchronous call}

56: (abortPB: DirAbortPB);

END;

DirParamBlockPtr = ^DirParamBlock;

Catalog Manager Functions

Getting Information About Catalogs

FUNCTION DirEnumerateDirectoriesGet
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirEnumerateDirectoriesParse
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirFindRecordGet (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirFindRecordParse (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetDirectoryInfo
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetLocalNetworkSpec
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetDirectoryIcon
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetExtendedDirectoriesInfo
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

C H A P T E R 8

Catalog Manager

8-230 Summary of the Catalog Manager

Getting Information About DNodes

FUNCTION DirEnumerateGet (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirEnumerateParse (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetDNodeMetaInfo
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirMapDNodeNumberToPathName
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirMapPathNameToDNodeNumber
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetDNodeInfo (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

Maintaining the PowerTalk Setup Catalog

FUNCTION DirAddADAPDirectory
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirFindADAPDirectoryByNetSearch
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirNetSearchADAPDirectoriesGet
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirNetSearchADAPDirectoriesParse
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirRemoveDirectory
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetOCESetupRefNum
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

Creating, Opening, and Closing Personal Catalogs

FUNCTION DirCreatePersonalDirectory
(paramBlock: DirParamBlockPtr): OSErr;

FUNCTION DirOpenPersonalDirectory
(paramBlock: DirParamBlockPtr): OSErr;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-231

FUNCTION DirClosePersonalDirectory
(paramBlock: DirParamBlockPtr): OSErr;

FUNCTION DirMakePersonalDirectoryRLI
(paramBlock: DirParamBlockPtr): OSErr;

Managing Records

FUNCTION DirAddRecord (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirDeleteRecord (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetRecordMetaInfo
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetNameAndType (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirSetNameAndType (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirAddPseudonym (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirDeletePseudonym
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirEnumeratePseudonymGet
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirEnumeratePseudonymParse
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirAddAlias (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

Managing Attribute Types and Values

FUNCTION DirAddAttributeValue
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirDeleteAttributeValue
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirChangeAttributeValue
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

C H A P T E R 8

Catalog Manager

8-232 Summary of the Catalog Manager

FUNCTION DirVerifyAttributeValue
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirFindValue (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirLookupGet (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirLookupParse (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirDeleteAttributeType
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirEnumerateAttributeTypesGet
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirEnumerateAttributeTypesParse
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

Reading Access Controls for dNodes, Records, and Attribute Types

FUNCTION OCEGetAccessControlDSSpec
(categoryBitMask: CategoryMask): DSSpecPtr;

FUNCTION DirGetDNodeAccessControlGet
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetDNodeAccessControlParse
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetRecordAccessControlGet
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetRecordAccessControlParse
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetAttributeAccessControlGet
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION DirGetAttributeAccessControlParse
(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-233

Canceling a Catalog Manager Function

FUNCTION DirAbort (paramBlock: DirParamBlockPtr): OSErr;

Application-Defined Functions

FUNCTION MyCompletionRoutine
(paramBlk: DirParamBlockPtr);

FUNCTION MyForEachRecordID (clientData: long;
recordID: RecordID): BOOLEAN;

FUNCTION MyForEachAttrType (clientData: long;
attrType: AttributeType): BOOLEAN;

FUNCTION MyForEachDirectory
(clientData: long; dirName: DirectoryNamePtr;
discriminator: DirDiscriminator;
features: DirGestalt): BOOLEAN;

FUNCTION MyForEachLookupRecordID
(clientData: long;
recordID: RecordID): BOOLEAN;

FUNCTION MyForEachAttrTypeLookup
(clientData: long; attrType: AttributeTypePtr;
myAttrAccMask: AccessMask): BOOLEAN;

FUNCTION MyForEachAttrValue (clientData: long;
attribute: Attribute): BOOLEAN;

FUNCTION MyForEachDirEnumSpec
(clientData: LONGINT;
enumSpec: DirEnumSpec): BOOLEAN;

FUNCTION MyForEachRecord ((clientData: long;
dsObj: DSSpec; activeDnodeAccMask: AccessMask;
activeRecordAccMask: AccessMask;
defaultAttributeAccMask: AccessMask): BOOLEAN;}

FUNCTION MyForEachADAPDirectory
(clientData: long; dirName: DirectoryNamePtr;
discriminator: DirDiscriminator;
features: DirGestalt; serverHint: AddrBlock):
BOOLEAN;

FUNCTION MyForEachDNodeAccessControl
(clientData: long; dsObj: DSSpec;
activeDnodeAccMask: AccessMask;
defaultRecordAccMask: AccessMask;
defaultAttributeAccMask: AccessMask):BOOLEAN;

C H A P T E R 8

Catalog Manager

8-234 Summary of the Catalog Manager

FUNCTION MyForEachRecordAccessControl
(clientData: long; dsObj: DSSpec;
activeDnodeAccMask: AccessMask;
activeRecordAccMask: AccessMask;
defaultAttributeAccMask: AccessMask):BOOLEAN;

FUNCTION MyForEachAttributeAccessControl
(clientData: long; dsObj: DSSpec;
activeDnodeAccMask: AccessMask;
activeRecordAccMask: AccessMask;
activeAttributeAccMask: AccessMask): BOOLEAN;

Assembly-Language Summary

Trap Macros Requiring Routine Selectors

_oceTBDispatch

Selector Routine

0x101 DirEnumerateParse

0x102 DirLookupParse

0x103 DirEnumerateAttributeTypesParse

0x104 DirEnumeratePseudonymParse

0x105 DirNetSearchADAPDirectoriesParse

0x106 DirEnumerateDirectoriesParse

0x107 DirFindADAPDirectoryByNetSearch

$0108 DirNetSearchADAPDirectoriesGet

$0109 DirAddRecord

$010A DirDeleteRecord

$010B DirAddAttributeValue

$010C DirDeleteAttributeValue

$010D DirChangeAttributeValue

$010E DirVerifyAttributeValue

$010F DirAddPseudonym

$0110 DirDeletePseudonym

$0111 DirEnumerateGet

$0112 DirEnumerateAttributeTypesGet

$0113 DirEnumeratePseudonymGet

$0114 DirGetNameAndType

$0115 DirSetNameAndType

$0116 DirGetRecordMetaInfo

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-235

$0117 DirLookupGet

$0118 DirGetDNodeMetaInfo

$0119 DirGetDirectoryInfo

$011A DirEnumerateDirectoriesGet

$011B DirAbort

$011C DirAddAlias

$011D DirAddDSAM

$011E DirOpenPersonalDirectory

$011F DirCreatePersonalDirectory

$0121 DirGetDirectoryIcon

$0122 DirMapPathNameToDNodeNumber

$0123 DirMapDNodeNumberToPathName

$0124 DirGetLocalNetworkSpec

$0125 DirGetDNodeInfo

$0126 DirFindValue

$0128 DirGetOCESetupRefNum

$012A DirGetDNodeAccessControlGet

$012C DirGetRecordAccessControlGet

$012E DirGetAttributeAccessControlGet

$012F DirGetDNodeAccessControlParse

$0130 DirDeleteAttributeType

$0131 DirClosePersonalDirectory

$0132 DirMakePersonalDirectoryRLI

$0134 DirGetRecordAccessControlParse

$0135 DirRemoveDirectory

$0136 DirGetExtendedDirectoriesInfo

$0137 DirAddADAPDirectory

$0138 DirGetAttributeAccessControlParse

$0140 DirFindRecordGet

$0141 DirFindRecordParse

Selector Routine

C H A P T E R 8

Catalog Manager

8-236 Summary of the Catalog Manager

Result Codes
The allocated range of result codes for the Catalog Manager is –1610 through –1646 and

there are some result codes in the range –1503 through –1567. Functions may also return

result codes from other AOCE managers and standard Macintosh result codes such as

noErr 0 (No error) and fnfErr –43 (File not found).

kOCEBufferTooSmall –1503 Buffer too small for data requested
kOCEVersionErr –1504 Need to sort personal catalog
kOCEAlreadyExists –1510 The catalog being added already

exists
kOCEReadAccessDenied –1540 Identity lacks read access

privileges
kOCEWriteAccessDenied –1541 Identity lacks write access

privileges
kOCEUnknownID –1567 Authentication identity is not

valid
kOCENotLocal -1610 The server does not serve the

requested dNode
kOCETooBusy -1611 Server cannot complete call at

this time
kOCEDatabaseFull -1612 The disk is full
kOCETargetDirectoryInaccessible -1613 Target catalog is not currently

available
kOCEBogusArgs -1614 Args not formatted correctly on

the wire
kOCENoSuchDNode -1615 Can’t find specified dNode
kOCEDNodeUnavailable -1616 Could not find any servers that

serve the requested dNode
kOCEBadRecordID -1617 Record name or record type

doesn’t match creation ID
kOCENoSuchRecord -1618 Can't find specified record
kOCENoSuchAttributeValue -1619 Can’t find specified attribute value
kOCENoSuchPseudonym -1620 The specified pseudonym does

not exist
kOCEAttributeValueTooBig -1621 Attribute value is larger than

kAttrValueMaxBytes bytes
kOCETypeExists -1622 The type already exists in the

record
kOCEMoreData -1623 More data available
kOCERefNumBad -1624 RefNum is not valid
kOCEStreamCreationErr -1625 Error in creating connection to

server
kOCEOperationNotSupported -1626 The specified catalog does not

support this operation
kOCEPABNotOpen -1627 The specified personal catalog is

not open to make the operation
kOCEDSAMInstallErr -1628 The specified CSAM could not be

installed
kOCEDirListFullErr -1629 The catalog list is full; try

removing an entry
kOCEDirectoryNotFoundErr -1630 Can’t find catalog
kOCEAbortNotSupportedForThisCall -1631 Abort not supported

C H A P T E R 8

Catalog Manager

Summary of the Catalog Manager 8-237

kOCEAborted -1632 The call was aborted
kOCEOCESetupRequired -1633 LocalIdentity Setup is required
kOCEDSAMRecordNotFound -1634 CSAM Record not found
kOCEDSAMNotInstantiated -1635 CSAM is not instantiated
kOCEDSAMRecordExists -1636 CSAM record already exists
kOCELengthError -1637 The buffer supplied was too small
kOCEBadStartingRecord -1638 Starting record index out of range
kOCEBadStartingAttribute -1639 Starting attribute index is not

within range
kOCEMoreAttrValue -1640 Buffer too small for a single

attribute value
kOCENoDupAllowed -1641 Duplicate name and type
kOCENoSuchAttributeType -1642 Can’t find specified attribute type
kOCEMiscError -1643 Miscellaneous error
kOCENoSuchIcon -1644 There is no matching icon from

OCEGetDirectoryIcon
kOCERLIsDontMatch -1645 RLIs of different records in the

record list are not the same
kOCEDirectoryCorrupt -1646 Serious disk fill corruption

problem

Contents 9-1

C H A P T E R 9

Contents

Authentication Manager

Introduction to Authentication 9-4

Keys 9-4

Credentials 9-5

Steps in the Authentication Process 9-5

Identities 9-7

Local Identities 9-8

Specific Identities 9-9

Guest Access 9-9

The PowerTalk Setup Catalog 9-9

Proxies 9-10

About the Authentication Manager 9-10

Using the Authentication Manager 9-11

Determining Whether the Collaboration Toolbox Is Available 9-11

Determining the Version of the Authentication Manager 9-11

Authentication Using ASDSP 9-12

Authentication for Non-ASDSP Users 9-13

The Initiator’s Authentication Process 9-13

The Recipient’s Authentication Process 9-14

Authentication Using a Proxy 9-14

Using the Notification Queue 9-15

Authentication Manager Reference 9-18

Data Structures 9-18

Parameter Block Header 9-18

The Key Structures 9-20

Authentication Manager Functions 9-20

Assembly-Language Interface 9-21

Key Management 9-21

Local Identity Management 9-28

Specific Identity Management 9-39

Credentials Management 9-43

C H A P T E R 9

9-2 Contents

Creation ID Resolution 9-50

Time Service 9-52

Non-ASDSP Authentication Utilities 9-54

PowerTalk Setup Catalog Management 9-61

Application-Defined Functions 9-68

Summary of the Authentication Manager 9-71

C Summary 9-71

Constants and Data Types 9-71

Authentication Manager Functions 9-80

Application-Defined Functions 9-82

Pascal Summary 9-82

Constants 9-82

Data Types 9-83

Authentication Manager Functions 9-100

Application-Defined Routines 9-102

Assembly-Language Summary 9-102

Trap Macros 9-102

Result Codes 9-103

C H A P T E R 9

9-3

Authentication Manager

This chapter describes the AOCE Authentication Manager, which provides

authentication services for users of PowerShare catalog servers. Providers of other

AOCE-compatible catalog servers can also use the Authentication Manager and the

AppleTalk Secure Data Stream Protocol (ASDSP) to provide authentication services for

users of their catalog servers. The services provided by the Authentication Manager

ensure both ends of a connection that the entity on the other end is who or what it claims

to be. The Authentication Manager does not encrypt data or guarantee the integrity of

transmitted data. For other security services, see the chapter “Digital Signature

Manager” in this book.

The Authentication Manager application programming interface (API) provides the tools

you need to implement an authenticated connection between two entities. Also, the API

includes a function that provides a common server-based time service.

The Authentication Manager provides low-level functions that are called by the AOCE

Collaboration package, the AOCE Collaboration toolbox, the PowerTalk Key Chain, and

the PowerShare Admin program.

An application running in the background might call the Authentication Manager to get

a local identity or a specific identity. You might want to add your application to the

local-identity notification queue, so that the Authentication Manager calls your

notification routine when the local identity is locked or unlocked or when the

local-identity name is changed.

You must read this chapter if you want to create your own authentication service using

AOCE functions. For example, if you want to authenticate connections between users

who are not connected over an AppleTalk network, you can use the Authentication

Manager functions described in this chapter.

This chapter starts with a brief introduction to authentication, including an introduction

to the role of servers in authentication. The chapter then presents information to help

you use the Authentication Manager functions to

■ generate and use encryption keys

■ create and use authentication identities

■ acquire and use credentials for mutual verification of users’ identities

■ generate proxies and use them

■ resolve creation IDs for records

■ obtain the universal coordinated time

■ implement your own challenge process for authenticating two entities

The language specific to this technology is defined as the concepts are introduced in the

chapter.

For a general overview of AOCE services, see the chapter “Introduction to Apple Open

Collaboration Environment” in this book.

C H A P T E R 9

Authentication Manager

9-4 Introduction to Authentication

Introduction to Authentication

To avoid fraud or impersonation, two users or services communicating over a network

may need to identify each other conclusively. For example, a user may want to verify

that a piece of electronic mail came from the sender named in the letter. In the world of

networking, verification of the identity of an entity on a network or of one end of a

communication link is called authentication.

The authentication process involves the exchange between two parties of a sequence of

messages referred to as challenges and replies. The Authentication Manager uses the Data

Encryption Standard (DES, a symmetric private-key encryption algorithm that uses the

same key for encryption and decryption) and a secret key derived from the user’s

password to encrypt each challenge or reply message. The authentication server knows

the keys of both ends of the connection. Keys are discussed in the next section.

These are the basic assumptions fundamental to authentication:

■ Each user or service has a key, and that key is known only to the user and the
authentication server.

■ The authentication server is trusted to reveal the secret key to no one.

The originator of a message is called the initiator; the addressee is the recipient. The

initiator and recipient do not share a key. If they did, they could use that key to encrypt

every message they exchange.

Keys
Encryption keys are numbers used by an encryption algorithm to encrypt and decrypt

data. The keys of the initiator and recipient are referred to as client keys. Because the

authentication process requires that a trusted third party know everyone’s keys,

Authentication Manager functions allow you to store client keys in a server-based

catalog.

The Authentication Manager uses client keys for encrypting requests to the server and

for encrypting the response the server returns to an initiator. The server also uses client

keys to verify that a user typed his or her password correctly.

During the authentication process, the authentication server creates a unique

time-limited session key, encrypts it, and transmits it to the initiator, who sends it to the

recipient. The initiator and recipient use the session key to exchange challenges and

replies. The section “Steps in the Authentication Process” beginning on page 9-5

describes the use of client keys and session keys.

C H A P T E R 9

Authentication Manager

Introduction to Authentication 9-5

Credentials

Credentials consist of an identifier for the initiator and a session key, encrypted in the

key of the recipient. The initiator requests credentials from the authentication server and

sends them to the recipient. With these, the recipient can determine which initiator wants

to make an authenticated connection and can obtain the session key needed to complete

the authentication process. Because the credentials are encrypted in the recipient’s client

key, only the intended recipient can use them, and the initiator cannot alter them.

Therefore, the initiator can be sure that anyone responding with the correct session key is

the intended recipient, and the recipient can be sure of the identity of the initiator.

Credentials are valid only for a particular initiator and recipient and only for a specific

time period. After that time period, they cannot be used to establish a connection.

However, once a communication stream is open and authenticated, the two ends of a

connection can elect to maintain the connection even after the credentials have expired.

Steps in the Authentication Process

The authentication process consists of two phases: the precontact phase and the challenge
phase. Figure 9-1 on page 9-6 shows the authentication process; in this figure, step 1 and

step 2 represent the precontact phase, and the remaining steps represent the challenge

phase of authentication. In Figure 9-1, For each step in the process, the figure shows

what key was used to encrypt the data, who sends the data and to whom, and the nature

of the data sent.

C H A P T E R 9

Authentication Manager

9-6 Introduction to Authentication

Figure 9-1 The authentication process

C H A P T E R 9

Authentication Manager

Introduction to Authentication 9-7

Here is what happens in the precontact phase of authentication:

1. The initiator encrypts both the name of the initiator and the name of the recipient in
the initiator’s client key and asks the server for credentials.

2. The server returns two quantities to the initiator: a session key and a credentials block.
The session key is encrypted in the initiator’s key. The credentials block is encrypted
in the recipient’s key so that not even the initiator can see what is in it.

Receipt of the credentials by the initiator completes the precontact phase of

authentication. Next, the initiator can either use AppleTalk Secure Data Stream Protocol

(ASDSP) to perform the challenge phase of authentication or else implement the

challenge phase as described below. See the chapter “AppleTalk Data Stream Protocol”

in Inside Macintosh: Networking for a discussion of ASDSP.

3. The initiator sends the credentials block to the recipient. This credentials block is
encrypted in the recipient’s key and contains the name of the initiator and a copy of
the session key.

Now both the initiator and the recipient have a copy of the same session key. They now

exchange challenges and replies to verify that each has the same session key.

4. The initiator selects a random number, encrypts it with the session key, and sends it to
the recipient as a challenge.

5. The recipient decrypts the challenge, adds 1 to the number, encrypts the sum with the
session key, and sends the new encrypted number to the initiator as a reply.

Because only the intended recipient can decrypt the credentials and therefore obtain the

session key, the initiator has now established that the challenge was not intercepted by

an impostor. The recipient must now issue a challenge to ensure that the initiator is truly

the entity identified in the credentials.

6. The recipient selects a new random number, encrypts it with the session key, and
sends it to the initiator as a challenge.

7. The initiator decrypts the number, adds 1, encrypts the sum with the session key, and
sends it as a reply.

After two entities desiring a connection successfully complete this authentication

process, they are ready to exchange authenticated messages. If you use ASDSP as the

transport mechanism between an initiator and a recipient, the challenge phase of the

authentication process is handled by the ASDSP function. If you are using another

transport protocol, such as TCP/IP (Transmission Control Protocol/Internet Protocol),

you can implement steps 4 through 7 of the authentication process using Authentication

Manager functions described in “Non-ASDSP Authentication Utilities” beginning on

page 9-54.

Identities
An identity, sometimes referred to as an authentication identity, is a number used as

shorthand for the name and key of a user or service. Many AOCE functions require an

identity to determine if the initiator is authorized to make a particular service request.

There are two types of authentication identities: local identities and specific identities.

C H A P T E R 9

Authentication Manager

9-8 Introduction to Authentication

Whereas a local identity is associated with a particular computer, a specific identity is

associated with a particular server or service. In most cases you use the local identity

when you call an AOCE function, except when providing access to a service on behalf of

someone other than the principal user of the computer. Local identities and specific

identities are discussed in the following sections.

Local Identities

Because a user may have multiple “accounts” for a variety of applications or services,

the PowerTalk system software provides a Setup catalog that contains (in encrypted

form) the names and passwords for the services available to the user. A local identity is

a number used as shorthand for the name and password associated with the user of a

particular computer. This local identity is a “master” identity because it provides access

to all catalogs and services in the PowerTalk Setup catalog without requiring each

service’s password individually. Any AOCE function that requires an identity as input

can use the local identity.

The Standard Catalog Package function, SDPPromptForID, described in the chapter

“Standard Catalog Package” in this book, prompts the user for his or her name and

password and uses this information to generate the local identity.

A background application can obtain the local identity generated by the

SDPPromptForID function by calling the Authentication Manager’s

AuthGetLocalIdentity function, described on page 9-28. If a local identity is not set

up, you can install your application in a notification queue, so that the application is

notified when the local identity is created or unlocked.

By supplying a valid local identity to any AOCE function that requires an identity

parameter, you tell the AOCE toolbox what user is requesting the service. The toolbox

prepares an authenticated stream to the server, and during this process the server learns

the name of the user. Then the server checks the access controls for the user represented

by the identity to ensure that the user has the privileges necessary to access the

requested function. If the access controls are sufficient, the AOCE software provides the

requested service. Otherwise, you receive a result code stating that the user’s access

rights are insufficient. Access controls are discussed in the chapter “Catalog Manager” in

this book.

The functions you can use to manage local identities are described in “Local Identity

Management” beginning on page 9-28.

Locking and Unlocking Local Identities

The PowerTalk system software gives users the option of protecting their accounts from

unauthorized access. To do so, the user chooses Lock Key Chain from the Special menu

of the Finder or sets the PowerTalk Setup control panel to lock the Key Chain after some

specified period of inactivity. Upon returning, the user chooses Unlock Key Chain from

the Finder’s Special menu and is prompted for a password. You can also lock and unlock

the local identity from within your application.

If the local identity is locked, it is the responsibility of your application to disable its own

services appropriately. For example, if you are designing a mail application, you may

C H A P T E R 9

Authentication Manager

Introduction to Authentication 9-9

want it to continue receiving mail even when the local identity is locked but would

probably not want to allow users to read mail that has been received.

Local Identity Status Notification

If your application needs to enable or disable features based on whether the local

identity is unlocked, you may want to be notified of changes in the status of the local

identity. If so, you can add your application to a notification queue. The applications in

this queue are notified when the local identity is unlocked or locked. Through the

notification queue, you can deny locking of the local identity when your application is in

use. For instance, you might want to deny locking when your application is engaged in

some process that would be seriously disrupted if the lock function succeeded.

Specific Identities

To provide a service to a user other than the principal user of a computer, you can use a

specific identity rather than the local identity. The specific identity is a number used as

shorthand for the name and key of the alternate user. You can use the specific identity in

any AOCE function that requires an identity.

The Standard Catalog Package function SDPPromptForID prompts a user for a name

and password and returns a specific identity. The SDPPromptForID function is

described in the chapter “Standard Catalog Package” in this book.

Guest Access

When your application needs to accommodate users with no accounts on the computer

or server, you can specify a “guest identity” by using the value 0 for the identity

parameter in AOCE functions.

The PowerTalk Setup Catalog
The AOCE Catalog Manager defines a special personal catalog called the PowerTalk
Setup catalog, which contains information about the catalogs and other services that are

available to the principal user of the computer. The PowerTalk Setup catalog is stored on

the user’s local disk. The records in the PowerTalk Setup catalog represent such entities

as PowerShare catalogs, external catalogs, and catalog service access modules (CSAMs).

Catalogs and CSAMs represented by records in the PowerTalk Setup catalog are said to

be “listed in the PowerTalk Setup catalog.” The contents of the Setup catalog and the

process of adding a CSAM or mail service access module (MSAM) to the Setup catalog

are described in the chapter “Service Access Module Setup” in Inside Macintosh: AOCE
Service Access Modules.

You can use the functions described in “PowerTalk Setup Catalog Management”

beginning on page 9-61 to set up, change, remove, or get information about items in the

PowerTalk Setup catalog.

C H A P T E R 9

Authentication Manager

9-10 About the Authentication Manager

Proxies
A proxy allows an alternate entity to be authenticated as the user for a limited time. It is

a privilege provided to an intermediary: a representative of the user or service. The

intermediary uses the proxy to obtain the credentials needed to complete the

authentication process. The proxy gives the intermediary access to a particular recipient

to perform some task on behalf of an initiator.

For example, suppose a user of your application plans to be away from the computer but

wants to back up some data when the server is not busy. In this case, your application

can request a proxy for the user. You may assign the proxy to an intermediary, who can

do the backup. With this proxy, the intermediary obtains credentials from the server and

then uses them to create an authenticated connection in the usual way. Functions you

can use to create and use proxies are described in “Credentials Management” beginning

on page 9-43.

About the Authentication Manager

The Authentication Manager, the Digital Signature Manager, the Catalog Manager, and

the Interprogram Messaging Manager together constitute the fundamental services of

the AOCE system software. The Standard Catalog Package and the Standard Mail

Package provide high-level interfaces to the Authentication Manager.

The Authentication Manager is a collection of functions that runs on the user’s computer

and communicates with the authentication server to set up authenticated connections.

The Authentication Manager includes routines that provide the following services:

■ key management: translating passwords to keys and adding, changing, and deleting
keys in the server

■ local identity management: determining the local identity for a computer; locking,
unlocking, creating, changing, and removing local identities; and adding applications
to and removing them from a notification queue for changes in the status of the local
identity

■ specific identity management: binding, unbinding, and getting information about
specific identities

■ credentials management: obtaining and using credentials and making and using
proxies

■ resolution of creation IDs: resolving creation IDs when multiple records have the
same name and type

■ time service: obtaining the universal coordinated time

■ non-ASDSP authentication utilities: performing authentication as a step-by-step
process

■ PowerTalk Setup catalog management: setting up, changing, removing, and getting
information about catalogs in the PowerTalk Setup catalog

C H A P T E R 9

Authentication Manager

Using the Authentication Manager 9-11

Using the Authentication Manager

This section discusses the techniques you can use to perform tasks related to

authentication. You can use the techniques in this section to

■ perform the authentication process for initiators and recipients using ASDSP

■ perform the precontact phase and challenge process of authentication for initiators
and recipients using a different transport mechanism

■ use a proxy in either of the above authentication processes

■ monitor the status of access to the PowerTalk Setup catalog by installing your
application in a notification queue

For more detailed descriptions of the routines described in this section, see

“Authentication Manager Functions” beginning on page 9-20.

Determining Whether the Collaboration Toolbox Is Available
Before calling any of the Authentication Manager functions, you should verify that the

Collaboration toolbox is available by calling the Gestalt function with the selector

gestaltOCEToolboxAttr. If the Collaboration toolbox is present but not running (for

example, if the user deactivated it from the PowerTalk Setup control panel), the

Gestalt function sets the bit gestaltOCETBPresent in the response parameter. If

the Collaboration toolbox is running and available, the function sets the bit

gestaltOCETBAvailable in the response parameter. The Gestalt Manager is

described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

If you want to be informed when the Authentication Manager starts up or shuts down,

you can install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk

LAP Manager calls your ATQ routine with the transition selector ATTransAuthStart

when the Authentication Manager has finished starting up and with the selector

ATTransAuthShutdown when the Authentication Manager has started to shut down.

The ATQ is described in the chapter “Link-Access Protocol (LAP) Manager” in Inside
Macintosh: Networking.

Determining the Version of the Authentication Manager
To determine the version of the Authentication Manager that is available, call the

Gestalt function with the selector gestaltOCEToolboxVersion. The function

returns the version number of the Collaboration toolbox in the low-order word of the

response parameter. For example, a value of 0x0101 indicates version 1.0.1. If you are

using the Collaboration toolbox on a computer that has a PowerShare server, the

function returns the version number of the server in the high-order word of the

C H A P T E R 9

Authentication Manager

9-12 Using the Authentication Manager

response parameter. If the Collaboration toolbox or server is not present and available,

the Gestalt function returns 0 for the relevant version number. You can use the

constant gestaltOCETB for AOCE Collaboration toolbox version 1.0.

Authentication Using ASDSP
To establish mutual authentication between an initiator and a recipient, you use

credentials that you get from the server. When you use ASDSP as the transport

mechanism to complete the secure connection, you place these credentials in the

appropriate field of the parameter block for the sdspOpen function. ASDSP is discussed

in the chapter “AppleTalk Data Stream Protocol” in Inside Macintosh: Networking.

To get credentials, follow these steps:

1. Specify an expiration time for the AuthGetCredentials function (page 9-43). It is
your responsibility to determine how long you want the connection to be available.
Credentials are valid for at most 8 hours after they are returned to an initiator by the
server. When you call the AuthGetCredentials function you may use the expiry
field to specify a shorter time for credentials to be valid. Two ways to determine your
expiration time are as follows:

■ Call the AuthGetUTCTime function (page 9-53) to get the current universal
coordinated time (UTC) and an offset. Then, your expiration time is the UTC plus
the amount of time, in seconds, that you want the credentials to be valid.

■ If you get credentials often, you may choose to remember the time provided by the
AuthGetUTCTime function when you first call it and then add the results of the
GetDateTime function to that time along with the amount of time, in seconds, that
you want the credentials to be valid. Remembering the UTC makes it unnecessary
to call the AuthGetUTCTime function each time you need credentials. The
GetDateTime function is described in Inside Macintosh: Operating System Utilities.

2. Determine the initiator’s identity and the recipient’s record ID. You can use either the
local identity or a specific identity for the initiator. A background application can get
the local identity by calling the AuthGetLocalIdentity function (page 9-28). A
foreground application can call the PromptForIdentity function, which is
described in the chapter “Standard Catalog Package” in this book.

To get a specific identity for an initiator, first call the AuthPasswordToKey function
(page 9-21), providing the record ID and password for the initiator, to get the
initiator’s client key. Then call the AuthBindSpecificIdentity function
(page 9-39) to get the specific identity.

You must provide your own means for obtaining the recipient’s record ID.

C H A P T E R 9

Authentication Manager

Using the Authentication Manager 9-13

3. Call the AuthGetCredentials function to get credentials. The Authentication
Manager expects you to provide the expected length of the credentials, as well as a
pointer to a memory block for the credentials. A buffer three times the size of a packed
record ID is usually sufficient for credentials. Use the kPackedRecordIDMaxBytes
constant defined in the chapter “AOCE Utilities” in this book to determine the size of
a packed record ID.

4. To use the ASDSP transport mechanism, call the Device Manager’s PBControl
function using the SDSPParamBlock parameter block defined in Inside Macintosh:
Networking.

Authentication for Non-ASDSP Users
To establish mutual authentication between users without using ASDSP, first complete

steps 1 through 3 of “Authentication Using ASDSP” on page 9-12. Then continue as

indicated in the following sections.

The Initiator’s Authentication Process

To complete the authentication process as an initiator, follow these steps. Note that you

must devise your own protocol for exchanging the challenges and replies.

1. Call the AuthMakeChallenge function (page 9-55) to make a challenge. You provide
a buffer and a buffer size. The buffer must be at least 8 bytes in length. The
AuthMakeChallenge function returns the encrypted challenge in the buffer you
supplied, and also returns the actual length of the challenge.

2. Send the credentials and challenge to the specified recipient, using the available
transport mechanism.

3. Obtain the challenge reply from the recipient. The challenge reply includes both the
reply to your challenge and a counterchallenge from the recipient (steps 5 and 6 in
“Steps in the Authentication Process” beginning on page 9-5).

4. Call the AuthVerifyReply function (page 9-58) to verify the reply sent by the
recipient and to generate a reply to the recipient’s counterchallenge. You provide the
session key that was supplied by the server as well as the challenge and challenge
length returned by the AuthMakeChallenge function. You also provide the reply
and reply buffer length sent by the recipient. If the AuthVerifyReply function finds
that the recipient’s reply was not valid, it returns an error and does not generate a
reply to the counterchallenge.

5. If there was no error, then send the counterchallenge reply generated by the
AuthVerifyReply function to the recipient.

C H A P T E R 9

Authentication Manager

9-14 Using the Authentication Manager

The Recipient’s Authentication Process

To complete authentication as a recipient, follow these steps:

1. Call the AuthDecryptCredentials function (page 9-59), passing it the credentials
sent by the initiator. The function returns the session key, the issue and expiration
times, and the record ID for the initiator. It is your responsibility to ensure that the
times are acceptable for your application. Additionally, if there is an intermediary and
you provide a pointer to a record ID for it, the AuthDecryptCredentials function
provides the intermediary’s record ID to you.

2. Call the AuthMakeReply function (page 9-56) to generate a reply to the challenge
received from the initiator and to issue a challenge in return. The challenge pointer
and challengeLength fields are received from the initiator and supplied to this
function. The reply field contains the reply generated by the function and also the
counterchallenge generated by the function.

3. Send this challenge reply and the counterchallenge to the initiator.

4. Obtain the counterchallenge reply from the initiator.

5. Call the AuthVerifyReply function to verify the reply sent by the initiator. You
provide the session key that was supplied by the server with the credentials, the
challenge and challenge length that you sent to the initiator, a pointer to the reply
buffer, and the length of the reply.

Authentication Using a Proxy
To use a proxy to authenticate a connection, you request and receive a proxy and then

give the proxy to an intermediary, who then uses the proxy to obtain credentials. After

the intermediary obtains the credentials, it uses them to create an authenticated

connection in the standard way, as described previously.

To obtain and use a proxy, follow these steps:

1. Call the AuthMakeProxy function (page 9-45). You must specify the identity of the
initiator who wants to create a proxy, the record ID of the recipient with whom the
intermediary wishes to communicate, and the record ID of the intermediary.
Additionally, you provide times that you want the proxy to be become valid and to
expire, a pointer to the buffer into which the AuthMakeProxy function will place the
proxy, and the length of the buffer. A buffer twice the size of a packed record ID is
usually sufficient for the proxy. The kPackedRecordIDMaxBytes constant,
described in the chapter “AOCE Utilities” in this book, defines the maximum size of a
packed record ID.

2. Send the proxy and the recipient record ID to the intermediary.

3. The intermediary calls the AuthTradeProxyForCredentials function (page 9-47),
supplying the pointer to the proxy buffer and the buffer length. It also supplies its
own identity and the recipient’s record ID. The intermediary provides a pointer to the
credentials and the expected length of the credentials. A buffer three times the size of
a packed record ID is usually sufficient for credentials.

C H A P T E R 9

Authentication Manager

Using the Authentication Manager 9-15

Using the Notification Queue
You can add your application’s notification callback routine to a notification queue so

that it is notified when the local identity is locked or unlocked. When you no longer need

to know the status of the local identity, you can remove your callback routine from the

notification queue. The DoNoteQueue routine in Listing 9-1 checks for a local identity

and, if there is one, saves it in a global variable. It installs the SurfWriter application’s

notification callback routine in the notification queue, which informs it if the status of the

local identity changes. Finally, the DoNoteQueue routine removes the callback routine

from the queue.

If the local identity is locked and your application runs in the foreground, you should

disable any functions or commands that require the user to be authenticated. You can

then prompt the user to unlock or set up the local identity. If the application runs in the

background, you would probably postpone some operations until the local identity is

unlocked.

To install an application in or remove an application from the notification queue, you

first set up the header block, as shown in the DoInitializeASPB function in Listing

9-1. Both the DoInstallNotificationProc function and

DoRemoveNotificationProc function call the DoInitializeASPB function and

then initialize the remaining fields for their respective functions.

The MyNotificationProc function in Listing 9-1 is a sample notification routine for

the AuthAddToLocalIdentityQueue and AuthRemoveFromLocalIdentityQueue

functions (page 9-30 and page 9-31). The MyNotificationProc callback routine is

described on page 9-69.

In Listing 9-1, the notification routine updates a flag in the application’s global data (the

identityIsLocked field in the MyClientData structure) to notify the SurfWriter

application when access to the PowerTalk Setup catalog is locked or unlocked. If the

identityIsLocked field has the value true, the identity might be locked or might not

be set up.

Listing 9-1 Using the notification queue

/* function to initialize header block */

pascal void DoInitializeASPB(AuthParamBlock *aspb)

{

*(long *)&aspb->header.serverHint = 0; /* set up serverHint */

aspb->header.identity = 0; /* identity setup */

aspb->header.dsRefNum = kRefNumUnknown; /* refNum specifier */

}

/* function to install an application’s notification proc in the queue */

pascal OSErr DoInstallNotificationProc(NotificationProc notificationProc,

AuthNotifications notifyFlags,

StringPtr appName,

long clientData)

C H A P T E R 9

Authentication Manager

9-16 Using the Authentication Manager

{

OSErr err;

AuthParamBlock aspb;

DoInitializeASPB(&aspb); /* initialize header block */

aspb.header.clientData = clientData;

aspb.localIdentityQInstallPB.fNotificationProc=notificationProc;

aspb.localIdentityQInstallPB.notifyFlags = notifyFlags;

aspb.localIdentityQInstallPB.appName = appName;

err = AuthAddToLocalIdentityQueue(&aspb, false);

return err;

}

/* function to remove an application’s notification proc from the queue */

pascal OSErr DoRemoveNotificationProc(NotificationProc notificationProc)

{

OSErr err;

AuthParamBlock aspb;

InitializeASPB(&aspb); /* Initialize header block */

aspb.localIdentityQInstallPB.fNotificationProc=nNotificationProc;

err = AuthRemoveFromLocalIdentityQueue(&aspb, false);

return err;

}

struct MyClientData {

LocalIdentity localID;

Boolean identityIsLocked;

};

pascal OSErr MyGetLocalIdentity(LocalIdentity *localID)

{

OSErr err;

AuthParamBlock aspb;

DoInitializeASPB(&aspb); /* Initialize header block */

err = AuthGetLocalIdentity(&aspb, false);

if (err == noErr)

*localID = aspb.getLocalIdentityPB.theLocalIdentity;

return err;

}

/* notification procedure for your application */

pascal Boolean MyNotificationProc(long clientData,

 AuthLocalIdentityOp callValue,

 AuthLocalIdentityLockAction actionValue,

 LocalIdentity identity)

C H A P T E R 9

Authentication Manager

Using the Authentication Manager 9-17

{

struct MyClientData *myClientData = (struct MyClientData *)clientData;

if ((callValue == kAuthLockLocalIdentityOp) &&

(actionValue == kAuthLockWillBeDone)) {

myClientData->identityIsLocked = true;

myClientData->localID = 0;

}

else

if (callValue == kAuthUnlockLocalIdentityOp) {

myClientData->identityIsLocked = false;

myClientData->localID = identity;

}

return false; /* the sample app never denies a lock pending */

}

DoNoteQueue () /* using the notification queue for your application */

{

OSErr err;

struct MyClientData myClientData;

err = MyGetLocalIdentity(&myClientData.localID);

if (err == noErr)

myClientData.identityIsLocked = false; /* the function returned a

 local identity, therefore

 it's not locked */

else {

myClientData.identityIsLocked = true; /* it's either not set up or

 else locked */

/* Set up the local ID if app is not in background, or else wait for

 local ID to be set up and unlocked. If the latter, when the local

 ID is unlocked, you can get the local identity by looking at

 the localID field in MyClientData. */

}

err = DoInstallNotificationProc(

MyNotificationProc, kNotifyLockMask|kNotifyUnlockMask,

"\pSurfWriter", (long)&myClientData);

/* ... perform your application's functions */

C H A P T E R 9

Authentication Manager

9-18 Authentication Manager Reference

/* If identityIsLocked is true, postpone some operations until local ID

 becomes unlocked. */

RemoveNotificationProc(MyNotificationProc);

}

Authentication Manager Reference

This section describes the data structures and routines provided by the Authentication

Manager.

Data Structures

This section describes the data structures that are specific to the Authentication Manager.

See the chapter “AOCE Utilities” for descriptions of other data structures that you use to

provide information to or obtain information from Authentication Manager routines.

Parameter Block Header

Each Authentication Manager routine takes, as input, a pointer to a parameter block of

type AuthParamBlockPtr. This parameter block defines a union of substructures, each

of which is a parameter block for one of the Authentication Manager functions. See the

descriptions of individual routines, beginning on page 9-20, for a listing of fields in the

corresponding parameter blocks. Each of these parameter blocks has the following

header:

#define AuthDirParamHeader

Ptr qLink; /* reserved */

long reserved1; /* reserved */

long reserved2; /* reserved */

ProcPtr ioCompletion; /* your completion routine */

OSErr ioResult; /* result code */

unsigned long saveA5; /* reserved */

short reqCode; /* reserved */

long reserved[2]; /* reserved */

AddrBlock serverHint; /* PowerShare server AppleTalk

addr */

short dsRefNum; /* Set to kRefNumUnknown */

unsigned long callID; /* reserved */

AuthIdentity identity; /* initiator’s identity */

long gReserved1; /* reserved */

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-19

long gReserved2; /* reserved */

long gReserved3; /* reserved */

long clientData; /* you define this field */

Field descriptions

qLink Reserved.

reserved1 Reserved.

reserved2 Reserved.

ioCompletion A pointer to a completion routine that you can provide. If you call
an Authentication Manager routine asynchronously, it calls your
completion function upon returning. Set this field to nil if you do
not wish to provide a completion routine. The function ignores this
field if you call it synchronously.

ioResult The result of the routine. When you execute the routine
asynchronously, the Authentication Manager sets this field to 1 as
soon as it queues the routine for execution. When the routine
completes execution, the Authentication Manager sets this field to
the result code.

saveA5 Reserved.

reqCode Reserved.

reserved[2] Reserved.

serverHint The AppleTalk address of the PowerShare server to which you want
to direct your request. Normally, you specify the value 0 for all
fields of this structure, and the Authentication Manager directs the
request to an appropriate PowerShare server. The AddrBlock data
structure is described in Inside Macintosh: Networking.

dsRefNum The personal catalog reference number. Because the Authentication
Manager works only with server-based catalogs, you must set this
parameter to the value kRefNumUnknown for all Authentication
Manager functions.

callID Reserved.

identity The authentication identity of the entity calling a function. The
authentication identity can be either a local identity, a specific
identity, or 0 for guest access. The PowerShare server or CSAM uses
the identity to determine if the requestor has the access privileges
necessary to perform the requested operation. Functions that fail
because of insufficient access privileges return either the
kOCEReadAccessDenied or kOCEWriteAccessDenied result
code. The AuthGetLocalIdentity function described on
page 9-28 returns the local identity, and the
AuthBindSpecificIdentity function described on page 9-39
returns a specific identity. See the chapter “Catalog Manager” in this
book for more information about access controls.

gReserved1 Reserved.

gReserved2 Reserved.

gReserved3 Reserved.

C H A P T E R 9

Authentication Manager

9-20 Authentication Manager Reference

clientData Available for your use. The Authentication Manager passes the
value in this field to your completion or callback routine. If you use
the same completion routine to process more than one
asynchronous request, for example, your routine can use the
clientData field to determine for which request it is processing
results. You may also use this field to store a pointer to your
application’s private data.

The Key Structures

Keys are translated passwords used in cryptographic algorithms. See “Keys” on

page 9-4. The client keys and session keys used by some Authentication Manager

functions are defined by a structure of type AuthKey.

typedef unsigned long AuthKeyType;

typedef Byte RC4Key[kRC4KeySizeInBytes];

struct AuthKey {/* key type followed by its data */

AuthKeyType keyType;

union {

DESKey des;

RC4Key rc4;

}u;

};

typedef AuthKey *AuthKeyPtr;

struct DESKey {/* A DES key is 8 bytes of data */

unsigned long a;

unsigned long b;

};

Authentication Manager Functions

This section describes functions provided by the Authentication Manager for your use.

These functions make it possible for you to manage keys, local identities, specific

identities, and credentials; resolve creation IDs; obtain universal coordinated time;

implement non-ASDSP authentication, and manage the PowerTalk Setup catalog.

Note

As is generally true, to ensure that asynchronously called functions
operate correctly, you must allocate nonrelocatable memory for all
parameter blocks and any buffers required for the function. ◆

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-21

Assembly-Language Interface

To call an Authentication Manager function from assembly language, push the address

of the AuthParamBlock parameter block and the async flag onto the stack using the

Pascal calling convention, and place the appropriate routine selector value in register D0.

Then invoke the _oceTBDispatch trap. Each function description includes the selector

value for that function. The function returns its result code in the ioResult field of the

parameter block.

Key Management

The Authentication Manager provides functions to

■ translate a password into a key (AuthPasswordToKey)

■ add a key to a server-based catalog (AuthAddKey)

■ change a key in a server-based catalog (AuthChangeKey)

■ delete a key from a server-based catalog (AuthDeleteKey)

The three functions that communicate with the server are subject to the access controls

specified in the record of the entity for whom you’re making the request. Access controls

are discussed in the chapter “Catalog Manager” in this book.

Note

These functions operate only on client keys, not on session keys. Session
keys are created by servers and are valid only for a limited time period.
See “Keys” on page 9-4. ◆

AuthPasswordToKey

The AuthPasswordToKey function translates a password string into a client key.

pascal OSErr AuthPasswordToKey (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

C H A P T E R 9

Authentication Manager

9-22 Authentication Manager Reference

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userRecord A pointer to the record ID of the user or service for which you want
a client key.

key A pointer to an AuthKey structure you allocate. The function places
the key in this structure.

password A pointer to the password string of the user or service whose record
ID you specified in the userRecord parameter. Passwords must be
at least 5 bytes and not more than 255 bytes.

DESCRIPTION

The AuthPasswordToKey function creates a new key from a new or changed

password. The Authentication Manager returns the key to your local computer only; it

does not store the key on the server.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthKey structure is described in “The Key Structures” on page 9-20.

The AuthPasswordToKey function is used in an example in “Authentication Using

ASDSP” on page 9-12.

The AuthAddKey function is discussed next.

The AuthChangeKey function is described on page 9-24.

The AuthDeleteKey function is described on page 9-26.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userRecord RecordIDPtr Target’s record ID
↔ key AuthKeyPtr Target’s key
→ password RStringPtr Target’s password

Trap macro Selector

_oceTBDispatch $020A

noErr 0 No error
kOCEParamErr –50 Password too long
kOCEUndesirableKey –1556 Password too short or resulting key is

undesirable

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-23

AuthAddKey

The AuthAddKey function adds a key for an authentication client to the server-based

catalog.

pascal OSErr AuthAddKey (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion, ioResult, and identity fields.

Field descriptions

userRecord A pointer to the record ID of the user or service whose key you are
adding to a catalog.

userKey A pointer to the new key you are providing.

password A pointer to the password string of the user or service whose key
you are providing. Specify nil for this field if you are not
providing a password. If you provide a password, the
Authentication Manager checks that the key was properly
translated from the password before adding the key to the catalog.

DESCRIPTION

During the authentication process, the authentication server encrypts data using the

keys of both the initiator and the recipient. For this reason, the server must store the key

of every user of the system.

You must provide an identity to this function so that the server can check whether the

caller has permission to add a key to the user’s record.

Call the AuthPasswordToKey function before calling the AuthAddKey function to

obtain a key corresponding to the user’s password.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ identity AuthIdentity Initiator’s identity
→ userRecord RecordIDPtr Target’s record ID
→ userKey AuthKeyPtr Target’s key
→ password RStringPtr Target’s password

C H A P T E R 9

Authentication Manager

9-24 Authentication Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The use of keys in the authentication process is described in “Steps in the Authentication

Process” beginning on page 9-5.

Access controls are discussed in the chapter “Catalog Manager” in this book.

Use the AuthPasswordToKey function (page 9-21) to create a key.

Use the AuthChangeKey function, described next, to replace a key already stored in the

server-based catalog.

AuthChangeKey

The AuthChangeKey function changes a user’s key stored in a server-based catalog.

pascal OSErr AuthChangeKey (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0207

noErr 0 No error
kOCEAWriteAccessDenied –1541 Write access denied
kOCEKeyAlreadyRegistered –1554 A key already exists
kOCEMalFormedKey –1555 Key not derived properly

from password
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCENoSuchRecord –1618 No such record
kOCEStreamCreationErr –1625 An error occurred in creating

the stream

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-25

Parameter block

See page 9-19 for descriptions of the ioCompletion, ioResult, and identity fields.

Field descriptions

userRecord A pointer to the record ID of the user or service whose changed key
you are storing in a catalog.

userKey A pointer to the new key you are providing.

password A pointer to the password string of the user or service whose key
you are providing. Specify nil for this field if you are not
providing a password. If you provide a password, the
Authentication Manager checks that the key was properly
translated from the password before adding the key to the catalog.

DESCRIPTION

Call the AuthChangeKey function when a password has been changed and you need to

store a new key in a server-based catalog. Call the AuthPasswordToKey function

before calling the AuthChangeKey function to obtain a key corresponding to the new

password.

You must provide an identity to this function so that the server can verify that the caller

has permission to change a key in the user’s record.

SPECIAL CONSIDERATIONS

If you change a key for a user or service and later attempt to use a local or specific

identity that was created using the old key, the function may fail. It is important to

update identities when changes are made to the passwords and therefore to the keys.

Before executing some functions, the Collaboration toolbox communicates with the

server to check identities and keys relative to each other.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ identity AuthIdentity Initiator’s identity
→ userRecord RecordIDPtr Target’s record ID
→ userKey AuthKeyPtr Target’s key
→ password RStringPtr Target’s password

Trap macro Selector

_oceTBDispatch $0208

C H A P T E R 9

Authentication Manager

9-26 Authentication Manager Reference

RESULT CODES

SEE ALSO

Use the AuthBindSpecificIdentity function (page 9-39) to update an identity when

you change a key.

The AuthPasswordToKey function is described on page 9-21.

The AuthAddKey function is discussed on page 9-23.

The AuthDeleteKey function is described next.

AuthDeleteKey

Call the AuthDeleteKey function to delete a key for a specified authentication client

from the server-based catalog.

pascal OSErr AuthDeleteKey (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion, ioResult, and identity fields.

noErr 0 No error
kOCEAWriteAccessDenied –1541 Write access denied
kOCENoKeyFound –1550 No key was found
kOCEMalFormedKey –1555 Key not derived properly

from password
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and Type incorrect for

creation ID
kOCENoSuchRecord –1618 No such record
kOCEStreamCreationErr –1625 An error occurred in creating

the stream

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ identity AuthIdentity Initiator’s identity
→ userRecord RecordIDPtr Target’s record ID

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-27

Field descriptions

userRecord A pointer to the record ID of the user or service whose key is to be
deleted.

DESCRIPTION

Call the AuthDeleteKey function to remove a key from the server-based catalog.

If you wish a new key to take the place of the deleted one in the server-based catalog,

you can call the AuthPasswordToKey function and then the AuthAddKey function.

SPECIAL CONSIDERATIONS

When you remove a key for a user or service from the server-based catalog, the

Authentication Manager can no longer create an authentication identity for that user or

service, build credentials, or have others build credentials to authenticate connections to

the user or service.

If you remove a key for a user and then later attempt to use a local or specific identity

that was created using the key, the function may fail. It is important to update identities

when changes are made to passwords and therefore to keys. Identities and keys are

checked relative to each other before some functions are allowed.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthPasswordToKey function is described on page 9-21.

The AuthAddKey function is discussed on page 9-23

Trap macro Selector

_oceTBDispatch $0209

noErr 0 No error
kOCEAWriteAccessDenied –1541 Write access denied
kOCENoKeyFound –1550 No key was found
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCENoSuchRecord –1618 No such record
kOCEStreamCreationErr –1625 An error occurred in creating

the stream

C H A P T E R 9

Authentication Manager

9-28 Authentication Manager Reference

The AuthChangeKey function is described on page 9-24.

Use the AuthBindSpecificIdentity function (page 9-39) to update an identity when

you change a key.

Local Identity Management

A local identity provides transparent access to the PowerTalk Setup catalog: it gives the

user access to all catalogs and services in the PowerTalk Setup catalog without the user

having to log on to each one individually. Any AOCE Catalog Manager or

Authentication Manager function that requires an identity parameter can use a local

identity. See “Local Identities” on page 9-8 for a discussion of local identities.

The Authentication Manager provides functions that you can use to

■ get the local identity number (AuthGetLocalIdentity)

■ add an application to the local identity notification queue
(AuthAddToLocalIdentityQueue)

■ remove an application from the local identity notification queue
(AuthRemoveFromLocalIdentityQueue)

The Authentication Manager also provides functions that the PowerTalk Key Chain uses

to

■ set up the local identity (AuthSetupLocalIdentity)

■ change the local identity (AuthChangeLocalIdentity)

■ lock the local identify (AuthLockLocalIdentity)

■ unlock the local identity (AuthUnlockLocalIdentity)

■ remove the local identity (AuthRemoveLocalIdentity)

AuthGetLocalIdentity

Call the AuthGetLocalIdentity function to get the local identity.

pascal OSErr AuthGetLocalIdentity (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-29

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

theLocalIdentity
The local identity.

DESCRIPTION

You can call the AuthGetLocalIdentity function to obtain the local identity. If the

local identity has not been set up, the AuthGetLocalIdentity function returns a

kOCEOCESetupRequired result code. If the local identity is locked, the

AuthGetLocalIdentity function returns a kOCELocalAuthenticationFail result

code.

If your application is not a background application, you can call the SDPPromptForID

function to prompt the user to unlock the local identity.

If your application runs only in the background, you can register with the

Authentication Manager using the AuthAddToLocalIdentityQueue function. Then

your application is notified when the local identity is created or unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthGetLocalIdentity function is used in an example in the section

“Authentication Using ASDSP” on page 9-12.

The SDPPromptForID function is described in the chapter “Standard Catalog Package”

in this book.

The AuthAddToLocalIdentityQueue function is discussed next.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
← theLocalIdentity LocalIdentity The local identity

Trap macro Selector

_oceTBDispatch $0204

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCESetupRequired –1633 Setup of local identity required

C H A P T E R 9

Authentication Manager

9-30 Authentication Manager Reference

AuthAddToLocalIdentityQueue

Call the AuthAddToLocalIdentityQueue function to add an application to the

Authentication Manager’s local identity notification queue.

pascal OSErr AuthAddToLocalIdentityQueue

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

clientdata A value for your use. The Authentication Manager passes the value
in this field to your notification routine.

notifyProc A pointer to your notification routine. You must provide a
notification routine to be called by the notification queue.

notifyFlags A flag byte that specifies when you want your notification routine
to be called: when the local identity is about to be locked, when it is
unlocked, when the user changes the name in the PowerTalk Key
Chain, or for some combination of these events.

appName A pointer to the name of your application.

DESCRIPTION

You call the AuthAddToLocalIdentityQueue function to add your notification

routine to the Authentication Manager’s notification queue.

You set the notifyFlags field to specify when you want your notification routine

called. Possible values for this field are as follows:

enum {kNotifyLockBit, kNotifyUnlockBit, kNotifyNameChangeBit};

enum

{kNotifyLockMask = 1L << kNotifyLockBit,

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long For your use
→ notifyProc NotificationProc Notification function
→ notifyFlags AuthNotifications Notification flags
→ appName StringPtr Application name

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-31

kNotifyUnlockMask = 1L << kNotifyUnlockBit

kNotifyNameChangeMask= 1L << kNotifyNameChangeBit

};

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For an example of the use of the AuthAddToLocalIdentityQueue function, see

Listing 9-1 on page 9-15.

The notification routine is described on page 9-69.

AuthRemoveFromLocalIdentityQueue

Call the AuthRemoveFromLocalIdentityQueue function to remove your notification

routine from the Authentication Manager’s notification queue.

pascal OSErr AuthRemoveFromLocalIdentityQueue

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

notifyProc The notification routine you provided when you called the
AuthAddToLocalIdentityQueue function.

Trap macro Selector

_oceTBDispatch $0205

noErr 0 No error

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ notifyProc NotificationProc Notification function

C H A P T E R 9

Authentication Manager

9-32 Authentication Manager Reference

DESCRIPTION

You call the AuthRemoveFromLocalIdentityQueue function to remove your

notification routine from the Authentication Manager’s notification queue. The

Authentication Manager informs the routines in the notification queue of changes in the

state of the local identity access.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For an example of the use of the AuthRemoveFromLocalIdentityQueue function,

see Listing 9-1 on page 9-15.

You use the AuthAddToLocalIdentityQueue function (page 9-30) to add a routine to

the notification queue.

The notification procedure is described on page 9-69.

AuthSetupLocalIdentity

The AuthSetupLocalIdentity function sets up the user name and password for the

local identity.

pascal OSErr AuthSetupLocalIdentity (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Trap macro Selector

_oceTBDispatch $0206

noErr 0 No error

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userName RStringPtr The user name
→ password RStringPtr The user password

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-33

Field descriptions

userName The name of the principal user of the local computer.

password The password to assign to the principal user of the local computer.

DESCRIPTION

You can use this function to set up the user name and password for the local identity.

Normally, however, the user sets up a local identity by specifying a name and password

in the PowerTalk Key Chain. You can call the SDPPromptForID function to prompt a

user for a password to unlock the local identity when necessary.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the AuthGetLocalIdentity function (page 9-28) to obtain a local identity

once it has been set up.

Use the SDPPromptForID function, which is described in the chapter “Standard

Catalog Package” in this book, to prompt the user for a name and password to unlock

the local identity. This function also returns the local identity.

AuthChangeLocalIdentity

The AuthChangeLocalIdentity function changes the password for the local identity.

pascal OSErr AuthChangeLocalIdentity

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0216

noErr 0 No error
kOCELocalIdentitySetupExists –1562 Local identity setup exists, use

AuthChangeLocalIdentity
instead

C H A P T E R 9

Authentication Manager

9-34 Authentication Manager Reference

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userName The name of the principal user of the local computer.

password The current password for the principal user of the local computer.

newPassword The new password you want to assign to the principal user of the
local computer.

DESCRIPTION

You can use this function to change the password for the local identity from within your

application. Normally, however, the user uses the PowerTalk Key Chain to change the

password for the local identity.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the AuthSetupLocalIdentity function (page 9-32) to set up a local

identity.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userName RStringPtr The user name
→ password RStringPtr The user password
→ newPassword RStringPtr The new user password

Trap macro Selector

_oceTBDispatch $0217

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEOCESetupRequired –1633 Setup of local identity required

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-35

AuthLockLocalIdentity

The AuthLockLocalIdentity function locks the local identity.

pascal OSErr AuthLockLocalIdentity (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

theLocalIdentity
The local identity.

appName The name of the application that denied locking, if the function fails
and returns the kOCEOperationDenied result code. Allocate a
pointer to a Str31 data type for this parameter.

DESCRIPTION

To lock the local identity, a user can choose the Lock Key Chain command from the

Special menu of the Finder or set the PowerTalk Setup control panel to lock the Key

Chain after some specified period of inactivity. You can use the

AuthLockLocalIdentity function to lock the local identity from within your

application.

When you call the AuthLockLocalIdentity function, the Authentication Manager

calls every routine in its notification queue to give it an opportunity to deny the lock

operation. If any application denies the operation, the AuthLockLocalIdentity

function returns the kOCEOperationDenied result code and the appName field points

to the name of the application that denied the locking operation.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ theLocalIdentity LocalIdentity The local identity
← appName StringPtr The name of the application

that denied locking (if any)

C H A P T E R 9

Authentication Manager

9-36 Authentication Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The notification queue is described in “Local Identity Status Notification” on page 9-9.

You use the AuthAddToLocalIdentityQueue function (page 9-30) to add a routine to

the notification queue.

You can use the AuthUnlockLocalIdentity function (described next) to unlock a

local identity.

AuthUnlockLocalIdentity

Call the AuthUnlockLocalIdentity function to unlock the local identity.

pascal OSErr AuthUnlockLocalIdentity

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Trap macro Selector

_oceTBDispatch $0215

noErr 0 No error
kOCEOperationDenied –1568 Local identity operation denied

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ theLocalIdentity LocalIdentity The local identity
→ userName RStringPtr The name of the user
→ password RStringPtr The user password

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-37

Field descriptions

theLocalIdentity
The local identity.

userName The name of the principal user of the local computer.

password The password for the principal user of the local computer.

DESCRIPTION

To unlock a local identity, the user can choose the Unlock Key Chain command from the

Finder’s Special menu. You can also call the SDPPromptForID function to prompt the

user for a password and unlock the local identity. Alternatively, you can use the

AuthUnlockLocalIdentity function to unlock the local identity from within your

application. If the local identity does not exist, this function creates one.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthLockLocalIdentity function is described on page 9-35.

The AuthSetupLocalIdentity function is described on page 9-32.

The SDPPromptForID function is described in the chapter “Standard Catalog Package”

in this book.

AuthRemoveLocalIdentity

Call the AuthRemoveLocalIdentity function to remove the local identity.

pascal OSErr AuthRemoveLocalIdentity

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $0214

noErr 0 No error
kOCEOCESetupRequired –1633 Setup of local identity required

C H A P T E R 9

Authentication Manager

9-38 Authentication Manager Reference

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userName The name of the principal user of the local computer

password The password for the principal user of the local computer

DESCRIPTION

Normally, a user cannot remove a local identity from a PowerTalk system without

replacing it with a new local identity or reinstalling the PowerTalk system software. The

user normally uses the Key Chain to change a local identity. You can use the

AuthRemoveLocalIdentity function to remove the local identity, effectively

rendering the Key Chain inoperable. The user then is prompted to set up a local identity

the next time he or she attempts to use the PowerTalk system software.

IMPORTANT

Because removing the local identity disrupts the use of the PowerTalk
system software on the user’s computer, warn users before allowing
them to remove a local identity. ▲

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To lock a local identity so that the user must enter the password before using PowerTalk,

use the AuthLockLocalIdentity function (page 9-35).

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userName RStringPtr The name of the user.
→ password RStringPtr The user password.

Trap macro Selector

_oceTBDispatch $0218

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEOCESetupRequired –1633 Setup of local identity required

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-39

Specific Identity Management

A specific identity is a shorthand representation for the name and key of an alternate

user. See “Specific Identities” on page 9-9 for a further discussion.

The Authentication Manager provides the following specific identity management

services:

■ binding a new specific identity number to a user’s record ID and key
(AuthBindSpecificIdentity)

■ unbinding a specific identity number from a user’s record ID and key
(AuthUnbindSpecificIdentity)

■ using a specific identity to get a user’s record ID
(AuthGetSpecificIdentityInfo)

AuthBindSpecificIdentity

Call the AuthBindSpecificIdentity function to bind an identity number to a

specified authentication client’s record ID and key.

pascal OSErr AuthBindSpecificIdentity

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The specific identity.

userRecord A pointer to the record ID of the authentication client.

userKey A pointer to the user or service key for the client.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
← userIdentity AuthIdentity Binding identity
→ userRecord RecordIDPtr Entity’s record ID
→ userKey AuthKeyPtr Entity’s key

C H A P T E R 9

Authentication Manager

9-40 Authentication Manager Reference

DESCRIPTION

Call the AuthBindSpecificIdentity function to bind an identity to a record ID and

key you provide. The Authentication Manager contacts the catalog containing the record

identified by the userRecord field to verify the name and key. If the name is valid and

the key is correct, the AuthBindSpecificIdentity function returns an identity.

You can use the identity returned by this function as an input to any AOCE function that

requires an identity. The AOCE software uses the identity to check whether the

authentication client has sufficient access privileges to do the operation requested.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthBindSpecificIdentity function is used in an example in the section

“Authentication Using ASDSP” on page 9-12.

You can use the AuthPasswordToKey function (page 9-21) to get a key from a

password.

The AuthUnbindSpecificIdentity function is described next.

Trap macro Selector

_oceTBDispatch $0200

noErr 0 No error
kOCENoKeyFound –1550 Client has no key
kOCEWrongIdentityOrKey –1557 Incorrect key for client
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCENoSuchRecord –1618 Record ID doesn’t exist
kOCEStreamCreationErr –1625 An error occurred in creating

the stream

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-41

AuthUnbindSpecificIdentity

The AuthUnbindSpecificIdentity function unbinds an identity from a user’s

name and key.

pascal OSErr AuthUnbindSpecificIdentity

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity to be deleted.

DESCRIPTION

Call the AuthUnbindSpecificIdentity function to remove permanently an identity

you no longer need; for example, when your application quits.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthBindSpecificIdentity function is described on page 9-39.

The AuthGetSpecificIdentityInfo function (described next) returns the record ID

associated with a specific identity.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Binding identity

Trap macro Selector

_oceTBDispatch $0201

noErr 0 No error
kOCENotLocalIdentity –1565 You cannot unbind a local identity
kOCEUnknownID –1567 Identity passed is not valid

C H A P T E R 9

Authentication Manager

9-42 Authentication Manager Reference

AuthGetSpecificIdentityInfo

Call the AuthGetSpecificIdentityInfo function to get the record ID (but not the

user or service key) associated with the specified identity.

pascal OSErr AuthGetSpecificIdentityInfo

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity whose record ID is desired.

userRecord A pointer to the record ID structure for the record, in which the
record ID is returned.

DESCRIPTION

Call the AuthGetSpecificIdentityInfo function to obtain the record ID associated

with a particular identity.

The userRecord field must contain a pointer to a recordID structure of maximum

size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Identity
↔ userRecord RecordIDPtr Entity’s record ID

Trap macro Selector

_oceTBDispatch $0203

noErr 0 No error
kOCENotLocalIdentity –1565 You cannot unbind a local identity
kOCEUnknownID –1567 Identity passed is not valid

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-43

SEE ALSO

The chapter “AOCE Utilities” in this book describes how to allocate space for a record ID.

The AuthBindSpecificIdentity function is described on page 9-39.

The AuthUnbindSpecificIdentity function is described on page 9-41.

Credentials Management

Credentials enable initiators and recipients to verify each other’s identities. See

“Credentials” on page 9-5 for more information. The Authentication Manager provides

functions to

■ get credentials from the server(AuthGetCredentials)

■ obtain a proxy with which to get credentials (AuthMakeProxy)

■ use a proxy to get credentials from the server (AuthTradeProxyForCredentials)

AuthGetCredentials

Call the AuthGetCredentials function to obtain credentials from the authentication

server.

pascal OSErr AuthGetCredentials (AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Initiator identity
→ recipient RecordIDPtr Record ID of recipient
↔ sessionKey AuthKeyPtr Session key
↔ expiry UTCTime Desired/actual times
↔ credentialsLength unsigned long Buffer size and credentials size
↔ credentials Ptr Credentials buffer

C H A P T E R 9

Authentication Manager

9-44 Authentication Manager Reference

Field descriptions

userIdentity The identity of the initiator.

recipient A pointer to the record ID of the recipient.

sessionKey A pointer to a buffer that you supply to the function. The function
puts the session key into this buffer.

expiry When you call the function, you use the expiry field to specify the
time at which you want the credentials to expire. When the function
completes, this field specifies the actual expiration time: your
desired expiration time or the current time plus 8 hours, whichever
is sooner.

credentialsLength
When you call the function, you use this field to specify the size of
the buffer pointed to by the credentials field. A buffer three
times the size of a packed record ID is usually sufficient for
credentials. Use the kPackedRecordIDMaxBytes constant
defined in the chapter “AOCE Utilities” in this book to determine
the size of a packed record ID. When the function completes, this
field indicates the actual amount of data written into the buffer.

credentials A pointer to the buffer you provide to hold the returned credentials.

DESCRIPTION

Call the AuthGetCredentials function to get credentials to establish an authenticated

connection with the named recipient. Any entity can request credentials for any other

entity.

Your application should call the AuthGetUTCTime function before calling the

AuthGetCredentials function because the expiration time you specify is based on

universal coordinated time (UTC). You add the desired number of seconds to the current

time returned by the AuthGetUTCTime function.

If the AuthGetCredentials function is successful, the buffer pointed to by the

credentials field contains encrypted credentials and the sessionKey field contains

the key to use during the challenge portion of the authentication process. The credentials

returned by the server to the initiator are encrypted in the key of the recipient.

If the buffer you provide is not large enough to hold the credentials, the function returns

the kOCEMoreData result code. You can increase the buffer size and call the function

again.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $020B

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-45

RESULT CODES

SEE ALSO

The authentication process is described in “Steps in the Authentication Process”

beginning on page 9-5.

The AuthGetCredentials function is used in an example in the section

“Authentication Using ASDSP” on page 9-12.

The AuthGetUTCTime function is discussed on page 9-53.

The AuthDecryptCredentials function is discussed on page 9-59.

AuthMakeProxy

Call the AuthMakeProxy function to create a proxy.

pascal OSErr AuthMakeProxy (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

noErr 0 No error
kOCECredentialsExpired –1546 Desired expiration time has

passed
kOCERecipientKeyNotFound –1552 The recipient key was not

found
kOCEInitiatorKeyProblem –1558 No key, or initiator’s key

changed
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCEMoreData –1623 Buffer was too small to hold

all available data
kOCEStreamCreationErr –1625 An error occurred in creating

the stream

C H A P T E R 9

Authentication Manager

9-46 Authentication Manager Reference

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity of the user or service for which you are requesting the
proxy.

recipient A pointer to the record ID of the recipient.

firstValid The time that the proxy is to become valid.

expiry The last time at which you want the proxy to be valid

authDataLength
Reserved. Set this parameter to 0.

authData Reserved. Set this parameter to nil.

proxyLength The length of the buffer to which the proxy field points. A buffer
twice the size of a packed record ID is usually sufficient for a proxy.
Use the kPackedRecordIDMaxBytes constant defined in the
chapter “AOCE Utilities” in this book to determine the size of a
packed record ID. The function returns the actual length of the
proxy in this parameter.

proxy A pointer to the proxy buffer, in which the function returns the
proxy.

intermediary A pointer to the record ID of the intermediary that will use the
proxy to obtain credentials in your behalf.

DESCRIPTION

Call the AuthMakeProxy function to create a proxy. A proxy is granted to an

intermediary for use with a particular recipient during a specified time period only. The

AuthMakeProxy function creates a proxy and returns it to you. You can then pass it to

an intermediary to use on your behalf. The proxy is valid only until the expiration time

you specify in the expiry field. To obtain credentials, the intermediary must call the

AuthTradeProxyForCredentials function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Principal identity
→ recipient RecordIDPtr Recipient record ID
→ firstValid UTCTime Time proxy becomes valid
→ expiry UTCTime Time proxy expires
→ authDataLength unsigned long Must be 0
→ authData Ptr Must be nil
↔ proxyLength unsigned long Buffer size and proxy size
↔ proxy Ptr Proxy buffer
→ intermediary RecordIDPtr Intermediary record ID

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-47

If the function returns a kOCEMoreData result code, you can call the AuthMakeProxy

function again after increasing the buffer size.

SPECIAL CONSIDERATIONS

The Authentication Manager provides no mechanism for sending a proxy from an

initiator to an intermediary. You must devise your own mechanism and protocol for this

purpose.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthMakeProxy function is used in an example in the section “Authentication

Using a Proxy” on page 9-14.

See “Proxies” on page 9-10 for a discussion of proxies and “Steps in the Authentication

Process” beginning on page 9-5 for a description of the authentication process.

The AuthTradeProxyForCredentials function is described next.

AuthTradeProxyForCredentials

Call the AuthTradeProxyForCredentials function to trade a proxy for credentials.

pascal OSErr AuthTradeProxyForCredentials

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0212

noErr 0 No error
kOCEMoreData –1623 Buffer was too small to hold all available data

C H A P T E R 9

Authentication Manager

9-48 Authentication Manager Reference

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity of the intermediary.

recipient A pointer to the record ID of the recipient.

sessionKey A pointer to the session key buffer that you supply. The function
returns the session key in this buffer.

expiry The desired expiration time for the credentials. The function returns
the actual expiration time.

credentialsLength
As an input, the size of the buffer you are providing to hold the
returned credentials. Use the kPackedRecordIDMaxBytes
constant defined in the chapter “AOCE Utilities” in this book to
determine the size needed. On return, this field holds the actual size
of the credentials.

credentials A pointer to the buffer in which the function places the encrypted
credentials.

proxyLength The size of the proxy.

proxy A pointer to the buffer containing the proxy used to get the
credentials.

principal A pointer to the record ID of the user or service who created the
proxy.

DESCRIPTION

Calling the AuthTradeProxyForCredentials function is very similar to calling the

AuthGetCredentials function, except that the creator of the proxy first calls the

AuthMakeProxy function to obtain a proxy and gives the proxy to an intermediary;

then the intermediary calls the AuthTradeProxyForCredentials function for

credentials. In the principal field, you specify the entity who made the proxy.

The expiration time of the credentials depends on the maximum lifetime permitted by

the Authentication Manager, the period during which the proxy is valid, and the

expiration time you request for the credentials. For example, assume that the proxy has

an expiration time of 3:00 P.M. on a given day of a given month of a given year. Assume

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Intermediary identity
→ recipient RecordIDPtr Recipient name
↔ sessionKey AuthKeyPtr Session key
↔ expiry UTCTime Credentials expiration times
↔ credentialsLength unsigned long Buffer size and credentials size
↔ credentials Ptr Credentials buffer
→ proxyLength unsigned long Actual proxy size
→ proxy Ptr Proxy buffer
→ principal RecordIDPtr Record ID of principal

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-49

all other times in this example are for the same day, month, and year as the proxy

expiration time. First, if it is 3:15 P.M. when the intermediary requests credentials, the

Authentication Manager refuses the request because the proxy has expired. If, however,

the intermediary requests credentials at 5:00 A.M., the credentials expire at 1:00 P.M.

even though you requested a 3:00 P.M. expiration, because the server enforces a

maximum lifetime for credentials of 8 hours. If you request credentials at any time

between 7:01 A.M. and 2:59 P.M., the credentials expire at 3:00 P.M., because credentials

must expire at or before the time specified by the proxy expiration time.

You can use the AuthTradeProxyForCredentials function to request credentials as

many times as you wish during the lifetime of the proxy.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

 The AuthTradeProxyForCredentials function is used in an example in the section

“Authentication Using a Proxy” on page 9-14.

Trap macro Selector

_oceTBDispatch $0213

noErr 0 No error
kOCEParamErr –50 No recipient, or invalid

recipient dNode
kOCEAccessRightsInsufficient –1542 Intermediary’s record ID does

not appear in the proxy
kOCEProxyImmature –1547 Proxy not yet valid
kOCEProxyExpired –1548 Proxy has expired
kOCEDisallowedRecipient –1549 Recipient record ID does not

appear in proxy
kOCERecipientKeyNotFound –1552 No key found
kOCEAgentKeyNotFound –1553 Intermediary’s key not found
kOCEInitiatorKeyProblem –1558 Can’t decipher instructions or

the principal’s key was not
found

kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID of recipient or
principal

kOCEMoreData –1623 Buffer was too small to hold
all available data

kOCEStreamCreationErr –1625 An error occurred in creating
the stream

C H A P T E R 9

Authentication Manager

9-50 Authentication Manager Reference

See “Proxies” on page 9-10 for a discussion of proxies and “Steps in the Authentication

Process” beginning on page 9-5 for a description of the authentication process.

The AuthGetCredentials function is discussed on page 9-43.

The AuthMakeProxy function is discussed on page 9-45.

Creation ID Resolution

Creation IDs are unique identifiers for records. The are described in detail in the chapters

“AOCE Utilities” and “Catalog Manager” in this book. The AuthResolveCreationID

function returns the creation ID of a record with the name and type that you supply. If

there are multiple records with the same name and type, then it returns the creation IDs

of all of the records that match the name and type.

AuthResolveCreationID

Call the AuthResolveCreationID function to obtain all the dNode numbers and

creation IDs for all the records that have a given name and type.

pascal OSErr AuthResolveCreationID (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion, ioResult, and identity fields.

Field descriptions

userRecord A pointer to the record ID of the entity whose dNode number and
creation ID are to be returned. You must specify the name and type
for the entity. The RLI must include the dNode number or the

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ identity AuthIdentity Identity; must be 0
→ userRecord RecordIDPtr A record ID
→ bufferLength unsigned long Buffer size
↔ buffer Ptr Data buffer
← totalMatches unsigned long Number of matches found
← actualMatches unsigned long Number of matches returned

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-51

pathname of the dNode in which you expect the user’s record to be
located. The cid field of the record ID must be set to NULL before
the function is called.

bufferLength The size of the buffer for holding dNode numbers and creation IDs.

buffer A pointer to the buffer to hold dNode numbers and creation IDs.

totalMatches Total number of matching names found in the server catalog.

actualMatches Number of matches returned in the buffer. This number is
determined by how many dNode numbers and creation IDs fit in
the buffer.

DESCRIPTION

The creation ID is a unique identifier for a given record. If you don’t know this identifier

but know the record ID, you can determine the creation ID by calling the

AuthResolveCreationID function. There may be several records with the same name

and type. It is the responsibility of your user application to prompt users to choose the

record desired from those provided by this function.

In most cases, you should search the Users and Groups folder, which has the dNode

number 3, for the record. This folder normally contains the User record or an alias to the

User record of every user with an account on the PowerShare server. If the Collaboration

toolbox finds a record with the name and type you specify, it returns the dNode number

and creation ID of that record. If it finds an alias to a record with the name and type you

specify, it resolves the alias and returns the dNode number and creation ID of the

original record.

You must set the creation ID of the record ID to NULL before calling the

AuthResolveCreationID function. You do this by calling the

OCESetCreationIDToNull function.

The server finds all records in the catalog whose name and type match those in the

userRecord field. Depending on the number of matches, the following results are

returned

■ Exactly one match: the dNode number and creation ID are put in the buffer.

■ More than one match if the buffer is large enough to hold all matches: The buffer
contains the dNode numbers and creation IDs of all records with matching names and
types. A kOCEAmbiguousMatches result code is returned.

■ More than one match if the buffer is not large enough to hold all the matches: the
totalMatches field contains the number of matches that were found in the server
catalog. The actualMatches field contains how many of the dNode numbers and
creation IDs fit in the buffer, and the buffer contains as many dNode numbers and
creation IDs as fit, packed one after the other. A kOCEMoreData result code is
returned.

■ No matches: a kOCENoSuchRecord result code is returned.

C H A P T E R 9

Authentication Manager

9-52 Authentication Manager Reference

When you have more than one match and the buffer is not large enough, you can call

this function again using an appropriately sized buffer. The dNode numbers and

creation IDs are loaded into the user buffer in an array the size of the actualMatches

field.

SPECIAL CONSIDERATIONS

This function does not check access controls. You must pass a 0 in the identity field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCESetCreationIDToNull function is described in the chapter “AOCE Utilities”

in this book.

Time Service

In a distributed system of many computers, you need a common time for

communication. The Authentication Manager provides the universal coordinated time

(UTC), also known as Greenwich Mean Time. You can use UTC to specify issue and

expiration times for credentials and for other possible uses in your application. Call the

AuthGetUTCTime function to get the current UTC.

Trap macro Selector

_oceTBDispatch $0202

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEUnknownID –1567 Identity passed is not valid
kOCEAmbiguousMatches –1569 More than one match
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCENoSuchRecord –1618 No such record found with

creation ID
kOCEMoreData –1623 Buffer was too small to hold

all available data
kOCEStreamCreationErr –1625 An error occurred in creating

the stream

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-53

AuthGetUTCTime

The AuthGetUTCTime function returns the current universal coordinated time (UTC)

that is maintained by a catalog server.

pascal OSErr AuthGetUTCTime (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

pRLI Indicates which catalog to consult to determine the UTC. Time
servers within a catalog communicate among themselves to
determine their UTC. Servers in a different catalog might have a
different value of UTC. If you pass a valid record location
information structure (RLI), you get that catalog’s version of UTC. If
you pass nil as the value of the pRLI field, the Authentication
Manager calculates the values of the theUTCTime and
theUTCOffset fields according to the clock in the user’s
Macintosh computer and the settings in the Map control panel.
Packed record location information structures are described in the
chapter “AOCE Utilities” in this book.

theUTCTime The function returns the current universal coordinated time (UTC)
expressed as the number of seconds since 12:00 midnight, 1 January,
1904.

theUTCOffset The function returns the difference between the user’s Macintosh
computer’s clock and UTC at Greenwich, England, expressed as the
number of seconds. A negative number indicates that the user’s
computer is west of Greenwich according to the setting in the Map
control panel.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ pRLI PackedRLIPtr Packed RLI of the node
← theUTCTime UTCTime UTC seconds east of Greenwich
← theUTCOffset UTCOffset Offset from UTC

C H A P T E R 9

Authentication Manager

9-54 Authentication Manager Reference

DESCRIPTION

Call the AuthGetUTCTime function to obtain the current UTC. When you provide a

valid RLI for a catalog, the function determines the UTC from the catalog server and

local time from the settings in the Map control panel. The function returns the current

UTC seconds since 1/1/1904 along with the offset from UTC in seconds of the local time,

based on the distance of the local computer from Greenwich, England. Other

Authentication Manager functions require input parameters based on UTC.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthGetUTCTime function is used in an example in the section “Authentication

Using ASDSP” on page 9-12.

Non-ASDSP Authentication Utilities

After obtaining credentials using the AuthGetCredentials function or the

AuthTradeProxyForCredentials function, if you are not using the ASDSP transport

mechanism, you can call functions to help you complete the challenge phase of

authentication directly. This process for authenticating users is described in

“Authentication for Non-ASDSP Users” beginning on page 9-13.

The Authentication Manager provides functions to

■ make a challenge (AuthMakeChallenge)

■ generate a reply to the challenge and a counterchallenge (AuthMakeReply)

■ verify the reply and reply to the counterchallenge (AuthVerifyReply)

■ extract information from the credentials (AuthDecryptCredentials)

Trap macro Selector

_oceTBDispatch $021A

noErr 0 No error
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEStreamCreationErr –1625 An error occurred in creating

the stream

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-55

AuthMakeChallenge

Call the AuthMakeChallenge function to generate a challenge, encrypted in the

session key.

pascal OSErr AuthMakeChallenge (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

key A pointer to the session key.

challenge A pointer to a buffer you provide in which to put the encrypted
challenge.

challengeBufferLength
The size of the challenge buffer. The buffer must be at least 8 bytes
in size.

challengeLength
The length of the encrypted challenge.

DESCRIPTION

An application that does not use ASDSP as the transport mechanism calls the

AuthMakeChallenge function when it begins the process of setting up a new

authenticated connection. Prior to calling this function, the application must obtain

credentials from the authentication server using the AuthGetCredentials function or

the AuthTradeProxyForCredentials function.

The AuthMakeChallenge function generates a token (a random number as described

in the section “Steps in the Authentication Process” beginning on page 9-5), and encrypts

it with the session key to create a challenge. You must then send the challenge to the

recipient. Only initiators call this function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ key AuthKeyPtr Session key
↔ challenge Ptr Challenge buffer
→ challengeBufferLength unsigned long Challenge buffer size
← challengeLength unsigned long Challenge length

C H A P T E R 9

Authentication Manager

9-56 Authentication Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

 The AuthMakeChallenge function is used in an example in the section

“Authentication for Non-ASDSP Users” on page 9-13.

The AuthGetCredentials function is described on page 9-43.

The AuthTradeProxyForCredentials function is described on page 9-47.

The recipient uses the AuthMakeReply function, described next, to reply to the

challenge.

AuthMakeReply

The AuthMakeReply function uses the token from an initial challenge to generate

another token to be used as a challenge reply and also makes a counterchallenge.

pascal OSErr AuthMakeReply (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Trap macro Selector

_oceTBDispatch $020F

noErr 0 No error
kOCELengthError –1637 The supplied buffer was too small

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ key AuthKeyPtr Session key
→ challenge Ptr Challenge
↔ reply Ptr Reply buffer pointer
→ replyBufferLength unsigned long Reply buffer length
→ challengeLength unsigned long Challenge length
← replyLength unsigned long Length of reply

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-57

Field descriptions

key The session key.

challenge The challenge that was received from the initiator.

reply A pointer to the buffer you supply into which the function puts the
reply and the counterchallenge.

replyBufferLength
The length of the challenge reply buffer.

challengeLength
The length of the challenge.

replyLength The length of the reply.

DESCRIPTION

The AuthMakeReply function decrypts a challenge created by the
AuthMakeChallenge function, increments by 1 the number contained in the challenge,

and then encrypts that new number in the session key. The result is the challenge reply. If

you are a recipient, you call the AuthMakeReply function after you use the

AuthDecryptCredentials function to decrypt the credentials—which are encrypted

in your client key—to obtain the session key.

The AuthMakeReply function places in your buffer the reply to the challenge plus a

counterchallenge. After you send the reply and counterchallenge to the initiator, the

initiator calls the AuthVerifyReply function to verify the reply, thus continuing the

challenge phase for authenticating a connection. The AuthMakeReply function is called

only by recipients.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthMakeReply function is used in an example in the section “Authentication for

Non-ASDSP Users” on page 9-13.

Use the AuthDecryptCredentials function (page 9-59) to extract the session key

from the encrypted credentials.

The AuthMakeChallenge function is described on page 9-55. The AuthVerifyReply

function is discussed next.

Trap macro Selector

_oceTBDispatch $0210

noErr 0 No error
kOCELengthError –1637 The supplied buffer was too small

C H A P T E R 9

Authentication Manager

9-58 Authentication Manager Reference

AuthVerifyReply

The AuthVerifyReply function verifies a challenge reply and makes a reply to the

counterchallenge.

pascal OSErr AuthVerifyReply (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

key A pointer to the session key.

challenge A pointer to the challenge you sent last.

reply A pointer to a buffer containing the reply returned by the other end
of the connection.

challengeLength
The length of the challenge.

replyLength The length of the reply.

DESCRIPTION

Call the AuthVerifyReply function to verify a challenge reply and to make a reply to

the counterchallenge during the challenge phase of setting up a secure connection. Both

the initiator and the recipient call this function to verify the challenge replies they receive.

This function returns the result code noErr if the reply, after decryption, equals the

challenge sent plus 1. A value of kOCEAuthenticationTrouble is returned by the

AuthVerifyReply function if the reply cannot be verified. In that case, authentication

has failed, and you should either terminate communication with the other party or

continue communication with the understanding that the other party is not an

authenticated entity.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ key AuthKeyPtr Session key
→ challenge Ptr Challenge
↔ reply Ptr Reply buffer
→ challengeLength unsigned long Length of challenge
↔ replyLength unsigned long Length of reply

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-59

After calling this function, the initiator should send the recipient the contents of the

buffer pointed to by the reply field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthVerifyReply function is used in an example in the section “Authentication

for Non-ASDSP Users” on page 9-13.

The AuthMakeReply function is described on page 9-56.

AuthDecryptCredentials

The AuthDecryptCredentials function decrypts credentials, extracting the session

key, a pointer to the initiator’s record ID, and the issue and expiration times for the

credentials. Additionally, if an intermediary used a proxy to generate the credentials, the

function returns a pointer to the record ID for the intermediary.

pascal OSErr AuthDecryptCredentials (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0211

noErr 0 No error
kOCEAuthenticationTrouble –1571 Reply incorrect for the challenge sent

C H A P T E R 9

Authentication Manager

9-60 Authentication Manager Reference

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity of the recipient wanting to decrypt credentials. The
Authentication Manager gets your client key from your user record.

initiatorRecord
The record ID of the entity initiating the challenge process. If you
pass a local identity in the userIdentity field, you must pass in
the initiatorRecord field a record ID containing a record
location information structure (RLI struct) that specifies the catalog
of the recipient. The function returns the record ID of the initiator in
this field.

sessionKey The session key.

expiry The expiration time for the credentials.

issueTime The credentials issue time.

credentialsLength
The size of the credentials.

credentials A pointer to the buffer holding the credentials to be decrypted.

hasIntermediary
A Boolean value indicating whether the credentials were sent by an
intermediary. If true, these credentials were obtained via a proxy
by calling the AuthTradeProxyForCredentials function.

intermediary A pointer to the record ID of an intermediary, if any. You must
allocate the record ID structure when you call the function. If you
specify nil for this pointer, the function does not return the
intermediary’s record ID.

DESCRIPTION

When you are not using ASDSP as the transport mechanism, a recipient can use the

AuthDecryptCredentials function to decrypt credentials received during a

challenge. ASDSP decrypts credentials for its users, so you do not need to call the

AuthDecryptCredentials function if you are using ASDSP.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Recipient’s identity
↔ initiatorRecord RecordIDPtr Initiator’s record ID
← sessionKey AuthKeyPtr Session key
← expiry UTCTime Credentials expiry time
← issueTime UTCTime Credentials issue time
→ credentialsLength unsigned long Actual credentials size
→ credentials Ptr Credentials to be decrypted
← hasIntermediary Boolean Intermediary found flag
↔ intermediary RecordIDPtr Intermediary who called

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-61

Because the credentials are encrypted in the client key of the intended recipient, the

function fails (with the result code kOCEUnsupportedCredentialsVersion) if you

were not the intended recipient.

The sessionKey field is also given to the user or service requesting the decrypted

credentials so that communicating users or services can share a key temporarily. You use

this information to make encrypted challenge and challenge reply messages to complete

the authentication process.

It is up to the user or service to refuse service if the credentials are premature or have

expired.

If the function completes successfully, the initiatorRecord, sessionKey, expiry,

issueTime, and intermediary fields contain plain text information extracted from

the credentials.

SPECIAL CONSIDERATIONS

The recipient and initiator must be using the same PowerShare catalog for this function

to succeed.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

 The AuthDecryptCredentials function is used in an example in the section

“Authentication for Non-ASDSP Users” on page 9-13.

The AuthGetCredentials function is discussed on page 9-43.

The AuthTradeProxyForCredentials function is described on page 9-47.

PowerTalk Setup Catalog Management

The PowerTalk Setup catalog is a special personal catalog that contains information

about the catalogs and electronic mail systems that are available to the principal user of

the computer (see “The PowerTalk Setup Catalog” on page 9-9). Only CSAM and

personal-MSAM template developers need to use the functions described in this section.

If you are writing an application, you do not need to use these functions. See the chapter

Trap macro Selector

_oceTBDispatch $020C

noErr 0 No error
kOCEUnsupportedCredentialsVersion –1543 Problem reading the

credentials

C H A P T E R 9

Authentication Manager

9-62 Authentication Manager Reference

“Service Access Module Setup” in Inside Macintosh: Service Access Modules for a complete

description of setup templates and the PowerTalk Setup catalog.

The Authentication Manager provides functions associated with the PowerTalk Setup

catalog to

■ get the record ID and native name for a catalog in the PowerTalk Setup catalog
(OCESetupGetDirectoryInfo)

■ install catalogs and their passwords in the PowerTalk Setup catalog
(OCESetupAddDirectoryInfo)

■ change the password used to access a catalog in the PowerTalk Setup catalog
(OCESetupChangeDirectoryInfo)

■ remove a catalog from the PowerTalk Setup catalog
(OCESetupRemoveDirectoryInfo)

OCESetupGetDirectoryInfo

Call the OCESetupGetDirectoryInfo function to get the record ID and native name

of a specified catalog.

pascal OSErr OCESetupGetDirectoryInfo

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

directoryName A pointer to the catalog name.

discriminator A value that differentiates two catalogs with the same name. It is
part of the RLI structure.

recordID A pointer to a record ID structure into which the function places the
record ID of the catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Catalog discriminator
↔ recordID RecordIDPtr Catalog record ID
↔ nativeName RStringPtr User’s name
↔ password RStringPtr Password

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-63

nativeName A pointer to an RString structure into which the function places
the native name. Allocate a buffer large enough to hold an
RString64 structure to hold this name.

password For non-PowerShare catalogs, a pointer to an RString structure
into which the function places the user or service password.
Allocate a buffer large enough to hold an RString64 structure to
hold this password. This field is undefined for PowerShare catalogs.

DESCRIPTION

Call the OCESetupGetDirectoryInfo function to obtain the native name and record

ID for a particular catalog installed in the PowerTalk Setup catalog. You specify the

catalog name and discriminator. The native name is generally the user’s name or account

name in the external catalog, if it is different from the name of the user’s User record.

The CSAM or MSAM developer specifies this native name when installing the SAM in

the Setup catalog.

The Collaboration toolbox returns the password only for non-PowerShare catalogs. An

MSAM or CSAM can use this function to obtain from the Setup catalog the password

required by the external system the SAM supports.

You must provide the buffers for the record ID, native name, and password that are

returned.

SPECIAL CONSIDERATIONS

The local ID must be unlocked before you call this function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “The PowerTalk Setup Catalog” on page 9-9 for a description of the PowerTalk Setup

catalog. See the chapter “Service Access Module Setup” in Inside Macintosh: Service Access
Modules for a complete description of setup templates.

Record IDs and RLI structures are described in the chapter “AOCE Utilities” in this book.

The chapter “AOCE Utilities” in this book shows sample code that allocates space for a

record ID.

Trap macro Selector

_oceTBDispatch $020E

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEDirectoryIdentitySetupDoesNotExist –1564 Specific catalog has

not been set up

C H A P T E R 9

Authentication Manager

9-64 Authentication Manager Reference

OCESetupAddDirectoryInfo

Call the OCESetupAddDirectoryInfo function to add a catalog and its associated

password to the PowerTalk Setup catalog.

pascal OSErr OCESetupAddDirectoryInfo

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

directoryRecordCID
The creation ID of the Combined record or Catalog record in the
Setup catalog. You can use the kDETcmdGetDSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

recordID A pointer to the record ID specifying the user for the catalog.

password A pointer to the password associated with the record ID in the
catalog.

DESCRIPTION

Only a setup template for a service access module (SAM) calls the

OCESetupAddDirectoryInfo function. Before calling the

OCESetupAddDirectoryInfo function, be sure the local identity is unlocked.

The RLI data structure within the user’s record ID must contain the catalog name to be

added to the Combined record or Catalog record.

The AOCE software encrypts the password before putting it in the PowerTalk Setup

catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ directoryRecordCID CreationID Creation ID of catalog record
→ recordID RecordIDPtr Record ID for catalog
→ password RStringPtr Password

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-65

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Creation IDs and the RLI structure are discussed in the chapter “AOCE Utilities” in this

book.

The kDETcmdGetDSSpec template callback function is described in the chapter “AOCE

Templates” in this book.

Setup templates and the procedure for adding a SAM to the Setup catalog are described

in the chapter “Service Access Module Setup” in Inside Macintosh: Service Access Modules.

OCESetupChangeDirectoryInfo

Call the OCESetupChangeDirectoryInfo function to change the record ID and

password for an existing catalog in the PowerTalk Setup catalog. The Authentication

Manager verifies the current catalog password before changing it to the new password.

pascal OSErr OCESetupChangeDirectoryInfo

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0219

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEDirectoryIdentitySetupExists –1563 Identity has already been set

up
kOCEDirectoryNotFoundErr –1630 Catalog was not found in the

list

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ directoryRecordCID CreationID Catalog creation ID
→ recordID RecordIDPtr User’s record ID
→ password RStringPtr Password
→ newPassword RStringPtr New password

C H A P T E R 9

Authentication Manager

9-66 Authentication Manager Reference

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

directoryRecordCID
The creation ID of the Combined record or Catalog record in the
Setup catalog. You can use the kDETcmdGetDSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

recordID A pointer to the new record ID for the user. If you don’t want to
change the record ID, specify the old record ID.

password A pointer to the current password associated with the record ID.

newPassword A pointer to the new password to be associated with the record ID.
If you don’t want to change the password, repeat the old password
in this field.

DESCRIPTION

Only a setup template for a SAM calls this function. Before calling the

OCESetupChangeDirectoryInfo function, be sure the local identity is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Creation IDs and record IDs are discussed in the chapter “AOCE Utilities” in this book.

The kDETcmdGetDSSpec template callback function is described in the chapter “AOCE

Templates” in this book.

OCESetupRemoveDirectoryInfo

Call the OCESetupRemoveDirectoryInfo function to remove a catalog from the

PowerTalk Setup catalog.

pascal OSErr OCESetupRemoveDirectoryInfo

(AuthParamBlockPtr paramBlock, Boolean async);

Trap macro Selector

_oceTBDispatch $021B

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEDirectoryNotFoundErr –1630 Catalog was not found in the list

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-67

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-19 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

directoryRecordCID
The creation ID for the Catalog record or Combined record
associated with the catalog to be removed from the PowerTalk
Setup catalog. You can use the kDETcmdGetDSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

DESCRIPTION

Only a setup template for a SAM can call the OCESetupRemoveDirectoryInfo

function. This function removes from the Catalog or Combined record in the PowerTalk

Setup catalog the attributes that were added by the OCESetupAddDirectoryInfo

function.

Before calling the OCESetupRemoveDirectoryInfo function, be sure the local

identity is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The kDETcmdGetDSSpec template callback function is described in the chapter “AOCE

Templates” in this book.

Use the OCESetupAddDirectoryInfo function (page 9-64) to add a catalog and its

associated password to the PowerTalk Setup catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ directoryRecordCID CreationID Catalog creation ID

Trap macro Selector

_oceTBDispatch $020D

noErr 0 No error
kOCENoSuchRecord –1618 No such record

C H A P T E R 9

Authentication Manager

9-68 Authentication Manager Reference

Use the OCESetupChangeDirectoryInfo function (page 9-65) to change the record

ID and password for an existing catalog in the PowerTalk Setup catalog.

Application-Defined Functions

This section describes the completion routine required for asynchronous use of

authentication functions and the notification routine that you provide to Authentication

Manager functions that use a notification queue.

MyCompletion

An Authentication Manager completion routine has the following syntax:

void MyCompletion (Ptr paramBlk);

paramBlk A pointer to the parameter block that you provided when you called the
Authentication Manager function.

DESCRIPTION

When you execute an Authentication Manager function asynchronously (by setting its

async parameter to true) you can specify a completion routine by passing the routine’s

address in the ioCompletion field of the parameter block. A function called

asynchronously returns control to your application with the result code noErr as soon

as the function is placed in the execution queue. This result code does not indicate that

the function has successfully completed but indicates only that the function was

successfully placed in the queue. To determine when the function is actually completed,

you can inspect the ioResult field of the parameter block. This field is set to 1 when the

function is called and set to the actual result code when the function is completed. If you

specify a completion routine, it is executed after the result code is placed in the

ioResult field.

SPECIAL CONSIDERATIONS

Because a completion routine may be executed at interrupt time, it should not allocate,

move, or purge memory (either directly or indirectly) and should not depend on the

validity of handles to unlocked blocks.

When the Authentication Manager calls your completion routine, it sets the A5 register

to the value it contained when you called the function that set up the completion routine.

C H A P T E R 9

Authentication Manager

Authentication Manager Reference 9-69

ASSEMBLY-LANGUAGE INFORMATION

When your completion routine is called, register A0 contains a pointer to the parameter

block of the function called, and register D0 contains the result code. The value in

register D0 is always identical to the value in the ioResult field of the parameter block.

A completion routine must preserve all registers other than A0, A1, and D0–D2.

MyNotificationProc

The MyNotificationProc function is a notification routine you must provide when

you use the notification queue.

pascal Boolean MyNotificationProc (long clientData,

AuthLocalIdentityOp callValue,

AuthLocalIdentityLockAction actionValue,

LocalIdentity identity);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the AuthAddToLocalIdentityQueue
function. This field provides a way for you to pass a parameter to your
notification routine.

callValue When the Authentication Manager calls your notification routine, it sets
this parameter to kAuthLockLocalIdentityOp to indicate a lock
operation, kAuthUnlockLocalIdentityOp to indicate an unlock
operation, or to kAuthLocalIdentityNameChangeOp to indicate a
name change. In the case of a lock operation, you must also check the
value of the actionValue parameter.

actionValue
When the Authentication Manager calls your notification routine with the
kAuthLockLocalIdentityOp value in the callValue parameter, it
sets the actionValue parameter to either kAuthLockPending,
indicating a lock is pending, or to kAuthLockWillBeDone when a lock
is about to be done.

identity The local identity.

DESCRIPTION

The AOCE toolbox calls the notification procedure you provide each time the local

identity access to a user’s computer is locked or unlocked, or when the user changes in

the name in the Key Chain, so that the applications in the notification queue can be

informed of changes in the access to catalogs listed in the PowerTalk Setup catalog.

Applications registered in the notification queue are notified when a user locks his or her

local identity because he or she is leaving a computer unattended, and again when the

user returns and provides his or her password to the system.

C H A P T E R 9

Authentication Manager

9-70 Authentication Manager Reference

When it plans to lock local identity access, the Authentication Manager notifies all

applications installed in the notification queue. To do so, the Authentication Manager

passes the value kAuthLockPending in the actionValue parameter. Your notification

procedure can return true to deny permission to lock the local identity. If none of the

applications in the queue refuse the lock operation, the Collaboration toolbox passes the

value kAuthLockWillBeDone to notify the applications that the lock is imminent.

You should deny locking only if you are performing some operation that would be

seriously disrupted if the lock function succeeded.

The Authentication Manager handles the buffers associated with pointers that it passes

to a notification procedure. You must copy the data in these buffers if you want to refer

to it after your notification procedure completes execution.

SPECIAL CONSIDERATIONS

This routine should not allocate, move, or purge memory (either directly or indirectly).

Like completion routines, your notification procedure should not call the

WaitNextEvent, EventAvail, OSEventAvail, or SystemTask routines or any

routine that might call those functions.

SEE ALSO

For an example of the use of the MyNotificationProc function, see Listing 9-1 on

page 9-15.

See “Locking and Unlocking Local Identities” on page 9-8 for more information about

locking and unlocking users’ computers.

See “The PowerTalk Setup Catalog” on page 9-9 for more information about the

PowerTalk Setup catalog.

The AuthAddToLocalIdentityQueue function is discussed on page 9-30.

The AuthRemoveFromLocalIdentityQueue function is discussed on page 9-31.

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-71

Summary of the Authentication Manager

C Summary

Constants and Data Types

enum {

/* values for key sizes */

kRC4KeySizeInBytes = 8, /* size of an RC4 key */

kRefNumUnknown = 0 /* dsRefNum specifier */

};

enum {

/* values of AuthLocalIdentityOp for notification routine */

kAuthLockLocalIdentityOp = 1,

kAuthUnlockLocalIdentityOp = 2,

kAuthLocalIdentityNameChangeOp = 3

};

enum {

/* values of AuthLocalIdentityLockAction for notification routine */

kAuthLockPending = 1,

kAuthLockWillBeDone = 2

};

/* values of notifyFlags field of AuthAddToLocalIdentityQueue function*/

enum {kNotifyLockBit, kNotifyUnlockBit, kNotifyNameChangeBit};

enum {

kNotifyLockMask = 1L << kNotifyLockBit,

kNotifyUnlockMask = 1L << kNotifyUnlockBit

kNotifyNameChangeMask = 1L << kNotifyNameChangeBit

};

C H A P T E R 9

Authentication Manager

9-72 Summary of the Authentication Manager

Identity Declarations

typedef unsigned long AuthIdentity; /* identity */

typedef AuthIdentity LocalIdentity; /* local identity */

typedef unsigned long AuthLocalIdentityOp;

typedef unsigned long AuthLocalIdentityLockAction;

typedef unsigned long AuthNotifications;

Key Structures

struct DESKey { /* A DES key is 8 bytes of data */

unsigned long a;

unsigned long b;

};

typedef struct DESKey DESKey;

typedef Byte RC4Key[kRC4KeySizeInBytes];

typedef unsigned long AuthKeyType;

struct AuthKey { /* key type followed by its data */

AuthKeyType keyType;

union {

DESKey des;

RC4Key rc4;

}u;

};

typedef struct Authkey AuthKey;

typedef AuthKey *AuthKeyPtr;

Parameter Block Header

#define AuthDirParamHeader

Ptr qLink; /* reserved */

long reserved1; /* reserved */

long reserved2; /* reserved */

ProcPtr ioCompletion; /* your completion function */

OSErr ioResult; /* result code */

unsigned long saveA5; /* reserved */

short reqCode; /* reserved */

long reserved[2]; /* reserved */

AddrBlock serverHint; /* PowerShare server’s AppleTalk address */

short dsRefNum; /* reserved */

unsigned long callID; /* reserved */

AuthIdentity identity; /* initiator’s authentication identity */

long gReserved1; /* reserved */

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-73

long gReserved2; /* reserved */

long gReserved3; /* reserved */

long clientData; /* you define this field */

Parameter Blocks

struct AuthPasswordToKeyPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

AuthKeyPtr key;

RStringPtr password; /* pointer to the new password string */

};

typedef struct AuthPasswordToKeyPB AuthPasswordToKeyPB;

struct AuthAddKeyPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

AuthKeyPtr userKey; /* AOCE key for the user */

RStringPtr password; /* pointer to password string */

};

typedef struct AuthAddKeyPB AuthAddKeyPB;

struct AuthChangeKeyPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

AuthKeyPtr userKey; /* new AOCE key for the user */

RStringPtr password; /* pointer to the new password string */

};

typedef struct AuthChangeKeyPB AuthChangeKeyPB;

struct AuthDeleteKeyPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

};

typedef struct AuthDeleteKeyPB AuthDeleteKeyPB;

struct AuthGetLocalIdentityPB {

AuthDirParamHeader

LocalIdentity theLocalIdentity; /* local identity */

};

typedef struct AuthGetLocalIdentityPB AuthGetLocalIdentityPB;

struct AuthAddToLocalIdentityQueuePB {

AuthDirParamHeader

NotificationProc notifyProc; /* notification procedure */

C H A P T E R 9

Authentication Manager

9-74 Summary of the Authentication Manager

AuthNotifications notifyFlags; /* notifyFlags */

StringPtr appName; /* name of application to be

 returned in Delete/Stop */

};

typedef struct AuthAddToLocalIdentityQueuePB AuthAddToLocalIdentityQueuePB;

struct AuthRemoveFromLocalIdentityQueuePB {

AuthDirParamHeader

NotificationProc notifyProc; /* notification procedure */

};

typedef struct AuthRemoveFromLocalIdentityQueuePB

AuthRemoveFromLocalIdentityQueuePB;

struct AuthSetupLocalIdentityPB {

AuthDirParamHeader

long aReserved;

RStringPtr userName; /* user name */

RStringPtr password; /* user password */

};

typedef struct AuthSetupLocalIdentityPB AuthSetupLocalIdentityPB;

struct AuthChangeLocalIdentityPB {

AuthDirParamHeader

long aReserved;

RStringPtr userName; /* user name */

RStringPtr password; /* current password */

RStringPtr newPassword; /* new password */

};

typedef struct AuthChangeLocalIdentityPB AuthChangeLocalIdentityPB;

struct AuthLockLocalIdentityPB {

AuthDirParamHeader

LocalIdentity theLocalIdentity; /* local identity */

StringPtr name; /* name of the app that

 denied delete */

};

typedef struct AuthLockLocalIdentityPB AuthLockLocalIdentityPB;

struct AuthUnlockLocalIdentityPB {

AuthDirParamHeader

LocalIdentity theLocalIdentity; /* local identity */

RStringPtr userName; /* user name */

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-75

RStringPtr password; /* user password */

};

typedef struct AuthUnlockLocalIdentityPB AuthUnlockLocalIdentityPB;

struct AuthRemoveLocalIdentityPB {

AuthDirParamHeader

long aReserved;

RStringPtr userName; /* user name */

RStringPtr password; /* current password */

};

typedef struct AuthRemoveLocalIdentityPB AuthRemoveLocalIdentityPB;

struct AuthBindSpecificIdentityPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* binding identity */

RecordIDPtr userRecord; /* User record */

AuthKeyPtr userKey; /* AOCE key for the user */

};

typedef struct AuthBindSpecificIdentityPB AuthBindSpecificIdentityPB;

struct AuthUnbindSpecificIdentityPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity to be deleted */

};

typedef struct AuthUnbindSpecificIdentityPB AuthUnbindSpecificIdentityPB;

struct AuthGetSpecificIdentityInfoPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity of initiator */

RecordIDPtr userRecord; /* User record */

};

typedef struct AuthGetSpecificIdentityInfoPB AuthGetSpecificIdentityInfoPB;

struct AuthGetCredentialsPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity of initiator */

RecordIDPtr recipient; /* AOCE name of recipient */

AuthKeyPtr sessionKey; /* session key */

UTCTime expiry; /* desired/actual expiration */

unsigned long credentialsLength;/* max/actual credentials size */

Ptr credentials; /* buffer where credentials

 are returned */

};

typedef struct AuthGetCredentialsPB AuthGetCredentialsPB;

C H A P T E R 9

Authentication Manager

9-76 Summary of the Authentication Manager

struct AuthMakeProxyPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity of principal */

RecordIDPtr recipient; /* AOCE name of recipient */

UTCTime firstValid; /* time at which proxy

 becomes valid */

UTCTime expiry; /* time at which proxy expires */

unsigned long authDataLength;/* size of authorization data */

Ptr authData; /* pointer to authorization data */

unsigned long proxyLength; /* max/actual proxy size */

Ptr proxy; /* buffer where proxy is returned */

RecordIDPtr intermediary; /* record ID of intermediary */

};

typedef struct AuthMakeProxyPB AuthMakeProxyPB;

struct AuthTradeProxyForCredentialsPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity of intermediary */

RecordIDPtr recipient; /* AOCE name of recipient */

AuthKeyPtr sessionKey; /* session key */

UTCTime expiry; /* desired/actual expiration */

unsigned long credentialsLength;/* max/actual credentials size */

Ptr credentials; /* buffer where credentials

 are returned */

unsigned long proxyLength; /* actual proxy size */

Ptr proxy; /* buffer containing proxy */

RecordIDPtr principal; /* record ID of principal */

};

typedef struct AuthTradeProxyForCredentialsPB AuthTradeProxyForCredentialsPB;

struct AuthResolveCreationIDPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

unsigned long bufferLength; /* buffer Size */

Ptr buffer; /* buffer to hold creation IDs */

unsigned long totalMatches; /* total number of matching

 names found */

unsigned long actualMatches; /* number of matches returned in

 the buffer */

};

typedef struct AuthResolveCreationIDPB AuthResolveCreationIDPB;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-77

struct AuthGetUTCTimePB {

AuthDirParamHeader

PackedRLIPtr pRLI; /* packed RLI of the dNode */

UTCTime theUTCTime; /* current UTC(GMT) time in seconds

 since 1/1/1904 */

UTCOffset theUTCOffset; /* offset from UTC(GMT) seconds

 east of Greenwich */

};

typedef struct AuthGetUTCTimePB AuthGetUTCTimePB;

struct AuthMakeChallengePB {

AuthDirParamHeader

AuthKeyPtr key; /* unencrypted session key */

Ptr challenge; /* encrypted challenge */

unsigned long challengeBufferLength; /* length of challenge buffer */

unsigned long challengeLength; /* length of encrypted

 challenge */

};

typedef struct AuthMakeChallengePB AuthMakeChallengePB;

struct AuthMakeReplyPB {

AuthDirParamHeader

AuthKeyPtr key; /* unencrypted session key */

Ptr challenge; /* encrypted challenge */

Ptr reply; /* encrypted reply */

unsigned long replyBufferLength; /* length of challenge buffer */

unsigned long challengeLength; /* length of encrypted

 challenge */

unsigned long replyLength; /* length of encrypted reply */

};

typedef struct AuthMakeReplyPB AuthMakeReplyPB;

struct AuthVerifyReplyPB {

AuthDirParamHeader

AuthKeyPtr key; /* unencrypted session key */

Ptr challenge; /* encrypted challenge */

Ptr reply; /* encrypted reply */

unsigned long challengeLength; /* length of encrypted

 challenge */

unsigned long replyLength; /* length of encrypted reply */

};

typedef struct AuthVerifyReplyPB AuthVerifyReplyPB;

C H A P T E R 9

Authentication Manager

9-78 Summary of the Authentication Manager

struct AuthDecryptCredentialsPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* user's identity */

RecordIDPtr initiatorRecord; /* AOCE name of the initiator */

AuthKeyPtr sessionKey; /* session key */

UTCTime expiry; /* credentials expiration time */

unsigned long credentialsLength;/* actual credentials size */

Ptr credentials; /* credentials to be decrypted */

UTCTime issueTime; /* credentials expiration time */

Boolean hasIntermediary; /* if true, an intermediary record

 was found in credentials */

RecordIDPtr intermediary; /* record ID of the intermediary */

};

typedef struct AuthDecryptCredentialsPB AuthDecryptCredentialsPB;

struct OCESetupGetDirectoryInfoPB {

AuthDirParamHeader

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* discriminator for the catalog */

RecordIDPtr recordID; /* record ID for the catalog */

RStringPtr nativeName; /* user name in the catalog world */

RStringPtr password; /* password in the catalog world */

};

typedef struct OCESetupGetDirectoryInfoPB OCESetupGetDirectoryInfoPB;

struct OCESetupAddDirectoryInfoPB {

AuthDirParamHeader

CreationID directoryRecordCID; /* creation ID for the catalog */

RecordIDPtr recordID; /* record ID for the identity */

RStringPtr password; /* password in the catalog world */

};

typedef struct OCESetupAddDirectoryInfoPB OCESetupAddDirectoryInfoPB;

struct OCESetupChangeDirectoryInfoPB {

AuthDirParamHeader

CreationID directoryRecordCID; /* creation ID for the catalog */

RecordIDPtr recordID; /* record ID for the identity */

RStringPtr password; /* password in the catalog world */

RStringPtr newPassword; /* new password in the catalog */

};

typedef struct OCESetupChangeDirectoryInfoPB OCESetupChangeDirectoryInfoPB;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-79

struct OCESetupRemoveDirectoryInfoPB {

AuthDirParamHeader

CreationID directoryRecordCID; /* creation ID for the catalog */

};

typedef struct OCESetupRemoveDirectoryInfoPB OCESetupRemoveDirectoryInfoPB;

Parameter Block Union Structure

union AuthParamBlock {

struct {AuthDirParamHeader}header;

AuthBindSpecificIdentityPB bindIdentityPB;

AuthUnbindSpecificIdentityPB unbindIdentityPB;

AuthResolveCreationIDPB resolveCreationIDPB;

AuthGetSpecificIdentityInfoPB getIdentityInfoPB;

AuthAddKeyPB addKeyPB;

AuthChangeKeyPB changeKeyPB;

AuthDeleteKeyPB deleteKeyPB;

AuthPasswordToKeyPB passwordToKeyPB;

AuthGetCredentialsPB getCredentialsPB;

AuthDecryptCredentialsPB decryptCredentialsPB;

AuthMakeChallengePB makeChallengePB;

AuthMakeReplyPB makeReplyPB;

AuthVerifyReplyPB verifyReplyPB;

AuthGetUTCTimePB getUTCTimePB;

AuthMakeProxyPB makeProxyPB;

AuthTradeProxyForCredentialsPB tradeProxyForCredentialsPB;

AuthGetLocalIdentityPB getLocalIdentityPB;

AuthUnlockLocalIdentityPB unLockLocalIdentityPB;

AuthLockLocalIdentityPB lockLocalIdentityPB;

AuthAddToLocalIdentityQueuePB localIdentityQInstallPB;

AuthRemoveFromLocalIdentityQueuePB localIdentityQRemovePB;

AuthSetupLocalIdentityPB setupLocalIdentityPB;

AuthChangeLocalIdentityPB changeLocalIdentityPB;

AuthRemoveLocalIdentityPB removeLocalIdentityPB;

OCESetupAddDirectoryInfoPB setupDirectoryIdentityPB;

OCESetupChangeDirectoryInfoPB changeDirectoryIdentityPB;

OCESetupRemoveDirectoryInfoPB removeDirectoryIdentityPB;

OCESetupGetDirectoryInfoPB getDirectoryIdentityInfoPB;

};

typedef union AuthParamBlock AuthParamBlock;

typedef AuthParamBlock *AuthParamBlockPtr;

C H A P T E R 9

Authentication Manager

9-80 Summary of the Authentication Manager

Authentication Manager Functions

Key Management

pascal OSErr AuthPasswordToKey
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthAddKey (AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthChangeKey (AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthDeleteKey (AuthParamBlockPtr paramBlock,
Boolean async);

Local Identity Management

pascal OSErr AuthGetLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthAddToLocalIdentityQueue
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthRemoveFromLocalIdentityQueue
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthSetupLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthChangeLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthLockLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthUnlockLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthRemoveLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-81

Specific Identity Management

pascal OSErr AuthBindSpecificIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthUnbindSpecificIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthGetSpecificIdentityInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

Credentials Management

pascal OSErr AuthGetCredentials
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthMakeProxy (AuthParamBlockPtr paramBlock, Boolean async);

pascal OSErr AuthTradeProxyForCredentials
(AuthParamBlockPtr paramBlock,
Boolean async);

Creation ID Resolution Management

pascal OSErr AuthResolveCreationID
(AuthParamBlockPtr paramBlock,
Boolean async);

Time Service

pascal OSErr AuthGetUTCTime (AuthParamBlockPtr paramBlock, Boolean async);

Non-ASDSP Authentication Utilities

pascal OSErr AuthMakeChallenge
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthMakeReply (AuthParamBlockPtr paramBlock, Boolean async);

pascal OSErr AuthVerifyReply
(AuthParamBlockPtr paramBlock, Boolean async);

pascal OSErr AuthDecryptCredentials
(AuthParamBlockPtr paramBlock,
Boolean async);

C H A P T E R 9

Authentication Manager

9-82 Summary of the Authentication Manager

AOCE Setup Catalog Management

pascal OSErr OCESetupGetDirectoryInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr OCESetupAddDirectoryInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr OCESetupChangeDirectoryInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr OCESetupRemoveDirectoryInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

Application-Defined Functions

void MyCompletion (Ptr paramBlk);

pascal Boolean MyNotificationProc
(long clientData,
AuthLocalIdentityOp callValue,
AuthLocalIdentityLockAction actionValue,
LocalIdentity identity);

Pascal Summary

Constants

CONST {values for key sizes}

kRC4KeySizeInBytes = 8; {size of an RC4 key}

kRefNumUnknown = 0; {dsRefNum specifier}

{values of AuthLocalIdentityOp}

kAuthLockLocalIdentityOp = 1;

kAuthUnlockLocalIdentityOp = 2;

kAuthLocalIdentityNameChangeOp = 3;

{values of AuthLocalIdentityLockAction}

kAuthLockPending = 1;

kAuthLockWillBeDone = 2;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-83

{values of AuthNotifications}

kNotifyLockBit = 0;

kNotifyUnlockBit = 1;

kNotifyNameChangeBit = 2;

kNotifyLockMask = $00000001; {1<<kNotifyLockBit}

kNotifyUnlockMask = $00000002; {1<<kNotifyUnlockBit}

kNotifyNameChangeMask = $00000004; {1<<kNotifyNameChangeBit}

Data Types

AuthIdentity = LongInt; {unique identifier for an identity}

LocalIdentity = AuthIdentity; {umbrella local identity}

AuthLocalIdentityOp = LongInt;

AuthLocalIdentityLockAction = LongInt;

AuthNotifications = LongInt;

Key Structures

TYPE

DESKey =

RECORD { a DES key is 8 bytes of data }

a: LongInt;

b: LongInt;

END;

RC4Key = PACKED ARRAY[1..kRC4KeySizeInBytes] OF Byte;

AuthKeyType = LongInt;

AuthKey =

RECORD { key type followed by its data }

keyType: AuthKeyType;

CASE INTEGER OF

1: (des: DESKey);

2: (rc4: RC4Key);

END;

AuthKeyPtr = ^AuthKey;

Parameter Block Header

AuthDirParamHeader = RECORD

qLink: Ptr;

reserved1: LongInt;

C H A P T E R 9

Authentication Manager

9-84 Summary of the Authentication Manager

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

END;

Parameter Blocks

AuthPasswordToKeyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr; {User record}

key: AuthKeyPtr;

password: RStringPtr; {pointer to the new password string}

END;

AuthAddKeyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-85

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr; {User record}

userKey: AuthKeyPtr; {AOCE key for the user}

password: RStringPtr; {pointer to password string}

END;

AuthChangeKeyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr; {User record}

userKey: AuthKeyPtr; {new AOCE key for the user}

password: RStringPtr; {pointer to the new password string}

END;

AuthDeleteKeyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

C H A P T E R 9

Authentication Manager

9-86 Summary of the Authentication Manager

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr; {User record}

END;

AuthGetLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

theLocalIdentity: LocalIdentity; {local identity}

END;

AuthAddToLocalIdentityQueuePB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-87

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

notifyProc: NotificationProc; {notification procedure}

notifyFlags: AuthNotifications; {notification flags}

appName: StringPtr; {name of application to be

 returned in Delete/Stop}

END;

AuthRemoveFromLocalIdentityQueuePB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

notifyProc: NotificationProc; {notification procedure}

END;

AuthSetupLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

C H A P T E R 9

Authentication Manager

9-88 Summary of the Authentication Manager

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

aReserved: LongInt;

userName: RStringPtr; {user name}

password: RStringPtr; {user password}

END;

AuthChangeLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

aReserved: LongInt;

userName: RStringPtr; {user name}

password: RStringPtr; {current password}

newPassword: RStringPtr; {new password}

END;

AuthLockLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-89

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

theLocalIdentity: LocalIdentity; {local identity}

name: StringPtr; {name of the app that denied delete}

END;

AuthUnlockLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

theLocalIdentity: LocalIdentity; {local identity}

userName: RStringPtr; {user name}

password: RStringPtr; {user password}

END;

AuthRemoveLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

C H A P T E R 9

Authentication Manager

9-90 Summary of the Authentication Manager

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: Longint;

gReserved3: LongInt;

clientData: LongInt;

aReserved: LongInt;

userName: RStringPtr; {user name}

password: RStringPtr; {current password}

END;

AuthBindSpecificIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {binding identity}

userRecord: RecordIDPtr; {User record}

userKey: AuthKeyPtr; {AOCE key for the user}

END;

AuthUnbindSpecificIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-91

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity to be deleted}

END;

AuthGetSpecificIdentityInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity of initiator}

userRecord: RecordIDPtr; {User record}

END;

AuthGetCredentialsPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

C H A P T E R 9

Authentication Manager

9-92 Summary of the Authentication Manager

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity of initiator}

recipient: RecordIDPtr; {AOCE name of recipient}

sessionKey: AuthKeyPtr; {session key}

expiry: UTCTime; {desired/actual expiration}

credentialsLength: LongInt; {max/actual credentials size}

credentials: Ptr; {credentials buffer}

END;

AuthMakeProxyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity of principal}

recipient: RecordIDPtr; {AOCE name of recipient}

firstValid: UTCTime; {time at which proxy becomes valid}

expiry: UTCTime; {time at which proxy expires}

authDataLength: LongInt; {size of authorization data}

authData: Ptr; {pointer to authorization data}

proxyLength: LongInt; {max/actual proxy size}

proxy: Ptr; {proxy buffer}

intermediary: RecordIDPtr; {record ID of intermediary}

END;

AuthTradeProxyForCredentialsPB = RECORD

qLink: Ptr;

reserved1: LongInt;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-93

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity of intermediary}

recipient: RecordIDPtr; {AOCE name of recipient}

sessionKey: AuthKeyPtr; {session key}

expiry: UTCTime; {desired/actual expiration}

credentialsLength: LongInt; {max/actual credentials size}

credentials: Ptr; {credentials buffer}

proxyLength: LongInt; {actual proxy size}

proxy: Ptr; {buffer containing proxy}

principal: RecordIDPtr; {record ID of principal}

END;

AuthResolveCreationIDPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr;{User record}

bufferLength: LongInt; {buffer size}

C H A P T E R 9

Authentication Manager

9-94 Summary of the Authentication Manager

buffer: Ptr; {buffer to hold creation IDs}

totalMatches: LongInt; {total number of matching names found}

actualMatches: LongInt; {number of matches returned in the buffer}

END;

AuthGetUTCTimePB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

pRLI: PackedRLIPtr; {packed RLI of the dNode}

theUTCTime: UTCTime; {current UTC(GMT) time in seconds

 since 1/1/1904}

theUTCOffset: UTCOffset; {offset from UTC(GMT) seconds east

 of Greenwich}

END;

AuthMakeChallengePB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-95

gReserved3: LongInt;

clientData: LongInt;

key: AuthKeyPtr; {unencrypted session key}

challenge: Ptr; {encrypted challenge}

challengeBufferLength: LongInt; {length of challenge buffer}

challengeLength: LongInt; {length of encrypted challenge}

END;

AuthMakeReplyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

key: AuthKeyPtr; {unencrypted session key}

challenge: Ptr; {encrypted challenge}

reply: Ptr; {encrypted reply}

replyBufferLength: LongInt; {length of challenge buffer}

challengeLength: LongInt; {length of encrypted challenge}

replyLength: LongInt; {length of encrypted reply}

END;

AuthVerifyReplyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

C H A P T E R 9

Authentication Manager

9-96 Summary of the Authentication Manager

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

key: AuthKeyPtr; {unencrypted session key}

challenge: Ptr; {encrypted challenge}

reply: Ptr; {encrypted reply}

challengeLength: LongInt; {length of encrypted challenge}

replyLength: LongInt; {length of encrypted reply}

END;

AuthDecryptCredentialsPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {user's identity}

initiatorRecord: RecordIDPtr; {AOCE name of the initiator}

sessionKey: AuthKeyPtr; {session key}

expiry: UTCTime; {credentials expiration time}

credentialsLength: LongInt; {actual credentials size}

credentials: Ptr; {credentials to be decrypted}

issueTime: UTCTime; {credentials expiration time}

hasIntermediary: Boolean; {if true, an intermediary record

 was found in credentials}

intermediary: RecordIDPtr; {record ID of the intermediary}

END;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-97

OCESetupGetDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

directoryName: DirectoryNamePtr; {catalog name}

discriminator: DirDiscriminator; {discriminator for the catalog}

recordID: RecordIDPtr; {record ID for the catalog}

nativeName: RStringPtr; {user name in the catalog world}

password: RStringPtr; {password in the catalog world}

END;

OCESetupAddDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

directoryRecordCID: CreationID; {creation ID for the catalog}

C H A P T E R 9

Authentication Manager

9-98 Summary of the Authentication Manager

recordID: RecordIDPtr; {record ID for the identity}

password: RStringPtr; {password in the catalog world}

END;

OCESetupChangeDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

directoryRecordCID: CreationID; {creation ID for the catalog}

recordID: RecordIDPtr; {record ID for the identity}

password: RStringPtr; {password in the catalog world}

newPassword: RStringPtr; {new password in the catalog}

END;

OCESetupRemoveDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-99

clientData: LongInt;

directoryRecordCID: CreationID; {creation ID for the catalog}

END;

Parameter Block Case Statement

AuthParamBlock = RECORD

CASE INTEGER OF

1: (header: AuthDirParamHeader);

2: (bindIdentityPB: AuthBindSpecificIdentityPB);

3: (unbindIdentityPB: AuthUnbindSpecificIdentityPB);

4: (resolveCreationIDPB: AuthResolveCreationIDPB);

5: (getIdentityInfoPB: AuthGetSpecificIdentityInfoPB);

6: (addKeyPB: AuthAddKeyPB);

7: (changeKeyPB: AuthChangeKeyPB);

8: (deleteKeyPB: AuthDeleteKeyPB);

9: (passwordToKeyPB: AuthPasswordToKeyPB);

10:(getCredentialsPB: AuthGetCredentialsPB);

11:(decryptCredentialsPB: AuthDecryptCredentialsPB);

12:(makeChallengePB: AuthMakeChallengePB);

13:(makeReplyPB: AuthMakeReplyPB);

14:(verifyReplyPB: AuthVerifyReplyPB);

15:(getUTCTimePB: AuthGetUTCTimePB);

16:(makeProxyPB: AuthMakeProxyPB);

17:(tradeProxyForCredentialsPB: AuthTradeProxyForCredentialsPB);

18:(getLocalIdentityPB: AuthGetLocalIdentityPB);

19:(unLockLocalIdentityPB: AuthUnlockLocalIdentityPB);

20:(lockLocalIdentityPB: AuthLockLocalIdentityPB);

21:(localIdentityQInstallPB: AuthAddToLocalIdentityQueuePB);

22:(localIdentityQRemovePB: AuthRemoveFromLocalIdentityQueuePB);

23:(setupLocalIdentityPB: AuthSetupLocalIdentityPB);

24:(changeLocalIdentityPB: AuthChangeLocalIdentityPB);

25:(removeLocalIdentityPB: AuthRemoveLocalIdentityPB);

26:(setupDirectoryIdentityPB: OCESetupAddDirectoryInfoPB);

27:(changeDirectoryIdentityPB: OCESetupChangeDirectoryInfoPB);

28:(removeDirectoryIdentityPB: OCESetupRemoveDirectoryInfoPB);

29:(getDirectoryIdentityInfoPB: OCESetupGetDirectoryInfoPB);

END;

AuthParamBlockPtr = ^AuthParamBlock;

C H A P T E R 9

Authentication Manager

9-100 Summary of the Authentication Manager

Authentication Manager Functions

Key Management

FUNCTION AuthPasswordToKey (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthAddKey (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthChangeKey (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthDeleteKey (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Local Identity Management

FUNCTION AuthGetLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthAddToLocalIdentityQueue
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthRemoveFromLocalIdentityQueue
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthSetupLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthChangeLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthLockLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthUnlockLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthRemoveLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-101

Specific Identity Management

FUNCTION AuthBindSpecificIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthUnbindSpecificIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthGetSpecificIdentityInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Credentials Management

FUNCTION AuthGetCredentials (paramBlock: AuthParamBlockPtr;
 async: Boolean): OSErr;

FUNCTION AuthMakeProxy (paramBlock: AuthParamBlockPtr;
 async: Boolean): OSErr;

FUNCTION AuthTradeProxyForCredentials
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Creation ID Resolution Management

FUNCTION AuthResolveCreationID
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Time Service

UNCTION AuthGetUTCTime (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Non-ASDSP Authentication Utilities

FUNCTION AuthMakeChallenge (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthMakeReply (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthVerifyReply (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthDecryptCredentials
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

C H A P T E R 9

Authentication Manager

9-102 Summary of the Authentication Manager

AOCE Setup Catalog Management

FUNCTION OCESetupGetDirectoryInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION OCESetupAddDirectoryInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION OCESetupChangeDirectoryInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION OCESetupRemoveDirectoryInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Application-Defined Routines

PROCEDURE MyCompletion (paramBlock: AuthParamBlockPtr);

FUNCTION NotificationProc (clientData: LongInt;
callValue: AuthLocalIdentityOp;
actionValue: AuthLocalIdentityLockAction;
identity: LocalIdentity): Boolean;

Assembly-Language Summary

Trap Macros

Trap Macro Requiring Routine Selectors

_oceTBDispatch

Selector Routine

$0200 AuthBindSpecificIdentity

$0201 AuthUnbindSpecificIdentity

$0202 AuthResolveCreationID

$0203 AuthGetSpecificIdentityInfo

$0204 AuthGetLocalIdentity

$0205 AuthAddToLocalIdentityQueue

$0206 AuthRemoveFromLocalIdentityQueue

$0207 AuthAddKey

$0208 AuthChangeKey

C H A P T E R 9

Authentication Manager

Summary of the Authentication Manager 9-103

Result Codes
Result codes in the range of –1540 to –1609 are reserved for the Authentication Manager.

Routines may also return result codes from other AOCE managers and standard

Macintosh result codes such as noErr 0 (No error) and fnfErr –43 (File not found).

$0209 AuthDeleteKey

$020A AuthPasswordToKey

$020B AuthGetCredentials

$020C AuthDecryptCredentials

$020D OCESetupRemoveDirectoryInfo

$020E OCESetupGetDirectoryInfo

$020F AuthMakeChallenge

$0210 AuthMakeReply

$0211 AuthVerifyReply

$0212 AuthMakeProxy

$0213 AuthTradeProxyForCredentials

$0214 AuthUnlockLocalIdentity

$0215 AuthLockLocalIdentity

$0216 AuthSetupLocalIdentity

$0217 AuthChangeLocalIdentity

$0218 AuthRemoveLocalIdentity

$0219 OCESetupAddDirectoryInfo

$021A AuthGetUTCTime

$021B OCESetupChangeDirectoryInfo

noErr 0 No error
kOCEParamErr –50 Parameter error
kOCEReadAccessDenied –1540 Read access denied
kOCEWriteAccessDenied –1541 Write access denied
kOCEAccessRightsInsufficient –1542 Stream needs to be authenticated,

or not authorized, or someone other
than agent trying to TPFC, or
problem in server-to-server
authentication

kOCEUnsupportedCredentialsVersion –1543 Can’t read this version of the
credentials

kOCECredentialsProblem –1544 Couldn’t decrypt credentials
kOCECredentialsImmature –1545 Credentials not yet valid
kOCECredentialsExpired –1546 Current time is later than

credentials expiration time

Selector Routine

C H A P T E R 9

Authentication Manager

9-104 Summary of the Authentication Manager

kOCEProxyImmature –1547 Proxy not yet valid
kOCEProxyExpired –1548 Current time is later than proxy

expiration time
kOCEDisallowedRecipient –1549 Recipient record ID does not appear

in proxy
kOCENoKeyFound –1550 No key was found
kOCEPrincipalKeyNotFound –1551 Couldn’t decode proxy because

principal has no key
kOCERecipientKeyNotFound –1552 The recipient key was not found
kOCEAgentKeyNotFound –1553 Intermediary’s key not found
kOCEKeyAlreadyRegistered –1554 A key already exists
kOCEMalFormedKey –1555 Key not derived properly from

password
kOCEUndesirableKey –1556 Password too short or resulting key

is undesirable
kOCEWrongIdentityOrKey –1557 Incorrect key for client
kOCEInitiatorKeyProblem –1558 No key, or initiator’s key changed
kOCEBadEncryptionMethod –1559 The specified encryption method is

not supported
kOCELocalIdentityDoesNotExist –1560 Local identity has not been set up
kOCELocalAuthenticationFail –1561 Local identity locked
kOCELocalIdentitySetupExists –1562 Local identity setup exists, use

AuthChangeLocalIdentity
instead

kOCEDirectoryIdentitySetupExists –1563 Catalog has already been set up
kOCEDirectoryIdentitySetupDoesNotExist –1564 Catalog has not been set up
kOCENotLocalIdentity –1565 You cannot unbind a local identity
kOCENoMoreIDs –1566 Identity table is full
kOCEUnknownID –1567 Identity passed is not valid
kOCEOperationDenied –1568 Local identity operation denied
kOCEAmbiguousMatches –1569 Ambiguous matches found in

resolving CIDs
kOCENoASDSPWorkSpace –1570 No ASDSP workspace passed
kOCEAuthenticationTrouble –1571 Reply incorrect for the challenge

sent
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCENoSuchRecord –1618 No such record
kOCEMoreData –1623 Buffer was too small to hold all

available data
kOCEStreamCreationErr –1625 An error occurred in creating the

stream
kOCEDirectoryNotFoundErr –1630 Catalog was not found in the list
kOCEOCESetupRequired –1633 Setup of local identity required
kOCELengthError –1637 The supplied buffer was too small

A P P E N D I X

User Records A-1

PowerTalk Built-in Templates

This appendix describes some of the details of the AOCE templates that are built

into PowerTalk. You can use this information to gain access to the information in

these templates or to provide additional templates that work with and extend the

built-in templates. AOCE templates are described in the chapter “AOCE Templates” in

this book.

User Records

User records have a record type of aoce User (kUserRecTypeBody).

There are several standard attribute types in a User record. You can add new attribute

types to User records, but each new attribute type must have a unique name. To ensure

the uniqueness of the attribute type, start it with a four-character application signature

registered with Apple Developer Services.

Attribute type aoce mailslots (kMailSlotsAttrTypeBody) contains the list of

addresses for the user. The preferred address is duplicated in attribute type aoce pref

mailslot (kPrefMailAttrTypeBody).

Attribute type aoce PersonInfo contains the text information found on the first User

record information page (the Business Card page). The following lookup table describes

the format of the information:

resource 'dett' (kUserInfoPageAspect + kDETAspectLookup, purgeable)

{{

{"aoce PersonInfo"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{ 'rstr', kName, 0,

 'rstr', kTitle, 0,

 'rstr', kCompanyName , 0,

 'rstr', kCompanyAddr , 0,

 'rstr', kMisc , 0 };

}};

Attribute type aoce Picture contains the picture found on the first User record

information page.

resource 'dett' (kUserInfoPageAspect + kDETAspectLookup, purgeable)

{{

{"aoce Picture"}, typeBinary,

A P P E N D I X

PowerTalk Built-in Templates

A-2 User Records

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{ 'rest', kPicture, 0 };

}};

Attribute type aoce Personal contains the information found on the second User record

information page (the Personal Info page).

resource 'dett' (kUserInfoPageAspect + kDETAspectLookup, purgeable){{

{"aoce Personal"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{ 'rstr', kPersonal1, 0,

 'rstr', kPersonal2 , 0,

 'rstr', kPersonal3 , 0 };

}};

Attribute type aoce PhoneNumber contains one value per phone number in the third

User record information page (the Phone Numbers page). The tag of each value tells the

type of phone number: 'work' for work, 'home' for home, 'mobi' for mobile, and

'othr' for other. You can add new tags, but you must be careful to avoid duplicate use

of the same tag. The attribute values have the following format (using 'work' as an

example—the other types vary only in the tag, not in the internal format):

resource 'dett' (kWorkPhoneAspect + kDETAspectLookup, purgeable) {

{

{"aoce PhoneNumber"}, 'work',

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

'rstr', kDETAspectName, 0;

'rstr', kPhoneNumber, 0;

'rstr', kPhoneInfo, 0

};

}

};

Attributes of type aoce mailslots are used both in User records and in stand-alone

attributes and are described in “Addresses” on page A-4.

The User record information pages are 350 pixels wide by 180 pixels high. The page

selection pop-up menu is fixed at location (6, 180, 24, 339) (top, left, bottom, right). If you

add your own information page to a User record, it is recommended that you include a

page-identifying small icon at location (6, 156, 22, 172).

The picture on the first information page is 100 pixels wide and 100 pixels high.

A P P E N D I X

PowerTalk Built-in Templates

User Records A-3

The sort-order number of the information pages for the User record is: 1000 for the first

(Business Card) page, 2000 for the second (Personal Info) page, 3000 for the third (Phone

Numbers) page, and 20000 for the fourth (Electronic Addresses) page. The Electronic

Addresses page has a much higher sort-order number than the others because it is

intended always to come last, even if developers add additional information pages

between it and the other ones.

The names of the built-in templates for User records are listed in Table A-1.

Table A-1 Names of AOCE templates for User records

Template name Template type Function

aoce User main aspect Aspect User record main aspect

aoce User Info-page Aspect Aspect Properties for first two pages

aoce User Info-page Information page First (Business Card) page

aoce User Persoanl Info-page Information page Second (Personal Info) page

aoce User Phone Aspect Aspect Properties for third page

aoce User Phone Info Page Information page Third (Phone Numbers) page

aoce Work Phone Aspect Aspect Aspect for work phone

aoce Work Phone Info-page Information page Information page for work phone

aoce Home Phone Aspect Aspect Aspect for home phone

aoce Home Phone Info-page Information page Information page for home phone

aoce Mobile Phone Aspect Aspect Aspect for mobile phone

aoce Mobile Phone Info-page Info-page Information page for mobile phone

aoce Other Phone Aspect Aspect Aspect for other phone

aoce Other Phone Info-page Info-Information Information page for other phone

Mail Info Page Aspect Aspect Properties for last page

Mail Info Page Information page Last (Electronic Addresses) page

Drop Send Aspect User Aspect Drop-send (forwarded to by groups and
addresses as well)

NOTE The spelling “Persoanl” in the name of the second information page of a User record is
correct as shown.

A P P E N D I X

PowerTalk Built-in Templates

A-4 Group Records

Group Records

Group records have a record type of aoce Group (kGroupRecTypeBody).

The only standard attribute type in a Group record is aoce Member

(kMemberAttrTypeBody).

The Group record information pages are 277 pixels wide by 303 pixels high. The

page-selection pop-up menu is fixed at location (7, 35, 26, 201) (top, left, bottom, right). If

you add your own information page to a Group record, it is recommended that you

include a page-identifying small icon at location (7, 11, 23, 27).

Addresses

Within User records and stand-alone attributes, electronic addresses are stored in

attribute values of type aoce mailslots (kMailSlotsAttrTypeBody). The tag is the

internal subtype of the address ('entn' for PowerShare, 'alan' for AppleTalk, and so

forth).

The 'dett' pattern for an address must end with a pattern element of type 'Pref'.

This custom element type lets the Electronic Addresses information page set the

preferred address radio buttons correctly.

The standard address information page is 259 pixels wide by 200 pixels high. It has a

page-selection pop-up menu at location (8, 56, 30, 206) (top, left, bottom, right). It has

a page-identifying large icon at (8, 8, 40, 40). Within the page are two radio buttons

labeled “View as:”, one for Fields and one for String. The “View as:” string is at location

(49, 56, 63, 106). The Fields radio button is at location (48, 111, 64, 154). The String radio

button is at location (48, 164, 64, 209). Between the view-as selector and the data is a

dotted line, at location (72, 8, 73, 251).

Addresses with all types of tags are forwarded to the drop-send aspect by a built-in

forwarder, so your address template does not need to handle drops.

Other Built-in Templates

There are several other templates built into PowerTalk. These include the template for

the Find-in-Catalog feature, the Key Chain templates, and address templates for

AppleTalk and PowerShare addresses. These other templates are subject to change

without notice; for this reason, you should not modify, replace, or otherwise depend on

them.

GL-1

access controls A set of bits that specify the
types of operations a requestor is authorized to
perform on a given catalog node, record, or
attribute type.

address template A set of AOCE templates that
allow a user to enter address information into a
User record.

AOCE Apple Open Collaboration Environment.

AOCE catalog A hierarchically arranged store
of data in a format intelligible to the AOCE
Catalog Manager. See also external catalog,
PowerShare catalog.

AOCE messaging system The set of PowerTalk
system software and PowerShare mail servers
that allows Macintosh users and processes
connected over a network or via a modem to
exchange information.

AOCE Setup catalog See PowerTalk Setup
catalog.

AOCE system software The collection of
Macintosh Operating System managers and
utility functions that provide APIs for catalog,
messaging, and security services. The AOCE
system software includes the Standard Mail
Package, the Standard Catalog Package, AOCE
templates, the Interprogram Messaging Manager,
the Catalog Manager, the Authentication
Manager, and the Digital Signature Manager, as
well as utility functions. See also PowerTalk
system software.

AOCE template A resource file that extends the
AOCE extension to the Finder to display new
types of data in catalogs or to display data in a
new way. See also aspect template, file type
template, forwarder template, information page
template, killer template.

AOCE toolbox The low-level APIs for the
AOCE system software: the Authentication
Manager, Catalog Manager, Interprogram

Messaging Manager, and Digital Signature
Manager. See also Collaboration package,
Collaboration toolbox.

API Application programming interface.

AppleMail format See standard interchange
format.

AppleTalk Secure Data Stream Protocol
(ASDSP) A networking protocol that provides
reliable transmission of an encrypted stream of
bytes between two authenticated entities on an
AppleTalk internet. ASDSP is a secure version of
AppleTalk Data Stream Protocol (ADSP).

approval file A file you receive from a
signature-authorization-issuing agency. You use
this file to activate your signer file.

approval request A notarized (or otherwise
authorized) request to issue a public-key
certificate. The approval request includes what is
intended to be the public key of the certificate’s
owner.

approved signer file See signer file.

approving agency See certificate issuer.

ASDSP See AppleTalk Secure Data Stream
Protocol.

aspect A structure in memory that contains
properties provided by an aspect template. An
aspect might also contain code provided by the
code resource in an aspect template

aspect template An AOCE template that
specifies how attributes in a record are to be
parsed into properties for display in an
information page. An aspect template can also
specify certain constant property values and can
contain a code resource that translates between
property types and implements features in
information pages. See also information page
template.

Glossary

G L O S S A R Y

GL-2

attribute The smallest unit of data in an AOCE
catalog; the data within a record is organized into
attributes. Each attribute has a type indicating
the type of data, a tag indicating the format of the
data, a creation ID, and data (the attribute value).

attribute creation ID A number assigned by a
catalog that uniquely identifies an attribute value
within a record. It persists for as long as the
attribute value exists and is never reused. Not all
catalogs support attribute creation IDs. See also
pseudo-persistent attribute creation ID.

attribute tag See attribute value tag.

attribute type The type of data in an attribute;
for example, telephone number or picture. A
record can contain more than one attribute type,
and there can be more than one attribute value of
the same attribute type in a record.

attribute value The data in an attribute.

attribute value tag The format of the data in an
attribute value.

authentication Verification of the identification
of an entity on a network or of one end of a
communication link.

authentication identity See identity.

Authentication Manager The part of the
Macintosh Operating System that authenticates
users of AOCE messaging and catalog services
and provides authentication services to
applications.

authentication server A secure network-based
server that holds the client keys of users and
services and generates credentials that allow
users to do mutual authentication.

bcc recipient A “blind courtesy copy” recipient
of a letter. Bcc recipients are not listed in copies of
the letter received by To and cc recipients. See
also original recipient.

block creator A four-character sequence that
indicates which application created a message
block; analogous to a file’s creator in HFS.

block type A code that indicates the format of
the data contained within a message block.

callback routine (1) An application-defined
routine called by the Operating System. When
you call certain functions, you provide a pointer
to a callback routine, and the function installs
your routine in memory. Then when a certain
event occurs, the Operating System calls your
callback routine. See also completion routine.
 (2) A function provided by the CE to provide a
service for aspect code resources. When the CE
calls your code resource, your code resource can
call the CE’s callback routines.

catalog See AOCE catalog.

Catalog Browser A Finder extension that
allows a user to search through an AOCE catalog
by opening folders on the desktop.

catalog discriminator A name and reference
number that uniquely identifies a catalog.

Catalog Manager The part of the Macintosh
Operating System that manages the organization,
reading, and writing of data in AOCE catalogs.

catalog node See dNode.

catalog service access module (CSAM) A code
module, implemented as a device driver, that
makes an external catalog available within an
AOCE system by supporting the Catalog
Manager API.

catalog service function A CSAM-defined
function that responds to requests for AOCE
catalog services from clients of the Catalog
Manager.

Catalogs Extension An extension to the Finder
that makes it possible for the Finder to display
the contents of AOCE catalogs and for the user to
edit the contents of records.

cc recipient A “courtesy copy” or secondary
recipient of a letter. See also original recipient.

CE See Catalogs Extension.

certificate See public-key certificate.

certificate issuer The organization that
authorized, or issued, a particular public-key
certificate. Each certificate is digitally signed by
its issuer.

G L O S S A R Y

GL-3

certificate owner The person or organization to
which a particular public-key certificate has been
issued. Each certificate contains the public key of
its owner.

certificate request See approval request.

certificate set A chain of public-key certificates
that, combined with a digital signature, make up
a full signature. A certificate set consists of the
public-key certificate of the signer (owner),
digitally signed by the organization that issued
the certificate; plus the certificate of the issuing
organization, signed by the organization that
issued that certificate; and so on, until the last
signature is that of the prime issuing
organization. The certificate set provides the
signer’s public key for decryption of the signer’s
signatures and ensures the validity of that public
key.

certification authority See certificate issuer.

chain of certificates See certificate set.

client key A key that is known only to a
specific entity and to the authentication server.

Collaboration package The high-level APIs for
the AOCE system software collaboration
managers: the Standard Mail Package and the
Standard Catalog Package. See also
Collaboration toolbox.

Collaboration toolbox The low-level APIs for
the AOCE system software collaboration
managers: the Authentication Manager, Catalog
Manager, and Interprogram Messaging Manager.
See also AOCE toolbox, Collaboration package.

completion routine A callback routine you can
specify when you execute a function
asynchronously. When the function completes
execution, it calls your completion routine.

conditional view A view in an information
page that is displayed only if certain conditions
are met in the aspect associated with that
information page.

content block A message block that contains
the body of a letter in standard interchange
format.

content enclosure An enclosure that contains a
letter’s content. It may be the sole content in a
letter or be accompanied by content in a content
block, an image block, or both. See also regular
enclosure.

context A data structure used by some Digital
Signature Manager routines to hold information
and the results of calculations needed when
processing data. See also queue context.

copying As used by AOCE utility routines: the
process of taking the contents of each field in a
source structure and placing them in the
corresponding field of a destination structure.
This process includes all nested structures as
well. Compare duplicating.

creation ID See attribute creation ID,
record creation ID.

credentials Encrypted information provided by
a server and sent by an initiator to a recipient as
part of the authentication process. The
credentials contain the session key and the
initiator’s identification.

CSAM See catalog service access module.

current block The message block last added to
a message.

decrypt To restore encrypted data to its
previous, legible (unscrambled) state. In most
cryptographic systems decryption is performed
by mathematically manipulating the data with a
large number called a key.

delivery indication Information within a report
that indicates the successful delivery of a specific
message to a specific recipient.

DES Data Encryption Standard.

DES encryption A form of secret-key
encryption used by the Digital Signature
Manager solely for keeping users’ private keys
secure. See also secret key cryptography.

digest A number, 16 bytes long, that is
calculated from the contents of a given set of
data. A digest is like a sophisticated checksum; it
is almost impossible for two data sets of any size
with any difference to yield the same digest
value.

G L O S S A R Y

GL-4

digital signature A data structure associated
with a document or other set of data. The digital
signature uniquely identifies the person or
organization that is signing, or authorizing the
contents of, the data and ensures the integrity of
the signed data. It is a digest of the data to which
the signature applies, encrypted with the private
key of the signer. A digital signature can be
verified by decrypting with the signer’s public
key. Same as encrypted digest. See also full
signature.

Digital Signature Manager The part of the
Macintosh Operating System that manages
digital signatures and certificates.

distinguished name The complete identifier of
the owner or issuer of a certificate. A
distinguished name includes elements such as
common name, organization, street address, and
country.

dNode A container within an AOCE catalog
that contains records, other dNodes, or both.

dNode number A number assigned by a
catalog that uniquely identifies a catalog node
within that catalog. Not all catalogs support
dNode numbers. See also pathname.

dNode window A Finder window that
displays the dNodes and records contained in a
dNode.

duplicating As used by AOCE utility routines:
the process of copying the pointers to data
structures and not the actual data structures
themselves. Compare copying.

enclosure A file or folder sent along with a
letter, like an attachment to a conventional
hard-copy letter. See also content enclosure,
regular enclosure.

encrypt To hide data by putting it into a
scrambled (illegible) state, in such a way that its
original state can be restored later. In most
cryptographic systems encryption is performed
by mathematically manipulating the data with a
large number called a key.

encrypted digest See digital signature.

encryption key See key.

extension type A four-character value that
identifies a type of messaging system that uses a
specific addressing convention; for example, an
AppleLink system or an X.400 system.

external catalog A catalog or database
accessible to AOCE-enabled applications through
the Catalog Manager API. For a user to have
access to an external catalog, the user’s AOCE
system must include a CSAM for that catalog
service.

external messaging system Any non-AOCE
messaging system.

external service A service that is not provided
automatically with PowerTalk system software
and PowerShare servers.

file type template An AOCE template that
extends the list of file types that may contain an
AOCE template. During system startup, the
Catalogs Extension searches for AOCE templates
in files whose types are on the list.

focus box See focus rectangle.

focus rectangle A heavy border around a panel
or around the content portion of a window. This
border indicates to the user that the area it
encloses is active and that any subsequent
key-down event pertains to that portion of the
window. Also called focus box.

foreign dNode A dNode in a PowerShare
catalog used by AOCE system software to route
messages to an external messaging system
through a server MSAM.

Forwarder record A catalog record that
contains identifying information about a server
MSAM.

forwarder template An AOCE template that
allows existing aspect templates and information
page templates to be used for new types of
records and attributes.

From recipient The sender of a message. See
also original recipient.

full digital signature See full signature.

full signature A digital signature plus the
certificate set of the signer. The Digital Signature
Manager creates and verifies full signatures.
Same as full digital signature.

G L O S S A R Y

GL-5

identity A number used as shorthand for the
name and key or name and password of a user or
service. See also local identity, specific identity.

image block A message block containing a
graphic representation of a letter’s content. It
may be the sole content in a letter or be
accompanied by content in a content block, a
content enclosure, or both. The format of data in
an image block is sometimes referred to as
snapshot format.

incoming message A message coming into an
AOCE system from an external messaging
system.

incoming queue A queue belonging to a mail
slot into which a personal MSAM puts letters
coming into an AOCE system from an external
system.

information card An HFS file located on a
user’s local disk that contains a single record.

information page A formatted display of data
and controls, similar in appearance to a dialog
box, showing information about an AOCE
catalog record or a portion of a record. See also
information page template.

information page template An AOCE template
that defines the layout and contents of an
information page, using the properties in a
specific aspect.

information page window A window that
contains one or more information pages. If the
window contains more than one information
page, only one information page is displayed at a
time. In that case, the window contains a pop-up
menu with a list of the information pages
available.

initiator The originator of the authentication
process.

intermediary A representative of a user or
service that uses a proxy to obtain credentials for
mutual authentication and then performs some
function for the user or service represented.

Interprogram Messaging Manager (IPM) The
part of the Macintosh Operating System that
manages the creation, sending, and receiving of
messages. IPM messages conform to a specific
structure and can be transmitted over an

AppleTalk network or any other communication
link. The Interprogram Messaging Manager
provides store-and-forward messaging services
for Macintosh computers.

issuer See certificate issuer.

issuing organization See certificate issuer.

key A number used by an encryption algorithm
to encrypt or decrypt data.

Key Chain See PowerTalk Key Chain.

Key Chain Access Code The master password
providing access to a PowerTalk Key Chain.

killer template An AOCE template that
disables other AOCE templates. A killer template
can disable any type of AOCE template except
another killer template.

large-catalog mode A set of algorithms used by
certain components of a PowerTalk system when
retrieving information from large catalogs and
displaying that information to the user.

letter A type of message consisting of a defined
set of message blocks. A letter is intended to be
read by a person. See also mailer, non-letter
message.

letter attribute A piece of information about a
letter stored in the letter header or the letter’s
message summary. Letter attributes include
information such as the sender, the subject, the
time the letter was sent, and so forth. Not to be
confused with attribute.

letter header block A message block found in
every letter. It contains recipient information and
letter attributes.

local identity A number used as shorthand for
the name and password of the principal user of a
particular computer. A local identity gives the
user access to all the services for which names
and passwords are stored in the PowerTalk
Setup catalog. See also specific identity.

lookup table A resource in an aspect template
that parses attribute values into properties and
properties into attribute values. A lookup table
contains an entry for each type of attribute value
to be translated into and from properties.

mail A term used to refer collectively to letters.

G L O S S A R Y

GL-6

mailer A region added to a document window
that transforms the document into a letter. The
mailer enables the user to enter addresses and
subject information, enclose other files and
folders in the letter, and add a digital signature to
the letter.

mailer set All of the mailers belonging to a
forwarded letter.

mail slot A personal MSAM slot that serves to
transfer letters. See also slot.

main aspect An aspect that contains the
properties the CE needs to fill in the data for an
item in a sublist. Compare main view aspect.

main aspect template A template for a main
aspect.

main enclosure See content enclosure.

main view aspect An aspect that provides the
properties for all the views in the main portion of
an information page; that is, all of the
information page except for the items in a sublist.
Compare main aspect.

Master Key password The password of the
principal user of a computer. This password
unlocks the local identity and provides access to
the services represented in the PowerTalk Setup
catalog.

message The basic unit of communication
defined by the Interprogram Messaging
Manager. The term message is used as an
inclusive term to refer both to letters and
non-letter messages. See also letter, non-letter
message.

message block A component of a message
consisting of a sequence of any number of bytes
whose format is governed by the block creator
and block type.

message creator A four-character sequence that
indicates which application created a message;
analogous to a file’s creator in HFS.

message family A set of messages grouped
according to similar characteristics. Messages of
the same family conform to the syntax of a
defined set of message block types and their
associated semantics.

message header That part of a message that
contains control information about the message
such as the message creator and message type,
the total length of the message, the time it was
submitted, addressing information, and so forth.

message mark A marker, used by the IPM
Manager, that points to the current location
within a message that is being created.

message queue A set of messages maintained
by the IPM Manager on a recipient’s disk or the
disk of a message server.

message summary A set of data used by the
Finder to display an incoming letter to a user.

message type A code that indicates the
semantics of the message, the block types the
message should contain, and the relationships
among the various blocks in the message.

messaging service access module (MSAM) A
foreground or background application that
makes an external messaging system accessible
from within an AOCE system. It translates and
transfers letters, non-letter messages, or both
between an AOCE system and an external
messaging system. See also personal MSAM,
server MSAM.

messaging slot A personal MSAM slot that
serves to transfer non-letter messages. See also
slot.

messaging system A combination of hardware
and software that gives users or processes the
ability to exchange messages.

MSAM See messaging service access module.

mutual authentication Authentication of both
ends of a communication link accomplished by
exchanging a series of encrypted challenges and
replies.

nested letter A complete letter included whole
within another letter.

nested message Any type of message included
whole within another message.

nesting level An indication of how many
messages are nested within a given message. For
example, a letter that contains one nested letter
has a nesting level of 1, and a letter that contains
no nested letters has a nesting level of 0.

G L O S S A R Y

GL-7

non-delivery indication Information within a
report that indicates unsuccessful attempts to
deliver a specific message to a specific recipient.

non-letter message A message sent from one
application or process to another, not intended to
be read by people. Compare letter.

online mode A mode of operation available
only to personal MSAMs in which the MSAM
actively manages letters in a user’s AOCE
mailbox and in the user’s accounts on external
messaging systems, reflecting changes in one to
the other, keeping both ends synchronized to the
degree possible.

original recipient Any of four specific types of
recipient that can be specified by the sender of a
message: To, From, cc, or bcc. An original
recipient may be a group address. A non-letter
message can include only From and To
recipients. See also resolved recipient.

outgoing message A message that is leaving
an AOCE system to go to an external messaging
system.

outgoing queue A queue from which an
MSAM reads messages that it must deliver to an
external messaging system.

owner See certificate owner.

packing The process of compacting or
“flattening” a complex data structure into a
sequence of bytes. Compare unpacking.

parse function A CSAM-defined function that
responds to requests for AOCE parse services
from clients of the Catalog Manager.

partial pathname In an AOCE catalog, a value
that uniquely identifies a catalog by specifying a
dNode number and continuing with the name of
each dNode under that one to the dNode in
question.

password In digital signatures, a set of
characters used as a key to encrypt and decrypt a
certificate owner’s private key.

password encryption See DES encryption.

pathname In an AOCE catalog, a string that
uniquely identifies a catalog node by specifying
the name of each catalog node in the catalog

starting from the first node under the root node
and including each intervening node to the node
in question. See also dNode number.

personal catalog An AOCE catalog created and
managed by the Catalog Manager. A personal
catalog is an HFS file located on a user’s local
disk. A personal catalog can store any records
that can be kept in a PowerShare catalog and is
often used to store frequently used information
from such a catalog.

personal MSAM An MSAM that transfers
messages between the user’s Macintosh and
specific user accounts on an external messaging
system. A personal MSAM runs on a user’s
Macintosh. Compare server MSAM.

physical queue The actual data of a message
queue residing on a disk. A physical queue can
have any number of associated virtual queues.
See also virtual queue.

PMSAM See personal MSAM.

PowerShare catalog An AOCE server-based
catalog provided by Apple Computer, Inc. See
also external catalog.

PowerShare server A server installed on an
AppleTalk network to provide catalog services to
any number of entities on that network. A
PowerShare server can also identify and
authenticate users to ensure that only authorized
people or agents gain access to the catalog
information.

PowerTalk Key Chain The PowerTalk software
that sets up and maintains a user’s PowerTalk
Setup catalog.

PowerTalk Setup catalog A special personal
catalog that contains information about the mail
and messaging services, catalog services, and
other services available to the owner of the
computer. See also local identity.

PowerTalk system software Apple Computer’s
implementation of the AOCE system software for
use on Macintosh computers. The PowerTalk
system software includes desktop services as
well as all of the services of the AOCE system
software managers.

G L O S S A R Y

GL-8

private key One of a pair of keys needed for
private-key cryptography. Every user has a
private key kept by the user and known only to
the user.

property An individual, self-contained piece of
information, such as a number or a string. A
property is defined in an aspect template and
stored in an aspect in memory.

property command Any command handled by
your AOCE template code resource’s
kDETcmdPropertyCommand routine. The CE
calls your code resource with the
kDETcmdPropertyCommand routine selector
when the user clicks a button or checkbox in your
information page, when the user selects an item
in a pop-up menu in your information page, and
in a few other circumstances.

property number A reference number assigned
to a property by an aspect template. The property
number uniquely identifies that property within
that aspect.

property type A constant associated with a
property that specifies the nature of the data in
the property value. For example, a property type
can be a number, a string, or a custom type
defined by a developer.

property value The data associated with a
property.

proxy A privilege provided by a user or service
to an intermediary. The proxy allows the
intermediary to be authenticated as the user or
service for a limited period of time.

pseudonym An alternative name for a record in
a Catalog Manager routine.

pseudo-persistent attribute creation ID A
number that uniquely identifies an attribute
value within a record. It persists from the time
the CSAM is opened at system startup until
system shutdown. See also attribute creation ID.

public key One of a pair of keys needed for
public-key cryptography. Every user has a public
key, which can be distributed to other users.

public-key certificate A document that
contains, among other information, the name and
public key of a user. The user is the owner of the
certificate. See also signed certificate, certificate
set.

public-key cryptography A system of
cryptography in which every user has two keys
to encrypt and decrypt data: a public key and a
private key. Data encrypted with a user’s public
key can be decrypted only with that same user’s
private key. Likewise, data encrypted with a
user’s private key can be decrypted only with
that user’s public key.

quasi-batch mode A mode of operation
available only to personal MSAMs in which the
MSAM complies with the minimum
requirements of online mode. See also online
mode.

queue context A grouping of virtual message
queues. When you close a queue context, you
simultaneously close all of the queues associated
with that context. See also virtual queue.

recipient (1) The end of a communications link
that receives credentials and a challenge from the
initiator. The recipient must respond correctly to
establish an authenticated connection. (2) An
addressee on an AOCE message. See also
original recipient, resolved recipient.

record The fundamental container for data
storage in an AOCE catalog; analogous to a file in
the HFS hierarchy. A record can contain any
number of attributes.

record alias A record that enables you to store
information about another record. For example,
an alias could store in its attribute value the
record location information for the original
record.

record creation ID A number that uniquely
identifies a record within a catalog. Not all
catalogs support record creation IDs.

record ID The identity of a record, comprising
the record name, record type, record creation ID,
and record location information. See also record
creation ID, record type.

G L O S S A R Y

GL-9

record reference An attribute that identifies a
specific catalog record.

record type A value that indicates the type of
entity represented by a record—for example,
LaserWriter, User, or Group.

regular enclosure Any message enclosure that
is not a content enclosure. See also content
enclosure, enclosure.

report A message with a defined set of
message blocks used to send delivery and
non-delivery indications to the sender of the
message.

resolved recipient A recipient to which an
MSAM must deliver a message. See also original
recipient.

RSA RSA Data Security, Inc., a prime issuing
organization for public-key certificates.

SAM See service access module.

secret-key cryptography A system of
cryptography in which a single key is used to
both encrypt and decrypt data. All who wish to
share information must share the same key and
keep it secret from all others.

server A program or process that provides
some service to other processes on a network.

server MSAM An MSAM that transfers
messages for multiple users on the AppleTalk
network to which it is connected. It transfers
messages between a PowerShare mail server and
an external messaging system. A server MSAM
must run on the same Macintosh as a
PowerShare mail server. Compare personal
MSAM.

service access module A software component
that provides a PowerTalk user with access to
external mail and messaging services or catalog
services.

session key A key provided by an
authentication server to be used by both the
initiator and the recipient for mutual
authentication. The session key remains valid for
a limited time period.

Setup catalog See PowerTalk Setup catalog.

Setup record A record in the PowerTalk Setup
catalog containing record references to all records
in the PowerTalk Setup catalog that represent
slots, catalogs, and other items.

setup template A set of AOCE templates that
allow a user to install and configure a service
access module.

sign As used by the Digital Signature Manager:
To create a digital signature and affix it to a
document or other piece of data. By signing, the
signer authorizes the content of the data, protects
it from alteration, and asserts his or her identity
as the signer.

signature See digital signature.

signature resource A resource in an AOCE
template that specifies the type of the template
and the base ID number for the template. Other
standard template resources have ID numbers
equal to the signature resource’s ID number plus
some offset value.

signed certificate A public-key certificate that
has been digitally signed by its issuer. Like any
digital signature, the signature on a certificate
ensures the integrity of the certificate (including
its public key) and proves the identity of the
signer (the issuer of the certificate).

signed digest See encrypted digest.

signer The individual or organization that signs
a document or other piece of data. To create a
signature, a signer must be the owner of a
public-key certificate.

signer file A file used by a signer to create a
digital signature. It consists of the signer’s
encrypted private key and the signer’s certificate
set.

Simple Mail Transfer Protocol (SMTP) A
protocol for the exchange of electronic mail.
Computers connected to the Internet often use
this protocol.

SMSAM See server MSAM.

snapshot format See image block.

specific identity A number used as shorthand
for the name and key of an alternate user on a
computer to provide access to a specific catalog
or mail service. See also local identity.

G L O S S A R Y

GL-10

stand-alone attribute A record that contains
only one attribute, extracted from another
record. Although technically a record, the
AOCE software treats a stand-alone attribute
like an attribute in most circumstances.
The record type of a stand-alone attribute
begins with the value of the constant
kAttributeValueRecTypeBody.

Standard Catalog Package The part of the
Macintosh Operating System that manages find
and browse panels for AOCE catalogs.

standard content See standard interchange
format.

standard interchange format A set of data
formats that consists of plain text, styled text,
sound (AIFF), images (PICT), and QuickTime
movies ('MooV').

Standard Mail Package The part of the
Macintosh Operating System that manages
mailers and makes it easy for applications to
create and send letters.

standard mode A mode of operation available
to server MSAMs and to personal MSAMs that
deal with non-letter messages. An MSAM
operating in standard mode hands off an
incoming message to an AOCE system. It is the
AOCE system, not the MSAM operating in
standard mode, that is responsible for delivering
the message to the ultimate destination.

store-and-forward gateway A link between
different messaging systems, sometimes bridging
different physical media, providing temporary
data storage, and, where necessary, address
translation.

store-and-forward messaging A method of
delivering messages that provides for temporary
storage and forwarding of a message from one
location to another, sometimes through several
intermediate store-and-forward gateways or
servers.

store-and-forward server A server that
provides store-and-forward messaging services.
PowerShare servers are store-and-forward
servers.

sublist A list of attributes that appears as a
distinct subset of the items displayed in an
information page window, or a list of records that
appears in a dNode window.

tag See attribute value tag.

TCP/IP Transmission Control Protocol/Internet
Protocol. The major transport protocol and the
network layer protocol typically used in
communicating messages over the Internet.

template See AOCE template.

To recipient A principal recipient of a message.
See also original recipient.

unapproved signer file A file created by the
MacSigner application when it creates an
approval request. The unapproved signer file
contains a DES-encrypted number that is
intended to be the user’s private key.

universal coordinated time (UTC) The same as
Greenwich Mean Time (GMT); the standard time
as established by the Royal Observatory at
Greenwich, England.

unpacking The process of reconstructing a data
structure from a sequence of bytes. Compare
packing.

User record A catalog record representing an
entity that has an account on an AOCE
messaging or catalog server. A User record
contains electronic addresses and biographical
information about the entity that can be read by
users of the system, as well as information about
the entity’s access privileges and password for
use by the AOCE software.

UTC See universal coordinated time.

verify To establish the authenticity of a digital
signature. Verification consists of determining
that the signed document has not changed since
it was signed and affirming that the public key
used to decrypt the signature is valid.

view An item or field in an information page
displaying one or more property values.

G L O S S A R Y

GL-11

view list A data structure that specifies
individual views on an information page. Each
item in the list includes the graphic rectangle
containing the view, the number of the property
that provides the information to be displayed, the
type of view, and information specific to that
view type.

virtual queue A view of a physical message
queue through which an application can open,
close, and list messages. More than one virtual
queue can be associated with a single physical
queue. See also physical queue.

IN-1

Index

Symbols

'((((' lookup table element 5-114
'))))' lookup table element 5-114

A

'abrt' lookup table element 5-119
'abyt' lookup table element 5-111
Access Code. See password
access control information

extracting for attribute types 8-146 to 8-148
extracting for dNodes 8-136 to 8-138
extracting for records 8-140 to 8-143
getting 8-132
getting for attribute types 8-143 to 8-145
getting for dNodes 8-133 to 8-135
getting for records 8-138 to 8-140

access control lists 8-14 to 8-15
access controls 8-7 to 8-8

getting 8-11 to 8-15
setting 8-11 to 8-15

access privileges 8-13 to 8-14
listing for personal catalogs 8-84 to 8-85

access requestors. See requestors
Add Enclosure dialog box 3-120 to 3-122
addresses 1-16, 7-10 to 7-17. See also message

addressing structures
direct 7-11 to 7-14

AppleTalk type 7-12
telephone type 7-12 to 7-14

expanding group addresses 3-44
indirect 7-14 to 7-17

attribute type 7-15
queue name type 7-16

address extensions 2-36, 2-105
address extension types
'alan' 7-12
'aphn' 7-13
'entn' 7-14 to 7-17
'attr' subtype 7-15
'qnam' subtype 7-16

getting 7-113
setting 7-112

Address field. See Recipients field of a mailer
addressing panel 3-6

addressomatic. See addressing panel 3-6
address templates A-4
ADSP. See AppleTalk Data Stream
'alan' address extension type 7-12
alias, name 5-86
aliases

adding to catalogs 8-106 to 8-108
displayed in Catalog-Browsing panel 4-31
extracting from data structures 2-78
extracting information about 8-62 to 8-63
extracting information from 8-46 to 8-48
for records, introduced 8-7
getting information about 8-43 to 8-46, 8-57 to 8-61
resolution for AOCE catalog objects 4-85 to 4-88

catalog specification structure 4-87
HFS aliases 4-85

'alng' lookup table element 5-111
alternate user, PowerTalk 9-9
AOCE

defined xix
desktop services 1-9 to 1-11
examples of collaboration applications 1-4 to 1-8
introduction 1-3 to 1-19
software, defined xix
software components 1-8 to 1-14
software components illustration 1-9
workflow example 1-7

AOCE attributes. See attributes
AOCE catalog records. See records
AOCE Catalogs Extension. See Catalogs Extension
AOCE catalogs. See catalogs
AOCE Collaboration Package 1-11
AOCE data structures

checking equality of 2-12 to 2-13
converting between packed and unpacked 2-6
copying 2-13 to 2-15
copying versus duplicating 2-15
duplicating 2-15
maximum-sized 2-3 to 2-4
minimum-sized 2-3 to 2-4
packing 2-5 to 2-10
unpacking 2-5 to 2-10
validating 2-10 to 2-12

AOCE identities. See identity 8-8
AOCE interprogram messages. See messages
AOCE message. See messages
AOCE record attributes. See attributes
AOCE records. See records

I N D E X

IN-2

AOCE strings 2-19 to 2-25
allocating non-standard sizes of 2-16
character set 2-19
checking equality of 2-50
converting C strings to AOCE strings 2-46
converting Pascal strings to 2-47
converting to Pascal strings 2-48
copying 2-45
header 2-19 to 2-20
introduction to 2-19
manipulating 2-45 to 2-51
minimum-sized 2-4
script code 2-19
validating 2-51

AOCE template callback routines 5-196 to 5-246
changing the call-for mask 5-198
custom views 5-242 to 5-245

bounds 5-244
reference value 5-242

determining a catalog system specification 5-210
determining a template’s file specification 5-206
determining quantity of templates 5-205
edit-text views 5-211 to 5-213

closing 5-212
getting the property number 5-211

getting a resource handle 5-207
getting information about properties 5-213 to 5-222

property-changed flag 5-221
property-editable flag 5-222
size of a binary property 5-219
types 5-215
value as a binary block 5-220
value as an RString 5-217
value as a number 5-216

how to call 5-197
opening a catalog object 5-211
parameter block headers 5-147 to 5-148
pop-up menus 5-238 to 5-242

adding an item 5-238
removing an item 5-240
returning text of a menu item 5-241

process control 5-199 to 5-200
property changed 5-233
property dirtied 5-233
property type conversions 5-214, 5-223
saving a property value 5-234. See also routine

selectors, AOCE template
setting information for properties 5-223 to 5-235

parsing an attribute value 5-224
setting property-changed flag 5-231
setting property-editable flag 5-232
type 5-226
value as a binary block 5-229
value as an RString 5-228
value as a number 5-227

supporting drops 5-201 to 5-205
determining how many objects are being

dropped 5-201
determining the nature of the destination

object 5-202 to 5-205
determining the nature of the object being

dropped 5-202 to 5-205
testing your code resource 5-198
unloading templates from memory 5-208
updating property values 5-237
working with catalog objects 5-209 to 5-211
working with sublists 5-235 to 5-238

determining number of items in sublist 5-235
synchronizing with catalog system 5-237

working with templates 5-205 to 5-209
AOCE template code resource routines 5-148 to 5-196

attribute values 5-175 to 5-181
adding a new value to a record 5-177
adding a new value to a sublist 5-176
changing 5-179
deleting 5-181

call-for mask 5-149
conditional views 5-166
custom property-type conversions 5-188 to 5-192

convert from number 5-191
convert from RString 5-192
convert to number 5-188
convert to RString 5-189

custom views and menus 5-192 to 5-196
dynamic creation of resources 5-154 to 5-157
enabling item in Catalogs menu 5-195
example 5-65 to 5-73
handling item in Catalogs menu 5-196
initializing and removing templates 5-150 to 5-154
keypress in information page 5-163
main routine prototype 5-148
mouse-down event in a custom view 5-194
opening an information page 5-158
parameter block 5-148
parameter block headers 5-145 to 5-147
pasting text 5-164
processing custom lookup table elements 5-182 to

5-185
processing idle-time tasks 5-157 to 5-158
property and information-page routines 5-158 to

5-169
property changed 5-167
property dirtied 5-167
reading the routine selector 5-148
saving property values 5-168. See also AOCE

template callback routines, routine selectors,
AOCE template; AOCE template callback
routines

setting attribute values from properties 5-184
setting properties from attribute values 5-182

I N D E X

IN-3

setting text length 5-166
supporting drops 5-169 to 5-174

for aspect of destination object 5-173
for aspect of dragged object 5-170

updating custom views 5-193
updating property values 5-185 to 5-187

AOCE templates 5-5 to 5-299
built-in A-1 to A-4

address A-4
Group records A-4
Key Chain A-4
User records A-1 to A-3

code resources 5-142 to 5-246
data types 5-142 to 5-148
rules for writing 5-142

exit routine 5-151
initializing and removing 5-150 to 5-154
names 5-75
properties. See properties
removing and initializing 5-150 to 5-154
resource ID values 5-75
resources. See resources
routine selectors. See routine selectors, AOCE

template
sample code 5-30 to 5-73. See also aspect templates;

file type templates; forwarder templates;
information page templates; killer templates

template-provided routines. See AOCE template
code resource routines

unloading from memory 5-208
writing 5-30 to 5-73

AOCE toolbox 1-12
AOCE Utilities 2-3 to 2-139

application-defined functions 2-106 to 2-107
checking for availability 2-5
data structures 2-19 to 2-44
functions 2-44 to 2-107

AOCE utility functions 2-44 to 2-107
calling from assembly language 2-44
copying functions 2-15
duplicating functions 2-15
equality functions 2-13
packing functions 2-6
unpacking functions 2-6
validation functions 2-11

'aphn' address extension type 7-13
Apple events

opening letters 3-17
passing to the Standard Mail Package 3-64

AppleMail application
example of letter 1-5
use of 1-7
use of standard format 1-11

Apple Open Collaboration Environment. See AOCE

AppleTalk Data Stream Protocol (ADSP), using for
authentication 9-7, 9-13

AppleTalk Secure Data Stream Protocol (ASDSP). See
AppleTalk Data Stream Protocol

AppleTalk Transition Queue (ATQ)
using with Authentication Manager 9-11
using with Catalog Manager 8-16
using with Interprogram Messaging Manager 7-17

application-defined routines
MyCompletion 9-68
MyCompletionRoutine 7-114, 8-150 to 8-151
MyDrawImage 3-123
MyDSSpecStreamer 2-106
MyFindPanelBusyProc 4-95
MyForEachADAPDirectory function 8-160
MyForEachAttributeAccessControl

function 8-163
MyForEachAttrType function 8-152
MyForEachAttrTypeLookup function 8-155 to 8-156
MyForEachAttrValue function 8-156 to 8-157
MyForEachDirectory function 8-153
MyForEachDirEnumSpec function 8-157 to 8-158
MyForEachDNodeAccessControl function 8-161
MyForEachLookupRecordID function 8-154
MyForEachRecordAccessControl function 8-162
MyForEachRecordID function 8-151 to 8-152
MyFrontWindowCB 3-124
MyNotificationProc 9-69
MyPanelBusyProc 4-94
MyPrepareMailerForDrawing 3-122
MyRecipientStreamer 7-115
MySendOptionsFilterProc 3-125
MyStatusCallBack function 6-54 to 6-55

ASDSP. See AppleTalk Data Stream Protocol
aspect

creating an information page from 5-17
creating from a record 5-16
defined 5-10
exit routine 5-154
initializing 5-152
main

defined 5-18
for attributes 5-20
for records 5-19

main view 5-20
relation to multiple information pages 5-18
relation to records and AOCE templates 5-11
saving property values 5-168
target selectors 5-144
target specifier 5-142 to 5-145

aspect templates
applying to new record or attribute types 5-139,

5-155
components of 5-78 to 5-119

I N D E X

IN-4

aspect templates (continued)
defined 5-11
described 5-13 to 5-14
determining quantity 5-205
disabling 5-140
help balloons 5-105
how they work 5-15 to 5-30
relation to aspects and records 5-11
sample 5-33 to 5-36. See also main aspect templates
signature resource 5-88

aspect template target selector 5-145
ATQ (AppleTalk Transition Queue)

using with Authentication Manager 9-11
using with Catalog Manager 8-16
using with Interprogram Messaging Manager 7-17

Attachment field. See Enclosures field of a mailer
attachments. See enclosures
'attr' address extension subtype 7-15
attribute creation ID 2-26 to 2-27

defined 8-7
AttributeCreationID data type 2-26 to 2-27
Attribute data type 2-39, 2-44
attribute extension structure 7-26
attributes

adding a new 5-94, 5-176, 5-177
AOCE template code resource routines 5-175 to

5-181, 5-182 to 5-185
adding a new value to a record 5-177
adding a new value to a sublist 5-176
changing 5-179
deleting 5-181

breaking into properties 5-224
category, specifying in an aspect template 5-91
changing a value 5-179
creating from properties. See lookup table
defined 1-15
deleting 5-110
deleting a value 5-181
dragging values from a sublist 5-102
dropping on a record 5-100
external category, specifying in an aspect

template 5-92
from a different record 5-224
from outside the catalog system 5-224
gender, of record alias 5-94
getting information from 6-52 to 6-54
information page for 5-23
initial value 5-96
kind

of alias 5-93
specifying in an aspect template 5-91

main aspect 5-20
main aspect and information page template sample

code 5-52 to 5-58
main aspect template for 5-22

multivalued 5-110
name 5-86
name of new value 5-95
new item routine for AOCE templates 5-153
parsing into properties 5-224. See also lookup table
preventing the user from dragging values out of

sublists 5-102
saving new values 5-27
specifying AOCE templates for use with 5-139, 5-155
stand-alone 5-6
tags 5-77, 5-96, 5-105

attribute tag AOCE template resource 5-77
attribute tags. See attribute value tags
attribute-type AOCE template resource 5-75, 5-76, 5-77
AttributeType data type 2-39, 5-181
attribute-type indirect addressing 7-15
attribute types

and lookup table 5-105
defined 8-7
deleting 8-126 to 8-127
extracting 8-130 to 8-131
extracting access control information for 8-146 to

8-148
extracting attribute values for 8-122 to 8-125
for AOCE templates 5-75 to 5-77
getting 2-94, 8-127 to 8-129
getting access control information for 8-143 to 8-145
getting attribute values for 8-118 to 8-121
managing 8-108 to 8-131
manipulating 2-94 to 2-95
multivalued 5-110

AttributeValue data type 2-42
attribute values

adding to records 8-109 to 8-110
changing 8-112 to 8-114
defined 8-7
deleting from records 8-111 to 8-112
extracting 8-122 to 8-125
finding 8-116 to 8-118
getting 8-118 to 8-121
managing 8-108 to 8-131
queue name format 7-16
verifying 8-114 to 8-115

attribute value tags
and lookup table 5-105
AOCE template resource 5-77
defined 8-7
for new value 5-96

AuthAddKey function 9-23
AuthAddToLocalIdentityQueue function 9-30
AuthBindSpecificIdentity function 9-39
AuthChangeKey function 9-24
AuthChangeLocalIdentity function 9-33
AuthDecryptCredentials function 9-59 to 9-61
AuthDeleteKey function 9-26

I N D E X

IN-5

AuthDirParamHeader data type 9-18
AuthDirParamHeader type 8-32
authenticated-in-catalog requestors 8-12
authenticated-in-dNode requestors 8-12
authentication

and Standard Mail Package 3-36
defined 9-4
example

for initiator 9-13
for Non-ASDSP users 9-13 to 9-14
for recipient 9-14
using a proxy 9-14
using ASDSP 9-12 to 9-13

generating a challenge 9-55
generating a reply and counterchallenge 9-56
indication in message header 7-7
introduction 1-17
process described 9-5 to 9-7
prompting user 4-25 to 4-28
utilities for non-ASDSP users 9-54 to 9-61
verifying a reply and replying to a

counterchallenge 9-58
authentication identity. See identity
Authentication Manager 9-3 to 9-104

application-defined functions for 9-68 to 9-70
data structures for 9-18 to 9-20
defined 9-10
functions in 9-20 to 9-68

calling from assembly language 9-21
creation ID resolution 9-50 to 9-52
credentials management 9-43 to 9-50
key management 9-21 to 9-28
local identity management 9-28 to 9-38
managing the PowerTalk Setup catalog 9-61 to

9-68
non-ASDSP authentication 9-54 to 9-61
specific identity management 9-39 to 9-43

introduction 1-12
testing for availability 9-11
testing for version number 9-11

AuthGetCredentials function 9-43 to 9-45
AuthGetLocalIdentity function 9-28
AuthGetSpecificIdentityInfo function 9-42
AuthGetUTCTime function 9-53
AuthKey data type 9-20
AuthKeyType data type 9-20
AuthLockLocalIdentity function 9-35
AuthMakeChallenge function 9-55 to 9-56
AuthMakeProxy function 9-45
AuthMakeReply function 9-56
AuthParamBlockPtr data type 9-18
AuthPasswordToKey function 9-21

AuthRemoveFromLocalIdentityQueue function 9-31
AuthRemoveLocalIdentity function 9-37
AuthResolveCreationID function 9-50 to 9-52
AuthSetupLocalIdentity function 9-32
AuthTradeProxyForCredentials function 9-47 to

9-50
AuthUnbindSpecificIdentity function 9-41
AuthUnlockLocalIdentity function 9-36
AuthVerifyReply function 9-58
'awrd' lookup table element 5-111

B

Balloon Help, in mailers 3-66. See also help balloons
'bbit' lookup table element 5-111
binary property 5-13
binary property type 5-84
Bitmap view type 5-128
blocks, letter

adding to a letter 3-91 to 3-93
getting information about 3-104
reading 3-106

blocks, message
current 7-62
getting type and index 7-96
nested message 7-59 to 7-61
nesting 7-56 to 7-59
reading data 7-98 to 7-101
starting 7-53 to 7-55
TOC in message header 7-7
writing data to 7-61 to 7-65

block type structure 7-28
block type values 7-27
'blok' lookup table element 5-111
boldface, meaning of xxii
bounds

Catalog-Browsing panel 4-30, 4-50
Find panel 4-64
information page custom view 5-244

Box view type 5-128
browsing AOCE catalogs 4-3, 5-7 to 5-9. See also

Catalog-Browsing panel
'bsiz' lookup table element 5-115
'btyp' lookup table element 5-119
built-in AOCE templates A-1 to A-4
business cards. See information cards
'bust' file type 4-86
buttons, implementing for the Find panel 4-79
Button view type 5-129, 5-161
'byte' lookup table element 5-111

I N D E X

IN-6

C

callback block headers 5-147 to 5-148
CallBackDET AOCE template macro 5-197
callback routines. See AOCE template callback

routines; application-defined routines
call block headers 5-145 to 5-147
call block targeted header 5-146
call-for mask, AOCE template

changing 5-198
defined 5-149

canceling a message 7-67
capability flags for catalogs. See feature flags
Catalog Browser 1-9
Catalog-Browsing panel

adding and removing focus rectangle 4-46
bounds 4-30, 4-50
changing identity 4-37
creating 4-8 to 4-11

using function parameters 4-30 to 4-33
using resources 4-34 to 4-35

defined 4-3
displaying contents of a container 4-38
disposing 4-50
enabling and disabling 4-45
events in 4-51 to 4-61

determining size of packed record ID of item
selected 4-57

determining type of item selected 4-55 to 4-56
getting packed record ID of item selected 4-58
handling 4-11 to 4-18, 4-52 to 4-54
opening item selected 4-59 to 4-61

getting pathname of item in pop-up menu 4-40 to
4-42

help balloons for 4-36
hiding 4-43
highlighting item that matches string 4-42
installing a panel-busy callback function 4-35
making visible 4-44
moving 4-48
panel-busy callback function 4-94
resizing 4-49
responding to an update event 4-47
sample 4-9 to 4-11
size of buffer needed for pathname 4-39
types of items displayed 4-31
types of records displayed 4-31, 4-32

Catalog-Browsing panel structure 4-20
catalog discriminators 2-31

checking equality of 2-64
copying 2-63
defined 8-4
manipulating 2-63 to 2-64

catalog folder. See dNodes

Catalog Manager 8-3 to 8-163
application-defined functions 8-150 to 8-163
data types in 8-32 to 8-37
functions in 8-38 to 8-149

calling from assembly language 8-38
introduction 1-13
testing for availability 8-16
testing for version number 8-16

catalog node ID. See dNodeID data type
catalog node names, determining number in

PackedPathName 2-58
catalog node number. See dNode numbers
catalog node. See dNodes
catalog records. See records
catalogs

adding a client key to a catalog 9-23
adding aliases to 8-106 to 8-108
adding to PowerTalk Setup catalog 8-71 to 8-76, 9-64
addressing 8-4
AOCE template callback routines 5-209 to 5-211
browsing 4-3, 5-7 to 5-9
changing a client key in a catalog 9-24
changing the record ID and password in the

PowerTalk Setup catalog 9-65
defined 8-4
deleting a client key from a catalog 9-26
determining the catalog system specification for an

object 5-210
example of use 1-5
external. See external catalogs
features, determining 8-4, 8-10, 8-28 to 8-32, 8-48 to

8-50
getting extended information about 8-54 to 8-56
getting icon information for 8-52 to 8-54
getting information about 8-38 to 8-56
getting network information for 8-51 to 8-52
identifying 8-5
introduction to 1-14, 8-4 to 8-9
obtaining icons for catalog objects 4-90
obtaining root of 2-78
opening an object from a template code

resource 5-211
personal. See personal catalogs
removing from PowerTalk Setup catalog 8-79 to

8-81, 9-66. See also external catalogs; personal
catalogs; PowerShare catalogs

selecting records 4-3
structure of 8-5
synchronizing with sublist 5-237

catalog service access modules. See CSAMs
catalog services specification, packing 2-97
catalog services specifications 2-36 to 2-38

checking equality of 2-99
converting to stream of bytes 2-105
defined 2-36

I N D E X

IN-7

manipulating 2-95 to 2-106
obtaining information about 2-103
packed 2-37
packed minimum-sized 2-38
unpacking 2-6 to 2-10

Catalogs Extension (CE)
Catalogs icon 5-6
compared with HFS 5-7
description 5-5 to 5-9
routines used by templates. See AOCE template

callback routines, AOCE templates
Catalogs icon 5-6
Catalogs menu

adding items 5-137
New item, specifying text of 5-94
routines to handle custom items 5-192 to 5-196

enabling and disabling 5-195
responding to user selection 5-196

catalog system specifier structure. See DSSpec data type
certificate information structure 6-25
certificate sets 6-6 to 6-7
certificates. See public-key certificates
CE. See Catalogs Extension
challenge, authentication

generating 9-55
generating a reply and counterchallenge 9-56
obtaining credentials and key 9-44
steps in authentication 9-7
verifying a reply and replying to a

counterchallenge 9-58
changing the call-for mask 5-198
character set, for AOCE strings 2-19
Checkbox view type 5-129, 5-161
client key

adding to catalog 9-23
changing in catalog 9-24
creating from a password 9-21
defined 9-4
deleting from catalog 9-26

close-options dialog box 3-60, 3-61
close-options structure 3-29
code resources, AOCE templates 5-142 to 5-246. See

also AOCE template callback routines; AOCE
template code resource routines; routine
selectors, AOCE templates

data types 5-142 to 5-148
example 5-65 to 5-73
rules for writing 5-142
target specifier 5-142 to 5-145

Collaboration Package 1-11 to 1-12. See also Standard
Catalog Package; Standard Mail Package

Collaboration toolbox 1-12 to 1-14. See also
Authentication Manager; Catalog Manager; IPM
Manager

commands, menu. See menu commands
commands, property. See property commands
CompletionRoutine function 7-114
completion routines

Authentication Manager 9-68
IPM Manager 7-41, 7-114

conditional elements for lookup tables 5-112
conditional views. See views
connection closed error 7-18
content enclosures. See main enclosures
content of a letter. See also image content; native content

adding an image to a letter 3-88
adding standard interchange format to a letter 3-85

to 3-88
reading standard interchange format in a letter 3-98

to 3-102
context data structure 6-39
contexts 6-28 to 6-31. See also queue context

creating 6-28 to 6-29
disposing 6-29

conventions used in this book xxii
counterchallenge, authentication

generating 9-56
replying to 9-58

cover pages, mailer
drawing 3-108
preparing 3-107

creating an aspect from a record 5-16
creating an information page from an aspect 5-17
CreationID data type

checking equality of 2-52
copying 2-52
defined 2-26 to 2-27
getting null pointer to 2-53
getting pointer to PathFinder creation ID 2-54
setting to null 2-54

creation IDs 9-50 to 9-52. See also attribute creation ID;
record creation IDs

manipulating 2-51 to 2-55
creators

determining for letter in the In Tray 3-94
creator type structure 3-28, 7-27
credentials

decrypting 9-59
defined 9-5
getting 9-12, 9-43
getting a proxy for 9-45
management 9-43 to 9-50
use of 9-7
using a proxy to obtain 9-47

cryptographic key. See keys, cryptographic
cryptography 6-4
'csam' file type 5-73
CSAMs (catalog service access modules)

introduced 8-4

I N D E X

IN-8

C strings, converting to AOCE strings 2-46
'cstr' lookup table element 5-111
current block 7-62
cursors

disabling watch cursor 5-200
in mailers 3-66

custom information page window
main aspect and information page template sample

code 5-58 to 5-65
pop-up menu 5-97
resource 5-97

Custom view type 5-130
'cwin' event class 3-67

D

Data Encryption Standard (DES) 9-4
date, getting information about 6-20
Date field. See Sent field of a mailer
DefaultButton view type 5-129, 5-161
delivery notification

data structures 7-28 to 7-34
delivery result 7-33
nondelivery codes 7-29 to 7-30
notification types 7-31 to 7-32
recipient index 7-33
recipient report 7-33
report block header 7-33

DES (Data Encryption Standard) 9-4
DESKey data type 9-20
DET. See AOCE templates
DETAboutToTalkBlock data type 5-200
DETAddMenuBlock data type 5-238
'deta' resource type 5-88
DETAttributeChangeBlock data type 5-178
DETAttributeCreationBlock data type 5-175
DETAttributeDeleteBlock data type 5-180
DETAttributeNewBlock data type 5-176
DETBeepBlock data type 5-198
DETBreakAttributeBlock data type 5-224
'detb' resource type 5-96, 5-103
DETBusyBlock data type 5-200
DETCallBackBlockHeader data type 5-147
DETCallBackBlockPropertyHeader data type 5-148
DETCallBackBlockTargetedHeader data type 5-148
DETCallBlock data type 5-148
DETCallBlockHeader data type 5-146
DETCallBlockPropertyHeader data type 5-146
DETCallBlockTargetedHeader data type 5-146
DETChangeCallForsBlock data type 5-198
DETCloseEditBlock data type 5-212

DETConvertFromNumberBlock data type 5-190
DETConvertFromRStringBlock data type 5-191
DETConvertToNumberBlock data type 5-188
DETConvertToRStringBlock data type 5-189
'detc' resource type 5-84. See also code resources
DETCustomMenuEnabledBlock data type 5-194
DETCustomMenuSelectedBlock data type 5-195
DETCustomViewMouseDownBlock data type 5-193
DETDirtyPropertyBlock data type 5-233
DETDoPropertyCommandBlock data type 5-245
DETDoSyncBlock data type 5-186
DETDropMeQueryBlock data type 5-170
DETDropQueryBlock data type 5-172
DETDynamicForwardersBlock data type 5-155
DETDynamicResourceBlock data type 5-156
DETExitBlock data type 5-151
'detf' file type 5-12, 5-73
DETForwarderListItem data type 5-145
'detf' resource type 5-139
DETFSInfo data type 5-203
DETGetCommandItemNBlock data type 5-202
DETGetCommandSelectionCountBlock data

type 5-201
DETGetCustomViewBoundsBlock data type 5-244
DETGetCustomViewDrawBlock data type 5-192
DETGetCustomViewUserReferenceBlock data

type 5-242
DETGetDSSpecBlock data type 5-209
DETGetOpenEditBlock data type 5-211
DETGetPropertyBinaryBlock data type 5-219
DETGetPropertyBinarySizeBlock data type 5-218
DETGetPropertyChangedBlock data type 5-221
DETGetPropertyEditableBlock data type 5-222
DETGetPropertyNumberBlock data type 5-216
DETGetPropertyRStringBlock data type 5-217
DETGetPropertyTypeBlock data type 5-214
DETGetResourceBlock data type 5-207
DETGetTemplateFSSpecBlock data type 5-206
DETInitBlock data type 5-150
DETInstanceExitBlock data type 5-154
DETInstanceIdleBlock data type 5-157
DETInstanceInitBlock data type 5-152
'deti' resource type 5-121
DETItemNewBlock data type 5-153
DETItemType enumeration 5-203
DETKeyPressBlock data type 5-163
'detk' resource type 5-140
DETMaximumTextLengthBlock data type 5-166
DETMenuItemRStringBlock data type 5-241
'detm' resource type 5-104, 5-137
'detn' resource type 5-77, 5-103
DETOpenDSSpecBlock data type 5-210
DETOpenSelfBlock data type 5-158
DETPasteBlock data type 5-164
DETPatternInBlock data type 5-182

I N D E X

IN-9

DETPatternOutBlock data type 5-184
'detp' resource type 5-104
DETPropertyCommandBlock data type 5-159
DETPropertyDirtiedBlock data type 5-167
DETRemoveMenuBlock data type 5-240
DETRequestSyncBlock data type 5-237
DETSavePropertyBlock data type 5-234
DETSelectedSublistCountBlock data type 5-236
DETSetPropertyBinaryBlock data type 5-229
DETSetPropertyChangedBlock data type 5-231
DETSetPropertyEditableBlock data type 5-232
DETSetPropertyNumberBlock data type 5-227
DETSetPropertyRStringBlock data type 5-228
DETSetPropertyTypeBlock data type 5-225
DETShouldSyncBlock data type 5-185
DETSublistCountBlock data type 5-235
DETTargetSelector enumeration 5-144
DETTargetSpecification data type 5-143
DETTemplateCounts data type 5-205
'dett' resource type 5-108. See also lookup table
DETUnloadTemplatesBlock data type 5-208
DETValidateSaveBlock data type 5-168
DETViewListChangedBlock data type 5-166
'detv' resource type 5-123 to 5-130. See also view lists
'detw' resource type 5-97
'detx' resource type 5-141
dialog boxes

displayed by AOCE template code resource 5-200
and information pages 5-200

digest data structure 6-44
digests

creating 6-19, 6-43 to 6-44
defined 6-5
encrypted 6-6
generating 6-30
size of 6-5, 6-44
unencrypted 6-43

Digital Signature Manager 6-3 to 6-64
application-defined functions 6-54 to 6-55
data structures for 6-23 to 6-27
functions in 6-27 to 6-54
introduction 1-12
testing for version number 6-11

digital signatures 6-5 to 6-6
adding to a message 7-67
checking for 3-83
defined 6-3
detecting viruses with 6-3
icons for 6-26
indication in message header 7-7
introduction to 6-3 to 6-5
relationship to full signatures 6-5 to 6-6. See also full

signatures
verifying for message 7-102 to 7-103

DirAbort function 8-148 to 8-149
DirAddADAPDirectory function 8-71 to 8-73
DirAddAlias function 8-106 to 8-108
DirAddAttributeValue function 8-109 to 8-110
DirAddPseudonym function 8-98 to 8-100
DirAddRecord function 8-89 to 8-91
DirChangeAttributeValue function 8-112 to 8-114
DirClosePersonalDirectory function 8-85 to 8-86
DirCreatePersonalDirectory function 8-82 to 8-83
DirDeleteAttributeType function 8-126 to 8-127
DirDeleteAttributeValue function 8-111 to 8-112
DirDeletePseudonym function 8-100 to 8-101
DirDeleteRecord function 8-91 to 8-92
DirDiscriminator

checking equality of 2-64
copying 2-63
data type defined 2-31

direct addressing 7-11 to 7-14
AppleTalk type 7-12
telephone type 7-12 to 7-14

Direct Dialup
addresses 7-12 to 7-14
defined 7-3

Directory Manager. See Catalog Manager
DirectoryName data type 2-22
DirEnumChoices data type 8-34
DirEnumerateAttributeTypesGet function 8-127 to

8-129
DirEnumerateAttributeTypesParse function 8-130

to 8-131
DirEnumerateDirectoriesGet function 8-38 to 8-41
DirEnumerateDirectoriesParse function 8-41 to

8-43
DirEnumerateGet function 8-57 to 8-61
DirEnumerateParse function 8-62 to 8-63
DirEnumeratePseudonymGet function 8-101 to 8-104
DirEnumeratePseudonymParse function 8-104 to

8-106
DirEnumSpec data type 8-35
DirFindADAPDirectoryByNetSearch function 8-74

to 8-76
DirFindRecordGet function 8-43 to 8-46
DirFindRecordParse function 8-46 to 8-48
DirFindValue function 8-116 to 8-118
DirGetAttributeAccessControlGet function 8-143

to 8-145
DirGetAttributeAccessControlParse

function 8-146 to 8-148
DirGetDirectoryIcon function 8-52 to 8-54
DirGetDirectoryInfo function 8-10, 8-48 to 8-50
DirGetDNodeAccessControlGet function 8-133 to

8-135

I N D E X

IN-10

DirGetDNodeAccessControlParse function 8-136 to
8-138

DirGetDNodeInfo function 8-69 to 8-70
DirGetDNodeMetaInfo function 8-64 to 8-65
DirGetExtendedDirectoriesInfo function 8-24,

8-54 to 8-56
DirGetLocalNetworkSpec function 8-51 to 8-52
DirGetNameAndType function 8-94 to 8-95
DirGetOCESetupRefnum function 8-81 to 8-82
DirGetRecordAccessControlGet function 8-138 to

8-140
DirGetRecordAccessControlParse function 8-140

to 8-143
DirGetRecordMetaInfo function 8-92 to 8-94
DirLookupGet function 8-118 to 8-121
DirLookupParse function 8-122 to 8-125
DirMakePersonalDirectoryRLI function 8-86 to 8-88
DirMapDNodeNumberToPathName function 8-65 to 8-67
DirMapPathNameToDNodeNumber function 8-67 to 8-69
DirMatchWith data type 8-37
DirNetSearchADAPDirectoriesGet function 8-76 to

8-77
DirNetSearchADAPDirectoriesParse function 8-78

to 8-79
DirOpenPersonalDirectory function 8-84 to 8-85
DirParamBlock data type 8-32 to 8-34
DirRemoveDirectory function 8-79 to 8-81
DirSetNameAndType function 8-96 to 8-97
'dirt' file type 4-86
dirtied property

AOCE template callback routine 5-233
code resource routine 5-167

DirVerifyAttributeValue function 8-114 to 8-115
distinguished name 6-9 to 6-11, 6-46

getting information about 6-52 to 6-54
DNodeID data type 8-34
dNode list. See sublists
dNode numbers

defined 8-5
getting 9-50
getting from pathnames 8-67 to 8-69

dNodes
adding records to 8-89 to 8-91
defined 1-14
detecting changes in 8-64 to 8-65
determining number in PackedPathName 2-58
displayed in Catalog-Browsing panel 4-31
enumerating 8-35
extracting access control information for 8-136 to

8-138
extracting information from 8-62 to 8-63
getting access control information for 8-133 to 8-135
getting dNode number from pathname 8-67 to 8-69
getting information about 8-56 to 8-70
getting information about contents of 8-57 to 8-61

getting pathname information for 8-65 to 8-67
identifying ability to contain records 8-69 to 8-70
identifying as foreign nodes 8-69 to 8-70

'dnod' file type 4-86
documents

digital signatures for. See digital signatures 3-41
sending as a letter 3-37 to 3-41

dragging, and AOCE templates. See drop operations
DrawImage function 3-123
drop operations, and AOCE templates

callback routines 5-201 to 5-205
determining how many objects are being

dropped 5-201
determining the nature of the destination

object 5-202 to 5-205
determining the nature of the object being

dropped 5-202 to 5-205
categories of records that can be dropped 5-100
code resource routines 5-162, 5-169 to 5-174

for aspect of destination object 5-173
for aspect of dragged object 5-170

dropping an attribute on a record 5-100
dropping a record on a record 5-99
file information 5-203
how they work 5-28
item types 5-203
label for button in dialog box 5-101
preventing the user from dragging out attribute

values 5-102
prompt string 5-101
property commands 5-162
resources 5-98 to 5-102
selection list 5-102
types of attribute values that can be dragged out of a

sublist 5-102
'dsam' file type 5-73
'dsig' resource type 6-22, 6-36
DSSpec data type

checking equality of 2-99
converting to stream of bytes 2-105
defined 2-36
obtaining information about 2-103
opening a catalog object from a template code

resource 5-211
packed. See PackedDSSpec
packing 2-97

DSSpec target selector 5-144
duplicate message delivery 7-18
dynamic creation of AOCE template resources 5-154 to

5-157

I N D E X

IN-11

E

Edit menu, mailers and
enabling and disabling commands 3-32, 3-69
handling commands 3-67
handling commands, sample 3-25
Undo command 3-33, 3-70

EditPicture view type 5-130
edit-text views

AOCE template callback routines 5-211 to 5-213
closing 5-212
getting the property number 5-211

closing with default button 5-129
in view list 5-128

EditText view type 5-128
enclosure descriptor 3-26
enclosures

adding to a mailer 3-119
displaying Add Enclosure dialog box 3-120 to 3-122
sending with a letter 3-39

Enclosures field of a mailer
adding enclosures to a mailer 3-119, 3-120 to 3-122
getting 3-113 to 3-115

encrypted digests 6-6. See also digital signatures
encryption

Data Encryption Standard 9-4
encryption keys. See keys, cryptographic
entity name extension structure 7-26
'entn' address extension type 7-14 to 7-17
'attr' subtype 7-15
'qnam' subtype 7-16

enumeration choice types 8-34
enumeration specifications 8-35
'equa' lookup table element 5-112
errors, from mailer image-drawing routines 3-42
events, Catalog-Browsing panels 4-51 to 4-61

determining size of packed record ID of item
selected 4-57

determining type of item selected 4-55 to 4-56
getting packed record ID of item selected 4-58
handling 4-11 to 4-18, 4-52 to 4-54
opening item selected 4-59 to 4-61

Find panels 4-75 to 4-85
determining size of packed record ID of record

selected 4-80
determining what action user has taken 4-79 to

4-80
getting packed record ID of record selected 4-82
handling 4-76 to 4-78

key-down 3-124
mailers 3-21 to 3-25, 3-63 to 3-72

edit menu commands 3-67 to 3-71
having the mailer process events for you 3-63 to

3-67
mouse clicks 3-24

processing 3-22
specifying the active window 3-124

update, in mailers 3-72
exit routines

AOCE template 5-151
aspect 5-154

expiration time of credentials 9-59
extended catalog information, getting 8-24
extensions. See address extensions
extension types. See address extension types
external catalogs, removing from PowerTalk Setup

catalog 8-79 to 8-81

F

family, message 7-7, 7-35
feature flags for catalogs 8-4, 8-28 to 8-32
'fext' file type 5-73
file information, AOCE template drop operations 5-203
File menu

opening a letter 3-95
saving a letter 3-80

'file' message family type 7-35
files

digital signatures for. See digital signatures
sending as letters 3-37 to 3-41

file system specification, determining for an AOCE
template file 5-206

file types
'bust' 4-86
'csam' 5-73
'detf' 5-12, 5-73
'dirt' 4-86
'dnod' 4-86
'dsam' 5-73
'fext' 5-73
'msam' 5-73
'pabt' 4-86
'rcrd' 4-86
searched by Catalogs Extension 5-15, 5-141
used by AOCE templates 5-73

file type templates 5-12, 5-15
components of 5-141
disabling 5-140
resources 5-141
signature resource 5-141

filters, for message queues
changing 7-74
general description 7-8
queue filter structure 7-35
single filter structure 7-34
structures 7-34 to 7-35

I N D E X

IN-12

Finder
AOCE desktop services 1-9 to 1-11
Catalog Browser 1-9

Find panel
adding and removing focus rectangle 4-70
and Stop button 4-80
bounds of elements 4-64
changing identity 4-71
creating 4-18 to 4-20, 4-61 to 4-65
defined 4-3
disposing 4-20, 4-75
enabling and disabling 4-69
events in 4-75 to 4-85

determining size of packed record ID of record
selected 4-80

determining what action user has taken 4-79 to
4-80

getting packed record ID of record selected 4-82
handling 4-76 to 4-78

help balloons for 4-66
hiding 4-67
implementing buttons and menu items 4-79
initial focus rectangle 4-64
initiating a search 4-83
installing a panel-busy callback function 4-65
making visible 4-68
moving 4-74
panel-busy callback function 4-95
responding to an update event 4-72 to 4-73
terminating a search 4-84
version number 4-5

FindPanelBusyProc function 4-95
find panel structure 4-22
'find' resource type 4-63
fixed header information structure 7-38
focus rectangle

adding and removing
Catalog-Browsing panel 4-46
Find panel 4-70

and Catalog-Browsing panel 4-11
defined 4-11
initial setting for Find panel 4-64

fonts
constants for view lists 5-127
converting font numbers in a letter to font

names 3-102
in letters 3-87

foreign dNodes
identifying as 8-69 to 8-70

forwarder list 5-145
forwarder templates 5-11, 5-14

components of 5-138 to 5-139
disabling 5-140
resources 5-138 to 5-139
signature resource 5-139

forwarding mail 3-19 to 3-20, 3-49
friend requestors 8-12
From field of a mailer

getting 3-111
specifying identity 3-117

FrontWindowCB function 3-124
full signatures

components of 6-5 to 6-7
creating 6-8, 6-14 to 6-16, 6-31 to 6-38
getting information from 6-19 to 6-22, 6-45 to 6-54
verifying 6-6, 6-8, 6-16 to 6-19, 6-38 to 6-40

G

gender of record kind 5-93
get functions, using to get access control

information 8-14
get/parse function pairs 8-10

how to use together 8-15
using with different parameter blocks 8-16 to 8-20
using with identical parameter blocks 8-20 to 8-24

graphics ports
and image-drawing routine 3-124
preparing for mailer 3-123

'grea' lookup table element 5-113
Greenwich Mean Time. See UTC
'greq' lookup table element 5-113
group addresses, expanding 3-44
Group record templates A-4
guest, PowerTalk 9-9
guest requestors 8-12

H

header, message
authentication field 7-7
contents of 7-6
delivery notification field 7-6
digital signature field 7-7
information about 7-37 to 7-39, 7-89 to 7-96
message family field 7-7
priority field 7-6
process hint field 7-7
recipient location information 7-7
recipients 7-92 to 7-94
reply queue field 7-7, 7-95 to 7-96
sender field 7-7
table of contents 7-7

header information structures 7-37 to 7-39
help balloons

aspect templates 5-105

I N D E X

IN-13

for attributes 5-93
for Catalog-Browsing panel 4-36
for Find panel 4-66
main aspect templates 5-93, 5-94
for records 5-93

high-level events, passing to the Standard Mail
Package 3-64

I

icon list. See sublists
icon property 5-13
icons

for AOCE templates 5-90
for catalog objects, obtaining 4-90
for catalog records, obtaining 4-88
getting information about 8-52 to 8-54
for spinning arrows 4-95

icon suites
generic for Standard Catalog Package 4-96
standard for digital signatures 6-26
standard for Standard Catalog Package 4-97

icon view type 5-128
identity 9-7 to 9-9. See also local identity; specific

identity
and keys 9-27
and Standard Mail Package 3-37
defined 8-8, 9-8
for Catalog-Browsing panel 4-37
for Find panel 4-71
guest 9-9
introduction 1-18
obtaining 4-8
of sender of a letter 3-117
prompting for 4-6 to 4-8, 4-25 to 4-28

idle processing, AOCE templates 5-157 to 5-158
image block information structure 3-28
image content

adding to a letter 3-16, 3-88
preparing for a letter 3-123

image files
drawing results function 3-42
drawing routine 3-39
new page function 3-41
sending 3-37 to 3-41

indirect addressing 7-14 to 7-17
attribute type 7-15
queue name type 7-16

info page. See information page
information cards 8-4

defined 5-5
dragging and dropping 5-28, 5-171
use of 1-6

information page
automatically opening for new sublist item 5-96
callback routines

property changed 5-233
property dirtied 5-233

code resource routines 5-158 to 5-169
conditional views 5-166
keypress routine 5-163
maximum text length 5-166
overriding normal opening 5-158
pasting text 5-164
property changed 5-167
property dirtied 5-167
saving property values 5-168
setting default values 5-159

conditional views
defined 5-26
implementing 5-131 to 5-136
sample 5-40 to 5-43

creating from an aspect 5-17
custom views

code resource callback routines 5-242 to 5-245
code resource routines 5-192 to 5-194
defined 5-130
getting bounds 5-244
getting reference value 5-242

example 1-6
opening 5-158
relation to multiple aspects 5-18
sublist sample code 5-43 to 5-52
updating 5-168
window size 5-97

information page templates
applying to new record or attribute types 5-139,

5-155
attribute sample code 5-52 to 5-58
components of 5-119 to 5-138
custom window resource 5-97
custom window sample code 5-58 to 5-65
defined 5-11
described 5-14
determining quantity 5-205
disabling 5-140
for attribute in sublist 5-23
for record in sublist 5-24
how they work 5-15 to 5-30
naming information page 5-137
page-selection pop-up menu 5-97
record sample code 5-36 to 5-40
relation to aspects and records 5-11
resources 5-120 to 5-138
signature resource 5-121 to 5-123
specifying the main view aspect 5-136
sublist 5-136

I N D E X

IN-14

information page templates (continued)
view list 5-123 to 5-131
view types 5-127 to 5-130

information page template target selector 5-145
initiator of authentication process 9-13
intermediary

defined 9-10
obtaining proxy 9-46
obtaining record ID 9-59

interprogram messages. See messages
interprogram messaging addresses. See addresses
Interprogram Messaging Manager 7-3 to 7-158

application-defined functions for 7-114 to 7-116
completion routine 7-114

data structures for 7-24 to 7-41
delivery notification 7-28 to 7-34
message addressing structures 7-24 to 7-26
message and block types 7-26 to 7-28

functions in 7-42 to 7-114
calling asynchronously or synchronously 7-41
calling from assembly language 7-43, 7-107
completion routines 7-41
creating a new message 7-43 to 7-68
deleting messages 7-105 to 7-107
listing and reading messages 7-80 to 7-105
managing message queues 7-68 to 7-80
utilities 7-107 to 7-114

introduction 1-13
relationship to Standard Mail Package 7-3
services provided 7-4
testing for availability 7-17
testing for version number 7-17, 7-38

Interprogram Messaging parameter block header 7-40
In Tray

getting information about a letter 3-93
obtaining letter descriptor of next item to open 3-97

I/O tasks, advantage of packed structures for 2-5
IPMAddRecipient function 7-50 to 7-51
IPMAddReplyQueue function 7-52
IPM addresses. See addresses
IPMBlockType data type 7-28
IPMChangeQueueFilter function 7-74
IPMCloseContext function 7-77
IPMCloseMsg function 7-104 to 7-105
IPMCloseQueue function 7-76
IPMCreateQueue function 7-69 to 7-70
IPMDeleteMsgRange function 7-106 to 7-107
IPMDeleteQueue function 7-78
IPMEndMsg function 7-65 to 7-68
IPMEntityNameExtension data type 7-26
IPMEntnAttributeExtension data type 7-26
IPMEntnQueueExtension data type 7-26
IPMEnumerateQueue function 7-80 to 7-82
IPMFilter data type 7-35
IPMFixedHdrInfo data type 7-38

IPMGetBlkIndex function 7-96
IPMGetMsgInfo function 7-87
IPM Manager. See Interprogram Messaging Manager
IPMMsgID data type 7-32
IPMMsgInfo data type 7-36
IPMMsgType data type 7-28
IPMNestMsg function 7-59 to 7-61
IPMNewBlock function 7-53 to 7-55
IPMNewHFSMsg function 7-47 to 7-50
IPMNewMsg function 7-43 to 7-47
IPMNewNestedMsgBlock function 7-56 to 7-59
IPMNotificationType data type 7-31
IPMOpenBlockAsMsg function 7-86 to 7-87
IPMOpenContext function 7-70
IPMOpenHFSMsg function 7-84
IPMOpenMsg function 7-82 to 7-84
IPMOpenQueue function 7-72 to 7-74
IPMReadHeader function 7-89 to 7-92
IPMReadMsg function 7-98 to 7-101
IPMReadRecipient function 7-92 to 7-94
IPMReadReplyQueue function 7-95 to 7-96
IPMReportBlockHeader data type 7-33
IPMSender data type 7-40
IPMSingleFilter data type 7-34
IPMTOC data type 7-37
IPMVerifySignature function 7-102 to 7-103
IPMWriteMsg function 7-61 to 7-65
isAlias lookup-table flag 5-109
isRecordRef lookup-table flag 5-109
issue time of credentials 9-59
item types for drop operations 5-203

J

justified text, in AOCE templates 5-127

K

kDETAddNewItem metaproperty 5-87
kDETAspectAliasGender resource ID offset 5-94
kDETAspectAliasKind resource ID offset 5-93
kDETAspectAliasWhatIs resource ID offset 5-94
kDETAspectAttrDragIn resource ID offset 5-100
kDETAspectBalloons resource ID offset 5-105
kDETAspectCategory resource ID offset 5-91
kDETAspectDragInString resource ID offset 5-101
kDETAspectDragInSummary resource ID offset 5-102
kDETAspectDragInVerb resource ID offset 5-101
kDETAspectDragOut resource ID offset 5-102
kDETAspectExternalCategory resource ID

offset 5-92

I N D E X

IN-15

kDETAspectGender resource ID offset 5-93
kDETAspectInfoPageCustomWindow resource ID

offset 5-97
kDETAspectKind resource ID offset 5-91
kDETAspectLookup resource ID offset 5-108 to 5-119
kDETAspectMainBitmap resource ID offset 5-90
kDETAspectName property 5-86
kDETAspectName resource ID offset 5-95
kDETAspectNewEntryName resource ID offset 5-95
kDETAspectNewMenuName resource ID offset 5-94
kDETAspectNewValue resource ID offset 5-96
kDETAspectRecordCatDragIn resource ID offset 5-99
kDETAspectRecordDragIn resource ID offset 5-99
kDETAspectReverseSort resource ID offset 5-104
kDETAspectSublistOpenOnNew metaproperty 5-87,

5-96
kDETAspectSublistOpenOnNew resource ID

offset 5-96
kDETAspectTemplateNumber metaproperty 5-86
kDETAspectTemplate target selector 5-145
kDETAspectViewMenu resource ID offset 5-103
kDETAspectWhatIs resource ID offset 5-93
kDETAttributeAccessMask metaproperty 5-87
kDETAttributeType resource ID offset 5-76, 5-77
kDETAttributeValueTag resource ID offset 5-77
kDETcmdAboutToTalk template callback routine 5-200
kDETcmdAddMenu template callback routine 5-238
kDETcmdAttributeChange template-provided

routine 5-178
kDETcmdAttributeCreation template-provided

routine 5-175
kDETcmdAttributeDelete template-provided

routine 5-180
kDETcmdAttributeNew template-provided

routine 5-176
kDETcmdBeep template callback routine 5-198
kDETcmdBreakAttribute template callback

routine 5-224
kDETcmdBusy template callback routine 5-200
kDETcmdChangeCallFors template callback

routine 5-198
kDETcmdCloseEdit template callback routine 5-212
kDETcmdConvertFromNumber template-provided

routine 5-190
kDETcmdConvertFromRString template-provided

routine 5-191
kDETcmdConvertToNumber template-provided

routine 5-188
kDETcmdConvertToRString template-provided

routine 5-189
kDETcmdCustomMenuEnabled template-provided

routine 5-194

kDETcmdCustomMenuSelected template-provided
routine 5-195

kDETcmdCustomViewDraw template-provided
routine 5-192

kDETcmdCustomViewMouseDown template-provided
routine 5-193

kDETcmdDirtyProperty template callback
routine 5-233

kDETcmdDoPropertyCommand template callback
routine 5-245

kDETcmdDoSync template-provided routine 5-186
kDETcmdDropMeQuery template-provided

routine 5-170
kDETcmdDropQuery template-provided routine 5-172
kDETcmdDynamicForwarders template-provided

routine 5-155
kDETcmdDynamicResource template-provided

routine 5-156
kDETcmdExit template-provided routine 5-151
kDETcmdGetCommandItemN template callback

routine 5-202 to 5-205
kDETcmdGetCommandSelectionCount template

callback routine 5-201
kDETcmdGetCustomViewBounds template callback

routine 5-244
kDETcmdGetCustomViewUserReference template

callback routine 5-242
kDETcmdGetDSSpec template callback routine 5-209
kDETcmdGetOpenEdit template callback routine 5-211
kDETcmdGetPropertyBinarySize template callback

routine 5-218
kDETcmdGetPropertyBinary template callback

routine 5-219
kDETcmdGetPropertyChanged template callback

routine 5-221
kDETcmdGetPropertyEditable template callback

routine 5-222
kDETcmdGetPropertyNumber template callback

routine 5-216
kDETcmdGetPropertyRString template callback

routine 5-217
kDETcmdGetPropertyType template callback

routine 5-214
kDETcmdGetResource template callback routine 5-207
kDETcmdGetTemplateFSSpec template callback

routine 5-206
kDETcmdIdle template-provided routine 5-157
kDETcmdInit template-provided routine 5-150
kDETcmdInstanceExit template-provided

routine 5-154
kDETcmdInstanceInit template-provided

routine 5-152
kDETcmdItemNew template-provided routine 5-153

I N D E X

IN-16

kDETcmdKeyPress template-provided routine 5-163
kDETcmdMaximumTextLength template-provided

routine 5-166
kDETcmdMenuItemRString template callback

routine 5-241
kDETcmdOpenDSSpec template callback routine 5-210
kDETcmdOpenSelf template-provided routine 5-158
kDETcmdPaste template-provided routine 5-164
kDETcmdPatternIn template-provided routine 5-182
kDETcmdPatternOut template-provided routine 5-184
kDETcmdPropertyCommand template-provided

routine 5-159
kDETcmdPropertyDirtied template-provided

routine 5-167
kDETcmdRemoveMenu template callback routine 5-240
kDETcmdRequestSync template callback routine 5-237
kDETcmdSaveProperty template callback

routine 5-234
kDETcmdSelectedSublistCount template callback

routine 5-236
kDETcmdSetPropertyBinary template callback

routine 5-229
kDETcmdSetPropertyChanged template callback

routine 5-231
kDETcmdSetPropertyEditable template callback

routine 5-232
kDETcmdSetPropertyNumber template callback

routine 5-227
kDETcmdSetPropertyRString template callback

routine 5-228
kDETcmdSetPropertyType template callback

routine 5-225
kDETcmdShouldSync template-provided routine 5-185
kDETcmdSublistCount template callback

routine 5-235
kDETcmdTemplateCounts template callback

routine 5-205
kDETcmdUnloadTemplates template callback

routine 5-208
kDETcmdValidateSave template-provided

routine 5-168
kDETcmdViewListChanged template-provided

routine 5-166
kDETDNodeAccessMask metaproperty 5-87
kDETDSSpec target selector 5-144
kDETForwarderTemplateNames resource ID

offset 5-139
kDETInfoPageMainViewAspect resource ID

offset 5-136
kDETInfoPageMenuEntries resource ID offset 5-137
kDETInfoPageName resource ID offset 5-137
kDETInfoPageNumber metaproperty 5-86

kDETInfoPageTemplateNumber metaproperty 5-87
kDETInfoPageTemplate target selector 5-145
kDETKillerName resource ID offset 5-140
kDETOpenSelectedItems metaproperty 5-87
kDETParent target selector 5-144
kDETPastFirstLookup metaproperty 5-86, 5-168
kDETPrimaryAddMask metaproperty 5-87
kDETPrimaryChangeMask metaproperty 5-87
kDETPrimaryChangePrivsMask metaproperty 5-87
kDETPrimaryDeleteMask metaproperty 5-87
kDETPrimaryMaskByBit metaproperty 5-87
kDETPrimaryRenameMask metaproperty 5-87
kDETPrimarySeeMask metaproperty 5-87
kDETPrKind metaproperty 5-86
kDETPrName metaproperty 5-86, 5-95
kDETPrTypeBinary property type 5-84
kDETPrTypeNumber property type 5-84
kDETPrTypeString property type 5-84
kDETRecordAccessMask metaproperty 5-87
kDETRecordType resource ID offset 5-76
kDETRemoveSelectedItems metaproperty 5-87
kDETSelectedSublistItem target selector 5-144
kDETSelfOtherAspect target selector 5-144
kDETSelf target selector 5-144
kDETSublistItem target selector 5-144
kDETTemplateName resource ID offset 5-75
Key Chain. See also local identity

disabling 9-38
introduction 1-18
locking 9-35
unlocking 9-37

Key Chain Access Code 4-6
Key Chain templates A-4
key-down events

determining if a mailer is the target 3-31
in information page 5-163
specifying if a mailer is the target 3-54
specifying the active window 3-124

keypress, AOCE template code resource routine 5-163
keys, cryptographic

adding a client key to a catalog 9-23
binding to a specific identity 9-39
changing a client key in a catalog 9-24
client 9-4
decryption 6-4
deleting a client key from a catalog 9-26
encryption 6-4
management 9-21 to 9-28
obtaining for challenge 9-44
session 9-4, 9-59
translating a password into a client key 9-21
unbinding from a specific identity 9-41

key structure 9-20
killer templates 5-12, 5-15

components of 5-140 to 5-141

I N D E X

IN-17

resources 5-140 to 5-141
signature resource 5-140

kind
attribute 5-91
attribute alias 5-93
record

gender 5-93
specifying 5-91

record alias
gender 5-94
specifying 5-93

kIPMFamilyUnspecified message family type 7-35
kIPMFamilyWildCard message family type 7-35
kMailFamilyFile message family type 7-35
kMailFamily message family type 7-35

L

'leeq' lookup table element 5-113
'less' lookup table element 5-112
letter descriptor 3-27
LetterDescriptor data type 3-27
letter information structure 3-27
letter parameter block 3-29
letters. See also mail; messages

adding a block 3-91 to 3-93
adding a main enclosure 3-90
adding content 3-13
adding image content 3-16, 3-88
adding native-format content 3-14
adding standard-interchange-format content 3-15,

3-85 to 3-88
Apple event handler 3-17
blocks 3-7
checking for digital signatures 3-83
close-options dialog box 3-60
closing 3-20, 3-21, 3-59 to 3-63
content changed 3-76
drawing image content 3-123
enclosures 3-7, 3-39
expanding group addresses 3-44
extending the send-options dialog box 3-125
formats of 3-7
forwarding 3-19 to 3-20, 3-49
getting information about a letter in the In Tray 3-93
identity of sender 3-117
image-drawing results function 3-42
image-drawing routine 3-39
main enclosure 3-7
nested 3-8, 7-5
new page function 3-41
obtaining letter descriptor of next letter to open 3-97
opening 3-18, 3-94 to 3-96

reading 3-93 to 3-107
blocks 3-106
converting font numbers to font names 3-102
getting information about blocks 3-104
getting main enclosure 3-103
standard interchange format content 3-98 to 3-102

replying to 3-19 to 3-20, 3-51
saving

beginning 3-77 to 3-80
ending 3-80

send formats 3-34
sending 3-37 to 3-41, 3-72 to 3-93

beginning 3-81 to 3-83
ending 3-84
send-options dialog box 3-73 to 3-76

send options 3-34
standard interchange format 3-7
structure 3-7
tags 3-58

LetterSpec data type 3-35, 5-204
letter-specification structure 3-35, 5-204
local identity. See also notification queue, local identity

changing password 9-33
defined 4-6, 8-8, 9-8
getting 9-28
introduction 1-18
locking 9-8, 9-35
management 9-28 to 9-38
prompting for 4-25 to 4-28
removing 9-37
setting up 9-32
unlocking 9-8, 9-36

LocalRecordID data type
2-27 to 2-28

checking equality of 2-81
copying 2-80
creating 2-79
manipulating 2-79 to 2-82

local record identifiers
checking equality of 2-81
copying 2-80
creating 2-79
data type defined 2-27 to 2-28
manipulating 2-79 to 2-82

'long' lookup table element 5-111
lookup table 5-105 to 5-119

block and size elements examples 5-116 to 5-118
code resource routines 5-182 to 5-185

converting property values to attribute
values 5-184

parsing attribute values 5-182
defined 5-25
described 5-106
elements that repeat patterns 5-115
flags 5-109 to 5-110

I N D E X

IN-18

lookup table (continued)
format of 5-107
mechanism 5-25
overriding default property types 5-119
pattern elements 5-111 to 5-119

basic 5-111
block 5-113 to 5-118
cancel processing 5-119
conditional 5-112
custom 5-118
property type 5-119
size 5-115 to 5-118

providing your own elements 5-118
resource 5-108 to 5-110

'lsiz' lookup table element 5-115

M

mail. See also letters; messages
displaying the send-options dialog box 3-11
forwarding 3-19 to 3-20
obtaining letter descriptor of next item in In

Tray 3-97
opening 3-18, 3-94 to 3-96
reading 3-93 to 3-107
receiving 3-17 to 3-19

Apple event handler 3-17
replying to 3-19 to 3-20, 3-51
saving

beginning 3-77 to 3-80
ending 3-80

sending 3-11 to 3-16, 3-72 to 3-93
adding image content 3-16
adding letter content 3-13
adding native-format content 3-14
adding standard-interchange-format content 3-15
beginning 3-81 to 3-83
ending 3-84
extending the send-options dialog box 3-125
main routine 3-12
send-options dialog box 3-73 to 3-76

mailbox, letter tags 3-58
mailers

adding to a window 3-9 to 3-11, 3-46
Balloon Help 3-66
basic support 3-7
closing 3-59 to 3-63

close-options dialog box 3-60
deallocating the mailer 3-61
determining if possible 3-59

cursor 3-66
defined 3-4
determining if a mailer can be forwarded 3-31, 3-50

determining if a mailer is the target 3-31
determining whether the mailer has been

changed 3-31
disposing 3-61
drawing 3-72
drawing cover pages 3-108
drawing-preparation function 3-122
Edit menu

determining which commands to enable 3-69
handling commands 3-25, 3-67
Undo command 3-70

event handling 3-63 to 3-67
expanding and contracting 3-56, 3-66
forwarding 3-49
full support 3-7
functions 3-45 to 3-122
getting and setting contents 3-110 to 3-122
getting information

determining buffer size 3-110
From, Subject, and Sent fields 3-111
Recipients and Enclosure fields 3-113 to 3-115

handling mailer events 3-21 to 3-25, 3-63 to 3-72
mouse clicks 3-24
processing events 3-22

initializing mailer functions 3-46
initially expanded or contracted 3-47, 3-52
introduction 3-4 to 3-6
moving 3-57
position 3-47
preparing cover pages 3-107
printing and imaging 3-107 to 3-109
replying to 3-51
sample 3-9 to 3-11
setting information

Enclosures field 3-120 to 3-122
Enclosures field of a mailer 3-119
From field 3-117
Recipients field 3-118
Subject field 3-116

specifying target of key-down events 3-54
standard dimensions 3-48
target components 3-32
updating 3-72
using Tab key to move among fields 3-53 to 3-56

mailer set 3-4
mailer-state structure 3-30 to 3-34
Mail menu

adding a mailer 3-47
adding a tag to a letter 3-58
closing and deleting a letter 3-60, 3-62
forwarding a letter 3-50
removing a mailer 3-62
replying to a letter 3-52
when to enable and disable items for mailers 3-31

'mail' message family type 7-35

I N D E X

IN-19

MailSegmentType data type 3-86
MailTime data type 3-112
main aspects

defined 5-18
for attributes 5-20
for records 5-19

main aspect templates 5-88 to 5-98
attribute sample code 5-52 to 5-58
custom information page sample code 5-58 to 5-65
for attributes 5-22
for records 5-21
help balloons 5-93, 5-94
record sample code 5-30 to 5-33
resources used by 5-89 to 5-98
specifying attribute category 5-91
specifying attribute external category 5-92
specifying attribute kind 5-91
specifying record category 5-91
specifying record external category 5-92
specifying record kind 5-91

main enclosures
adding to a letter 3-90
defined 3-7
getting 3-103

main view aspect 5-20, 5-136
master name 8-8
matching criteria types 8-37
menu commands

Add Mailer (Mail menu) 3-47
Close and Delete (File menu) 3-60, 3-62
Forward (Mail menu) 3-50
Lock Key Chain (Special menu) 9-35
New (Catalogs menu) 5-94
Open (File menu) 3-95
Remove Mailer (Mail menu) 3-62
Reply (Mail menu) 3-52
Reply to All (Mail menu) 3-52
Save (File menu) 3-80
Tag (Mail menu) 3-58
Undo (Edit menu) 3-33, 3-70
Unlock Key Chain (Special menu) 9-37

menus
Catalogs menu. See Catalogs menu
implementing for the Find panel 4-79
Mail menu. See Mail menu
Special. See Special menu
View menu. See View menu

Menu view type 5-129, 5-162
message addressing structures 7-24 to 7-26

attribute extension type 7-26
converting a recipient structure to a byte

stream 7-111, 7-115
determining size for packed recipient structure 7-108
entity name extension 7-26
packed recipient structure 7-25

packing a recipient structure 7-109
queue name extension type 7-26
recipient structure 7-24
unpacking a packed recipient structure 7-110
utility functions 7-107 to 7-114

message blocks
current 7-62
getting type and index 7-96
nested message 7-59 to 7-61
nesting 7-56 to 7-59
reading data 7-98 to 7-101
starting 7-53 to 7-55
TOC in message header 7-7
writing data to 7-61 to 7-65

message family 7-7, 7-35
message ID structure 7-32
message information structure 7-36 to 7-37
message mark 7-63, 7-100
message queues

closing 7-22
context

closing 7-22, 7-77
creating 7-70
defined 7-9

creating 7-20
defined 1-15
deleting messages 7-105 to 7-107
described 7-8 to 7-9
enumerating 7-80 to 7-82
filters

changing 7-74
filter structure 7-35
general description 7-8
single filter structure 7-34
specifying 7-21

filter structures 7-34 to 7-35
managing 7-20 to 7-22, 7-68 to 7-80
opening 7-20, 7-72 to 7-74
physical

creating 7-69 to 7-70
defined 7-8
deleting 7-78
enumerating 7-21

reference number 7-8
virtual

closing 7-76
creating 7-21, 7-72 to 7-74
defined 7-8

messages. See also letters; mail
adding a nested message 7-59 to 7-61
adding a recipient 7-50 to 7-51
adding a reply queue 7-52
block index 7-96
block type 7-96
canceling 7-67

I N D E X

IN-20

messages (continued)
closing 7-104 to 7-105
closing all messages in a context 7-77
creating 7-18 to 7-20, 7-43 to 7-68

adding information 7-19
initiating 7-18

deleting 7-105 to 7-107
described 7-4 to 7-7
digital signature

adding 7-67
header field 7-7
verifying 7-102 to 7-103

duplicate 7-18
ending 7-20, 7-65 to 7-68
family types 7-35
header

authentication field 7-7
contents of 7-6
delivery notification field 7-6
digital signature field 7-7
fixed header information 7-38
information about 7-37 to 7-39, 7-89 to 7-96
message family field 7-7
priority field 7-6
process hint field 7-7
recipient location information 7-7
recipients field 7-92 to 7-94
reply queue field 7-7, 7-95 to 7-96
sender field 7-7
table of contents 7-7
TOC information structure 7-37

information about 7-36 to 7-40, 7-87 to 7-98
header fields 7-89 to 7-96
message in queue 7-87
recipients 7-92 to 7-94
reply queue 7-95 to 7-96

listing 7-80 to 7-82
modes for reading 7-100
modes for writing 7-63
nested

defined 7-5
number of levels 7-19
structure of 7-5

opening
HFS file 7-84
in a message queue 7-82 to 7-84
nested message 7-86 to 7-87

originator of 7-7
priority 7-6, 7-34
process hint 7-37
queues. See message queues
reading 7-22 to 7-23, 7-80 to 7-105

block type and index 7-96
closing 7-104 to 7-105
data 7-98 to 7-101

digital signatures 7-102 to 7-103
header fields 7-89 to 7-96
opening a nested message 7-86 to 7-87
opening an HFS file 7-84
opening the message 7-82 to 7-84
recipients 7-92 to 7-94
reply queue 7-95 to 7-96

recipients 7-92 to 7-94
reply queue 7-95 to 7-96
report 7-9 to 7-10

contents 7-10
options 7-9

saving 7-47 to 7-68
sender structure 7-40
sending 7-43 to 7-47, 7-50 to 7-68
starting a block 7-53 to 7-55
starting a message to be saved 7-47 to 7-50
starting a message to be sent 7-43 to 7-47
starting a nested message block 7-56 to 7-59
structure of 7-4 to 7-5
writing data 7-61 to 7-65

message type structure 7-28
message type values 7-27
messaging service access modules. See MSAMs
metaproperties 5-86 to 5-87
mouse-down events

in information page custom view 5-194
in mailers 3-24

'msam' file type 5-73
MSAMs (messaging service access modules)

Direct Dialup 7-3
multiple aspects and information pages 5-18
MyCompletion function 9-68
MyCompletionRoutine function 7-114, 8-150 to 8-151
MyDrawImage function 3-123
MyDrawImageProc function 3-16
MyDSSpecStreamer function 2-106
MyFindPanelBusyProc function 4-95
MyForEachADAPDirectory function 8-160
MyForEachAttributeAccessControl function 8-163
MyForEachAttrType function 8-152
MyForEachAttrTypeLookup function 8-155 to 8-156
MyForEachAttrValue function 8-156 to 8-157
MyForEachDirectory function 8-153
MyForEachDirEnumSpec function 8-157 to 8-158
MyForEachDNodeAccessControl function 8-161
MyForEachLookupRecordID function 8-154
MyForEachRecordAccessControl function 8-162
MyForEachRecordID function 8-151 to 8-152
MyFrontWindowCB function 3-124
MyNotificationProc function 9-69
MyPanelBusyProc function 4-94
MyPrepareMailerForDrawing function 3-122
MyRecipientStreamer function 7-115

I N D E X

IN-21

MySendOptionsFilterProc function 3-125
MyStatusCallBack function 6-54 to 6-55
MyValidatePackedPathName function 2-11

N

name
of alias 5-86
of attribute 5-86, 5-95
of record 5-86

name (of owner or issuer of a certificate) 6-9 to 6-11
name attribute information structure 6-26 to 6-27
name attributes (distinguished) 6-9 to 6-11
Name-Binding Protocol (NBP)

and IPM addresses 7-12
name resource for AOCE templates 5-75
native content

adding to a letter as a main enclosure 3-90
adding to a letter as blocks 3-91 to 3-93
getting information about blocks in a letter 3-104
getting the main enclosure of letter 3-103
reading blocks in a letter 3-106

native format 3-104
native name 9-62
NBP. See Name-Binding Protocol
nested letters 3-8, 7-5
nested messages

adding a message as a nested message block 7-59 to
7-61

defined 7-5
number allowed 7-19
starting a new block 7-56 to 7-59

networks
extracting information about PowerShare catalogs

on 8-78 to 8-79
finding PowerShare catalogs on 8-74 to 8-76
getting information about PowerShare catalogs

on 8-76 to 8-77
locating 8-51 to 8-52

NetworkSpec data type 2-23
new-attribute dialog box 5-94
'nods' resource type 6-22
notification queue, local identity

adding to 9-30
defined 9-9
manipulating 9-30 to 9-32
notification function 9-69
removing from 9-31
sample 9-15
using 9-15 to 9-18

notification type 7-31
'nteq' lookup table element 5-112

number property 5-13
number property type 5-84

O

object types for drop operations 5-203
OCEAttributeTypeIndex data type 2-40
OCECopyCreationID function 2-52
OCECopyDirDiscriminator function 2-63
OCECopyLocalRecordID function 2-80
OCECopyPackedDSSpec function 2-95
OCECopyPackedPathName function 2-55
OCECopyPackedRecordID function 2-89
OCECopyPackedRLI function 2-70
OCECopyRecordID function 2-86
OCECopyRLI function 2-67
OCECopyRString function 2-45
OCECopyShortRecordID function 2-83
OCECreatorType data type 3-28, 7-27
OCECToRString function 2-46
OCEDNodeNameCount function 2-58
OCEDuplicateRLI function 2-66
OCEEqualCreationID function 2-52
OCEEqualDirDiscriminator function 2-64
OCEEqualDSSpec function 2-99
OCEEqualLocalRecordID function 2-81
OCEEqualPackedDSSpec function 2-100
OCEEqualPackedPathName function 2-61
OCEEqualPackedRecordID function 2-92
OCEEqualPackedRLI function 2-76
OCEEqualRecordID function 2-87
OCEEqualRLI function 2-68
OCEEqualRString function 2-50
OCEEqualShortRecordID function 2-84
OCEExtractAlias function 2-78
OCEGetAccessControlDSSpec function 8-132
OCEGetDirectoryRootPackedRLI function 2-78
OCEGetDSSpecInfo function 2-103
OCEGetExtensionType function 2-105
OCEGetIndAttributeType function 2-94
OCEGetIndRecordType function 2-85
OCEGetRecipientType function 7-113
OCEIsNullPackedPathName function 2-56
OCENewLocalRecordID function 2-79
OCENewRecordID function 2-86
OCENewRLI function 2-64
OCENewShortRecordID function 2-82
OCENullCID function 2-53
OCEPackDSSpec function 2-97
OCEPackedDSSpecSize function 2-96
OCEPackedPathNameSize function 2-57

I N D E X

IN-22

OCEPackedRecipient data type
creating from OCERecipient data type 7-109
defined 7-25
determining size 7-108
unpacking 7-110

OCEPackedRecordIDSize function 2-90
OCEPackedRLIPartsSize function 2-73
OCEPackedRLISize function 2-71
OCEPackPathName function 2-60
OCEPackRecipient function 7-109
OCEPackRecordID function 2-90
OCEPackRLI function 2-71
OCEPackRLIParts function 2-74
OCEPathFinderCID function 2-54
OCEPToRString function 2-47
OCERecipient data type. See also addresses; recipient

structure
'alan' extension type 7-12
'aphn' extension type 7-13
converting to a byte stream 7-111, 7-115
creating from OCEPackedRecipient data type 7-110
defined 7-24
described 7-10
'entn' extension type 7-14 to 7-17
'attr' subtype 7-15
'qnam' subtype 7-16

getting extension type 7-113
illustrated 7-11
packing 7-109
setting extension type 7-112
utility functions 7-107 to 7-114

OCERecipientReport data type 7-33
OCERecordTypeIndex data type 2-28
OCERelRString function 2-48
OCERToPString function 2-48
OCESetCreationIDtoNull function 2-54
OCESetRecipientType function 7-112
OCESetupAddDirectoryInfo function 9-64
OCESetupChangeDirectoryInfo function 9-65
OCESetupGetDirectoryInfo function 9-62
OCESetupRemoveDirectoryInfo function 9-66
OCESizePackedRecipient function 7-108
OCEStreamPackedDSSpec function 2-105
OCEStreamRecipient function 7-111
OCEUnpackDSSpec function 2-98
OCEUnpackPathName function 2-58
OCEUnpackRecipient function 7-110
OCEUnpackRecordID function 2-91
OCEUnpackRLI function 2-72
OCEValidPackedDSSpec function 2-102
OCEValidPackedPathName function 2-62
OCEValidPackedRecordID function 2-93
OCEValidPackedRLI function 2-77
OCEValidRLI function 2-69

OCEValidRString function 2-51
Open Documents event, opening a letter 3-17
owner requestors 8-12

P

'pabt' file type 4-86
packed catalog services specifications

checking equality of 2-100
computing size of 2-96
copying 2-95
data type defined 2-37
minimum-sized 2-38
unpacking 2-6 to 2-10, 2-98
validating 2-102

PackedDSSpec data type
checking equality of 2-100
computing size of 2-96
copying 2-95
defined 2-37
unpacking 2-6 to 2-10, 2-98
validating 2-102

PackedPathName data type
checking equality of 2-61
computing size of 2-57
copying 2-55
defined 2-29, 4-23
determining number of catalog node names in 2-58
determining number of RString structures in 2-58
evaluating as null 2-56
packing 2-60
unpacking 2-58
validating 2-62

packed pathnames 2-29 to 2-30
manipulating 2-55 to 2-63
unpacking 2-29

packed pathname structure 4-23. See also
PackedPathName data type

packed recipient structure
creating from recipient structure 7-109
defined 7-25
determining size 7-108
unpacking 7-110

PackedRecordID data type
checking equality of 2-92
computing size of 2-90
copying 2-89
defined 2-35
unpacking 2-91
validating 2-93

packed record identifiers
checking equality of 2-92
computing size of 2-90

I N D E X

IN-23

copying 2-89
data type defined 2-35
manipulating 2-88 to 2-94
unpacking 2-91
validating 2-93

packed record location information
checking equality of 2-76
computing size of 2-71, 2-73
copying 2-70
data type defined 2-33
extracting an alias from 2-78
getting for personal catalogs 8-86 to 8-88
minimum-sized 2-33
unpacking 2-72
validating 2-77

PackedRLI data type
checking equality of 2-76
computing size of 2-71, 2-73
copying 2-70
defined 2-33
extracting an alias from 2-78
getting for personal catalogs 8-86 to 8-87
unpacking 2-72
validating 2-77

packed RString list 4-23
PackedRStringListHandle data type 4-23
packing

AOCE data structures 2-5 to 2-10
catalog services specification 2-97
DSSpec 2-97
PackedPathName 2-60
RecordID 2-90
record identifiers 2-90
record location information 2-71, 2-74
RLI 2-71, 2-74

'padz' lookup table element 5-111
page-selection pop-up menu 5-97, 5-137
panel-busy callback function

for Catalog-Browsing panel 4-94
for Find panel 4-95
installing for Catalog-Browsing panel 4-35
installing for Find panel 4-65

PanelBusyProc function 4-94
panels. See Catalog-Browsing panel; Find panel;

Personal-Catalog panel
'panl' resource type 4-34
parameter block header 8-32 to 8-34
parent aspect target selector 5-144
parse functions

and callback routines and 8-10
using to retrieve access control information 8-14

parsing attributes 5-25. See also lookup table
partial pathnames 8-5

Pascal strings
converting RString to 2-48
converting to RString 2-47

password. See also authentication; Authentication
manager

adding to PowerTalk Setup catalog 9-64
changing for local identity 9-33
changing in the PowerTalk Setup catalog 9-65
for local identity 9-32
Key Chain Access Code 4-6
PowerTalk Setup catalog use of 8-8
prompting the user for 6-32 to 6-33
removing from PowerTalk Setup catalog 9-66
translating into a client key 9-21

pasting text, AOCE template code resource
routine 5-164

PathFinder creation ID 2-54
pathnames, AOCE

defined 2-29 to 2-30, 8-5
getting for dNodes 8-65 to 8-67
manipulating 2-55 to 2-63
packing 2-29
using to get dNode numbers 8-67 to 8-69

pattern-based attribute parsing. See lookup table
Personal-Catalog panel

creating 4-31, 4-34
defined 4-9
opening the alias of a container 4-60
selecting the alias of a container 4-53

personal catalog reference number 8-4
personal catalogs

closing 8-85 to 8-86
creating 8-82 to 8-83
defined 8-4
error when opening 4-28
expanding group addresses 3-44
getting packed record location information 8-86 to

8-88
listing access privileges to 8-84 to 8-85
listing features supported 8-84 to 8-85
manipulating 8-82 to 8-88
opening 8-84 to 8-85
sorting 4-28

physical queues. See physical under message queues
picture segments, in letters 3-87
picture view type 5-130
pop-up menus

AOCE templates
adding an item 5-238
callback routines 5-238 to 5-242
page selection 5-97, 5-137
removing an item 5-240
returning text of a menu item 5-241
view type 5-129

I N D E X

IN-24

pop-up menus (continued)
Catalog-Browsing panel

getting pathname of item 4-40 to 4-42
getting size of pathname of item 4-39

PowerShare catalogs. See also catalogs
adding to PowerTalk Setup catalog 8-71 to 8-76
defined 8-4
extracting information about 8-78 to 8-79
getting information about 8-76 to 8-77
making available for use 8-71 to 8-76
removing from PowerTalk Setup catalog 8-79 to 8-81

PowerShare collaboration servers xix
PowerTalk xix. See also AOCE
PowerTalk built-in templates A-1 to A-4

address A-4
Group records A-4
Key Chain A-4
User records A-1 to A-3

PowerTalk Extension file 5-12
PowerTalk Setup catalog

adding catalogs to 8-71 to 8-73, 8-74 to 8-76
defined 8-8
extracting information from catalogs in 8-41 to 8-43
getting information about catalogs in 8-38 to 8-41
getting reference number for 8-81 to 8-82
maintaining 8-71 to 8-82
master name for 8-8
password for 8-8
removing catalogs from 8-79 to 8-81

PowerTalk system software xix
PrepareMailerForDrawing function 3-122
priority of messages 7-6, 7-34
private-key encryption 6-4
private keys 6-4
processes, switching between 5-199 to 5-200
process hint 7-7
process hint, for message 7-37
prompt for identity 4-6 to 4-8
prompt-for-identity dialog box, version number 4-5
properties 5-84 to 5-87

and aspect templates 5-13
AOCE template callback routines

getting information 5-213 to 5-222
getting property-changed flag 5-221
getting property-editable flag 5-222
getting size of a binary property 5-219
getting types 5-215
getting value as a binary block 5-220
getting value as an RString 5-217
getting value as a number 5-216
parsing an attribute value 5-224
saving values 5-234
setting information 5-223 to 5-235
setting property-changed flag 5-231
setting property-editable flag 5-232

setting property type 5-226
setting value as a binary block 5-229
setting value as an RString 5-228
setting value as a number 5-227
type conversions 5-214, 5-223

changed value callback routine 5-233
changed value code resource routine 5-167
converting into attribute values. See lookup table
creating from attribute values. See lookup table
custom type conversions 5-188 to 5-192

convert from number 5-191
convert from RString 5-192
convert to number 5-188
convert to RString 5-189

kDETPrName metaproperty 5-95
name of attribute value 5-95
number range of 5-103
saving values 5-168, 5-234
synchronizing values 5-28, 5-185 to 5-187, 5-237
template-provided routines

setting attribute values from properties 5-184
setting properties from attribute values 5-182

types 5-13
updating values 5-168, 5-185 to 5-187, 5-237
using resources to set values 5-103

property-changed flag
getting 5-221
setting 5-231

property commands 5-159 to 5-163
button 5-161
callback routine 5-163
checkbox 5-161
drop operations 5-162
pop-up menu 5-162
radio button 5-161
sending 5-245
sorting sublists 5-128
static command text 5-162
when the template's property routine is called 5-160

property-editable flag
getting 5-222
setting 5-232

property numbers
and property categories 5-85
and resource IDs 5-103
of an edit-text view 5-211

property routines, AOCE template 5-158 to 5-169
property types 5-84

assigning in lookup table 5-119
constant properties 5-86
conversions 5-188 to 5-192, 5-214, 5-223
getting information about 5-215
local properties 5-85
metaproperties 5-86 to 5-87
setting 5-226

I N D E X

IN-25

property values
getting as a binary block 5-220
getting as an RString 5-217
getting as a number 5-216
getting size of a binary property 5-219
saving 5-168, 5-234
setting as a binary block 5-229
setting as an RString 5-228
setting as a number 5-227
synchronizing 5-28, 5-185 to 5-187, 5-237
type conversions 5-188 to 5-192

'prop' lookup table element 5-118
ProtoPackedDSSpec data type 2-38
ProtoPackedPathname data type 2-30
ProtoPackedRLI data type 2-33
ProtoRString data type 2-22
proxy

creating 9-45
defined 9-10
trading for credentials 9-47
using 9-14

pseudonyms
adding to a record 8-98 to 8-100
defined 8-7
deleting 8-91 to 8-92
deleting from a record 8-100 to 8-101
displayed in Catalog-Browsing panel 4-31
extracting information about 8-62 to 8-63, 8-104 to

8-106
extracting information from 8-46 to 8-48
getting information about 8-43 to 8-46, 8-57 to 8-61,

8-101 to 8-104
'pstr' lookup table element 5-111
public-key certificates

contents of 6-8 to 6-11
defined 6-6
getting information from 6-19 to 6-22, 6-45 to 6-54
identity of owner or issuer 6-8
range of valid dates 6-8
signed 6-6

public key cryptography 6-4
public keys 6-4, 6-8

Q

'qnam' address extension subtype 7-16
queue context

closing 7-22, 7-77
creating 7-70
defined 7-9

queue filter structure 7-35
queue name attribute values for indirect

addressing 7-16

queue name extension structure 7-26
queue reference number 7-8
queues

messaging. See message queues
notification. See notification queue, local identity
reply. See reply queue

QuickTime movie segments
adding to a letter 3-87

R

RadioButton view type 5-129, 5-161
RC4Key data type 9-20
'rcrd' file type 4-86
reading messages 7-22 to 7-23, 7-80 to 7-105

block type and index 7-96
closing 7-104 to 7-105
data 7-98 to 7-101
header fields 7-89 to 7-96
opening a nested message 7-86 to 7-87
opening an HFS file 7-84
opening the message 7-82 to 7-84
recipients 7-92 to 7-94
reply queue 7-95 to 7-96
verifying a digital signature 7-102 to 7-103

receiving mail 3-17 to 3-19
Apple event handler 3-17
opening a letter 3-18

recipient descriptor 3-25
recipient report messages. See report messages
recipient report structure 7-33
recipients

adding to a message 7-50 to 7-51
authentication process 9-14
expanding group addresses 3-44
index 7-33
location information in message header 7-7
reading 7-92 to 7-94

Recipients field of a mailer
adding an address 3-118
getting 3-113 to 3-115

RecipientStreamer function 7-115
recipient structure. See also addresses; OCERecipient

data type
converting to a byte stream 7-111, 7-115
creating from packed recipient structure 7-110
defined 7-24
described 7-10
determining buffer size for packing 7-108
getting extension type 7-113
illustrated 7-11
packed 7-25
packing 7-109

I N D E X

IN-26

recipient structure (continued)
setting extension type 7-112
utility functions 7-107 to 7-114

record alias 8-7
record creation IDs 2-26 to 2-27

defined 8-7
record ID 2-25 to 2-36

allocating a maximum-sized structure 2-16 to 2-19
binding to a specific identity 9-39
checking equality of 2-87
copying 2-86
creating 2-86
defined 2-34, 8-6 to 8-7
getting for a specific identity 9-42
manipulating 2-85 to 2-88
of a catalog in the PowerTalk Setup catalog 9-62
of authentication initiator 9-59
packed 2-35
packing 2-90
short 2-35
unbinding from a specific identity 9-41

RecordID data type
allocating a maximum-sized structure 2-16 to 2-19
checking equality of 2-87
copying 2-86
creating 2-86
defined 2-34
packing 2-90

record identifiers. See record ID
record location information

checking equality of 2-68
copying 2-67
creating 2-64
defined 2-32, 8-7
duplicating 2-66
manipulating 2-64 to 2-79
packed 2-33
packed minimum-sized 2-33
packing 2-71, 2-74
unpacking 2-72
validating 2-69

record names
changing 8-96 to 8-97
getting from creation ID 8-94 to 8-95
new 5-95

records
adding 5-94, 8-89 to 8-91
adding attribute values to 8-109 to 8-110
adding pseudonyms to 8-98 to 8-100
aspect template sample 5-33 to 5-36
browsing 4-3
categories

dropped on other records 5-100
listing 4-91
listing record types 4-92

specifying in an aspect template 5-91
changing attribute values in 8-112 to 8-114
changing name and type 8-96 to 8-97
creating an aspect from 5-16
creation IDs, getting 9-50 to 9-52
deleting 8-91 to 8-92
deleting attribute types from 8-126 to 8-127
deleting attribute values from 8-111 to 8-112
deleting pseudonyms from 8-100 to 8-101
determining change in 8-92 to 8-94
dropping on another record 5-99
external category, specifying in an aspect

template 5-92
extracting access control information for 8-140 to

8-143
extracting attribute types of 8-130 to 8-131
extracting attribute values of 8-122 to 8-125
extracting information about 8-62 to 8-63
extracting information about pseudonyms 8-104 to

8-106
extracting information from 8-46 to 8-48
finding 4-3
finding attribute values in 8-116 to 8-118
gender, of alias 5-94
getting access control information for 8-138 to 8-140
getting attribute types of 8-127 to 8-129
getting attribute values of 8-118 to 8-121
getting information about 8-43 to 8-46, 8-57 to 8-61
getting information about pseudonyms 8-101 to

8-104
getting name and type from creation ID 8-94 to 8-95
icons for 4-88
identifying selection in Catalog-Browsing panel 4-58
information page for 5-24
kind

gender 5-93
of alias 5-93
specifying in an aspect template 5-91

main aspect 5-19
main aspect template for 5-21
main aspect template sample 5-30 to 5-33
managing 8-89 to 8-108
name 5-86
name of new 5-95
new item routine for AOCE templates 5-153
obtaining dNode numbers 9-50
obtaining icons for 4-88
opening selection in Catalog-Browsing panel 4-59
relation to aspects and AOCE templates 5-11
specifying AOCE templates for use with 5-139, 5-155
types displayed in Catalog-Browsing panel 4-32
types. See record types
verifying attribute values in 8-114 to 8-115

records, AOCE catalog. See records
record-type AOCE template resource 5-75, 5-76

I N D E X

IN-27

record types
changing 8-96 to 8-97
defined 8-7
displayed in Catalog-Browsing panel 4-31
for AOCE templates 5-75 to 5-77
getting from creation ID 8-94 to 8-95
list of standard 2-28
obtaining standard 2-85

reference number, message queue 7-8
reference value, custom view 5-242
Regarding field. See Subject field of a mailer
repeat patterns in lookup tables 5-115
reply, authentication 9-7
reply queue

adding to a message 7-52
defined 7-7

report block header structure 7-33
report messages 7-9 to 7-10

contents 7-10
options for 7-9

reports
delivery notification structures 7-28 to 7-34
delivery result 7-33
message header delivery notification field 7-6
nondelivery codes 7-29 to 7-30
notification types 7-31 to 7-32
recipient index 7-33
recipient report 7-33
report block header 7-33

requestors 8-12 to 8-13
authenticated in catalog 8-12
authenticated in dNode 8-12
friend 8-12
guest 8-12
owner 8-12

resolving aliases of AOCE catalog objects 4-85 to 4-88
catalog specification structure 4-87
HFS aliases 4-85

resource ID offsets
AOCE templates
kDETAspectAliasGender 5-94
kDETAspectAliasKind 5-93
kDETAspectAliasWhatIs 5-94
kDETAspectAttrDragIn 5-100
kDETAspectBalloons 5-105
kDETAspectCategory 5-91
kDETAspectDragInString 5-101
kDETAspectDragInSummary 5-102
kDETAspectDragInVerb 5-101
kDETAspectDragOut 5-102
kDETAspectExternalCategory 5-92
kDETAspectGender 5-93
kDETAspectInfoPageCustomWindow 5-97
kDETAspectKind 5-91
kDETAspectLookup 5-108 to 5-119

kDETAspectMainBitmap 5-90
kDETAspectName 5-95
kDETAspectNewEntryName 5-95
kDETAspectNewMenuName 5-94
kDETAspectNewValue 5-96
kDETAspectRecordCatDragIn 5-99
kDETAspectRecordDragIn 5-99
kDETAspectReverseSort 5-104
kDETAspectSublistOpenOnNew 5-96
kDETAspectViewMenu 5-103
kDETAspectWhatIs 5-93
kDETAttributeType 5-75, 5-76, 5-77
kDETAttributeValueTag 5-77
kDETForwarderTemplateNames 5-139
kDETInfoPageMainViewAspect 5-136
kDETInfoPageMenuEntries 5-137
kDETInfoPageName 5-137
kDETKillerName 5-140
kDETRecordType 5-75, 5-76
kDETTemplateName 5-75

resource IDs
and property numbers 5-103
for AOCE templates 5-75

resources
AOCE templates

Add item string (kDETAspectNewMenuName) 5-94
alias kind (kDETAspectAliasKind) 5-93
aspect templates 5-78 to 5-84
aspect template signature resource 5-88
attribute category (kDETAspectCategory) 5-91
attribute kind (kDETAspectKind) 5-91
attribute-tag (kDETAttributeValueTag) 5-77
attribute-type (kDETAttributeType) 5-76, 5-77
Catalogs menu items

(kDETInfoPageMenuEntries) 5-137
custom information page

(kDETAspectInfoPageCustomWindow) 5-97
drag-in attribute types

(kDETAspectAttrDragIn) 5-100
drag-in button label

(kDETAspectDragInVerb) 5-101
drag-in description string

(kDETAspectDragInSummary) 5-102
drag-in prompt string

(kDETAspectDragInString) 5-101
drag-in record categories

(kDETAspectRecordCatDragIn) 5-99
drag-in record types

(kDETAspectRecordDragIn) 5-99
drag-out attribute types

(kDETAspectDragOut) 5-102
drop operations 5-98 to 5-102
dynamic creation of 5-154 to 5-157

I N D E X

IN-28

resources, AOCE templates (continued)
external category,

(kDETAspectExternalCategory) 5-92
file type template signature resource 5-141
forwarder template names,

(kDETForwarderTemplateNames) 5-139
gender of record alias

(kDETAspectAliasGender) 5-94
gender of record kind (kDETAspectGender) 5-93
getting a resource handle 5-207
help-balloon string for aliases

(kDETAspectAliasWhatIs) 5-94
help-balloon string for a record or attribute

(kDETAspectWhatIs) 5-93
help-balloon string for properties

(kDETAspectBalloons) 5-105
icon (kDETAspectMainBitmap) 5-90
information page name

(kDETInfoPageName) 5-137
information page template signature

resource 5-121
killer template names (kDETKillerName) 5-140
killer template signature resource 5-140
lookup table (kDETAspectLookup) 5-108 to 5-119
main aspect templates 5-89 to 5-98
main view aspect name

(kDETInfoPageMainViewAspect) 5-136
New attribute value (kDETAspectNewValue) 5-96
New attribute value name (kDETAspectName) 5-95
New item string (kDETAspectNewMenuName) 5-94
New record name

(kDETAspectNewEntryName) 5-95
open new item

(kDETAspectSublistOpenOnNew) 5-96
properties to sort by

(kDETAspectViewMenu) 5-103
properties to sort in reverse order

(kDETAspectReverseSort) 5-104
record category (kDETAspectCategory) 5-91
record kind (kDETAspectKind) 5-91
record-type (kDETRecordType) 5-76
signature. See signature resource
substitution of 5-156
template name (kDETTemplateName) 5-75
view list resource 5-123 to 5-130

resource types
'deta' 5-88
'detb' 5-96, 5-103
'detc' 5-84
'detf' 5-139
'deti' 5-121
'detk' 5-140

'detm' 5-104, 5-137
'detn' 5-77, 5-103
'detp' 5-104
'dett' 5-108
'detv' 5-123 to 5-130
'detw' 5-97
'detx' 5-141
'dsig' 6-22, 6-36
'find' 4-63
'nods' 6-22
'panl' 4-34
'rst#' 5-91
'rstr' 5-75, 5-103
used by AOCE templates 5-74

'rest' lookup table element 5-111
RLI data type

checking equality of 2-68
copying 2-67
creating 2-64
defined 2-32
duplicating 2-66
packing 2-71, 2-74
validating 2-69

root catalog
obtaining 2-78

routine selectors, AOCE template
callback routines
kDETcmdAboutToTalk 5-200
kDETcmdAddMenu 5-238
kDETcmdBeep 5-198
kDETcmdBreakAttribute 5-224
kDETcmdBusy 5-200
kDETcmdChangeCallFors 5-198
kDETcmdCloseEdit 5-212
kDETcmdDirtyProperty 5-233
kDETcmdDoPropertyCommand 5-245
kDETcmdGetCommandItemN 5-202 to 5-205
kDETcmdGetCommandSelectionCount 5-201
kDETcmdGetCustomViewBounds 5-244
kDETcmdGetCustomViewUserReference 5-242
kDETcmdGetDSSpec 5-209
kDETcmdGetOpenEdit 5-211
kDETcmdGetPropertyBinary 5-219
kDETcmdGetPropertyBinarySize 5-218
kDETcmdGetPropertyChanged 5-221
kDETcmdGetPropertyEditable 5-222
kDETcmdGetPropertyNumber 5-216
kDETcmdGetPropertyRString 5-217
kDETcmdGetPropertyType 5-214
kDETcmdGetResource 5-207
kDETcmdGetTemplateFSSpec 5-206
kDETcmdMenuItemRString 5-241
kDETcmdOpenDSSpec 5-210
kDETcmdRemoveMenu 5-240
kDETcmdRequestSync 5-237

I N D E X

IN-29

kDETcmdSaveProperty 5-234
kDETcmdSelectedSublistCount 5-236
kDETcmdSetPropertyBinary 5-229
kDETcmdSetPropertyChanged 5-231
kDETcmdSetPropertyEditable 5-232
kDETcmdSetPropertyNumber 5-227
kDETcmdSetPropertyRString 5-228
kDETcmdSetPropertyType 5-225
kDETcmdSublistCount 5-235
kDETcmdTemplateCounts 5-205
kDETcmdUnloadTemplates 5-208

template-provided routines
kDETcmdAttributeChange 5-178
kDETcmdAttributeCreation 5-175
kDETcmdAttributeDelete 5-180
kDETcmdAttributeNew 5-176
kDETcmdConvertFromNumber 5-190
kDETcmdConvertFromRString 5-191
kDETcmdConvertToNumber 5-188
kDETcmdConvertToRString 5-189
kDETcmdCustomMenuEnabled 5-194
kDETcmdCustomMenuSelected 5-195
kDETcmdCustomViewDraw 5-192
kDETcmdCustomViewMouseDown 5-193
kDETcmdDoSync 5-186
kDETcmdDropMeQuery 5-170
kDETcmdDropQuery 5-172
kDETcmdDynamicForwarders 5-155
kDETcmdDynamicResource 5-156
kDETcmdExit 5-151
kDETcmdIdle 5-157
kDETcmdInit 5-150
kDETcmdInstanceExit 5-154
kDETcmdInstanceInit 5-152
kDETcmdItemNew 5-153
kDETcmdKeyPress 5-163
kDETcmdMaximumTextLength 5-166
kDETcmdOpenSelf 5-158
kDETcmdPaste 5-164
kDETcmdPatternIn 5-182
kDETcmdPatternOut 5-184
kDETcmdPropertyCommand 5-159
kDETcmdPropertyDirtied 5-167
kDETcmdShouldSync 5-185
kDETcmdValidateSave 5-168
kDETcmdViewListChanged 5-166

RSA Data Security, Inc. 6-4
'rst#' resource type 5-91
RString32 data type 2-21
RString64 data type 2-20
RString data type

checking equality of 2-50
comparing sort order of 2-48
converting Pascal strings to 2-47
converting to Pascal strings 2-48

defined 2-20
determining number in PackedPathName 2-58
validating 2-51

RStringHeader data type 2-19 to 2-20
RStringKind data type 2-24
RString list 4-23
'rstr' lookup table element 5-111
'rstr' resource type 5-75, 5-103

S

sample routines
DoAddAttribueValue 8-17
DoDisplayCertificateInfo 6-20
DoDisplayCertificateSet 6-20
DoDisplayCertNameAttribute 6-20
DoDisplaySignatureInfo 6-20
DoEnumerateAttributeTypes 8-20
DoEnumerateAttributeValues 8-17
DoGetDataToProcess 6-15, 6-17
DoGetExtendedCatalogInfo 8-24
DoGetNumSublistItems 5-70
DoGetPropertyNumber 5-69
DoIdle 5-70
DoInitializeASPB 9-15
DoInstallNotificationProc 9-15
DoNoteQueue 9-17
DoProcessAttributeValues 8-16
DoProcessExtendedCatalogInfo 8-24
DoRetrieveSignature 6-17
DoSaveSignature 6-15
DoSetPropertyNumber 5-70
DoUnpackExtendedCatalogInfo 8-24
DoVerifyData 6-17
MyAddAppleMailContent 3-15
MyAddLetterBlocks 3-13
MyAddLetterImage 3-16
MyAddNativeContent 3-14
MyAlbumCode 5-68
MyAllocateMaxRID 2-17 to 2-18
MyBuildMailerWindow 3-10
MyCopyingCode 2-14
MyCreateFindPanel 4-19
MyCreateNewPanel 4-9
MyDeallocateMaxRID 2-18 to 2-19
MyDisplayDataForSelection 4-15
MyDoActivate 4-17
MyDoDeactivate 4-17
MyDrawImageProc 3-16
MyFindPanelDispose 4-20
MyGetLocalIdentity 9-16
MyGetUserIdentity 4-8
MyHandleActivates 4-17

I N D E X

IN-30

sample routines (continued)
MyHandleIdle 4-18
MyHandleKeyDownsForPanel 4-13
MyHandleMouseUp 4-12
MyHandleOpenDoc 3-18
MyHandleSREvt 4-17
MyHandleUpdates 4-16
MyHandleUserSelection 4-15
MyInitStandardMail 3-9
MyMailerCutCommand 3-25
MyMailerEventHandler 3-22
MyMailerMouseClickHandler 3-24
MyNotificationProc 9-16
MyProcessEvent 4-12
MyProcessWhatHappened 3-22
MyTestForStandardCatalog 4-5
MyTestForStandardMail 3-8
MyValidatePackedPathName 2-11

SAMs (service access modules) 1-14
saving a message

adding a digital signature 7-67
adding a nested message 7-59 to 7-61
adding a recipient 7-50 to 7-51
adding a reply queue 7-52
canceling 7-67
ending 7-65 to 7-68
starting 7-47 to 7-50
starting a block 7-53 to 7-55
starting a nested message block 7-56 to 7-59
writing data 7-61 to 7-65

script code 2-19
script structures 8-36
script systems

sorting a personal catalog 4-28
SDPDisposeFindPanel function 4-75
SDPDisposePanel function 4-50
SDPEnableFindPanel function 4-69
SDPEnablePanel function 4-45
SDPFindPanelEvent function 4-76 to 4-78
SDPFindPanelFocus data type 4-71
SDPFindPanelRecord data type 4-22
SDPFindPanelResult data type 4-77
SDPFindPanelState data type 4-79
SDPGetCategories function 4-91
SDPGetCategoryTypes function 4-92
SDPGetDSSpecIcon function 4-90
SDPGetFindPanelSelection function 4-82
SDPGetFindPanelSelectionSize function 4-80
SDPGetFindPanelState function 4-79 to 4-80
SDPGetIconByType function 4-88
SDPGetNewPanel function 4-34 to 4-35
SDPGetPanelSelection function 4-58
SDPGetPanelSelectionSize function 4-57
SDPGetPanelSelectionState function 4-55 to 4-56
SDPGetPath function 4-40 to 4-42

SDPGetPathLength function 4-39
SDPHideFindPanel function 4-67
SDPHidePanel function 4-43
SDPInstallFindPanelBusyProcfunction 4-65
SDPInstallPanelBusyProc function 4-35
SDPMoveFindPanel function 4-74
SDPMovePanel function 4-48
SDPNewFindPanel function 4-61 to 4-65
SDPNewPanel function 4-30 to 4-33
SDPOpenSelectedItem function 4-59 to 4-61
SDPPanelEvent function 4-52 to 4-54
SDPPanelRecord data type 4-21
SDPPromptForID function 4-25 to 4-28
SDPRepairPersonalDirectory function 4-28
SDPResolveAliasDSSpec function 4-87
SDPResolveAliasFile function 4-85
SDPSelectString function 4-42
SDPSetFindIdentity function 4-71
SDPSetFindPanelBalloonHelp function 4-66
SDPSetFindPanelFocus function 4-70
SDPSetFocus function 4-46
SDPSetIdentity function 4-37
SDPSetPanelBalloonHelp function 4-36
SDPSetPath function 4-38
SDPShowFindPanel function 4-68
SDPShowPanel function 4-44
SDPSizePanel function 4-49
SDPStartFind function 4-83
SDPStopFind function 4-84
SDPUpdateFindPanel function 4-72 to 4-73
SDPUpdatePanel function 4-47
search strings, matching criteria 8-37
secret key cryptography 6-4
selection

in Catalog-Browsing panel 4-55 to 4-59
in Find panel 4-79 to 4-83

SendDateTime field. See Sent field of a mailer
sender structure 7-39
send-format structure 3-34
sending a message

adding a digital signature 7-67
adding a nested message 7-59 to 7-61
adding a recipient 7-50 to 7-51
adding a reply queue 7-52
canceling 7-67
ending 7-65 to 7-68
starting 7-43 to 7-47
starting a block 7-53 to 7-55
starting a nested message block 7-56 to 7-59
writing data 7-61 to 7-65

sending mail 3-11 to 3-16, 3-72 to 3-93
adding image content 3-16
adding letter content 3-13
adding native-format content 3-14
adding standard-interchange-format content 3-15

I N D E X

IN-31

beginning 3-81 to 3-83
ending 3-84
extending the send-options dialog box 3-125
main routine 3-12
send-options dialog box 3-73 to 3-76

send-letter functions 3-37 to 3-45
defined 3-3

send-options dialog box 3-73 to 3-76
displaying 3-11
extending 3-125

SendOptionsFilterProc function 3-125
send-options structure 3-34
Sent field of a mailer 3-111
serial number (of a certificate) 6-8, 6-50
servers, PowerShare 8-4
service access modules. See SAMs
session key

defined 9-4
extracting from credentials 9-59

Setup catalog
adding a catalog and password 9-64
changing a record ID and password for a

catalog 9-65
getting record ID and native name of a catalog 9-62
getting reference number of 8-81
manipulating 9-61 to 9-68
removing a catalog 9-66

ShortRecordID data type
checking equality of 2-84
copying 2-83
creating 2-82
defined 2-35

short record identifiers
checking equality of 2-84
copying 2-83
creating 2-82
data type defined 2-35
manipulating 2-82 to 2-85

SIGCertInfo data type 6-25
SIGDigest function 6-44 to 6-45
SIGDigestPrepare function 6-43 to 6-44
SIGDisposeContext function 6-29
SIGFileIsSigned function 6-45 to 6-46
SIGGetCertInfo function 6-49 to 6-51
SIGGetCertIssuerNameAttributes function 6-52 to

6-54
SIGGetCertNameAttributes function 6-51 to 6-52
SIGGetSignerInfo function 6-48 to 6-49
SIGNameAttributesInfo data type 6-26 to 6-27
SIGNameAttributeType data type 6-27
signature resource

aspect templates 5-88
defined 5-12
file type templates 5-141
forwarder templates 5-139

information page templates 5-121 to 5-123
killer templates 5-140

signed certificates 6-6, 6-9
signed digests. See encrypted digests
signer file, prompting the user for 6-32
signer information structure 6-23 to 6-24
signer of documents 6-23 to 6-24. See also digital

signatures
getting information about 6-48

SIGNewContext function 6-28 to 6-29
signing a file 6-8, 6-22
SIGProcessData function 6-30 to 6-31
SIGShowSigner function 6-46 to 6-48
SIGSignerInfo structure 6-23 to 6-24
SIGSignFile function 6-36 to 6-38
SIGSign function 6-34 to 6-35
SIGSignPrepare function 6-31 to 6-34
SIGVerifyFile function 6-41 to 6-42
SIGVerify function 6-40 to 6-41
SIGVerifyPrepare function 6-38 to 6-40
single filter structure 7-34
SLRV data type 8-36
SMPAddAddress function 3-118
SMPAddAttachment function 3-119
SMPAddBlock function 3-91 to 3-93
SMPAddContent function 3-85 to 3-88
SMPAddMainEnclosure function 3-90
SMPAttachDialog function 3-120 to 3-122
SMPBecomeTarget function 3-54 to 3-56
SMPBeginSave function 3-77 to 3-80
SMPBeginSend function 3-81 to 3-83
SMPClearUndo function 3-70
SMPCloseOptions data type 3-30
SMPCloseOptionsDialog function 3-29, 3-60 to 3-61
SMPContentChanged function 3-76
SMPDisposeMailer function 3-29, 3-61
SMPDrawMailer function 3-72
SMPDrawNthCoverPage function 3-108
SMPEnclosureDescriptor data type 3-26
SMPEndSave function 3-80
SMPEndSend function 3-84
SMPEnumerateBlocks function 3-104
SMPExpandOrContract function 3-56
SMPGetComponentInfo function 3-111 to 3-113
SMPGetComponentSize function 3-110
SMPGetDimensions function 3-48
SMPGetFontNameFromLetter function 3-102
SMPGetLetterInfo function 3-27, 3-93
SMPGetListItemInfo function 3-113 to 3-115
SMPGetMailerState function 3-30, 3-69
SMPGetMainEnclosureFSSpec function 3-103
SMPGetNextLetter function 3-27, 3-97
SMPGetTabInfo function 3-53
SMPImageErr function 3-42
SMPImage function 3-88 to 3-89

I N D E X

IN-32

SMPInitMailer function 3-46
using 3-9

SMPLetterInfo data type 3-27
SMPLetterPB parameter block 3-29
SMPMailerEditCommand function 3-67
SMPMailerEvent function 3-63 to 3-67
SMPMailerForward function 3-49 to 3-51
SMPMailerReply function 3-51 to 3-53
SMPMailerState data type 3-30 to 3-34
SMPMoveMailer function 3-57
SMPNewMailer function 3-46 to 3-48
SMPNewPage function 3-41
SMPOpenLetter function 3-27, 3-94 to 3-96
SMPPrepareCoverPages function 3-107
SMPPrepareToChange function 3-83
SMPPrepareToClose function 3-59
SMPReadBlock function 3-106
SMPReadContent function 3-98 to 3-102
SMPRecipientDescriptor data type 3-25
SMPResolveToRecipient function 3-25, 3-44
SMPSendFormat data type 3-35
SMPSendLetter function 3-25, 3-26, 3-29, 3-37 to 3-41
SMPSendOptions data type 3-34
SMPSendOptionsDialog function 3-34, 3-73 to 3-76
SMPSetFromIdentity function 3-117
SMPSetSubject function 3-116
SMPTagDialog function 3-58
snapshot. See image content
sound segments, in letters 3-87
Special menu

locking local identity 9-35
unlocking local identity 9-37

specific identity
binding 9-39
creating 9-39
defined 4-6, 8-8, 9-9
for Catalog-Browsing panel 4-37
for Find panel 4-71
getting record ID 9-42
introduction 1-18
management 9-39 to 9-43
prompting for 4-25 to 4-28
removing 9-41

spinning cursor 4-95
stand-alone attribute 5-6
Standard Catalog Package 4-3 to 4-115

application-defined functions for 4-94 to 4-95
data structures for 4-20 to 4-23
functions in 4-23 to 4-93

authenticating a user 4-25 to 4-28
calling from assembly language 4-24
creating, displaying, and disposing of a

Catalog-Browsing panel 4-29 to 4-51
creating, displaying, and disposing of a Find

panel 4-61 to 4-75

handling Catalog-Browsing panel events 4-51 to
4-61

handling find-panel events 4-75 to 4-85
obtaining icons and lists of catalog-item categories

and types 4-88 to 4-93
resolving aliases 4-85 to 4-88
sorting a personal catalog 4-28

introduction 1-12
testing for availability 4-5
version number 4-5

standard interchange format
adding to a letter 3-15, 3-85 to 3-88
converting font numbers to font names 3-102
defined 3-7
reading 3-98 to 3-102

Standard Mail Package 3-3 to 3-153
application-defined functions for 3-122 to 3-126
data structures for 3-25 to 3-35
functions in 3-36 to 3-122

calling from assembly language 3-36
getting and setting information in a mailer 3-110

to 3-122
handling events in mailers 3-63 to 3-72
initializing 3-46
opening and reading mail 3-93 to 3-107
printing and imaging mailers 3-107 to 3-109
providing a mailer in your window 3-45 to 3-63
sending and saving mail 3-72 to 3-93
send-letter functions 3-37 to 3-45

initializing 3-8
introduction 1-11
relationship to Interprogram Messaging

Manager 7-3
testing for availability 3-8
version number 3-8

standard record types
list of 2-28
obtaining 2-85

standard signatures
adding 6-8, 6-22, 6-36
getting information on 6-45 to 6-54

StaticCommandTextFromView view type 5-128, 5-162
StaticTextFromView view type 5-127
StaticText view type 5-128
Stop button, for Find panel 4-80, 4-84
store-and-forward 1-15
string property type 5-13, 5-84. See also RString data

type
strings. See AOCE strings
styled text, in letters 3-87
styles, constants for view lists 5-127
'styp' lookup table element 5-119
Subject field of a mailer

getting 3-111
specifying 3-116

I N D E X

IN-33

sublist item target selector 5-144
sublists

automatically opening information page for new
item 5-96

callback routines 5-235 to 5-238
determining number of items in sublist 5-235
synchronizing with catalog system 5-237

example 5-8
information page for attribute in 5-23
information page for record in 5-24
and main aspects 5-22
name of attribute value 5-95
preventing the user from dragging out attribute

values 5-102
sample information page 5-43 to 5-52
sorting 5-103, 5-104, 5-128, 5-162
specifying types of attribute values that can be

dragged out 5-102
useInSublist lookup-table flag 5-109
and view lists 5-136

synchronizing property values with the catalog
system 5-185 to 5-187, 5-237

T

Tab key
selecting Catalog-Browsing panel 4-46
selecting Find panel 4-70
using to move among fields in a mailer 3-53 to 3-56

tags
adding to letters 3-58
close-options dialog box 3-60

target components 3-32
target selectors 5-144
target specifier structure 5-142 to 5-145
template name resource 5-75
template names 5-75
template resources. See resources
templates. See AOCE templates
template unloader 5-208
text

AOCE template code resource routines 5-164, 5-166
as content of a letter 3-87

text justification. See justified text
text styles. See styles
text views. See also edit-text views

types of 5-127
time, getting UTC 9-52 to 9-54
time service 9-52 to 9-54
TOC information structure 7-37
To field. See Recipients field of a mailer
TPfPgDir data type 3-28

type, determining for a letter in the In tray 3-94
type conversions, AOCE template properties 5-188 to

5-192
convert from number 5-191
convert from RString 5-192
convert to number 5-188
convert to RString 5-189
on requesting a property value 5-214
on setting a property value 5-223

'type' lookup table element 5-111

U

Undo command, for mailers 3-33, 3-70
universal coordinated time. See UTC
unpacking

AOCE data structures 2-5 to 2-10
packed catalog services specifications 2-98
PackedDSSpec 2-98
PackedPathName 2-58
PackedRecordID 2-91
packed record identifiers 2-91
PackedRLI 2-72
record location information 2-72

update events
for Catalog-Browsing panels 4-47
for Find panels 4-72 to 4-73
for mailers 3-72

useForInput lookup-table flag 5-109
useForOutput lookup-table flag 5-109
useInSublist lookup-table flag 5-109
user names, for local identity 9-32
User record templates A-1 to A-3
UTC, getting 9-52 to 9-54
UTCOffset data type 3-112
UTCTime data type 3-112, 7-33
utilities. See AOCE Utilities
utility functions. See AOCE utility functions

V

view lists 5-123 to 5-131
and sublist sorting 5-128
code resource routine 5-166
custom view bounds 5-244
custom view reference value 5-242
flags 5-126
font constants 5-127
sample 5-130
and sublists 5-136
text justification constants 5-127

I N D E X

IN-34

view lists (continued)
text style constants 5-127
view types 5-127 to 5-130

View menu 5-7
and sublist sorting 5-103, 5-104

views
conditional

code resource routine 5-166
defined 5-26
implementing 5-131 to 5-136
sample 5-40 to 5-43

custom
callback routines 5-242 to 5-245
code resource routines 5-192 to 5-194
defined 5-130
getting bounds 5-244
getting reference value 5-242
handling mouse-down event 5-194
updating 5-193

view types 5-127 to 5-130
virtual queue. See virtual under message queues
viruses, detecting with digital signatures 6-3
visitor, PowerTalk. See alternate user, PowerTalk

W

watch cursor, disabling 5-200
windows

adding a mailer 3-46
information page. See custom information page

window; information page
moving a mailer in 3-57
preparing for mailer 3-123

'word' lookup table element 5-111
workflow application example 1-7
wristwatch cursor, disabling 5-200
'wsiz' lookup table element 5-115
'wstr' lookup table element 5-111

I N D E X

IN-35

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe Illustrator™ and
Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER

Paul Black

WRITERS

Paul Black, Dee Eduardo, Ed Fernandez,
Michael Kline, Alan Spragens,
Angela Ferguson, Dave Bice

DEVELOPMENTAL EDITOR

Antonio Padial

INDEX SPECIALIST

Laurel Rezeau

ILLUSTRATOR

Deb Dennis

COVER DESIGNER

Barbara Smyth

PRODUCTION EDITORS

Pat Christenson, Alan Morgenegg

PROJECT MANAGER

Patricia Eastman

Special thanks to Pablo Calamera,
Harry Chesley, Mike Cleron, Jamie Doll,
John Evans, Steve Falkenburg,
Steve Fisher, Charlie Kim, Karen Lam,
Sarah Lindsley, Martin Minow,
S. G. Sangameswara, Eric Trehus,
Atticus Tysen, R. C. Venkatraman

Acknowledgments to Rick Andrews,
Joseph Aseo, Andy Atkins,
Michael Bayer, Timo Bruck,
Hermán Camarena, Victor Chang,
Henry Chen, Godfrey DiGiorgi,
Laurence Gathy, Bruce Gaya,
Darren Giles, Gerri Gray, John Hammett,
Carol Lee, Miki Lee, Barbara Martinez,
Shantanu Narayen, David O'Rourke,
Monica Pal, Gursharan Sidhu,
Alex Solinski, and the entire AOCE team.

