INSIDE MACINTOSH

Devices

[
v

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, AZUX,
EtherTalk, LaserWriter, Macintosh,
MPW, PowerBook, ProDOS, and
TokenTalk are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Apple Desktop Bus, Finder, Macintosh
Quadra, PowerBook Duo, Power
Macintosh, and QuickDraw, are
trademarks of Apple Computer, Inc.
Adobe lllustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered service
mark of America Online, Inc.
CompusServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Motorola is a registered trademark of
Motorola Corporation.

NuBus is a trademark of Texas
Instruments.

Optrotech is a trademark of Orbotech
Corporation.

UNIX is a trademark of UNIX System
Laboratories, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THEENTIRERISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62271-8
1234567 89-CRW-9897969594
First Printing, July 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh / [Apple Computer, Inc.].

p. cm.
Includes index.
ISBN 0-201-62271-8

1. Macintosh (Computer) 2. Device drivers (Computer programs)

I. Apple Computer, Inc.
QA76.8.M3143 1994
005.7” 1265—dc20

94-18426
CIP

Contents

Figures, Tables, and Listings xiii

Preface About This Book xvii

Format of a Typical Chapter Xvii
Conventions Used in This Book xviii
Special Fonts Xviii
Types of Notes Xviii
Assembly-Language Information Xviii
Development Environment XiX
For More Information XX

Chapter 1 Device Manager 11

Introduction to Devices and Drivers 1-3
About the Device Manager 1-5
The Device Control Entry 1-6
The Unit Table 1-8
The Driver 1/0 Queue 1-10
Driver Routines 1-12
Driver Resources 1-12
Using the Device Manager 1-14
Opening and Closing Device Drivers 1-18
Communicating With Device Drivers 1-20
Controlling and Monitoring Device Drivers 1-22
Writing a Device Driver 1-24
Creating a Driver Resource 1-24
Responding to the Device Manager 1-28
Entering and Exiting From Driver Routines 1-29
Writing Open and Close Routines 1-31
Writing a Prime Routine 1-33
Writing Control and Status Routines 1-34
Handling Asynchronous 1/0 1-37
Installing a Device Driver 1-38
Writing a Chooser-Compatible Device Driver 1-40
How the Chooser Works 1-40
Creating a Chooser Extension File 1-43
Creating a Device Package 1-45
Responding to the Chooser 1-46
Allocating Private Storage 1-48

Writing a Desk Accessory 1-49
How Desk Accessories Work 1-49
Creating a Driver Resource for a Desk Accessory 1-50
Opening and Closing a Desk Accessory 1-51
Responding to Events 1-51
Device Manager Reference 1-53
Data Structures 1-53
Device Manager Parameter Block 1-53
Device Control Entry 1-56
Device Manager Functions 1-58
Opening and Closing Device Drivers 1-59
Communicating With Device Drivers 1-69
Controlling and Monitoring Device Drivers 1-75
Writing and Installing Device Drivers 1-82
Resources 1-89
The Driver Resource 1-89
Summary of the Device Manager 1-91
C Summary 1-91
Constants 1-91
Data Types 1-92
Functions 1-94
Pascal Summary 1-95
Constants 1-95
Data Types 1-97
Routines 1-98
Assembly-Language Summary 1-99
Data Structures 1-99
Trap Macros 1-100
Result Codes 1-101

Chapter 2 Slot Manager 21

Introduction to Slots and Cards 2-3
Slot Address Allocations 2-5
Firmware 2-7
The sResource 2-7
Type and Name Entries 2-9
The Board sResource and Functional sResources 2-11
The sResource Directory 2-12
The Format Block 2-13
About the Slot Manager 2-15
Using the Slot Manager 2-16
Enabling and Disabling NuBus Cards 2-17
Deleting and Restoring sResources 2-17
Enabling and Disabling sResources 2-18
Searching for sResources 2-19

Obtaining Information From sResources 2-20
Installing and Removing Slot Interrupt Handlers 2-22
Slot Manager Reference 2-22
Data Structures 2-22
Slot Manager Parameter Block 2-23
Slot Information Record 2-24
Format Header Record 2-26
Slot Parameter RAM Record 2-27
Slot Execution Parameter Block 2-27
Slot Interrupt Queue Element 2-28
Slot Manager Routines 2-29
Determining the Version of the Slot Manager 2-30
Finding sResources 2-31
Getting Information From sResources 2-40
Enabling, Disabling, Deleting, and Restoring sResources 2-51
Loading Drivers and Executing Code From sResources 2-58
Getting Information About Expansion Cards and Declaration
ROMs 2-61
Accessing Expansion Card Parameter RAM 2-67
Managing the Slot Interrupt Queue 2-70
Low-Level Routines 2-72
Summary of the Slot Manager 2-87
Pascal Summary 2-87
Constants 2-87
Data Types 2-87
Slot Manager Routines 2-90
Low-Level Routines 2-91
C Summary 2-92
Constants 2-92
Data Types 2-92
Slot Manager Functions 2-94
Low-Level Functions 2-96
Assembly-Language Summary 2-97
Data Structures 2-97
Trap Macros 2-99
Result Codes 2-100

Chapter 3 SCSI Manager 31

Introduction to SCSI Concepts 3-3
SCSI Bus Signals 3-4
SCSI Bus Phases 3-5
SCSI Commands 3-7
SCSI Messages 3-7
SCSI Handshaking 3-7

About the SCSI Manager 3-8
Conformance With the SCSI Specification 3-9
Overview of SCSI Manager Data Structures 3-10
The Structure of Block Devices 3-12

The Driver Descriptor Record 3-12
The Partition Map 3-13

Using the SCSI Manager 3-15
Reading Data From a SCSI Device 3-15
Using CDB and TIB Structures 3-17
Using the SCSIComplete Function 3-21
Choosing Polled or Blind Transfers 3-22

SCSI Manager Reference 3-23
Data Structures 3-23

Driver Descriptor Record 3-23

Partition Map Entry Record 3-25
SCSI Manager TIB Instructions 3-27
SCSI Manager Routines 3-31

Summary of the SCSI Manager 3-43

Pascal Summary 3-43
Constants 3-43
Data Types 3-43
Routines 3-44
C Summary 3-45
Constants 3-45
Data Types 3-45
Functions 3-46
Assembly-Language Summary 3-47
Data Structures 3-47
Trap Macros 3-48
Result Codes 3-48

Chapter 4 SCSI Manager 4.3 41

About SCSI Manager 4.3 4-3
Transport 4-5
SCSI Interface Modules 4-6
System Performance 4-6
Compatibility 4-6

Using SCSI Manager 4.3 4-7
Locating SCSI Devices 4-8
Describing Data Buffers 4-9
Handshaking Instructions 4-9
Error Recovery Techniques 4-10
Optional Features 4-10

Writing a SCSI Device Driver 4-11
Loading and Initializing a Driver 4-11

Vi

Selecting a Startup Device 4-12
Transitions Between SCSI Environments 4-12
Handling Asynchronous Requests 4-13
Handling Immediate Requests 4-13
Virtual Memory Compatibility 4-14
Writing a SCSI Interface Module 4-15
SIM Initialization and Operation 4-15
Supporting the Original SCSI Manager 4-16
Handshaking of Blind Transfers 4-18
Supporting DMA 4-18
Loading Drivers 4-18
SCSI Manager 4.3 Reference 4-19
Data Structures 4-19
Simple Data Types 4-19
Device Identification Record 4-19
Command Descriptor Block Record 4-20
Scatter/Gather List Element 4-20
SCSI Manager Parameter Block Header 4-21
SCSI 1/0 Parameter Block 4-23
SCSI Bus Inquiry Parameter Block 4-28
SCSI Abort Command Parameter Block 4-33
SCSI Terminate 1/0 Parameter Block 4-33
SCSI Virtual ID Information Parameter Block 4-34
SCSI Load Driver Parameter Block 4-34
SCSI Driver Identification Parameter Block 4-35
SIM Initialization Record 4-36
SCSI Manager 4.3 Functions 4-37
Client Functions 4-37
SIM Support Functions 4-54
SIM Internal Functions 4-60
Summary of SCSI Manager 4.3 4-65
C Summary 4-65
Constants 4-65
Data Types 4-70
Functions 4-75
Pascal Summary 4-75
Constants 4-75
Data Types 4-79
Routines 4-85
Assembly-Language Summary 4-86
Data Structures 4-86
Trap Macros 4-89
Result Codes 4-90

Chapter 5 ADB Manager 51

About the Apple Desktop Bus 5-3
Characteristics of ADB Devices 5-3
About the ADB Manager 5-5
ADB Commands 5-7
ADB Transactions 5-9
ADB Device Registers 5-9
Register 0 5-10
Register 3 5-10
Default ADB Device Address and Device Handler Identification
ADB Device Table 5-13
Address Resolution 5-15
ADB Communication 5-17
Using the ADB Manager 5-22
Checking for the ADB Manager 5-22
Getting Information About ADB Devices 5-22
Communicating With ADB Devices 5-24
Writing an ADB Device Handler 5-29
Installing an ADB Device Handler 5-30
Creating an ADB Device Handler 5-36
ADB Manager Reference 5-37
Data Structures 5-37
ADB Data Block 5-37
ADB Information Block 5-38
ADB Operation Block 5-38
ADB Manager Routines 5-39
Initializing the ADB Manager 5-39
Communicating Through the ADB 5-40
Getting ADB Device Information 5-42
Setting ADB Device Information 5-44
Application-Defined Routines 5-45
ADB Device Handlers 5-45
ADB Command Completion Routines 5-47
Summary of the ADB Manager 5-48
Pascal Summary 5-48
Data Types 5-48
ADB Manager Routines 5-48
Application-Defined Routines 5-49
C Summary 5-49
Data Types 5-49
ADB Manager Functions 5-50
Application-Defined Functions 5-50
Assembly-Language Summary 5-51
Data Structures 5-51
Trap Macros 5-51
Global Variables 5-51
Result Codes 5-51

viii

5-11

Chapter 6 Power Manager 6-1

About the Power Manager 6-4
The Power-Saver State 6-6
The Idle State 6-7
The Sleep State 6-8
The Sleep Queue 6-9
Sleep Requests 6-10
Sleep Demands 6-10
Wakeup Demands 6-11
Sleep-Request Revocations 6-12
Power Manager Dispatch 6-12
Using the Power Manager 6-13
Determining Whether the Power Manager Is Present 6-14
Determining Whether the Power Manager Dispatch Routines are
Present 6-14
Enabling or Disabling the Idle State 6-15
Setting, Disabling, and Reading the Wakeup Timer 6-16
Installing a Sleep Procedure 6-18
Using Application Global Variables in Sleep Procedures 6-19
Writing a Sleep Procedure 6-20
Switching Serial Power On and Off 6-25
Monitoring the Battery and Battery Charger 6-26
Power Manager Reference 6-26
Data Structures 6-26
Sleep Queue Record 6-26
Hard Disk Queue Structure 6-27
Wakeup Time Structure 6-27
Battery Information Structure 6-27
Battery Time Structure 6-28
Power Manager Routines 6-28
Controlling the Idle State 6-28
Controlling and Reading the Wakeup Timer 6-31
Controlling the Sleep Queue 6-33
Controlling Serial Power 6-34
Reading the Status of the Internal Modem 6-36
Reading the Status of the Battery and the Battery Charger 6-38
Power Manager Dispatch Routines 6-40
Determining the Power Manager Features Available 6-40
Controlling the Sleep and Wakeup Timers 6-42
Controlling the Dimming Timer 6-46
Controlling the Hard Disk 6-48
Getting Information About the Internal Batteries 6-54
Controlling the Internal Modem 6-58
Controlling the Processor 6-60
Getting and Setting the SCSI ID 6-63
Application-Defined Routines 6-65

Sleep Procedures 6-65
Hard Disk Spindown Function 6-66
Summary of the Power Manager 6-67
Pascal Summary 6-67
Constants 6-67
Data Types 6-69
Power Manager Routines 6-70
Power Manager Dispatch Routines 6-70
Application-Defined Routines 6-72
C Summary 6-72
Constants and Data Types 6-72
Power Manager Functions 6-75
Power Manager Dispatch Functions 6-76
Application-Defined Functions 6-77
Assembly-Language Summary 6-77
Data Structures 6-77
Trap Macros 6-78
Result Codes 6-80

Chapter 7 Serial Driver 7-1

Introduction to Serial Communication 7-3
Asynchronous and Synchronous Communication 7-4
Duplex Communication 7-4
Flow Control Methods 7-4
Asynchronous Serial Communication Protocol 7-5
The RS-422 Serial Interface 7-6

About the Serial Driver 7-8
Macintosh Serial Architecture 7-8
Serial Communication Errors 7-10
Using the Serial Driver 7-11
Opening the Serial Driver 7-15
Specifying an Alternate Input Buffer 7-15
Setting the Handshaking Options 7-16
Setting the Baud Rate and Data Format 7-16
Reading and Writing to the Serial Ports 7-16
Synchronous I/0 Requests 7-17
Asynchronous I/0 Requests 7-17
Closing the Serial Driver 7-17
Synchronous Clocking 7-18
Serial Driver Reference 7-18
Serial Driver Routines 7-18
Low-Level Routines 7-27
Summary of the Serial Driver 7-30
Pascal Summary 7-30
Constants 7-30

Data Types 7-31

Routines 7-32
C Summary 7-32

Constants 7-32

Data Types 7-33

Functions 7-34
Assembly-Language Summary 7-34

Data Structures 7-34

Device Manager Interface 7-35
Result Codes 7-35

Glossary cL-1

Index IN-1

Xi

Chapter 1

Chapter 2

Figures, Tables, and Listings

Device Manager 1-1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11

Table 1-1

Table 1-2
Table 1-3
Table 1-4

Listing 1-1
Listing 1-2
Listing 1-3
Listing 1-4
Listing 1-5
Listing 1-6
Listing 1-7
Listing 1-8
Listing 1-9
Listing 1-10
Listing 1-11
Listing 1-12
Listing 1-13
Listing 1-14
Listing 1-15

Slot Manager

Devices and the Macintosh 1-4
Communication with devices 1-5
The device control entry 1-7
The unit table 1-9

Relationship of the Device Manager data structures 1-11

Structure of a driver resource 1-13
Hierarchy of Device Manager functions 1-14
Device Manager parameter blocks 1-16
The driver header 1-25

The Chooser window 1-41

Structure of a device package 1-45

Device Manager /O functions and responsible driver
routines 1-12

Reserved unit numbers 1-38
Device package flags 1-46
Chooser messages and their meanings 1-47

Opening a device driver 1-18

Closing a device driver 1-20

Reading from a device driver 1-21

Writing to a device driver 1-22

Controlling and monitoring a device driver 1-23
Driver flag constants 1-27

An assembly-language driver header 1-28

An assembly-language dispatching routine 1-29
Example driver open routine 1-32

Example driver close routine 1-33

Example driver prime routine 1-34

Example driver control routine 1-35

Example driver status routine 1-36

Finding space in the unit table 1-39

' DRVR resource format 1-89

2-1

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7

Simplified processor-bus and NuBus architecture 2-4
The NuBus 32-bit address space 2-6

The structure of a typical sResource 2-8

The format of the sBl ock and sExecBl ock data structures
The sRsr cType entry format 2-10

A sample board sResource 2-12

The structure of the sResource directory 2-13

xiil

Chapter 3

Chapter 4

Chapter 5

Xiv

Figure 2-8

Table 2-1
Table 2-2
Table 2-3
Table 2-4

Listing 2-1
Listing 2-2
Listing 2-3

SCSI Manager

The format block and sResources for a sample video card 2-14

Slot address allocations by slot ID 2-6
Large data types used in sResources 2-9
The Slot Manager search routines 2-19

How the Slot Manager determines the base address of a slot
device 2-55

Disabling and enabling an sResource 2-18

Searching for a specified type of sResource 2-19
Searching for the name of a board sResource 2-21

3-1

Figure 3-1
Figure 3-2

Table 3-1

Listing 3-1
Listing 3-2

SCSI bus phases and allowable transitions 3-6
The role of the SCSI Manager 3-9

SCSI bus signals 3-5

Reading data from a SCSI device 3-16
Using TIB and CDB structures 3-18

SCSI Manager 4.3 4-1

Figure 4-1

Table 4-1
Table 4-2

ADB Manager

The SCSI Manager 4.3 architecture 4-4

Original SCSI Manager parameter conversion 4-17
SCSI Act i on function selector codes 4-39

5-1

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8

Figure 5-9
Figure 5-10
Figure 5-11

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5

The ADB Manager and device handlers 5-6
Command formats for Talk, Listen, and Flush 5-8
Command format for SendReset 5-8

A typical ADB transaction 5-9

Format of device register 3 5-11

Resolving address conflicts 5-16

Polling the ADB 5-18

How an ADB device responds to a polling request by the ADB
Manager 5-19

The ADB service request signal 5-20
An ADB device asserts the service request signal 5-21
The ADBOp routine and an ADB completion routine 5-25

Register 0 in the Apple Standard keyboard 5-10
Bits in device register 3 5-11

Defined default ADB device addresses 5-12
Special device handler IDs 5-13

Typical ADB device table at initialization 5-14

Chapter 6

Chapter 7

Listing 5-1

Listing 5-2
Listing 5-3
Listing 5-4
Listing 5-5
Listing 5-6
Listing 5-7
Listing 5-8

Power Manager

Determining whether an ADB device is an Apple Extended
keyboard 5-23

Sending an ADB command synchronously 5-25
Reading the current state of the LED lights 5-26
Setting the current state of the LED lights 5-27
Counting in binary using a keyboard’s LED lights 5-28
Installing an ADB device handler 5-32

Installing a routine pointer into JADBPr oc 5-35

A sample device handler 5-37

6-1

Figure 6-1 A network driver’s sleep dialog box 6-5

Table 6-1 Response of network services to sleep requests and sleep
demands 6-10

Listing 6-1 Determining which Power Manager dispatch routines exist 6-15

Listing 6-2 Setting the wakeup timer 6-17

Listing 6-3 Adding an entry to the sleep queue 6-18

Listing 6-4 Installing a sleep procedure that uses application global
variables 6-20

Listing 6-5 Accepting and denying a sleep request 6-21

Listing 6-6 A sleep procedure 6-21

Listing 6-7 Retrieving the sleep queue record and the selector code 6-22

Listing 6-8 Displaying a dialog box in response to a sleep demand 6-23

Listing 6-9 A modal dialog filter function that times out 6-24

Serial Driver 7-1

Figure 7-1 The format of serialized bits 7-5

Figure 7-2 The role of the Serial Driver 7-9

Figure 7-3 The ser Conf i g parameter format 7-19

Listing 7-1 Using the Serial Driver 7-11

XV

P REFACE

About This Book

This book, Inside Macintosh: Devices, describes the parts of the Macintosh
Operating System that allow you to directly control, manage, and
communicate with internal and external hardware devices. It contains
information you need to know to write applications and device drivers
that interface with the Device Manager, Slot Manager, SCSI Manager,
SCSI Manager 4.3, ADB Manager, Power Manager, and Serial Driver.

If you are new to programming for Macintosh computers, you should read
the book Inside Macintosh: Overview for an introduction to general concepts

of Macintosh programming. You should also read other books in the

Inside Macintosh series for specific information about other aspects of the
Macintosh Toolbox and the Macintosh Operating System. In particular, to
benefit most from this book, you should already be familiar with the run-time
environment of Macintosh applications, as described in the two books

Inside Macintosh: Processes and Inside Macintosh: Memory.

Format of a Typical Chapter

Most of the chapters in this book include the following four sections:

n “About the ... Manager.” You should read this section for a general
understanding of the manager and what tasks you can use it for.

n “Using the ... Manager.” This section provides detailed instructions on
using the manager. You should read this section if you need to use the
services provided by that manager.

n “Reference.” This section provides a complete reference to the constants,
data structures, and routines provided by the manager. Each routine
description also follows a standard format, which presents the routine
declaration followed by a description of every parameter of the routine.
Some routine descriptions also give additional information, such as
circumstances under which you cannot call the routine.

n “Summary.” This section provides the C, Pascal, and assembly-language
interfaces for the constants, data structures, routines, and result codes
associated with the manager.

In addition, most chapters contain additional sections that provide
background information about a topic, or advanced information for specific
types of programs.

Xvili

P REFACE

Conventions Used in This Book

Xviil

Inside Macintosh uses various conventions to present information. Words

that require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, appears in special formats so that you
can scan it quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (this is
Couri er).

Words that appear in boldface are key terms or concepts and are defined in
the glossary at the end of this book.

Types of Notes

There are several types of notes used in Inside Macintosh.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-27 in the chapter “Device Manager.”) u

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-10 in
the chapter “Device Manager.”) s

WARNING

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on

page 1-15 in the chapter “Device Manager.”) s

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines
like this:

Registers on entry
A0 Contents of register A0 on entry

Registers on exit
DO Contents of register DO on exit

P REFACE

In addition, Inside Macintosh presents information about the fields of a
parameter block in this format:

Parameter block

« i nAndQut Handl e Input/output parameter.
- out putl Ptr Output parameter.

® i nput 1 Ptr Input parameter.

5 trashed | ong Affected field.

The arrow in the left column indicates whether the field is an input parameter,
output parameter, or both. You must supply values for all input parameters
and input/output parameters. The routine returns values in output
parameters and input/output parameters.

The 5 symbol designates fields that may be affected by the execution of the
routine. Any value you store in one of these affected fields may be lost. Also,
the meaning of these fields upon completion of the routine is undefined; your
application should not depend on these values.

The second column shows the field name as defined in the MPW C or Pascal
interface files; the third column indicates the C or Pascal data type of that
field. The fourth column provides a brief description of the use of the field.
For a complete description of each field, see the discussion that follows the
parameter block or the description of the parameter block in the reference
section of the chapter.

Development Environment

The system software routines described in this book are available using C,
Pascal, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. This book shows
the interface to system software routines provided by the Macintosh
Programmer’s Workshop (MPW).

Code listings in this book show methods of using various routines and
illustrate techniques for accomplishing particular tasks. All code listings have
been compiled and, in most cases, tested. However, Apple Computer does not
intend that you use these code samples in your application.

XiX

P REFACE

For More Information

XX

APDA is Apple’s worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested
in developing applications on Apple platforms. Customers receive the

APDA Tools Catalog featuring all current versions of Apple development tools
and the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other
technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

1 Infinite Loop, M/S 303-2T

Cupertino, CA 95014

CHAPTER 1

Device Manager

Contents

Introduction to Devices and Drivers 1-3
About the Device Manager 1-5
The Device Control Entry 1-6
The Unit Table 1-8
The Driver 1/0 Queue 1-10
Driver Routines 1-12
Driver Resources 1-12
Using the Device Manager 1-14
Opening and Closing Device Drivers 1-18
Communicating With Device Drivers 1-20
Controlling and Monitoring Device Drivers 1-22
Writing a Device Driver 1-24
Creating a Driver Resource 1-24
Responding to the Device Manager 1-28
Entering and Exiting From Driver Routines 1-29
Writing Open and Close Routines 1-31
Writing a Prime Routine 1-33
Writing Control and Status Routines 1-34
Handling Asynchronous 1/0 1-37
Installing a Device Driver 1-38
Writing a Chooser-Compatible Device Driver 1-40
How the Chooser Works 1-40
Creating a Chooser Extension File 1-43
Creating a Device Package 1-45
Responding to the Chooser 1-46
Allocating Private Storage 1-48
Writing a Desk Accessory 1-49
How Desk Accessories Work 1-49
Creating a Driver Resource for a Desk Accessory 1-50
Opening and Closing a Desk Accessory 1-51

Contents

1-2

CHAPTER 1

Responding to Events 1-51
Device Manager Reference 1-53

Data Structures 1-53
Device Manager Parameter Block 1-53
Device Control Entry 1-56

Device Manager Functions 1-58
Opening and Closing Device Drivers 1-59
Communicating With Device Drivers 1-69
Controlling and Monitoring Device Drivers
Writing and Installing Device Drivers 1-82

Resources 1-89
The Driver Resource 1-89

Summary of the Device Manager 1-91

C Summary 1-91
Constants 1-91
Data Types 1-92
Functions 1-94

Pascal Summary 1-95
Constants 1-95
Data Types 1-97
Routines 1-98

Assembly-Language Summary 1-99
Data Structures 1-99
Trap Macros 1-100

Result Codes 1-101

Contents

1-75

CHAPTER 1

Device Manager

This chapter describes how your application can use the Device Manager to transfer
information into and out of a Macintosh computer. The Device Manager controls the
exchange of information between applications and hardware devices.

This chapter provides a brief introduction to devices and device drivers (the programs
that control devices) and then explains how you can use the Device Manager functions to

n open, close, and exchange information with device drivers
n write your own device driver that can communicate with the Device Manager

n provide a user interface for your device driver by making it a Chooser extension or
desk accessory.

You should read the sections “About the Device Manager” and “Using the Device
Manager” if your application needs to use the Device Manager to communicate with a
device driver. Applications often communicate with the Device Manager indirectly, by
calling functions of other managers (for example, the File Manager) that use the Device
Manager. However, sometimes applications must call Device Manager functions directly.

The sections “Writing a Device Driver,” “Writing a Chooser-Compatible Device Driver,”
and “Writing a Desk Accessory,” provide information you’ll need if you are writing your
own device driver.

If you writing a device driver, you should understand how memory is organized and
allocated in Macintosh computers. See Inside Macintosh: Memory, for this information.
You should also be familiar with resources and how the system searches resource files.
You can find this information in the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox. If your device driver is to perform background tasks, you’ll need
to understand how processes are scheduled. Inside Macintosh: Processes covers these
topics. If your driver will control a hardware device, you should read Designing Cards
and Drivers for the Macintosh Family, third edition.

Introduction to Devices and Drivers

A device is a physical part of the Macintosh, or a piece of external equipment, that
can exchange information with applications or with the Macintosh Operating System.
Input devices transfer information into the Macintosh, while output devices receive
information from the Macintosh. An 1/0 device can transfer information in either
direction.

Devices transfer information in one of two ways. Character devices read or write a
stream of characters, or bytes, one at a time. Character devices provide sequential access
to data—they cannot skip over bytes in the data stream, and cannot go back to pick up
bytes that have already passed. The keyboard and the serial ports are examples of
character devices.

Block devices read and write blocks of bytes as a group. Disk drives, for example, can
read and write blocks of 512 bytes or more. Block devices provide random access to
data—they can read or write any block of data on demand.

Introduction to Devices and Drivers 1-3

CHAPTER 1

Device Manager

Devices communicate with applications and with the Operating System through special
programs called device drivers. A device driver typically controls a specific hardware
device, such as a modem, hard disk, or printer. This type of device driver acts as a
translator, converting software requests into hardware actions and hardware actions into
software results. Figure 1-1 illustrates some of the hardware devices that communicate
with the Macintosh through device drivers.

Figure 1-1 Devices and the Macintosh

Do Wlarmger

A

FU%

Sedid Driver | Sot drivers | S5 drivers Disk Diiver |

— B2) = [

el ez

N

= mw

Priner MuBuz card= Soanner Hard disk Roppydsk

Macintosh device drivers may be either synchronous or asynchronous. A synchronous
device driver completes a requested transaction before returning control to the Device
Manager. An asynchronous device driver can initiate a transaction and return control to
the Device Manager before the transaction is complete. This type of device driver usually
relies on interrupts from a hardware device to regain control of the processor and
complete the transaction.

The Macintosh ROM and system software contain device drivers for controlling the
standard devices included with every Macintosh computer, such as the mouse, serial
ports, and floppy disk drive. Before deciding to write your own device driver, you

should consider whether your device can be accessed using one of the standard device
drivers. The section “Writing a Device Driver,” beginning on page 1-24, discusses the
reasons why you may want to use a standard device driver rather than writing your own.

Although device drivers are often used to control hardware, they are not restricted to
this function. For example, Macintosh desk accessories and Chooser extensions are small
programs that are written as device drivers, even though they may have nothing to do
with controlling hardware. In general, a device driver is a program that conforms to a
standard interface and provides access to a service through a standard set of routines.

Introduction to Devices and Drivers

CHAPTER 1

Device Manager

Your program can take advantage of this interface to perform tasks unrelated to actual
physical devices.

About the Device Manager

The Device Manager provides a common programming interface for applications and
other managers to use when communicating with device drivers. The Device Manager
also includes support functions useful for writing your own device drivers.

Typically, your application won’t communicate directly with device drivers; instead, it
will call Device Manager functions or call the functions of another manager that calls the
Device Manager. For example, your application can communicate with a disk driver by
calling the Device Manager directly or by calling the File Manager, which calls the
Device Manager. Figure 1-2 shows the relationship between applications, the Device
Manager, other managers, device drivers, and devices.

Figure 1-2 Communication with devices
Peplicaion \ ‘

Chher managers

g

Davice Marmger

0

Dlavice drivars

0

Daicns

Before the Device Manager allows an application or another manager to communicate
with a device driver, the driver must be open, which means the Device Manager has
received a request to open the driver, has loaded the driver into memory, if necessary,
and has successfully called the driver’s open routine.

About the Device Manager 1-5

1-6

CHAPTER 1

Device Manager

Your application opens a device driver using one of the Device Manager functions,
OpenDri ver, OpenSl ot , or PBOpen. These functions return a driver reference number
for the driver. You use the driver reference number to identify the driver in subsequent
communication requests.

Your application communicates with a driver by calling Device Manager functions such
as FSRead or PBRead, and supplying the driver reference number of the device. The
Device Manager then invokes a corresponding routine in the device driver to perform
the requested operation. The section “Driver Routines” on page 1-12 describes these
routines and their relationship to the Device Manager functions.

The Device Manager uses several data structures to locate, manage, and communicate
with device drivers. These structures are described in the following sections.

The Device Control Entry

The Device Manager maintains a data structure called a device control entry (DCE) for
each open driver. The device control entry is a relocatable block in the system heap that
contains a handle or pointer to the device driver code, and additional information about
the driver. Typically, the Device Manager maintains one device control entry for each
open device driver, but it is possible for multiple entries to refer to the same driver.

Figure 1-3 shows the device control entry structure. See “Device Manager Reference,”
beginning on page 1-53, for descriptions of the fields within the device control entry
structure.

About the Device Manager

CHAPTER 1

Device Manager

Figure 1-3 The device control entry
Dﬁel:'ll: Dyl
dACtlin iy [Poiner 1o ROk driver or beande 1o B8 driver) | 4
4
. ActlFlaces {FAags) 2
J dotlomd Drivar PO quas Froader) £
16
dotlFosition (Bye posidon for block deices) 4
a0
dctl st oracm [Hardl= 1o driver's privebe shorege) 4
24
- dAotlRefHan {Diriveer referencs ram ber) z
dctlourTicks (fumber of fodes dinee lastperiodc avend 4
b1
dctlii roow | Poiner 1o deds soosnson) window) 4
24
dotlDalay lumber of ddes batsean percdic actiors) z
® dAotlErs <k Dk aooesmory e vant m ask) z
= dotltenna (Dl sk acoessory moanu 10 z
2 dotlslot 1Sloh i
& dAotls lotTd =R esounee direciory 109 i
AotlhcrEass Slotdevics baze address) 4
%
Aol [Reserwed ; pabie mustbe 0) i
a0
5y Aot 1t Dsar [Exernal device (O i
fillEvta [P sarvad) i

About the Device Manager

1-7

1-8

CHAPTER 1

Device Manager

The Unit Table

The Device Manager uses a data structure called the unit table to organize and keep
track of device control entries. The unit table is a nonrelocatable block in the system
heap, containing an array of handles. Each handle points to the device control entry of
an installed device driver. The location of a driver’s device control entry handle in the
unit table is called the driver’s unit number. If the handle at a given unit numberisni | ,
there is no device control entry installed in that position.

When you open a device driver, the Device Manager returns a driver reference number
for the driver. The driver reference number is the one’s complement (logical NOT) of the
unit number.

The system global variable UTabl eBase points to the first entry of the unit table. The
system global variable Uni t Nt r yCnt contains the size of the unit table (that is, how
many handles it can hold). Figure 1-4 shows the organization of the unit table, including
the locations of some of the standard device drivers reserved by Apple Computer, Inc.

About the Device Manager

CHAPTER 1

Device Manager

Figure 1-4 The unit table
UTahleEass Unit ¥ Reireace §
points bere. .I:I_ Fie sar ad -
1 . Sory Hard Digk 20) -2
2 .Frint (Friner) =32
2 . Sourdd (Sound) -4
4| . Zony (Di=k) -5
5 . AT e in)]
g . ATt cdeam ol -r
T .EIn (Prirer in) -2
g . BOut (Friner ouf -4
3 .HMFF ppkTdkMPF -10
10 . ATF eppkTdk ATF) -1
b iy yoad -1z
—
12 Dok aceasgory -1z
Kot nommssries 7 Z
o3 | Dok aceasgory -z
=
= TSl devies 0 -

Bovailable or
05 daviess,

Fecarvedby

Apple Com pater, D,

Boaibable for dot deoes

and ctheer drivers.

n = Tnd £ty oot

4

05 devics T resereed)

Pix sy]

Pix sy]

L

-4

-4

-4

About the Device Manager

1-9

1-10

CHAPTER 1

Device Manager

The Driver I/O Queue

The Device Manager maintains an 1/0 queue for each open device driver. An 1/0 queue
is a standard Macintosh Operating System queue of type i 0QType, as described in the
chapter “Queue Utilities” in Inside Macintosh: Operating System Ultilities.

At the head of a device driver’s 1/0 queue is the request currently being processed
by the driver. The rest of the queue contains pending 1/0 requests—those the Device
Manager has received but not yet sent to the device driver. This queue allows your
application to request a data transfer with a busy device and accomplish other tasks
while the device processes previous requests.

With respect to the 1/0 queue, the Device Manager allows you to make three types of
requests: asynchronous, synchronous, and immediate.

n Asynchronous requests. When you make an asynchronous request, the Device
Manager places your request at the end of the driver 1/0 queue and returns control
to your application—potentially before the request is processed. Your application is
free to perform other tasks while the device driver processes the requests in its queue.
The Device Manager provides mechanisms for your application to determine when
the driver has processed the request.

n Synchronous requests. When you make a synchronous request, the Device Manager
places your request at the end of the queue and waits until the device driver has
handled every request in the queue, including the synchronous one, before returning
control to your application. Notice there can never be more than one synchronous
request in a driver 1/0 queue at any given time.

n Immediate requests. The Device Manager sends immediate requests directly to the
device driver, bypassing the queue, and returns control to your application when the
request is complete. Because the device driver might be in the middle of processing
another request, you must make sure the driver is reentrant before making an
immediate request. A reentrant driver is capable of handling multiple requests
simultaneously. As some device drivers are not reentrant, you should always consult
a driver’s documentation to determine if it supports immediate requests.

IMPORTANT

The terms synchronous and asynchronous are used here to describe how
the Device Manager queues your 1/0 requests. How a device driver
processes these requests (synchronously or asynchronously) depends
on the design of the driver. When you make a synchronous request

to a device driver, the Device Manager waits for the driver to complete
the request, regardless of whether the driver handles the request
synchronously or asynchronously. s

Figure 1-5 shows the relationship of the unit table, device control entry, and 1/0 queue
to a device driver.

About the Device Manager

CHAPTER 1

Device Manager

Figure 1-5 Relationship of the Device Manager data structures

Uit tabb
UTableEase (3112) —= =

v cwoririod iy Dlevice driver

Hande o poirder
o davios driver

£ 4 d z

Foirter 1o st
W quees alan ant

| s alam ant

Chaae lirk ——-

_‘

IMazer pointer =

Il erbar pirier l_;

Chome dam ant

e link

1 { ¢ "

About the Device Manager

1-11

CHAPTER 1

Device Manager

Driver Routines

Every device driver must provide a set of routines for handling requests from the Device
Manager. When an application or another manager calls a Device Manager function, the
Device Manager invokes one of the following routines in the designated device driver:

n The open routine allocates memory and initializes the device driver’s data structures.
It may also initialize a hardware device or perform any other tasks necessary to make
the driver operational. All device drivers must implement an open routine.

n The close routine deactivates the device driver, releases any memory allocated by the
driver, removes any patches installed by the driver, and performs any other tasks
necessary to reverse the actions of the open routine. All drivers must implement a
close routine.

n The control routine is usually used to send control information to the device driver.
The function of this routine is driver-dependent. This routine is optional and need not
be implemented.

n The status routine is usually used to return status information from the device driver.
The function of this routine is driver-dependent. The status routine is optional and
need not be implemented.

n The prime routine implements the input and output functions of the driver. This
routine is optional. If the prime routine is implemented, it must support either read
functions or write functions, or both.

Each driver routine is responsible for handling specific types of Device Manager
requests. Table 1-1 shows the Device Manager 1/0 functions and the driver routines
responsible for handling them. The Device Manager 1/0 functions are described in
“Using the Device Manager,” beginning on page 1-14. The section “Writing a Device
Driver,” beginning on page 1-24, describes the driver routines.

Table 1-1 Device Manager 1/O functions and responsible driver routines
Device Manager function Responsible driver routine
QpenDriver, PBOpen, OpenSl ot Open

FSRead, PBRead Prime

FSWite, PBWite Prime

Control, PBContr ol Control

St atus, PBStat us Status

Kill1o PBKilllO Control

Cl oseDriver, PBd ose Close

Driver Resources

Device drivers are usually stored in driver resources, which can be located in
applications, system extension files, or the firmware of expansion cards. A driver

1-12 About the Device Manager

CHAPTER 1

Device Manager

resource consists of a header followed by the driver code. The header contains

information about the driver such as which driver routines are implemented and where
the routines are located within the driver code. The Device Manager copies the relevant

information from the header into the device control entry when you open the driver.
Figure 1-6 shows the structure of a driver resource. The section “Creating a Driver

Resource,” beginning on page 1-24, describes driver resources in detail.

Figure 1-6 Structure of a driver resource
Ot Byl
—
rrrFl acrs | Aegs) z
2
crrrhelay (P ber of ides betasmen paricdic acions) z
d
drrrErfack | Dl mcmansary aventm ask) z
[
crrrtiero | Dz memenmary e 100 z
2
drrropen [CHfsatto openrosine)” z
10
Driver | drreFr ime [CHfatbo prim 2 rowline) * o)
Fretyder 12
et l [CHfzetbo cordr ol rouine) z
14
drrrstatus [zatho shatu s rotine) 2
16
drrrtl osae [CHfzatho oz roudne)” z
12
19 crrrHare [0] {Lergth of driver reme) 1
‘f’ chor e ane+1 [Characiers of driver ram =) _}F'u'grhble
L_ -
— =
‘f’ Cp=nroudre }F'u'nrhbli:
‘f’ Prir = rorines }F'u'nrhbli:
Iri
mg:r — ‘f? Cordrad roudire ;'u'grhﬂt
‘f’ Setas roadne }F Warmble
{ e roufre {'u'nrhble
L

“hloke: Boutine offeats are ralathes o offset 0 ofhe driver resoures

About the Device Manager

1-13

CHAPTER 1

Device Manager

Using the Device Manager

Your application can use Device Manager functions to communicate with devices
through their device drivers. This section describes the Device Manager functions that
allow you to open, close, and control device drivers, exchange information with them,
and monitor their status. The Device Manager also provides support functions useful for
writing and installing device drivers. The section “Writing a Device Driver,” beginning
on page 1-24, describes these support functions.

The Device Manager includes high-level and low-level versions of most of its functions.
The high-level versions are somewhat easier to use, but they allow less control of how
the Device Manager processes the 1/0 request (for example, they are always handled
synchronously) and they return less information to your application. Conversely, the
low-level functions require some additional setup, but they allow you greater control
and return more information.

The high-level Device Manager functions call the low-level functions, which in turn call
the appropriate driver routine. For example, the Device Manager converts the high-level
FSRead function to a low-level PBRead function before calling the driver’s prime
routine. Figure 1-7 depicts this hierarchy.

Figure 1-7 Hierarchy of Device Manager functions

Highdzwd Devics Marager funcions

Cperbriver , ClossDriwe:,
Fihead, Powrits,
Control, Statuas, KillIo

|

Loweawad Davice Bdarmgar foncions

Opsnuslot, FEOpan, FECloss,
FEFmad, FEWrits,
FECoornkrol, FEStatus, FEKALITO

J

Dirivear roadires

opan, Closs,
Frite,
Control, Status

1-14 Using the Device Manager

CHAPTER 1

Device Manager

The high-level functions differ in form, but the low-level functions all have the form:
pascal OSErr PBRoutineName (ParnBl kPtr paranBl ock, Bool ean async);

The par anBl ock parameter is a pointer to a structure of type Par anBl ockRec. You
use the fields of this structure to pass more complete information to the driver than you
can with high-level functions, and the driver uses the same structure to pass information
back. The Par anBl ockRec is defined in C as a union of six structures, but only the

I OPar amand Cnt r | Par amtypes are used by the Device Manager. Figure 1-8 shows the
fields of the Par anBl ockRec structure used by the Device Manager. These fields are
described in detail later in this section and in “Data Structures” on page 1-53.

The async parameter specifies whether the Device Manager should process the function
asynchronously. For synchronous requests you set this parameter to f al se; the Device
Manager adds the parameter block to the driver 1/0 queue and waits until the driver
completes the request (which means it has completed all previously queued requests)
before returning control to your application.

WARNING
Never call any Device Manager function synchronously at interrupt
time. A synchronous request at interrupt time may block other pending
170 requests. Because the device driver cannot begin processing the
synchronous request until it completes the other requests in its queue,
this situation can cause the Device Manager to loop indefinitely while it
waits for the device driver to complete the synchronous request. s

If you set the async parameter to t r ue, the Device Manager adds the parameter block
to the driver I/0 queue and returns control to your application immediately. In this case,
a noEr r result code signifies that the request was successfully queued, not that the
request was successfully completed. The Device Manager sets the i oResul t field of the
parameter block to 1 when the request is queued, and stores the actual result code there
when the driver indicates the request is complete.

When you make an asynchronous request you can also provide a pointer to a completion
routine in the i oConpl et i on field of the parameter block. The Device Manager
executes this routine when the driver completes the asynchronous request. Your
completion routine could, for example, set a flag to signal your application that the

1/0 operation is complete. See “Handling Asynchronous I/0,” beginning on page 1-37,
for more information about completion routines and asynchronous operation.

Assembly-Language Note

You can call a Device Manager function immediately, bypassing the 1/0
queue, by setting bit 9 of the trap word. You can set or test this bit using
the global constant noQueueBi t . However, remember that the device
driver might be processing another request, especially if you make an
immediate request during interrupt time. The driver must be reentrant
to handle this situation properly. You should always check a driver’s
documentation to make sure the driver is reentrant before making
immediate requests. u

Using the Device Manager 1-15

CHAPTER 1

Device Manager

Figure 1-8 Device Manager parameter blocks
Dﬁel:'ll: IOFaxTas Byl Dﬁ'fjt Cobtxrl Parsss Byie=
qLink 4 qLink 4
4 4
. AT YF= 2 . arYE= 2
icTrap 2 ioTrap 2
2 2
iocmdadch: 4 1oCmdadch 4
12 12
AoZonp et ion 4 ioZompletion 4
16 16
ioFmsalt o ioFmsult o
12 12
ioHateFtr 4 ioHameFty 4
22 =2
iorFee £ z Lo frham 2
24 24
AoFeEam 2 AoCFos £ b=}
2 - k=]
o Lolfershum 1 cstode o
ioPemns s i 22
2z
ickiisc 4
=
iocFuffer 4
b
AoFsgoonunt 4
csFatam [11] =2
40
dioActConrd 4
44
iloPosinds 2
%
ioFos0f fost 4
a0 = 1]
Uzed by FECpa, FEClose, FERRad, snd FEWr it Uzed by FEComtrol, FEStatus, and FEFil1TO

When you use a low-level Device Manager function, the Device Manager places the
parameter block at the end of the driver 1/0 queue and then either waits for the driver
to complete the request or returns control to your application, depending on the value of

1-16 Using the Device Manager

CHAPTER 1

Device Manager

the async parameter. For the high-level functions, the Device Manager creates a
parameter block for you, filling the required fields with the values you supplied. The
Device Manager then inserts the parameter block at the end of the I/0 queue as a
synchronous request. As previously-queued requests are processed, the parameter block
moves forward in the 1/0 queue. When the parameter block is at the beginning of the
queue, the Device Manager calls the appropriate driver routine and passes it a pointer to
the parameter block and a pointer to the driver’s device control entry.

For read and write requests, the Device Manager calls the driver’s prime routine. This
routine can execute synchronously, completing the requested read or write transaction
before returning control to the Device Manager, or asynchronously, beginning the
requested transaction but returning control to the Device Manager before completing it.
For information about reading and writing data to devices, see “Communicating With
Device Drivers” on page 1-20.

If you are writing a device driver and your driver’s prime routine can execute
asynchronously, your driver must use some mechanism to regain control of the
processor to complete asynchronous requests. Your driver would typically use an
interrupt handler for this purpose, and notify the Device Manager when the transaction
is complete. See “Writing a Prime Routine” on page 1-33 and “Handling Asynchronous
1/0” on page 1-37 for more information about writing asynchronous routines.

The Device Manager handles control and status requests in the same way as read and
write requests, except that for control requests it calls the control routine and for status
requests it calls the status routine. See “Controlling and Monitoring Device Drivers” on
page 1-22 for information about making these requests. For information about providing
status and control routines for your own driver, see “Writing Control and Status
Routines” on page 1-34.

The Device Manager responds toKi | | | Orequests by calling the device driver’s control
routine with a value of ki | | Code for the csCode parameter. If the driver returns
nokEr r, the Device Manager removes all parameter blocks from the queue, calling their
completion routines with the result code abor t Er r. For more information about
canceling 170 requests, see the description of the Ki I | I Ofunction on page 1-80. For
information on how your driver can handle Ki | | | Orequests, see “Writing Control and
Status Routines” on page 1-34.

In response to a close request, the Device Manager waits until the driver is inactive, then
calls the driver’s close routine. When the driver indicates it has processed the close
request, the Device Manager unlocks the driver resource if the dRAMBased flag is set,
and unlocks the device control entry if the dNeedLock flag is not set. The Device
Manager does not release the driver resource or dispose of the device control entry
unless you call the Dr i ver Rermove function. The next section describes how to open

and close a device driver. See “Writing Open and Close Routines” on page 1-31 for
information about how your driver should respond to open and close requests.

Using the Device Manager 1-17

CHAPTER 1

Device Manager

Opening and Closing Device Drivers

You must open a driver before your application can communicate with it. The Device
Manager provides three functions for opening device drivers: QpenDr i ver, OpenSl ot ,
and PBOpen. Each of these functions requires a driver name and returns a driver
reference number.

A driver name consists of a period (.) followed by any sequence of 1 to 254 printing
characters; for example, .ATP is the name of one of the high-level AppleTalk drivers. The
initial period in a driver name allows the Device Manager and the File Manager, which
share the _Open trap, to distinguish between driver names and filenames. Refer to

a device driver’s documentation to determine the driver name.

The OpenDri ver function, which is the high-level function for opening a device driver,
takes the driver name as its first parameter and returns the driver reference number in its
second parameter. When an application or another manager calls the OpenDri ver
function, the Device Manager first searches the unit table to see if a driver with the
specified name is already installed. If the name does not match any installed driver, the
Device Manager searches the current Resource Manager search path for a driver resource
with the specified name.

To open a device driver from a resource, the Device Manager

n creates a device control entry for the driver, filling in the DCE with values from the
header of the driver resource

n installs a handle to the device control entry in the unit table at a location determined
by the driver resource ID

n calls the driver’s open routine

Listing 1-1 shows an application-defined function that uses the QpenDr i ver functionto
open a driver.

Listing 1-1 Opening a device driver

1-18

short gDrvrRef Num /* gl obal variable for storing
my driver reference nunber */

OSErr MyQpenDri ver (voi d)

{
Handl e drvrHdl ;
short drvrl D
short tenmpDrvr | D
ResType drvrType;
Str255 dr vr Nane;
OSEr r nyErr,;

tenpDrvrI D = MyFi ndSpacel nUnit Tabl e(); /* see Listing 1-14 */

Using the Device Manager

CHAPTER 1

Device Manager

if (tempDrvriD > 0)

{
drvrHdl = Get NanmedResour ce((ResType)' DRVR , "\ p. MYDRI VER") ;
Get Resl nfo(drvrHdl, &rvrI D, &drvrType, drvrNane);
Set Resl nfo(drvrHdl, tenpDrvri D, drvrNane);
myErr = QpenDriver("\p. M\YDRI VER", &gDrvr Ref Num ;
if (nyErr == noErr)
Det achResour ce(drvr Hdl) ;
drvrHdl = Get NamedResour ce((ResType)' DRVR , drvrNane);
Set Resl nfo(drvrHdl, drvrlD, drvrNane);
return(nyErr);
}
el se

return(openErr); /* no space in the unit table */

}

The OpenDr i ver function uses the resource ID of the driver resource as the unit
number for the device driver, which determines where the device control entry will be
stored in the unit table. Because the OpenDr i ver function does not check to see if
another device control entry is already located at that position in the unit table, the

My OpenDri ver function begins by searching for an available space in the unit table.
Listing 1-14 on page 1-39 shows the MyFi ndSpacel nUni t Tabl e function.

If there is room in the unit table, the MyQpenDr i ver function calls Get NanedResour ce
to load the resource into memory, then changes the ID of the driver resource in the
resource map before calling the QpenDr i ver function.

After the driver is open, MyOpenDri ver calls the Det achResour ce function to prevent
the driver resource from being released. Finally, MyOpenDr i ver restores the original
resource ID so that the driver’s resource file remains unchanged.

You can use the PBOpen or OpenSl ot functions instead of the GpenDr i ver function
when you want more control over how the Device Manager opens the device driver. For
example, you can set read and write permissions for the device with the i oPer nssn
field of the parameter block. Use the OpenSl ot function to open drivers that serve slot
devices, and the PBOpen function for all other drivers.

Because the Device Manager always opens device drivers synchronously, you must set
the async parameter to f al se when using the PBOpen or OQpenSl ot functions. If a
device driver is already open, the Device Manager simply returns the driver reference
number.

The remaining Device Manager functions require your application to use the driver
reference number, instead of the driver name, when referring to a device driver.

Using the Device Manager 1-19

CHAPTER 1

Device Manager

When you finish using a driver, you may want to close it. However, you do not normally
close drivers that might be needed by the system or by other applications. Whether you
should close a particular driver depends on the type of driver and how it is being used.
Refer to the driver’s documentation to determine if it should be closed. See the
appropriate chapters in this book and other books in the Inside Macintosh series for
information about standard Macintosh drivers.

If you do want to close a driver, you can use the high-level Cl oseDri ver function or
the low-level PBO ose function. Listing 1-2 shows how to use the PBCl ose function to
close the driver opened in Listing 1-1.

Listing 1-2 Closing a device driver

1-20

OSErr Myd oseDriver(short ref Num

{

| OParam par anBl ock;

par anBl ock. i oRef Num = ref Num

ret urn(PBC ose((Par nBlI kPt r) &ar anBl ock, false));
}

The Myd oseDr i ver function specifies the driver to close by placing the driver
reference numberinthei oRef Numfield of the parameter block and then calls the Device
Manager PBCl ose function.

Communicating With Device Drivers

Once a device driver is open and you have its reference number, you can use Device
Manager functions to exchange information with it. When you want to receive
information from a device driver, you first allocate a data buffer to hold the information
and then call the FSRead or PBRead function. To send information to a device driver,
you first store the information in a data buffer and then call the FSWite orPBWite
function. You must specify the number of bytes you want transferred when calling any
of these functions.

The PBRead and PBW i t e functions support asynchronous requests, and allow you

to specify a completion routine. For block devices you specify the drive number,
positioning mode, and positioning offset in the i oVRef Num i oPosMbde, and

i oPosO f set fields of the parameter block. The Device Manager does not interpret
these fields—they are used by the device driver to locate the desired data block.

The Macintosh Operating System defines three positioning modes for block devices:

n At the current position. Transfer begins at the current position on the
medium—typically where the last transfer ended.

Using the Device Manager

CHAPTER 1

Device Manager

n Offset from the start. Transfer begins at the specified offset from the beginning of the
medium.

n Offset from the mark. Transfer begins at the specified offset from the current position.

You specify the positioning mode by setting the i oPosMode field to one of the defined
constants, f sAt Mar k, f sFrontst ar t, orf sFr onmVar k. Be sure you specify a mode that
is compatible with the device.

On completion, the PBRead and PBW i t e functions return in the i oAct Count field of
the parameter block the total number of bytes actually transferred. For block devices,
these functions also return a new positioning offset in the i oPosCf f set field.

Certain device drivers provide additional abilities with the read and write functions.
For example, the Disk Driver allows you to use the PBRead function to verify that
data written to a block device matches the data in memory. To do this, you add the
read-verify constant r dVeri f y to the value in the i oPosMbde field of the parameter
block, as explained in the description of the PBRead function on page 1-70.

Listing 1-3 shows an example of how to read from a device driver.

Listing 1-3 Reading from a device driver

CSErr MyReadFronDri ver (short ref Num

{

| OParam par anBl ock;

char buf f er[256] ;

par anBl ock. i oRef Num = ref Num

par anBl ock. i oReqCount = 256;

par anBl ock.i oBuffer = (Ptr)buffer;

r et ur n(PBRead((Par mBl kPt r) &oar anBl ock, false));
}

The MyReadFr onDr i ver function uses a parameter block to specify the device driver
(by its driver reference number), the number of bytes to read, and a pointer to a buffer
to receive the data. When MyReadFr onDx i ver calls the PBRead function, the Device
Manager appends the parameter block to the end of the driver I/0 queue. Because the
async parameter is set to f al se, the Device Manager does not return control to
MyReadFr onDr i ver until the driver has completed every request in its queue.

Listing 1-4 shows an example of how to write to a device driver.

Using the Device Manager 1-21

CHAPTER 1

Device Manager

Listing 1-4 Writing to a device driver

1-22

OSErr MyWiteToDriver(short refNum

{

| OParam par anBl ock;

char* buf fer;

buffer = "Data to Wite";

par anBl ock. i oConpl etion = nil;

par anBl ock. i oRef Num = ref Num

par anBl ock. i oBuf fer = (Ptr)buffer;

par anBl ock. i oReqCount = strlen(buffer);

return(PBWite((ParnBl kPtr) &aranBl ock, false));
}

The MW it eToDri ver function also uses a parameter block to transfer information to
the driver. After filling in the necessary fields, MW i t eToDr i ver sends the parameter
block to the PBW i t e function. Because the async parameter is f al se, the Device
Manager appends the parameter block to the end of the 1/0 queue and does not return
control to the MyW i t eToDr i ver function until the driver has completed the request.

Controlling and Monitoring Device Drivers

In addition to the read and write functions, the Device Manager provides functions that
allow your application to control and monitor device drivers in other ways.

The Cont r ol and PBCont r ol functions send commands to a driver. Because the
types of commands to which drivers respond varies, you need to consult a driver’s
documentation to determine what commands it accepts. As an example, you can send
a command to the Disk Driver requesting that it eject a disk.

The St at us and PBSt at us functions return status information from a driver. Again,
the type of information drivers provide varies widely. The Serial Driver, for example, can
return a breakdown of the types of errors that have occurred recently.

The control and status functions use the Cnt r | Par amstructure of the Par anBl ockRec
union. This structure is defined in “Device Manager Parameter Block,” beginning on
page 1-53.

Because of the diversity of device drivers, the control and status functions have two
general-purpose parameters: csCode and csPar anPt r (or csPar amfor the low-level
PBCont r ol and PBSt at us functions). You indicate the type of control or status
information you are requesting by placing a driver-specific code in the csCode
parameter. You send or receive information using the csPar anPt r parameter.

Listing 1-5 shows an example of how to send control and status requests to a device
driver using the PBCont r ol and PBSt at us functions.

Using the Device Manager

CHAPTER 1

Device Manager

Listing 1-5 Controlling and monitoring a device driver

OSErr Myl ssueDriver Control (short refNum

{

Cntrl Param paranBl ock;

par anBl ock. i oCRef Num = ref Num
par anBl ock. csCode = kC earAl | ; [* driver-specific control request */

ret urn(PBControl ((Par nBl kPt r) par anBl ock, false));

OSErr MyGet Driver Status(short refNum

{

Cntrl Param paranBl ock;
CSEr r nyErr,;
short count ;

par anBl ock. i oCRef Num = ref Num
par anBl ock. csCode = kByteCount; /* driver-specific status request */

nmyErr PBSt at us((Par nBl kPt r) &par anBl ock, fal se);
count = paranBl ock.csParani0]; /* value returned in csParamarray */
if (nyErr == noErr)
return(count);
el se
return(nyErr);

The Myl ssueDri ver Cont rol andMyGet Dri ver St at us functions call the
example device driver control and status routines shown in Listing 1-12 on page 1-35
and Listing 1-13 on page 1-36.

The Myl ssueDri ver Cont r ol function begins by setting up the fields of a parameter
block. The i oCRef Numfield specifies the driver reference number, and the csCode field
specifies the type of control information being sent. The MyDr i ver Cont r ol function
shown in Listing 1-12 interprets the driver-specific value kCl ear Al | as a request for
the device driver to clear the information in its private storage.

The MyGet Dri ver St at us function also begins by setting up the fields of a parameter
block. The i oCRef Numfield specifies the device driver reference number, and the
csCode field specifies the type of status information being requested. The

MyDri ver St at us function shown in Listing 1-13 interprets a value of kByt eCount
as a request to return the number of bytes transferred by the last 1/0 operation. This
information is returned in the csPar amfield of the parameter block.

Using the Device Manager 1-23

CHAPTER 1

Device Manager

Writing a Device Driver

1-24

This section shows you how to write a basic device driver—one that can respond to
Device Manager requests. Although you will need to write some assembly-language
interface code, you can write your device driver routines in a high-level language.

Before you decide to write your own device driver, you should consider whether your
task can be more easily accomplished using one of the standard Macintosh drivers
described in this book or other Inside Macintosh volumes. In general, you should consider
writing a device driver only if your hardware device or system service needs to be
accessed at unpredictable times or by more than one application.

For example, if you develop a new output device that you want to make available to any
application, you might need to write a custom driver. On the other hand, if your product
is a specialized device that can only be used by your application, it may be easier to
control the device using private code within your application.

This section describes how to
n Ccreate a driver resource

n write the code in your driver resource so that it responds appropriately to Device
Manager requests

n handle the special requirements of asynchronous 1/0

n install and initialize your driver

Creating a Driver Resource

You will probably want to store your device driver in a driver resource, although if you
are writing a driver for a slot device, you might want to store your driver in an
sResource data structure in the declaration ROM of the expansion card. See the chapter
“Slot Manager” in this book for information about sResource data structures.

Storing your driver in a driver resource allows the Device Manager to load your driver
code into memory and install a device control entry for your driver in the unit table. Like
all resources, your driver resource has a resource type, a resource 1D, a resource name,
and resource attributes.

n The resource type must be ' DRVR' if you plan to use the Device Manager to load
your driver into memory. If you write your own routine to load the driver, you can
choose a different resource type.

n The resource ID determines where in the unit table the Device Manager installs the
driver’s device control entry. Because you must choose the resource ID when creating
your driver resource, you cannot know which unit numbers are available until you
open your driver. Therefore, your driver-opening routine must find an empty location
in the unit table and change the resource ID accordingly. “Installing a Device Driver”
on page 1-38 discusses appropriate values for the resource ID.

Writing a Device Driver

CHAPTER 1

Device Manager

n The resource name should be the same as the driver name because the Device
Manager calls Get NanedResour ce using this name if it can’t find the driver in the
unit table. A driver name consists of a period (.) followed by any sequence of 1 to 255
printing characters. The Device Manager ignores case (but not diacritical marks) when
comparing names.

n The resource attributes of your driver resource depend on your driver. A typical
driver might have these attributes: locked, since most drivers contain code that is
called at interrupt time; in the system heap, so that the driver exists over launches of
applications; and preloaded, which makes resource loading slightly more efficient.

A driver resource has two parts:
n adriver header that contains information about the driver

n the routines that do the work of the driver

The driver header contains a few words of flags and other data, offsets to the driver’s
routines, and an optional driver name. Figure 1-9 shows the format of a driver header.

Figure 1-9 The driver header

OHEet Byrie=
0
chrr Flaces 2
2
chrir Dl 2
4
b B sk 2
g
chrirptisnon 2
e
chrnOpen 2
0
v Frines 2
12
dimrae 1 2
14
drrestatus a
[
drvrrcloss 2
12
i GrrHame [0] 1
choreHanes+1 iy ek
The elements of the driver header are:
Element Description
drvr Fl ags Flags in the high-order byte of this field specify certain

characteristics of the driver. These flags are copied to the high-order
byte of the dCt | FI ags field of the device control entry when the

Writing a Device Driver 1-25

CHAPTER 1

Device Manager

driver is opened. You can use the constants shown in Listing 1-6 to
set or test the flags in this field.

Name Bit Meaning

dReadEnabl e 8 Setif the driver can respond to read
requests.

dwit Enabl e 9 Setif the driver can respond to write
requests.

dC | Enabl e 10 Setif the driver can respond to control
requests.

dSt at Enabl e 11 Set if the driver can respond to status
requests.

dNeedGoodbye 12 Setif the driver needs to be called before
the application heap is reinitialized.

dNeedTi ne 13 Set if the driver needs time for
performing periodic tasks.
dNeedLock 14 Set if the driver needs to be locked in

memory as soon as it is opened.

drvr Del ay If the dNeedTi ne flag is set, this field contains the requested
number of ticks between periodic actions. This value is approximate
and should not be used as a timing reference.

dr vr EMask Used only by desk accessories, this field contains an event mask.
See “Writing a Desk Accessory” on page 1-49 for information about
this field.

drvr Menu Used only by desk accessories, this field contains a menu ID. See
“Writing a Desk Accessory” on page 1-49 for more information.

drvr Open The offset of the driver’s open routine, relative to offset 0 of the
driver header.

drvrPrinme The offset of the driver’s prime routine.

drvrC| The offset of the driver’s control routine.

drvr St at us The offset of the driver’s status routine.

drvrCl ose The offset of the driver’s close routine.

dr vr Nane A Pascal string containing the driver’s name, up to 255 characters.

See the section “Entering and Exiting From Driver Routines” on page 1-29 for more
information about the routine offsets.

Note

Your driver routines, which follow the driver header, must be aligned on
aword boundary. u

1-26 Writing a Device Driver

CHAPTER 1

Device Manager

Listing 1-6 Driver flag constants

enum {

/* flags used in the driver header and device control entry */

dNeedLockMask
dNeedTi meMask
dNeedGoodByeMask
dSt at Enabl eMask
dCt | Enabl eMask

dW it Enabl eMask
dReadEnabl eMask

0x4000, /* set if driver must be | ocked in nenory as
soon as it’'s opened */

0x2000, /* set if driver needs time for performnng
periodi c tasks */

0x1000, /* set if driver needs to be called before the
application heap is initialized */

0x0800, /* set if driver responds to status requests */

0x0400, /* set if driver responds to control requests*/

0x0200, /* set if driver responds to wite requests */

0x0100, /* set if driver responds to read requests */

The dReadEnabl e, dW i t Enabl e, dCt | Enabl e, and dSt at Enabl e flags indicate
which Device Manager requests the device driver can respond to. The next section,
“Responding to the Device Manager,” describes these routines in detail.

Drivers in the application heap are lost when the heap is reinitialized. If you set
the dNeedGoodbye flag, the Device Manager calls your driver before the heap is
reinitialized so that you can perform any clean-up actions. See “Writing Control and
Status Routines,” beginning on page 1-34, for information about using this flag.

You set the dNeedTi e flag if your device driver needs to perform some action
periodically. For example, a network driver may want to poll its input buffer every

5 seconds to see if it has received any messages. The value of the dr vr Del ay field
indicates how many ticks should pass between periodic actions. For example, a value

of 0 in thedr vr Del ay field indicates that the action should happen as often as possible,
a value of 1 means it should happen every sixtieth of a second, a value of 2 means at
most every thirtieth of a second, and so on. Whether the action actually occurs this
frequently depends on how often an application calls Wai t Next Event or Syst enirask.
See “Writing Control and Status Routines,” beginning on page 1-34, for information
about using this flag.

Note

If you do not want your driver to depend on applications to call

Wai t Next Event or Syst enirask, you can perform actions periodically
by installing a VBL task, a Deferred Task Manager task, a Time Manager
task, or a Notification Manager task. For more information, see Inside
Macintosh: Processes. u

You need to set the dNeedLock flag if your device driver’s code must be locked in
memory. In particular, you need to set this flag in these two cases:

n If any part of your driver’s code can be called at interrupt time. Because the Operating
System may perform memory management at interrupt time, your driver must be
locked to prevent it from being moved.

Writing a Device Driver 1-27

CHAPTER 1

Device Manager

n If your driver provides the Operating System with a pointer to any part of its code.
For example, if your driver uses the Device Manager to call another driver, you might
provide the Device Manager with a pointer to a completion routine. If that completion
routine is in your driver code, your driver code must be locked. Otherwise, that
pointer might not be valid when the Device Manager calls the completion routine.

You can create your driver header in these ways:

n You can use a resource compiler. See “Resources” on page 1-89 for the Rez format of
the driver resource.

n You can use the DC instruction, as shown in Listing 1-7, to position the header
information directly in your assembly language code.

Listing 1-7 An assembly-language driver header

1-28

DHeader

DFl ags DC.W 0 set by MyDriver Qpen

DDel ay DC.W 0 ; none
DEMask DC.W 0 ;DA event mask
DMenu DC.W 0 ;no menu

DC. W DOpen - DHeader ;offset to Open

DC. W DPrinme - DHeader ;offset to Prinme

DC. W DControl - DHeader ;offset to Control

DC. W DStatus - DHeader ;offset to Status

DC. W DC ose - DHeader ;offset to O ose
Nane DC.B '.MWDRI VER ;driver nane

ALI GN 2 ;word al i gnnment

In this example, the dr vr Fl ags word is cleared to 0 because the flags are set by the
MyDr i ver Open function, shown in Listing 1-9 on page 1-32. This is an implementation
decision—you can set the flags in the driver header or in your driver’s open routine. The
dr vr Del ay field is set to 0 because this driver does not perform any periodic actions
using the Syst enTTask function. Thedr vr EMask and dr vr Menu fields are set to 0, as
this driver is not a desk accessory. The next five fields contain offsets to the driver
routines, defined in the next section, “Responding to the Device Manager.” The header
ends with the driver name and the word alignment directive.

Responding to the Device Manager

The Device Manager calls a driver routine by setting up registers and jumping to the
address indicated by the routine’s offset in the driver header.

n Register A0 contains a pointer to the parameter block.
n Register Al contains a pointer to the driver’s device control entry.

This interface requires you to use some assembly language when writing a driver.
However, you can write your driver routines in a high-level language if you provide an

Writing a Device Driver

CHAPTER 1

Device Manager

assembly-language dispatching mechanism that acts as an interface between the Device
Manager and your driver routines.

The next few sections discuss how you can provide a dispatching routine and how you
can implement your driver routines in a high-level language.

Entering and Exiting From Driver Routines

Listing 1-8 shows an assembly-language dispatching routine that you can use as an
interface between the Device Manager and your high-level language driver routines.
This example properly handles synchronous, asynchronous, and immediate requests,

as well as the special cases of open, close,and Ki I | I O
Listing 1-8 An assembly-language dispatching routine
DOpen
MOVEM L AO- Al, - (SP) ;save ParnmBl kPtr, DCtIPtr across function call
MOVEM L AO- Al, - (SP) ;push ParnmBl kPtr, DCtIPtr for C
BSR MyDri ver Open ;call linked C function
ADDQ #8, SP ;clean up the stack
MOVEM L (SP) +, AO- Al ;restore ParnBl kPtr, DCtIPtr
RTS ;open is always i mediate, nust return via RTS
DPri me
MOVEM L AO- AL, - (SP) ;save ParnBl kPtr, DCtIPtr across function call
MOVEM L AO- Al, - (SP) ;push ParnmBl kPtr, DCtIPtr for C
BSR MyDriverPrime ;call linked C function
ADDQ #8, SP ;clean up the stack
MOVEM L (SP) +, AO- Al ;restore ParnBl kPtr, DCtIPtr
BRA. B | ORet urn
DCont r ol
MOVEM L AO- Al, - (SP) ;save ParnmBl kPtr, DCtIPtr across function call
MOVEM L AO- Al, - (SP) ;push ParnBl kPtr, DCtIPtr for C
BSR MyDriverControl;call Iinked C function
ADDQ #8, SP ;clean up the stack
MOVEM L (SP) +, AO- Al ;restore ParnBl kPtr, DCtIPtr
CWPl . W #kill Code, csCode(AO0) ;test for KilllO call (special case)
BNE. B | ORet urn
RTS ;Kill1O nust always return via RTS
DSt at us
MOVEM L AO- Al, - (SP) ;save ParnBl kPtr, DCtIPtr across function call
MOVEM L AO- Al, - (SP) ;push ParnmBl kPtr, DCtIPtr for C

Writing a Device Driver 1-29

CHAPTER 1

Device Manager

BSR MyDriverStatus ;call linked C function
ADDQ #8, SP ;clean up the stack
MOVEM L (SP) +, AO- Al ;restore ParnBl kPtr, DCtIPtr
| ORet urn
MOVE. W ioTrap(A0), D1
BTST #noQueueBit, D1 ;imredi ate calls are not queued, and nmust RTS
BEQ B @ueued ;branch if queued
@\ot Queued
TST. W DO ;test asynchronous return result
BLE. B @ medRTS ;result nust be £0
CLR W DO ;"in progress" result (> 0) not passed back
@ medRTS

MOVE. W DO, i oResul t (AO) ;for imrediate calls you nmust explicitly
; place the result in the ioResult field

RTS
@ueued
TST. W DO ;test asynchronous return result
BLE. B @1 CDone ;1/Ois conplete if result £0
CLR W DO ;"in progress" result (> 0) not passed back
RTS
@y Cbone
MOVE. L JI ODone, - (SP) ; push I GDone junp vector onto stack
RTS
DCl ose
MOVEM L AO- Al, - (SP) ;save ParnmBl kPtr, DCtIPtr across function call
MOVEM L AO- Al, - (SP) ;push ParnmBl kPtr, DCtIPtr for C
BSR MyDriverClose ;call linked C function
ADDQ #8, SP ;clean up the stack
MOVEM L (SP) +, AO- Al ;restore ParnBl kPtr, DCtIPtr
RTS ;close is always immediate, nust return via RTS

In this example, DOpen, DPr i me, DCont r ol , DSt at us, and DCl ose are the five entry
points that the Device Manager locates using the offsets defined in the driver header.
These in turn call the actual driver routines, which are written in C. The C functions
return a result code if the 1/0 completed, or a positive value (usually 1) if the I/0 is
being handled asynchronously.

1-30 Writing a Device Driver

CHAPTER 1

Device Manager

When the driver routine returns, the dispatching routine removes the parameters from
the stack, restores the A0 and A1l registers, and then returns control to the Device
Manager in one of two ways:

n Calling the | ODone routine. This routine, described in detail on page 1-87, indicates
to the Device Manager that the request is complete. The Device Manager removes the
request from the 1/0 queue and calls the completion routine, if any. This is the normal
method of returning from driver prime, control, and status routines.

n Returning with an RTS instruction. Use this method when you do not want the Device
Manager to remove the request from the 1/0 queue. There are three cases where the
RTS instruction should be used:

n Returning from an asynchronous request that is not yet complete. After your device
driver begins an asynchronous operation, it should return control to the Device
Manager with an RTS instruction. The device driver can regain control of the
processor using an interrupt handler, VVBL task, or other method, and jump to
| ODone when the request is complete.

n Returning from an immediate request. Because the Device Manager does not queue
immediate requests, they should always return with an RTS instruction.

n Returning from open, close, and Ki | I | Orequests. These requests are never queued
and should always return with an RTS instruction.

To use this dispatching routine you would place it after the driver header in your
assembly-language source file, and link it to your C-language driver routines. Listing 1-7
on page 1-28 shows the driver header. Sample driver routines are presented in the
following sections.

Writing Open and Close Routines

You must provide both an open routine and a close routine for your device driver. The
open routine should allocate any private storage your driver requires and place a handle
to this storage in the dCt | St or age field of the device control entry. After allocating
memory, the open routine should perform any other preparation required by your driver.

If your open routine installs an interrupt handler, you may want to store a pointer

to the device control entry in private storage where it will be available for the interrupt
handler. The section “Handling Asynchronous I/0” on page 1-37 discusses

interrupt handling in more detail.

Listing 1-9 shows a sample open routine, MyDr i ver Open. This function begins

by checking whether the driver is already open (by examining the contents of the

dCt | St or age field of the device control entry). If the driver is not already open, the
MyDr i ver Open function sets the appropriate flags in the device control entry and
allocates memory in the system heap for private storage. The private storage of the
driver in this example contains two fields, byt eCount andl ast Er r, which store
information about the last 1/0 function. The prime, control, and status routines
described in the following sections use these fields.

If the MyDr i ver Open function fails to allocate memory for private storage, it returns the
openErr result code, which notifies the Device Manager that the driver did not open.

Writing a Device Driver 1-31

CHAPTER 1

Device Manager

Listing 1-9 Example driver open routine

struct MyDriverd obals {
short byt eCount ;
short | astErr;
s
typedef struct MyDriverd obals MyDriverd obal s;
typedef struct MyDriverd obals *MyDriverd obal sPtr, **M/Driverd obal sHdl ;

CSErr MyDriver Qpen(| QParanPtr pb, DCtIPtr dce)

{
if (dce->dCt| Storage == nil)
{
/* set up flags in the device control entry */
dce->dCt| Flags | = (dCt| Enabl eMask | dStat Enabl eMask | dWit Enabl eMask |
dReadEnabl eMask | dNeedLockMask | dRAMBasedMask);
[* initialize dCtI Storage */
dce->dCt| St orage = NewHandl eSysd ear (si zeof (MyDri ver d obal s));
if (dce->dCt| Storage == nil)
return(openEkrr);
el se
return(noErr);
}
el se
{
/* the driver is already open */
return(noErr);
}
}

The close routine must reverse the effects of the open routine by releasing any memory
allocated by the driver, removing interrupt handlers, removing any VBL or Time
Manager tasks, and replacing changed interrupt vectors. If the close routine cannot
complete the close request, it should return the cl osEr r result code and the driver
should continue to operate normally.

The Device Manager does not dispose of the device control entry when a driver is
closed. If you want to save any information about the operational state of the driver
until the next time the driver is opened, you can store a handle to the information in the
dCt | St or age field of the device control entry.

Listing 1-10 shows a sample close routine, MyDr i ver Cl ose. Because this device
driver does not need to store any information until the next time it is opened, the
MyDri ver Cl ose function disposes of the private storage allocated by MyDr i ver Open.

1-32 Writing a Device Driver

CHAPTER 1

Device Manager

Listing 1-10 Example driver close routine

OSErr MyDriverd ose(l OParanPtr pb, DCtIPtr dce)

{
if (dce->dCt| Storage !'= nil)
{
Di sposeHandl e(dce->dCt | St or age) ;
dce->dCt| Storage = nil;
}
return(noErr);
}

Writing a Prime Routine

The prime routine implements 1/0 requests. You can write your prime routine to
execute synchronously or asynchronously. While a synchronous prime routine completes
an entire 1/0 request before returning to the Device Manager, an asynchronous prime
routine can begin an 1/0 transaction but return to the Device Manager before the request
is complete. In this case, the 1/0 request continues to be executed, typically when more
data is available, by other routines such as interrupt handlers or completion routines.
“Handling Asynchronous 1/0” on page 1-37 discusses how to complete an
asynchronous prime routine.

The Device Manager indicates whether it is requesting a read or a write operation by
placing one of the following constants in the low-order byte of the i oTr ap field of the
parameter block:

enum {
aRdCnd = 2, [/* read operation requested */
aw Cnd =3 /* write operation requested */
b

The Device Manager includes two routines, Fet ch and St ash, that provide low-level
support for reading and writing characters to and from data buffers. Use of these
routines is optional. “Writing and Installing Device Drivers,” beginning on page 1-82,
describes these functions.

The Fet ch and St ash routines update the i oAct Count field of the parameter block.
If you do not use these routines, you are responsible for updating this field.

If your driver serves a block device, you should update the dCt | Posi ti on field of the
device control entry.

Listing 1-11 shows a sample prime routine. This routine determines whether a read or
write operation is being requested, then calls the appropriate function. The reading and
writing functions, which are not shown here, would transfer the data to or from the
hardware device.

Writing a Device Driver 1-33

CHAPTER 1

Device Manager

Listing 1-11 Example driver prime routine

1-34

OSErr MyDriverPrime(lOParanPtr pb, DCtIPtr dce)

{
MyDri ver d obal sHdl dst ore;
short cal | Type;
| ong nunByt es;
short myErr;
dStore = (MyDriverd obal sHdl) dce->dCt | St or age;
nunByt es = pb->i oReqCount ;
cal | Type = 0x00ff & pb->ioTrap; /* get the | ow byte */
switch (call Type)
{
case aRdCnd:
myErr = MyReadByt es(pb->i oBuf fer, nunBytes);
br eak;
case aWw Cnd:
myErr = MYW it eByt es(pb->i oBuffer, nunBytes);
br eak;
}
(*dStore) - >byt eCount = nunBytes; /* save in private storage */
(*dStore)->lastErr = nyErr;
pb->i 0Act Count = nunBytes; /* update paraneter block field */
return(nyErr);
}

After obtaining a handle to the device driver’s private storage from the dCt | St or age
field of the device control entry, the MyDr i ver Pr i me function examines the low-order
byte of the i oTr ap field of the parameter block to determine whether the Device
Manager is requesting a read operation or a write operation. MyDr i ver Pri ne then calls
either the MyReadByt es or MyW i t eByt es function to move the requested number of
bytes to or from the buffer designated by the parameter block.

The MyDr i ver Pri me function stores the result code and byte count in its private
storage. These values will be used by the example control and status routines described
in the next section. Finally, MyDr i ver Pri ne updates the i oAct Count field of the
parameter block and returns the result code.

Writing Control and Status Routines

Control and status routines are usually used to send and receive driver-specific
information. However, you can use these routines for any kind of data transfer as long
as you implement the minimum functionality described in this section. Like the prime
routine, the control and status routines that you write can execute synchronously or
asynchronously.

Writing a Device Driver

CHAPTER 1

Device Manager

The Device Manager passes information to the control routine in the csCode and

csPar amfields of the parameter block. The csCode field specifies the type of control
request and the csPar amfield contains any additional information. The csCode values
-32767 through 127 are reserved by Apple Computer, Inc. Within this range, the
following constant values are defined for use by all device drivers:

Constant name Value Meaning

ki I | Code 1 Ki | I I Orequested

goodbye -1 Heap being reinitialized

accRun 65 Time for periodic action

When the Device Manager receives a Ki | | | Orequest, it removes every parameter block

from the driver 1/0 queue. If your driver responds to any requests asynchronously, the
part of your driver that completes asynchronous requests (for example, an interrupt
handler) might expect the parameter block for the pending request to be at the head of
the queue. The Device Manager notifies your driver of Ki | | | Orequests so that it can
take the appropriate actions to stop work on the pending request. Your driver must
return control to the Device Manager by means of an RTS instruction and not by
jumping to the | GDone routine.

If you set the dNeedGoodbye flag in the dr vr Fl ags field of the driver header (or the
dCt | Fl ags field of the device control entry), the Device Manager will call your control
routine with the value goodbye in the csCode parameter before the heap is
reinitialized. You driver can respond by performing any clean-up actions necessary
before heap reinitialization.

If you set the dNeedTi ne flag in the dr vr FI ags field of the driver header (or the

dCt | Fl ags field of the device control entry), the Event Manager will periodically call
your control routine with the value accRun in the csCode parameter. Because these
calls are immediate, your driver must be reentrant to handle them properly. For more
information about the dNeedTi ne flag and periodic actions, see the description of the
driver header, beginning on page 1-25.

Your control routine must return the cont r ol Er r result code for any csCode values
that are not supported. You can define driver-specific csCode values if necessary, as
long as they are outside the range reserved by Apple Computer, Inc.

Listing 1-12 shows a sample control routine, MyDr i ver Cont r ol . This function
interprets the driver-specific csCode value of kCl ear Al | as a command to clear the
information saved in the driver’s private storage by the MyDr i ver Pr i e routine.

Listing 1-12 Example driver control routine

CSErr MyDriverControl (Cntrl ParanPtr pb, DCt| Ptr dce)
{
MyDri ver d obal sHdl dst or e;

dStore = (MyDri verd obal sHdl) dce->dCt | St or age;

Writing a Device Driver 1-35

CHAPTER 1

Device Manager

swi tch (pb->csCode)
{
case kC earAll:
(*dStore)->byteCount = 0;
(*dStore)->lastErr = 0O;
return(noErr);
default: /* always return control Err for unknown csCode */
return(control Err);

}

Your status routine should work in a similar manner. The Device Manager uses the
csCode field to specify the type of status information requested. The status routine
should respond to whatever requests are appropriate for your driver and return the
error code st at uskEr r for any unsupported csCode value.

The Device Manager interprets a status request with a csCode value of 1 as a special
case. When the Device Manager receives such a status request, it returns a handle to
the driver’s device control entry. Your driver’s status routine never sees this request.

Listing 1-13 shows a sample status routine, MyDr i ver St at us, that implements two
driver-specific status requests, kByt eCount andkLast Err. When MyDr i ver St at us
receives one of these requests, it returns the byte count or error code values saved in
private storage by the MyDr i ver Pri ne routine. MyDr i ver St at us returns this
information in the csPar amfield.

Listing 1-13 Example driver status routine

OSErr MyDriver Status(Cntrl ParanPtr pb, DCtIPtr dce)

{
MyDri ver d obal sHdl dSt ore;
dStore = (MyDriverd obal sHdl) dce- >dCt | St or age;
switch (pb->csCode)
{
case kByteCount:
pb->csParani{ 0] = (*dStore)->byteCount;
return(noErr);
case kLastErr:
pb->csParan{0] = (*dStore)->l astErr;
return(noErr);
default: /* always return statuskrr for unknown csCode */
return(statuskrr);
}
}

1-36 Writing a Device Driver

CHAPTER 1

Device Manager

Handling Asynchronous I/O

If you design any of your driver routines to execute asynchronously, you must provide a
mechanism for your driver to complete the requests. Some examples of routines that you
might use are:

n Completion routines. Your driver routine could call another driver to start the data
transfer. In this case, you can provide that driver with a completion routine. When
the other driver completes the request, the Device Manager executes the completion
routine. In the completion routine, you could call the other driver again to execute the
next part of the 1/0 operation. When the entire operation is complete, the completion
routine should return by calling the | ODone routine.

n Interrupt handlers. If your driver serves a hardware device that generates interrupts,
you can create an interrupt handler that responds to these interrupts. Your interrupt
handler must clear the source of the interrupt and return as quickly as possible,
while preserving all registers other than DO through D3 and A0 through A3. For
more information about interrupts and how to install an interrupt handler, see
Inside Macintosh: Processes and Designing Cards and Drivers for the Macintosh Family,
third edition.

n VBL, Time Manager, and Deferred Task Manager tasks. Installing any of these tasks
ensures that your driver receives system time at some point in the future. During this
time, you can check to see if the 1/0 operation is ready to continue.

If your driver serves a device on a NuBus™ expansion card, you might want to use slot
interrupts to signal your driver. When a NuBus card device signals a slot interrupt, the
CPU can quickly detect which card requested the interrupt service, but not which device
on the card. To determine which device caused the interrupt, the system uses a polling
procedure. Your driver should provide a polling routine that checks if the device it
serves caused the current interrupt, and if so, calls the proper driver routine to handle
the interrupt. The Slot Manager maintains a queue of these polling routines for each slot.
Your driver can install an element in this queue using the Slot Manager function

Sl nt 1 nstall.Youcanremove a queue element with the SI nt Renove function.

See the chapter “Slot Manager” in this book for information about these functions.

You should observe these guidelines when writing or using asynchronous routines:

n Once you pass a parameter block to an asynchronous routine it is out of your control.
You should not examine or change the parameter block until your completion routine
is called because you have no way of knowing the state of the parameter block.

n Do not dispose of or reuse a parameter block until the asynchronous request is
completed. For example, if you declare the parameter block as a local variable, your
function cannot return until the request is complete because local variables are
allocated on the stack and released when a function returns.

n Use a completion routine to determine when an asynchronous routine has completed,
rather than polling the i oResul t field of the parameter block. Polling the i oResul t
field is not efficient and defeats the purpose of asynchronous operation.

Writing a Device Driver 1-37

1-38

CHAPTER 1

Device Manager

Installing a Device Driver

There are a variety of ways to install a device driver, depending on where the driver
code is stored and how much control you want over the installation process.

n You can store the device driver in a resource within an application and have the
application install the driver.

n You can store the device driver, and the code to install it, in a system extension file.
See the chapter “Start Manager” in Inside Macintosh: Operating System Utilities for
information about creating system extensions.

n You can store the device driver in the declaration ROM of an expansion card. Slot
device drivers can be designed to load automatically at startup, or you can use the
Slot Manager SGet Dr i ver function to load the driver into memory. Refer to
Designing Cards and Drivers for the Macintosh Family, third edition, for information
about writing and installing slot device drivers.

If you store your driver in a resource of type ' DRVR' you can use the QpenDri ver or
PBOpen functions to install and open your driver. If you need more control over the
installation process, you can use the Dri ver | nst al | function to create the device
control entry and add it to the unit table, or you can create the device control entry
yourself, install it in the unit table, and then use CpenDri ver or PBOpen to open the
driver. If the driver is already installed in the unit table, QpenDri ver and PBOpen
simply call the driver’s open routine and return the driver reference number.

If you want to use the OpenDr i ver function to install your driver, you are responsible
for examining the unit table and changing your driver resource ID so that the

OpenDr i ver function installs your driver in an empty location in the unit table. If the
handle at a given unit number is ni | , there is no device control entry installed in that
position. You can install your device control entry in any empty location in the unit table
that is not listed as reserved by Apple Computer, Inc. Table 1-2 summarizes the unit
numbers reserved for specific purposes.

Table 1-2 Reserved unit numbers

Unit number range Reference number range Purpose

0 through 11 -1 through -12 Reserved for serial, disk, AppleTalk,
printer, and other drivers

12 through 31 -13 through -32 Available for desk accessories

32 through 38 -33 through -39 Available for SCSI devices

39 through 47 —-40 through -48 Reserved

48 through 127 -49 through -128 Available for slot and other drivers

Listing 1-14 shows a method of searching the unit table for an appropriate location to
install your driver. The MyOpenDr i ver function in Listing 1-1 on page 1-18 calls this
function and then uses the QpenDr i ver function to install and open the device driver.

Writing a Device Driver

CHAPTER 1

Device Manager

Listing 1-14 Finding space in the unit table

short MyFi ndSpacel nUni t Tabl e(voi d);

{

Ptr cur UTabl eBase, newUTabl eBase;
short cur UTabl eEntri es, newUTabl eEntri es;
short ref Num unitNum

/* get current unit table values fromlow nenory gl obals */
curUTabl eEntries = *(short*)UnitNtryCnt;
cur UTabl eBase = *(Ptr*) UTabl eBase;

/* search for enpty space in the current unit table */
for (unitNum = curUTabl eEntries - 1;
uni t Num >= 48; /* |owest available unit nunber */
uni t Num -)

{
ref Num = ~(unit Num ;
if (GetDCIEntry(refNum == nil)
return(unitNum; /* found a space */
}

/* no space in the current table, so nake a new one */

/* increase the size of the table by 16 (an arbitrary val ue)
newUTabl eEntries = curUTabl eEntries + 16;

/* allocate space for the new table */
newUTabl eBase =

NewPt r Sysd ear ((| ong) newdTabl eEntries * sizeof (Handle));
i f (newUTabl eBase == nil)

return(nmentrr);

/* copy the old table to the new table */
Bl ockMove(cur UTabl eBase, newUTabl eBase,
(long) curUTabl eEntries * sizeof (Handl e));

/* set the new unit table values in | ow nmenory */
(Ptr)UTabl eBase = newUTabl eBase;
(short)UnitNtryCnt = newUTabl eEntri es;

uni t Num = newUTabl eEntries - 1;
return(unitNun;

Writing a Device Driver

*/

1-39

CHAPTER 1

Device Manager

Although rare, it is possible for the unit table to become completely full. If the

MyFi ndSpacel nUni t Tabl e function does not find an empty unit table entry, it creates
a larger unit table and copies the contents of the old unit table into the new one. To avoid
the need for every driver to create a larger table, this function increases the size of the
table by 16 entries—a reasonable amount in most cases.

The MyFi ndSpacel nUni t Tabl e function does not need to disable interrupts when
changing the values of the UTabl eBase and Uni t Nt r yCnt system global variables
because both unit tables are valid and drivers are not opened or closed at interrupt time.

Note that this function does not check for empty locations in the space reserved for desk
accessories or SCSI drivers. You may wish to modify the function if you are installing
one of these.

Writing a Chooser-Compatible Device Driver

1-40

The Chooser is a desk accessory that helps provide a standard user interface for
networking and printing device drivers. The Chooser allows the user to make choices
such as which serial port to use, which AppleTalk zone to communicate with, and which
LaserWriter to use.

This section describes how the Chooser works, how to create a Chooser extension, and
how to respond to actions from the user. You should read the previous section, “Writing
a Device Driver,” before you read this section.

How the Chooser Works

The Chooser allows users to select which devices they want to use. When the user
opens the Chooser, it displays a window containing lists and buttons for making
device-related choices. Typically, users select a type of device from the icon list, then
select the particular device they want to use from the device list. For AppleTalk devices,
the user must also select an AppleTalk zone from the zone list. The Chooser window can
also display buttons, such as an OK button; and radio buttons, such as the background
printing On and Off buttons. Figure 1-10 shows an example of the Chooser window.

Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

Figure 1-10 The Chooser window

= [hoser——— |
r N Soloct 3 fila sarvar: —1— Device
g &pple Librany Server [|7 list [abel
— Eibllo
. L Tirite
lzon list TR Bunker
IW! E Clrculation dogk
= | Linda RiD
L Parzonal LW LS Slylew'riter LoHn's Macintozh | Device list
Manzano
AppIETelk Zanes: Parn's Macintosh
(| [[&pple E-Hail s Rosanne's Macliniosh
Apple Grephics
Apal= 1 hiraiy E A
et ApplaLinks¥.25 {
Zone list 1
ATE/MHS 1 — Left button
Austin
B4 Hoth 1 @ active ————— Oin radio button
| |LB&-0rion 3 ﬁpnhlaTEﬂlC) Inective ——1—— (i radio button

I— Radio button label

The Chooser relies on the List Manager for creating, displaying, and manipulating
possible user selections in this window. You may want to read the chapter
“List Manager” in Inside Macintosh: More Macintosh Toolbox for more information.

The Chooser does not communicate directly with device drivers; instead, it
communicates with device packages. A device package is a resource similar to a driver
resource, except a device package responds to Chooser messages instead of Device
Manager requests. The device package is responsible for communicating the user’s
choices to the device driver.

Device packages are stored in Chooser extension files, which the Chooser looks for in the
Extensions folder inside the System Folder of the startup disk. A Chooser extension file
contains a number of resources in addition to the device package resource. These other
resources contain information about the buttons, labels, and lists that the Chooser
displays when the user selects the device icon from the icon list. You use these resources
to define the following properties:

n The device list label. The Chooser displays this label over the device list.

n The buttons to use. The Chooser allows the device package to display up to four
buttons, called the Left button, the Right button, the On radio button, and the Off
radio button.

n The titles and positions of the buttons.
n The radio button label.

n The AppleTalk device type name. The Chooser searches the current AppleTalk zone
for devices of this type.

n An AppleTalk Name-Binding Protocol (NBP) retry interval and a timeout count. The
Chooser uses this information when searching for AppleTalk devices.

Writing a Chooser-Compatible Device Driver 1-41

1-42

CHAPTER 1

Device Manager

When a user selects the icon corresponding to a particular device package, the Chooser
sends messages to that device package by calling the device package as if it were the
following function:

pascal OSErr MyPackage (short nessage, short caller,
StringPtr obj Nane, StringPtr zoneNane,
| ong p1, long p2);

The Chooser passes the following parameters to the device package:

Parameter Description
nmessage The operation to be performed; this parameter has one of the following
values:
enum {

/* Chooser nessages */

chooserlnit Mg = 11,
newSel Msg = 12,
filllListMg = 13,
get Sel Msg = 14,
sel ect Msg = 15,
desel ect Msg = 16,
term nat eMsg = 17,
but t onMsg = 19

b

Table 1-4 on page 1-47 explains the meaning of these messages.

caller A number that identifies the application calling your device package. The
value chooser | Dindicates the Chooser. Values in the range 0-127 are
reserved; values outside this range may be used by applications.

obj Name Additional information whose meaning depends on the value of the
message parameter. See Table 1-4 on page 1-47 for more information.

zoneNane The name of the AppleTalk zone containing the devices in the device list.
If the Chooser is being used with the local zone and bit 24 of the f | ags
field of the device package header is not set, the string value is “*”,
otherwise, it is the actual zone name. See “Creating a Device Package” on
page 1-45 for more information about the package header.

pl A handle to the List Manager list that contains the device choices
displayed in the device list box.

p2 Additional information whose meaning depends on the value of the
message parameter. See Table 1-4 on page 1-47 for more details.

When the user opens the Chooser, the Chooser searches the Extensions folder for
Chooser extension files. For each one it finds, it opens the file, fetches the device icon,
reads the flags field of the device package header, and closes the file. The Chooser then
displays each device icon, and dims the icons for AppleTalk devices if AppleTalk is not
connected.

Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

When the user selects a device icon that is not dimmed, the Chooser reopens the
corresponding Chooser extension file and performs the following actions:

1.
2.
3.

The Chooser labels the device list with the device list label.
The Chooser sends the chooser | ni t Msg message to the device package.

If the selected device package represents a serial printer, the Chooser places the two
icons that represent the printer port and the modem port serial drivers into the device
list box. When the user makes a selection, the Chooser records the user’s choice in low
memory and parameter RAM.

. If the selected device icon represents an AppleTalk device and the corresponding

device package does not accept fi | | Li st Msg messages, the Chooser initiates an
asynchronous routine that interrogates the current AppleTalk zone for all devices
whose type matches the AppleTalk device type name specified in the Chooser
extension file. The asynchronous routine uses the retry interval and the timeout
count. As responses arrive, the Chooser updates the device list.

. If the device package does accept fi | | Li st Msg messages, the Chooser sends the

fillListMg message to the device package. The device package responds by filling
the device list with the appropriate device choices.

. To determine which devices in the device list should be selected, the Chooser calls

the device package with the get Sel Msg message. The device package responds

by inspecting the list and setting the selected or unselected state of each entry. The
Chooser may send the get Sel Msg message frequently; for example, each time a new
response to the AppleTalk zone interrogation arrives. The Chooser does not send the
get Sel Msg message for serial printers; it highlights the icon corresponding to the
currently selected serial port, as recorded in low memory.

. If the device package allows multiple devices to be active at once, the Chooser sets

the appropriate List Manager bits. When the user selects or deselects a device, the
Chooser calls the device package with the appropriate message. For packages that

do not accept multiple active devices, the Chooser sends the sel ect Msg or

desel ect Msg message; otherwise, it sends the newSel Msg message. The device
package mounts or unmounts the device, if appropriate, and records the user’s choice.

. When the user selects a different device icon or closes the Chooser, the Chooser calls

the current device package with the t er m nat eMsg message, if the package accepts
this kind of message. At this time, the package can clean up, if necessary. The Chooser
then calls the Updat eResFi | e function, closes the device resource file, and flushes
the system startup volume.

Creating a Chooser Extension File

The Chooser uses three file types to identify different kinds of devices supported by
Chooser extension files:

File type Device type

' PRES' Serial printer

' PRER Non-serial printer
" RDEV Other device

Writing a Chooser-Compatible Device Driver 1-43

1-44

CHAPTER 1

Device Manager

You can specify the creator of your Chooser extension file, which allows you to give your
device its own icon.

You can include the following resources in your Chooser extension file:

Resource Resource

type ID Description

' PACK' -4096 Device package. This resource contains the device package
header and code.

"'STR ' -4096 Type name for AppleTalk devices. The Chooser searches the
current AppleTalk zone for devices of this type.

" GNRL' -4096 AppleTalk information. The first byte of this resource
contains the Name-Binding Protocol (NBP) retry interval,
the second byte contains the timeout count.

"'STR ' -4091 List box label. The Chooser labels the device list with this
string after the user has selected the device’s icon.

'STR ' —-4087 Radio button label.

"'STR ' -4088 Off radio button title.

"STR ' -4089 On radio button title.

"STR ' -4092 Right button title.

"'STR ' -4093 Left button title.

"nert! -4096 Button positions.

" LDEF' -4096 Alternate list definition function. You can supply this
function to modify the device list—to include pictures
or icons, for example.

"STR ' -4090 Reserved for use by the Chooser.

You should also include a' BNDL' resource (and appropriate icon family resources) to
give your device type a distinctive icon because this may be the only way that devices
are identified in the Chooser window. The chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials describes the ' BNDL' resource.

The Chooser allows your device package to display two buttons, called the Left button
and the Right button because of their default positions. The Left button has a double
border and is highlighted (the title string is dark) when one or more devices are selected
in the device list. When this button is highlighted, pressing the Return or Enter key, or
double-clicking in the device list, is equivalent to clicking the button. The Right button
has a single border and is always highlighted. The user can activate it only by clicking it.

The Chooser also allows you to display two radio buttons and a radio button label.
These buttons are called the On radio button and the Off radio button because those are
the titles the LaserWriter uses, but you can name them anything you want.

You can position these buttons by including a resource of type ' ncrt' with an ID

of —4096. The first word in this type of resource specifies the number of rectangles, and
the rest of the resource contains the rectangle definitions. The first rectangle positions the
Left button, the second positions the Right button, the third positions the On radio

Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

button, and the fourth positions the Off radio button. The fifth rectangle positions the
radio button label.

Each rectangle definition is 8 bytes long and contains the rectangle coordinates in the
order [top, left, bottom, right]. The default values are [112, 206, 132, 266] for the Left button
and [112, 296, 132, 356] for the Right button. You could use the values [112, 251, 132, 331]
to center a single button.

The Chooser uses the List Manager to produce and display the standard device list. You
can supply a list definition function to modify this list. For example, you might want to
include pictures or icons in your list. To do this, you must provide a resource of type

" LDEF' with an ID of —4096. For complete information about list construction and data
structures, see the chapter “List Manager” in Inside Macintosh: More Macintosh Toolbox.

Creating a Device Package

Like a driver resource, a device package has two parts:
n a header that contains flags and other information about the driver

n the code that responds to Chooser messages

Figure 1-11 shows the structure of a device package.

Figure 1-11 Structure of a device package

D=t Byriex
° Eranch 1o packosge code 2
: Dleyice 100 2
4
Resorce D" FACK ') 4
5]
F A0 - 2
i
Wardon 4
14
Rags 4
12
{ Pacage code (I' Weariakibe

Since the Chooser expects the package code to be at the beginning of the device package,
the first field of the package header should be a BRA. Sinstruction to the package code.

Writing a Chooser-Compatible Device Driver 1-45

CHAPTER 1

Device Manager

The device ID is an integer that identifies the device. The version field differentiates
versions of the driver code.

The flags field contains information about the device package and the device it serves.
Table 1-3 lists the meaning of each bit of the flags field.

The package code should implement the MyPackage function described on page 1-42.
The following section, “Responding to the Chooser,” discusses how to implement this
function.

Table 1-3 Device package flags

Bit Meaning

31 Set if an AppleTalk device

30-29 Reserved (clear to 0)

28 Set if the device package can have multiple instances selected at once

27 Set if the device package uses the Left button

26 Set if the device package uses the Right button

25 Set if no zone name has been saved

24 Set if the device package uses actual zone names

23-21 Reserved (clear to 0)

20 Set if the device uses the On and Off radio buttons and radio button label

19-17 Reserved (clear to 0)

17 Set if the device package accepts the chooser | ni t Msg message
16 Set if the device package accepts the newSel Msg message

15 Set if the device package accepts the fi | | Li st Msg message

14 Set if the device package accepts the get Sel Msg message

13 Set if the device package accepts the sel ect Msg message

12 Set if the device package accepts the desel ect Msg message

11 Set if the device package accepts the t er mi nat eMsg message

10-0 Reserved (clear to 0)

Responding to the Chooser

This section gives more details about how your device package should respond when it
receives a message from the Chooser.

When the Chooser sends your device package a message, the Chooser extension file is
the current resource file and the Chooser window is the current graphics port. The

1-46 Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

startup disk is the default volume and the System Folder of the startup disk is the
default directory. Your device package must preserve all of these.

Table 1-4 lists the Chooser messages and how your device package should respond
to them.

Table 1-4 Chooser messages and their meanings

Message
chooserlnit

newSel Msg

fillListMg

get Sel Msg

sel ect Msg

Meaning

Msg The Chooser sends this message to your device package when the user selects
the icon representing your device in the icon list. The obj Nane parameter
contains a pointer to a data structure that contains a size word followed by four
handles to structures of type Cont r ol Recor d. The size is at least 18 bytes
(2 bytes for the size word and 4 bytes for each of the handles). The handles
reference the Left and Right buttons and the On and Off radio buttons, in that
order. Your device package can respond to this message by setting up the initial
button configuration. To display any of the radio buttons, use the ShowCont r ol
function. To highlight them, use the Set Cont r ol Val ue function. The p2
parameter is not used. For more information about controls, see the chapter
“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

If your device package allows multiple selections, the Chooser sends this
message to your package when the user changes or adds a selection. The
obj Name and p2 parameters are not used.

The Chooser sends this message when the user selects a device icon. The p1
parameter contains a handle to a List Manager list. Your device package should
use the List Manager to fill this list with choices for the particular type of device.
The obj Nane and p2 parameters are not used.

The Chooser sends this message to determine which devices in the device list
should be selected. The p1 parameter contains a handle to a List Manager list.
Your device package should respond by inspecting the list and setting the
selected or unselected state of each entry, using the LSet Sel ect function. You
should alter only the entries that require updating. The Chooser does not send
this message for serial printers.

If your device package does not allow multiple selections, the Chooser sends
this message to your package when the user selects a device in the device list.
You should record the user’s selection, preferably in your Chooser extension file.
Your device package may not call the List Manager in response to this message.

If your device package acceptsfi |l | Li st Msg messages, the obj Nane
parameter is undefined and the p2 parameter contains the row number of the
selected device.

If your device package does not acceptfi | | Li st Msg messages, the obj Nane
parameter contains a pointer to a string containing the name of the device (up to
32 characters). If the device is an AppleTalk device, the p2 parameter contains
the Addr Bl ock value for the address of the selected AppleTalk device. For more
information about AppleTalk devices, refer to Inside Macintosh: Networking.

continued

Writing a Chooser-Compatible Device Driver 1-47

CHAPTER 1

Device Manager

Table 1-4 Chooser messages and their meanings (continued)
Message Meaning
desel ect Msg If your device package does not allow multiple selections, the Chooser sends

term nat eMsg

but t onMsg

this message to your package when the user deselects a device in the device list.
Your device package may not call the List Manager in response to this message.

If your device package acceptsfi |l | Li st Msg messages, the obj Nane
parameter is undefined and the p2 parameter contains the row number of the
device that was deselected.

If your device package does not acceptfi | | Li st Msg messages, the obj Nane
parameter contains a pointer to a string containing the name of the device (up to
32 characters). If the device is an AppleTalk device, the p2 parameter contains
the Addr Bl ock value for the address of the selected AppleTalk device. For more
information about AppleTalk devices, refer to Inside Macintosh: Networking.

The Chooser sends this message when the user selects a different device icon,
closes the Chooser window, or changes zones. Your device package should
perform any necessary cleanup tasks but should not dispose of the device list.
The obj Nane and p2 parameters are not used.

The Chooser sends this message when the user clicks one of the buttons in the
Chooser window. The low-order byte of the p2 parameter contains 1 if the user
clicked the Left button, 2 if the user clicked the Right button, 3 if the user clicked
the On radio button, and 4 if the user clicked the Off radio button. You must
perform the appropriate highlighting for the radio buttons. The high-order word
of the p2 parameter contains the modifier bits from the mouse-up event. See the
chapters “Control Manager” and “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more information.

Allocating Private Storage

Device packages initially have no data space allocated. There are two ways your device
package can acquire data space:

n

n

Use the List Manager to allocate extra memory in the device list.

Create a resource.

The Chooser uses column 0 of the device list structure to store the names displayed in
the device list. For device packages that do not acceptfi | | Li st Msg messages, the
Chooser uses column 1 to store the 4-byte AppleTalk internet addresses of the devices
in the list. Therefore, your device package can use column 1 and higher (if it accepts
fillListMg messages)or column 2 and higher to store private data. You can use
standard List Manager functions to add these columns, store data in them, and retrieve
the data stored there. Your device package can also use the r ef Con field of the device
list for its own purposes.

Using the device list is limited by the fact that the Chooser disposes of the device list
whenever the user changes device types or changes the current zone. However, the
Chooser does call your device package with the t er mi nat eMsg message before it
disposes of the list.

1-48 Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

Also, if your device package does not accept fi | | Li st Msg messages, the Chooser
disposes of the device list whenever a new response from the AppleTalk zone
interrogation arrives. However, the Chooser does send the get Sel Msg message
immediately afterward.

The second way to obtain storage space is to create a resource in the device resource file.
This file is always the current resource file when the Chooser sends a message to the
package, so you can use the Get Resour ce function to obtain a handle to the storage.

It is important for most device packages to record which devices the user has chosen.
The recommended method for this is to create a resource in your driver resource file.
This resource can be of any type; in fact, it’s advantageous to provide your own resource
type so that no other program will try to modify it. If you choose to use a standard
resource type, you should use only resource IDs in the range —4080 through —4065.

Writing a Desk Accessory

Desk accessories are small applications designed like device drivers. Desk accessories
typically provide a user interface with a window and a menu, perform some limited
function, and are opened from the Apple menu. The Chooser is an example of a desk
accessory.

Desk accessories were originally created for the Macintosh because they offered two
distinct advantages over applications. They provided both a limited degree of
multitasking and a primitive form of interapplication communication. However, modern
Macintosh applications enjoy far more sophisticated versions of these capabilities. Users
can even open applications from the Apple menu. For these reasons, you would be better
served by writing a small application than by writing a desk accessory.

Control panels have largely replaced desk accessories as a user interface for device
drivers. In addition to providing a more consistent and extensible interface, control
panels can include an initialization (' | NI T') resource to load and execute your device
driver at system startup. For more information about control panels, see the chapter
“Control Panels” in Inside Macintosh: More Macintosh Toolbox.

If you're certain you need to write a desk accessory, you should read this section. You
might also want to read the chapters “Event Manager,” “Window Manager,” “Dialog
Manager,” and “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

How Desk Accessories Work

When the user opens a desk accessory (or when an application calls the OpenDeskAcc
function), the system performs a major context switch, loads the desk accessory into the
system heap, and calls the desk accessory driver open routine. The desk accessory can
respond by creating its window and menu.

Writing a Desk Accessory 1-49

1-50

CHAPTER 1

Device Manager

When events occur, the Event Manager directs them to the desk accessory by calling its
driver control routine. The Event Manager handles switching between applications and
desk accessories in the system heap.

When the user closes the desk accessory (by closing its window or choosing Quit from
its menu) or an application closes the desk accessory (by calling the Cl oseDeskAcc
function), the desk accessory disposes of its window and any other data structures
associated with it.

In a single-application environment in System 6, and in a multiple-application
environment in which the desk accessory is launched in the application’s partition

(for example, a desk accessory opened by the user from the Apple menu while holding
down the Option key), the Event Manager handles events for desk accessories in a
slightly different manner, although it still translates them into control requests. For
details, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Creating a Driver Resource for a Desk Accessory

You create a desk accessory by creating a driver resource and storing it in a resource file,
as described in “Creating a Driver Resource,” beginning on page 1-24. Typically, you
store your desk accessory driver resource in a file of type ' df i | ', which the user places
in the Apple Menu Items folder.

Three fields of the driver resource header are of particular importance to desk
accessories:

n The dr vr EMask field. This field contains an event mask specifying which events your
desk accessory can handle. If your desk accessory has a window, you should include
keyboard, activate, update, and mouse-down events, but you should not include
mouse-up events. When an event occurs, the Event Manager checks this field to
determine whether the desk accessory can handle the type of event and, if so, calls
the desk accessory driver control routine. See the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials for more information about events
and event masks.

n The dr vr Menu field. This field contains the menu ID of your desk accessory’s menu,
if it has one, or any one of its menus, if it has more than one. Otherwise, it contains 0.
A desk accessory menu ID must be negative and must be different from the menu ID
for other desk accessories.

n The drvr Del ay field and the dNeedTi e flag of the dr vr FI ags field. Desk
accessories sometimes need to perform certain actions periodically. For example, a
clock desk accessory might change the time it displays every second. If your desk
accessory needs to perform a periodic action, set the dNeedTi ne flag and use the
dr vr Del ay field to indicate how often the action should occur. “Creating a Driver
Resource,” beginning on page 1-24, describes these fields in more detail.

All desk accessories must implement open, close, and control routines. Your desk
accessory can implement a prime and status routine if needed.

Writing a Desk Accessory

CHAPTER 1

Device Manager

Opening and Closing a Desk Accessory

When the user chooses an item from the Apple menu, the foreground application calls
the OpenDeskAcc function, which determines whether the item is a desk accessory,
application, or document, and schedules it for execution. Applications call the

Cl oseDeskAcc function if the user chooses the Close menu item from the File menu
when the foreground window does not belong to the application. These functions are
described in “Device Manager Reference,” beginning on page 1-53.

Opening a desk accessory is similar to launching an application. In your desk accessory
driver open routine, you should do the following:

n Create the desk accessory’s window. You can do this with the Dialog Manager
function Get NewDi al og or NewDi al og. You should specify that the window be
invisible because the OpenDeskAcc function will display it. You should set the
wi ndowKi nd field of the wi ndowRecor d structure to the desk accessory’s driver
reference number, which you can find in the device control entry. You should also
store a copy of the window pointer in the dCt | W ndow field of the device control

entry.
n Allocate private storage as you would for any device driver.
n Create any menus needed by your desk accessory. You are responsible for adding

your menus to the menu bar. See the chapter “Menu Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more details.

If your driver open routine is unable to complete its tasks (because of insufficient
memory, for example), you should modify the code so it doesn’t respond to events,
and display an alert indicating failure.

As for all drivers, your close routine should undo the actions taken by the open routine,
dispose of the desk accessory’s window and private storage, clear the window pointer in
the device control entry, and remove any menus that were added to the menu bar.

Responding to Events

When the Event Manager determines an event has occurred that your desk accessory
should handle, it checks the dr vr EMask field of the driver header and, if that field
indicates your desk accessory handles the event type, it passes the event to your desk
accessory by calling your driver control routine.

The Event Manager passes one of nine values in the csCode field to indicate the action
to take:

Constant

name Value Meaning

accEvent 64 Handle a given event

accRun 65 Time for periodic action
accCursor 66 Change cursor shape if appropriate
acchMenu 67 Handle a given menu item

Writing a Desk Accessory 1-51

CHAPTER 1

Device Manager

Constant

name Value Meaning

accUndo 68 Handle the Undo command
accCut 70 Handle the Cut command
accCopy 71 Handle the Copy command
accPast e 72 Handle the Paste command
accd ear 73 Handle the Clear command

Along with the accEvent message, the Event Manager sends a pointer to an event
record in the csPar amfield. Your desk accessory can respond to the event in whatever
way is appropriate. For example, when your desk accessory becomes active, it might
install its menu in the menu bar.

Note

If your desk accessory window is a modeless dialog box and you are
calling the Dialog Manager function | sDi al ogEvent in response to the
event, you should set the wi ndowKi nd field of your window record to 2
beforeyoucalll sDi al ogEvent . Setting this field to 2 allows the Dialog
Manager to recognize and handle the event properly. You should restore
the original value of the wi ndowKi nd field before returning from your
control routine. u

The Event Manager periodically sends the accRun message if your desk accessory
has requested time for background processing. To request this service, you set the
dNeedTi e flag in the dr vr FI ags field of your desk accessory driver header. See
“Writing Control and Status Routines,” beginning on page 1-34, for more information.

The accCur sor message makes it possible to change the shape of the cursor when it
is inside your desk accessory window and your desk accessory window is active. Your
control routine should check whether the mouse location is in your window and, if so,
should set the cursor appropriately by calling the QuickDraw function | ni t Cur sor.

If your desk accessory window is a dialog box, you should respond to the accCur sor
message by generating a null event (storing the event code for a null event in an event
record) and passing it to the Dialog Manager function Di al ogSel ect . This allows the
Dialog Manager to blink the insertion point in edi t Text items.

When the Event Manager sends an accMenu message, it provides the menu 1D followed
by the menu item number in the csPar amfield. You should take the appropriate action
and then call the Menu Manager function Hi | i t eMenu with a value of 0 for the menul D
parameter to remove the highlighting from the menu bar.

You should respond to the last five messages, accUndo through accd ear, by
processing the corresponding editing command in the desk accessory window, if
appropriate. The chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox
contains information about cutting and pasting.

Your desk accessory routines should restore the current resource file and graphics port if
it changes either one.

1-52 Writing a Desk Accessory

CHAPTER 1

Device Manager

Device Manager Reference

This section describes the data structures, functions, and resources that are specific to the
Device Manager.

The “Data Structures” section shows the C declarations for the data structures that are
used by the Device Manager. The “Device Manager Functions” section describes the
functions you use to communicate with device drivers and the functions that provide
support for writing your own device drivers. The “Resources” section describes the
driver resource.

Data Structures

This section describes the parameter block structure, the device control entry structure,
and the enumerated types you use to define values within them.

Device Manager Parameter Block

The Device Manager provides both a high-level and a low-level interface for
communicating with device drivers. You pass information to the low-level functions
in a parameter block structure, defined by the Par anBl ockRec union.

typedef uni on ParanBl ockRec {

| OPar am i oPar am

Fi | eParam fileParam
Vol unePar am vol unePar am
Cntrl Param cntrl Param

Sl ot DevParam sl ot DevPar am
Mul ti DevParam nul ti DevParam

} ParanBl ockRec;

t ypedef ParanBl ockRec *Par nBl kPtr;

The Device Manager uses two forms of the parameter block: one for the open, close,
read, and write functions (the | OPar amstructure) and another for the control and status
functions (the Cnt r | Par amstructure). Other managers use other structures of the

Par anBl ockRec union.

typedef struct | OParam {

QEl enPtr gLi nk; /* next queue entry */

short qType; /* queue type */

short i oTr ap; /[* routine trap */

Ptr i oCndAddr ; /* routine address */

ProcPtr i oConpl etion; /* conpletion routine address */
CSErr i oResul t; /* result code */

StringPtr ioNanePtr; /* pointer to driver name */

Device Manager Reference 1-53

1-54

CHAPTER 1

Device Manager

short
short
char
char
Ptr

Ptr

| ong
| ong
short
| ong

} 1 OPar am

typedef struct Cntrl Param {

QEl enPtr
short
short
Ptr
ProcPtr
OSEr r
StringPtr
short
short
short
short

oVRef Num /* volume reference or drive number */
oRef Num /* driver reference nunber */

oVer sNum /* not used by the Device Manager */
oPer nssn; /* read/wite perm ssion */

oM sc; /* not used by the Device Manager */
oBuf fer; [* pointer to data buffer */

oReqCount ; /* requested nunber of bytes */

0Act Count ; /* actual nunber of bytes conpleted */
oPosMbde; /* positioning node */

oPosO f set ; /* positioning offset */

gLi nk; /* next queue entry */

qType; /* queue type */

i oTr ap; /[* routine trap */

i oCnrd Addr ; /* routine address */

i oConpl etion; /* conpletion routine address */

i oResul t; /* result code */

i oNanePtr; /* pointer to driver nanme */

i oVRef Num /* volume reference or drive nunber */
i oCRef Num [* driver reference nunber */

csCode; /* type of control or status request */

csParanf 11] ;
} Cntrl Param

/*

control or status information */

The first eight fields are common to both structures. Each structure also includes its own

unique fields.

Field descriptions for fields common to both structures

A pointer to the next entry in the driver I/0 queue. (This field is
used internally by the Device Manager to keep track of
asynchronous calls awaiting execution.)

The queue type. (This field is used internally by the Device Manager.)

The trap number of the routine that was called. (This field is used
internally by the Device Manager.)

The address of the routine that was called. (This field is used
internally by the Device Manager.)

A pointer to a completion routine. When making asynchronous
requests, you must set this field toni | if you are not specifying

a completion routine. The Device Manager automatically sets this
field to ni | when you make a synchronous request.

gLi nk

qType
i oTrap

i oCndAddr

i oConpl eti on

i oResul t

A value indicating whether the routine completed successfully. The
Device Manager sets this field to 1 when it queues an asynchronous
request. When the driver completes the request, it places the actual

Device Manager Reference

CHAPTER 1

Device Manager

i oNanePt r

i oVRef Num

result code in this field. You can poll this field to detect when the
driver has completed the request and to determine its result code.
The Device Manager executes the completion routine after this field
receives the result code.

A pointer to the name of the driver. You use this field only when
opening a driver.

The drive number, if any. The meaning of this field depends on the
device driver. The Disk Driver uses this field to identify disk
devices.

Field descriptions for the | OPar amstructure

i oRef Num
i oVer sNum
i oPer mssn

i oM sc

i oBuf f er

i oReqCount
i 0Act Count
i oPosMode

The driver reference number.
Not used.

The read/write permission of the driver. When you open a driver,
you must supply one of the following values in this field:

enum {
/* access perm ssions */
fsCurPerm =0, /* retain current perm ssion */
f sRdPer m =1, /* allowreads only */
f sW Perm =2, /* allowwites only */
fsRAWPerm =3 /* allow reads and wites */

b

The Device Manager compares subsequent read and write requests
with the read/write permission of the driver. If the request type is
not permitted, the Device Manager returns a result code indicating
the error.

Not used.

A pointer to the data buffer for the driver to use for reads or writes.
The requested number of bytes for the driver to read or write.

The actual number of bytes the driver reads or writes.

The positioning mode used by drivers of block devices. Bits 0 and 1
of this field indicate where an operation should begin relative to the

physical beginning of the block-formatted medium. You can use the
following constants to test or set the value of these bits:

enum {
/* positioning nodes */
f SAt Mar k =0, /* at current position */
fsFrontStart = 1, /* offset from beginning */
fsFromvark =3 /* offset fromcurrent
position */
b

Device Manager Reference 1-55

CHAPTER 1

Device Manager

i oPosO f set

The Disk Driver allows you to add the following constant to this
field to specify a read-verify operation:

enum {
rdVerify =
1

64

/* read-verify node */

See the description of the PBRead function on page 1-70.

The byte offset, relative to the position specified by the positioning
mode, where the driver should perform the operation. If you
specify the f sAt Mar k positioning mode, the Device Manager

ignores this field.

Field descriptions for the Cnt r | Par amstructure

The driver reference number.

A value identifying the type of control or status request. Each driver
may interpret this number differently.

The control or status information passed to or from the driver. This
field is declared generically as an array of eleven integers. Each
driver may interpret the contents of this field differently. Refer to
the driver’s documentation for specific information.

i oCRef Num
csCode

csParam

Device Control Entry

The device control entry structure, defined by the AuxDCE data type, stores information
about each device driver in memory. The Aux DCE data type supersedes the original
DCt | Ent ry data type, and provides additional fields for drivers that serve slot devices.
See the chapter “Slot Manager” in this book for information about slot device drivers.

typedef struct AuxDCE {

Ptr
short
QHdr

| ong
Handl e
short

| ong
GafPtr
short
short
short
char
char

| ong
Ptr
char

dcCt! Dri ver;
dct | Fl ags;
dCt | QHdr;
dCt | Posi tion;
dcCt| St or age;
dCt | Ref Num
dct | Cur Ti cks;
dCt | W ndow,
dct | Del ay;
dCt | EMask;
dct | Menu;
dctl Sl ot ;
dctl Slotld;
dCt | DevBase;
dct | Omner;
dcCt | Ext Dev;

1-56 Device Manager Reference

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

poi nter or handle to driver */
flags */

I/ O queue header */

current RFWhbyte position */
handl e to private storage */
driver reference nunber */
used internally */

pointer to driver’s w ndow */
ti cks between periodic actions */
desk accessory event mask */
desk accessory nmenu ID */

slot */

sResource directory ID */

sl ot device base address */
reserved; nust be 0 */
external device ID */

CHAPTER 1

Device Manager

char
} AuxDCE;
t ypedef AuxDCE

Field descriptions
dct| Dri ver

dct| Fl ags

dCt | QHdr

dCt| Position

dcCt| St or age

dCt | Ref Num

fillByte; /* reserved */

* Aux DCEPt r, ** AuxDCEHandl e;

A pointer or handle to the driver, as determined by the dRAMBased
flag (bit 6) of the dCt | FI ags field.

Flags describing the abilities and state of the driver. The high-order

byte contains flags copied from the dr vr FI ags word of the driver

resource. These flags are described in “Creating a Driver Resource,”
beginning on page 1-24.

The low-order byte of the dCt | Fl ags field contains the following
run-time flags:

Name Bit Meaning

dOpened 5 Set by the Device Manager when the
driver is opened, and cleared when it
is closed.

dRAMBased 6 Set if the dCt | Dri ver field contains
a handle.

drvrActive 7 Set by the Device Manager when the

driver is executing a request, and cleared
when the driver is inactive.

You can use the following constants to test or set the value of
these flags:

enum {
/[* run-time flags in the device control entry */
dOpenedMask = 0x0020,

dRAMBasedMask = 0x0040,
drvr Acti veMask 0x0080

}s

A pointer to the header of the driver I/0 queue, which is a standard
Operating System queue. See the chapter “Queue Utilities” in

Inside Macintosh: Operating System Utilities for more information
about the QHdr data type.

The current source or destination position for reading or writing.
This field is used only by drivers of block devices. The value in this
field is the number of bytes beyond the physical beginning of the
medium used by the device, and must be a multiple of 512. For
example, immediately after the Disk Driver reads the first block

of data from a 3.5-inch disk, this field contains the value 512.

A handle to a driver’s private storage. A driver may allocate a
relocatable block of memory and keep a handle to it in this field.

The driver reference number.

Device Manager Reference 1-57

CHAPTER 1

Device Manager

dCt | Cur Ti cks Used internally.

dcCt | W ndow A pointer to the desk accessory window. See “Writing a Desk
Accessory” on page 1-49 for more information.

dct| Del ay The number of ticks to wait between periodic actions.

dcCt | EMask The desk accessory event mask. See “Writing a Desk Accessory” on
page 1-49 for more information.

dcCt | Menu The menu ID of a desk accessory’s menu, if any. See “Writing a
Desk Accessory” on page 1-49 for more information.

dc | Sl ot The slot number of the slot device.

dctlSlotld The sResource directory ID of the slot device.

dCt | DevBase The base address of the slot device. For a video card this field
contains the address of the pixel map for the card’s GDevi ce record.

dct | Oaner Reserved. This field must be 0.

dCt | Ext Dev The external device ID of the slot device.

fill Byte Reserved.

Device Manager Functions

1-58

This section describes the functions you use to

n open and close device drivers

n communicate with device drivers

n control and monitor device drivers

n write and install device drivers

The low-level Device Manager functions described in this section (those that use the

parameter block structure to pass information) provide two advantages over the
corresponding high-level functions:

n These functions can be executed asynchronously, returning control to your application
before the operation is completed.

n In most cases, these functions provide more extensive information or perform
advanced operations.

All of these functions exchange parameters with your application through a parameter
block of type Par anBl ockRec. When you call a low-level function, you pass the
address of the parameter block to the function.

There are three versions of most low-level functions. The first takes two parameters: a
pointer to the parameter block and a Boolean parameter that specifies whether the
function is to execute asynchronously (t r ue) or synchronously (f al se). For example,
the first version of the low-level PBRead function has this declaration:

pascal OSErr PBRead(ParnBl kPtr paranBl ock, Bool ean async);

Device Manager Reference

CHAPTER 1

Device Manager

The second version does not take a second parameter; instead, it adds the suffix
Sync to the name of the function.

pascal OSErr PBReadSync(ParnBl kPtr paranBl ock);

Similarly, the third version of the function does not take a second parameter; instead,
it adds the suffix Async to the name of the function.

pascal OSErr PBReadAsync(ParnBl kPtr paranBl ock);

Only the first version of each function is documented in this section. Note, however, that
the second and third versions of these functions do not use the glue code that the first
version uses and are therefore more efficient. See “Summary of the Device Manager,”
beginning on page 1-91, for a listing of all three versions of these functions.

Assembly-Language Note

All Device Manager functions are synchronous by default. If you want a
function to be executed asynchronously, set bit 10 of the trap word. To
execute a function immediately, set bit 9 of the trap word. You can set
these bits by appending the word ASYNC or | MVED as the second
argument to the trap macro. For example:

_Read, ASYNC
_Control, | MMED

You can set or test bit 10 of a trap word using the global constant
asyncTr pBi t. You can set or test bit 9 of the trap word using the global
constantnoQueueBi t. u

S WARNING
Never call any synchronous Device Manager function at interrupt time.
This includes all of the high-level functions and the synchronous
versions of the low-level functions.

A synchronous request at interrupt time may block other pending

170 requests. Because the device driver cannot begin processing the
synchronous request until it completes the other requests in its queue,
this situation can cause the Device Manager to loop indefinitely while it
waits for the device driver to complete the synchronous request. s

Opening and Closing Device Drivers

A device driver must be open before your application can communicate with it. You

can use the OpenDr i ver or PBOpen function to open closed drivers or to determine the
driver reference number of a driver that is already open. You use the QpenSl ot function
to open drivers that serve slot devices. To open a desk accessory or other Apple menu
item from within your application, use the OQpenDeskAcc function.

Device Manager Reference 1-59

CHAPTER 1

Device Manager

When you finish communicating with a device driver, you can close it if you are sure no
other application or part of the system needs to use it. You can use the Cl oseDri ver or
PBC ose function to close a driver. You use the C oseDeskAcc function to close a desk

accessory.

The PBOpen and PBCO ose functions use the | OPar amunion of the Device Manager
parameter block. The QpenSl ot function uses the | OPar amunion fields and some
additional fields that apply only to slot devices.

IMPORTANT

Device drivers cannot be opened or closed asynchronously. The
PBOpen, PBA ose, and OpenSl ot functions include an asynchronous
option because they share code with the File Manager. The async
parameter must be set tof al se when these functions are used to open
or close a device driver. s

OpenDriver

DESCRIPTION

1-60

You can use the OpenDr i ver function to open a closed device driver or to determine the
driver reference number of an open device driver.

pascal OSErr OpenDri ver (Const Str255Param name, short *drvr Ref Nunj ;

nane The name of the driver to open. A driver name consists of a period (.)
followed by any sequence of 1 to 255 printing characters. The Device
Manager ignores case (but not diacritical marks) when comparing names.

dr vr Ref Num The driver reference number of the opened driver.

The OpenDri ver function opens the device driver specified by the nane parameter and
returns its driver reference number in the dr vr Ref Numparameter. To avoid replacing an
open driver, the Device Manager searches the drivers that are already installed in the
unit table before searching driver resources. If the specified driver is already open, this
function simply returns the driver reference number.

If the driver is not already open, the Device Manager calls the Get NanedResour ce
function using the specified name and the resource type ' DRVR . If the resource is
found, the resource ID defines the unit number of the driver, which determines the
location in the unit table where the Device Manager stores the handle to the driver’s
device control entry (DCE).

After loading the driver resource into memory, the Device Manager creates a DCE for the
driver, copies the flags from the driver header to the dCt | Fl ags field, and places the
driver reference number in the dCt | Ref Numfield.

Device Manager Reference

CHAPTER 1

Device Manager

The OpenDr i ver function is a high-level version of the low-level PBOpen function.
Use the PBOpen function when you need to specify read/write permission for the driver.
The next section describes the PBOpen function.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

PBOpen

Because another driver might already be installed in the unit table at the location
determined by the driver’s resource ID, you should first search for an unused location in
the unit table and renumber the driver resource accordingly before calling this function.
See Listing 1-1 on page 1-18 for an example.

The OpenDri ver function may move memory; you should not call it at interrupt time.

noErr 0 No error

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr =22 Driver reference number specifies ani | handle in unit table

openErr -23 Requested read/write permission does not match driver’s
open permission

dinst Err -26 Driver resource not found

For information about the low-level functions for opening devices, see the next section,
which describes the PBOpen function, and the description of the QpenSl ot function on
page 1-63. For an example of how to open a device driver using the QpenDri ver
function, see Listing 1-1 on page 1-18.

You can use the PBOpen function to open a closed device driver or to determine the
driver reference number of an open device driver.

pascal OSErr PBOpen(ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to an | OPar amstructure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to f al se because device drivers cannot be opened
asynchronously.

Parameter block

= i oResul t CSErr The device driver’s result code.
® i oNanePt r StringPtr A pointer to the driver name.

= i oRef Num short The driver reference number.
® i oPer nssn char Read/write permission.

Device Manager Reference 1-61

DESCRIPTION

CHAPTER 1

Device Manager

The PBOpen function opens the device driver specified by the i oNanePt r field and
returns its driver reference number in the i oRef Numfield. To avoid replacing an open
driver, the Device Manager searches the drivers that are already installed in the unit
table before searching driver resources. If the specified driver is already open, this
function simply returns the driver reference number.

If the driver is not already open, the Device Manager calls the Get NanedResour ce
function using the specified name and the resource type ' DRVR' . If the resource is
found, the resource ID defines the unit number of the driver, which determines the
location in the unit table where the Device Manager stores the handle to the driver’s
device control entry (DCE).

After loading the driver resource into memory, the Device Manager creates a DCE for the
driver, copies the flags from the driver header to the dCt | FI ags field, and places
the driver reference number in the dCt | Ref Numfield.

You specify the access permission for the device driver by placing one of the following
constants in the i oPer mssn field of the parameter block:

enum {
/* access perm ssions */
fsCurPerm = 0, /[* retain current permssion */
f sRdPer m =1, /* allowreads only */
f sW Perm = 2, /[* allow wites only */
f SRAW Per m =3 /* allow reads and wites */
b

If the driver returns a negative result in register DO, the Device Manager returns the
result code in the i oResul t parameter and does not open the driver.

SPECIAL CONSIDERATIONS

Because another driver might already be installed in the unit table at the location
determined by the driver’s resource ID, you should first search for an unused location in
the unit table and renumber the driver resource accordingly before calling this function.
See Listing 1-1 on page 1-18 for an example.

The PBOpen function may move memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

1-62

The trap macro for the PBOpen function is _Open (0xA000). You must set up register A0
with the address of the parameter block. When _Open returns, register DO contains the
result code. Register DO is the only register affected by this function.

Registers on entry
A0 Address of the parameter block

Device Manager Reference

RESULT CODES

SEE ALSO

OpenSlot

CHAPTER 1

Device Manager

Registers on exit
DO Result code

nokErr 0 No error

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr =22 Driver reference number specifies ani | handle in unit table

openErr -23 Requested read/write permission does not match driver’s
open permission

dl nstErr -26 Driver resource not found

For information about the high-level function for opening device drivers, see the
description of the OpenDr i ver function on page 1-60. For information about the
low-level function for opening device drivers that serve devices on expansion cards,

see the next section, which describes the QpenSl ot function. For an example of opening
a device driver, see Listing 1-1 on page 1-18.

You can use the OpenSl ot function to open a device driver that serves a slot device.
pascal OSErr QpenSl ot (ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to a Sl ot DevPar amor Mul ti DevPar amstructure of the
Par anBl ockRec union.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to f al se because device drivers cannot be opened
asynchronously.

Parameter block

- i oResul t CSErr The device driver’s result code.
® i oNanePt r StringPtr A pointer to the driver name.

- i oRef Num short The driver reference number.
® i oPer mssn char Read/write permission.

Additional fields for a single device

® i OM x Ptr Reserved for use by the driver open routine.
® i oFl ags short Determines the number of additional fields.
® i oSl ot char The slot number.

® iold char The slot resource ID.

Device Manager Reference 1-63

DESCRIPTION

CHAPTER 1

Device Manager

Additional fields for multiple devices

® i oMM X Ptr Reserved for use by the driver open routine.
® i oMFl ags short The number of additional fields.
® i OSEBI kPt r Ptr A pointer to an external parameter block.

The OpenSl ot function is equivalent to the PBOpen function, except that it sets bit 9 of
the trap word, which signals the _Open routine that the parameter block includes
additional fields.

If the sResource serves a single device, you should clear all the bits of the i oFl ags field
and include the slot number and slot resource ID in the i oSl ot andi ol Dfields.

If the sResource serves multiple devices, you should set the f Mul ti bit (bit 0) of the
i oFl ags field (clearing all other bits to 0), and specify, in the i oSEBI kPt r field, an
external parameter block that is customized for the devices installed in the slot.

SPECIAL CONSIDERATIONS

The OpenSl ot function may move memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

1-64

The trap macro for the OQpenSl ot function is _Open (0xA200). Bit 9 of the trap word is
set to signal that the parameter block contains additional fields for slot devices.

You must set up register AQ with the address of the parameter block. When _Open
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

noErr 0 No error

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr -22 Driver reference number specifies ani | handle in unit table

openErr -23 Requested read/write permission does not match driver’s
open permission

dinstErr —-26 Driver resource not found

For information about the low-level function for opening other device drivers, see the
description of the PBOpen function on page 1-61. For an example of opening a device

Device Manager Reference

CHAPTER 1

Device Manager

driver, see Listing 1-1 on page 1-18. Refer to the chapter “Slot Manager” in this book for
more information about slot device drivers.

OpenDeskAcc

You can use the OQpenDeskAcc function to open an item in the Apple menu.
pascal short OpenDeskAcc(Const St r255Par am deskAccNane) ;

deskAccNane A Pascal string containing the name of the Apple menu item.

DESCRIPTION

The OpenDeskAcc function opens the Apple menu item specified by the deskAccNane
parameter. If the item is already open, the OQpenDeskAcc function schedules it for
execution and returns to your application. Otherwise, it prepares to open the item. In
either case, your application receives a suspend event and the selected item is brought
to the foreground.

You should ignore the value returned by OpenDeskAcc. If the menu item is a desk
accessory and is successfully opened, the function result is a driver reference number for
the desk accessory driver. Otherwise the function result is undefined. The desk accessory
is responsible for informing the user of any errors.

Because some older desk accessories may not reset the current graphics port before
returning, you should bracket your call to OpenDeskAcc with calls to the QuickDraw
procedures Get Port and Set Por t , to save and restore the current port.

SPECIAL CONSIDERATIONS
The OpenDeskAcc function may move memory; you should not call it at interrupt time.

SEE ALSO

For information about closing a desk accessory, see the description of the
Cl oseDeskAcc function beginning on page 1-68.

CloseDriver

You can use the Cl oseDri ver function to close an open device driver.
pascal OSErr C oseDriver(short refNun;

ref Num The driver reference number returned by the driver-opening function.

Device Manager Reference 1-65

DESCRIPTION

CHAPTER 1

Device Manager

The d oseDri ver function closes the device driver indicated by the r ef Numparameter.
The Device Manager waits until the driver is inactive before calling the driver’s close
routine. When the driver indicates it has processed the close request, the Device
Manager unlocks the driver resource if the dRAMBased flag is set, and unlocks the
device control entry if the dNeedLock flag is not set. The Device Manager does not
dispose of the device control entry or remove it from the unit table.

This function is a high-level version of the low-level PBCl ose function. Use the
PBC ose function when you want to specify a completion routine.

WARNING

You should not close drivers that other applications may be using, such
as a disk driver, the AppleTalk drivers, and so on. s

SPECIAL CONSIDERATIONS

RESULT CODES

The Device Manager does not queue close requests.

WARNING

Do not call the A oseDri ver function at interrupt time because if the
driver was processing a request when the interrupt occurred the Device
Manager may loop indefinitely, waiting for the driver to complete the
request. s

noErr 0 No error

badUni t Err =21 Driver reference number does not match unit table

uni t Empt yErr =22 Driver reference number specifies ani | handle in unit table
cl osErr 24 Driver unable to complete close request

dRenovErr -25 Attempt to remove an open driver

SEE ALSO
For information about the low-level function for closing device drivers, see the next
section, which describes the PBC ose function.
PBClose
You can use the PBC ose function to close an open device driver.
pascal OSErr PBC ose(Par nBl kPtr paranBl ock, Bool ean async);
par anBl ock A pointer to an | OPar amstructure of the Device Manager parameter
block.
1-66 Device Manager Reference

CHAPTER 1

Device Manager

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to f al se because device drivers cannot be closed
asynchronously.

Parameter block

- i oResul t OSEr r The device driver’s result code.
® i oRef Num short The driver reference number.

DESCRIPTION

The PBC ose function closes the device driver specified by the i oRef Numfield. The
Device Manager waits until the driver is inactive before calling the driver’s close routine.
When the driver indicates it has processed the close request, the Device Manager
unlocks the driver resource if the dRAMBased flag is set, and unlocks the device control
entry if the dNeedLock flag is not set. The Device Manager does not dispose of the
device control entry or remove it from the unit table.

If the driver returns a negative result in register DO, the Device Manager returns this
result code in the i oResul t field of the parameter block and does not close the driver.

S WARNING

You should not close drivers that other applications may be using, such
as a disk driver, the AppleTalk drivers, and so on. s

SPECIAL CONSIDERATIONS
The Device Manager does not queue close requests.

S WARNING

Do not call the PBCl ose function at interrupt time because if the driver
was processing a request when the interrupt occurred the Device
Manager may loop indefinitely, waiting for the driver to complete the
request. s

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for the PBCl ose functionis _Cl ose (0xA001).

You must set up register A0 with the address of the parameter block. When _C ose
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry

A0 Address of the parameter block

Registers on exit
DO Result code

Device Manager Reference 1-67

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

nokErr 0 No error

badUni t Err 21 Driver reference number does not match unit table

uni t Enpt yErr =22 Driver reference number specifies ani | handle in unit table
cl osErr 24 Driver unable to complete close request

dRenovErr -25 Attempt to remove an open driver

For information about the high-level function for closing device drivers, see the
description of the O oseDri ver function on page 1-65. For an example of how to close
a device driver using the PBC ose function, see Listing 1-2 on page 1-20.

CloseDeskAcc

DESCRIPTION

You can use the O oseDeskAcc function to close a desk accessory.
pascal void C oseDeskAcc(short refNun);

ref Num The driver reference number contained in the desk accessory’s
W ndowRecor d.

The Cl oseDeskAcc function closes the desk accessory specified by the r ef Num
parameter. Your application should call G oseDeskAcc only when the user selects the
Close or Quit item from your File menu and the active window does not belong to your
application.

You obtain the r ef Numparameter from the wi ndowKi nd field of the desk accessory’s
W ndowRecor d. Do not use the driver reference number returned by QpenDeskAcc.

SPECIAL CONSIDERATIONS

SEE ALSO

1-68

The C oseDeskAcc function may move memory; you should not call it at interrupt
time.

For information about opening a desk accessory or other Apple menu item, see the
description of the OpenDeskAcc function on page 1-65.

Device Manager Reference

CHAPTER 1

Device Manager

Communicating With Device Drivers

You can use either the FSRead or PBRead function to read information from a device
driver, and you can use the FSW i t e or PBW i t e function to write information to a
device driver.

FSRead
You can use the FSRead function to read data from an open driver into a data buffer.
pascal OSErr FSRead(short refNum |ong *count, void *buffPtr);
ref Num The driver reference number.
count The number of bytes to read.
buffPtr A pointer to a buffer to hold the data.

DESCRIPTION

Before calling the FSRead function, your application should allocate a data buffer large
enough to hold the data to be read. The FSRead function attempts to read the number of
bytes indicated by the count parameter and transfer them to the data buffer pointed to
by the buf f Pt r parameter. The r ef Numparameter identifies the device driver. After the
transfer is complete, the count parameter indicates the number of bytes actually read.

WARNING
Be sure your buffer is large enough to hold the number of bytes
specified by the count parameter, or this function may corrupt
memory. s

The FSRead function is a high-level synchronous version of the low-level PBRead
function. Use the PBRead function when you want to request asynchronous reading or
need to specify a drive number or a positioning mode and offset. See the next section,
which describes the PBRead function.

SPECIAL CONSIDERATIONS

Do not call the FSRead function at interrupt time. Synchronous requests at interrupt
time may block other pending 170 requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

Device Manager Reference 1-69

CHAPTER 1

Device Manager

RESULT CODES
nokErr 0 No error
readErr -19 Driver does not respond to read requests
badUni t Err =21 Driver reference number does not match unit table
uni t Enpt yErr =22 Driver reference number specifies ani | handle in unit table
abort Err =27 Request aborted by Ki I | 1 O
not GpenkErr -28 Driver not open
SEE ALSO

For information about the low-level function for reading from device drivers, see the
next section, which describes the PBRead function.

PBRead
You can use the PBRead function to read data from an open driver into a data buffer.
pascal OSErr PBRead(ParnBl kPtr paranBl ock, Bool ean async);
par anBl ock A pointer to an | OPar amstructure of the Device Manager parameter
block.
async A Boolean value that indicates whether the request is asynchronous.
Parameter block
® i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The device driver’s result code.
® i oVRef Num short The drive number.
® i oRef Num short The driver reference number.
® i oBuf fer Ptr A pointer to a data buffer.
® i oReqCount | ong The requested number of bytes to read.
- i 0Act Count | ong The actual number of bytes read.
® i oPosMode short The positioning mode.
« i oPosOf f set | ong The positioning offset.
DESCRIPTION

Before calling the PBRead function, your application should allocate a data buffer large
enough to hold the data to be read. The PBRead function attempts to read the number of
bytes indicated by the i oReqCount field and transfer them to the data buffer pointed to
by the i oBuf f er field. The i oRef Numfield identifies the device driver. After the

transfer is complete, the i oAct Count field indicates the number of bytes actually read.

S WARNING
Be sure your buffer is large enough to hold the number of bytes
specified by the count parameter, or this function may corrupt
memory. s

1-70 Device Manager Reference

CHAPTER 1

Device Manager

For block devices such as disk drivers, the PBRead function allows you to specify a
drive number in thei oVRef Numfield and specify a positioning mode and offset in
the i oPosMbde andi oPosOf f set fields. Bits 0 and 1 of the i oPosMode field
indicate where an operation should begin relative to the physical beginning of the
block-formatted medium. You can use the following constants to test or set the value
of these bits:

enum {
/* positioning nodes */
f SAt Mar k = 0, [* at current position */
fsFronttart =1, /* offset from beginning */
f sFromvar k =3 /* offset fromcurrent position */
s

The i oPosO f set field specifies the positive or negative byte offset where the data
is to be read, relative to the positioning mode. The offset must be a multiple of 512.
The i oPosO f set field is ignored when i oPosMode is set to f sAt Mar k.

After the transfer is complete, the i oPosOf f set field indicates the current position of
the block device.

The Disk Driver allows you to use the PBRead function to verify that data written to
a block device matches the data in memory. To do this, call PBRead immediately after
writing the data, and add the read-verify constant r dVeri f y to the i oPosMbde field
of the parameter block. The result code i oEr r is returned if the data does not match.

SPECIAL CONSIDERATIONS

Do not call the PBRead function synchronously at interrupt time. Synchronous requests
at interrupt time may block other pending 1/0 requests and cause the Device Manager
to loop indefinitely while it waits for the device driver to complete the interrupted
requests.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBRead functionis_Read (0xA002). Set bit 10 of the trap word to
execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Read
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

Device Manager Reference 1-71

CHAPTER 1

Device Manager

RESULT CODES
nokErr 0 No error
readErr -19 Driver does not respond to read requests
badUni t Err =21 Driver reference number does not match unit table
uni t Enpt yErr =22 Driver reference number specifies ani | handle in unit table
abort Err =27 Request aborted by Ki I | 1 O
not CpenkErr -28 Driver not open
i oErr -36 Data does not match in read-verify mode
SEE ALSO

For information about the high-level function for reading from device drivers, see the
description of the FSRead function beginning on page 1-69. For an example of how to
read from a device driver using the PBRead function, see Listing 1-3 on page 1-21.

FSWrite
You can use the FSW i t e function to write data from a data buffer to an open driver.
pascal OSErr FSWite(short refNum |ong *count,
const void *buffPtr);
ref Num The driver reference number.
count The number of bytes to write.
buf fPtr A pointer to the buffer that holds the data.
DESCRIPTION

The FSW i t e function attempts to write the number of bytes indicated by the count

parameter from the data buffer pointed to by the buf f Pt r parameter to the device

driver specified by the r ef Numparameter. After the transfer is complete, the count
parameter indicates the number of bytes actually written.

The FSW i t e function is a high-level synchronous version of the low-level PBWi t e
function. Use the PBW i t e function when you want to request asynchronous writing or
need to specify a drive number or a positioning mode and offset. See the next section,
which describes the PBW i t e function.

SPECIAL CONSIDERATIONS

Do not call the FSW i t e function at interrupt time. Synchronous requests at interrupt
time may block other pending 170 requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

1-72 Device Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

nokErr 0 No error

witErr -20 Driver does not respond to write requests

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr -22 Driver reference number specifies ani | handle in unit table
abort Err =27 Request aborted by Ki I | 1 O

not CpenkErr -28 Driver not open

For information about the low-level function for writing to device drivers, see the next
section, which describes the PBW i t e function.

PBWrite
You can use the PBW i t e function to write data from a data buffer to an open driver.
pascal OCSErr PBWite(ParnBl kPtr paranBl ock, Bool ean async);
par anBl ock A pointer to an | OPar amstructure of the Device Manager parameter
block.
async A Boolean value that indicates whether the request is asynchronous.
Parameter block
® i oConpl eti on ProcPtr A pointer to a completion routine.
- i oResul t OSEr r The device driver’s result code.
® i oVRef Num short The drive number.
® i oRef Num short The driver reference number.
® i oBuf f er Ptr A pointer to a data buffer.
® i oReqCount | ong The requested number of bytes to write.
- i 0Act Count | ong The actual number of bytes written.
® i oPosMbde short The positioning mode.
« i oPosOf f set | ong The positioning offset.
DESCRIPTION

The PBW i t e function attempts to write the number of bytes indicated by the

i oReqCount field from the data buffer pointed to by the i oBuf f er field to the device
driver specified by the i oRef Numfield. After the transfer is complete, the i oAct Count
field indicates the number of bytes actually written.

For block devices such as disk drivers, the PBW i t e function allows you to specify
a drive number in the i oVRef Numfield and specify a positioning mode and offset
in the i oPosMode andi oPosOf f set fields. Bits 0 and 1 of the i oPosMbde field
indicate where an operation should begin relative to the physical beginning of the
block-formatted medium. You can use the following constants to test or set the value
of these bits:

Device Manager Reference 1-73

CHAPTER 1

Device Manager

enum {

/* positioning nodes */

f sAt Mar k = 0, [* at current position */

f sFrontt art =1, /* offset from beginning */

f sFromvar k =3 [* offset fromcurrent position */
s

The i oPosOF f set field specifies the positive or negative byte offset where the data is
to be written, relative to the positioning mode. The offset must be a multiple of 512. The
i oPosOf f set field is ignored when i oPosMode is set to f sAt Mar k.

After the transfer is complete, the i oPosOf f set field indicates the new current position
of a block device.

SPECIAL CONSIDERATIONS

Do not call the PBW i t e function synchronously at interrupt time. Synchronous requests
at interrupt time may block other pending 1/0 requests and cause the Device Manager
to loop indefinitely while it waits for the device driver to complete the interrupted
requests.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

1-74

The trap macro for the PBW i t e functionis_W i t e (0xA003). Set bit 10 of the trap word
to execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When Wit e
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

noErr 0 No error

witErr -20 Driver does not respond to write requests

badUni t Err 21 Driver reference number does not match unit table

uni t Enpt yErr 22 Driver reference number specifies ani | handle in unit table
abort Err =27 Request aborted by Ki I 1 1 O

not Openkrr -28 Driver not open

Device Manager Reference

SEE ALSO

CHAPTER 1

Device Manager

For information about the high-level function for writing to device drivers, see the
description of the FSW i t e function on page 1-72. For an example of how to write to a
device driver using the PBW i t e function, see Listing 1-4 on page 1-22.

Controlling and Monitoring Device Drivers

Control

You can use either the Cont r ol or PBCont r ol function to send control information

to a device driver, and you can use the St at us or PBSt at us function to obtain status
information from a device driver. The Device Manager also provides the Ki | I | Oand
PBKi | | I Ofunctions for terminating all requests in a driver I/0 queue.

The PBCont r ol , PBSt at us, and PBKi | | | O functions use the Cnt r | Par amstructure,
described on page 1-53.

DESCRIPTION

You can use the Cont r ol function to send control information to a device driver.

pascal OSErr Control (short refNum short csCode,
const void *csParanPtr);

ref Num The driver reference number.
csCode A driver-dependent code specifying the type of information sent.
csPar anPtr A pointer to the control information.

The Cont r ol function sends information to the device driver specified by the r ef Num
parameter. The value you pass in the csCode parameter and the type of information
pointed to by the csPar anPt r parameter are defined by the driver you are calling. For
more information, see the appropriate chapters for the standard device drivers in this
book and other books in the Inside Macintosh series.

The Cont r ol function is a high-level synchronous version of the low-level PBCont r ol
function. Use the PBCont r ol function if you need to specify a drive number or if you
want the control request to be executed asynchronously.

SPECIAL CONSIDERATIONS

Do not call the Cont r ol function at interrupt time. Synchronous requests at interrupt
time may block other pending I/0 requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

Device Manager Reference 1-75

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

nokErr 0 No error

control Err =17 Driver does not respond to this control request

badUni t Err =21 Driver reference number does not match unit table

uni t Empt yErr -22 Driver reference number specifies ani | handle in unit table
abort Err =27 Request aborted by Ki I | 1 O

not GpenkErr -28 Driver not open

For information about the low-level function for controlling device drivers, see the next
section, which describes the PBCont r ol function.

PBControl
You can use the PBCont r ol function to send control information to a device driver.
pascal OSErr PBControl (ParnBl kPtr paranBl ock, Bool ean async);
par anBl ock A pointer to a Cnt r | Par amstructure of the Device Manager parameter
block.
async A Boolean value that indicates whether the request is asynchronous.
Parameter block
® i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t OSEr r The device driver’s result code.
® i oVRef Num short The drive number.
® i 0CRef Num short The driver reference number.
® csCode short The type of control call.
® csPar am short[11] The control information.
DESCRIPTION

The PBCont r ol function sends information to the device driver specified by the

i oCRef Numfield. The value you pass in the csCode field and the type of information in
the csPar amfield are defined by the driver you are calling. For more information, see
the appropriate chapters for the standard device drivers in this book and other books in
the Inside Macintosh series.

SPECIAL CONSIDERATIONS

1-76

Do not call the PBCont r ol function synchronously at interrupt time. Synchronous
requests at interrupt time may block other pending 1/0 requests and cause the Device
Manager to loop indefinitely while it waits for the device driver to complete the
interrupted requests.

Device Manager Reference

CHAPTER 1

Device Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro for the PBCont r ol functionis_Contr ol (0xA004). Set bit 10 of the trap
word to execute this routine asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Cont r ol
returns, register DO contains the result code. Register DO is the only register affected by
this routine.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

noErr 0 No error

control Err =17 Driver does not respond to this control request

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr =22 Driver reference number specifies ani | handle in unit table
abort Err =27 Request aborted by Ki [I 1 O

not QpenkErr —-28 Driver not open

For information about the high-level function for controlling device drivers, see the
description of the Cont r ol function on page 1-75. For an example of how to send
control information to a device driver using the PBCont r ol function, see Listing 1-5
on page 1-23.

Status
You can use the St at us function to obtain status information from a device driver.
pascal OSErr Status(short refNum short csCode,
void *csParanPtr);
ref Num The driver reference number.
csCode A driver-dependent code specifying the type of information requested.
csPar anPtr A pointer to acsPar amarray where the status information will be
returned.
DESCRIPTION

The St at us function returns information about the device driver specified by the
r ef Numparameter. The value you pass in the csCode parameter and the received

Device Manager Reference 1-77

CHAPTER 1

Device Manager

information pointed to by the csPar anPt r parameter are defined by the driver you
are calling. For more information, see the appropriate chapters for the standard device
drivers in this book and other books in the Inside Macintosh series.

The St at us function is a high-level synchronous version of the low-level PBSt at us
function. Use the PBSt at us function if you need to specify a drive number or if you
want the status request to be asynchronous.

Note

The Device Manager interprets a csCode value of 1 as a special case.
When the Device Manager receives a status request with a csCode
value of 1, it returns a handle to the driver’s device control entry.

This type of status request is not passed to the device driver. u

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

PBStatus

Do not call the St at us function at interrupt time. Synchronous requests at interrupt
time may block other pending 170 requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

nokErr 0 No error

stat usErr -18 Driver does not respond to this status request

badUni t Err 21 Driver reference number does not match unit table

uni t Enpt yErr =22 Driver reference number specifies ani | handle in unit table
abort Err =27 Request aborted by Ki I 1 1 O

not OpenkErr -28 Driver not open

For information about the low-level function for monitoring device drivers, see the next
section, which describes the PBSt at us function.

1-78

You can use the PBSt at us function to obtain status information from a device driver.
pascal OSErr PBStatus(ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to a Cnt r | Par amstructure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

Device Manager Reference

CHAPTER 1

Device Manager

Parameter block

® i oConpl etion ProcPtr A pointer to a completion routine.
= i oResul t CSEr r The device driver’s result code.

® i oVRef Num short The drive number.

® i 0CRef Num short The driver reference number.

® csCode short The type of status call.

= csPar am short[11] The status information.

DESCRIPTION
The PBSt at us function returns information about the device driver specified by the
i oCRef Numfield. The value you pass in the csCode field and the type of information
received in the csPar amfield are defined by the driver you are calling. For more
information, see the appropriate chapters for the standard device drivers in this book
and other books in the Inside Macintosh series.

Note

The Device Manager interprets a csCode value of 1 as a special case.
When the Device Manager receives a status request with a csCode
value of 1, it returns a handle to the driver’s device control entry.

This type of status request is not passed to the device driver. u

SPECIAL CONSIDERATIONS

Do not call the PBSt at us function synchronously at interrupt time. Synchronous
requests at interrupt time may block other pending 1/0 requests and cause the Device
Manager to loop indefinitely while it waits for the device driver to complete the
interrupted requests.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for the PBSt at us function is _St at us (0XxA005). Set bit 10 of the trap
word to execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _St at us
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

Device Manager Reference 1-79

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

nokErr 0 No error

statusErr -18 Driver does not respond to this status request

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr -22 Driver reference number specifies ani | handle in unit table
abort Err =27 Request aborted by Ki I | 1 O

not CpenkErr -28 Driver not open

For information about the high-level function for monitoring device drivers, see the
description of the St at us function on page 1-77. For an example of how to request
status information from a device driver using the PBSt at us function, see Listing 1-5
on page 1-23.

KilllO
You can use the Ki | | | Ofunction to terminate all current and pending 1/0 requests for a
device driver.
pascal OCSErr KilllQ(short refNun;
ref Num The driver reference number.

DESCRIPTION
The Ki | I I Ofunction stops any current 1/0 request being processed by the driver
specified by the Ref Numparameter, and removes all pending requests from the
170 queue for that driver. The Device Manager calls the completion routine, if any,
for each pending request, and sets the i oResul t field of each request equal to the
result code abor t Err.
The Device Manager passes Ki | | | Orequests to a driver only if the driver is open and
enabled for control calls. If the driver returns an error, the 1/0 queue is left unchanged
and no completion routines are called.

S WARNING

The Ki | I I Ofunction terminates all pending 1/0 requests for a driver,

including requests initiated by other applications. s

SPECIAL CONSIDERATIONS

1-80

The Device Manager always executes the Ki | | I Ofunction immediately; that is, it never
places a Ki | | I Orequest in the 170 queue.

Although the Device Manager imposes no restrictions on calling Ki | | I Oat interrupt
time, you should consult a device driver’s documentation to determine if it supports this.

Device Manager Reference

RESULT CODES

SEE ALSO

PBKIilllIO

CHAPTER 1

Device Manager

nokErr 0 No error

control Err =17 Driver does not respond to this control request

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr -22 Driver reference number specifies ani | handle in unit table
not OpenkErr -28 Driver not open

For information about the low-level function for terminating current and pending
1/0 requests for a driver, see the next section, which describes the PBKi | | | Ofunction.

DESCRIPTION

You can use the PBKi | | | Ofunction to terminate all current and pending 1/0 requests
for a device driver.

pascal OSErr PBKill | QO ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to a Cnt r | Par amstructure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to f al se because the PBKi | | | Ofunction does not
support asynchronous requests.

Parameter block

® i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t OSErr The device driver’s result code.
® i oCRef Num short The driver reference number.

The PBKi | | I Ofunction stops any current 1/0 request being processed by the driver

specified by the i oCRef Numfield, and removes all pending requests from the 1/0 queue
for that driver. The Device Manager calls the completion routine, if any, for each pending
request, and sets the i oResul t field of each request equal to the result code abort Err.

The Device Manager passes PBKi | | | Orequests to a device driver only if the driver is
open and enabled for control calls. If the driver returns an error, the 1/0 queue is left
unchanged and no completion routines are called.

WARNING

The PBKi | | I Ofunction terminates all pending 170 requests for a
driver, including requests initiated by other applications. s

Device Manager Reference 1-81

CHAPTER 1

Device Manager

SPECIAL CONSIDERATIONS

The Device Manager always executes the PBKi | | | Ofunction immediately; that is,
it never places a PBKi | | | Orequest in the 1/0 queue. However, you should not call this
function immediately—always call the PBKi | | | Ofunction synchronously.

Although the Device Manager imposes no restrictions on calling PBKi | | | Oat interrupt
time, you should consult a device driver’s documentation to determine if it supports this.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro for the PBKi | | | Ofunctionis _Ki | | I O(0xA006). You must set up
register A0 with the address of the parameter block. When _Ki | | | Oreturns, register DO
contains the result code. Register DO is the only register affected by this function.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

noErr 0 No error

control Err =17 Driver does not respond to this control request

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr =22 Driver reference number specifies ani | handle in unit table
not QpenkErr -28 Driver not open

For information about the high-level function for terminating current and pending
1/0 requests for a driver, see the description of the Ki | | I Ofunction on page 1-80.

Writing and Installing Device Drivers

1-82

The Device Manager includes a number of functions that provide low-level support for
device drivers.

The Driverlnstall andDri verl nstal | Reser veMemfunctions create a device
control entry and install it in the unit table. The Dri ver I nst al | Reser veMemfunction
is preferred because it allocates the device control entry as low as possible in the system
heap. The Dri ver Renpve function removes an existing device control entry.

The Get DCt | Ent r y function returns a handle to a driver’s device control entry.

The | ODone routine notifies the Device Manager that an 1/0 operation is done. Driver
routines call | ODone when the current request is completed and ready to be removed
from the 170 queue.

Device Manager Reference

CHAPTER 1

Device Manager

The Fet ch and St ash routines can be used to move characters into and out of data
buffers. You pass a pointer to the device control entry in the Al register to each of these
three routines. The Device Manager uses the device control entry to locate the active
request. If no such request exists, these routines generate system error ds| OCor eErr.

In the interest of speed, you invoke the Fet ch, St ash, and | ODone routines with jump
vectors, stored in the global variables JFet ch, JSt ash, and JI ODone, rather than
macros. You can use a jump vector by moving its address onto the stack and executing
an RTS instruction. An example is:

MOVE.L JI ODone, - (SP)
RTS

The Fet ch and St ash routines do not return a result code; if an error occurs, the System
Error Handler is invoked.

Driverlnstall

YoucanusetheDri verl nstal | function to create a device control entry and install it
in the unit table.

pascal OSErr Driverlinstall (Ptr drvrPtr, short refNun);

drvrptr A pointer to the device driver.
ref Num The driver reference number.

DESCRIPTION

The Driverl nstal |l function allocates a device control entry (DCE) in the system heap
and installs a handle to this DCE in the unit table location specified by the r ef Num
parameter. You pass a pointer to the device driver in the dr vr Pt r parameter.

In addition, this function copies the r ef Numparameter to the dCt | Ref Numfield of the
DCE, sets the dRAMBased flag in the dCt | Fl ags field, and clears all the other fields.

SPECIAL CONSIDERATIONS

The Dri verl nstal | function does not load the driver resource into memory, copy the
flags from the driver header to the dCt | Fl ags field, or open the driver. You can write
code to perform these tasks, or use the QpenDri ver, OpenSl ot , or PBOpen functions
instead.

The Driverl nstal | function allocates memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for the Dri ver | nstal | functionis_Drvrlnstall (0xA03D).

Device Manager Reference 1-83

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

You place a pointer to the device driver in register A0, and the driver reference number
in register DO. When _Drvr I nstal | returns, register DO contains the result code.

Registers on entry
A0 A pointer to the device driver
DO The driver reference number

Registers on exit
DO Result code

noErr 0 No error
badUni t Err =21 Driver reference number does not match unit table

For information about the Dri ver | nst al | Reser veMemfunction, which installs a
driver as low as possible in the system heap, see the next section.

DriverlnstallReserveMem

DESCRIPTION

1-84

You can use the Dri ver | nst al | Reser veMemfunction to create a device control entry
and install it in the unit table.

pascal OSErr Driverlnstall ReserveMerm(Ptr drvrPtr, short refNum;

drvrpbtr A pointer to the device driver.
ref Num The driver reference number.

The Dri ver | nst al | Reser veMemfunction is equivalent to the Dri ver | nst al |
function, except that it calls the Memory Manager Reser veMemfunction to compact
the heap before allocating memory for the device control entry (DCE).

After calling the Reser veMemfunction, the Dri ver | nst al | Reser veMemfunction
allocates a DCE in the system heap and installs a handle to this DCE in the unit table
location specified by the r ef Numparameter. You pass a pointer to the device driver
in the drvr Pt r parameter.

In addition, this function copies the r ef Numparameter to the dCt | Ref Numfield of the
DCE, sets the dRAMBased flag in the dCt | FI ags field, and clears all the other fields.

Device Manager Reference

CHAPTER 1

Device Manager

SPECIAL CONSIDERATIONS

The Dri ver | nst al | Reser veMemfunction does not load the driver resource into
memory, copy the flags from the driver header to the dCt | FI ags field, or open the
driver. You can write code to perform these tasks, or use the OpenDri ver, OpenSl ot ,
or PBOpen functions instead.

The Dri ver | nst al | Reser veMemfunction allocates memory; you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the Dri ver | nst al | Reser veMemfunctionis_Drvr | nstal |
(0xA03D). You must set bit 10 of the trap word to signal the Device Manager to call the
Reser veMemfunction before allocating memory for the DCE.

You place a pointer to the device driver in register A0, and the driver reference number
in register DO. When _Drvr 1 nstal | returns, register DO contains the result code.

Registers on entry
A0 A pointer to the device driver
DO The driver reference number

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
badUni t Err =21 Driver reference number does not match unit table

DriverRemove

You can use the Dr i ver Renpve function to remove a device driver’s device control
entry from the unit table and release the driver resource.

pascal OCSErr DriverRenove(short refNum;

ref Num The driver reference number.

DESCRIPTION

The Dri ver Renove function removes a device driver’s device control entry from the
unit table and releases the driver resource. You specify the device driver using the
r ef Numparameter. You must close the device driver before calling Dri ver Renove.

If the driver is closed, Dri ver Renove calls the Memory Manager function
Di sposeHandl e to release the device control entry, then sets the corresponding handle

Device Manager Reference 1-85

CHAPTER 1

Device Manager

in the unit table to ni | . If the driver’s dRAMBased flag is set, Dri ver Renove calls the
Resource Manager function Rel easeResour ce to release the driver resource.

SPECIAL CONSIDERATIONS

The Dri ver Renpve function may move memory; you should not call it at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for the Dri ver Renove function is _Dr vr Renove (0XxAO3E).

You place the driver reference number in register DO. When _Dr vr Renove returns,
register DO contains the result code.

Registers on entry

DO The driver reference number

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
dRemovErr -25 Attempt to remove an open driver

GetDCtIEntry

You can use the Get DCt | Ent r y function to obtain a handle to the device control entry
of a device driver.

pascal DCtl Handle GetDCtl Entry (short refNun);

ref Num The reference number of the driver.

DESCRIPTION

The Get DCt | Ent r y function returns a handle to the device control entry of the device
driver indicated by the r ef Numparameter.

SEE ALSO
For a description of the device control entry structure see page 1-56.

1-86 Device Manager Reference

I0Done

CHAPTER 1

Device Manager

DESCRIPTION

You use the | GDone routine to notify the Device Manager that an 1/0 request has
completed.

The | ODone routine sets the i oResul t field of the parameter block with the value
returned by the driver in register DO. It then removes the current request from the

driver 1/0 queue and marks the driver inactive. If there are no pending requests, and the
dNeedLock bit of the dCt | FI ags word is not set, | ODone unlocks the driver and its
device control entry. Finally, | ODone executes the completion routine, if any.

The section “Entering and Exiting From Driver Routines,” beginning on page 1-29,
explains when to use this routine.

ASSEMBLY-LANGUAGE INFORMATION

Registers on entry
Al Pointer to DCE
DO Result code

Jump vector
JI CDone

SEE ALSO
For an example of how to call the | ODone routine from an assembly-language
dispatching routine, see Listing 1-8 on page 1-29.
Fetch
You can use the Fet ch routine to get the next character from the data buffer.
DESCRIPTION

The Fet ch routine gets the next character from the data buffer pointed to by the
i oBuf f er field of the parameter block of the pending request. It increments the
i 0Act Count field by 1. If the i oAct Count field equals the i oReqCount field,
this routine sets bit 15 of register DO. After receiving the last byte request, the
driver should jump to the | ODone routine.

Registers on entry

Al Pointer to the device control entry

Device Manager Reference 1-87

Stash

CHAPTER 1

Device Manager

Registers on exit
DO Character fetched; bit 15 = 1 if this is the last character in the buffer

Jump vector
JFet ch

DESCRIPTION

You can use the St ash routine to store the next character from the data buffer.

The St ash routine places the character in register DO into the data buffer pointed to by
the i oBuf f er field of the parameter block of the pending request and increments the

i 0Act Count field by 1. If the i oAct Count field equals the i oReqCount field, this
routine sets bit 15 of register D0. After stashing the last byte requested, the driver should
jump to the | GDone routine.

ASSEMBLY-LANGUAGE INFORMATION

1-88

Registers on entry
Al Pointer to DCE
DO Character to stash

Registers on exit
DO Bit 15 = 1 if this is the last character in the buffer

Jump vector
JSt ash

Device Manager Reference

CHAPTER 1

Device Manager

Resources

This section describes the driver resource, which you can use to store your device drivers
and desk accessories. If your device driver requires a user interface, you can create a
Chooser extension and store your driver in a device package resource. For more
information, see “Creating a Device Package” on page 1-45.

The Driver Resource

Listing 1-15 shows the Rez format of the ' DRVR' resource type.

Listing 1-15 ' DRVR' resource format

type 'DRVR {
bool ean = 0;
bool ean dont NeedLock, needLock; /[* lock drvr in nenmory */
bool ean dont NeedTi ne, needTi ne; /* for periodic action */
bool ean dont NeedGoodbye, needGoodbye; /* call before heap reinit */
bool ean noStatusEnabl e, statusEnable; /* responds to Status */

bool ean noCt| Enabl e, ctl Enabl e; /* responds to Control */
bool ean noWiteEnable, witeEnable; /* responds to Wite */
bool ean noReadEnabl e, readEnabl e; /* responds to Read */
byte = 0;

i nt eger; [* driver delay */

unsi gned hex i nteger; /* DA event mask */

i nteger; /* DA menu */

unsi gned hex i nteger; /* offset to Open */
unsi gned hex i nteger; [* offset to Prine */
unsi gned hex integer; /* offset to Control */
unsi gned hex i nteger; /* offset to Status */
unsi gned hex i nteger; /* offset to C ose */
pstring; /* driver name */

hex string; [* driver code */

The driver resource begins with seven flags that specify certain characteristics of the
driver.

You need to set the dNeedLock flag if your driver’s code should be locked in memory.

You set the dNeedTi e flag of the dr vr Fl ags word if your device driver needs to
perform some action periodically.

You need to set the dNeedGoodbye flag if you want your application to receive a
goodbye control request before the heap is reinitialized.

Device Manager Reference 1-89

1-90

CHAPTER 1

Device Manager

The last four flags indicate which Device Manager requests the driver’s routines can
respond to.

The next element of the resource specifies the time between periodic tasks.

The next two elements provide an event mask and menu ID for desk accessories. The
section “Writing a Desk Accessory” on page 1-49 describes these fields.

Offsets to the driver routines follow the desk accessory fields. See “Entering and Exiting
From Driver Routines” on page 1-29 for more information about the routine offsets.

The next element of the driver resource is the driver name. You can use uppercase and
lowercase letters when naming your driver, but the first character should be a period—
. MyDri ver, for example.

Your driver routines, which follow the driver name, must be aligned on a word
boundary.

The section “Creating a Driver Resource” on page 1-24 discusses this structure in detail.

Device Manager Reference

CHAPTER 1

Device Manager

Summary of the Device Manager

C Summary

Constants

enum {
/* request codes passed by the Device Manager to a driver’s
prinme routine */

aRdCnmd = 2, /* read operation requested */
aw Cnd =3 /* wite operation requested */
b
enum {
/* flags used in the driver header and device control entry */
dNeedLockMask = 0x4000, /* set if driver nust be |locked in nenory as
soon as it is opened */
dNeedTi neMask = 0x2000, /* set if driver needs tine for performng
periodic tasks */
dNeedGoodByeMask = 0x1000, /* set if driver needs to be called before the
application heap is initialized */
dSt at Enabl eMask = 0x0800, /* set if driver responds to status requests */
dCt | Enabl eMask = 0x0400, /* set if driver responds to control requests */
dwWit Enabl eMask = 0x0200, /* set if driver responds to wite requests */
dReadEnabl eMask = 0x0100, /* set if driver responds to read requests */
/[* run-time flags used in the device control entry */
drvrActi veMask = 0x0080, /* driver is currently processing a request */
dRAMBasedMask = 0x0040, /* dCtIDriver is a handle (1) or pointer (0) */
dOpenedMask = 0x0020 /* driver is open */
b
enum {
/* access perm ssions */
fsCur Perm = 0, /* retain current permssion */
f sRdPer m =1, /* allowreads only */
f sW Perm = 2, /[* allow wites only */
f SRAW Per m = 3, /* allow reads and wites */

Summary of the Device Manager 1-91

CHAPTER 1

Device Manager

/* positioning nodes */

f sAt Mar k = 0, /*
f sFrontt art =1, /*
f sFr omvar k = 3, /*

/* read nodes */

rdVerify = 64 /*

b

enum {
/* control codes */
goodbye = -1, /*
kil | Code = 1, /*
accEvent = 64, /*
accRun = 65, /*
accCur sor = 66, /*
acchMenu = 67, /*
accUndo = 68, /*
accCut = 70, /*
accCopy = 71, /*
accPast e = 72, /*
accd ear = 73 /*

};

enum {
/* Chooser nessages */
chooser | nit Msg = 11, /*
newSel Msg = 12, /*
filllListMg = 183, /*
get Sel Msg = 14, /*
sel ect Msg = 15, /*
desel ect Msg = 16, /*
term nat eMsg = 17, /*
but t onMsg = 19 /*

b

Data Types

at current position */
of fset from begi nning */
of fset fromcurrent position */

read-verify node */

heap being reinitialized */
KilllO requested */

handl e an event */

time for periodic action */
change cursor shape */
handl e nenu item */

handl e undo comand */
handl e cut command */
handl e copy commuand */
handl e paste conmand */
handl e cl ear command */

the user selected this device package */
the user made new devi ce sel ections */
fill the device list with choices */
mar k one or nore choices as selected */
the user made a sel ection */

the user canceled a selection */

al | ows devi ce package to clean up */

the user selected a button */

typedef uni on ParanBl ockRec {

| OPar am i oPar am

Fi | eParam fileParam
Vol unePar am vol unePar am
Cntrl Param cntrl Par am

1-92 Summary of the Device Manager

CHAPTER 1

Device Manager

S| ot DevPar am

s| ot DevPar am

Mul ti DevParam nmul ti DevPar am
} Par anBl ockRec;
typedef ParanBl ockRec *Par Bl kPtr;

typedef struct
CEl enPtr
short
short
Ptr
ProcPtr
OSEr r
StringPtr
short
short
char
char
Ptr
Ptr
| ong
| ong
short
| ong

} 1 OPar am

typedef struct
QEl enPtr
short
short
Ptr
ProcPtr
OSEr r
StringPtr
short
short
short
short

} Cntrl Param

typedef struct
Ptr
short
QHdr

| ong

Summary of the Device Manager

| OPar am {
gLi nk;
qType;

i oTr ap;
oCndAddr ;

oResul t;
oNanmePtr;
oVRef Num
oRef Num
oVer sNum
oPer nssn;
oM sc;
oBuf fer;
oReqCount ;
oAct Count ;
oPosMode;
oPosO f set

Cntr| Param {
gLi nk;
qType;

oTr ap;

oCnrd Addr ;

oConpl et i on;

oNanePtr;

oVRef Num

0CRef Num
csCode;
csParanf 11] ;

i
i
i
i oResul t;
i
i
i

AuxDCE {
dCt| Dri ver;
dct | Fl ags;
dct | QHdr;

dCt | Posi tion;

oConpl et i on;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

next queue entry */

queue type */

routine trap */

routi ne address */

compl etion routine address */
result code */

poi nter to driver nane */

vol ume reference or drive nunber */
driver reference nunber */

not used by the Device Manager */
read/ wite permssion */

not used by the Device Manager */
poi nter to data buffer */

requested nunber of bytes */

actual nunber of bytes conpleted */
posi tioni ng node */

positioning offset */

next queue entry */

queue type */

routine trap */

routi ne address */

conpl etion routine address */
result code */

pointer to driver name */

vol une reference or drive nunber */
driver reference nunber */

type of control or status request */
control or status information */

poi nter or handle to driver */
flags */

I/ O queue header */

current RFWhyte position */

1-93

Hand
shor
| ong
G af
shor
shor
shor
char
char
| ong
Ptr

char
char

CHAPTER 1

Device Manager

l e
t

Ptr
t
t
t

} AuxDCE;

t ypedef AuxDCE * AuxDCEPtr,

Functions

dct| St or age;
dCt | Ref Num
dCt | Cur Ti cks;
dct | W ndow,
dct| Del ay;
dcCt | EMask
dct | Menu;
dctl Sl ot
dctl Slotld;
dCt | DevBase;
dcCt | Omner;
dCt | Ext Dev;
fillByte;

/* handle to private storage */

/* driver reference nunber */

[* used internally */

/* pointer to driver’s w ndow */

/* ticks between periodic actions */
/* desk accessory event nask */

/* desk accessory nenu ID */

/*
/*
/*
/*
/*
/*

slot */

sResource directory 1D */
sl ot device base address */
reserved; nust be 0 */
external device ID */
reserved */

** Aux DCEHandl e;

Opening and Closing Device Drivers

pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal

OSEr r
CSEr r
CSEr r
CSEr r
short
CSEr r
CSEr r
CSEr r

QpenDri ver
PBOpen
PBOpenSync
OpenSl ot
OpenDeskAcc
Cl oseDri ver
PBC ose
PBC oseSync

void C oseDeskAcc

(Const St r 255Par am nane, short *drvrRef Num ;

(ParnBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;

(ParmBl kPt r paranBl ock, Bool ean async);
(Const St r 255Par am deskAccNarne) ;

(short refNunj;

(ParmBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;

(short refNunj;

Communicating With Device Drivers

pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal

1-94

CSEr r
OSEr r
CSEr r
CSEr r
OSEr r
CSEr r
CSEr r
OSEr r

FSRead
PBRead
PBReadSync
PBReadAsync
FSWite
PBWite
PBW it eSync
PBW it eAsync

(short ref Num long *count, void *buffPtr);
(ParmBl kPt r paranBl ock, Bool ean async);

(ParnBl kPt r paranBl ock) ;

(ParnBl kPtr paranBl ock) ;

(short ref Num | ong *count, const void *buffPtr);
(ParnBl kPt r paranBl ock, Bool ean async);

(ParnBl kPt r paranBl ock) ;

(ParnBl kPt r paranBl ock) ;

Summary of the Device Manager

CHAPTER 1

Device Manager

Controlling and Monitoring Device Drivers

pascal CSErr Control (short ref Num short csCode, const void
*csParanPtr);

pascal OSErr PBCont r ol (ParnBl kPt r paranBl ock, Bool ean async);

pascal OSErr PBControl Sync (ParnBl kPtr paranBl ock);

pascal OSErr PBControl Async (ParnBl kPtr paranBl ock);

pascal CSErr Status (short ref Num short csCode, void *csParanPtr);

pascal OSErr PBSt at us (ParnBl kPtr paranBl ock, Bool ean async);

pascal OSErr PBStatusSync (Par mBl kPt r paranBl ock) ;

pascal OSErr PBStatusAsync (ParnBl kPtr paranBl ock);

pascal CSErr KilllO (short refNunj;

pascal OSErr PBKilllO (ParmBl kPt r paranBl ock, Bool ean async);

pascal OCSErr PBKilll OSync (ParnBl kPt r paranBl ock) ;

pascal OSErr PBKilllQAsync (ParnBl kPtr paranBl ock);

Driver Support Functions

pascal CSErr Driverlnstall (Ptr drvrPtr, short refNunj;

pascal OSErr Driverlnstall ReserveMem (Ptr drvrPtr, short refNum;

pascal OSErr DriverRRenove (short refNunj;

pascal DCtl Handle GetDCtl Entry (short refNun);

Pascal Summary

Constants

CONST

{request codes passed by the Device Manager to a driver’s primnme routine}

aRdCmd
aw Cnd

2;
= 3;

{flags used in the driver head

dNeedLockMask = $4000;
dNeedTi neMask = $2000;
dNeedGoodByeMask = $1000
dSt at Enabl eMask = $0800;

Summary of the Device Manager

{read operation requested}
{write operation requested}

er and device control entry}

{set if driver nust be locked in nmenory as }
{ soon as it is opened}

{set if driver needs time for performng }

{ periodic tasks}

{set if driver needs to be called before }

{ the application heap is initialized}

{set if driver responds to status requests}

1-95

1-96

CHAPTER 1

Device Manager

dCt | Enabl eMvask
dW it Enabl eMask
dReadEnabl eMask

$0400;
$0200;
$0100;

{set if driver responds to control requests}
{set if driver responds to wite requests}
{set if driver responds to read requests}

{run-time flags used in the device control entry}

{driver is currently processing a request}
{dCtIDriver is a handle (1) or pointer (0)}
{driver is open}

drvrActi veMask =
dRAMBasedMask
dOpenedMask

{access perni ssions}
fsCurPerm =
f sRdPer m =
f sW Perm =
f SRAW Per m =

{posi tioni ng nodes}
f SAt Mar k =
fsFronttart =
f sFromvar k =

{read nodes}
rdVerify =

{control codes}

goodbye =
ki | | Code =
accEvent =
accRun
accCur sor =
accMenu
accUndo =
accCut
accCopy =
accPaste =
accd ear =

{Chooser messages}
chooser | nit Msg
newSel Msg
filllListMg =
get Sel Msg
sel ect Msg =

Summary of the Device Manager

$0080;
$0040;
$0020;

2 e

64;

_1,

64;

= 65;

66;

= 67;

68;

= 70;

71;
72;
73;

11;

= 12;

13;

= 14,

15;

{retain current perm ssion}
{al | ow reads onl y}

{allow wites only}

{all ow reads and wites}

{at current position}
{of fset from begi nni ng}
{offset fromcurrent position}

{read-verify node}

{heap being reinitialized}
{Ki Il O requested}
{handl e an event}

{tinme for

periodi c action}

{change cursor shape}
{handl e nenu iten}
{handl e undo command}
{handl e cut comrand}
{handl e copy comand}
{handl e paste command}
{handl e cl ear conmmand}

{t he user
{t he user
{fill the
{mark one
{t he user

sel ected this device package}
made new devi ce sel ections}
device list with choices}

or nore choices as sel ected}
made a sel ecti on}

CHAPTER 1

Device Manager

desel ect Msg = 16; {the user cancel ed a sel ection}
term nat eMsg = 17; {al | ows devi ce package to clean up}
but t onMsg = 19; {the user selected a button}

Data Types

TYPE ParanBl kType = (1 OParam Fil eParam Vol umeParam Cntrl Param
Sl ot DevParam Ml ti DevParan ;

Par anBl ockRec =

Summary of the Device Manager

RECORD
gLi nk: El enPtr; {next queue entry}
qType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCrd Addr : Ptr; {routine address}
i oConpl etion: ProcPtr; {conpl etion routine address}
i oResul t: CSErr; {result code}
i oNanmePtr: StringPtr; {pointer to driver nane}
i oVRef Num I nt eger; {vol une reference or drive nunber}
CASE Par anBl kType OF
| OPar am
(i oRef Num I nt eger; {driver reference nunber}
i oVer sNum Si gnedByte; {not used}
i oPer mssn: Si gnedByte; {read/wite perm ssion}
i OM sc: Ptr; {not used}
i oBuf fer: Ptr; {pointer to data buffer}
i oReqCount : Longl nt; {requested nunber of bytes}
i 0Act Count : Longl nt; {actual nunber of bytes}
i oPosMode: I nt eger; {posi tioni ng node}
i oPosOf f set : Longl nt); {posi tioning offset}
Cntrl Param
(1 oCRef Num I nt eger; {driver reference nunber}
csCode: I nt eger; {type of control or status request}
csParam ARRAY[0..10] OF Integer); {control or status info}
END;
Par mBl kPt r = ~Par anBl ockRec;
AuxDCE =
RECORD
dCt | Driver: Ptr; {pointer or handle to driver}
dct | Fl ags: I nt eger; {fl ags}
dct | QHdr: QHdr ; {driver 1/0O queue header}
dCtl Position: Longlnt; {byte position}

1-97

CHAPTER 1

Device Manager

dct| St or age: Handl e;
dCt | Ref Num I nt eger;
dCtl CurTicks: Longlnt;
dCt | W ndow: Gafbtr;
dct| Del ay: I nt eger;
dcCt | EMask: I nt eger;
dct | Menu: I nt eger;
dctl Sl ot: Byt e;
dctl Slotld: Byt e;
dCt | DevBase: Longl nt;
dCt | Onner: Ptr;
dcCt | Ext Dev: Byt e;
fillByte: Byt e;

END;

Aux DCEPt r = "AuxDCE;

AuxDCEHandl e = "AuxDCEPt r

Routines

{handl e to private storage}
{driver reference nunber}

{used internally}

{pointer to driver’s w ndow}
{ticks between periodic actions}
{event nmask for desk accessori es}
{menu I D for desk accessories}
{slot}

{sResource directory |ID}

{sl ot device base address}
{reserved; nust be 0}

{external device |D}

{reserved}

Opening and Closing Device Drivers

FUNCTI ON OpenDri ver (name: Str255; VAR refNum Integer): OSErr;
FUNCTI ON PBOpen (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBOpenSync (paramBl ock: ParmBl kPtr): OSErr;
FUNCTI ON OpenSl ot (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON OpenDeskAcc (deskAccNane: Str255): | NTECER;
FUNCTI ON C oseDri ver (refNum Integer): OSErr;
FUNCTI ON PBCl ose (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBCl oseSync (paramBl ock: ParnBl kPtr): OSErr;
PROCEDURE C oseDeskAcc (ref Num | NTEGER);
Communicating With Device Drivers
FUNCTI ON FSRead (refNum Integer; VAR count: Longlnt;

buffPtr: Ptr): OSErr;
FUNCTI ON PBRead (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBReadSync (paranmBl ock: ParnBl kPtr): OSErr;
FUNCTI ON PBReadAsync (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON FSWite (refNum Integer: VAR count: Longlnt;

buffPtr: Ptr): OSErr;
FUNCTI ON PBWite (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBW it eSync (paramBl ock: ParnBl kPtr): OSErr;
1-98 Summary of the Device Manager

CHAPTER 1

Device Manager

FUNCTI ON PBW it eAsync (paramBl ock: ParmBl kPtr): OSErr;

Controlling and Monitoring Device Drivers

FUNCTI ON Contr ol (refNum Integer; csCode: |nteger;
csParanmPtr: Ptr): OSErr;
FUNCTI ON PBCont r ol (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBCont r ol Sync (paranmBl ock: ParnBl kPtr): OSErr;
FUNCTI ON PBCont r ol Async (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON St at us (refNum Integer; csCode: |nteger;
csParanmPtr: Ptr): OSErr;
FUNCTI ON PBSt at us (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBSt at usSync (paramBl ock: ParnmBl kPtr): OSErr;
FUNCTI ON PBSt at usAsync (paramBl ock: ParmBl kPtr): OSErr;
FUNCTION Kil 1O (refNum Integer): OSErr;
FUNCTION PBKi I 11 O (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBKi | I | Gsync (paramBl ock: ParmBl kPtr): OSErr;
FUNCTI ON PBKi | | | QAsync (paranmBl ock: ParnBl kPtr): OSErr;

Driver Support Routines

FUNCTI ON DriverlInstall (drvrPtr: Ptr; refNum Integer): OSErr;
FUNCTI ON Driverlnstal |l ReserveMem (drvrPtr: Ptr; refNum |Integer): CSErr;
FUNCTI ON Dri ver Renmove (refNum Integer): OSErr;

FUNCTI ON Get DCt | Entry (refNum Integer): DCtl| Handl e;

Assembly-Language Summary

Data Structures

Device Manager Parameter Block Header

0 gLi nk long used internally by the Device Manager
4 gType word used internally by the Device Manager
6 i oTrap word used internally by the Device Manager
8 i oCndAddr long used internally by the Device Manager

12 i oConpl eti on long completion routine

16 i oResul t word result code

18 i oNamePt r long driver name

22 i oVRef Num word drive number

Summary of the Device Manager 1-99

CHAPTER 1

Device Manager

1/O Parameter Structure

24 i oRef Num word
26 i oVer sNum byte
27 i oPermssn byte
28 i oM sc long
32 i oBuf f er long
36 i oReqCount long
40 i 0Act Count long
44 i oPosMode word
46 i oPosOf f set long

Control Parameter Structure

24 i oCRef Num word
26 csCode word
28 csParam 22 bytes

Trap Macros

driver reference number
not used

read/write permission
not used

pointer to data buffer
requested number of bytes
actual number of bytes
positioning mode
positioning offset

driver reference number
type of control or status request
control or status information

Trap Macro Names

C and Pascal

name Trap macro name
PBOpen _Open

OpenSl ot _Open

PBC ose _CO ose

PBRead _Read

PBWite _Wite

PBCont r ol _Control

PBSt at us _Status
PBKill1O _Killlo
Driverlnstall _Drvrinstall

Dri ver Renove

_DrvrRenove

Routines Requiring Jump Vectors

Routine Jump vector
Fetch JFetch

St ash JSt ash

| CDone JI ODone
1-100

Summary of the Device Manager

CHAPTER 1

Device Manager

Result Codes

noErr 0
control Err -17
stat uskrr -18
readErr -19
witErr =20
badUni t Err -21
uni t Enpt yErr =22
openErr -23
closErr -24
dRenovErr -25
dinstErr -26
abortErr =27
not QpenkErr -28
i oErr -36

No error

Driver does not respond to this control request

Driver does not respond to this status request

Driver does not respond to read requests

Driver does not respond to write requests

Driver reference number does not match unit table

Driver reference number specifies ani | handle in unit table
Requested read/write permission does not match driver’s open permission
Driver unable to complete close request

Attempt to remove an open driver

Driver resource not found

Request aborted by Ki I 1 1 O

Driver not open

Data does not match in read-verify mode

Summary of the Device Manager 1-101

CHAPTER 2

Slot Manager

Contents

Introduction to Slots and Cards 2-3
Slot Address Allocations 2-5
Firmware 2-7
The sResource 2-7
Type and Name Entries 2-9
The Board sResource and Functional sResources 2-11
The sResource Directory 2-12
The Format Block 2-13
About the Slot Manager 2-15
Using the Slot Manager 2-16
Enabling and Disabling NuBus Cards 2-17
Deleting and Restoring sResources 2-17
Enabling and Disabling sResources 2-18
Searching for sResources 2-19
Obtaining Information From sResources 2-20
Installing and Removing Slot Interrupt Handlers 2-22
Slot Manager Reference 2-22
Data Structures 2-22
Slot Manager Parameter Block 2-23
Slot Information Record 2-24
Format Header Record 2-26
Slot Parameter RAM Record 2-27
Slot Execution Parameter Block 2-27
Slot Interrupt Queue Element 2-28
Slot Manager Routines 2-29
Determining the Version of the Slot Manager 2-30
Finding sResources 2-31
Getting Information From sResources 2-40
Enabling, Disabling, Deleting, and Restoring sResources 2-51
Loading Drivers and Executing Code From sResources 2-58

Contents 2-1

CHAPTER 2

Getting Information About Expansion Cards and Declaration
ROMs 2-61

Accessing Expansion Card Parameter RAM 2-67
Managing the Slot Interrupt Queue 2-70
Low-Level Routines 2-72
Summary of the Slot Manager 2-87
Pascal Summary 2-87
Constants 2-87
Data Types 2-87
Slot Manager Routines 2-90
Low-Level Routines 2-91
C Summary 2-92
Constants 2-92
Data Types 2-92
Slot Manager Functions 2-94
Low-Level Functions 2-96
Assembly-Language Summary 2-97
Data Structures 2-97
Trap Macros 2-99
Result Codes 2-100

Contents

CHAPTER 2

Slot Manager

This chapter describes how your application or device driver can use the Slot Manager to
identify expansion cards and communicate with the firmware on a card.

You need to use the Slot Manager only if you are writing an application or a device
driver that must address an expansion card directly. For example, you need to use the
Slot Manager if you are writing a driver for a video card, but not if you only want to
display information on a monitor for which a device driver already exists.

The Slot Manager provides functions to help you search through the data structures that
expansion cards use to organize the information in their firmware. The meaning of the
information in the data structures varies from card to card; you need to know the
specifics of a card in order to interpret its data structures. To interpret these data
structures, you need to know the information in Designing Cards and Drivers for the
Macintosh Family, third edition, as well as information specific to the expansion card
you’re using.

This chapter begins with a brief introduction to Apple’s implementation of the NuBus
expansion interface. The NuBus interface provides a 32-bit-wide synchronous, multislot
expansion bus for adding expansion cards to Macintosh computers. This introduction
explains the firmware data structures of NuBus expansion cards, but does not provide
much detail about the information these data structures contain. If you are designing an
expansion card, you must read Designing Cards and Drivers for the Macintosh Family, third
edition. If you are writing a driver for a device on a card, you should also read the
chapter “Device Manager” in this book.

After introducing the NuBus architecture and expansion card design, this chapter
discusses how you can

n enable and disable NuBus cards
n delete, restore, enable, disable, and find information in an expansion card’s firmware

n install and remove slot interrupt handlers

Introduction to Slots and Cards

The Macintosh Operating System provides a standardized interface to expansion cards
through the Slot Manager. The Slot Manager supports two types of expansion cards:
NuBus and processor-direct slot (PDS). Most Macintosh computers include one or both
of these expansion systems. Although the discussion and examples in this chapter use
NuBus, the information also applies to PDS expansion cards.

Processor-direct slot expansion cards connect directly to the processor bus, giving them
direct access to the microprocessor and therefore a speed advantage over NuBus cards.
However, because the PDS expansion interface is an extension of the processor bus, the
configuration of the slot depends on which microprocessor is used by the computer.
Refer to Designing Cards and Drivers for the Macintosh Family, third edition, for
information specific to PDS expansion cards.

Introduction to Slots and Cards 2-3

CHAPTER 2

Slot Manager

Macintosh computers that include the NuBus expansion interface contain one or more
identical NuBus slots. Each slot is identified by slot a number in the range $1 through $E.
(Slot $0 corresponds to the main logic board, and slot $F is reserved for NuBus address
translation.)

Note

For convenience, this chapter refers to a NuBus configuration with six
slots numbered $9 through $E. Keep in mind that Macintosh computers
may have more or fewer slots. Refer to the appropriate Macintosh
Developer Note or Guide to the Macintosh Family Hardware, second
edition, for information about specific models. u

In Macintosh computers, the processor bus (which connects the microprocessor to RAM,
ROM, and the FPU) and the NuBus (which connects the NuBus slots) are connected by a
bus interface, as shown in Figure 2-1.

Figure 2-1 Simplified processor-bus and NuBus architecture

2-4

Trarsdses babyman

processor bus
and MuBu=

arana arana araa araaa arana araa araaa arana araa aa

Both the processor bus and the NuBus are 4 bytes (32 bits) wide. The bus interface
transfers data between the buses in byte lanes. A byte lane is any of the 4 bytes that
make up the 32-bit bus. Because the processor bus and the NuBus interpret the
significance of bytes within words differently, the bus interface must perform byte-lane
swapping between the two buses.

The bus interface also performs some address translation between the two buses. It maps
certain address ranges on each bus to different address ranges on the other bus.
Designing Cards and Drivers for the Macintosh Family, third edition, discusses byte lanes
and address translation in more detail.

The next section,“Slot Address Allocations,” discusses the address ranges assigned by
the Macintosh architecture to each NuBus slot.

The section “Firmware” on page 2-7 introduces the data structures that cards use to
organize information in their firmware.

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

Slot Address Allocations

The Macintosh architecture assigns certain address ranges to each slot. The
microprocessor communicates with an expansion card in a particular slot by reading

or writing to memory in the slot’s address range. Expansion cards can also communicate
with each other in this manner.

The NuBus architecture supports 32-bit addressing, providing 4 gigabytes of address
space. All Macintosh computers that use Motorola 68030, 68040, or PowerPC processors
support 32-bit addressing under System 7. Macintosh computers that use Motorola
68000 or 68020 processors, and those running System 6, use 24-bit addressing. This
section describes address space allocation in both the 32-bit and 24-bit modes.

In 32-bit mode, the Macintosh architecture assigns two address ranges to each NuBus
slot: a 256-megabyte super slot space and a 16-megabyte standard slot space.

The 4 gigabytes of 32-bit address space contain 16 regions of 256 megabytes apiece. Each
region constitutes the super slot space for one possible slot ID. Each super slot space
spans an address range of $s000 0000 through $sFFF FFFF, where s is a hexadecimal digit
$1 through $E, corresponding to the slot ID. For example, the address range $9000 0000
through $9FFF FFFF constitutes the super slot space for slot $9.

The standard slot spaces are 16 megabytes apiece and have address ranges of the form
$Fs00 0000 through $FsFF FFFF, where s is the slot ID. The standard slot space for slot $9,
for example, is $F900 0000 through $FOFF FFFF. Figure 2-2 shows the super slot and
standard slot subdivisions of the 32-bit address space.

In 24-bit mode, software can address only a fraction of each card’s allocated address
range. In this mode, the Operating System assigns each slot a 1-megabyte minor slot
space. The bus interface translates 24-bit addresses on the processor bus with the form
$sx xxxx (where s is a slot ID and x is any hexadecimal digit) into 32-bit NuBus addresses
of the form $FsOx xxxx, which is the first megabyte of the slot’s standard slot space.

For example, 24-bit addresses in the range $90 0000 through $9F FFFF constitute the
minor slot space corresponding to slot $9. The hardware translates these addresses into
the NuBus address range $F900 0000 through $F90F FFFF.

Introduction to Slots and Cards 2-5

CHAPTER 2

Slot Manager

Figure 2-2 The NuBus 32-bit address space
Stnavidnrd siot = pree
3FFFF FFFF
FFFAI0 0000
3E 3 FED 0000
30 FFOO0 0000
¥ FFC00 0000
* 3 FEO0 0000
: Super sitsmee 3 R0 0000
i §FFFF FFFF . 33 $Fa00 0000
F A0 0000 I . 3= % Fa0 0000
FEOO0 0000 30 ’ I F70 0000
D000 (000 ¥ L $F500 0000
FOO00 (000 = - 35 %500 0000
2000 (00 T ' i $F400 0000
FA000 0m 34 \ i F R0 000
9000 0000 = 32 3 F20 0000
000 D000 = . H $F100 0000
Froo om 5 " FO00 0000
F5000 0000 =
F5000 0000 37
F4000 0000 2
F2000 0000 32
F2000 0000 3
FA000 0000
FO000 0000

Table 2-1 shows the address allocations for each slot ID.

2-6

Table 2-1 Slot address allocations by slot ID
24-bit minor 32-bit minor Standard slot Super slot

Slot ID slot space (1 MB) slot space (1 MB) space (16 MB) space (256 MB)
$1 $1IX XXXX $F10X XXXX BFIXX XXXX FIXXX XXXX

$2 $2X XXXX $F20x XXXX BF2XX XXXX F2XXX XXXX

$3 $3X XXXX $F30X XXXX BF3XX XXXX BIXXX XXXX

$4 $AX XXXX SFA0X XXXX BFAXX XXXX BAXXX XXXX

$5 $5X XXXX $F50X XXXX BFEXX XXXX PFEXXX XXXX

$6 $6X XXXX SFBOX XXXX BFBXX XXXX BEXXX XXXX

$7 $7X XXXX SF70X XXXX BF7XX XXXX FTXXX XXXX

$8 $BX XXXX $F8OX XXXX BFBXX XXXX FBXXX XXXX

continued

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

Table 2-1 Slot address allocations by slot ID (continued)

24-bit minor 32-bit minor Standard slot Super slot
Slot ID slot space (1 MB) slot space (1 MB) space (16 MB) space (256 MB)
$9 $IX XXXX $FI0X XXXX BFIXX XXXX FOXXX XXXX
$A SAX XXXX SFAOX XXXX BFAXX XXXX SAXXX XXXX
$B $BX XXXX $FBOX XXXX BFBXX XXXX BBXXX XXXX
$C BCX XXXX SFCOX XXXX BFCXX XXXX FCXXX XXXX
$D BDX XXXX $FDOX XXXX BFDXX XXXX BDXXX XXXX
$SE BEX XXXX SFEOX XXXX BFEXX XXXX SEXXX XXXX
Firmware

The firmware of a NuBus expansion card contains information that identifies the card
and its functions. Your application uses the Slot Manager to communicate with this
firmware. This firmware, called the declaration ROM, may also include other
information, such as initialization code or code for drivers that communicate with
devices on the card. The sole purpose of many Slot Manager routines is to provide access
to the information in the declaration ROM.

This section discusses the data structures used to store information in the declaration
ROM. You’ll need to understand these structures in order to use the Slot Manager
routines. To create firmware for an expansion card, you’ll need to read Designing Cards
and Drivers for the Macintosh Family, third edition.

The declaration ROM includes these elements:

n The sResources. An sResource is a data structure in the firmware of an expansion
card’s declaration ROM that defines a function or capability of the card. An sResource
typically contains information about a single function or capability, although some
sResources may contain other data—for example, device drivers, icons, fonts, code,
or vendor-specific information.

n The sResource directory. The sResource directory is a special sResource that contains
offsets to all of the other sResources in the declaration ROM.

n The format block. The format block is a data structure that allows the Slot Manager to
find the declaration ROM and to validate it. It contains some identification
information and an offset to the sResource directory.

The next few sections discuss these data structures in more detail.

The sResource

An sResource consists of a list of 4-byte entries. The first byte of each entry is an ID field
that identifies the type of data contained in the entry. The next 3 bytes contain either data
for the sResource or an offset to additional data such as icon definitions, code, or device
drivers relating to the sResource.

Introduction to Slots and Cards 2-7

CHAPTER 2

Slot Manager

Note

An sResource is sometimes referred to as aslot resource. Note, however,
that an sResource is a data structure in the firmware of a NuBus
expansion card and not the type of Macintosh resource associated

with the Resource Manager (which is described in Inside Macintosh:
More Macintosh Toolbox). u

The last entry in an sResource must contain an end-of-list marker—a 4-byte series with
the value $FF 00 00 00. Figure 2-3 shows the format of a typical sResource.

2-8

Figure 2-3 The structure of a typical sResource
=Hesoaes Byiex

SRsroType |0 (value= 1) i

SRE¥oTypa ofieat b

D fekds—— sForr cans |0 {value = 2) 1
sRsrotane offeet e CWfret firkd

Dbear R zourea |0]

CHher sRamouros ofieat e

End-cfdizton arboar 4
[value = FFADD 0000

aaa

The ID field of each sResource entry indicates the type of information in the offset field
of the entry. Apple reserves the range 0 through 127 for common sResource 1Ds.
Designing Cards and Drivers for the Macintosh Family, third edition, includes a complete list
of the Apple-defined sResource IDs and their meanings.

The offset field of each entry can contain a byte or word of data, or an offset to a larger
block of data. This field takes one of three possible forms:

n two $00 bytes followed by an 8-bit byte of data
n asingle $00 byte followed by a 16-bit word of data

n asigned 24-bit offset to a larger data structure; the offset is relative to the address of
the preceding ID field

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

Table 2-2 lists the kinds of large data types commonly used in sResources.

Table 2-2 Large data types used in sResources

Data type Description

Long 32 bits, signed or unsigned

Poi nt er 32 bits, signed or unsigned

cString One-dimensional array of bytes, ending with 0
sBl ock A sized block of data (see Figure 2-4)

sExecBl ock A sized block of code (see Figure 2-4)

The sBl ock and sExecBl ock data structures begin with a si ze field, which contains
the physical size of the block (including the si ze field). In the sBl ock structure, the
si ze field is followed by data. The sExecBl ock structure includes additional fields and
a code block. Figure 2-4 shows these structures.

Figure 2-4 The format of the sBl ock and sExecBl ock data structures
... ;
a
sBlock Byt WwerBlock Byies :
a
a
Phyesics| blocks size 4 Phegsical block size 4 :
a
Fevison kvl |
Dt Wearinble cPU 0 i i
a
{ { Fie ey e 2 i
i
i
Code offeet # j
i
i
i
Code Werimble
i
i
i
i i i = e

Type and Name Entries

As shown in Figure 2-3, the Slot Manager requires that each sResource contain an
sRsr cType entry, which identifies the sResource type, and an sRsr cNane entry, which
provides the sResource hame.

The sRsr cType entry contains an ID value of 1 and an offset to ansRsr cType entry.
Figure 2-5 shows the format of an sRsr cType entry.

Introduction to Slots and Cards 2-9

CHAPTER 2

Slot Manager

Figure 2-5 The sRsr cType entry format

2-10

Arre Type Byter
At ooy 2
oT Y 2
D= 2
DrHW 2

The fields of the sRsr cType entry are as follows:

Field Description

Cat egory The most general classification of card functions. Examples of categories
are cat Di spl ay and cat Net wor k.

cType The subclass of the category. For example, within the cat Di spl ay
category there is at ypeVi deo subcategory; within the cat Net wor k
category, there is at ypeEt her Net subcategory.

Dr SW The driver software interface to the card. (This provides the calling
interface for applications and system software.) For example, under the
cat Di spl ay category and the t ypeVi deo subcategory, there is a
dr SwAppl e software interface that indicates the Apple-defined interface
to work with QuickDraw using Macintosh Operating System frame
buffers.

Dr HW The identification of the specific hardware device associated with the
driver software interface. Generally, only the driver interacts with
the hardware specified here.

Every card has a unique sRsr c Type entry that must be assigned by Apple Computer,
Inc. If you are developing a card, refer to Designing Cards and Drivers for the Macintosh
Family, third edition, for information on obtaining an sRsr cType entry.

The sRsr cNarme entry in an sResource contains an ID value of 2 and an offset to a

¢St ri ng data structure containing the sResource name. By convention, the sRsr cNane
field is derived by stripping the prefixes from the sRsr c Type values and separating
the fields by underscores. For example, the sRsr cNane field for an sResource whose
sRsr cType values are cat Di spl ay, t ypeVi deo, Dr SwAppl e, and Dr HWTFB becomes
' Di spl ay_Vi deo_Appl e_TFB' .

Designing Cards and Drivers for the Macintosh Family, third edition, provides information
about these and other sResource entry types.

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

The Board sResource and Functional sResources

Every card must have a single board sResource that contains information about the card
as a whole. An sResource relating to a specific function is called a functional sResource,
and a card may have as many of them as necessary. For example, a video card may have
separate functional sResources for every pixel depth it supports. (See Figure 2-8 on

page 2-14 for an example of a functional sResources for a video card, and see Designing
Cards and Drivers for the Macintosh Family, third edition, for additional examples that
include code listings.)

The entries in the board sResource provide the Slot Manager with a card’s identification
number, vendor information, board flags, and initialization code. Like all sResources, the
board sResource must include an sRsr c Type entry and an sRsr cNan®e entry. The board
sRsr cType entry must contain the constants Cat Boar d ($0001), TypBoar d ($0000),

Dr SWBoar d ($0000), and Dr HWBoar d ($0000). The sRsr cNane entry for the board
sResource name does not follow the same convention as other sResources: the

sRsr cNane entry for the board sResource contains the name of the entire card (for
example, ' Maci ntosh Di splay Card').

The board sResource must also contain a Boar dl d entry, a word that contains the card
design identification number assigned by Apple Computer, Inc. Designing Cards and
Drivers for the Macintosh Family, third edition, describes other Apple-defined entries
specifically for board sResources.

Figure 2-6 shows a sample board sResource. It shows an sRsr cType entry and an
sRsr cName entry and also includes three entry types, Boar dI D, PRAM ni t Dat a,
and Pri mar yl ni t, which are discussed in Designing Cards and Drivers for the
Macintosh Family, third edition.

Introduction to Slots and Cards 2-11

CHAPTER 2

Slot Manager

Figure 2-6 A sample board sResource
Board sftesoame duin Bylies
Board sResoare Byle= Cat Eoaind 2
SRsroTyps O fvalie = 1) i TypEcard o
SRaECTY s offzet # I SWECard 2
FxpoH. 1D feabie =2
= amne |0 frabie =2 i - ed a
FFsrotame offset a
EcardTd IO fwalus = 22 i ki ey Wariable
Ecardlddais 2
FRAMTrAEData IO {wdus= 238 i
Fhysicd block size 4
FFAHT i b T ta offoat 2
FrimaryIrdt |0 (ealus = 29 i Walue = F00 1
Walye = F00 i
FrimaryInit offest 2 By i
Bt 2 i
Erd-otist madoer 4 Eyre 2 i
fralue = FFAD 0000) Eye 4 i
By 5 i
By G i
Phypsicd block size 4
Revison level 1
cRUID i
Resarped 2
Ciode ofinet 4
{ Covde { Wariahle

The sResource Directory

The sResource directory lists all the sResources in the declaration ROM and provides an
offset to each one. The sResource directory has the same structure as an sResource—that
is, an sResource directory consists of a series of 4-byte entries, where the first byte is an
ID field and the next 3 bytes contain an offset to additional data. Figure 2-7 shows the
format of the sResource directory.

2-12 Introduction to Slots and Cards

CHAPTER 2

Slot Manager

Figure 2-7 The structure of the sResource directory
=hesomroe diseciony Bylex

—— zRezsorce |0, i

SRasouros ofiest b

D fekds———— sResmros 104]
sResouroe ofiset d————— (et =

S sResmros |0]

SRasoros ofieet e

sRezoros |0,]

sRasoros ofieat 2

ErdoHistm adozr
fwaboe = F FROO O000)

The sResource ID field of an entry in the sResource directory always identifies an
sResource on the card. Each sResource in the card firmware requires a unique 1D defined
by the card designer, and the ID must be in the range 1 through 254. For example, an
entry for the board sResource must appear first in a card’s sResource directory, so card
designers typically assign an sResource ID value of 1 to the board sResource. The
sResource ID numbers must appear in the sResource directory in ascending order. An
sResource directory must conclude with the end-of-list marker ($FF 00 00 00).

The offset field of each entry contains a signed 24-bit offset to the sResource
corresponding to the sResource ID field. The offset value counts only those bytes
accessible by valid byte lanes, and is relative to the address of the sResource ID field.

The Format Block

The format block always resides at the highest address in the standard slot space of a
declaration ROM. At startup, the Slot Manager locates installed cards by searching each
slot space for a valid format block. The format block contains information about the
declaration ROM and an offset to the sResource directory. The Slot Manager uses the
format block to validate the declaration ROM and locate the sResources.

The format block also contains a value that specifies which of the four byte lanes are
occupied by the declaration ROM. These byte lanes are called the valid byte lanes. Some
declaration ROMs do not appear on all four byte lanes, so software cannot read
meaningful data at every memory location in the address space for the byte lanes.

Introduction to Slots and Cards 2-13

CHAPTER 2

Slot Manager

IMPORTANT
The format block defines which byte lanes are valid for the declaration
ROM only. The valid byte lanes are determined by card design, and may
be different for other memory-mapped devices on the card. s

Designing Cards and Drivers for the Macintosh Family, third edition, defines the structure of
the format block and gives examples of how the valid byte lanes affect communication
with a declaration ROM.

Figure 2-8 illustrates the relationship of the format block, the sResource directory,

and the sResources for a sample video card. For every entry in the sResource directory
and in the sResources, its ID number is shown on the left side of the entry. As shown in
this figure, the board sResource is the first sResource listed in the sResource directory.
Each functional sResource that follows in turns defines a display capability provided by

the card. (To simplify this figure, only one complete functional sResource is shown.)

Figure 2-8 The format block and sResources for a sample video card
Codeordein
CatEomy-d(Catsogory) |
Formal block TypEcard(cType
Directory ofioct Dr-SWEoard (DT
Lergh DrHWEoard (DeHH
CRC oSt iTg
Fozurigi ooy || [— o otr e
Fomn 2t u pre g
Teetpatem 1| Rmelype 1 | verdoeTD]
TP— z sRspoHaTas 3 | FevLerel pre—
Evk kree | Bomedrd e .
M| PrivmeyInit o= Hrd T
| rerndorInfo Catlisplay (Categmey)]
sherowce dimecbry Fasciosal Typl ideo [oTy
1 Bioard o P geaares sRexowes LXE Dresspple (De
128 Furncliond eRescnes 1 FRarolyps T HWI FE [TeHwW)
129 Furcdoral oFeeonos 2 FR.AEo A& oSt ing
4 | sRsroIrrrDir -
2 | shsroHuDer T |—I-|Elri|
10 | MinoeEass0s
11 ZI:-:I'.I.'I.‘u:h:E-L-:Iu.'g't-:h —I_-{m
128 OneEittisded
129 TioEitredst L w7 [ooeEitFazms —={ sElock]
130 FourE itdods 3| FageCowunt
4 | IeviceTyps
:ﬁ:r:,: 1 = 1 | TwoEitFarms — sElock|
1 FRapoType 4 h'E_ch':'
4 | IeviceTyps
ﬂ; g 1 [FourEitFarmg—m sElock |
Fagesoumt
Devrlosl yps

2-14

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

About the Slot Manager

The Slot Manager provides three basic services:
n On startup, it examines each slot and initializes any expansion cards it finds.

n It maintains data structures that contain information about each slot and every
available sResource.

n It provides functions that allow you to get information about expansion cards and
their sResources.

There are two variations of the System 7 Slot Manager: version 1 and version 2. Version 1
of the Slot Manager is RAM based and is installed by the user with the System 7 upgrade
kit. Version 2 is included in the ROM of newer Macintosh computers.

At startup, the version of the Slot Manager in ROM searches each slot for a declaration
ROM and creates a slot information record for each slot. See “Slot Information Record”
on page 2-24 for the definition of the SI nf oRecor d data type.

As the Slot Manager searches the slots, it identifies all of the sResources in each
declaration ROM and creates a table—the slot resource table (SRT)—that lists all of the
sResources currently available to the system. The slot resource table is a private data
structure maintained by the Slot Manager. Applications and device drivers use Slot
Manager routines to get information from the slot resource table.

After building the slot resource table, the Slot Manager initializes the 6 bytes reserved for
each slot in parameter RAM. If the slot has an expansion card with a PRAM ni t Dat a
entry in its board sResource, the Slot Manager uses the values in that entry to initialize
the parameter RAM; otherwise, it clears those bytes in parameter RAM.

Next, the Slot Manager disables interrupts and executes the code in the Pri mar yl ni t
entry of the board sResource for each card. Note that at this point in the startup, the
keyboard and the mouse are not initialized and that a card’s Pri mar yl ni t code has
only limited control over the functionality of the card itself.

If certain values (defined by the Start Manager) are set in a card’s parameter RAM, a
card with an sRsr cBoot Rec entry may take over the system startup process. The Start
Manager passes control to the code in the sRsr cBoot Rec early in the startup sequence,
before system patches are installed. Refer to the chapter “Start Manager” in Inside
Macintosh: Operating System Utilities for more information about the startup process.

Designing Cards and Drivers for the Macintosh Family, third edition, describes the
PRAM ni t Dat a, Pri maryl ni t, and sRsr cBoot Rec entry types.

If no card takes over, the normal system startup continues. After version 1 of the Slot
Manager is loaded, it conducts a second search for declaration ROMs, this time in 32-bit
mode. If the Slot Manager finds any additional NuBus cards, it adds their sResources to
the slot resource table and executes the code in their Pri mar yl ni t entries. (Version 2 of
the Slot Manager, which resides in ROM, does not need to conduct a second search.)

About the Slot Manager 2-15

CHAPTER 2

Slot Manager

Note

Some versions of the Slot Manager prior to System 7 address NuBus
cards in 24-bit mode and may not be able to identify all cards. After
version 1 of the Slot Manager is loaded, it locates these cards. u

After all system patches have been installed, version 1 or later of the Slot Manager
executes the code in any Secondar yl ni t entries it finds in the declaration ROMs.

It does not reexecute the code from Pri mar yl ni t entries, reinitialize parameter RAM,
or restore any sResources deleted by the Pri mar yl ni t code.

Note

Most versions of the Slot Manager prior to System 7 do not execute code
from Secondar yl ni t entries. u

After the Slot Manager executes Secondar yl ni t code, it searches for sResources that

have an sRsr cFl ags entry with the f QpenAt St art flag set. When the Slot Manager
finds an sResource with this flag set, it loads the device driver from the sRsrcDrvrDi r
entry of the sResource, or calls the code in the sResource’s sRsr cLoadRec entry, which
loads the sResource’s device driver.

Finally, the system executes initialization resources of type ' INI T' .

See Designing Cards and Drivers for the Macintosh Family, third edition, for details about
the sRsr cFl ags, sRsrcDrvr Di r,and sRsr cLoadRec entry types.

Using the Slot Manager

2-16

The Slot Manager allows you to enable and disable NuBus cards, manipulate the slot
resource table, get information from slot information records, get status information,
and read and change expansion cards’ parameter RAM. However, the majority of Slot
Manager routines search for sResources in the slot resource table or provide information
from these structures.

The Slot Manager provides a variety of methods to find an sResource. These methods
include searching for an sResource with a particular sResource ID, searching for an
sResource with a particular sResource type, searching through all sResources, searching
through only the enabled sResources, and so on.

The Slot Manager also provides a number of routines that return information from
sResources. Some of these routines, like the SReadByt e and SGet CSt r i ng functions,
return one particular type of data structure. Others, like the SFi ndSt r uct function, can
return information about any data structure. Functions such as SGet Dr i ver and SExec
not only return information from an sResource, they also perform additional operations
like loading the sResource’s driver or executing the code of an sExecBl ock data
structure.

You can use the SVer si on function, described on page 2-30, to determine if the Slot
Manager is version 1, version 2, or a version that predates System 7.

Using the Slot Manager

CHAPTER 2

Slot Manager

Enabling and Disabling NuBus Cards

Version 1 and later of the Slot Manager allows you to temporarily disable your NuBus
card. You might want to do this if, for example, you are designing a NuBus card that
must be addressed in 32-bit mode or that requires RAM-based system software patches
to be loaded into memory before the card is initialized. Your Pri mar yl ni t code can
disable the card temporarily and the Secondar yl ni t code can reenable it.

To disable a NuBus card temporarily, the initialization routine in your Pri mar yl ni t
record should return in the seSt at us field of the SEBI ock data structure (described in
“Slot Execution Parameter Block™ on page 2-27) an error code with a value in the range
svTenpDi sabl e ($8000) through svDi sabl ed ($8080). The Slot Manager places this
code in the si | ni t St at usV field of the slot information record for the slot, and places
the fatal error sm ni t St at VErr (-316) in the si | ni t St at usAfield of the slot
information record. The card and its sResources are then unavailable for use by the
Operating System.

After the Operating System loads RAM patches, the Slot Manager checks the value of the
si | ni t St at usAfield of each slot information record. If this value is greater than or
equal to 0, indicating no error, the Slot Manager executes the Secondar yl ni t code for
the slot, if any. If the value in the si | ni t St at usAfield is s ni t St at VEr r, the Slot
Manager checks the si | ni t St at usV field. If the value of the si | ni t St at usV field is
in the range svTenpDi sabl e through svDi sabl ed, the Slot Manager sets the

si | ni t St at usAfield to 0 and runs the Secondar yl ni t code.

For examples of Pri maryl ni t and Secondar yl ni t code, see Designing Cards and
Drivers for the Macintosh Family, third edition.

Deleting and Restoring sResources

Some NuBus cards have sResources to support a variety of system configurations or
modes. The Slot Manager loads all of the sResources during system initialization, and
then the card’s Pri mar yl ni t code can delete from the slot resource table any
sResources that are not appropriate for the system as configured. If the user changes the
system configuration or selects a different mode of operation, your card can reinstall a
deleted sResource. The SDel et eSRTRec function deletes sResources; the

I nsert SRTRec function reinstalls them.

Because none of the Slot Manager functions can search for sResources that have been
deleted from the slot resource table, you must keep a record of all sResources you delete
so that you will have the appropriate parameter values when you want to reinstall one.

When you reinstall an sResource, it may be necessary to update the dCt | Sl ot | d and
dCt | DevBase fields in the slot device driver’s device control entry. You need to update
the dCt | Sl ot | d field if you change the sResource ID. The dCt | DevBase field holds
the base address of the slot device. For a video card this is the base address for the pixel
map in the card’s GDevi ce record (which is described in Inside Macintosh: Imaging With
QuickDraw). The | nsert SRTRec function updates the dCt | DevBase field
automatically if you supply a valid driver reference number.

Using the Slot Manager 2-17

CHAPTER 2

Slot Manager

Enabling and Disabling sResources

Under certain circumstances, you might want to disable an sResource while it remains
listed in the slot resource table. For example, a NuBus card might provide several modes
of operation, only one of which can be active at a given time. Your application might
want to disable the sResources associated with all but the active mode, but still list all
available modes in a menu. When the user selects a new mode, your application can
then disable the currently active sResource and enable the one the user selected.

You use the Set SRsr ¢St at e function to enable or disable an sResource. Listing 2-1
disables the sResource in slot $A with an sResource ID of 128 and enables the sResource
in the same slot with an sResource ID of 131.

Listing 2-1 Disabling and enabling an sResource

2-18

PROCEDURE MyDi sabl eAndEnabl eSResour ce;

VAR
my SpBl k: SpBl ock;
nyErr: OSErr;
BEG N
W TH nySpBl k DO {set required values in paraneter bl ock}
BEG N
spParanData : = 1; {di sabl e}
spSlot := $A {sl ot nunber}
spl D : = 128; {sResource | D}
spExt Dev : = 0; {1 D of external device}
END,

myErr : = Set SRsrcSt at e(@rySpBI k) ;
IF myErr = noErr THEN

BEG N
W TH nySpBI k DO
BEG N
spParanData : = O; {enabl e}
spSl ot : = $A {sl ot nunber}
spl D : = 131; {sResource | D}
spExt Dev : = O; {1 D of external device}
END;
myErr : = Set SRsrcStat e(@rySpBI k) ;
END,
END;

Using the Slot Manager

CHAPTER 2

Slot Manager

Searching for sResources

The Slot Manager provides several functions that search for sResources in the slot
resource table. These functions allow you to specify which sResources to search, but

each function provides slightly different options.

The SNext SRsr ¢ and SNext TypeSRsr ¢ functions allow you to search for enabled
sResources by slot. The SGet SRsr ¢ and SGet TypeSRsr ¢ functions, available only with
the System 7 Slot Manager (that is, version 1 and version 2 of the Slot Manager), allow
you to search for disabled sResources as well as enabled ones. Table 2-3 summarizes the
Slot Manager search routines and the options available for each.

Table 2-3 The Slot Manager search routines
State of
sResources for Which Type of
which it Slots it sResources it sResource it
Function searches searches searches for searches for
SNext SRsr ¢ Enabled only Specified slot Next sResource Any type
and higher slots only
SGet SRsr¢” Your choice of Your choice of Your choice Any type
enabled only or one slot only or of specified
both enabled specified slot sResource or
and disabled and higher slots next sResource
SNext TypeSRsr ¢ Enabled only Specified slot Next sResource Specified type
and higher slots only only
SGet TypeSRsrc” Your choice of Your choice of Next sResource Specified type
enabled only or one slot only or only only

both enabled
and disabled

specified slot
and higher slots

* Available only with the System 7 Slot Manager (that is, version 1 and version 2 of the Slot Manager)

Listing 2-2 shows how to use the SGet TypeSRsr ¢ function to search all slots for both
enabled and disabled sResources with an sResource type category of cat Di spl ay and
an sResource type subcategory of t ypeVi deo.

Listing 2-2

PROCEDURE My SResour ceSear ch;

VAR

my SpBl k:
nmyErr:

SpBl ock;
CSErr;

Using the Slot Manager

Searching for a specified type of sResource

2-19

CHAPTER 2

Slot Manager

BEG N
W TH nySpBl k DO {set required values in paraneter bl ock}
BEG N
spParanData := fAl|; {fAll flag = 1: search all sResources}
spCat egory = cat Di spl ay; {search for Category catDi splay}
spCType = typeVi deo; {search for cType typeVi deo}
spDrvr SW 1= 0; {this field not being matched}
spDr vr HW = 0; {this field not being matched}
spTBMask = 3; {match only Category and cType fi el ds}
spSl ot = 1, {start search fromslot 1}
spl D 1; {start search from sResource ID 1}
spExt Dev = 0; {external device ID (card-specific)}
END;
nyErr := noErr;
VWHI LE nyErr = noErr DO {l oop to search sResources}
BEG N
nyErr := SCet TypeSRsrc(@rySpBl k) ;
MySRsr cProcess(nySpBl k) ; {routine to process results}
END;
I F myErr <> snmNoMbresRsrcs THEN {all search functions return this value }
MyHandl eError (nmyErr); { when search is conpl et e}
END;
Obtaining Information From sResources
If you are writing a driver for a card device, you will most likely want access to the
information in an sResource.
The Slot Manager provides many functions that return information from the entries
of an sResource. The SO f set Dat a, SReadByt e, and SReadWr d functions return
information from the offset field of an sResource entry. The SReadLong, SGet CSt ri ng,
and SGet Bl ock functions return copies of the standard data structures pointed to by the
offset field of an sResource entry. The SFi ndSt r uct and SReadSt r uct functions allow
access to other data structures pointed to by sResource entries.
Listing 2-3 shows an example of searching for a board sResource and obtaining its
name. This example starts at a particular slot number and then searches for the board
sResource in that slot or, if necessary, in higher slots. Once it finds the board sResource,
Listing 2-3 calls the SGet CSt r i ng function, which returns a pointer to a buffer
containing the name string for the card.
2-20 Using the Slot Manager

CHAPTER 2

Slot Manager

Listing 2-3 Searching for the name of a board sResource

PROCEDURE Fi ndBoar dsResource (VAR sl ot Nunmber: | nteger;
VAR fini shed: Bool ean);

VAR
mySpBl k: SpBl ock;
nmyErr: OSErr;
BEG N

{First, get a pointer to the board sResource for the slot.}
W TH nySpBl k DO BEG N
spSl ot := slotNunber; {start searching in this slot, }
{ and continue until found}
spl D 1=
spCat egory
spCType
spDrvr Sw 1=
spDr vr Hwv
END;
myErr : = SNext TypeSRsrc(@ySpBl k) ;
I F myErr <> noErr THEN
MyHandl eError (nmyErr) {quit searching if no nmore sResources}
ELSE
gTheSl ot : = nmySpBl k. spSlot; {the slot in which the sResource was found}

{sRsrcType val ues for a board sResource}

I
eeeoRne

{The spsPointer field of mySpBl ock now contains a pointer to the }
{ board sResource list. The SGetCString function uses this field }
{ as one of two input fields.}
mySpBl k. spI D : = 2; {sRsrcNane entry}
myErr := SGet CString(@rySpBl k) ;
IF myErr <> noErr THEN
MyHandl eError (nmyErr)
ELSE BEGQ N
{The spResult field now points to a copy of the cString.}
MyProcessCar dNane(gTheSl ot, Ptr(mySpBl k. spResult));
{Free nenory allocated by SGetCString.}
Di sposePtr (Ptr(nySpBl k. spResul t));
END;
END;

Because the SGet CSt r i ng function allocates memory for a buffer, your application

must dispose of the buffer afterward, using the Memory Manager procedure
Di sposePtr (which is described in Inside Macintosh: Memory).

Using the Slot Manager 2-21

CHAPTER 2

Slot Manager

Installing and Removing Slot Interrupt Handlers

If your card generates hardware interrupts, you can install a slot interrupt handler to
process interrupts from the card. The Slot Manager maintains an interrupt queue for
each slot. You use the Sl nt | nst al | function, described on page 2-70, to install an
interrupt handler in the slot interrupt queue. The SI nt Renove function, described
on page 2-71, removes an interrupt handler from the slot interrupt queue.

The Sl ot | nt QEl enment data type, described on page 2-28, defines a slot interrupt
gueue element. The queue elements are ordered by priority and contain pointers

to interrupt handlers. When a slot interrupt occurs, the Slot Manager calls the
highest-priority interrupt handler in the slot’s interrupt queue. If the interrupt
handler returns without servicing the interrupt, the Slot Manager calls the next
interrupt handler in the queue, in order of priority, until the interrupt is serviced.

If the interrupt is not serviced by any interrupt handler, a system error dialog box
is displayed.

Before returning to the Slot Manager, your interrupt handler should set a result code
in register DO to indicate whether the interrupt was serviced. If the interrupt was not
serviced, your interrupt handler must return 0. Any value other than 0 indicates that
the interrupt was serviced.

The Slot Manager returns to the interrupted task when your interrupt handler indicates
that the interrupt was serviced; otherwise, it calls the next lower-priority interrupt
handler for that slot. A system error is generated if the last interrupt handler returns

to the Slot Manager without servicing the interrupt.

Slot Manager Reference

This section describes the data structures and routines you use to get information about
the Slot Manager, expansion cards, and sResources.

Data Structures

2-22

This section describes the Slot Manager parameter block structure, the slot information
record, the format header record, the slot parameter RAM record, the slot execution
parameter block, and the slot interrupt queue element.

Many Slot Manager routines return information from data structures contained in the

firmware of cards. See “Firmware,” beginning on page 2-7, for a general discussion of

these data structures, and see Designing Cards and Drivers for the Macintosh Family, third
edition, for more detailed information.

Slot Manager Reference

CHAPTER 2

Slot Manager

Slot Manager Parameter Block

Every Slot Manager function requires a pointer to a Slot Manager parameter block as a
parameter and returns an OSEr r result code. Each routine uses only a subset of the fields
of the parameter block. See the individual routine descriptions for a list of the fields used
with each routine. The Slot Manager parameter block is defined by the SpBI ock data

type.

TYPE SpBl ock =

PACKED RECORD {Sl ot Manager paraneter bl ock}
spResul t: Longl nt; {result}
spsPoi nt er: Ptr; {structure pointer}
spSi ze: Longl nt ; {size of structure}
spXf f set Dat a: Longl nt; {of fset or data}
spl OFi | eNanre: Ptr; {reserved for Slot Mnager}
spsExecPBl k: Ptr; {pointer to SEBl ock data structure}
spPar anDat a: Longl nt; {fl ags}
spM sc: Longl nt; {reserved for Slot Mnager}
spReserved: Longl nt; {reserved for Slot Manager}
spl OReser ved: I nt eger; {i oReserved field from SRT}
spRef Num I nt eger; {driver reference nunber}
spCat egory: I nt eger; {Category field of sRsrcType entry}
spCType: I nt eger; {cType field of sRsrcType entry}
spDrvr SW I nt eger; {DrSWfield of sRsrcType entry}
spDrvr HW I nt eger; {DrHWfield of sRsrcType entry}
spTBMask: Si gnedByt e; {sRsrcType entry bit mask}
spSl ot : Si gnedByt e; {sl ot nunber}
spl D: Si gnedByt e; {sResource | D}
spExt Dev: Si gnedByt e; {external device |ID}
spHwDev: Si gnedByt e; {hardwar e device |D}
spByt eLanes: Si gnedByt e; {valid byte | anes}
spFl ags: Si gnedByt €; {flags used by Sl ot Manager}
spKey: Si gnedByt e; {reserved for Slot Mnager}

END;

Field descriptions

spResul t A general-purpose field used to contain the results returned by
several different routines.

spsPoi nt er A pointer to a data structure. The field can point to an sResource, a
data block, or a declaration ROM, depending on the routine being
executed.

spSi ze The size of the data pointed to in the spsPoi nt er field.

spOf f set Dat a The contents of the offset field of an sResource entry. Some routines
use this field for other offsets or data.

spl OFi | eNane Reserved for use by the Slot Manager.

Slot Manager Reference 2-23

CHAPTER 2

Slot Manager

spsExecPBl k

spPar anDat a

spM sc
spReserved
spl OReser ved

spRef Num
spCat egory
spCType
spDrvr SW

spDrvr HWV
spTBMask

spSl ot

spl D
spExt Dev

spHwDev
spByt eLanes

spFl ags
spKey

A pointer to an SEBI ock data structure, which is described on
page 2-27.

On input, a long word containing flags that determine what
sResources the Slot Manager searches. When set, bit 0 (the f Al |
flag) indicates that disabled sResources should be included. When
set, bit 1 (the f OneSl ot flag) restricts the search to sResources on
a single card. Bit 2 (the f Next flag) indicates when set that the
routine finds the next sResource. The rest of the bits must be cleared
to 0.

On output, this field indicates whether the sResource is enabled or
disabled (if 0, the sResource is enabled,; if 1, it is disabled).

Reserved for use by the Slot Manager.
Reserved for future use.

The value of the i oReser ved field from the sResource’s entry in
the slot resource table.

The driver reference number of the driver associated with an
sResource, if there is one.

The Cat egor y field of the sRsr cType entry (which is described
on page 2-10).

The cType field of the sRsr cType entry.
The Dr SWfield of the sRsr cType entry.
The Dr HWfield of the sRsr cType entry.

A mask that determines which sRsr cType fields the Slot Manager
examines when searching for sResources.

The number of the slot with the NuBus card containing the
requested, or returned, sResource.

The sResource ID of the requested, or returned, sResource.

The external device identifier. This field allows you to distinguish
between devices on a card.

The hardware device identifier from the sRsr cHWDev | Dfield of the
sResource.

The byte lanes used by a declaration ROM.
Flags typically used by the Slot Manager.
Reserved for use by the Slot Manager.

Listing 2-1 on page 2-18 illustrates how to set values in an SpBl ock record to disable
and enable an sResource. Listing 2-2 on page 2-19 illustrates how to use the values in an
SpBl ock record for searching for sResources.

Slot Information Record

The Slot Manager creates a slot information record for each slot. This structure is defined
by the SI nf oRecor d data type.

2-24 Slot Manager Reference

CHAPTER 2

Slot Manager

TYPE Sl nfoRecord = {slot information record}
PACKED RECCRD
siDrPtr: Ptr; {pointer to sResource directory}
silnitStatusA: | nteger; {initialization status}
silnitStatusV: |nteger; {status returned by vendor }
{ initialization routine}
si State: Si gnedByt e; {initialization state}
si CPUByt eLanes: Si gnedByt e; {byte | anes used}
si TopOf ROM Si gnedByt €; {hi ghest valid address in ROV
si Stat usFl ags: Si gnedByt e; {status fl ags}
si TOConst ant : I nt eger; {tinmeout constant for bus error}
si Reserved: PACKED ARRAY [0..1] OF SignedByte;
{reserved}
si ROVAddr : Ptr; {address of top of ROV}
si Sl ot: Char; {sl ot nunber}
si Paddi ng: PACKED ARRAY [0..2] OF SignedByte; {reserved}
END;

Field descriptions

siDrPtr A pointer to the sResource directory (described in “The sResource
Directory” on page 2-12).

silnitStatusA The initialization status code set by the Slot Manager. A value of 0
indicates the card is installed and operational. Any other value is a
Slot Manager error code indicating why the initialization failed.

silnitStatusV The initialization status code returned by the card’s Pri mar yl ni t
routine in the seSt at us field of the SEBI ock parameter block
(described on page 2-27). Negative values cause the card
initialization to fail. Values in the range svTenpDi sabl e ($8000)
through svDi sabl ed ($8080) are used to temporarily disable a
card. See “Enabling and Disabling NuBus Cards” on page 2-17 for
more information.

si State Reserved for use by the Slot Manager.
si CPUByt eLanes The byte lanes used by the declaration ROM.
si TopOf ROM The least significant byte of the address stored in si ROVAddr .

si StatusFl ags Slot status flag field set by the Slot Manager. If the
f Car dl sChanged flag (bit 1) is set, the board ID of the installed
card does not match the board ID stored in parameter RAM. Other
flag bits are reserved.

si TOConst ant The number of retries that will be performed when a bus error
occurs while accessing the declaration ROM. The default is 100.

si Reserved Reserved for use by the Slot Manager.

si ROVAddr The highest address in the declaration ROM.

si Sl ot The slot number.

si Paddi ng Reserved for use by the Slot Manager.

Slot Manager Reference 2-25

CHAPTER 2

Slot Manager

Format Header Record

The Slot Manager uses a format header record to describe the structure of a card’s format
block, which is located at the highest address in the slot’s NuBus address space. By
reading information from the format header record, the Slot Manager can locate and
validate the card’s declaration ROM. The format header record is defined by the
FHeader Rec data type.

Note

For more information about the format block, see Designing Cards and
Drivers for the Macintosh Family, third edition. u

TYPE FHeader Rec = {format header record}
PACKED RECORD
fhDirOf fset: Longl nt; {offset to sResource directory}
f hLengt h: Longl nt ; {l'ength in bytes of declarati on ROM
f hCRC: Longl nt;; {cyclic redundancy check}
f hROVRev: Si gnedByt e; {decl arati on ROM revi si on}
f hFor mat : Si gnedByt e; {decl arati on ROM format}
fhTst Pat : Longl nt;; {test pattern}
f hReser ved: Si gnedByt e; {reserved; nust be 0}
f hByt eLanes: Si gnedByt e; {byte I anes used by decl arati on ROV}
END,;

2-26

Field descriptions

fhDi r O f set A self-relative signed offset to the sResource directory. This field
specifies only bytes accessible by valid byte lanes; as a result, the
value in this field might not be the absolute address difference.

f hLengt h The number of valid bytes in the declaration ROM. The Slot
Manager uses this value when computing the checksum.

f hCRC A checksum that allows the Slot Manager to validate the entire
declaration ROM.

f hROVRev The current ROM revision level. This field should contain a value

in the range 1-9; values greater than 9 cause the Slot Manager to
generate the error snRevi si onErr.

f hFor mat The format of the declaration ROM. A value of 1 designates the
Apple format.

f hTst Pat A test pattern. This field must contain the value $5A932BC?7.

f hReser ved Reserved. This field must be 0.

f hByt eLanes A signed byte that specifies which of the four byte lanes to use

when communicating with the declaration ROM. Refer to Designing
Cards and Drivers for the Macintosh Family, third edition, for a list of
valid values.

Slot Manager Reference

CHAPTER 2

Slot Manager

Slot Parameter RAM Record

The Macintosh Operating System reserves eight bytes of parameter RAM for each

slot. Six of these bytes are available for card designers to store information. The
SPRAMRecor d data type defines the organization of these bytes of data in parameter
RAM. This data structure includes the Apple-defined Boar dI Dand six bytes of
vendor-specific information.

TYPE SPRAMRecord = {sl ot paraneter RAM record}

PACKED RECCORD
boar dI D: I nt eger; { Appl e-defi ned board | D}
vendor Usel: Si gnedByt e; {avail abl e for vendor use}
vendor Use2: Si gnedByt e; {avail abl e for vendor use}
vendor Use3: Si gnedByt €; {avail abl e for vendor use}
vendor Use4: Si gnedByt e; {avail abl e for vendor use}
vendor Useb5: Si gnedByt e; {avail abl e for vendor use}
vendor Use6: Si gnedByt €; {avail abl e for vendor use}

END,

Field descriptions
boar dl D The card identification number assigned by Apple Computer, Inc.

vendor Use General-purpose fields that may be used by the card designer.

Slot Execution Parameter Block

The SCGet Dri ver and SExec functions load and execute code from an sResource. These
routines use the slot execution parameter block to exchange information with this code.
The slot execution parameter block is defined by the SEBI ock data type.

TYPE SEBl ock = {sl ot execution paraneter bl ock}
PACKED RECORD
seSl ot : Si gnedByt e; {sl ot nunber}
sesRsrcl D Si gnedByt e; {sResource | D}
seSt at us: I nt eger; {status of sExecBl ock code}
seFl ags: Si gnedByt e; {fl ags}
seFillerO: Si gnedByt e; {filler for word alignnent}
seFillerl: Si gnedByt e; {filler}
seFiller2: Si gnedByt e; {filler}
seResul t: Longl nt ; {result of SLoadDriver}
sel OFi | eNanme: Longlnt; {pointer to driver nane}
seDevi ce: Si gnedByt e; {device to read front
sePartition: Si gnedByt e; {the partition}
seCSType: Si gnedByt e; {type of CS}
seReserved: Si gnedByt e; {reserved}
seRef Num Si gnedByt e; {driver reference nunber}

Slot Manager Reference 2-27

Slot Interrupt Queue Element

CHAPTER 2

Slot Manager

seNunDevi ces: Si gnedByt e;
seBoot St at e:

END;

Field descriptions

seS| ot
sesRsrcl D
seSt at us

seFl ags

seFill er0-2
seResul t

sel OFi | eNane
seDevi ce

sePartition
seOSType
seReserved

seRef Num
seNunDevi ces
seBoot St at e

{nunber of devices to | oad}

Si gnedByt e; {state of StartBoot code}

The slot number containing the code to be executed.
The sResource containing the code to be executed.

The status returned by the executed code. A card’s Pri mar yl ni t
routine returns its initialization status in this field, and the value is
stored in the si | ni t St at usV field of the slot information record.

Flags passed to or returned by the executed code.

Name Bit Meaning

f War nfSt ar t 2 Set if a restart is being performed.

dRAMBased 6 Set if the seResul t field contains a
handle to a device driver.

Reserved.

A result value returned by the executed code. Normally used to
return a pointer or handle to a device driver.

An optional pointer to a device driver name.

The device number containing the code to be executed. This field is
used when loading code from a device attached to a card.

The partition number containing the code to be executed. This field
is used when loading code from a device attached to a card.

The operating system type identifier obtained from parameter RAM.
This field is used when loading code from a device attached to a card.

Additional information from parameter RAM, used when loading
code from a device attached to a card.

The driver reference number returned by the loaded device driver.
Unused.

A value indicating the relative state of the boot process. During
initialization, the Slot Manager passes one of the following constant
values in this field:

Name Value Meaning
sbSt at e0 0 State 0 of the boot process.
sbhStatel 1 State 1 the boot process.

2-28

The Slot Manager maintains a queue of interrupt handlers for each slot. You use the
SI nt I nstall andSI nt Renpve functions (described on page 2-70 and page 2-71,
respectively) to install and remove routines in the queue. The Sl ot | nt QEl enent
data type defines a slot interrupt queue element.

Slot Manager Reference

CHAPTER 2

Slot Manager

TYPE Sl ot nt QEl enent = {slot interrupt queue el enment}
RECORD
sqlLi nk: Ptr; {pointer to next queue el enent}
sqType: I nt eger; {queue type I D, nust be sl Qlype}
sqPri o: I nt eger; {priority value in | ow byte}
sqAddr : ProcPtr; {interrupt handl er}
sqPar m Longl nt; {optional Al paraneter}
END;

Field descriptions

sqlLi nk A pointer to the next queue element. This field is maintained by the
Slot Manager.

sqType The queue type identifier, which you set to the defined type
sl Qlype.

sqPrio The relative priority level of the interrupt handler. Only the low-

order byte of this field is used. The high-order byte must be set to 0.
Valid priority levels are 0 through 199. Priority levels 200 through
255 are reserved for Apple devices.

sqAddr A pointer to the interrupt handler.

sqPar m An optional value that the Slot Manager places in register Al before
calling the interrupt handler. This field is typically used to store a
handle to a driver’s device control entry.

Slot Manager Routines

This section describes the routines provided by the Slot Manager. Most of the routines in
this section are used to locate sResources or read information from an entry in an
sResource. Some of the routines allow you to read and set information about expansion
cards, such as their parameter RAM values, and others allow you to manipulate Slot
Manager data structures, like the slot resource table.

Because the SGet CSt ri ng, SGet Bl ock, SGet Dri ver, SExec, | ni t SDecl Myr,

Sl ni t PRAMRecs, Sl ni t SRsrcTabl e, and SPri mar yl ni t functions may allocate
memory, your application should not call them at interrupt time; however, your can call
any other Slot Manager function at interrupt time.

Because each routine uses a subset of the Slot Manager parameter block fields, each
routine reference section includes a list of pertinent fields and how they are used.

Parameter block

® fi el dName Fi el dType Input field.

= fi el dName Fi el dType Output field.

« fi el dName Fi el dType Input/output field.
5 fi el dName Fi el dType Affected field.

The arrows show whether you provide a value in the field, the routine returns a value in
the field, or both. The 5 symbol designates fields that may be affected by the execution

Slot Manager Reference 2-29

CHAPTER 2

Slot Manager

of the routine. Any value you store in one of these affected fields may be lost. Also, the
meaning of these fields upon completion of the routine is undefined; your application
should not depend on these values.

Assembly-Language Note

You can call Slot Manager routines using either the _SI ot Manager trap
macro with a selector or an individual macro name consisting of the
routine name preceded by an underscore. For example, you can call the
SVer si on function using the _SVer si on macro. Because every routine
name macro is equivalentto the _S| ot Manager trap macro that specifies
the corresponding routine selector, you will need to know the routine
selectors to trace your code in MacsBug. The _S| ot Manager trap macro
selector for each routine is included in the routine description and
summarized in “Trap Macros,” beginning on page 2-99. u

Determining the Version of the Slot Manager

SVersion

Unlike other system software managers, which use the Gest al t function to return
version information, the Slot Manager includes its own function for providing this
information.

DESCRIPTION

2-30

You can use the SVer si on function to determine which version of the Slot Manager is in
use by the Macintosh Operating System.

FUNCTI ON SVersi on (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

= spResul t Longl nt The Slot Manager version number.
= spsPoi nt er Ptr A pointer to additional information.

The SVer si on function returns the version number of the Slot Manager in the

spResul t field of the Slot Manager parameter block that you point to in the spBl kPt r
parameter. Version number 1 corresponds to the RAM-based Slot Manager and version
number 2 corresponds to the ROM-based Slot Manager. Versions of the Slot Manager
prior to System 7 do not recognize the SVer si on function and return the result code
snBSel OOBEr r. The spsPoi nt er field is reserved for future use as a pointer to
additional information.

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SVer si on function are
Trap macro Selector
_Sl ot Manager $0008
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0008

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
snSel OOBEr r -338 Selector out of bounds or function not implemented

SEE ALSO

For more information on the different versions of the Slot Manager, see “About the Slot
Manager” on page 2-15.

Finding sResources

The functions in this section locate sResources in the slot resource table and return
pointers to them and additional information about them. The SRsr cl nf o function is
useful for finding the driver reference number of an SResource. The SGet SRsr ¢ and
SCet TypeSRsr ¢ functions are the preferred routines for searching sResources. You can
use these functions to step through the sResources and to find disabled as well as
enabled sResources. Use the SNext SRsr ¢ and SNext TypeSRsr ¢ functions with
System 6 and earlier versions of the Slot Manager.

SRsrcinfo

You can use the SRsr ¢l nf o function to find an sResource. This function also provides
additional information about the sResource, such as the driver reference number of the
slot device driver.

FUNCTI ON SRsrclnfo (spBl kPtr: SpBl ockPtr): CSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Slot Manager Reference 2-31

DESCRIPTION

CHAPTER 2

Slot Manager

Parameter block

= spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

= spl OReser ved I nt eger The value of the slot resource table
i oReser ved field.

spRef Num I nt eger The device driver reference number.

= spCat egory I nt eger The Cat egory field of the sRsrcType
entry (described on page 2-10).

- spCType I nt eger The cType field of the sRsr cType entry.

- spDrvr SW I nt eger The Dr SWfield of the sRsr cType entry.

- spDrvr HW I nt eger The Dr HWfield of the sRsr cType entry.

® spSl ot Si gnedByt e The slot number of the requested sResource.

® spld Si gnedByt e The sResource ID of the requested
sResource.

® SpExt Dev Si gnedByt e The external device identifier.

- spHwDev Si gnedByt e The hardware device identifier.

The SRsr ¢l nf o function allows you to find an sResource from the slot resource table
and provides additional information, including its driver reference number and the
values contained in its sRsr cType entry.

You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the spBl kPt r parameter.

The SRsr ¢l nf o function returns a pointer to the sResource in the spsPoi nt er field
and returns information about the sResource type in the spRef Num spCType,

spDr vr SWspDr vr HWfields. The function returns other information about the
sResource in thespl OReser ved, spRef Num and spHwDev fields.

ASSEMBLY-LANGUAGE INFORMATION

2-32

The trap macro and routine selector for the SRsr cl nf o function are

Trap macro Selector

_Sl ot Manager $0016

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0016

Registers on exit
DO Result code

Slot Manager Reference

CHAPTER 2

Slot Manager

RESULT CODES

nokErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SEE ALSO
For more control in finding sResources, you can use the SGet SRsr ¢ function, described
next, and the SGet TypeSRsr ¢ function, described on page 2-35.
SGetSRsrc
You can use the SGet SRsr ¢ function to find any sResource, even one that has been
disabled.
FUNCTI ON SGet SRsrc (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
- spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
« spPar anDat a Longl nt On input: parameter flags.
On output: 0 if the sResource is enabled or
1 if disabled.
= spRef Num I nt eger The slot resource table reference number.
= spCat egory I nt eger The Cat egory field of the sRsrcType
entry (described on page 2-10).
= spCType I nt eger The cType field of the sRsr cType entry.
- spDrvr SW I nt eger The Dr SWield of the sRsr cType entry.
- spDrvr HW I nt eger The Dr HWfield of the sRsr cType entry.
« spSl ot Si gnedByt e The slot number.
« spld Si gnedByt e The sResource ID.
« SpExt Dev Si gnedByt e The external device identifier.
= spHW\Dev Si gnedByt e The hardware device identifier.
DESCRIPTION

The SCGet SRsr ¢ function allows you to specify whether the function should

include disabled sResources, whether it should continue looking for sResources in
higher-numbered slots, and whether it should return information about the specified
sResource or the one that follows it.

You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the spBI kPt r parameter. You must also
include flags in bits 0, 1, and 2 of the spPar anDat a field as follows:

n Set the f Al l flag (bit 0) to search both enabled and disabled sResources. Clear this
flag to search only enabled sResources.

Slot Manager Reference 2-33

CHAPTER 2

Slot Manager

n Set the f OneSl ot flag (bit 1) to search only the specified slot. Clear this flag to search
all slots.

n Set the f Next flag (bit 2) to return information about the sResource with the next
higher sResource ID than the specified sResource (or the first one on the next card if
the f Al | flag is set). Clear this flag to return data about the specified sResource.

The SGet SRsr ¢ function returns values in the spSl ot , spl D, and spExt Dev fields
corresponding to the sResource that it found. If you cleared the f Next flag, these fields
retain the values you specified when calling the function. In addition, the function
returns 0 in the spPar anDat a field if the sResource is enabled or 1 if it is disabled.

If you cleared the f Al | bit, the spPar anDat a field always returns the value 0.

The SCGet SRsr ¢ function also returns a pointer to the sResource in the spsPoi nt er
field and returns other information about the sResource in the spRef Num spCat egory,
spCType, spDrvr SWspDr vr HWand spHwDev fields.

SPECIAL CONSIDERATIONS

The SCGet SRsr ¢ function is available only with version 1 or later of the Slot Manager.
You can use the SVer si on function, described on page 2-30, to determine whether the
Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SGet SRsr ¢ function are

Trap macro Selector
_ Sl ot Manager $000B

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $000B

Registers on exit
DO Result code

RESULT CODES

nokErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SEE ALSO

For more control in finding sResources, you can also use the SGet TypeSRsr ¢ function,
described next.

2-34 Slot Manager Reference

CHAPTER 2

Slot Manager

SGetTypeSRsrc

You can use the SGet TypeSRsr ¢ function to step through sResources of one type,
including disabled ones.

FUNCTI ON SGet TypeSRsrc (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

= spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
« spPar anmDat a Longl nt On input: parameter flags.
On output: 0 if the sResource is enabled or
1 if disabled.
= spRef Num I nt eger The slot resource table reference number.
« spCat egory I nt eger The Cat egory field of the sRsr cType
entry (described on page 2-10).
« spCType I nt eger The cType field of the sRsr cType entry.
« spDrvr SW I nt eger The Dr SWfield of the sRsr cType entry.
« spDrvr HW I nt eger The Dr HWfield of the sRsr cType entry.
® spTBMask Si gnedByt e The type bit mask for sRsr cType fields.
« spSl ot Si gnedByt e The slot number.
« spld Si gnedByt e The sResource ID.
« SpExt Dev Si gnedByt e The external device identifier.
= spHW\Dev Si gnedByt e The hardware device identifier.

DESCRIPTION

The SCGet TypeSRsr ¢ function allows you to find the next sResource of a certain type, as
does the SNext TypeSRsr ¢ function, but the SGet TypeSRsr ¢ function also allows you
to find disabled sResources and to limit searching to a single slot.

You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the spBl kPt r parameter, and you specify the
type of the sResource with the spCat egory, spCType, spDr vr SWand spDr vr HW
fields. You must also use the spTBMask field to specify which of these sRsr cType fields
should not be included in the search:

n Set bit 0 to ignore the Dr HWfield.

n Set bit 1 to ignore the Dr SWfield.

n Set bit 2 to ignore the cType field.

n Set bit 3 to ignore the Cat egor y field.

You must also set the f Al | flag of the spPar anDat a field (bit 0) to search both enabled
and disabled sResources or clear this flag to search only enabled ones. Set the f OneSl ot
flag (bit 1) to search only the specified slot, or clear this flag to search all slots. The

Slot Manager Reference 2-35

CHAPTER 2

Slot Manager

SCet TypeSRsr ¢ function does not use the f Next flag (bit 2) because it always searches
for the next sResource of the given type.

The SCGet TypeSRsr ¢ function returns values in the spSl ot , spl D, and spExt Dev
fields corresponding to the sResource that it found, and it returns 0 in the spPar anDat a
field if that sResource is enabled or 1 if it is disabled.

The SCGet TypeSRsr ¢ function also returns a pointer to the sResource in the
spsPoi nt er field and returns other information about the sResource in the spRef Num
spCat egory, spCType, spDrvr SWspDr vr HWand spHwDev fields.

SPECIAL CONSIDERATIONS

The SCGet TypeSRsr ¢ function is available only with version 1 or later of the Slot
Manager. You can use the SVer si on function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

2-36

The trap macro and routine selector for the SGet TypeSRsr ¢ function are

Trap macro Selector

_Sl ot Manager $000C

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
Do $000C

Registers on exit
DO Result code

nokErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

For information on enabling and disabling sResources, see “Enabling and Disabling
sResources” on page 2-18 and the description of the Set SRsr ¢St at e function in the
next section.

Slot Manager Reference

CHAPTER 2

Slot Manager

SNextSRsrc

You can use the SNext SRsr ¢ function to step through the sResources on a card or from
one card to the next.

FUNCTI ON SNext SRsrc (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

= spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

- spl CReser ved I nt eger The value of the slot resource table
i oReser ved field.

- spRef Num I nt eger The driver reference number.

spCat egory I nt eger The Cat egory field of the sRsrcType

entry (described on page 2-10).

= spCType I nt eger The cType field of the sRsr cType entry.

= spDrvr SW I nt eger The Dr SWfield of the sRsr cType entry.

= spDrvr HW I nt eger The Dr HWfield of the sRsr cType entry.

« spSl ot Si gnedByt e The slot number.

« spld Si gnedByt e The sResource ID.

« SpExt Dev Si gnedByt e The external device identifier.

= spHW\Dev Si gnedByt e The hardware device identifier.

DESCRIPTION
The SNext SRsr ¢ function is similar to the SRsr cl nf o function, except the
SNext SRsr ¢ function returns information about the sResource that follows the
requested one—that is, the one with the next entry in the sResource directory or the first
sResource on the next card. The SNext SRsr ¢ function skips disabled sResources.

You specify a particular sResource with the spSl ot , spl D, and spExt Dev fields of the
Slot Manager parameter block you point to in the spBl kPt r parameter. The

SNext SRsr ¢ function finds the next sResource, returns a pointer to it in the

spsPoi nt er field, and updates the spSl ot , spl D, and spExt Dev fields to correspond
to the sResource it found. If there are no more sResources, the SNext SRsr ¢ function
returns the smNoMbr esRsr ¢s result code.

The SNext SRsr ¢ function returns other information about the sResource in the
spRef Num spCat egory, spCType, spDr vr SWand spDr vr H\fields.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SNext SRsr ¢ function are

Trap macro Selector
_ Sl ot Manager $0014

Slot Manager Reference 2-37

CHAPTER 2

Slot Manager

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry

A0
Do

Address of the parameter block

$0014

Registers on exit

DO Result code
RESULT CODES
noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found
SEE ALSO
For more control in finding sResources, you can use the SGet SRsr ¢ function, described
on page 2-33, and the SGet TypeSRsr ¢ function, described on page 2-35.
SNextTypeSRsrc
You can use the SNext TypeSRsr ¢ function to step through sResources of one type.
FUNCTI ON SNext TypeSRsrc (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
= spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
= spRef Num I nt eger The slot resource table reference number.
« spCat egory I nt eger The Cat egory field of the sRsrcType
entry (described on page 2-10).
« spCType I nt eger The cType field of the sRsr cType entry.
« spDrvr SW I nt eger The Dr SWfield of the sRsr cType entry.
« spDrvr HW I nt eger The Dr H\field of the sRsr cType entry.
® spTBMask Si gnedByt e The type bit mask for sRsr cType fields.
« spSl ot Si gnedByt e The slot number.
« spld Si gnedByt e The sResource ID.
« SpExt Dev Si gnedByt e The external device identifier.
= spHW\Dev Si gnedByt e The hardware device identifier.
2-38 Slot Manager Reference

CHAPTER 2

Slot Manager

DESCRIPTION

The SNext TypeSRsr ¢ function allows you to find the next sResource, as does the
SNext SRsr ¢ function, but the SNext TypeSRsr ¢ function skips disabled sResources.

You indicate the sResource you want returned by identifying the slot number, sResource
ID, and device ID in the spSl ot , spl D, and spExt Dev fields of the Slot Manager
parameter block you point to in the spBl kPt r parameter. You specify the type of the
sResource with the spCat egor y, spCType, spDr vr SWand spDr vr HAfields. You must
also use the spTBMask to specify which of these sRsr c Type entry fields should not be
included in the search:

n Set bit 0 to ignore the Dr HWfield.

n Set bit 1 to ignore the Dr SWfield.

n Set bit 2 to ignore the cType field.

n Set bit 3 to ignore the Cat egory field.

The SNext TypeSRsr ¢ function returns values in the spSl ot , spl D, and spExt Dev
fields corresponding to the sResource that it found.

The SNext TypeSRsr ¢ function also returns a pointer to the sResource in the
spsPoi nt er field and returns other information about the sResource in the
spl OReser ved, spRef Num spCat egory, spCType, spDr vr SWand spDr vr HWfields.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SNext TypeSRsr ¢ function are
Trap macro Selector
_Sl ot Manager $0015
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0015

Registers on exit

DO Result code

RESULT CODES

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

Slot Manager Reference 2-39

SEE ALSO

CHAPTER 2

Slot Manager

For information on enabling and disabling sResources, see “Enabling and Disabling
sResources” on page 2-18 and the description of the Set SRsr ¢St at e function on
page 2-51.

Getting Information From sResources

The Slot Manager provides a number of routines that simplify access to the information
in sResources. Most of these routines simply return the value of an sResource entry.

The SReadDr vr Name function returns the name of an sResource, formatted as a Pascal
string and prefixed with a period. You can pass this string to the Device Manager’s
OpenSl ot function to open the driver.

The SReadByt e, SReadWr d, and SReadLong functions return byte, word, or long
values from an sResource entry. The SGet CSt ri ng, SGet Bl ock, SReadSt r uct , and
SFi ndSt ruct functions return pointers to larger data types.

SReadDrvrName

DESCRIPTION

2-40

You can use the SReadDr vr Nane function to read the name of an sResource in a format
you can use to open the driver with Device Manager routines.

FUNCTI ON SReadDr vr Nane (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spSl ot Si gnedByt e The slot number.

® spl D Si gnedByt e The sResource ID.

® spResul t Ptr A pointer to the driver name.
5 spSi ze Longl nt

5 spsPoi nt er Ptr

The SReadDr vr Name function reads the name of an sResource, prefixes a period to the
value, and converts it to type St r 255. The final driver name is compatible with the
Device Manager’s QpenDr i ver function.

You indicate an sResource by identifying the slot number and sResource ID in the
spSl ot andspl Dfields of the Slot Manager parameter block you point to in the
spBl kPt r parameter. In your program, you should declare a Pascal string variable
and pass a pointer to it in the spResul t field.

The SReadDr vr Name function returns the driver name by copying it into the string
pointed to by the spResul t field.

Slot Manager Reference

CHAPTER 2

Slot Manager

SPECIAL CONSIDERATIONS

This function may alter the values of the spSi ze and spsPoi nt er fields of the
parameter block. Your application should not depend on the values returned in these
fields.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

SReadByte

The trap macro and routine selector for the SReadDr vr Name function are

Trap macro Selector

_Sl ot Manager $0019

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
Do $0019

Registers on exit
DO Result code

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

For more information about the device control entry and device driver reference
numbers, see the chapter “Device Manager” in this book.

You can use the SReadByt e function to determine the value of the low-order byte of an
SsResource entry.

FUNCTI ON SReadByte (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Slot Manager Reference 2-41

CHAPTER 2

Slot Manager

Parameter block

= spResul t Longl nt

® spsPoi nt er Ptr

® spl D Si gnedByt e
5 spOf f set Dat a Longl nt

5 spByt eLanes Si gnedByt e

DESCRIPTION

The contents of the entry byte.

A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
The ID of the sResource entry.

The SReadByt e function returns the low-order byte of the offset field of an entry in an
sResource. You provide a pointer to the sResource in the spsPoi nt er field and the ID
of the entry in the spl Dfield. The SReadByt e function returns the value in the low-

order byte of the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spOf f set Dat a and spByt eLanes fields of
the parameter block. Your application should not depend on the values returned in these

fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadByt e function are

Trap macro Selector
_ Sl ot Manager $0000

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains

the result code.

Registers on entry
A0 Address of the parameter block
DO $0000

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

snmNoMor esRsr cs =344 Requested sResource not found

2-42 Slot Manager Reference

CHAPTER 2

Slot Manager

SReadWord

You can use the SReadWor d function to determine the value of the low-order word of an
sResource entry.

FUNCTI ON SReadWord (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Longl nt The contents of the entry word.

® spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

® spl D Si gnedByt e The ID of the sResource entry.

5 spO fset Dat a Longl nt

5 spByt eLanes Si gnedByt e

DESCRIPTION

The SReadWobr d function returns the low-order word of the offset field of an entry in an
sResource. You provide a pointer to the sResource in the spsPoi nt er field of the Slot
Manager parameter block you point to in the spBl kPt r parameter, and you provide the
ID of the entry in the spl Dfield. The SReadWor d function returns the value in the low-
order word of the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spOf f set Dat a and spByt eLanes fields of
the parameter block. Your application should not depend on the values returned in these
fields.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SReadWr d function are
Trap macro Selector
_Sl ot Manager $0001
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0001

Registers on exit
DO Result code

Slot Manager Reference 2-43

CHAPTER 2

Slot Manager

RESULT CODES

nokErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SReadlLong

You can use the SReadLong function to determine the value of a long word pointed to
by the offset field of an sResource entry.

FUNCTI ON SReadLong (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Longl nt The contents of the long word.

® spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

® spl D Si gnedByt e The ID of the sResource entry.

5 spSi ze Longl nt

5 spOf f set Dat a Longl nt

5 spByt eLanes Si gnedByt e

DESCRIPTION

The SReadLong function returns the 32-bit value pointed to by the offset field of an
sResource entry. In the Slot Manager parameter block you point to in the spBl kPt r
parameter, you provide a pointer to the sResource in the spsPoi nt er field and specify
the ID of the entry in the spl Dfield. The SReadLong function returns the long word
value in the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spSi ze, spOf f set Dat a, and spByt eLanes
fields of the parameter block. Your application should not depend on the values returned
in these fields.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SReadLong function are

Trap macro Selector
_Sl ot Manager $0002

2-44 Slot Manager Reference

RESULT CODES

CHAPTER 2

Slot Manager

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0002

Registers on exit
DO Result code

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SGetCString

DESCRIPTION

You can use the SGet CSt ri ng function to determine the value of a string pointed to by
the offset field of an sResource entry.

FUNCTI ON SGet CString (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Ptr A pointer to a copy of the cSt ri ng data
structure.

® spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

® spl D Si gnedByt e The ID of the sResource entry.

5 spSi ze Longl nt

5 spOf fset Dat a Longl nt

5 spByt eLanes Si gnedByt e

5 spFl ags Si gnedByt e

The SCGet CSt ri ng function returns a copy of the ¢St r i ng data structure pointed to by
the offset field of an sResource entry.

You provide a pointer to the sResource in the spsPoi nt er field and specify the ID of
the entry in the spl Dfield.

The SCGet CSt ri ng function allocates a memory buffer, copies the value of the cSt ri ng
data structure into it, and returns a pointer to it in the spResul t field. You should
dispose of this pointer by using the Memory Manager procedure Di sposePtr.

Slot Manager Reference 2-45

CHAPTER 2

Slot Manager

SPECIAL CONSIDERATIONS

The SCGet CSt ri ng function may alter the values of the spSi ze, spOf f set Dat a,
spByt eLanes, and spFl ags fields of the parameter block. Your application should not
depend on the values returned in these fields.

SPECIAL CONSIDERATIONS

The SCGet CSt ri ng function allocates memory; your application should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SGet CSt r i ng function are
Trap macro Selector
_ S| ot Manager $0003
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0003

Registers on exit
DO Result code

RESULT CODES

nokErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SEE ALSO

For more information about the ¢St r i ng data structure, see “Firmware,” beginning on
page 2-7.

2-46 Slot Manager Reference

CHAPTER 2

Slot Manager

SGetBlock
You can use the SGet Bl ock function to obtain a copy of an sBl ock data structure
pointed to by the offset field of an sResource entry.
FUNCTI ON SGet Bl ock (spBl kPtr: SpBl ockPtr): CSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
= spResul t Ptr A pointer to a copy of an sBl ock data
structure (described on page 2-9).
® spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
® spl D Si gnedByt e The ID of the sResource entry.
5 spSi ze Longl nt
5 spOf f set Dat a Longl nt
5 spByt eLanes Si gnedByt e
5 spFl ags Si gnedByt e
DESCRIPTION

The SCGet Bl ock function returns a copy of the sBl ock data structure pointed to by the
offset field of an sResource entry.

In the parameter block you point to in the spBl kPt r parameter, you provide a pointer
to the sResource in the spsPoi nt er field and specify the ID of the entry in the spl D
field.

The SCGet Bl ock function allocates a memory buffer, copies the contents of the sBl ock
data structure into it, and returns a pointer to it in the spResul t field. You should
dispose of this pointer by using the Memory Manager procedure Di sposePtr.

SPECIAL CONSIDERATIONS

The SGet Bl ock function may alter the values of the spSi ze, spOf f set Dat a,
spByt eLanes, and spFl ags fields of the parameter block. Your application should not
depend on the values returned in these fields.

The SCGet Bl ock function allocates memory; your application should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGet Bl ock function are

Trap macro Selector
_ Sl ot Manager $0005

Slot Manager Reference 2-47

RESULT CODES

SFindStruct

CHAPTER 2

Slot Manager

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0005

Registers on exit
DO Result code

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

DESCRIPTION

You can use the SFi ndSt r uct function to obtain a pointer to any data structure pointed
to by the offset field of an sResource entry. You might want to use this function, for
example, when the data structure type is defined by the card designer.

FUNCTI ON SFi ndStruct (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

« spsPoi nt er Ptr On input: a pointer to an sResource.
On output: a pointer to a data structure.
® spl D Si gnedByt e The ID of the sResource entry.

5 spByt eLanes Si gnedByt e

You provide a pointer to the sResource in the spsPoi nt er field, and the ID of the entry
in the spl Dfield. The SFi ndSt r uct function returns a pointer to the data structure in
the spResul t field.

SPECIAL CONSIDERATIONS

2-48

This function may alter the value of the spByt eLanes field of the parameter block. Your
application should not depend on the value returned in this field.

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SFi ndSt r uct function are

Trap macro Selector

_Sl ot Manager $0006

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0006

Registers on exit
DO Result code

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

For information about obtaining a copy of a data structure pointed to by the offset field
of an sResource entry, rather than a pointer to the data structure, see the next section,
which describes the SReadSt r uct function.

SReadStruct

You can use the SReadSt r uct function to obtain a copy of any data structure pointed to
by an sResource entry. You might want to use this function, for example, when the data
structure type is defined by the card designer.

FUNCTI ON SReadStruct (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spResul t Ptr A pointer to a memory block.

® spsPoi nt er Ptr A pointer to the structure.

® spSi ze Longl nt The length in bytes of the structure.
5 spByt eLanes Si gnedByt e

Slot Manager Reference 2-49

CHAPTER 2

Slot Manager

DESCRIPTION

The SReadSt ruct function copies any arbitrary data structure from the declaration
ROM of an expansion card into memory.

You provide a pointer to the structure in the spsPoi nt er field and specify the size of
the structure in the spSi ze field. You must also allocate a memory block for the result
and send a pointer to it in the spResul t field.

The SReadSt ruct function copies the data structure into the memory block pointed to
by the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the value of the spByt eLanes field of the parameter block. Your
application should not depend on the value returned in this field.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SReadSt r uct function are
Trap macro Selector
_Sl ot Manager $0007
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
Do $0007

Registers on exit
DO Result code

RESULT CODES

nokErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SEE ALSO

For information about obtaining a pointer to a data structure pointed to by the offset
field of an sResource entry, rather than a copy of the data structure, see the description of
the SFi ndSt r uct function on page 2-48.

2-50 Slot Manager Reference

CHAPTER 2

Slot Manager

Enabling, Disabling, Deleting, and Restoring sResources

The functions in this section are primarily for use by device drivers. The

Set SRsr c St at e function enables and disables sResources. The next two functions,
SDel et eSRTRec and| nsert SRTRec, delete sResources from and restore them to the
slot resource table. The SUpdat e SRT function updates the slot resource table record for
an existing sResource.

SetSRsrcState

You can use the Set SRsr ¢St at e function to select which sResources are enabled.
FUNCTI ON Set SRsrcState (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spPar anDat a Longl nt Either a value of 0 to enable the sResource or
avalue of 1 to disable it.

® spSl ot Si gnedByt e The slot number.

® spl d Si gnedByt e The sResource ID.

® SpExt Dev Si gnedByt e The external device identifier.

DESCRIPTION
The Set SRsr ¢St at e function enables or disables an sResource. All of the Slot Manager
functions recognize enabled sResources, while only the SGet SRsr ¢ and
SCet TypeSRsr ¢ functions (described on page 2-33 and page 2-35, respectively)
can recognize disabled ones.

You specify the sResource to enable or disable with the spSl ot , spl D, and spExt Dev
fields of the Slot Manager parameter block you point to in the spBl kPt r parameter, and
you specify whether to enable or disable it in the spPar anDat a field. The Slot Manager
enables the sResource when the spPar anDat a field has a value of 0 and disables it
when the field has a value of 1.

SPECIAL CONSIDERATIONS

The Set SRsr cSt at e function is available only with version 1 or later of the Slot
Manager. You can use the SVer si on function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

Slot Manager Reference 2-51

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set SRsr c St at e function are
Trap macro Selector
_Sl ot Manager $0009
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
Do $0009

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SEE ALSO

For more information on enabling and disabling sResources, see “Enabling and
Disabling sResources” on page 2-18.

For information on finding disabled sResources, see the description of the SGet SRsr ¢
function on page 2-33 and the description of the SGet TypeSRsr ¢ function on page 2-35.

SDeleteSRTRec

You can use the SDel et e SRTRec function to remove an sResource from the slot
resource table.

FUNCTI ON SDel et eSRTRec (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spSl ot Si gnedByt e The slot number.
® spl d Si gnedByt e The sResource ID.
® SpExt Dev Si gnedByt e The external device identifier.

2-52 Slot Manager Reference

DESCRIPTION

CHAPTER 2

Slot Manager

The SDel et eSRTRec function deletes an sResource from the slot resource table. This
routine is typically called by a card’s Pri mar yl ni t code to delete any sResources that
are not appropriate for the system as configured.

SPECIAL CONSIDERATIONS

The SDel et eSRTRec function is available only with Manager. You can use the
SVer si on function, described on page 2-30, to determine whether the Slot Manager is
version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The trap macro and routine selector for the SDel et eSRTRec function are

Trap macro Selector

_Sl ot Manager $0031

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0031

Registers on exit
DO Result code

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15. For information about restoring an sResource to the slot resource table, see
the | nser t SRTRec function, described next. For more information on deleting and
restoring sResources, see “Deleting and Restoring sResources” on page 2-17.

Slot Manager Reference 2-53

CHAPTER 2

Slot Manager

InsertSRTRec

DESCRIPTION

2-54

You can use the | nser t SRTRec function to add an sResource to the slot resource table.
FUNCTI ON | nsert SRTRec (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spsPoi nt er Ptr ANI L pointer.

® spPar anDat a Longl nt Either a value of 0 to enable the sResource
or a value of 1 to disable it.

® spRef Num I nt eger The device driver reference number.

® spSl ot Si gnedByt e The slot number.

® spld Si gnedByt e The sResource ID.

® SpExt Dev Si gnedByt e The external device identifier.

The | nser t SRTRec function installs an sResource from the firmware of a NuBus card
into the slot resource table. For example, if the user makes a selection in the Monitors
control panel that requires your video card to switch to a new sResource that was
deleted by Pri mar yl ni t code, you can use the | nser t SRTRec function to restore
that sResource.

You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the spBl kPt r parameter. You must set the
spsPoi nt er field to NI L. Set the spPar anDat a field to 1 to disable the restored
sResource or to 0 to enable it.

If you place a valid device driver reference number in the spRef Numfield, the

Slot Manager updates the dCt | DevBase field in that device driver’s device control
entry (that is, in the device control entry that has that driver reference number in the

dCt | Ref Numfield). The dCt | DevBase field contains the base address of the slot device.
For a video card this is the base address for the pixel map in the card’s GDevi ce record
(which is described in Inside Macintosh: Imaging With QuickDraw). For other types of
cards the base address is optional and defined by the card designer.

The base address consists of the card’s slot address plus an optional offset that the card
designer can specify using the M nor Base QS or Maj or BaseCS entries of the sResource.
The Slot Manager calculates the base address by using bit 2 (the f 32Bi t Mode flag)

of the sRsr cFl ags entry of the sResource. As shown in Table 2-4, the Slot Manager
first checks the value of bit 2 of the sRsr cFl ags field, and then it checks for a

M nor BaseGS entry. If it finds one, it uses this value to create a 32-bit value to store

in the dCt | DevBase field. If it does not find a M nor BaseCS entry, it uses the value in
the Maj or BaseCS entry, if any.

Slot Manager Reference

CHAPTER 2

Slot Manager

Table 2-4 How the Slot Manager determines the base address of a slot device

sRsr cFl ags M nor BaseCB
Field missing $X XXXX

Field missing None

Bit2is0 P$X XXXX
Bit2is0 None
Bit2is1 P$X XXXX
Bit2is1 None
Note

Maj or BaseCs
Any or none

$XX XXXX
Any or none
$XX XXXX
Any or none

$XX XXXX

Address format
$FSOX XXXX

FSXXX XXXX
SFSOX XXXX
XXX XXXX
SFSXX XXXX

PSXXX XXXX

In this table, x represents any hexadecimal digit and s represents a slot

number. u

SPECIAL CONSIDERATIONS

The | nsert SRTRec function is available only with version 1 or later of the Slot
Manager. You can use the SVer si on function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the | nser t SRTRec function are

Trap macro Selector
_Sl ot Manager $000A

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains

the result code.

Registers on entry

A0 Address of the parameter block

DO $000A

Registers on exit
Do Result code

Slot Manager Reference

2-55

RESULT CODES

SEE ALSO

CHAPTER 2

Slot Manager

noErr 0 No error

menful | Err -108 Not enough room in heap

snmJnExBuUsErr -308 Bus error

snmBadRef 1 d -330 Reference ID not found in list

snmBadsLi st -331 Bad sResource: 1d1 < 1d2 < 1d3 ... format is not followed

snReservedErr -332 Reserved field not zero

snSl ot OOBEr r -337 Slot number out of bounds

snmNoMor esRsr cs =344 Specified sResource not found

snBadsPtrErr -346 Bad pointer was passed to SCal cSPoi nt er

snByt eLanesErr =347 Byt eLanes field in card’s format block was determined
to be zero

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15.

For information about deleting an sResource from the slot resource table, see the
SDel et eSRTRec function, described on page 2-52. For more information on deleting
and restoring sResources, see “Deleting and Restoring sResources” on page 2-17.

For more information about the device control entry and device driver reference
numbers, see the chapter “Device Manager” in this book.

SUpdateSRT

DESCRIPTION

2-56

For system software versions earlier than System 7, you can use the SUpdat eSRT
function to update the slot resource table record for an existing sResource. A new record
will be added if the sResource does not already exist in the slot resource table.

FUNCTI ON SUpdat eSRT (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

spl OReser ved I nt eger The value to be stored in the | OReser ved
field of the slot resource table.

spRef Num I nt eger The device driver reference number.

spSl ot Si gnedByt e The slot number.

spl d Si gnedByt e The sResource ID.

SpExt Dev Si gnedByt e The external device identifier.

@@ O

The SUpdat eSRT function adds or updates an record in the slot resource table. You
specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot Manager
parameter block you point to in the spBl kPt r parameter. If a matching record is found

Slot Manager Reference

CHAPTER 2

Slot Manager

in the slot resource table, the Ref Numand | OReser ved fields of the table are updated. If
the record is not found, the sResource is added to the table by reading the appropriate
declaration ROM. Updates may be made to enabled sResources only.

SPECIAL CONSIDERATIONS

In System 7, this function was replaced by the | nser t SRTRec function (described on
page 2-54). You should use the SUpdat eSRT function only if version 1 or later of the Slot
Manager is not available. You can use the SVer si on function, described on page 2-30, to
determine whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SUpdat eSRT function are

Trap macro Selector

_ Sl ot Manager $002B

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $002B

Registers on exit
DO Result code

noErr 0 No error

mentul | Err -108 Not enough room in heap
snEnpt ySl| ot -300 No card in this slot
SmMUnEXBUSErr -308 Bus error

snBadRef | d -330 Reference ID not found in list
snSl ot OOBEr r -337 Slot number out of bounds
snmNoMor esRsr cs =344 Specified sResource not found

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15.

For information about the preferred routine for adding an sResource to the slot resource
table, see the I nser t SRTRec function, described on page 2-54. For information about
deleting an sResource from the slot resource table, see the SDel et eSRTRec function,
described on page 2-52.

Slot Manager Reference 2-57

CHAPTER 2

Slot Manager

Loading Drivers and Executing Code From sResources

SGetDriver

The functions in this section allow you to load the device driver associated with an
sResource or execute code from an sExecBl ock data structure. Both of the functions in
this section require you to provide extra information in a structure of type SEBI ock. See
“Slot Execution Parameter Block™ on page 2-27 for information about the fields of this
structure.

DESCRIPTION

You can use the SGet Dri ver function to load an sResource’s device driver.
FUNCTI ON SGet Dri ver (spBl kPtr: SpBl ockPtr): OCSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Handl e A handle to the device driver.
® spsExecPBI k Ptr A pointer to the SEBI ock.

® spSl ot Si gnedByt e The slot number.

® spl D Si gnedByt e The sResource ID.

® sSpExt Dev Si gnedByt e The external device ID.

5 spSi ze Si gnedByt e

5 spFl ags Si gnedByt e

The SGet Dr i ver function loads a device driver from an sResource into a relocatable
block in the system heap.

You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the spBl kPt r parameter, and provide a
pointer to a slot execution parameter block in the spsExecPBl k field.

The SCGet Dr i ver function searches the sResource for an sRsr cLoadRec entry. If it
finds one, it loads the sLoadDr i ver record and executes it. If no sRsr cLoadRec entry
exists, the SCGet Dri ver function looks for an sRsr cDr vr Di r entry. If it finds one, it
loads the driver into memory.

The SCGet Dri ver function returns a handle to the driver in the spResul t field of the
parameter block.

SPECIAL CONSIDERATIONS

2-58

The SCGet Dri ver function allocates memory; your application should not call this
function at interrupt time.

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

SExec

The trap macro and routine selector for the SGet Dri ver function are

Trap macro Selector

_Sl ot Manager $002D

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register A0 contains a
handle to the loaded driver, and register DO contains the result code.

Registers on entry
A0 Address of the parameter block
Do $002D

Registers on exit
A0 Handle to loaded driver
DO Result code

nokErr 0 No error
smNoMor esRsr cs =344 Requested sResource not found

For more information about sResources, including the sRsr cDr vr Di r and
sRsr cLoadRec entry types, see Designing Cards and Drivers for the Macintosh Family,
third edition.

You can use the SExec function to execute code stored in an sExecBl ock data structure.
FUNCTI ON SExec (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

® spsExecPBl k Ptr A pointer to the SEBI ock.

® spl D Si gnedByt e The ID of the sExecBl ock entry in the
sResource.

5 spResul t Longl nt

Slot Manager Reference 2-59

CHAPTER 2

Slot Manager

DESCRIPTION
The SExec function loads sExecBl ock code from an sResource into the current heap
zone, checks its revision level, and executes the code.

You specify the sExecBl ock by providing a pointer to the sResource in the

spsPoi nt er field and the ID of the sExecBl ock entry in the spl Dfield. You must also
provide in the spsExecPBI k field a pointer to a slot execution parameter block. The
SEBI ock structure allows you to provide information about the execution of the
sExecBl ock code.

The SExec function passes the sExecBl ock code a pointer to the SEBI ock structure in
register AQ.

SPECIAL CONSIDERATIONS

The SExec function allocates memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SExec function are
Trap macro Selector
_Sl ot Manager $0023
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0023

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
snCodeRevErr -333 The revision of the code to be executed by sExec was
wrong
snCPUEr r -334 The CPU field of the code to be executed by sExec was
wrong
smNoMor esRsr cs =344 Requested sResource not found
SEE ALSO

For more information about the sExecBl ock data structure, see page 2-9.

2-60 Slot Manager Reference

CHAPTER 2

Slot Manager

Getting Information About Expansion Cards and Declaration ROMs

The functions in this section return information about slot status or about entire
declaration ROMs, instead of single sResources. The SReadl nf o function returns
information from the slot information record maintained by the Slot Manager for a
particular slot. See “Slot Information Record,” beginning on page 2-24 for a description
of the slot information record.

The SReadFHeader functions returns a copy of the information in the format block of
a card’s declaration ROM. The SCkCar dSt at function returns a card’s initialization
status. The SCar dChanged function reports whether the card in a particular slot has
changed.

The SFi ndDevBase function returns the base address of a slot device.

SReadlnfo
You can use the SReadI nf o function to obtain a copy of the slot information record for a
particular slot.
FUNCTI ON SReadl nfo (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
® spResul t Poi nt er A pointer to a slot information record.
® spSl ot Si gnedByt e The slot number.
5 spSi ze Longl nt
DESCRIPTION

The Slot Manager maintains a slot information record for each slot. The SReadl nf o
function copies the information from this data structure for the requested slot.

You specify the slot with the spS| ot parameter. You must also allocate a slot
information record, and provide a pointer to it in the spResul t field. The SReadl nf o
function copies the information in the slot information record maintained by the Slot
Manager into the data structure pointed to by the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spSi ze field. Your application should not
depend on the value returned in this field.

Slot Manager Reference 2-61

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SReadl nf o function are
Trap macro Selector
_Sl ot Manager $0010
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0010

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
snEnmpt y Sl ot -300 No card in this slot

SEE ALSO

For general information about the slot information record, see “About the Slot Manager”
on page 2-15. To obtain a pointer to the SI nf oRecor d data structure, instead of a copy
of it, see the next section, which describes the SReadFHeader function.

SReadFHeader

You can use the SReadFHeader function to obtain a copy of the information in the
format block of a declaration ROM.

FUNCTI ON SReadFHeader (spBlkPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spResul t Poi nt er A pointer to an FHeader Rec data
structure (described on page 2-26).

® spSl ot Si gnedByt e The slot number.

5 spsPoi nt er Ptr

5 spSi ze Longl nt

5 spOf fset Dat a Longl nt

5 spByt eLanes Si gnedByt e

2-62 Slot Manager Reference

DESCRIPTION

CHAPTER 2

Slot Manager

The SReadFHeader function copies the information from the format block of the
expansion card in the requested slot to an FHeader Rec data structure you provide.

You specify the slot with the spSI ot parameter. You must also allocate an FHeader Rec
data structure and provide a pointer to it in the spResul t field.

The SReadl nf o function copies the information in the format block into the data
structure pointed to by thespResul t field.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spsPoi nt er, spSi ze, spOf f set Dat a, and
spByt eLanes fields. Your application should not depend on the values returned in
these fields.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SReadFHeader function are

Trap macro Selector

_Sl ot Manager $0013

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
Do $0013

Registers on exit
DO Result code

nokErr 0 No error
smEnpt y Sl ot =300 No card in this slot

For general information about the format block, see “The Format Block,” beginning on
page 2-13. For information about the fields of the format block, see Designing Cards and
Drivers for the Macintosh Family, third edition.

Slot Manager Reference 2-63

CHAPTER 2

Slot Manager

SCkCardStat

You can use the SCkCar dSt at function to check the initialization status of an expansion
card.

FUNCTI ON SCkCardStat (spBl kPtr: SpBl ockPtr): CSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spSl ot Si gnedByt e The slot number.
5 spResul t Longl nt

DESCRIPTION

The SCkCar dSt at function checks the | ni t St at usAfield of the slot information
record for the expansion card in the designated slot. You specify the slot in the spSl ot
field of the Slot Manager parameter block you point to in the spBl kPt r parameter. The
SCkCar dSt at function returns the noEr r result code if the | ni t St at usAfield
contains a nonzero value.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spResul t field. Your application should not
depend on the values returned in this field.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SCkCar dSt at function are
Trap macro Selector
_Sl ot Manager $0018
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0018

Registers on exit

DO Result code

RESULT CODES

nokErr 0 No error
snEnpt yS| ot -300 No card in this slot

2-64 Slot Manager Reference

CHAPTER 2

Slot Manager

SEE ALSO
For more information about card initialization, see “About the Slot Manager,” beginning
on page 2-15.
SCardChanged
You can use the SCar dChanged function to determine if the card in a particular slot has
been changed.
FUNCTI ON SCar dChanged (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
® spSl ot Si gnedByt e The slot number.
= spResul t Longl nt A Boolean signifying whether the card was
changed.
DESCRIPTION

The SCar dChanged function checks if the expansion card in a slot has been changed
(that is, if the card’s sSPRAM ni t record has been initialized). You specify the slot in the
spSl ot field of the Slot Manager parameter block you point to in the spBI kPt r
parameter.

The SCar dChanged function returns a value of TRUE in the spResul t field of the
parameter block if the card has been changed.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SCar dChanged function are
Trap macro Selector
_ Sl ot Manager $0022
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0022

Registers on exit
DO Result code

Slot Manager Reference 2-65

RESULT CODES

CHAPTER 2

Slot Manager

nokErr 0 No error
smEnpt y Sl ot =300 No card in this slot

SFindDevBase

DESCRIPTION

2-66

You can use the SFi ndDevBase function to determine the base address of a slot device.
FUNCTI ON SFi ndDevBase (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spSl ot Si gnedByt e The slot number.
® spl d Si gnedByt e The sResource ID.
- spResul t Longl nt The device base address.

The SFi ndDevBase function returns the base address of a device, using information
contained in the sResource. Use of the base address is optional (except for video cards)
and device-specific. For a video card this must be the base address for the pixel map in
the card’s GDevi ce record (which is described in Inside Macintosh: Imaging With
QuickDraw.) For other types of cards, the base address is defined by the card designer.
The Slot Manager makes no use of this information.

The base address consists of the card’s slot address plus an optional offset that the card
designer can specify using the M nor BaseCS or Maj or BaseCS entries of the sResource.
See Table 2-4 on page 2-55 for a description of how the Slot Manager calculates the base
address.

You specify the slot in the spSl ot field of the Slot Manager parameter block you
point to in the spBI kPt r parameter, and the sResource ID with the spl d field.
The SFi ndDevBase function returns the base address in thespResul t field of the
parameter block.

Note

The base address of a slot device is also stored in the dCt | DevBase
field of the device control entry. The | nsert SRTRec function
automatically updates the dCt | DevBase field when a new record is
added to the slot resource table. You need to call SFi ndDevBase only
if you used the SUpdat eSRTRec function to update the slot resource
table. u

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SFi ndDevBase function are
Trap macro Selector
_Sl ot Manager $001B
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
Do $001B

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
snEnpt y Sl ot -300 No card in this slot

SEE ALSO

For more information about how the device base address is calculated, see the
description of the | nser t SRTRec function on page 2-54.

Accessing Expansion Card Parameter RAM

The Macintosh Operating System reserves six bytes of parameter RAM per slot for any
card-specific information that the card designer chooses to store. The functions in this
section allow you to read or change the value of these bytes. Both of the functions in
this section use the slot parameter RAM record to return the parameter RAM values.

SReadPRAMRec

You can use the SReadPRAMRec function to read the parameter RAM information for a
particular slot.

FUNCTI ON SReadPRAMRec (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Slot Manager Reference 2-67

CHAPTER 2

Slot Manager

Parameter block

® spSl ot Si gnedByt e The slot number.

® spResul t Poi nt er A pointer to an SPRAMRecor d data structure
(described on page 2-27).

5 spSi ze Longl nt

DESCRIPTION

The Macintosh Operating System allocates one SPRAMRecor d data structure for each
slot in the system parameter RAM. The Slot Manager initializes this structure with the
data from the sPRAM ni t record on the firmware of the expansion card. The
SReadPRAMRec function provides a copy of this information to your application.

You specify the slot number in the spSl ot field of the Slot Manager parameter block
you point to in the spBl kPt r parameter. You must also allocate a SPRAMRecor d data
structure and store a pointer to it in the spResul t field. The SReadPRAMRec function
copies the appropriate parameter RAM information into this data structure.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SReadPRAMRec function are
Trap macro Selector
_Sl ot Manager $0011
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0011

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
snEnmpt y Sl ot -300 No card in this slot

SEE ALSO

For more information about the sSPRAM ni t record, see Designing Cards and Drivers for
the Macintosh Family, third edition.

2-68 Slot Manager Reference

CHAPTER 2

Slot Manager

SPutPRAMRec

DESCRIPTION

You can use the SPut PRAMRec function to change the values stored in a slot’s parameter
RAM.

FUNCTI ON SPut PRAMRec (spBl kPtr: SpBl ockPtr): CSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spsPoi nt er Ptr A pointer to an SPRAMRecor d data structure
(described on page 2-27).
® spSl ot Si gnedByt e The slot number.

The SPut PRAMRec function allows you to change the values stored in the parameter
RAM of a slot.

In the parameter block you point to in the spBl kPt r parameter, you specify the slot
number with the spSl ot field and provide the new parameter RAM values in a
SPRAMRecor d data structure pointed to by the spsPoi nt er field.

The SPut PRAMRec function copies the information from the six vendor-use fields into
the parameter RAM for the slot. This function does not copy the boar dI D field, which is
Apple-defined.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SPut PRAMRec function are
Trap macro Selector

_Sl ot Manager $0012

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0012

Registers on exit
DO Result code

nokErr 0 No error
snEnpt yS| ot -300 No card in this slot

Slot Manager Reference 2-69

CHAPTER 2

Slot Manager

Managing the Slot Interrupt Queue

Sintlnstall

The Slot Manager maintains an interrupt queue for each slot. If your card generates
interrupts, you can install a slot interrupt handler to process the interrupts. You use the
SI nt I nstal | function to install an interrupt handler in the slot interrupt queue, and
the Sl nt Renove function to remove an interrupt handler from the queue.

DESCRIPTION

You use the SI nt | nst al | function to install an interrupt handler in the slot interrupt
queue for a designated slot.

FUNCTION Sintinstall (sIntQEl enPtr: SQEl enPtr;
theSlot: Integer) : OsErr;

sint QEl enPtr
A pointer to a slot interrupt queue element record, described on page 2-28.

t heSl ot The slot number.

The Sl nt I nstal | function adds a new element to the interrupt queue for a slot. You
provide a pointer to a slot interrupt queue element in the sl nt QEl enPt r parameter and
specify the slot number int heSl ot .

The Slot Manager calls your interrupt handler using a J SR instruction. Your routine
must preserve the contents of all registers except Al and DO, and return to the Slot
Manager with an RTS instruction. Register DO should be set to 0 if your routine did
not service the interrupt, or any other value if the interrupt was serviced. Your routine
should not set the processor priority below 2, and must return with the processor
priority equal to 2.

ASSEMBLY-LANGUAGE INFORMATION

2-70

The trap macro for the Sl nt I nst al | functionis_SI nt 1 nstal |l ($A075).

You must set up register DO with the slot number and register A0 with the address of the
slot queue element. When _SI nt I nst al | returns, register DO contains the result code.

Registers on entry
A0 address of the slot queue element
DO slot number

Registers on exit
DO Result code

Slot Manager Reference

CHAPTER 2

Slot Manager

RESULT CODES
noErr 0 No error

SIntRemove

You use the SI nt Renove function to remove an interrupt handler from a slot’s interrupt
queue.

FUNCTI ON SI nt Renove (slntQEl enPtr: SQEl enPtr;
theSlot: Integer) : OsErr;

sl nt QEl enPtr
A pointer to a slot interrupt queue element record, described on page 2-28.

t heSl ot The slot number.

DESCRIPTION

The Sl nt Renmove function removes an element from the interrupt queue for a slot. You
provide a pointer to a slot interrupt queue element in the s| nt Qel enPt r parameter and
specify the slot number int heSl ot .

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for the SI nt Renove function is _SI nt Renove ($A076).

You must set up register DO with the slot number and register A0 with the address of the
slot queue element. When _SI nt Rerove returns, register DO contains the result code.

Registers on entry
A0 address of the slot queue element
DO slot number

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error

SEE ALSO

For a description of the slot interrupt queue element record, see “Slot Interrupt Queue
Element” on page 2-28.

Slot Manager Reference 2-71

CHAPTER 2

Slot Manager

Low-Level Routines

The routines in this section are used internally by the Macintosh Operating System
during startup, and as needed by the Slot Manager. They are included here for reference
only, and as an aid to debugging. These routines are not required or supported for
application-level programming. Applications and device drivers should rely only on
the high-level routines described in the previous section, “Slot Manager Routines.”

S WARNING
The routines in this section are internal Macintosh Operating System
functions that may be changed without notice by Apple Computer, Inc.
These routines may not be supported by future versions of the
Operating System. s

InitSDeclMgr

This function is used only by the Macintosh Operating System.
FUNCTI ON | ni t SDecl Mgr (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

DESCRIPTION

The | ni t SDecl Mgr function initializes the Slot Manager. The contents of the parameter
block are undefined. This function allocates the slot information record and checks each
slot for a card. If a card is present, the Slot Manager validates the card’s firmware and the
resulting information is placed in the slot’s s| nf oRecor d. For empty slots, or cards that
fail to initialize, the Slot Manager stores the appropriate error code in the i ni t St at usA
field of the sl nf oRecor d for the slot.

SPECIAL CONSIDERATIONS
The I ni t SDecl Mgr function allocates memory.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the | ni t SDecl Myr function are

Trap macro Selector
_Sl ot Manager $0020

2-72 Slot Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 2

Slot Manager

On entry, register D0 contains the routine selector and register AQ contains the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0020

Registers on exit
DO Result code

noErr 0 No error

snmUnExBusErr -308 A bus error occurred

snDi sposePErr =312 An error occurred during execution of Di sposePt r
snBadsPtrErr -346 Bad spsPoi nt er value

snByt eLanesErr =347 Bad spByt eLanes value

For more information about Slot Manager initialization, see “About the Slot Manager,
beginning on page 2-15.

SCalcSPointer

DESCRIPTION

This function is used only by the Macintosh Operating System.
FUNCTI ON SCal cSPoi nter (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

« spsPoi nt er Ptr A pointer to a byte in declaration ROM.
® spO fset Dat a Longl nt The offset in bytes to desired pointer.
® spByt eLanes Si gnedByt e The byte lanes used.

The SCal cSPoi nt er function returns a pointer to a given byte in the declaration ROM
of an expansion card.

Slot Manager Reference 2-73

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SCalcStep

The trap macro and routine selector for the SCal cSPoi nt er function are

Trap macro Selector

_Sl ot Manager $002C

On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $002C

Registers on exit
DO Result code

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

DESCRIPTION

2-74

This function is used only by the Macintosh Operating System.
FUNCTI ON SCal cStep (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

= spResul t Longl nt The function result.

® spsPoi nt er Ptr A pointer to a byte in declaration ROM.
® spByt eLanes Si gnedByt e The byte lanes used.

® spFl ags Si gnedByt e Flags.

The SCal ¢St ep function calculates the field sizes in the block pointed to by spBl kPt r.
It is used for stepping through the card firmware one field at a time. If the

f ConsecByt es flag is set the function calculates the step value for consecutive bytes;
otherwise it calculates it for consecutive IDs.

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SCal ¢St ep function are

Trap macro Selector

_Sl ot Manager $0028

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0028

Registers on exit
DO Result code

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SFindBigDevBase

DESCRIPTION

This function is obsolete.
FUNCTI ON SFi ndBi gDevBase (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spSl ot Si gnedByt e The slot number.
® spl d Si gnedByt e The sResource ID.
= spResul t Longl nt The device base address.

The SFi ndBi gDevBase function has been superseded by the SFi ndDevBase function.
Currently, both functions execute the same code and return the same result. However,
for future compatibility you should use only the SFi ndDevBase function described on
page 2-66.

Slot Manager Reference 2-75

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SFi ndBi gDevBase function are

Trap macro Selector

_Sl ot Manager $001C

On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $001C

Registers on exit
DO Result code

noErr 0 No error
snEnmpt y Sl ot -300 No card in this slot

For information about the supported function for finding a device base address, see the
description of the SFi ndDevBase function on page 2-66.

SFindSInfoRecPtr

DESCRIPTION

2-76

This function is used only by the Macintosh Operating System.
FUNCTI ON SFi ndSI nf oRecPtr (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

= spResul t Longl nt A pointer to the slot information record.
® spSl ot Si gnedByt e The slot number.

The SFi ndSI nf oRecPt r function returns a pointer to the slot information record for a
particular slot.

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SFi ndSI nf oRecPt r function are
Trap macro Selector
_Sl ot Manager $002F
On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $002F

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SEE ALSO

For information about the high-level routine for reading the slot information record, see
the description of the SReadl nf o function on page 2-61.

SFindSRsrcPtr

This function is used only by the Macintosh Operating System.
FUNCTI ON SFi ndSRsrcPtr (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

= spsPoi nt er Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

® spSl ot Si gnedByt e The slot number of the requested sResource.

® spld Si gnedByt e The sResource ID of the requested sResource.

5 spResul t Longl nt

DESCRIPTION

The SFi ndSRsr cPt r function finds an sResource given its slot number and sResource
ID. This function ignores disabled sResources.

Slot Manager Reference 2-77

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SFi ndSRsr cPt r function are
Trap macro Selector
_Sl ot Manager $0030
On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
Do $0030

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SEE ALSO

For information about the high-level routines for locating sResources, see “Finding
sResources,” beginning on page 2-31.

SGetSRsrcPtr

This function is used only by the Macintosh Operating System.
FUNCTI ON SGet SRsrcPtr (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

= spsPoi nt er Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

® spPar anDat a Longl nt The parameter flags.

® spSl ot Si gnedByt e The slot number of the requested sResource.

® spl D Si gnedByt e The sResource ID of the requested sResource.

® spExt Dev Si gnedByt e The external device identifier.

DESCRIPTION

The SGet SRsr cPt r function finds an sResource given its slot number and sResource ID.
This function can search disabled sResources.

2-78 Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SGet SRsr cPt r function are
Trap macro Selector
_Sl ot Manager $001D
On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $001D

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

SEE ALSO

For information about the high-level routines for locating sResources, see “Finding
sResources,” beginning on page 2-31.

SInitPRAMRecs

This function is used only by the Macintosh Operating System.
FUNCTI ON SI ni t PRAMRecs (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

DESCRIPTION

The Sl ni t PRAMRecs function scans every slot and checks its Boar dI d value against
the value stored in PRAM. If the values do not match, the f Car dl sChanged flag is

set and the board sResource is searched for a PRAM ni t Dat a entry. If one is found, the
sPRAMRecor d for the slot is initialized with the data from the card’s sSPRAM ni t record;
otherwise it is initialized to 0. The contents of the parameter block are undefined.

SPECIAL CONSIDERATIONS
The Sl ni t PRAMRecs function may move memory.

Slot Manager Reference 2-79

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SI ni t PRAMRecs function are
Trap macro Selector
_Sl ot Manager $0025
On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0025

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

snmUnExBusErr -308 A bus error occurred

snDi sposePErr =312 An error occurred during execution of Di sposePt r
SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”
beginning on page 2-15.

SInitSRsrcTable

This function is used only by the Macintosh Operating System.
FUNCTI ON SInit SRsrcTabl e (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

DESCRIPTION

The Sl ni t SRsr cTabl e function initializes the slot resource table. The contents of the
parameter block are undefined.

SPECIAL CONSIDERATIONS
The Sl ni t SRsr cTabl e function allocates memory.

2-80 Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Sl ni t SRsr cTabl e function are
Trap macro Selector
_Sl ot Manager $0029
On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0029

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

snmUnExBusErr -308 A bus error occurred

snDi sposePErr =312 An error occurred during execution of Di sposePt r
SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”
beginning on page 2-15.

SOffsetData

This function is used only by the Macintosh Operating System.
FUNCTI ON SO f set Data (spBl kPtr: SpBl ockPtr): CSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

« spsPoi nt er Ptr On output: A pointer to the sResource
entry.

= spO fset Dat a Longl nt The contents of the of f set field.

® spl D Si gnedByt e The ID of the sResource entry.

= spByt eLanes Si gnedByt e The byte lanes from the card’s format block.

DESCRIPTION
The SO f set Dat a function returns the value of the offset field of an sResource entry.

Slot Manager Reference 2-81

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SO f set Dat a function are

Trap macro Selector

_Sl ot Manager $0024

On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0024

Registers on exit
DO Result code

noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found

For information about high-level routines for getting information from sResources, see
the descriptions of the SReadByt e, SReadWr d, SReadLong, SGet CSt ri ng,

SCet Bl ock, SReadSt ruct , and SFi ndSt r uct functions in “Getting Information From
sResources,” beginning on page 2-40.

SPrimarylnit

DESCRIPTION

2-82

This function is used only by the Macintosh Operating System.
FUNCTI ON SPrimarylnit (spBlkPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spFl ags Si gnedByt e Flags passed to the card’s Pri mar yl ni t code.

Called by the Slot Manager during system startup, the SPri mar yl ni t function
executes the code in the Pri mar yl ni t entry of each card’s board sResource. It passes
the spFl ags byte to the Pri mar yl ni t code via the seFl ags field of the SEBI ock. The
f War nSt art bit is set if a restart is being performed.

Slot Manager Reference

CHAPTER 2

Slot Manager

SPECIAL CONSIDERATIONS

The SPri mar yl ni t function may move memory.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

SPtrToSlot

The trap macro and routine selector for the SPri mar yl ni t function are

Trap macro Selector

_ Sl ot Manager $0021

On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0021

Registers on exit
DO Result code

nokErr 0 No error

smUnExBuUsEr r -308 A bus error occurred

snDi sposePErr =312 An error occurred during execution of Di sposePt r
smBadsPt r Err -346 Bad spsPoi nt er value

snByt eLanesErr =347 Bad spByt eLanes value

For more information about Slot Manager initialization, see “About the Slot Manager,”
beginning on page 2-15.

This function is used only by the Macintosh Operating System.
FUNCTI ON SPtrToSl ot (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

® spsPoi nt er Ptr A pointer to a byte in declaration ROM.
= spSl ot Si gnedByt e The slot number.

Slot Manager Reference 2-83

DESCRIPTION

CHAPTER 2

Slot Manager

The SPt r ToSl ot function returns the slot number of the card whose declaration ROM
is pointed to by spsPoi nt er. The value of spsPoi nt er must have the form
$Fsxx xxxx, where s is a slot number and x is a hexadecimal number.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SPt r ToSI ot function are

Trap macro Selector

_Sl ot Manager $002E

On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $002E

Registers on exit
DO Result code

noErr 0 No error
smUnExBusErr -308 A bus error occurred
snBadsPtrErr -346 Bad spsPoi nt er value

SReadPBSize

2-84

This function is used only by the Macintosh Operating System.
FUNCTI ON SReadPBSi ze (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

« spsPoi nt er Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

= spSi ze Longl nt The size of the sBl ock data structure.

® spl D Si gnedByt e The ID of the sBI ock in the sResource.

= spByt eLanes Si gnedByt e The byte lanes from the card’s format block.

® spFl ags Si gnedByt e Flags.

Slot Manager Reference

CHAPTER 2

Slot Manager

DESCRIPTION

The SReadPBSi ze function returns the size of an sBl ock data structure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadPBSi ze function are

Trap macro Selector
_ Sl ot Manager $0026

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains

the result code.

Registers on entry

A0 Address of the parameter block

Do $00026

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

smNoMor esRsr cs =344 Requested sResource not found

SEE ALSO

For more information about the high-level routine for obtaining information from an
sBl ock data structure, see the description of the SGet Bl ock function on page 2-47.

SSearchSRT

This function is used only by the Macintosh Operating System.

FUNCTI ON SSear chSRT (spBl kPtr:

SpBl ockPtr): CSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

= spsPoi nt er Ptr

® spl D Si gnedByt e
® SpExt Dev Si gnedByt e
® spSl ot Si gnedByt e
® spFl ags Si gnedByt e

Slot Manager Reference

A pointer to a record in the slot resource table.
The ID of the sResource entry.

The external device identifier.

The slot.

Flags.

2-85

CHAPTER 2

Slot Manager

DESCRIPTION

The SSear chSRT function searches the slot resource table for the record corresponding
to the sResource inslot spSl ot with list spl d and external device identifier spExt Dev,
and returns a pointer to it in spsPoi nt er. If the f CkFor Next bit of spFl ags is 0, the
function searches for the specified record; if the flag is 1, it searches for the next record.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SSear chSRT function are
Trap macro Selector
_Sl ot Manager $002A
On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
Do $002A

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
snmNoMor esRsr cs =344 Requested sResource not found
smRecNot Fnd -351 Record not found in the slot resource table

2-86 Slot Manager Reference

CHAPTER 2

Slot Manager

Summary of the Slot Manager

Pascal Summary

Constants

CONST

{si StatusFl ags field of SInfoRecord}

f Car dl sChanged = 1,

{flags for SSearchSRT}
f CkFor Sane = 0;
f CkFor Next =

=

{flag passed to card

{card has changed}

{check for sanme sResource in table}
{check for next sResource in table}

by SPrimarylnit during startup or restart}

f Var nSt ar t = 2; {warm start if set; else cold start}
{constants for siState field of slnfoRecord}
stateN | = 0; {state}
st at eSDM ni t = 1, {sl ot declaration manager init}
st at ePRAM ni t = 2; {sPRAM record init}
statePlnit = 3 {primary init}
stateSInit = 4, {secondary init}
{bit flags for spParanData field of SpBl ock}
fAlI = 0; {if set, search all sResources}
f OneSl ot = 1, {if set, search in given slot only}
f Next = 2; {if set, search for next sResource}
Data Types
TYPE SpBl ock = {Sl ot Manager paraneter bl ock}
PACKED RECCORD
spResul t: Longl nt; {function result}
spsPoi nt er: Ptr; {structure pointer}
spSi ze: Longl nt ; {size of structure}
spOf f set Dat a: Longl nt; {of fset or data}
spl OFi | eNanre: Ptr; {reserved for Slot Mnager}
spsExecPBI k: Ptr; {pointer to SEBl ock data structure}
spPar anDat a: Longl nt; {fl ags}
Summary of the Slot Manager 2-87

CHAPTER 2

Slot Manager

spM sc: Longl nt;
spReserved: Longl nt;
spl OReser ved: I nt eger;
spRef Num I nt eger;
spCat egory: | nt eger;
spCType: | nt eger;
spDrvr SW | nt eger;
spDrvr HW I nt eger;
spTBMask: Si gnedByt €;
spSl ot : Si gnedByt e;
spl D: Si gnedByt e;
spExt Dev: Si gnedByt €;
spHwDev: Si gnedByt e;
spByt eLanes: Si gnedByt e;
spFl ags: Si gnedByt €;
spKey: Si gnedByt e;
END;

SpBl ockPtr = ~SpBIl ock;

Sl nf oRecord =
PACKED RECORD
siDrpPtr: Ptr;

silnitStatusA: I nt eger;
silnitStatusV: I nt eger;
si State: Si gnedByt e;
si CPUByt eLanes: Si gnedByt e;
si TopOf ROM Si gnedByt e;
si St at usFl ags: Si gnedByt e;
si TOConst ant : I nt eger;
si Reserved:
si ROVAddr : Ptr;
si Sl ot : Char ;
si Paddi ng:

END;

Sl nf oRecPtr = 2SI nf oRecor d;

FHeader Rec =
PACKED RECORD
fhDirOf f set: Longl nt;
f hLengt h: Longl nt;
f hCRC: Longl nt;
f hROVRev: Si gnedByt e;
f hFor mat : Si gnedByt e;

2-88 Summary of the Slot Manager

PACKED ARRAY [0..1] OF SignedByte;

PACKED ARRAY [0..2] OF SignedByte;

{reserved for Slot Mnager}
{reserved for Slot Manager}

{i oReserved field from SRT}
{driver reference nunber}
{Category field of sRsrcType entry}
{cType field of sRsrcType entry}
{DrSWfield of sRsrcType entry}
{DrHWfield of sRsrcType entry}
{sRsrcType entry bit mask}

{sl ot nunber}

{sResource | D}

{external device |ID}

{hardwar e device |D}

{valid byte | anes}

{flags used by Sl ot Manager}
{reserved for Slot Mnager}

{slot information record}

{pointer to sResource directory}
{initialization error}

{status returned by vendor }

{ initialization routine}
{initialization state}

{byte | anes used}

{hi ghest valid address in ROV
{status fl ags}

{ti meout constant for bus error}
{reserved}
{address of top of ROV

{sl ot nunber}

{reserved}

{format header record}

{offset to sResource directory}
{l'ength in bytes of declarati on ROM
{cyclic redundancy check}

{decl arati on ROM revi si on}

{decl arati on ROM f or mat}

CHAPTER 2

Slot Manager

fhTst Pat :

f hReserved

f hByt eLanes:
END;

Longl nt;
Si gnedByt e;
Si gnedByt e;

FHeader RecPtr = ~FHeader Rec

SPRAMRecord =
PACKED RECORD
boar dl D:

vendor Usel:

vendor Use2:

vendor Use3:

vendor Use4:

vendor Useb:

vendor Use6:
END;

| nt eger;

Si gnedByt e;
Si gnedByt e;
Si gnedByt e;
Si gnedByt e;
Si gnedByt e;
Si gnedByt e;

SPRAMRecPtr = ~SPRAMRecor d;

SEBl ock =

PACKED RECORD
seSl ot :
sesRsrcl d:
seSt at us:
seFl ags:
seFillerO:
seFillerl:
seFiller2:
seResul t:
sel OFi | eNanre:
seDevi ce:
sePartition:
seOSType
seReserved
seRef Num
seNunDevi ces
seBoot St at e:

END;

Si gnedByt €;
Si gnedByt e;
I nt eger;

Si gnedByt €;
Si gnedByt e;
Si gnedByt e;
Si gnedByt €;
Longl nt;

Longl nt;

Si gnedByt €;
Si gnedByt e;
Si gnedByt e;
Si gnedByt €;
Si gnedByt e;
Si gnedByt e;
Si gnedByt €;

Summary of the Slot Manager

{test pattern}
{reserved; nust be 0}

{byte | anes used by decl arati on ROV}

{sl ot paraneter RAM record}

{Appl e-defined card | D}

{reserved for vendor use}
{reserved for vendor use}
{reserved for vendor use}
{reserved for vendor use}
{reserved for vendor use}
{reserved for vendor use}

{sl ot execution paraneter bl ock}

{sl ot nunber}

{sResource | D}

{status of sExecBl ock code}
{fl ags}

{filler for word alignment}
{filler}

{filler}

{result of SLoadDriver}
{pointer to driver nane}
{device to read fron}
{partition}

{type of Cs}

{reserved}

{driver reference nunber}
{nunber of devices to |oad}
{state of StartBoot code}

2-89

CHAPTER 2

Slot Manager

Sl ot I nt QEl erent = {slot interrupt queue el enent}
RECORD
sqlLi nk: Ptr; {pointer to next queue el enent}
sqType: I nt eger; {queue type I D, nust be sl Qlype}
sqPri o: I nt eger; {priority value in | ow byte}
sqAddr : ProcPtr; {interrupt handl er}
sqPar m Longl nt; {optional Al paraneter}
END;

SCEl enPtr = 7Sl ot nt QEl enent;

Slot Manager Routines

Determining the Version of the Slot Manager
FUNCTI ON SVer si on (spBl kPtr: SpBlockPtr): OSErr;

Finding sResources

FUNCTI ON SRsrcl nfo (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SGet SRsr ¢ (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SGet TypeSRsr c (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SNext SRsr c (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SNext TypeSRsr ¢ (spBl kPtr: SpBlockPtr): OSErr;

Getting Information From sResources

FUNCTI ON SReadDr vr Nane (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SReadByt e (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SReadWor d (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SReadlLong (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SGet CStri ng (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SCet Bl ock (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SFi ndSt ruct (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SReadSt ruct (spBl kPtr: SpBlockPtr): OSErr;

Enabling, Disabling, Deleting, and Restoring sResources

FUNCTI ON Set SRsrcSt at e (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SDel et eSRTRec (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON | nsert SRTRec (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SUpdat eSRT (spBl kPtr: SpBlockPtr): OSErr;

2-90 Summary of the Slot Manager

CHAPTER 2

Slot Manager

Loading Drivers and Executing Code From sResources

FUNCTI ON
FUNCTI ON

SCGet Dri ver
SExec

(spBl kPt r:
(spBl kPtr:

SpBl ockPtr):
SpBl ockPtr):

OSErr;
OSErr;

Getting Information About Expansion Cards and Declaration ROMSs

FUNCTI ON SReadl nf o (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SReadFHeader (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SCkCar dSt at (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SCar dChanged (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SFi ndDevBase (spBl kPtr: SpBl ockPtr): OSErr;
Accessing Expansion Card Parameter RAM
FUNCTI ON SReadPRAMRec (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SPut PRAMVRec (spBl kPtr: SpBl ockPtr): OSErr;
Managing the Slot Interrupt Queue
FUNCTI ON SiIntlnstall (sIntQEl enPtr: SCEl enPtr;
theSlot: Integer) CsErr;
FUNCTI ON SI nt Renove (sIntQeElenPtr: SCEl enPtr;
theSlot: Integer) CsErr;
Low-Level Routines
FUNCTI ON | ni t SDecl Myr (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SCal cSPoi nt er (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SCal cSt ep (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SFi ndBi gDevBase (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SFi ndSI nf oRecPt r (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SFi ndSRsrcPtr (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SGet SRsrcPtr (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON Sl ni t PRAMRecs (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON Sl ni t SRsrcTabl e (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SO f set Dat a (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SPri maryl nit (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SPt r ToSI ot (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SReadPBSi ze (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SSear chSRT (spBl kPtr: SpBlockPtr): OSErr;

Summary of the Slot Manager

2-91

CHAPTER 2

Slot Manager

C Summary
Constants
enum {
/* StatusFlags field of slnfoArray */
f Cardl sChanged = 1, /* card has changed */

/* flags for SearchSRT */
f CkFor Sane = 0, /* check for sane sResource in table */
f CkFor Next =1, /* check for next sResource in table */

/* flag passed to card by SPrimarylnit during startup or restart */
f War Bt ar t = 2, /* warmstart if set; else cold start */

/* constants for siState field of slnfoRecord */

stateN | =0, /* state */

st at eSDM ni t 1, /* slot declaration rmanager init */
st at ePRAM ni t 2, /* sPRAM record init */

statePlnit 3, [* primary init */

stateSInit 4, /* secondary init */

/* bit flags for spParanData field of SpBlock */

fall = 0, /[* if set, search all sResources */
f onesl ot =1, [* if set, search in given slot only */
f next =2 /* if set, search for next sResource */
b
Data Types
typedef struct SpBlock { /* Sl ot Manager paraneter block */
| ong spResul t; [* function result */
Ptr spsPoi nt er; [* structure pointer */
| ong spSi ze; /* size of structure */
| ong spOf f set Dat a; /* offset or data */
Ptr spl OFi | eNarre; /* reserved for Slot Manager */
Ptr spsExecPBl k; /* pointer to SEBlock structure */
| ong spPar anDat a; [* flags */
| ong spM sc; /* reserved for Slot Manager */
| ong spReserved; /* reserved for Slot Manager */
short spl OReser ved,; /* ioReserved field from SRT */
short spRef Num [* driver reference number */

2-92 Summary of the Slot Manager

short
short
short
short
char
char
char
char
char
char
char
char

} SpBl ock;

CHAPTER 2

Slot Manager

spCat egory;
spCType;
spDrvr SW
spDrvr HW
spTBMask;
spSl ot ;
spl G

SpExt Dev;
spHwDev;
spByt eLanes;
spFl ags
spKey;

typedef SpBl ock *SpBl ockPtr;

typedef struct SInfoRecord {

Ptr
short
short

char
char
char
char
short
char
Ptr
char
char

siDirbPtr
si I nit StatusA;
silnitStatusV,

si St at e;

si CPUByt eLanes;
si TopOf ROM

si St at usFl ags;
si TOConst ;

si Reserved][2] ;
si ROVAddr ;

si Slot;

si Paddi ng[3] ;

} SInfoRecord
typedef Sl nfoRecord *SInfoRecPtr;

typedef struct FHeader Rec {

| ong
| ong
| ong
char
char
| ong
char
char

fhD rOf f set;
f hLengt h;

f hCRC;

f hROVRev;

f hFor mat ;
fhTst Pat ;

f hReserved;
f hByt eLanes;

} FHeader Rec;

typedef FHeader Rec *FHeader RecPtr;

Summary of the Slot Manager

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

Category field of sRsrcType entry */
cType field of sRsrcType entry */
DrSWfield of sRsrcType entry */
DrHWfield of sRsrcType entry */

sRsrcType entry bit mask */

sl ot nunber */
sResource ID */
external device ID */
hardware device ID */
valid byte | anes */

flags used by Sl ot Manager */
reserved for Slot Manager */

sl ot

information record */

poi nter to sResource directory */
initialization error */
status returned by vendor
initialization routine */
initialization state */

byte | anes used */

hi ghest valid address in ROM */

status flags */

ti meout constant for bus error

reserved */
address of top of
sl ot nunber */
reserved */

format header record */

ROM */

*/

of fset to sResource directory */
length in bytes of declaration ROM */

cyclic redundancy check */
decl arati on ROM revi sion */

decl arati on ROM f or mat
test pattern */
reserved; nust be 0 */

*/

byte | anes used by declaration ROM */

2-93

CHAPTER 2

Slot Manager

typedef struct SPRAMRecord ({ /* slot parameter RAMrecord */

short boar dl D, /* Appl e-defined card ID */

char vendor Usel; /* reserved for vendor use */
char vendor Use2; /* reserved for vendor use */
char vendor Use3; /* reserved for vendor use */
char vendor Use4; /* reserved for vendor use */
char vendor Useb5; /* reserved for vendor use */
char vendor Use®6; /* reserved for vendor use */

} SPRAMRecor d;
typedef SPRAMRecord * SPRAMRecPtr;

typedef struct SEBIl ock { /* sl ot execution parameter block */
unsi gned char seSl ot ; /* sl ot number */
unsi gned char sesRsrcl d; /* sResource ID */
short seSt at us; /* status of sExecBl ock code */
unsi gned char seFl ags; [* flags */
unsi gned char seFiller0; [* filler for word alignnent */
unsi gned char seFiller1; [* filler */
unsi gned char seFiller2; [* filler */
| ong seResul t; /* result of SLoadDriver */
| ong sel OFi |l eNane; /* pointer to driver nane */
unsi gned char seDevi ce /* device to read from?*/
unsi gned char sePartition; [* partition */
unsi gned char seCSType; /[* type of CS */
unsi gned char seReserved; /* reserved */
unsi gned char seRef Num [* driver reference nunber */
unsi gned char seNunDevi ces; /* nunber of devices to |oad */
unsi gned char seBoot St at e; /* state of StartBoot code */

} SEBI ock;

typedef struct SlotlntQEl enent { /* slot interrupt queue el enent */
Ptr sqLi nk; /* pointer to next queue el enent */
short sqType; /* queue type ID; must be sl Qlype */
short sqPri o; [* priority value in | ow byte */
ProcPtr sgAddr; /* interrupt handler */
| ong sqPar m /* optional Al paraneter */

} SlotlntQEl enent;
typedef Sl otlnt QEl enent *SQEl enPtr;

Slot Manager Functions

Determining the Version of the Slot Manager
pascal OSErr SVersion (SpBl ockPtr spBl kPtr);

2-94 Summary of the Slot Manager

CHAPTER 2

Slot Manager

Finding sResources

pascal OSErr SRsrclnfo (SpBl ockPtr spBl kPtr);
pascal OSErr SCet SRsrc (SpBl ockPtr spBl kPtr);
pascal OSErr SCet TypeSRsrc (SpBl ockPtr spBl kPtr);
pascal OSErr SNext SRsrc (SpBl ockPtr spBl kPtr);
pascal OSErr SNext TypeSRsrc (SpBl ockPtr spBl kPtr);
Getting Information From sResources

pascal OSErr SReadDrvr Name (SpBl ockPtr spBl kPtr);
pascal OSErr SReadByte (SpBl ockPtr spBl kPtr);
pascal OSErr SReadWrd (SpBl ockPtr spBl kPtr);
pascal OSErr SReadlLong (SpBl ockPtr spBl kPtr);
pascal OSErr SGetCString (SpBl ockPtr spBl kPtr);
pascal OSErr SCet Bl ock (SpBl ockPtr spBl kPtr);
pascal OSErr SFi ndStruct (SpBl ockPtr spBl kPtr);
pascal OSErr SReadStruct (SpBl ockPtr spBl kPtr);

Enabling, Disabling, Deleting, and Restoring sResources

pascal OSErr Set SRsrcState (SpBl ockPtr spBlI kPtr);
pascal OSErr SDel et eSRTRec (SpBl ockPtr spBl kPtr);
pascal OSErr |nsert SRTRec (SpBl ockPtr spBl kPtr);
pascal OSErr SUpdat eSRT (SpBl ockPtr spBlI kPtr);

Loading Drivers and Executing Code From sResources

OSErr SGetDri ver (SpBl ockPtr spBlI kPtr);
OSErr SExec (SpBl ockPtr spBl kPtr);

pascal
pascal

Getting Information About Expansion Cards and Declaration ROMs

pascal OSErr SReadl nfo (SpBl ockPtr spBl kPtr);
pascal OSErr SReadFHeader (SpBl ockPtr spBl kPtr);
pascal OSErr SCkCar dSt at (SpBl ockPtr spBl kPtr);
pascal OSErr SCar dChanged (SpBl ockPtr spBl kPtr);
pascal OSErr SFi ndDevBase (SpBl ockPtr spBl kPtr);
Accessing Expansion Card Parameter RAM

pascal OSErr SReadPRAMRec (SpBl ockPtr spBl kPtr);
pascal OSErr SPut PRAMRec (SpBl ockPtr spBl kPtr);

Summary of the Slot Manager

CHAPTER 2

Slot Manager

Managing the Slot Interrupt Queue

pascal OSErr Slntlnstall (SCQEl enPtr slntQElenPtr, short theSlot);
pascal CSErr Sl nt Renove (SQEl enPtr sintQEl enPtr, short theSlot);

Low-Level Functions

pascal OSErr | nit Sbecl Myr (SpBl ockPtr spBl kPtr);
pascal OSErr SCal cSPoi nter (SpBl ockPtr spBl kPtr);
pascal OSErr SCal cStep (SpBl ockPtr spBlI kPtr);

pascal OSErr SFi ndBi gDevBase (SpBl ockPtr spBl kPtr);
pascal OSErr SFi ndSl nf oRecPtr (SpBl ockPtr spBl kPtr);
pascal OSErr SFi ndSRsrcPtr (SpBl ockPtr spBlI kPtr);
pascal OSErr SCet SRsrcPtr (SpBl ockPtr spBl kPtr);
pascal OSErr Sl nit PRAMRecs (SpBl ockPtr spBl kPtr);
pascal OSErr SlnitSRsrcTabl e (SpBl ockPtr spBl kPtr);

pascal OSErr SO fset Data (SpBl ockPtr spBl kPtr);
pascal OCSErr SPrimarylnit (SpBl ockPtr spBl kPtr);
pascal OSErr SPtrToSl ot (SpBl ockPtr spBlI kPtr);
pascal OSErr SReadPBSi ze (SpBl ockPtr spBl kPtr);
pascal OSErr SSear chSRT (SpBl ockPtr spBl kPtr);

2-96 Summary of the Slot Manager

CHAPTER 2

Slot Manager

Assembly-Language Summary

Data Structures

Slot Manager Parameter Block

0 spResul t long function result
4 spsPoi nt er long structure pointer
8 spSi ze long size of structure
12 SpO f set Dat a long offset or data
16 spl OFi | eName long reserved for Slot Manager
20 spsExecPBl k long pointer to SEBlock data structure
24 spPar anDat a long flags
28 spM sc long reserved for Slot Manager
32 spReserved long reserved for Slot Manager
36 spl CReser ved word i oReser ved field from SRT
38 spRef Num word driver reference number
40 spCat egory word Cat egory field of sRsr cType entry
42 spCType word cType field of sRsr cType entry
44 spDrvr SW word Dr SWfield of sRsr cType entry
46 spDrvr HW word Dr HWfield of sRsr cType entry
48 spTBMask byte sRsr cType entry bit mask
49 spSl ot byte slot number
50 spl D byte sResource ID
51 SpExt Dev byte external device ID
52 spHwDev byte hardware device ID
53 spByt eLanes byte valid byte lanes
54 spFl ags byte flags used by Slot Manager
55 spKey byte reserved for Slot Manager
Slot Information Record
0 siDirPtr long pointer to sResource directory
4 silnitStatusA word initialization error
6 silnitStatusV word status returned by vendor initialization routine
8 si State byte initialization state
9 si CPUByt eLanes byte byte lanes used
10 si TopOf ROM byte highest valid address in ROM
11 si St at usFl ags byte status flags
12 si TOConst word timeout constant for bus error
14 si Reserved word reserved
16 si ROVAddr long address of top of ROM
20 si Sl ot byte slot number
21 si Paddi ng 3 bytes reserved

Summary of the Slot Manager 2-97

CHAPTER 2

Slot Manager

Format Header Record

0 fhDir O f set long offset to sResource directory
4 fhLengt h long length in bytes of declaration ROM
8 f hCRC long cyclic redundancy check

12 f hROVRev byte declaration ROM revision

13 f hFor mat byte declaration ROM format

14 f hTst Pat long test pattern

18 f hReserved byte reserved; must be 0

19 f hByt eLanes byte byte lanes used by declaration ROM

Slot Parameter RAM Record

0 boardl D word Apple-defined card ID

2 vendor Usel byte reserved for vendor use
3 vendor Use2 byte reserved for vendor use
4 vendor Use3 byte reserved for vendor use
5 vendor Use4 byte reserved for vendor use
6 vendor Use5 byte reserved for vendor use
7 vendor Use6 byte reserved for vendor use

Slot Execution Parameter Block

0 seS| ot byte slot number
1 sesRsrcld byte sResource ID
2 seSt at us word status of sExecBl ock code
4 seFl ags byte flags
5 seFiller0 byte filler for word alignment
6 seFillerl byte filler
7 seFiller2 byte filler
8 seResul t long result of SLoadDr i ver
12 sel OFi | eNane long pointer to driver name
16 seDevi ce byte device to read from
17 sePartition byte partition
18 seCSType byte type of operating system
19 seReserved byte reserved
20 seRef Num byte driver reference number
21 seNunDevi ces byte number of devices to load
22 seBoot St at e byte state of St ar t Boot code

Slot Interrupt Queue Element

0 sqlLi nk long pointer to next queue element
4 sqType word gueue type ID; must be sl QType
6 sqPrio word priority value in low byt e
8 sqAddr long pointer to interrupt handler
12 sqPar m long optional Al parameter

2-98 Summary of the Slot Manager

CHAPTER 2

Slot Manager

Trap Macros

Trap Macros Requiring Routine Selectors

_Sl ot Manager

Selector Routine

$0000 SReadByte
$0001 SReadWord
$0002 SReadLong
$0003 SGetCString
$0005 SGetBlock
$0006 SFindStruct
$0007 SReadStruct
$0008 SVersion

$0009 SetSRsrcState
$000A InsertSRTRec
$000B SGetSRsrc
$000C SGetTypeSRsrc
$0010 SReadInfo

$0011 SReadPRAMRec
$0012 SPutPRAMRec
$0013 SReadFHeader
$0014 SNextSRsrc
$0015 SNextTypeSRsrc
$0016 SRsrcInfo

$0018 SCkCardsStat
$0019 SReadDrvrName
$001B SFindDevBase
$001C SFindBigDevBase
$001D SGetSRsrcPtr
$0020 InitSDeclMgr
$0021 SPrimaryInit
$0022 SCardChanged
$0023 SExec

$0024 SOffsetData
$0025 SInitPRAMRecs
$0026 SReadPBSize
$0028 SCalcStep

Summary of the Slot Manager

2-99

Selector
$0029
$002A
$002B
$002C
$002D
$002E
$002F
$0030
$0031

CHAPTER 2

Slot Manager

Routine
SInitSRsrcTable
SSearchSRT
SUpdateSRT
SCalcSPointer
SGetDriver
SPtrToSlot
SFindSInfoRecPtr
SFindSRsrcPtr
SDeleteSRTRec

Result Codes

noErr

mentul | Err
snEnpt yS| ot
snCRCFai |
snformat Err
snmUnExBuUsErr
snBLFi el dBad
snDi sposePErr
smNoBoar dsRsr ¢
smNoBoar dl d
sm ni t Stat VErr
snmBadRef | d
snmBadsLi st
snReservedErr
smCodeReVvErr
snCPUEr r

snmsPoi nterNi |
smNi | sBl ockErr
snSl ot OOBEr r
snSel OOBEr r
snCkSt at usErr
sniGet Drvr Nantr r
snmNoMor esRsr cs
snBadsPtr Err
snByt eLanesErr
smRecNot Fnd

2-100

-108
-300
-301
-302
-308
-309
~312
-313
-315
-316
-330
-331
-332
-333
-334
-335
-336
-337
-338
-341
~342
-344
~346
~347
-351

No error

Not enough room in heap

No card in this slot

CRC check failed

The format of the declaration ROM is wrong

A bus error occurred

A valid f hByt eLanes field was not found

An error occurred during execution of Di sposePt r

There is no board sResource

There is no board 1D

The I ni t St at usV field was negative after Pri mar yl ni t
Reference ID was not found in the given list

The IDs are not in ascending order

A reserved field was not zero

The revision of the code to be executed by sExec was wrong
The CPU field of the code to be executed by sExec was wrong
The spsPoi nt er value is NI L: no list is specified

The physical block size of an sBlock was zero

The given slot was out of bounds or does not exist

Selector out of bounds or function not implemented

Status of slot is bad

An error occurred during execution of _sCGet Dr vr Nane
Requested sResource not found

Bad spsPoi nt er value

Bad spByt eLanes value

Record not found in the slot resource table

Summary of the Slot Manager

CHAPTER 3

SCSI Manager

Contents

Introduction to SCSI Concepts 3-3
SCSI Bus Signals 3-4
SCSI Bus Phases 3-5
SCSI Commands 3-7
SCSI Messages 3-7
SCSI Handshaking 3-7
About the SCSI Manager 3-8
Conformance With the SCSI Specification
Overview of SCSI Manager Data Structures
The Structure of Block Devices 3-12
The Driver Descriptor Record 3-12
The Partition Map 3-13
Using the SCSI Manager 3-15
Reading Data From a SCSI Device 3-15
Using CDB and TIB Structures 3-17
Using the SCSIComplete Function 3-21
Choosing Polled or Blind Transfers 3-22
SCSI Manager Reference 3-23
Data Structures 3-23
Driver Descriptor Record 3-23
Partition Map Entry Record 3-25
SCSI Manager TIB Instructions 3-27
SCSI Manager Routines 3-31
Summary of the SCSI Manager 3-43
Pascal Summary 3-43
Constants 3-43
Data Types 3-43
Routines 3-44
C Summary 3-45
Constants 3-45

Contents

3-9
3-10

3-1

3-2

CHAPTER 3

Data Types 3-45
Functions 3-46
Assembly-Language Summary
Data Structures 3-47
Trap Macros 3-48
Result Codes 3-48

Contents

3-47

CHAPTER 3

SCSI Manager

This chapter describes the original Macintosh SCSI Manager. The SCSI Manager is the
part of the Macintosh Operating System that controls the transfer of data between a
Macintosh computer and peripheral devices connected through the Small Computer
System Interface (SCSI).

In 1993, Apple Computer introduced SCSI Manager 4.3, an enhanced version of the
SCSI Manager that provides new features as well as compatibility with the original
version. SCSI Manager 4.3 is described in the chapter “SCSI Manager 4.3 in this book.

SCSI Manager 4.3 Note

Throughout this chapter, notes like this one are used to point out areas
where SCSI Manager 4.3 differs from the original SCSI Manager. u

You should read this chapter if you are writing a SCSI device driver or other program
that needs to be compatible with the original SCSI Manager. To make best use of this
chapter, you should understand the Device Manager and how device drivers are
implemented in Macintosh computers. You should also be familiar with the SCSI-1
specification established by the American National Standards Institute (ANSI).

The SCSI-1 specification appears in ANSI document X3.131-1986, entitled Small Computer
System Interface. Unless otherwise noted, all mentions of a SCSI specification in this
chapter refer to the SCSI-1 specification.

If you are designing a SCSI peripheral device for Macintosh computers, you should read
Designing Cards and Drivers for the Macintosh Family, third edition, and Guide to the
Macintosh Family Hardware, second edition.

This chapter provides a brief introduction to SCSI concepts and then explains
n how the SCSI standard is implemented on Macintosh computers
n how data is structured on SCSI disk drives and other block devices

n how you can use SCSI Manager routines and data structures to transfer data to and
from SCSI peripheral devices

Introduction to SCSI Concepts

The Small Computer System Interface (SCSI) is a computer industry standard for
connecting computers to peripheral devices such as hard disk drives, CD-ROM drives,
printers, scanners, magnetic tape drives, and any other device that needs to transfer
large amounts of data quickly.

The SCSI standard specifies the hardware and software interface at a level that
minimizes dependencies on any specific hardware implementation. The specification
allows a wide variety of peripheral devices to be connected to many types of computers.

A SCSI bus is a bus that conforms to the physical and electrical specifications of the SCSI
standard. A SCSI device refers to any unit connected to the SCSI bus, either a peripheral
device or a computer. Each SCSI device on the bus is assigned a SCSI ID, which is an
integer value from 0 to 7 that uniquely identifies the device during SCSI transactions.

Introduction to SCSI Concepts 3-3

3-4

CHAPTER 3

SCSI Manager

The Macintosh computer is always assigned the SCSI ID value of 7, and its internal hard
disk drive is normally assigned the SCSI ID value of 0. In general, only one Macintosh
computer can be connected to a SCSI bus at a given time, and most Macintosh models
support only a single SCSI bus.

SCSI Manager 4.3 Note

Under the original SCSI Manager, the dual SCSI buses in
high-performance computers such as the Macintosh Quadra 950 are
treated as though they were a single physical bus. SCSI Manager 4.3
supports multiple SCSI buses and treats each bus separately. u

When two SCSI devices communicate, one device acts as the initiator and the other

as the target. The initiator begins a transaction by selecting a target device. The target
responds to the selection and requests a command. The initiator then sends a SCSI
command, and the target carries out the action. After acknowledging the command, the
target controls the remainder of the transaction. The role of initiator and target is fixed
for each device, and does not usually change. Under the original SCSI Manager, the
Macintosh computer always acts as initiator, and peripheral devices are always targets.

SCSI Manager 4.3 Note

SCSI Manager 4.3 allows multiple initiators, meaning that intelligent
peripheral devices can initiate SCSI transactions without involving the
computer. u

SCSI transactions involve interaction between bus signals, bus phases, SCSI commands,
and SCSI messages. Although the SCSI Manager masks much of the underlying
complexity of SCSI transactions, an understanding of these elements and how they
interact will help you understand the role of the SCSI Manager.

The following sections briefly summarize the elements of a SCSI transaction.

SCSI Bus Signals

The SCSI specification defines 50 bus signals, half of which are tied to ground. Table 3-1
describes the 18 SCSI bus signals that are relevant to understanding SCSI transactions.
Nine of these signals are used to initiate and control transactions, and nine are used for
data transfer (8 data bits plus a parity bit).

Introduction to SCSI Concepts

CHAPTER 3

SCSI Manager

Table 3-1 SCSI bus signals

Signal Name Description

/BSY Busy Indicates that the bus is in use.

/SEL Select The initiator uses this signal to select a target.

/C/D Control/Data The target uses this signal to indicate whether the
information being transferred is control information
(signal asserted) or data (signal negated).

/1/0 Input/Output The target uses this signal to specify the direction of
the data movement with respect to the initiator.
When the signal is asserted, data flows to the
initiator; when negated, data flows to the target.

/MSG Message This signal is used by the target during the message
phase.

/REQ Request The target uses this signal to start a request/
acknowledge handshake.

/ACK Acknowledge This signal is used by the initiator to end a request/
acknowledge handshake.

/ATN Attention The initiator uses this signal to inform the target
that the initiator has a message ready. The target
retrieves the message, at its convenience, by
transitioning to a message-out bus phase

/RST Reset This signal is used to clear all devices and
operations from the bus, and force the bus into the
bus free phase. The Macintosh computer asserts this
signal at startup. SCSI peripheral devices should
never assert this signal.

/DB0-/DB7, Data Eight data signals, numbered 0 to 7, and the parity

/DBP signal. Macintosh computers generate proper SCSI

SCSI Bus Phases

parity, but the original SCSI Manager does not
detect parity errors in SCSI transactions.

A SCSI bus phase is an interval in time during which, by convention, certain control
signals are allowed or expected, and others are not. The SCSI bus can never be in more

than one phase at any given time.

For each of the bus phases, there is a set of allowable phases that can follow. For
example, the bus free phase can only be followed by the arbitration phase, or by another
bus free phase. A data phase can be followed by a command, status, message, or bus free

phase.

Control signals direct the transition from one phase to another. For example, the reset
signal invokes the bus free phase, while the attention signal invokes the message phase.

Introduction to SCSI Concepts

3-5

CHAPTER 3

SCSI Manager

The SCSI standard specifies eight distinct phases for the SCSI bus:

n

Bus free. This phase means that no SCSI devices are using the bus, and that the bus is
available for another SCSI operation.

Arbitration. This phase is preceded by the bus free phase and permits a SCSI device
to gain control of the SCSI bus. During this phase, all devices wishing to use the bus
assert the /BSY signal and put their SCSI ID onto the bus (using the data signals). The
device with highest SCSI ID wins the arbitration.

Selection. This phase follows the arbitration phase. The device that won arbitration
uses this phase to select another device to communicate with.

Reselection. This optional phase is used by systems that allow peripheral devices to
disconnect and reconnect from the bus during lengthy operations. This phase is not
supported by the original Macintosh SCSI Manager, but is by SCSI Manager 4.3.

Command. During this phase, the target requests a command from the initiator.

Data. The data phase occurs when the target requests a transfer of data to or from the
initiator.

Status. This phase occurs when the target requests that status information be sent to
the initiator.

Message. The message phase occurs when the target requests the transfer of a
message. Messages are small blocks of data that carry information or requests
between the initiator and a target. Multiple messages can be sent during this phase.

Together, the last four phases (command, data, status, and message) are known as the
information transfer phases. Figure 3-1 shows the relationship of the SCSI bus phases.

Figure 3-1 SCSI bus phases and allowable transitions

3-6

et S cion
Bus ¥ Brbiratic
|:-I-5.-==:I-:I= [0 - " [o reselecion

Rezat conediion

TI1AAAATAAAAA I AAAAAT AT A AT AT 1A AT A AT AT 1A AT A AT AAAA

Introduction to SCSI Concepts

CHAPTER 3

SCSI Manager

SCSI Commands

A SCSI command is an instruction from an initiator to a target to conduct an operation,
such as reading or writing a block of data. Commands are read by the target when it is
ready to do so, as opposed to being sent unrequested by the initiator.

SCSI commands are contained in a data structure called a command descriptor block
(CDB), which can be 6, 10, or 12 bytes in size. The first byte specifies the operation
requested, and the remaining bytes are parameters used by that operation.

A single SCSI command may cause a peripheral device to undertake a relatively large
amount of work, compared with other device interfaces. For example, the read
command can specify multiple blocks of data rather than just one. The primary
difference between the SCSI protocol and other interfaces typically used for storage
devices is that SCSI commands address a device as a series of logical blocks rather
than in terms of heads, tracks, and sectors. It is this abstraction from the physical
characteristics of the device that allows the SCSI protocol to be used with a wide
variety of devices.

SCSI Messages

The SCSI standard specifies a number of possible messages between initiator and target.
SCSI messages are small blocks of data, often just one byte in size, that indicate the
successful completion of an operation (the command complete message), or a variety

of other events, requests, and status information. All messages are sent during the
message phase.

The command complete message is required in all SCSI implementations. This message
is sent from the target to the initiator and indicates that a command (or series of linked
commands) has been completed, either successfully or unsuccessfully. Success or failure
of the command is indicated by status information sent earlier during the status phase.
The importance of the command complete message is more fully discussed in “Using the
SCSIComplete Function,” beginning on page 3-21.

Other SCSI messages are optional. During the selection phase, the initiator and target
each specify their ability to handle messages other than the command complete message.

SCSI Handshaking

The SCSI standard defines the required sequence of transitions of the control and data
signals to ensure reliable communication between SCSI devices. Because the request
signal (/REQ) and the acknowledge signal (/ACK) both play a major role, this part of
the SCSI protocol is often referred to as request/acknowledge handshaking (usually
abbreviated as REQ/ACK handshaking).

The SCSI information transfer phases use REQ/ACK handshaking to transfer data or
control information between the initiator and target, in either direction. The direction of
the transfer depends on the particular bus phase. The handshaking occurs on every byte
transferred, and constitutes the lowest level of the SCSI protocol.

Introduction to SCSI Concepts 3-7

CHAPTER 3

SCSI Manager

For example, during the data phase, when a target sends data to the initiator, the target
places the data on the SCSI bus data lines and then asserts the /REQ signal. The initiator
senses the /REQ signal, reads the data lines, then asserts the /ACK signal. When the
target senses the /ACK signal, it releases the data lines and negates the /REQ signal.
The initiator then senses that the /REQ signal has been negated, and negates the /ACK
signal. After the target senses that the /ACK signal has been negated, it can repeat the
whole process again, to transfer another byte of data.

Unless you are designing a SCSI device, you do not need any special knowledge of

SCSI handshaking to write software that uses the SCSI Manager. However, a general
understanding of SCSI handshaking can be helpful when debugging. Refer to the SCSI
specification for complete information about SCSI handshaking, bus phases, commands,
and messages.

About the SCSI Manager

3-8

The SCSI Manager provides routines that allow Macintosh device drivers and other
programs to communicate with SCSI peripheral devices using the SCSI protocol.

The SCSI Manager is a software layer that mediates between device drivers or
applications and the SCSI controller hardware in the Macintosh computer. In some cases,
the amount of mediation is small. For example, the SCSI Manager SCSI Reset function
does little except assert the reset signal on the SCSI bus. In other cases, a single SCSI
Manager function may initiate a relatively complex series of actions.

Figure 3-2 shows the relationship of the SCSI Manager to the Macintosh system
architecture. The architecture consists of multiple layers: the application layer, the
system software layer (which is composed of several subordinate layers), and the
hardware layer.

About the SCSI Manager

CHAPTER 3

SCSI Manager

Figure 3-2 The role of the SCSI Manager

Syriem
=i

Pesiphe ml

H:@ 1

Rl tarmgear
Devics Marager
Hard disk ©:0-FOM Scanner Cifeer SO
dnver driver dniver dt_"-"ﬂﬁ
divars
i3 i3 i3 g
SCS1 Enanger
= mierace
Herd CHbwr SC5]
CD-ROM Soan
disk et devices

Application programs usually rely on high-level services such as those provided by the
File Manager, but may also call low-level services directly. The File Manager calls the
Device Manager, which calls the appropriate device driver. SCSI device drivers do not
control SCSI hardware directly; they use the SCSI Manager to communicate with SCSI
devices.

Conformance With the SCSI Specification

The SCSI specification has been revised considerably since the first Macintosh SCSI
implementation. For information about the SCSI standard as originally defined, see
ANSI document X3.131-1986, Small Computer System Interface. Many of the features
described in the newer SCSI-2 specification are supported by SCSI Manager 4.3.
However, the original SCSI Manager predates these extensions.

About the SCSI Manager 3-9

3-10

CHAPTER 3

SCSI Manager

Due to hardware variations among Macintosh models, there are minor differences in the
behavior of some SCSI Manager routines. These differences lie mostly outside the scope
of the SCSI protocol. For information about these differences, see the description of the
SCSI Get function on page 3-32.

All Macintosh computers support these aspects of the SCSI specification:
n multiple targets
n as many as eight devices on the bus (the computer and up to seven peripherals)

n parity generation

The following optional features of the SCSI specification are not supported by the
original SCSI Manager:

n multiple SCSI buses

n multiple initiators on a single bus
n disconnect/reconnect

n parity error detection

SCSI Manager 4.3 Note

These features and other enhancements are supported by
SCSI Manager 4.3. u

Overview of SCSI Manager Data Structures

The SCSI specification and the Macintosh Operating System define a number of data
structures for communicating with SCSI devices. These data structures fall into three
categories:

n structures defined by the SCSI specification, such as command descriptor blocks and
SCSI messages

n structures specific to the SCSI Manager, such as transfer instruction blocks and the
16-bit status word returned by the SCSI St at function

n structures required for the proper operation of SCSI disk drives with the Start
Manager and the File Manager; for example, the driver descriptor map and the
partition map

The command descriptor block and other data structures defined by the SCSI
specification are not discussed in detail in this chapter. Refer to the SCSI specification for
complete information about these structures. See “Using CDB and TIB Structures,”
beginning on page 3-17, for an example of how to send a CDB to a SCSI device.

Although the driver descriptor map and the partition map are not used by the SCSI
Manager, they must be present on all block devices compatible with the Macintosh
Operating System. These structures are discussed in the following section.

A transfer instruction block (TIB) is a Macintosh-specific data structure that your
program uses to pass instructions to the SCSI Manager. TIB structures are used to control

About the SCSI Manager

CHAPTER 3

SCSI Manager

data transfers, and for other purposes such as comparing data on a peripheral device
with data in memory. TIB structures are passed as parameters to the SCSI Manager
SCSI Read, SCSI RBI i nd, SCSI Wi t e, and SCSI VBl i nd functions. For read
operations, the TIB specifies a memory location where the data should be stored.

For write operations, the TIB specifies the location of the data to be written.

Although a transfer instruction block is data, not machine-executable code, it is
analogous to code in that the data is interpreted and executed by the SCSI Manager in
a manner similar to executing a program. The SCSI | nst r data type defines a transfer
instruction block.

TYPE SCSIInstr = {transfer instruction bl ock}
RECORD

scQOpcode: I nt eger; {operation code}

scPar ant: Longl nt; {first paraneter}

scPar an®: Longl nt ; {second paraneter}
END,

The first field of the transfer instruction block contains a transfer operation code.

This code is not a command in the SCSI protocol, but rather an instruction to the SCSI
Manager that directs the transfer of data across the SCSI bus after a SCSI command
has been sent. The instruction set consists of eight operation codes that allow you to
transfer data, increment a counter, and form iterative loops. See “SCSI Manager TIB
Instructions,” beginning on page 3-27, for details of the TIB instruction set.

A sequence of TIB instructions is also known as a TIB pseudoprogram. Here is an
example of a TIB pseudoprogram:

sclnc $67B50 512
scLoop -10 6
scSt op

This sample pseudoprogram consists of three TIB instructions that transfer six 512-byte
blocks of data to or from address $67B50 (depending on whether these instructions are
passed to a SCSI Read or aSCSI Wi t e function).

The first TIB instruction transfers a 512-byte block of data from a starting address

and then increments that address by the amount of data transferred. The second TIB
instruction branches back to the first (by branching back 10 bytes, which is the size of a
TIB instruction), and forms a loop that is executed six times (as specified by the second
parameter). The third and final TIB instruction terminates the execution sequence and
returns to the calling routine.

See “Using CDB and TIB Structures,” beginning on page 3-17, for an example of how to
use TIB instructions.

About the SCSI Manager 3-11

TYP

CHAPTER 3

SCSI Manager

The Structure of Block Devices

This section describes the low-level organization of data on random-access storage
devices such as SCSI hard disk drives. Although this information is presented in the
context of the SCSI Manager, it applies to any type of block device that can be used by
the Macintosh Operating System, regardless of the hardware interface.

There are a number of ways to address data on block-structured storage devices such as
disk drives. At the lowest level, a disk drive addresses a block by its cylinder, head, and
sector number. The SCSI specification, however, conceals this level of detail. Instead,
each block on a SCSI disk is assigned a number, beginning with 0 and extending to the
last block on the disk. The SCSI specification describes these addresses as “logical” block
numbers, but the SCSI Manager calls them physical block numbers because they
correspond to a fixed location on the disk.

At an even higher level of abstraction, a device driver can define the mapping of
physical addresses on a device to the logical addresses of a file system. This allows
file systems to be independent of the characteristics of a particular device.

In the terminology of the SCSI Manager, a physical block refers to a specific, fixed
location defined by the manufacturer of a SCSI device. A logical block refers to an
abstract location defined by software. A partition is a series of contiguous logical blocks
that have been allocated to a particular operating system, file system, or device driver.

A disk can be divided into any number of partitions. Locations within these partitions
are specified using logical block numbers, which are integer values ranging from 0 to the
number of blocks in the partition.

The low-level organization of block devices is defined by two data structures: the driver
descriptor record and the partition map. These structures are introduced in the following
sections. See “Data Structures,” beginning on page 3-23, for a complete description of the
fields within these structures.

The Driver Descriptor Record

The driver descriptor record is a data structure that identifies the device drivers installed
on a disk. To support multiple operating systems or other features, a disk can have more
than one device driver installed, each in its own partition. The Start Manager reads the
driver descriptor record during system startup and uses the information to locate and
load the appropriate device driver.

The driver descriptor record is always located at physical block 0, the first block on the
disk. The driver descriptor record is defined by the Bl ockO data type.

E Bl ock0 =

PACKED RECCRD

3-12

sbSi g: I nt eger; {devi ce signature}
sbBl kSi ze: I nt eger; {bl ock size of the device}
sbBI kCount : Longl nt ; {nunber of blocks on the device}
sbDevType: I nt eger; {reserved}
sbDevl d: I nt eger; {reserved}
About the SCSI Manager

CHAPTER 3

SCSI Manager

sbDat a: Longl nt; {reserved}

sbDr vr Count : I nt eger; {nunber of driver descriptor entries}

ddBl ock: Longl nt; {first driver’'s starting bl ock}

ddsi ze: I nt eger; {size of the driver, in 512-byte bl ocks}

ddType: I nt eger; {operating systemtype (MacCs = 1)}

ddPad: ARRAY [0..242] OF Integer; {additional drivers, if any}
END,

The driver descriptor record consists of seven fixed fields, followed by a variable amount
of driver-specific information. The first field in the driver descriptor record is a signature,
which must be set to the value of the sbSI GAdr d constant to indicate that the record

is valid (meaning that the disk has been formatted). The second field, sbBI kSi ze,
specifies the size of the blocks on the device, in bytes. The sbBI kCount field specifies
the total number of blocks on the device. The next three fields are reserved. The

sbDr vr Count field specifies the number of drivers that are installed on the disk.

The drivers can be located anywhere on the device and can be as large as necessary.

The ddBI ock, ddSi ze, and ddType fields contain information about the first device
driver on the disk. Information about any additional drivers is stored in the ddPad field,
as an array of consecutive ddBl ock, ddSi ze, and ddType fields.

To select a particular device driver for loading at system startup, you use the Start
Manager Set OSDef aul t function and specify a value corresponding to the ddType
field in the driver descriptor record.

The Partition Map

The partition map is a data structure that describes the partitions present on a block
device. The Macintosh Operating System and all other operating systems from Apple
use the same partitioning method. This allows a single device to support multiple
operating systems.

The partition map always begins at physical block 1, the second block on the disk. With
the exception of the driver descriptor record in block 0, every block on a disk must
belong to a partition.

Each partition on a disk is described by an entry in the partition map. The partition map
is itself a partition, and contains an entry describing itself. The partition map entry for
the partition map is not necessarily the first entry in the map. Partition map entries can
be in any order, and need not correspond to the physical organization of partitions on
the disk.

The number of entries in the partition map is not restricted. However, because the
partition map must begin at block 1 and must be contiguous, it cannot easily be
expanded once other partitions are created. One way around this limitation is to
create a large number of empty partition map entries when the disk is initialized.

To locate a partition, the Start Manager examines the pnivapBl kCnt field of the first
partition map entry. This field contains the size of the partition map, in blocks. Then,
using the block size value from the sbBI kSi ze field of the driver descriptor record, the

About the SCSI Manager 3-13

CHAPTER 3

SCSI Manager

Start Manager reads each block in the partition map, looking for a valid signature in the
pnSl Gfield of each partition map entry record.

The partition map entry record is defined by the Parti ti on data type.

TYPE Partition =

RECORD
pnsi g: I nt eger; {partition signature}
pnsi gPad: I nt eger; {reserved}
pmvapBl kCnt : Longl nt ; {nunber of blocks in partition map}
pnmPyPart Start: Longlnt; {first physical block of partition}
prmPart Bl kCnt: Longl nt; {nunber of blocks in partition}
prPar t Name: PACKED ARRAY [0..31] OF Char; {partition nane}
prPar Type: PACKED ARRAY [0..31] OF Char; {partition type}

prmigDat aStart: Longl nt; {first logical block of data area}
prDat aCnt : Longl nt; {nunber of blocks in data area}
prmPart Status: Longlnt; {partition status infornation}
prmigBoot Start: Longl nt; {first logical block of boot code}
prmBoot Si ze: Longl nt; {size of boot code, in bytes}
prmBoot Addr : Longl nt; {boot code | oad address}
prmBoot Addr 2: Longl nt; {reserved}
prmBoot Entry: Longl nt; {boot code entry point}
pmBoot Entry2: Longl nt; {reserved}
prmBoot Cksum Longl nt; {boot code checksun
pnmPr ocessor: PACKED ARRAY [0..15] OF Char; {processor type}
pnPad: ARRAY [0..187] OF Integer; {reserved}

END;

3-14

The first three fields in a partition map entry record are redundant, in that all entries in
the partition map must contain the same values for these fields. The pnSi g field contains
the partition map signature, which is defined by the pMapSI Gconstant. The pntSi gPad
field is currently unused and must be set to 0. The pnivapBl kCnt field contains the size
in blocks of the entire partition map. Because this value is duplicated in every entry, you
can determine the size of the partition map from any entry in the map.

The remaining fields of the partition map entry record contain information about a
particular disk partition. The pnPyPart St art field contains the physical block number
of the first block of the partition. The pnPar t Bl kCnt field contains the number of
blocks in the partition. The pmPar t Nane field can contain an optional 32-character
partition name. If this field contains a string beginning with Maci (for Macintosh),

the Start Manager will perform checksum verification of the device driver’s boot code.
Otherwise, this field is ignored.

The prPar Type field contains a string that identifies the partition type. Strings
beginning with Appl e_ are reserved for use by Apple Computer, Inc. The Start Manager
uses this information to identify the type of device driver or file system in a partition.

About the SCSI Manager

CHAPTER 3

SCSI Manager

A bootable system disk must contain both an Appl e_Dri ver and an Appl e_HFS
partition. See page 3-26 for a list of the standard partition types defined by Apple.

For file systems that do not begin at logical block 0 of the partition, the pnigDat aSt ar t
field contains the logical block number of the first block of file system data. The

prmDat aCnt field specifies the size of the data area, in blocks. The prnPar t St at us field
is currently used only by the AZUX operating system.

For device driver partitions, the pniLgBoot St art field specifies the logical block
number of the first block containing boot code. The pnBoot Si ze field contains the size
in bytes of the boot code. The pnBoot Addr field specifies the memory address where
the boot code is to be loaded, while the pmBoot Ent ry field specifies the address to
which the Start Manager will transfer control after loading the boot code into memory.
The pnBoot Cksumfield holds the checksum of the boot code, which the Start Manager
can compare against the calculated checksum after loading the code. The pnPr ocessor
field is a string that identifies the type of processor that will execute the boot code.

For more information about the startup process and SCSI devices, see the chapter
“Start Manager” in Inside Macintosh: Operating System Utilities.

Using the SCSI Manager

Your device driver or application can use the SCSI Manager routines to transfer data

to and from SCSI peripheral devices. This section begins with a simple example that
illustrates the basic steps necessary to read data from a SCSI device. Next, the details of
using transfer instruction blocks and command descriptor blocks are presented,
followed by a complete program that uses these concepts.

Reading Data From a SCSI Device

This section shows you how to use the SCSI Manager routines to read data from a SCSI
peripheral device. Your application or device driver follows these steps for reading data
from a SCSI device:

1. Create a command descriptor block (CDB) and a transfer instruction block (TIB).
2. Call the SCSI Get function to arbitrate for the SCSI bus.

3. Use the SCSI Sel ect function to select the SCSI device to read from.

4

. Use the SCSI Cnd function to send a command descriptor block (CDB) containing a
SCSI read command to the device.

¢,

. Call the SCSI Read function to transfer the data.

6. Call the SCSI Conpl et e function to get the status and message bytes that mark the
end of a transaction over the SCSI bus.

Listing 3-1 shows code illustrating these steps. The example is simplified, in that it
excludes the details of setting up the CDB and TIB data structures prior to initiating the
read operation. That information is presented in the next section.

Using the SCSI Manager 3-15

CHAPTER 3

SCSI Manager

Listing 3-1 Reading data from a SCSI device

FUNCTI ON MyReadSCSI : OSErr;

CONST

kConpl eti onTi meout = 300; {value passed to SCSI Conpl ete }

{ 300 ticks = 5 seconds}

VAR
CDB: PACKED ARRAY [0..5] OF Byte; {command descri ptor bl ock}
CDBLen: I nt eger; {l'ength of CDB}
TI B: PACKED ARRAY [0..1] OF SCSllnstr;{transfer instruction bl ock}
scsi |l D I nt eger; {SCSI 1D of the target}
conmpSt at : I nt eger; {status from SCSI Conpl et e}
conpMsg: I nt eger; {message from SCSI Conpl et e}
compErr: CSErr; {result from SCSI Conpl et e}
myErr: CSErr; {cunul ative error result}
BEG N
{Note: This exanple assunes the CDB, CDBLen, TIB, and scsilD variables }
{ already contain appropriate val ues.}
myErr := SCSI Get; {arbitrate for the bus}
IF nyErr = noErr THEN
BEG N
myErr : = SCSI Sel ect (scsil D); {select the target}
IF nyErr = noErr THEN
BEG N
myErr : = SCSI Cnd(@DB, CDBLen); {send read command}
IF nyErr = noErr THEN
nyErr := SCSI Read(@l B) ; {pol |l ed read}
{conplete the transaction and rel ease the bus}
compErr := SCSI Conpl et e(conpStat, conmpMsg, kConpl etionTi neout);
{return the nost informative error result}
IF nmyErr = noErr THEN {if no prior errors, then }
myErr := conpErr; { return SCSI Conplete result}
END;
END,
MyReadSCSI : = nyErr; {return result code}
END;
3-16 Using the SCSI Manager

CHAPTER 3

SCSI Manager

The MyReadSCSI function follows the steps presented earlier in this section, starting
with calling the SCSI Get and SCSI Sel ect functions to select the target device, sending
a read command using the SCSI Cnd function, and reading the data with the SCSI Read
function. Finally, the SCSI Conpl et e function is called to obtain the status and message
bytes from the device and restore the bus to the bus free phase.

The MyReadSCsSI function assumes these variables have already been set up properly:

n a SCSI command descriptor block (the CDB variable)

n an integer specifying the length of the command descriptor block (the CDBLen
variable)

n atransfer instruction block (the Tl B variable)
n an integer specifying the SCSI ID of the target device (the scsi | Dvariable)

Within its narrowed scope, the MyReadSCSI function is correct and complete. You can
easily modify it to handle other operations, such as writing data, or conducting blind
transfers.

The MyReadSCSI function shows one way of handling the error results returned by

a series of SCSI Manager functions. The result codes returned by the SCSI Manager
functions are put into themyEr r local variable as each SCSI Manager function is called.
Your code should likewise check the result codes and proceed only if there is no error.
Calling the SCSI Conpl et e function is the last step, and requires special handling. Your
code should call the SCSI Conpl et e function even if an earlier SCSI Manager routine
has returned an error, because the SCSI Conpl et e function takes whatever steps are
necessary to restore the SCSI bus to the bus free phase. For more information, see “Using
the SCSIComplete Function” on page 3-21.

Using CDB and TIB Structures

The command descriptor block (CDB) is a data structure defined by the SCSI
specification for communicating commands to SCSI devices. The SCSI Manager does
not interpret the commands in a CDB, it simply transfers them to the selected device.

You send a CDB to a SCSI device using the SCSI Crd function. The size of the CDB
structure can be 6, 10, or 12 bytes, depending on the number of parameters required by
the command. The first byte specifies the command, and the remaining bytes contain
parameters.

The SCSI specification includes a set of standard commands that all SCSI devices

must implement, and a wide range of commands for specific device types. In addition,
manufacturers can define proprietary command codes for their devices. You should refer
to the manufacturer’s documentation for information about the commands supported by
a particular device.

You use the transfer instruction block (TIB) data structure to pass instructions to the
SCSI Manager SCSI Read, SCSI RBl i nd, SCSI Wi t e, and SCSI WBI i nd functions. The
TIB structure is defined by the SCSI | nst r data type. The scOpcode field contains a
transfer operation code, and the scPar aml and scPar an? fields contain parameters to
the command. The instruction set consists of eight operation codes that allow you to

Using the SCSI Manager 3-17

CHAPTER 3

SCSI Manager

transfer data, increment a counter, and form iterative loops. See “SCSI Manager TIB
Instructions,” beginning on page 3-27, for details of the TIB instruction set.

Listing 3-2 shows an example of how you can use CDB and TIB instructions to send a
command and read information from a SCSI peripheral device. The MySCSI | nqui ry
program uses the SCSI | NQUI RY command to obtain a 256-byte record of information
from a target device. This information includes the target’s device type, vendor ID,
product ID, revision data, and other vendor-specific information. The | NQUI RY
command is one of the standard commands that all SCSI devices must support.

Listing 3-2 Using TIB and CDB structures

PROCGRAM MySCSI | nqui ry;

USES SCSI ;

CONST
kl nquiryCmd = $12; {SCSI command code for the | NQU RY command}
kVendor | DSi ze = 8; {size of the Vendor ID string}
kProduct | DSi ze = 16; {size of the Product ID string}
kRevi si onSi ze = 4; {size of the Revision string}
kConmpl eti onTi meout = 300; {tineout value passed to SCSI Conpl et e}
kMySCSI I D = 0; {SCSI 1D of the target device}

{This structure duplicates the format of the SCSI | NQU RY response record, }
{ as described in the SCSI-2 specification. The first 5 bytes are required }
{ for SCSI-1 devices. The first 36 bytes are required for SCSI-2 devices. }
{ The Additional Length field contains the | ength of the vendor-specific }

{ information, if any, beyond the 5 bytes required for all devices.}

TYPE Myl nqui ryRecord =

PACKED RECORD

Devi ceType: Byt e; {SCSI device type code (disk, tape, etc.)}
Devi ceQualifier: Byte; {7-bit vendor-specific code}
Ver si on: Byt e; {version of ANSI standard (SCSI-1 or SCSI-2)}
ResponseFor mat : Byt e;
Addi ti onal Lengt h: Byte; {l ength of vendor-specific infornmation}
Vendor Usel: Byt e;
Reservedl: I nt eger;
Vendor | D: PACKED ARRAY [1..kVendor|DSi ze] OF Char; {nmanufacturer}
Product | D PACKED ARRAY [1..kProductl DSi ze] OF Char; {product code}
Revi si on: PACKED ARRAY [1..kRevisionSize] OF Char; {firmware rev}
Vendor Use2: PACKED ARRAY [1..20] OF Byte;
Reserved2: PACKED ARRAY [1..42] OF Byte;
Vendor Use3: PACKED ARRAY [1..158] OF Byte;

END; {a total of 256 bytes of data may be returned}

3-18 Using the SCSI Manager

CHAPTER 3

SCSI Manager

VAR
CDB: PACKED ARRAY [0..5] OF Byte; {command descri ptor bl ock}
TI B: PACKED ARRAY [0..1] OF SCSllnstr; {transfer instruction bl ock}
Response: M/l nqui ryRecord; {holds target’s response}
conpSt at : I nt eger; {status information from SCSI Conpl et e}
conpMsg: I nt eger; {message i nformation from SCSI Conpl et e}
compErr: CSErr; {result from SCSI Conpl et e}
myErr: CSErr; {error result}
i I nt eger; {l oop counter}

BEG N
{Set up the command buffer with the SCSI | NQU RY comand. }
CDB[0] := kIl nquiryCnd, {SCSI command code for the I NQU RY command}
CcDB[1] := 0; {unused paraneter}
cbB[2] := O; {unused paraneter}
CDB[3] := 0; {unused paraneter}
CDB[4] := 5; {maxi mum nunber of bytes target should return}
CDB[5] := O; {unused paraneter}

{Set up the two TIB structures; one to read, the other as terninator.}

TI B[0] . scOpcode : = scNol nc; {specify the scNolnc instruction}
TI B[0] .scParanl := Longlnt(@Response); {pointer to buffer}

TI B[0] .scParan? : = 5; {nunber of bytes to nove}

TI B[1] . scOpcode : = scStop; {specify the scStop instruction}
TIB[1] .scParanl := Longlnt(NL); {unused paraneter}

TI B[1] . scParan? : = Longlnt(NL); {unused paraneter}

WRI TELN(' SCSI i nquiry exanple. Testing SCSI ID:', kMySCSIID);

{Send the I NQU RY command twi ce. The first tine to obtain the }
{ Additional Length value in the fifth byte of the I NQU RY response }
{ record and the second tinme to read that additional amount. Notice }
{ that SCSl Conplete is always called if SCSI Sel ect was successful .}
FORi :=1to 2 DO
BEG N
myErr .= SCSI Get; {arbitrate for the bus}
IF myErr = noErr THEN
myErr := SCSI Sel ect (KMySCSI I D); {select the target}
IF myErr <> noErr THEN
BEG N
WRI TELN(' Error result from SCSI Get or SCSI Select:', nyErr);
EXI T(MySCSI | nqui ry);
END,
myErr := SCSI Cnd(@DB, 6); {send I NQUI RY command to the target}

Using the SCSI Manager 3-19

CHAPTER 3

SCSI Manager

IF nyErr = noErr THEN

BEG N
myErr : = SCSI Read(@l B) ; {read the I NQUI RY response record}
IF myErr = noErr THEN {if there was no error, and }
IFi =1 THEN { if thisis the first tine through }
BEA N { the |l oop, get the Additional Length}
CDB[4] := CDB[4] + Response. Additional Lengt h;
TIB[O].scParan2 := TIB[O].scParan2 +
Response. Addi ti onal Lengt h;
END;
END;

{Call SCSIComplete to clean up. Results are ignored in this exanple.}
compErr := SCSI Conpl ete(conpStat, conpMsg, kConpl etionTi neout);
IF myErr <> noErr THEN
BEG N
WRI TELN(' Error result from SCSICrd or SCSI Read:', nyErr);
EXI T(MySCSI | nqui ry);
END,
END; {FOR | oop}

{Display the information.}
| F Response. Addi ti onal Length > 0 THEN
BEG N
W TH Response DO
BEG N
WRI TE(' Vendor I D: ') ;
FOR i := 1 TO kVendor | DSi ze DO
VWRI TE(Vendor I D[i]);
VRl TELN;
WRI TE(' Product1D:");
FOR i := 1 TO kProduct| DSi ze DO
WRI TE(Product I Di]);
VRl TELN;
VWRI TE(' Revi sion:');
FOR i := 1 TO kRevi si onSi ze DO
WRI TE(Revi sion[i]);
VWRI TELN;
END,

3-20 Using the SCSI Manager

CHAPTER 3

SCSI Manager

The MySCSI | nqui ry program first defines various constants, including the

kl nqui r yCnd constant, which contains the operation code for the SCSI | NQUI RY
command. Next the Myl nqui r yRecor d data type is declared, a 256-byte structure that
holds the information returned by the target. The fields of this record are based on the
SCSI-2 specification. The SCSI-1 specification requires that devices return at least the first
5 bytes of information (Devi ceType through Addi t i onal Lengt h), however, many
SCSI-1 devices and all SCSI-2 devices return at least the first 36 bytes (Devi ceType
through Revi si on).

In the 6-byte CDB used by the SCSI | NQUI RY command, the first byte contains the
operation code and the fifth byte specifies the maximum number of bytes the target is
allowed to send in response to the inquiry. Restricting the target’s response to a specified
number of bytes prevents it from overflowing the buffer the initiator has set aside to
accept the data.

This program uses two transfer instruction blocks, both of which are relatively simple.
The first TIB is an scNol nc instruction, whose parameters specify a data transfer into
the Response record. The second TIB is an sc St op instruction, which terminates the
SCSI Manager processing that occurs inside the SCSI Read function.

The body of the MySCSI | nqui ry program consists of a loop that performs the
arbitrate/select/command/transfer/complete sequence described in “Reading Data
From a SCSI Device” on page 3-15. The loop executes this sequence of SCSI Manager
functions twice. The first time sends the SCSI I NQUI RY command to the target and
requests only the standard 5 bytes of information supplied by all SCSI devices. The value
of the fifth byte (returned in the Addi ti onal Lengt h field of the Response record)
indicates the amount of additional information the device is capable of returning. Before
going through the loop a second time, both the CDB and the TIB are modified to reflect
the additional size of the inquiry information.

The program checks for errors at each stage in the SCSI Manager calling sequence. If
either the SCSI Get or SCSI Sel ect function returns an error, the program exits. If the
SCSI Cnd function returns an error, SCSI Read is not called. To complete the transaction
and release the bus, the SCSI Conpl et e function is always called if SCSI Sel ect was
successful.

Using the SCSIComplete Function

The SCSI Conpl et e function completes a SCSI transaction and restores the bus to the
bus free phase. You must call this function at the end of every transaction that proceeds
past the selection phase, even if the transaction does not complete successfully.

The SCSI Conpl et e function waits a specified number of ticks for the current
transaction to complete, and then returns one byte of status information and one byte

of message information from the target device. The function returns one of the following
result codes:

n NoErr. The SCSI Conpl et e function was able to obtain both the status and message
bytes successfully. This result code indicates that the information is valid.

Using the SCSI Manager 3-21

3-22

CHAPTER 3

SCSI Manager

n scConpl PhaseEr r. Upon entry, the SCSI Conpl et e function detected that the target
was ready to transfer information (that is, the /REQ signal was asserted) but the SCSI
bus was not in the status phase. The SCSI Manager performed corrective action to bring
the bus into the status phase. For example, accepting bytes from the target without
passing them to your program (“bit-bucketing’), or sending an arbitrary number of
bytes to the target. Once in status phase, the SCSI Conpl et e function was able to
transfer the status and message bytes successfully, and this information is valid.

n scPhaseErr. The SCSI Conpl et e function could not force the SCSI bus into the
status phase. The status and message bytes should be considered invalid. You may
need to reset the bus to restore proper operation.

n scCommEr r. This result code covers any other error conditions encountered by the
SCSI Conpl et e function, such as the timeout that occurs if the transaction does not
complete within the specified number of ticks.

Choosing Polled or Blind Transfers

The SCSI Manager supports two data transfer methods: polled and blind. During a
polled transfer, the SCSI Manager senses the state of the Macintosh SCSI controller
hardware to determine when the controller is ready to transfer another byte. In ablind
transfer, the SCSI Manager assumes that the SCSI controller (and the target device) can
keep up with a specified transfer rate, and does not explicitly sense whether the
hardware is ready.

Note

These transfer modes are specific to the Macintosh SCSI interface
hardware implementation and are not part of the SCSI protocol. u

When the SCSI Manager retrieves data from the SCSI controller, it can explicitly verify
that a byte was received by the controller and is ready for transfer. The SCSI Manager
does this by polling a status register in the controller. Alternatively, the SCSI Manager
can assume that a byte is available and can attempt to read it without checking first.

As long as a SCSI device can supply data to the SCSI controller faster than the SCSI
Manager can retrieve it, blind transfers work reliably. If the SCSI device cannot keep up,
timeout errors and other problems can occur.

For example, in the Macintosh Plus (the first model to include a SCSI interface), if
the SCSI Manager reads a byte from the SCSI controller chip before the chip receives
a byte from the target, the read operation completes but the data is invalid. The

SCSI Conpl et e function does not always return an error result in this case.

Newer Macintosh models include hardware support for handshaking, allowing blind
transfers to be both fast and reliable. This handshaking allows the SCSI controller to
defer the CPU if no data is available to transfer. If the data doesn’t arrive within a
specified period, the SCSI Manager returns the scBusTCOEr r result. The timeout period
varies for each Macintosh model. This type of timeout error does not occur when using
polled transfers.

Polled transfers work reliably with all SCSI peripheral devices, and are a good choice for
slow or unpredictable devices such as printers and scanners. You should also use polled

Using the SCSI Manager

CHAPTER 3

SCSI Manager

transfers if you are unfamiliar with the characteristics of a particular device. You use the
SCSI Read and SCSI W i t e functions to initiate polled transfers.

For disk drives and other high-speed devices, blind transfers can significantly increase
data throughput. As long as the device does not incur any delays during a transfer, or
the delays occur at predictable times, blind transfers are a good choice. You use the
SCSI RBl i nd and SCSI VWBI i nd functions to initiate blind transfers.

Because the first byte transferred by each TIB instruction is always polled, even in blind
mode, you can work around predictable delays using an appropriate sequence of TIB
instructions. For example, if a peripheral device always pauses at a specific byte within a
transfer, you can divide the transfer into blocks so that the delayed byte is located at the
start of a TIB instruction. The SCSI Manager polls the controller before the first byte, then
reads the remaining bytes using a blind transfer. For disk drives, predictable delays
generally occur at sector boundaries, so you can compensate by dividing your transfers
into sector-sized blocks.

SCSI Manager Reference

This section describes the data structures and routines that constitute the SCSI Manager,
and also includes the data structures that describe the low-level structure of block
devices.

The section “SCSI Manager TIB Instructions,” beginning on page 3-27, contains
descriptions of transfer instruction block (TIB) instructions. These structures are used to
control data transfers conducted by the SCSI Manager. Although TIB instructions are
data structures, not machine-executable code, they are analogous to code in that TIB
instructions are interpreted and executed by the SCSI Manager. Because of this dual
nature, TIB instructions are presented in their own section.

Data Structures

This section describes the driver descriptor record and the partition map entry record.
These data structures are not used by the SCSI Manager, but represent the way data is
structured on random access storage devices such as hard disk drives. The Start Manager
uses this information to locate partitions and device drivers on SCSI disks.

Driver Descriptor Record

The driver descriptor record contains information about the device drivers resident on a
SCSI peripheral device. The driver descriptor record is defined by the Bl ock0 data type.

TYPE Bl ockO =
PACKED RECORD
sbSi g: I nt eger; {devi ce signature}

SCSI Manager Reference 3-23

CHAPTER 3

SCSI Manager

{bl ock size of the device}

{nunber of blocks on the device}
{reserved}

{reserved}

{reserved}

{nunber of driver descriptor entries}
{first driver’s starting bl ock}

{size of the driver, in 512-byte bl ocks}
{operating systemtype (MacCs = 1)}

ARRAY [0..242] OF Integer; {additional drivers, if any}

The device signature. This field should contain the value of the
sbSI GMr d constant ($4552) to indicate that the driver descriptor
record is valid (meaning that the disk has been formatted).

The size of the blocks on the device, in bytes.
The number of blocks on the device.
Reserved.

Reserved.

Reserved.

The number of drivers installed on the disk. More than one driver
may be included when multiple operating systems or processors are
supported. The drivers can be located anywhere on the device and
can be as large as necessary.

The physical block number of the first block of the first device
driver on the disk.

The size of the device driver, in 512-byte blocks.

The operating system or processor supported by the driver. A value
of 1 specifies the Macintosh Operating System. The values 0
through 15 are reserved for use by Apple Computer, Inc.

Additional ddBl ock, ddSi ze, and ddType entries for other device
drivers on the disk.

If multiple device drivers exist on the device, you can use the Start Manager

Set OSDef aul t function to control which operating system is loaded at startup by
specifying a value that corresponds to the ddType field of the appropriate device driver.
For more information on the startup process, see the chapter “Start Manager” in

Inside Macintosh: Operating System Utilities.

See “The Structure of Block Devices,” beginning on page 3-12, for more information

sbBl kSi ze: I nt eger;
sbBl kCount : Longl nt;
sbDevType: I nt eger;
sbDevl d: I nt eger;
sbDat a: Longl nt;
sbDr vr Count : I nt eger;
ddBl ock: Longl nt;
ddsSi ze: I nt eger;
ddType: I nt eger;
ddPad:
END;

Field descriptions

sbSi g

sbBl kSi ze

sbBI kCount

sbDevType

sbDevl d

sbDat a

sbDr vr Count

ddBl ock

ddsi ze

ddType

ddPad

about this data structure.

3-24 SCSI Manager Reference

CHAPTER 3

SCSI Manager

Partition Map Entry Record

The partition map entry record contains information about how data is stored on a block
device, usually a SCSI disk drive. The partition map entry record is defined by the
Partiti on data type.

TYPE Partition =

RECORD
pnsi g: I nt eger; {partition signature}
pnsi gPad: I nt eger; {reserved}
pmvapBl kCnt : Longl nt; {nunber of blocks in partition map}
pnPyPart Start: Longlnt; {first physical block of partition}
prmPart Bl kCnt: Longl nt; {nunber of blocks in partition}
prPar t Name: PACKED ARRAY [0..31] OF Char; {partition name}
prmPar Type: PACKED ARRAY [0..31] OF Char; {partition type}
prmigDat aStart: Longlnt; {first logical block of data area}
prDat aCnt : Longl nt; {nunber of blocks in data area}
prmPart Status: Longl nt; {partition status infornmation}
prmlLgBoot Start: Longl nt; {first logical block of boot code}
prmBoot Si ze: Longl nt; {size of boot code, in bytes}
prmBoot Addr : Longl nt; {boot code | oad address}
prmBoot Addr 2: Longl nt; {reserved}
prmBoot Ent ry: Longl nt; {boot code entry point}
pmBoot Entry2: Longl nt; {reserved}
prmBoot Cksum Longl nt; {boot code checksuni
prmPr ocessor: PACKED ARRAY [0..15] OF Char; {processor type}
prmPad: ARRAY [0..187] OF Integer; {reserved}

END;

Field descriptions

pnSi g The partition signature. This field should contain the value of the
pMapSI Gceonstant ($504D). An earlier but still supported version
uses the value $5453.

pnsi gPad Reserved.

pmvapBl kCnt The size of the partition map, in blocks.

pmPyPart Start The physical block number of the first block of the partition.

prPar t Bl kCnt The size of the partition, in blocks.

prPar t Nane An optional partition name, up to 32 bytes in length. If the string

SCSI Manager Reference

is less than 32 bytes, it must be terminated with the ASCII NUL
character (a byte with a value of 0). If the partition name begins
with Maci (for Macintosh), the Start Manager will perform
checksum verification of the device driver’s boot code. Otherwise,
this field is ignored.

3-25

CHAPTER 3

SCSI Manager

prmPar Type A string that identifies the partition type. Names that begin with
Appl e_ are reserved for use by Apple Computer, Inc. Names
shorter than 32 characters must be terminated with the NUL
character. The following standard partition types are defined for
the pnPar Type field:

String Meaning

Appl e_partition_map Partition contains a partition map

Appl e_Dri ver Partition contains a device driver

Appl e_Driver43 Partition contains a SCSI Manager 4.3
device driver

Appl e_MFS Partition uses the original Macintosh
File System (64K ROM version)

Appl e_HFS Partition uses the Hierarchical File

System implemented in 128K and
later ROM versions

Appl e_Uni x_SVR2 Partition uses the Unix file system
Appl e_PRODOS Partition uses the ProDOS file system
Appl e_Free Partition is unused

Appl e_Scrat ch Partition is empty

prmigDat aSt art The logical block number of the first block containing file system
data. This is for use by operating systems, such as A/UX, in which
the file system does not begin at logical block 0 of the partition.

prDat aCnt The size of the file system data area, in blocks. This is used in
conjunction with the pnigDat aSt art field, for those operating
systems in which the file system does not begin at logical block 0
of the partition.

prmPart St at us Two words of status information about the partition. The low-order
byte of the low-order word contains status information used only
by the AZ/UX operating system:

Bit Meaning

Set if a valid partition map entry

Set if partition is already allocated; clear if available

Set if partition is in use; may be cleared after a system reset
Set if partition contains valid boot information

Set if partition allows reading

Set if partition allows writing

Set if boot code is position-independent

~N o oA W N - O

Unused
The remaining bytes of the prPar t St at us field are reserved.

prmLgBoot Start The logical block number of the first block containing boot code.
prmBoot Si ze The size of the boot code, in bytes.

3-26 SCSI Manager Reference

CHAPTER 3

SCSI Manager

prmBoot Addr
prmBoot Addr 2
pnBoot Entry

pnBoot Entry?2
prmBoot Cksum

pnProcessor

prmPad

The memory address where the boot code is to be loaded.
Reserved.

The memory address to which the Start Manager will transfer
control after loading the boot code into memory.

Reserved.

The boot code checksum. The Start Manager can compare this value
against the calculated checksum after loading the code.

An optional string that identifies the type of processor that will
execute the boot code. Strings shorter than 16 bytes must be
terminated with the ASCII NUL character. The following processor
types are defined: 68000, 68020, 68030, and 68040.

Reserved.

See “The Structure of Block Devices,” beginning on page 3-12, for more information
about this data structure.

SCSI Manager TIB Instructions

The transfer instruction block (TIB) is a data structure that you use to control the
data transfer process. TIB structures are passed as parameters to the SCSI Read,
SCSI RBl i nd, SCSI Wi t e, and SCSI WBI i nd functions. The transfer instruction
block is defined by the SCSI | nstr data type.

TYPE SCSI I nstr

RECORD
scOpcode:
scPar ant:
scPar ang:

END;

I nt eger; {operation code}
Longl nt; {first paraneter}
Longl nt; {second paraneter}

The scOpcode field contains a value that specifies the operation to be performed. There
are eight possible operations, known as TIB instructions, which carry out tasks such as
moving data, looping, and address arithmetic. These instructions are described in this
section. The operation codes for the TIB instructions are:

CONST

scl nc
scNol nc
scAdd
schMove
scLoop
scNop
scSt op
scConp

{transfer data, increnent buffer pointer}
{transfer data, don’t increnment pointer}
{add |l ong to address}

{move long to address}

{decrenent counter and loop if > 0}

{no operation}

{stop TIB execution}

{conpare SCSI data w th nenory}

|
Nk ONR

SCSI Manager Reference 3-27

CHAPTER 3

SCSI Manager

To transfer data, you create a variable-length array of TIB instructions and pass a
pointer to this array to any of the SCSI Manager data transfer functions (SCSI Read,
SCSI RBl i nd, SCSI Wit e, SCSI VBl i nd). These SCSI Manager functions interpret the
TIB instructions and carry out the requested operations.

For an example of how to use TIB instructions, see “Using CDB and TIB Structures,”
beginning on page 3-17.

IMPORTANT

Before you call any of the SCSI Manager data transfer functions
(SCsSI Read, SCSI RBI i nd, SCSI Wi t e, or SCSI WBI i nd), you must
first send a SCSI read or write command to the target using the
SCSI Cd function. s

scinc
You can use the scl nc TI