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P REFACE

About This Book

This book, Inside Macintosh: Memory, describes the parts of the Macintosh
Operating System that allow you to allocate memory directly, release it, or
otherwise manipulate it. The book includes introductory material about
managing memory on Macintosh computers as well as a complete technical
reference to the Memory Manager, the Virtual Memory Manager, and other
memory-related services provided by the system software.

If you are new to programming on the Macintosh Operating System, you
should begin with the chapter “Introduction to Memory Management.” This
chapter provides a general introduction to memory management on
Macintosh computers. It describes how the Operating System organizes and
manages the available memory, and it shows how you can use the services
provided by the Memory Manager and other system software components to
manage the memory in your application partition effectively. Because this
chapter is designed to be largely self-contained, the reference and summary
sections in this chapter are subsets of the corresponding sections from the
other chapters in this book.

Once you are familiar with basic memory management on Macintosh
computers, you should look at the chapter “Memory Manager.” It describes
how to allocate memory outside your application partition and how to
perform more advanced memory operations than are described in the
introductory chapter.

The chapter “Virtual Memory Manager” describes the operation of virtual
memory and describes the routines that you can use to intervene in the
otherwise automatic operations of the Virtual Memory Manager. Most
applications are not affected by the operation of virtual memory and do not
need to use the routines provided by the Virtual Memory Manager. If your
application sends memory addresses to some NuBus' master hardware,
however, you should read the discussion of mapping virtual to physical
addresses in that chapter.

The final chapter in this book, “Memory Management Utilities,” describes a
number of utility routines provided by the system software. You need to read
this chapter primarily if you install routines that are executed by system
software routines or in response to an interrupt, or if you need to change

the addressing mode. You also need to read this chapter if your application
might be affected by the normal operation of the processor’s instruction or
data caches.

Xi
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Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the
Memory Manager chapter contains these sections:

“About the Memory Manager.” This section provides an overview of the
features provided by the Memory Manager.

n “Using the Memory Manager.” This section describes the tasks you can
accomplish using the Memory Manager. It describes how to use the most
common routines, gives related user interface information, provides code
samples, and supplies additional information.

n “Memory Manager Reference.” This section provides a complete reference
to the Memory Manager by describing the data structures, routines, and
resources that it uses. Each routine description also follows a standard
format, which gives the routine declaration and description of every
parameter of the routine. Some routine descriptions also give additional
descriptive information, such as assembly-language information or
result codes.

n “Summary of the Memory Manager.” This section provides the Memory
Manager’s Pascal interface, as well as the C interface, for the constants,
data structures, routines, and result codes associated with the Memory
Manager. It also includes relevant assembly-language interface information.

Some chapters also contain additional main sections that provide more
detailed discussions of certain topics. For example, the Memory Manager
chapter contains the section “Organization of Memory” that describes how
the Memory Manager organizes zones and blocks in RAM.

Conventions Used in This Book

Xil

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, use special formats so that you can
scan them quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (t hi s
is Courier).

Words that appear in boldface are key terms or concepts and are defined in
the Glossary.
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Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-8.) u

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 2-7.) s

WARNING
Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on

page 1-16.) s

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines
like this:

Registers on entry
A0 Contents of register A0 on entry

Registers on exit
DO Contents of register DO on exit

In addition, Inside Macintosh presents information about the fields of a
parameter block in this format:

Parameter block

« i nAndQut I nt eger Input/output parameter.
- out put1 Ptr Output parameter.
® i nput 1 Ptr Input parameter.

The arrow in the far left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The routine returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal
interface files; the third column indicates the Pascal data type of that field.
The fourth column provides a brief description of the use of the field. For a
complete description of each field, see the discussion that follows the

xiii
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parameter block or the description of the parameter block in the reference
section of the chapter.

Development Environment

Xiv

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. This book shows
system software routines in their Pascal interface using the Macintosh
Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal. They show methods of
using various routines and illustrate techniques for accomplishing particular
tasks. All code listings have been compiled and, in most cases, tested.
However, Apple Computer does not intend that you use these code samples
in your application.

APDA, Apple’s source for developer tools, offers worldwide access to a broad
range of programming products, resources, and information for anyone
developing on Apple platforms. You’ll find the most current versions of
Apple and third-party development tools, debuggers, compilers, languages,
and technical references for all Apple platforms. To establish an APDA
account, obtain additional ordering information, or find out about site
licensing and developer training programs, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
800-562-3910 (elsewhere in the world)

Fax: 408-562-3971
Telex: 171-576

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other
technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014-6299
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CHAPTER 1

Introduction to Memory Management

This chapter is a general introduction to memory management on Macintosh computers.
It describes how the Operating System organizes and manages the available memory,
and it shows how you can use the services provided by the Memory Manager and other
system software components to manage the memory in your application partition
effectively.

You should read this chapter if your application or other software allocates memory
dynamically during its execution. This chapter describes how to

n set up your application partition at launch time
n determine the amount of free memory in your application heap
n allocate and dispose of blocks of memory in your application heap

n minimize fragmentation in your application heap caused by blocks of memory that
cannot move

n implement a scheme to avoid low-memory conditions

You should be able to accomplish most of your application’s memory allocation and
management by following the instructions given in this chapter. If, however, your
application needs to allocate memory outside its own partition (for instance, in the
system heap), you need to read the chapter “Memory Manager” in this book. If your
application has timing-critical requirements or installs procedures that execute at
interrupt time, you need to read the chapter “Virtual Memory Manager” in this book. If
your application’s executable code is divided into multiple segments, you might also
want to look at the chapter “Segment Manager” in Inside Macintosh: Processes for
guidelines on how to divide your code into segments. If your application uses resources,
you need to read the chapter “Resource Manager” in Inside Macintosh: More Macintosh
Toolbox for information on managing memory allocated to resources.

This chapter begins with a description of how the Macintosh Operating System
organizes the available physical random-access memory (RAM) in a Macintosh
computer and how it allocates memory to open applications. Then this chapter describes
in detail how the Memory Manager allocates blocks of memory in your application’s
heap and how to use the routines provided by the Memory Manager to perform the
memory-management tasks listed above.

This chapter ends with descriptions of the routines used to perform these tasks. The
“Memory Management Reference” and “Summary of Memory Management” sections
in this chapter are subsets of the corresponding sections in the remaining chapters in
this book.
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About Memory

1-4

A Macintosh computer’s available RAM is used by the Operating System, applications,
and other software components, such as device drivers and system extensions. This
section describes both the general organization of memory by the Operating System
and the organization of the memory partition allocated to your application when

it is launched. This section also provides a preliminary description of three related
memory topics:

n temporary memory
n virtual memory
n 24- and 32-bit addressing

For more complete information on these three topics, you need to read the remaining
chapters in this book.

Organization of Memory by the Operating System

When the Macintosh Operating System starts up, it divides the available RAM into two
broad sections. It reserves for itself a zone or partition of memory known as the system
partition. The system partition always begins at the lowest addressable byte of memory
(memory address 0) and extends upward. The system partition contains a system heap
and a set of global variables, described in the next two sections.

All memory outside the system partition is available for allocation to applications or
other software components. In system software version 7.0 and later (or when
MultiFinder is running in system software versions 5.0 and 6.0), the user can have
multiple applications open at once. When an application is launched, the Operating
System assigns it a section of memory known as its application partition. In general, an
application uses only the memory contained in its own application partition.

Figure 1-1 illustrates the organization of memory when several applications are open at
the same time. The system partition occupies the lowest position in memory. Application
partitions occupy part of the remaining space. Note that application partitions are
loaded into the top part of memory first.

About Memory
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Figure 1-1 Memory organization with several applications open
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In Figure 1-1, three applications are open, each with its own application partition. The
application labeled Application 1 is the active application. (The labels on the right side of
the figure are system global variables, explained in “The System Global Variables” on
page 1-6.)
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The System Heap

The main part of the system partition is an area of memory known as the system heap.
In general, the system heap is reserved for exclusive use by the Operating System and
other system software components, which load into it various items such as system
resources, system code segments, and system data structures. All system buffers and
queues, for example, are allocated in the system heap.

The system heap is also used for code and other resources that do not belong to specific
applications, such as code resources that add features to the Operating System or that
provide control of special-purpose peripheral equipment. System patches and system
extensions (stored as code resources of type' | NI T' ) are loaded into the system heap
during the system startup process. Hardware device drivers (stored as code resources of
type ' DRVR' ) are loaded into the system heap when the driver is opened.

Most applications don’t need to load anything into the system heap. In certain cases,
however, you might need to load resources or code segments into the system heap. For
example, if you want a vertical retrace task to continue to execute even when your
application is in the background, you need to load the task and any data associated with
it into the system heap. Otherwise, the Vertical Retrace Manager ignores the task when
your application is in the background.

The System Global Variables

The lowest part of memory is occupied by a collection of global variables called system
global variables (or low-memory system global variables). The Operating System uses
these variables to maintain different kinds of information about the operating
environment. For example, the Ti cks global variable contains the number of ticks
(sixtieths of a second) that have elapsed since the system was most recently started up.
Similar variables contain, for example, the height of the menu bar (MBar Hei ght ) and
pointers to the heads of various operating-system queues (DTQueue, FSQHdr,
VBLQueue, and so forth). Most low-memory global variables are of this variety: they
contain information that is generally useful only to the Operating System or other
system software components.

Other low-memory global variables contain information about the current application.
For example, the Appl Zone global variable contains the address of the first byte

of the active application’s partition. The Appl Li ni t global variable contains the
address of the last byte the active application’s heap can expand to include. The

Cur r ent A5 global variable contains the address of the boundary between the active
application’s global variables and its application parameters. Because these global
variables contain information about the active application, the Operating System
changes the values of these variables whenever a context switch occurs.

In general, it is best to avoid reading or writing low-memory system global variables.
Most of these variables are undocumented, and the results of changing their values can
be unpredictable. Usually, when the value of a low-memory global variable is likely to be
useful to applications, the system software provides a routine that you can use to read or
write that value. For example, you can get the current value of the Ti cks global variable
by calling the Ti ckCount function.
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In rare instances, there is no routine that reads or writes the value of a documented
global variable. In those cases, you might need to read or write that value directly. See
the chapter “Memory Manager” in this book for instructions on reading and writing the
values of low-memory global variables from a high-level language.

Organization of Memory in an Application Partition

When your application is launched, the Operating System allocates for it a partition of
memory called its application partition. That partition contains required segments of the
application’s code as well as other data associated with the application. Figure 1-2
illustrates the general organization of an application partition.

Figure 1-2 Organization of an application partition
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Your application partition is divided into three major parts:
n the application stack
n the application heap

n the application global variables and A5 world
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The heap is located at the low-memory end of your application partition and always
expands (when necessary) toward high memory. The A5 world is located at the
high-memory end of your application partition and is of fixed size. The stack begins
at the low-memory end of the A5 world and expands downward, toward the top of
the heap.

As you can see in Figure 1-2, there is usually an unused area of memory between the
stack and the heap. This unused area provides space for the stack to grow without
encroaching upon the space assigned to the application heap. In some cases, however,
the stack might grow into space reserved for the application heap. If this happens, it is
very likely that data in the heap will become corrupted.

The Appl Li m t global variable marks the upper limit to which your heap can grow. If
you call the MaxAppl Zone procedure at the beginning of your program, the heap
immediately extends all the way up to this limit. If you were to use all of the heap’s free
space, the Memory Manager would not allow you to allocate additional blocks above
Appl Li nmi t . If you do not call MaxAppl Zone, the heap grows toward Appl Li mi t
whenever the Memory Manager finds that there is not enough memory in the heap to fill
a request. However, once the heap grows up to Appl Li ni t, it can grow no further.

Thus, whether you maximize your application heap or not, you can use only the space
between the bottom of the heap and Appl Lim t.

Unlike the heap, the stack is not bounded by Appl Li m t . If your application uses
heavily nested procedures with many local variables or uses extensive recursion, the
stack could grow downward beyond Appl Li mi t . Because you do not use Memory
Manager routines to allocate memory on the stack, the Memory Manager cannot stop
your stack from growing beyond Appl Li mi t and possibly encroaching upon space
reserved for the heap. However, a vertical retrace task checks approximately 60 times
each second to see if the stack has moved into the heap. If it has, the task, known as the
“stack sniffer,” generates a system error. This system error alerts you that you have
allowed the stack to grow too far, so that you can make adjustments. See “Changing the
Size of the Stack” on page 1-39 for instructions on how to change the size of your
application stack.

Note

To ensure during debugging that your application generates this system
error if the stack extends beyond Appl Li nmi t, you should call

MaxAppl Zone at the beginning of your program to expand the heap to
Appl Li m t. For more information on expanding the heap, see “Setting
Up the Application Heap” beginning on page 1-38. u

The Application Stack

The stack is an area of memory in your application partition that can grow or shrink at
one end while the other end remains fixed. This means that space on the stack is always
allocated and released in LIFO (last-in, first-out) order. The last item allocated is always
the first to be released. It also means that the allocated area of the stack is always
contiguous. Space is released only at the top of the stack, never in the middle, so there
can never be any unallocated “holes” in the stack.
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By convention, the stack grows from high memory toward low memory addresses. The
end of the stack that grows or shrinks is usually referred to as the “top” of the stack,
even though it’s actually at the lower end of memory occupied by the stack.

Because of its LIFO nature, the stack is especially useful for memory allocation
connected with the execution of functions or procedures. When your application calls a
routine, space is automatically allocated on the stack for a stack frame. A stack frame
contains the routine’s parameters, local variables, and return address. Figure 1-3
illustrates how the stack expands and shrinks during a function call. The leftmost
diagram shows the stack just before the function is called. The middle diagram shows
the stack expanded to hold the stack frame. Once the function is executed, the local
variables and function parameters are popped off the stack. If the function is a Pascal
function, all that remains is the previous stack with the function result on top.

Figure 1-3 The application stack
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Note

Dynamic memory allocation on the stack is usually handled
automatically if you are using a high-level development language such
as Pascal. The compiler generates the code that creates and deletes stack
frames for each function or procedure call. u

The Application Heap

An application heap is the area of memory in your application partition in which space
is dynamically allocated and released on demand. The heap begins at the low-memory
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end of your application partition and extends upward in memory. The heap contains
virtually all items that are not allocated on the stack. For instance, your application heap
contains the application’s code segments and resources that are currently loaded into
memory. The heap also contains other dynamically allocated items such as window
records, dialog records, document data, and so forth.

You allocate space within your application’s heap by making calls to the Memory
Manager, either directly (for instance, using the NewHand!| e function) or indirectly
(for instance, using a routine such as NewW ndow which calls Memory Manager
routines). Space in the heap is allocated in blocks, which can be of any size needed
for a particular object.

The Memory Manager does all the necessary housekeeping to keep track of blocks in the
heap as they are allocated and released. Because these operations can occur in any order,
the heap doesn’t usually grow and shrink in an orderly way, as the stack does. Instead,
after your application has been running for a while, the heap can tend to become
fragmented into a patchwork of allocated and free blocks, as shown in Figure 1-4. This
fragmentation is known as heap fragmentation.

Figure 1-4 A fragmented heap
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One result of heap fragmentation is that the Memory Manager might not be able to
satisfy your application’s request to allocate a block of a particular size. Even though
there is enough free space available, the space is broken up into blocks smaller than the
requested size. When this happens, the Memory Manager tries to create the needed
space by moving allocated blocks together, thus collecting the free space in a single
larger block. This operation is known as heap compaction. Figure 1-5 shows the results
of compacting the fragmented heap shown in Figure 1-4.

Figure 1-5 A compacted heap

Heap fragmentation is generally not a problem as long as the blocks of memory you
allocate are free to move during heap compaction. There are, however, two situations in
which a block is not free to move: when it is a nonrelocatable block, and when it is a
locked, relocatable block. To minimize heap fragmentation, you should use
nonrelocatable blocks sparingly, and you should lock relocatable blocks only when
absolutely necessary. See “Relocatable and Nonrelocatable Blocks” starting on page 1-16
for a description of relocatable and nonrelocatable blocks, and “Heap Fragmentation” on
page 1-24 for a description of how best to avoid fragmenting your heap.
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The Application Global Variables and A5 World

Your application’s global variables are stored in an area of memory near the top of your
application partition known as the application A5 world. The A5 world contains four
kinds of data:

n application global variables

n application QuickDraw global variables
n application parameters

n the application’s jump table

Each of these items is of fixed size, although the sizes of the global variables and of the
jump table may vary from application to application. Figure 1-6 shows the standard
organization of the A5 world.

Figure 1-6 Organization of an application’s A5 world
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Note

An application’s global variables may appear either above or below the
QuickDraw global variables. The relative locations of these two items
are determined by your development system’s linker. In addition, part
of the jump table might appear below the boundary pointed to by
Current A5. u
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The system global variable Cur r ent A5 points to the boundary between the

current application’s global variables and its application parameters. For this reason,
the application’s global variables are found as negative offsets from the value of

Cur r ent A5. This boundary is important because the Operating System uses it to access
the following information from your application: its global variables, its QuickDraw
global variables, the application parameters, and the jump table. This information is
known collectively as the A5 world because the Operating System uses the
microprocessor’s A5 register to point to that boundary.

Your application’s QuickDraw global variables contain information about its drawing
environment. For example, among these variables is a pointer to the current
graphics port.

Your application’s jump table contains an entry for each of your application’s routines
that is called by code in another segment. The Segment Manager uses the jump table to
determine the address of any externally referenced routines called by a code segment.
For more information on jump tables, see the chapter “Segment Manager” in Inside
Macintosh: Processes.

The application parameters are 32 bytes of memory located above the application global
variables; they’re reserved for use by the Operating System. The first long word of those
parameters is a pointer to your application’s QuickDraw global variables.

Temporary Memory

In the Macintosh multitasking environment, each application is limited to a particular
memory partition (whose size is determined by information in the ' SI ZE' resource of
that application). The size of your application’s partition places certain limits on the size
of your application heap and hence on the sizes of the buffers and other data structures
that your application uses. In general, you specify an application partition size that is
large enough to hold all the buffers, resources, and other data that your application is
likely to need during its execution.

If for some reason you need more memory than is currently available in your application
heap, you can ask the Operating System to let you use any available memory that is not
yet allocated to any other application. This memory, known as temporary memory, is
allocated from the available unused RAM; usually, that memory is not contiguous with
the memory in your application’s zone. Figure 1-7 shows an application using some
temporary memory.
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Figure 1-7 Using temporary memory allocated from unused RAM
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In Figure 1-7, Application 1 has almost exhausted its application heap. As a result, it has
requested and received a large block of temporary memory, extending from the top of
Application 2’s partition to the top of the allocatable space. Application 1 can use the
temporary memory in whatever manner it desires.

Your application should use temporary memory only for occasional short-term purposes
that could be accomplished in less space, though perhaps less efficiently. For example, if
you want to copy a large file, you might try to allocate a fairly large buffer of temporary
memory. If you receive the temporary memory, you can copy data from the source file
into the destination file using the large buffer. If, however, the request for temporary
memory fails, you can instead use a smaller buffer within your application heap.
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Although using the smaller buffer might prolong the copying operation, the file is
nonetheless copied.

One good reason for using temporary memory only occasionally is that you cannot
assume that you will always receive the temporary memory you request. For example, in
Figure 1-7, all the available memory is allocated to the two open applications; any
further requests by either one for some temporary memory would fail. For complete
details on using temporary memory, see the chapter “Memory Manager” in this book.

Virtual Memory

In system software version 7.0 and later, suitably equipped Macintosh computers can
take advantage of a feature of the Operating System known as virtual memory, by which
the machines have a logical address space that extends beyond the limits of the available
physical memory. Because of virtual memory, a user can load more programs and data
into the logical address space than would fit in the computer’s physical RAM.

The Operating System extends the address space by using part of the available
secondary storage (that is, part of a hard disk) to hold portions of applications and data
that are not currently needed in RAM. When some of those portions of memory are
needed, the Operating System swaps out unneeded parts of applications or data to the
secondary storage, thereby making room for the parts that are needed.

It is important to realize that virtual memory operates transparently to most
applications. Unless your application has time-critical needs that might be adversely
affected by the operation of virtual memory or installs routines that execute at interrupt
time, you do not need to know whether virtual memory is operating. For complete
details on virtual memory, see the chapter “Virtual Memory Manager” later in this book.

Addressing Modes

On suitably equipped Macintosh computers, the Operating System supports 32-bit
addressing, that is, the ability to use 32 bits to determine memory addresses. Earlier
versions of system software use 24-bit addressing, where the upper 8 bits of memory
addresses are ignored or used as flag bits. In a 24-bit addressing scheme, the logical
address space has a size of 16 MB. Because 8 MB of this total are reserved for 1/0 space,
ROM, and slot space, the largest contiguous program address space is 8 MB. When 32-bit
addressing is in operation, the maximum program address space is 1 GB.

The ability to operate with 32-bit addressing is available only on certain Macintosh
models, namely those with systems that contain a 32-bit Memory Manager. (For
compatibility reasons, these systems also contain a 24-bit Memory Manager.) In order for
your application to work when the machine is using 32-bit addressing, it must be 32-bit
clean, that is, able to run in an environment where all 32 bits of a memory address are
significant. Fortunately, writing applications that are 32-bit clean is relatively easy if you
follow the guidelines in Inside Macintosh. In general, applications are not 32-bit clean
because they manipulate flag bits in master pointers directly (for instance, to mark the
associated memory blocks as locked or purgeable) instead of using Memory Manager
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routines to achieve the desired result. See “Relocatable and Nonrelocatable Blocks™ on
page 1-16 for a description of master pointers.

WARNING

You should never make assumptions about the contents of Memory
Manager data structures, including master pointers and zone headers.
These structures have changed in the past and they are likely to change
again in the future. s

Occasionally, an application running when 24-bit addressing is enabled might need to
modify memory addresses to make them compatible with the 24-bit Memory Manager.
In addition, drivers or other code might need to use 32-bit addresses, even when running
in 24-bit mode. See the descriptions of the routines St r i pAddr ess and

Tr ansl at e24t 032 in the chapter “Memory Management Utilities” for details.

Heap Management

1-16

Applications allocate and manipulate memory primarily in their application heap. As
you have seen, space in the application heap is allocated and released on demand. When
the blocks in your heap are free to move, the Memory Manager can often reorganize the
heap to free space when necessary to fulfill a memory-allocation request. In some cases,
however, blocks in your heap cannot move. In these cases, you need to pay close
attention to memory allocation and management to avoid fragmenting your heap and
running out of memory.

This section provides a general description of how to manage blocks of memory in your
application heap. It describes

n relocatable and nonrelocatable blocks
n properties of relocatable blocks

n heap purging and compaction

n heap fragmentation

n dangling pointers

n low-memory conditions

For examples of specific techniques you can use to implement the strategies discussed in
this section, see “Using Memory” beginning on page 1-38.

Relocatable and Nonrelocatable Blocks

You can use the Memory Manager to allocate two different types of blocks in your heap:
nonrelocatable blocks and relocatable blocks. A nonrelocatable block is a block of
memory whose location in the heap is fixed. In contrast, a relocatable block is a block
of memory that can be moved within the heap (perhaps during heap compaction).
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The Memory Manager sometimes moves relocatable blocks during memory operations
so that it can use the space in the heap optimally.

The Memory Manager provides data types that reference both relocatable and
nonrelocatable blocks. It also provides routines that allow you to allocate and release
blocks of both types.

To reference a nonrelocatable block, you can use a pointer variable, defined by the Pt r
data type.

TYPE
Si gnedByt e = -128..127,;
Ptr = "Si gnedByt e;

A pointer is simply the address of an arbitrary byte in memory, and a pointer to a
nonrelocatable block of memory is simply the address of the first byte in the block, as
illustrated in Figure 1-8. After you allocate a nonrelocatable block, you can make copies
of the pointer variable. Because a pointer is the address of a block of memory that cannot
be moved, all copies of the pointer correctly reference the block as long as you don’t
dispose of it.

Figure 1-8 A pointer to a nonrelocatable block
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The pointer variable itself occupies 4 bytes of space in your application partition.
Often the pointer variable is a global variable and is therefore contained in

your application’s A5 world. But the pointer can also be allocated on the stack
or in the heap itself.

To reference relocatable blocks, the Memory Manager uses a scheme known as

double indirection. The Memory Manager keeps track of a relocatable block internally
with a master pointer, which itself is part of a nonrelocatable master pointer block

in your application heap and can never move.

Note

The Memory Manager allocates one master pointer block (containing
64 master pointers) for your application at launch time, and you can
call the Mor eMast er s procedure to request that additional master
pointer blocks be allocated. See “Setting Up the Application Heap”
beginning on page 1-38 for instructions on allocating master pointer
blocks. u

When the Memory Manager moves a relocatable block, it updates the master pointer

so that it always contains the address of the relocatable block. You reference the block
with a handle, defined by the Handl e data type.

TYPE
Handl e = "Ptr;

A handle contains the address of a master pointer. The left side of Figure 1-9 shows
a handle to a relocatable block of memory located in the middle of the application
heap. If necessary (perhaps to make room for another block of memory), the
Memory Manager can move that block down in the heap, as shown in the right
side of Figure 1-9.
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Figure 1-9 A handle to a relocatable block
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Master pointers for relocatable objects in your heap are always allocated in your
application heap. Because the blocks of masters pointers are nonrelocatable, it is best to
allocate them as low in your heap as possible. You can do this by calling the

Mor eMast er s procedure when your application starts up.

Whenever possible, you should allocate memory in relocatable blocks. This gives the
Memory Manager the greatest freedom when rearranging the blocks in your application
heap to create a new block of free memory. In some cases, however, you may be forced to
allocate a nonrelocatable block of memory. When you call the Window Manager function
NewW ndow for example, the Window Manager internally calls the NewPt r function to
allocate a new nonrelocatable block in your application partition. You need to exercise
care when calling Toolbox routines that allocate such blocks, lest your application heap
become overly fragmented. See “Allocating Blocks of Memory” on page 1-44 for specific
guidelines on allocating nonrelocatable blocks.
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Using relocatable blocks makes the Memory Manager more efficient at managing
available space, but it does carry some overhead. As you have seen, the Memory
Manager must allocate extra memory to hold master pointers for relocatable blocks. It
groups these master pointers into nonrelocatable blocks. For large relocatable blocks, this
extra space is negligible, but if you allocate many very small relocatable blocks, the cost
can be considerable. For this reason, you should avoid allocating a very large number of
handles to small blocks; instead, allocate a single large block and use it as an array to
hold the data you need.

Properties of Relocatable Blocks

As you have seen, a heap block can be either relocatable or nonrelocatable. The
designation of a block as relocatable or nonrelocatable is a permanent property of that
block. If relocatable, a block can be either locked or unlocked; if it’s unlocked, a block can
be either purgeable or unpurgeable. These attributes of relocatable blocks can be set and
changed as necessary. The following sections explain how to lock and unlock blocks, and
how to mark them as purgeable or unpurgeable.

Locking and Unlocking Relocatable Blocks

Occasionally, you might need a relocatable block of memory to stay in one place. To
prevent a block from moving, you can lock it, using the HLock procedure. Once you
have locked a block, it won’t move. Later, you can unlock it, using the HUnl ock
procedure, allowing it to move again.

In general, you need to lock a relocatable block only if there is some danger that it might
be moved during the time that you read or write the data in that block. This might
happen, for instance, if you dereference a handle to obtain a pointer to the data and

(for increased speed) use the pointer within a loop that calls routines that might

cause memory to be moved. If, within the loop, the block whose data you are accessing
is in fact moved, then the pointer no longer points to that data; this pointer is said

to dangle.

Note

Locking a block is only one way to prevent a dangling pointer. See
“Dangling Pointers” on page 1-29 for a complete discussion of how to
avoid dangling pointers. u

Heap Management



CHAPTER 1

Introduction to Memory Management

Using locked relocatable blocks can, however, slow the Memory Manager down as much
as using nonrelocatable blocks. The Memory Manager can’t move locked blocks. In
addition, except when you allocate memory and resize relocatable blocks, it can’t move
relocatable blocks around locked relocatable blocks (just as it can’t move them around
nonrelocatable blocks). Thus, locking a block in the middle of the heap for long periods
of time can increase heap fragmentation.

Locking and unlocking blocks every time you want to prevent a block from moving can
become troublesome. Fortunately, the Memory Manager moves unlocked, relocatable
blocks only at well-defined, predictable times. In general, each routine description in
Inside Macintosh indicates whether the routine could move or purge memory. If you do
not call any of those routines in a section of code, you can rely on all blocks to remain
stationary while that code executes. Note that the Segment Manager might move
memory if you call a routine located in a segment that is not currently resident

in memory. See “Loading Code Segments” on page 1-31 for details.

Purging and Reallocating Relocatable Blocks

One advantage of relocatable blocks is that you can use them to store information that
you would like to keep in memory to make your application more efficient, but that you
don’t really need if available memory space becomes low. For example, your application
might, at the beginning of its execution, load user preferences from a preferences file into
a relocatable block. As long as the block remains in memory, your application can access
information from the preferences file without actually reopening the file. However,
reopening the file probably wouldn’t take enough time to justify keeping the block in
memory if memory space were scarce.

By making a relocatable block purgeable, you allow the Memory Manager to free
the space it occupies if necessary. If you later want to prohibit the Memory Manager
from freeing the space occupied by a relocatable block, you can make the block
unpurgeable. You can use the HPur ge and HNoPur ge procedures to change back
and forth between these two states. A block you create by calling NewHandl e is
initially unpurgeable.

Once you make a relocatable block purgeable, you should subsequently check

handles to that block before using them if you call any of the routines that could

move or purge memory. If a handle’s master pointer is set to NI L, then the

Operating System has purged its block. To use the information formerly in the block,

you must reallocate space for it (perhaps by calling the Real | ocat eHandl| e procedure)
and then reconstruct its contents (for example, by rereading the preferences file).
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Figure 1-10 illustrates the purging and reallocating of a relocatable block. When the block
is purged, its master pointer is setto NI L. When it is reallocated, the handle correctly
references a new block, but that block’s contents are initially undefined.

Figure 1-10 Purging and reallocating a relocatable block
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Memory Reservation

The Memory Manager does its best to prevent situations in which nonrelocatable blocks
in the middle of the heap trap relocatable blocks. When it allocates new nonrelocatable
blocks, it attempts to reserve memory for them as low in the heap as possible. The
Memory Manager reserves memory for a nonrelocatable block by moving unlocked
relocatable blocks upward until it has created a space large enough for the new block.
When the Memory Manager can successfully pack all nonrelocatable blocks into the
bottom of the heap, no nonrelocatable block can trap a relocatable block, and it has
successfully prevented heap fragmentation.

Figure 1-11 illustrates how the Memory Manager allocates nonrelocatable blocks.
Although it could place a block of the requested size at the top of the heap, it instead
reserves space for the block as close to the bottom of the heap as possible and then puts
the block into that reserved space. During this process, the Memory Manager might even
move a relocatable block over a nonrelocatable block to make room for another
nonrelocatable block.
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Figure 1-11 Allocating a nonrelocatable block
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When allocating a new relocatable block, you can, if you want, manually reserve space
for the block by calling the Reser veMemprocedure. If you do not, the Memory Manager
looks for space big enough for the block as low in the heap as possible, but it does not
create space near the bottom of the heap for the block if there is already enough space
higher in the heap.

Heap Purging and Compaction

When your application attempts to allocate memory (for example, by calling either the
NewPt r or NewHandl e function), the Memory Manager might need to compact or
purge the heap to free memory and to fuse many small free blocks into fewer large free
blocks. The Memory Manager first tries to obtain the requested amount of space by
compacting the heap; if compaction fails to free the required amount of space, the
Memory Manager then purges the heap.

When compacting the heap, the Memory Manager moves unlocked, relocatable blocks
down until they reach nonrelocatable blocks or locked, relocatable blocks. You can
compact the heap manually, by calling either the Conpact Memfunction or the MaxMem
function.
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In a purge of the heap, the Memory Manager sequentially purges unlocked, purgeable
relocatable blocks until it has freed enough memory or until it has purged all such
blocks. It purges a block by deallocating it and setting its master pointer to NI L.

If you want, you can manually purge a few blocks or an entire heap in anticipation of a
memory shortage. To purge an individual block manually, call the Enpt yHandl e
procedure. To purge your entire heap manually, call the Pur geMemprocedure or the
Max Memfunction.

Note

In general, you should let the Memory Manager purge and compact
your heap, instead of performing these operations yourself. u

Heap Fragmentation

Heap fragmentation can slow your application by forcing the Memory Manager to
compact or purge your heap to satisfy a memory-allocation request. In the worst cases,
when your heap is severely fragmented by locked or nonrelocatable blocks, it might be
impossible for the Memory Manager to find the requested amount of contiguous free
space, even though that much space is actually free in your heap. This can have
disastrous consequences for your application. For example, if the Memory Manager
cannot find enough room to load a required code segment, your application will crash.

Obviously, it is best to minimize the amount of fragmentation that occurs in your
application heap. It might be tempting to think that because the Memory Manager
controls the movement of blocks in the heap, there is little that you can do to prevent
heap fragmentation. In reality, however, fragmentation does not strike your application’s
heap by chance. Once you understand the major causes of heap fragmentation, you can
follow a few simple rules to minimize it.

The primary causes of heap fragmentation are indiscriminate use of nonrelocatable
blocks and indiscriminate locking of relocatable blocks. Each of these creates immovable
blocks in your heap, thus creating “roadblocks” for the Memory Manager when it
rearranges the heap to maximize the amount of contiguous free space. You can
significantly reduce heap fragmentation simply by exercising care when you allocate
nonrelocatable blocks and when you lock relocatable blocks.

Throughout this section, you should keep in mind the following rule: the Memory
Manager can move a relocatable block around a nonrelocatable block (or a locked
relocatable block) at these times only:

n  When the Memory Manager reserves memory for a nonrelocatable block (or when
you manually reserve memory before allocating a block), it can move unlocked,
relocatable blocks upward over nonrelocatable blocks to make room for the new block
as low in the heap as possible.

n  When you attempt to resize a relocatable block, the Memory Manager can move that
block around other blocks if necessary.

In contrast, the Memory Manager cannot move relocatable blocks over nonrelocatable
blocks during compaction of the heap.
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Deallocating Nonrelocatable Blocks

One of the most common causes of heap fragmentation is also one of the most difficult to
avoid. The problem occurs when you dispose of a nonrelocatable block in the middle of
the pile of nonrelocatable blocks at the bottom of the heap. Unless you immediately
allocate another nonrelocatable block of the same size, you create a gap where the
nonrelocatable block used to be. If you later allocate a slightly smaller, nonrelocatable
block, that gap shrinks. However, small gaps are inefficient because of the small
likelihood that future memory allocations will create blocks small enough to occupy

the gaps.

It would not matter if the first block you allocated after deleting the nonrelocatable block
were relocatable. The Memory Manager would place the block in the gap if possible. If
you were later to allocate a nonrelocatable block as large as or smaller than the gap, the
new block would take the place of the relocatable block, which would join other
relocatable blocks in the middle of the heap, as desired. However, the new
nonrelocatable block might be smaller than the original nonrelocatable block, leaving a
small gap.

Whenever you dispose of a nonrelocatable block that you have allocated, you create
small gaps, unless the next nonrelocatable block you allocate happens to be the same size
as the disposed block. These small gaps can lead to heavy fragmentation over the course
of your application’s execution. Thus, you should try to avoid disposing of and then
reallocating nonrelocatable blocks during program execution.

Reserving Memory

Another cause of heap fragmentation ironically occurs because of a limitation of memory
reservation, a process designed to prevent it. Memory reservation never makes
fragmentation worse than it would be if there were no memory reservation. Ordinarily,
memory reservation ensures that allocating nonrelocatable blocks in the middle of your
application’s execution causes no problems. Occasionally, however, memory reservation
can cause fragmentation, either when it succeeds but leaves small gaps in the reserved
space, or when it fails and causes a nonrelocatable block to be allocated in the middle of
the heap.

The Memory Manager uses memory reservation to create space for nonrelocatable blocks
as low as possible in the heap. (You can also manually reserve memory for relocatable
blocks, but you rarely need to do so.) However, when the Memory Manager moves a
block up during memory reservation, that block cannot overlap its previous location.

As a result, the Memory Manager might need to move the relocatable block up more
than is necessary to contain the new nonrelocatable block, thereby creating a gap
between the top of the new block and the bottom of the relocated block. (See Figure 1-11
on page 1-23.)

Memory reservation can also fragment the heap if there is not enough space in the heap
to move the relocatable block up. In this case, the Memory Manager allocates the new
nonrelocatable block above the relocatable block. The relocatable block cannot then
move over the nonrelocatable block, except during the times described previously.
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Locking Relocatable Blocks

Locked relocatable blocks present a special problem. When relocatable blocks are locked,
they can cause as much heap fragmentation as nonrelocatable blocks. One solution is to
reserve memory for all relocatable blocks that might at some point need to be locked,
and to leave them locked for as long as they are allocated. This solution has drawbacks,
however, because then the blocks would lose any flexibility that being relocatable
otherwise gives them. Deleting a locked relocatable block can create a gap, just as
deleting a nonrelocatable block can.

An alternative partial solution is to move relocatable blocks to the top of the heap before
locking them. The MoveHH procedure allows you to move a relocatable block upward
until it reaches the top of the heap, a nonrelocatable block, or a locked relocatable block.
This has the effect of partitioning the heap into four areas, as illustrated in Figure 1-12.
At the bottom of the heap are the nonrelocatable blocks. Above those blocks are the
unlocked relocatable blocks. At the top of the heap are locked relocatable blocks.
Between the locked relocatable blocks and the unlocked relocatable blocks is an area of
free space. The principal idea behind moving relocatable blocks to the top of the heap
and locking them there is to keep the contiguous free space as large as possible.

Figure 1-12 An effectively partitioned heap
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Using MoveHH is, however, not always a perfect solution to handling relocatable blocks
that need to be locked. The MoveHHi procedure moves a block upward only until it
reaches either a nonrelocatable block or a locked relocatable block. Unlike NewPt r and
Reser veMem MoveHHi does not currently move a relocatable block around one that is
not relocatable.

Even if MoveHHi succeeds in moving a block to the top area of the heap, unlocking or
deleting locked blocks can cause fragmentation if you don’t unlock or delete those blocks
beginning with the lowest locked block. A relocatable block that is locked at the top area
of the heap for a long period of time could trap other relocatable blocks that were locked
for short periods of time but then unlocked.

This suggests that you need to treat relocatable blocks locked for a long period of time
differently from those locked for a short period of time. If you plan to lock a relocatable
block for a long period of time, you should reserve memory for it at the bottom of the
heap before allocating it, then lock it for the duration of your application’s execution (or
as long as the block remains allocated). Do not reserve memory for relocatable blocks
you plan to allocate for only short periods of time. Instead, move them to the top of the
heap (by calling MoveHHi ) and then lock them.

Note

You should call MoveHHi only on blocks located in your application
heap. Don’t call MoveHH on relocatable blocks in the system heap. Desk
accessories should not call MoveHH . u

In practice, you apply the same rules to relocatable blocks that you reserve space for and
leave permanently locked as you apply to nonrelocatable blocks: Try not to allocate such
blocks in the middle of your application’s execution, and don’t dispose of and reallocate
such blocks in the middle of your application’s execution.

After you lock relocatable blocks temporarily, you don’t need to move them manually
back into the middle area when you unlock them. Whenever the Memory Manager
compacts the heap or moves another relocatable block to the top heap area, it brings all
unlocked relocatable blocks at the bottom of that partition back into the middle area.
When moving a block to the top area, be sure to call MoveHH on the block and then lock
the block, in that order.

Allocating Nonrelocatable Blocks

As you have seen, there are two reasons for not allocating nonrelocatable blocks during
the middle of your application’s execution. First, if you also dispose of nonrelocatable
blocks in the middle of your application’s execution, then allocation of new
nonrelocatable blocks is likely to create small gaps, as discussed earlier. Second, even if
you never dispose of nonrelocatable blocks until your application terminates, memory
reservation is an imperfect process, and the Memory Manager could occasionally place
new nonrelocatable blocks above relocatable blocks.

Heap Management 1-27



1-28

CHAPTER 1

Introduction to Memory Management

There is, however, an exception to the rule that you should not allocate nonrelocatable
blocks in the middle of your application’s execution. Sometimes you need to allocate a
nonrelocatable block only temporarily. If between the times that you allocate and dispose
of a nonrelocatable block, you allocate no additional nonrelocatable blocks and do not
attempt to compact the heap, then you have done no harm. The temporary block cannot
create a new gap because the Memory Manager places no other block over the
temporary block.

Summary of Preventing Fragmentation

Avoiding heap fragmentation is not difficult. It simply requires that you follow a few
rules as closely as possible. Remember that allocation of even a small nonrelocatable
block in the middle of your heap can ruin a scheme to prevent fragmentation of the
heap, because the Memory Manager does not move relocatable blocks around
nonrelocatable blocks when you call MoveHH or when it attempts to compact the heap.

If you adhere to the following rules, you are likely to avoid significant heap
fragmentation:

n At the beginning of your application’s execution, call the MaxAppl Zone procedure
once and the Mor eMast er s procedure enough times so that the Memory Manager
never needs to call it for you.

n Try to anticipate the maximum number of nonrelocatable blocks you will need and
allocate them at the beginning of your application’s execution.

n Avoid disposing of and then reallocating nonrelocatable blocks during your
application’s execution.

n  When allocating relocatable blocks that you need to lock for long periods of time, use
the Reser veMemprocedure to reserve memory for them as close to the bottom of the
heap as possible, and lock the blocks immediately after allocating them.

n If you plan to lock a relocatable block for a short period of time and allocate
nonrelocatable blocks while it is locked, use the MoveHHi procedure to move the
block to the top of the heap and then lock it. When the block no longer needs to be
locked, unlock it.

n Remember that you need to lock a relocatable block only if you call a routine that
could move or purge memory and you then use a dereferenced handle to the
relocatable block, or if you want to use a dereferenced handle to the relocatable block
at interrupt time.

Perhaps the most difficult restriction is to avoid disposing of and then reallocating
nonrelocatable blocks in the middle of your application’s execution. Some Toolbox
routines require you to use nonrelocatable blocks, and it is not always easy to anticipate
how many such blocks you will need. If you must allocate and dispose of blocks in the
middle of your program’s execution, you might want to place used blocks into a linked
list of free blocks instead of disposing of them. If you know how many nonrelocatable
blocks of a certain size your application is likely to need, you can add that many to the
beginning of the list at the beginning of your application’s execution. If you need a
nonrelocatable block later, you can check the linked list for a block of the exact size
instead of simply calling the NewPt r function.
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Dangling Pointers

Accessing a relocatable block by double indirection, through its handle instead of
through its master pointer, requires an extra memory reference. For efficiency, you might
sometimes want to dereference the handle—that is, make a copy of the block’s master
pointer—and then use that pointer to access the block by single indirection. When you
do this, however, you need to be particularly careful. Any operation that allocates space
from the heap might cause the relocatable block to be moved or purged. In that event,
the block’s master pointer is correctly updated, but your copy of the master pointer is
not. As a result, your copy of the master pointer is a dangling pointer.

Dangling pointers are likely to make your application crash or produce garbled output.
Unfortunately, it is often easy during debugging to overlook situations that could leave
pointers dangling, because pointers dangle only if the relocatable blocks that they
reference actually move. Routines that can move or purge memory do not necessarily do
so unless memory space is tight. Thus, if you improperly dereference a handle in a
section of code, that code might still work properly most of the time. If, however, a
dangling pointer does cause errors, they can be very difficult to trace.

This section describes a number of situations that can cause dangling pointers and
suggests some ways to avoid them.

Compiler Dereferencing

Some of the most difficult dangling pointers to isolate are not caused by any explicit
dereferencing on your part, but by implicit dereferencing on the part of the compiler.
For example, suppose you use a handle called nyHandl e to access the fields of a
record in a relocatable block. You might use Pascal’s W TH statement to do so,

as follows:

W TH nyHandl e*® DO
BEG N

END;

A compiler is likely to dereference nyHandl e so that it can access the fields of the
record without double indirection. However, if the code between the BEG Nand END
statements causes the Memory Manager to move or purge memory, you are likely to end
up with a dangling pointer.

The easiest way to prevent dangling pointers is simply to lock the relocatable block
whose data you want to read or write. Because the block is locked and cannot move,
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the master pointer is guaranteed always to point to the beginning of the block’s data.
Listing 1-1 illustrates one way to avoid dangling pointers by locking a relocatable block.

Listing 1-1 Locking a block to avoid dangling pointers

1-30

VAR
origState: SignedByte; {original attributes of handl e}

origState : = HGet St at e(Handl e(nyData)); {get handl e attributes}

MoveHH (Handl e(nyDat a)) ; {move the handl e high}
HLock( Handl e( nyDat a) ) ; {lock the handl e}
W TH nyDat a** DO {fill in wi ndow data}
BEG N
edi t Rec : = TENew gDest Rect, gVi ewRect);

vScrol | Get NewControl (rvVScroll, nmyW ndow);
hScrol | Get NewControl (rHScrol I, nmyW ndow) ;
fileRefNum := 0;
wi ndowDi rty : = FALSE;
END;
HSet State(origState); {reset handl e attributes}

The handle nyDat a needs to be locked before the W TH statement because the functions
TENewand Get NewCont r ol allocate memory and hence might move the block whose
handle is nyDat a.

You should be careful to lock blocks only when necessary, because locked relocatable
blocks can increase heap fragmentation and slow down your application unnecessarily.
You should lock a handle only if you dereference it, directly or indirectly, and then use a
copy of the original master pointer after calling a routine that could move or purge
memory. When you no longer need to reference the block with the master pointer, you
should unlock the handle. In Listing 1-1, the handle myDat a is never explicitly unlocked.
Instead, the original attributes of the handle are saved by calling HGet St at e and later
are restored by calling HSet St at e. This strategy is preferable to just calling HLock and
HUnl ock.

A compiler can generate hidden dereferencing, and hence potential dangling pointers, in
other ways, for instance, by assigning the result of a function that might move or purge
blocks to a field in a record referenced by a handle. Such problems are particularly
common in code that manipulates linked data structures. For example, you might use
this code to allocate a new element of a linked list:

myHandl e~”. next Handl e : = NewHandl| e(si zeof (nmyLi nkedEl enent)) ;
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This can cause problems because your compiler could dereference myHandl e before
calling NewHandl e. Therefore, you should either lock myHandl e before performing
the allocation, or use a temporary variable to allocate the new handle, as in the
following code:

tenpHandl e : = NewHand| e(si zeof (myLi nkedEl enent) ) ;
myHandl e~”. next Handl e : = t enpHandl e;

Passing fields of records as arguments to routines that might move or purge memory can
cause similar problems, if the records are in relocatable blocks referred to with handles.
Problems arise only when you pass a field by reference rather than by value. Pascal
conventions call for all arguments larger than 4 bytes to be passed by reference. In
Pascal, a variable is also passed by reference when the routine called requests a variable
parameter. Both of the following lines of code could leave a pointer dangling:

TEUpdat e( hTEM. vi ewRect, hTE);
I nval Rect (t heControl *. contrl Rect);

These problems occur because a compiler may dereference a handle before calling the
routine to which you pass the handle. Then, that routine may move memory before it
uses the dereferenced handle, which might then be invalid. As before, you can solve
these problems by locking the handles or using temporary variables.

Loading Code Segments

If you call an application-defined routine located in a code segment that is not currently
in RAM, the Segment Manager might need to move memory when loading that code
segment, thus jeopardizing any dereferenced handles you might be using. For example,
suppose you call an application-defined procedure Mani pul at eDat a, which
manipulates some data at an address passed to it in a variable parameter.

PROCEDURE MyRout i ne;
BEG N

Mani pul at eDat a( nyHandl e?) ;

END,

You can create a dangling pointer if Mani pul at eDat a and MyRout i ne are in different
segments, and the segment containing Mani pul at eDat a is not loaded when

MyRout i ne is executed. You can do this because you’ve passed a dereferenced copy of
myHandl| e as an argument to Mani pul at eDat a. If the Segment Manager must allocate
a new relocatable block for the segment containing Mani pul at eDat a, it might move
nmyHandl e to do so. If so, the dereferenced handle would dangle. A similar problem can
occur if you assign the result of a function in a nonresident code segment to a field in a
record referred to by a handle.
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You need to be careful even when passing a field in a record referenced by a handle to a
routine in the same code segment as the caller, or when assigning the result of a function
in the same code segment to such a field. If that routine could call a Toolbox routine that
might move or purge memory, or call a routine in a different, nonresident code segment,
then you could indirectly cause a pointer to dangle.

Callback Routines

Code segmentation can also lead to a different type of dangling-pointer problem when
you use callback routines. The problem rarely arises, but it is difficult to debug. Some
Toolbox routines require that you pass a pointer to a procedure in a variable of type

Pr ocPt r. Ordinarily, it does not matter whether the procedure you pass in such a
variable is in the same code segment as the routine that calls it or in a different code
segment. For example, suppose you call Tr ackCont r ol as follows:

myPart := TrackControl (nyControl, myEvent.where, @wcCall Back);

If MyCal | Back were in the same code segment as this line of code, then a compiler
would pass to Tr ackCont r ol the absolute address of the MyCal | Back procedure. If it
were in a different code segment, then the compiler would take the address from the
jump table entry for MyCal | Back. Either way, Tr ackCont r ol should call MyCal | Back
correctly.

Occasionally, you might use a variable of type Pr ocPt r to hold the address of a callback
procedure and then pass that address to a routine. Here is an example:

myProc := @#Cal | Back;

myPar t TrackControl (nmyControl, nyEvent.where, nyProc);

As long as these lines of code are in the same code segment and the segment is not
unloaded between the execution of those lines, the preceding code should work
perfectly. Suppose, however, that nyPr oc is a global variable, and the first line of the
code is in a different segment from the call to Tr ackCont r ol . Suppose, further, that the
MyCal | Back procedure is in the same segment as the first line of the code (which isin a
different segment from the call to Tr ackCont r ol ). Then, the compiler might place the
absolute address of the MyCal | Back routine into the variable myPr oc. The compiler
cannot realize that you plan to use the variable in a different code segment from the one
that holds both the routine you are referencing and the routine you are using to initialize
the nyPr oc variable. Because MyCal | Back and the call to Tr ackCont r ol arein
different code segments, the Tr ackCont r ol procedure requires that you pass an
address in the jump table, not an absolute address. Thus, in this hypothetical situation,
my Pr oc would reference MyCal | Back incorrectly.

To avoid this problem, make sure to place in the same segment any code in which you
assign a value to a variable of type Pr ocPt r and any code in which you use that
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variable. If you must put them in different code segments, then be sure that you place
the callback routine in a code segment different from the one that initializes the variable.

Note

Some development systems allow you to specify compiler options
that force jump table references to be generated for routine addresses.
If you specify those options, the problems described in this section
cannot arise. u

Invalid Handles

An invalid handle refers to the wrong area of memory, just as a dangling pointer does.
There are three types of invalid handles: empty handles, disposed handles, and fake
handles. You must avoid empty, disposed, or fake handles as carefully as dangling
pointers. Fortunately, it is generally easier to detect, and thus to avoid, invalid handles.

Disposed Handles

A disposed handle is a handle whose associated relocatable block has been disposed of.
When you dispose of a relocatable block (perhaps by calling the procedure

Di sposeHandl e), the Memory Manager does not change the value of any handle
variables that previously referenced that block. Instead, those variables still hold the
address of what once was the relocatable block’s master pointer. Because the block has
been disposed of, however, the contents of the master pointer are no longer defined.
(The master pointer might belong to a subsequently allocated relocatable block, or it
could become part of a linked list of unused master pointers maintained by the
Memory Manager.)

If you accidentally use a handle to a block you have already disposed of, you can obtain
unexpected results. In the best cases, your application will crash. In the worst cases, you
will get garbled data. It might, however, be difficult to trace the cause of the garbled
data, because your application can continue to run for quite a while before the problem
begins to manifest itself.

You can avoid these problems quite easily by assigning the value NI L to the handle
variable after you dispose of its associated block. By doing so, you indicate that the
handle does not point anywhere in particular. If you subsequently attempt to operate on
such a block, the Memory Manager will probably generate a ni | Handl eEr r result code.
If you want to make certain that a handle is not disposed of before operating on a
relocatable block, you can test whether the value of the handle is NI L, as follows:

I F nyHandl e <> NIL THEN
- {handl e is valid, so we can operate on it here}

Note

This test is useful only if you manually assign the value NI L to
all disposed handles. The Memory Manager does not do that
automatically. u
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Empty Handles

An empty handle is a handle whose master pointer has the value NI L. When the
Memory Manager purges a relocatable block, for example, it sets the block’s master
pointer to NI L. The space occupied by the master pointer itself remains allocated, and
handles to the purged block continue to point to the master pointer. This is useful,
because if you later reallocate space for the block by calling Real | ocat eHandl e, the
master pointer will be updated and all existing handles will correctly access the
reallocated block.

Note

Don’t confuse empty handles with 0-length handles, which are handles
whose associated block has a size of 0 bytes. A 0-length handle has a
non-NI L master pointer and a block header. u

Once again, however, inadvertently using an empty handle can give unexpected results
or lead to a system crash. In the Macintosh Operating System, NI L technically refers to
memory location 0. But this memory location holds a value. If you doubly dereference an
empty handle, you reference whatever data is found at that location, and you could
obtain unexpected results that are difficult to trace.

You can check for empty handles much as you check for disposed handles. Assuming
you set handles to NI L when you dispose of them, you can use the following code to
determine whether a handle both points to a valid master pointer and references a
nonempty relocatable block:

| F nyHandl e <> NIL THEN
| F myHandl e®? <> NIL THEN
{we can operate on the rel ocatable bl ock here}

Note that because Pascal evaluates expressions completely, you need two | F-THEN
statements rather than one compound statement in case the value of the handle itself is
NI L. Most compilers, however, allow you to use “short-circuit” Boolean operators to
minimize the evaluation of expressions. For example, if your compiler uses the operator
& as a short-circuit operator for AND, you could rewrite the preceding code like this:

IF (myHandle <> NIL) & (nyHandl e® <> NIL) THEN
{we can operate on the rel ocatable bl ock here}

In this case, the second expression is evaluated only if the first expression evaluates
to TRUE.

Note

The availability and syntax of short-circuit Boolean operators are
compiler dependent. Check the documentation for your development
system to see whether you can use such operators. u
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It is useful during debugging to set memory location 0 to an odd number, such as
$50FFCO001. This causes the Operating System to crash immediately if you attempt to
dereference an empty handle. This is useful, because you can immediately fix problems
that might otherwise require extensive debugging.

Fake Handles

A fake handle is a handle that was not created by the Memory Manager. Normally, you
create handles by either directly or indirectly calling the Memory Manager function
NewHandl e (or one of its variants, such as NewHand| eCl ear ). You create a fake
handle—usually inadvertently—by directly assigning a value to a variable of type
Handl e, as illustrated in Listing 1-2.

Listing 1-2 Creating a fake handle

FUNCTI ON MakeFakeHandl e: Handl e; {DON' T USE THI' S FUNCTI ON! }
CONST

kMenoryLoc = $100; {a random menory | ocati on}
VAR

myHandl e: Handl e;
myPointer: Ptr;

BEG N
myPoi nter := Ptr(kMenorylLoc); {the address of sonme nenory}
myHandl e : = @ryPoi nter; {the address of a pointer}
MakeFakeHandl e : = nyHandl e;

END;

WARNING

The technique for creating a fake handle shown in Listing 1-2 is included
for illustrative purposes only. Your application should never create fake
handles. s

Remember that a real handle contains the address of a master pointer. The fake handle
manufactured by the function MakeFakeHandl| e in Listing 1-2 contains an address that
may or may not be the address of a master pointer. If it isn’t the address of a master
pointer, then you virtually guarantee chaotic results if you pass the fake handle to a
system software routine that expects a real handle.

For example, suppose you pass a fake handle to the MoveHHi procedure. After allocating
a new relocatable block high in the heap, MoveHH is likely to copy the data from the
original block to the new block by dereferencing the handle and using, supposedly, a
master pointer. Because, however, the value of a fake handle probably isn’t the address
of a master pointer, MoveHH copies invalid data. (Actually, it’s unlikely that MoveHH
would ever get that far; probably it would run into problems when attempting to
determine the size of the original block from the block header.)
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Not all fake handles are as easy to spot as those created by the MakeFakeHandl e
function defined in Listing 1-2. You might, for instance, attempt to copy the data in an
existing record (myRecor d) into a new handle, as follows:

myHandl e : = NewHandl e( Si zeOf (nmyRecord)); {create a new handl e}
myHandl e : = @ryRecord; {DON'T DO THI S!''}

The second line of code does not make nyHandl e a handle to the beginning of the
myRecor d record. Instead, it overwrites the master pointer with the address of that
record, making nyHandl e a fake handle.

WARNING
Never assign a value directly to a master pointer. s

A correct way to create a new handle to some existing data is to make a copy of the data
using the Pt r ToHand function, as follows:

myErr := PtrToHand( @wyRecord, nyHandl e, SizeO (mnmyRecord));

The Memory Manager provides a set of pointer- and handle-manipulation routines that
can help you avoid creating fake handles. See the chapter “Memory Manager” in this
book for details on those routines.

Low-Memory Conditions

It is particularly important to make sure that the amount of free space in your
application heap never gets too low. For example, you should never deplete the available
heap memory to the point that it becomes impossible to load required code segments. As
you have seen, your application will crash if the Segment Manager is called to load a
required code segment and there is not enough contiguous free memory to allocate a
block of the appropriate size.

You can take several steps to help maximize the amount of free space in your heap. For
example, you can mark as purgeable any relocatable blocks whose contents could easily
be reconstructed. By making a block purgeable, you give the Memory Manager the
freedom to release that space if heap memory becomes low. You can also help maximize
the available heap memory by intelligently segmenting your application’s executable
code and by periodically unloading any unneeded segments. The standard way to do
this is to unload every nonessential segment at the end of your application’s main event
loop. (See the chapter “Segment Manager” in Inside Macintosh: Processes for a complete
discussion of code-segmentation techniques.)

Memory Cushions

These two measures—making blocks purgeable and unloading segments—help you
only by releasing blocks that have already been allocated. It is even more important to
make sure, before you attempt to allocate memory directly, that you don’t deplete the
available heap memory. Before you call NewHand| e or NewPt r, you should check that,
if the requested amount of memory were in fact allocated, the remaining amount of
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space free in the heap would not fall below a certain threshold. The free memory defined
by that threshold is your memory cushion. You should not simply inspect the handle

or pointer returned to you and make sure that its value isn’t NI L, because you might
have succeeded in allocating the space you requested but left the amount of free space
dangerously low.

You also need to make sure that indirect memory allocation doesn’t cut into the memory
cushion. When, for example, you call Get NewDi al og, the Dialog Manager might need
to allocate space for a dialog record; it also needs to allocate heap space for the dialog
item list and any other custom items in the dialog. Before calling Get NewDi al og,
therefore, you need to make sure that the amount of space left free after the call is greater
than your memory cushion.

The execution of some system software routines requires significant amounts of memory
in your heap. For example, some QuickDraw operations on regions can temporarily
allocate fairly large amounts of space in your heap. Some of these system software
routines, however, do little or no checking to see that your heap contains the required
amount of free space. They either assume that they will get whatever memory they need
or they simply issue a system error when they don’t get the needed memory. In either
case, the result is usually a system crash.

You can avoid these problems by making sure that there is always enough space in your
heap to handle these hidden memory allocations. Experience has shown that 40 KB is a
reasonably safe size for this memory cushion. If you can consistently maintain that
amount of space free in your heap, you can be reasonably certain that system software
routines will get the memory they need to operate. You also generally need a larger
cushion (about 70 KB) when printing.

Memory Reserves

Unfortunately, there are times when you might need to use some of the memory in the
cushion yourself. It is better, for instance, to dip into the memory cushion, if necessary, to
save a user’s document than to reject the request to save the document. Some actions
your application performs should not be rejectable simply because they require it to
reduce the amount of free space below a desired minimum.

Instead of relying on just the free memory of a memory cushion, you can allocate a
memory reserve, some additional emergency storage that you release when free memory
becomes low. The important difference between this memory reserve and the memory
cushion is that the memory reserve is a block of allocated memory, which you release
whenever you detect that essential tasks have dipped into the memory cushion.

That emergency memory reserve might provide enough memory to compensate for any
essential tasks that you fail to anticipate. Because you allow essential tasks to dip into the
memory cushion, the release itself of the memory reserve should not be a cause for
alarm. Using this scheme, your application releases the memory reserve as a
precautionary measure during ordinary operation. Ideally, however, the application
should never actually deplete the memory cushion and use the memory reserve.
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Grow-Zone Functions

The Memory Manager provides a particularly easy way for you to make sure that the
emergency memory reserve is released when necessary. You can define a grow-zone
function that is associated with your application heap. The Memory Manager calls your
heap’s grow-zone function only after other techniques of freeing memory to satisfy a
memory request fail (that is, after compacting and purging the heap and extending the
heap zone to its maximum size). The grow-zone function can then take appropriate steps
to free additional memory.

A grow-zone function might dispose of some blocks or make some unpurgeable blocks
purgeable. When the function returns, the Memory Manager once again purges and
compacts the heap and tries to reallocate memory. If there is still insufficient memory, the
Memory Manager calls the grow-zone function again (but only if the function returned a
nonzero value the previous time it was called). This mechanism allows your grow-zone
function to release just a little bit of memory at a time. If the amount it releases at any
time is not enough, the Memory Manager calls it again and gives it the opportunity to
take more drastic measures. As the most drastic step to freeing memory in your heap,
you can release the emergency reserve.

Using Memory
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This section describes how you can use the Memory Manager to perform the most
typical memory management tasks. In particular, this section shows how you can

n set up your application heap at application launch time

n determine how much free space is available in your application heap
n allocate and release blocks of memory in your heap

n define and install a grow-zone function

The techniques described in this section are designed to minimize fragmentation of your
application heap and to ensure that your application always has sufficient memory to
complete any essential operations. Many of these techniques incorporate the heap
memory cushion and emergency memory reserve discussed in “Low-Memory
Conditions,” beginning on page 1-36.

Note

This section describes relatively simple memory-management
techniques. Depending on the requirements of your application, you
might want to manage your heap memory differently. u

Setting Up the Application Heap

When the Process Manager launches your application, it calls the Memory Manager to
create and initialize a memory partition for your application. The Process Manager then
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loads code segments into memory and sets up the stack, heap, and A5 world (including
the jump table) for your application.

To help prevent heap fragmentation, you should also perform some setup of your own
early in your application’s execution. Depending on the needs of your application, you
might want to

n change the size of your application’s stack

n expand the heap to the heap limit

n allocate additional master pointer blocks

The following sections describe in detail how and when to perform these operations.

Changing the Size of the Stack

Most applications allocate space on their stack in a predictable way and do not need to

monitor stack space during their execution. For these applications, stack usage usually

reaches a maximum in some heavily nested routine. If the stack in your application can
never grow beyond a certain size, then to avoid collisions between your stack and heap
you simply need to ensure that your stack is large enough to accommodate that size.

If you never encounter system error 28 (generated by the stack sniffer when it detects a
collision between the stack and the heap) during application testing, then you probably
do not need to increase the size of your stack.

Some applications, however, rely heavily on recursive programming techniques, in
which one routine repeatedly calls itself or a small group of routines repeatedly call each
other. In these applications, even routines with just a few local variables can cause stack
overflow, because each time a routine calls itself, a new copy of that routine’s parameters
and variables is appended to the stack. The problem can become particularly acute if one
or more of the local variables is a string, which can require up to 256 bytes of stack space.

You can help prevent your application from crashing because of insufficient stack space
by expanding the size of your stack. If your application does not depend on recursion,
you should do this only if you encounter system error 28 during testing. If your
application does depend on recursion, you might consider expanding the stack so that
your application can perform deeply nested recursive computations. In addition, some
object-oriented languages (for example, C++) allocate space for objects on the stack. If
you are using one of these languages, you might need to expand your stack.

Note

If you are programming in LISP or another language that depends
extensively on recursion, your development system might allocate
memory for local variables in the heap rather than on the stack. If so,
expanding the size of the stack is not helpful. Consult your development
system’s documentation for details on how it allocates memory. u

To increase the size of your stack, you simply reduce the size of your heap. Because the
heap cannot grow above the boundary contained in the Appl Li mi t global variable, you
can lower the value of Appl Li mi t to limit the heap’s growth. By lowering Appl Li mi t,
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technically you are not making the stack bigger; you are just preventing collisions
between it and the heap.

By default, the stack can grow to 8 KB on Macintosh computers without Color
QuickDraw and to 32 KB on computers with Color QuickDraw. (The size of the stack for
a faceless background process is always 8 KB, whether Color QuickDraw is present or
not.) You should never decrease the size of the stack, because future versions of system
software might increase the default amount of space allocated for the stack. For the same
reason, you should not set the stack to a predetermined absolute size or calculate a new
absolute size for the stack based on the microprocessor’s type. If you must modify the
size of the stack, you should increase the stack size only by some relative amount that is
sufficient to meet the increased stack requirements of your application. There is no
maximum size to which the stack can grow.

Listing 1-3 defines a procedure that increases the stack size by a given value. It does so
by determining the current heap limit, subtracting the value of the ext r aByt es
parameter from that value, and then setting the application limit to the difference.

Listing 1-3 Increasing the amount of space allocated for the stack

1-40

PROCEDURE | ncreaseSt ackSi ze (extraBytes: Size);
BEG N

Set Appl Limt(Ptr(ORDA(CGet Appl Linit) - extraBytes));
END;

You should call this procedure at the beginning of your application, before you

call the MaxAppl Zone procedure (as described in the next section). If you call

I ncr easeSt ackSi ze after you call MaxAppl Zone, it has no effect, because the
Set Appl Li mi t procedure cannot change the Appl Li mi t global variable to a value
lower than the current top of the heap.

Note

Some compilers add to the beginning of your application some default
initialization code that automatically calls MaxAppl Zone. You might
need to specify a compiler directive that turns off such default
initialization if you want to increase the size of the stack. Consult your
development system’s documentation for details. u

Expanding the Heap

Near the beginning of your application’s execution, before you allocate any memory,
you should call the MaxAppl Zone procedure to expand the application heap
immediately to the application heap limit. If you do not do this, the Memory Manager
gradually expands your heap as memory needs require. This gradual expansion can
result in significant heap fragmentation if you have previously moved relocatable blocks
to the top of the heap (by calling MoveHHi ) and locked them (by calling HLock). When
the heap grows beyond those locked blocks, they are no longer at the top of the heap.
Your heap then remains fragmented for as long as those blocks remain locked.
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Another advantage to calling MaxAppl Zone is that doing so is likely to reduce the
number of relocatable blocks that are purged by the Memory Manager. The Memory
Manager expands your heap to fulfill a memory request only after it has exhausted other
methods of obtaining the required amount of space, including compacting the heap and
purging blocks marked as purgeable. By expanding the heap to its limit, you can prevent
the Memory Manager from purging blocks that it otherwise would purge. This, together
with the fact that your heap is expanded only once, can make memory allocation
significantly faster.

Note

As indicated in the previous section, you should call MaxAppl Zone
only after you have expanded the stack, if necessary. u

Allocating Master Pointer Blocks

After calling MaxAppl Zone, you should call the Mor eMast er s procedure to allocate as
many new nonrelocatable blocks of master pointers as your application is likely to need
during its execution. Each block of master pointers in your application heap contains 64
master pointers. The Operating System allocates one block of master pointers as your
application is loaded into memory, and every relocatable block you allocate needs one
master pointer to reference it.

If, when you allocate a relocatable block, there are no unused master pointers in your
application heap, the Memory Manager automatically allocates a new block of master
pointers. For several reasons, however, you should try to prevent the Memory Manager
from calling Mor eMast er s for you. First, Mor eMast er s executes more slowly if it has
to move relocatable blocks up in the heap to make room for the new nonrelocatable
block of master pointers. When your application first starts running, there are no such
blocks that might have to be moved. Second, the new nonrelocatable block of master
pointers is likely to fragment your application heap. At any time the Memory Manager is
forced to call Mor eMast er s for you, there are already at least 64 relocatable blocks
allocated in your heap. Unless all or most of those blocks are locked high in the heap (an
unlikely situation), the new nonrelocatable block of master pointers might be allocated
above existing relocatable blocks. This increases heap fragmentation.

To prevent this fragmentation, you should call Mor eMast er s at the beginning of your
application enough times to ensure that the Memory Manager never needs to call it for
you. For example, if your application never allocates more than 300 relocatable blocks in
its heap, then five calls to the Mor eMast er s should be enough. It’s better to call

Mor eMast er s too many times than too few, so if your application usually allocates
about 100 relocatable blocks but sometimes might allocate 1000 in a particularly busy
session, you should call Mor eMast er s enough times at the beginning of the program to
cover the larger figure.

You can determine empirically how many times to call Mor eMast er s by using a
low-level debugger. First, remove all the calls to Mor eMast er s from your code and then
give your application a rigorous workout, opening and closing windows, dialog boxes,
and desk accessories as much as any user would. Then, find out from your debugger
how many times the system called Mor eMast er s. To do so, count the nonrelocatable
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blocks of size $100 bytes (decimal 256, or 64~ 4). Because of Memory Manager size
corrections, you should also count any nonrelocatable blocks of size $108, $10C, or

$110 bytes. (You should also check to make sure that your application doesn’t allocate
other nonrelocatable blocks of those sizes. If it does, subtract the number it allocates from
the total.) Finally, call Mor eMast er s at least that many times at the beginning of your
application.

Listing 1-4 illustrates a typical sequence of steps to configure your application heap

and stack. The DoSet UpHeap procedure defined there increases the size of the stack by
32 KB, expands the application heap to its new limit, and allocates five additional blocks
of master pointers.

Listing 1-4 Setting up your application heap and stack

1-42

PROCEDURE DoSet UpHeap;
CONST

kExtraSt ackSpace = $8000; {32 KB}

kMoreMasterCalls = 5; {for 320 master ptrs}
VAR

count: | nt eger;
BEG N

I ncreaseSt ackSi ze( kExt r aSt ackSpace) ; {increase stack size}

MaxAppl Zone; {extend heap to limt}

FOR count := 1 TO kMoreMasterCalls DO

Mor eMast er s; {64 nore master ptrs}

END;

To reduce heap fragmentation, you should call DoSet UpHeap in a code segment that
you never unload (possibly the main segment) rather than in a special initialization code
segment. This is because Mor eMast er s allocates a nonrelocatable block. If you call

Mor eMast er s from a code segment that is later purged, the new master pointer block is
located above the purged space, thereby increasing fragmentation.

Determining the Amount of Free Memory

Because space in your heap is limited, you cannot usually honor every user request that
would require your application to allocate memory. For example, every time the user
opens a new window, you probably need to allocate a new window record and other
associated data structures. If you allow the user to open windows endlessly, you risk
running out of memory. This might adversely affect your application’s ability to perform
important operations such as saving existing data in a window.

It is important, therefore, to implement some scheme that prevents your application
from using too much of its own heap. One way to do this is to maintain a memory
cushion that can be used only to satisfy essential memory requests. Before allocating
memory for any nonessential task, you need to ensure that the amount of memory that
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remains free after the allocation exceeds the size of your memory cushion. You can do
this by calling the function | sMenor yAvai | abl e defined in Listing 1-5.

Listing 1-5 Determining whether allocating memory would deplete the memory cushion

FUNCTI ON | sMenoryAvai | abl e (nenRequest: Longlnt): Bool ean;
VAR

total: Longl nt; {total free nmenory if heap purged}
contig: Longlnt; {largest contiguous block if heap purged}
BEG N

Pur geSpace(total, contig);
| sMenoryAvai | abl e : = ((nmenmRequest + kMenCushion) < contig);
END;

The | sMenor yAvai | abl e function calls the Memory Manager’s Pur geSpace
procedure to determine the size of the largest contiguous block that would be available if
the application heap were purged; that size is returned in the cont i g parameter. If the
size of the potential memory request together with the size of the memory cushion is less
than the value returned in cont i g, | sMenor yAvai | abl e issetto TRUE, indicating that
it is safe to allocate the specified amount of memory; otherwise, | sMenor yAvai | abl e
returns FALSE.

Notice that the | sMenor yAvai | abl e function does not itself cause the heap to be
purged or compacted; the Memory Manager does so automatically when you actually
attempt to allocate the memory.

Usually, the easiest way to determine how big to make your application’s memory
cushion is to experiment with various values. You should attempt to find the lowest
value that allows your application to execute successfully no matter how hard you try to
allocate memory to make the application crash. As an extra guarantee against your
application’s crashing, you might want to add some memory to this value. As indicated
earlier in this chapter, 40 KB is a reasonable size for most applications.

CONST
kMenCushi on = 40 * 1024; {size of menory cushion}

You should call the | sMenor yAvai | abl e function before all nonessential memory
requests, no matter how small. For example, suppose your application allocates a new,
small relocatable block each time a user types a new line of text. That block might be
small, but thousands of such blocks could take up a considerable amount of space.
Therefore, you should check to see if there is sufficient memory available before
allocating each one. (See Listing 1-6 on page 1-44 for an example of how to call

| sMenor yAvai | abl e.)

You should never, however, call the | sMenor yAvai | abl e function before an essential
memory request. When deciding how big to make the memory cushion for your
application, you must make sure that essential requests can never deplete all of the
cushion. Note that when you call the | sMenor yAvai | abl e function for a nonessential
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request, essential requests might have already dipped into the memory cushion. In that
case, | sMenor yAvai | abl e returns FALSE no matter how small the nonessential
request is.

Some actions should never be rejectable. For example, you should guarantee that there is
always enough memory free to save open documents, and to perform typical
maintenance tasks such as updating windows. Other user actions are likely to be always
rejectable. For example, because you cannot allow the user to create an endless number
of documents, you should make the New Document and Open Document menu
commands rejectable.

Although the decisions of which actions to make rejectable are usually obvious, modal
and modeless boxes present special problems. If you want to make such dialog boxes
available at all costs, you must ensure that you allocate a large enough memory cushion
to handle the maximum number of these dialog boxes that the user could open at once.
If you consider a certain dialog box (for instance, a spelling checker) nonessential, you
must be prepared to inform the user that there is not enough memory to open it if
memory space become low.

Allocating Blocks of Memory

As you have seen, a key element of the memory-management scheme presented in this
chapter is to disallow any nonessential memory allocation requests that would deplete
the memory cushion. In practice, this means that, before calling NewHandl e, NewPt r, or
another function that allocates memory, you should check that the amount of space
remaining after the allocation, if successful, exceeds the size of the memory cushion.

An easy way to do this is never to allocate memory for nonessential tasks by calling
NewHand| e or NewPt r directly. Instead call a function such as NewHandl eCushi on,
defined in Listing 1-6, or NewPt r Cushi on, defined in Listing 1-7.

Listing 1-6 Allocating relocatable blocks

1-44

FUNCTI ON NewHandl eCushi on (1 ogi cal Si ze: Size): Handl e;
BEG N
I F NOT | sMenoryAvai |l abl e(l ogi cal Si ze) THEN
NewHandl eCushion := N L

ELSE
BEG N
Set G owZone(NI L) ; {renove grow zone function}
NewHandl eCushi on : = NewHandl eCl ear (1 ogi cal Si ze);
Set G owZone( @& G owZone); {install grow zone function}
END,
END;

The NewHandl eCushi on function first calls | sMenor yAvai | abl e to determine
whether allocating the requested number of bytes would deplete the memory cushion.
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If so, NewHandl eCushi onreturnsNI L to indicate that the request has failed. Otherwise,
if there is indeed sufficient space for the new block, NewHandl eCushi on calls
NewHandl ed ear to allocate the relocatable block. Before calling NewHand| ed ear,
however, NewHand| eCushi on disables the grow-zone function for the application
heap. This prevents the grow-zone function from releasing any emergency memory
reserve your application might be maintaining. See “Defining a Grow-Zone Function”
on page 1-48 for details on grow-zone functions.

You can define a function NewPt r Cushi on to handle allocation of nonrelocatable
blocks, as shown in Listing 1-7.

Listing 1-7 Allocating nonrelocatable blocks

FUNCTI ON NewPt r Cushi on (| ogi cal Si ze: Size): Handl e;
BEG N
I F NOT | sMenoryAvai | abl e(l ogi cal Si ze) THEN
NewPt r Cushion := NIL

ELSE
BEA N
Set GrowZone(NIL); {renove grow zone function}
NewPt r Cushi on : = NewPtrd ear (| ogi cal Si ze);
Set Gr owZone( @& G owZone); {install grow zone function}
END;
END;
Note

The functions NewHandl eCushi on and NewPt r Cushi on allocate
prezeroed blocks in your application heap. You can easily modify those
functions if you do not want the blocks prezeroed. u

Listing 1-8 illustrates a typical way to call NewPt r Cushi on.

Listing 1-8 Allocating a dialog record

FUNCTI ON Get Di al og (dialoglD: Integer): DialogPtr;
VAR
myPtr: Ptr; {storage for the dial og record}
BEG N
myPtr : = NewPtrCushion(Si zeO (Di al ogRecord));
I'F MenError = noErr THEN
Get Di al og : = Get NewDi al og(di al ogl D, nyPtr, WndowPtr(-1))
ELSE
GetDialog := NL; {can’t get nenory}
END;
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When you allocate memory directly, you can later release it by calling the

Di sposeHandl e andDi sposePt r procedures. When you allocate memory indirectly
by calling a Toolbox routine, there is always a corresponding Toolbox routine to release
that memory. For example, the Di sposeW ndow procedure releases memory allocated
with the NewW ndow function. Be sure to use these special Toolbox routines instead of
the generic Memory Manager routines when applicable.

Maintaining a Memory Reserve

A simple way to help ensure that your application always has enough memory available
for essential operations is to maintain an emergency memory reserve. This memory
reserve is a block of memory that your application uses only for essential operations and
only when all other heap space has been allocated. This section illustrates one way to
implement a memory reserve in your application.

To create and maintain an emergency memory reserve, you follow three distinct steps:

n  When your application starts up, you need to allocate a block of reserve memory.
Because you allocate the block, it is no longer free in the heap and does not enter into
the free-space determination done by | sMenor yAvai | abl e.

n  When your application needs to fulfill an essential memory request and there isn’t
enough space in your heap to satisfy the request, you can release the reserve. This
effectively ensures that you always have the memory you request, at least for essential
operations. You can use a grow-zone function to release the reserve when necessary;
see “Defining a Grow-Zone Function” on page 1-48 for details.

n Each time through your main event loop, you should check whether the reserve has
been released. If it has, you should attempt to recover the reserve. If you cannot
recover the reserve, you should warn the user that memory is critically short.

To refer to the emergency reserve, you can declare a global variable of type Handl e.

VAR
gEmergencyMenory: Handle; {handle to enmergency nenory reserve}

Listing 1-9 defines a function that you can call early in your application’s execution
(before entering your main event loop) to create an emergency memory reserve. This
function also installs the application-defined grow-zone procedure. See “Defining a
Grow-Zone Function” on page 1-48 for a description of the grow-zone function.

Listing 1-9 Creating an emergency memory reserve

1-46

PROCEDURE I nitial i zeEnergencyMenory;

BEG N
gEmer gencyMenory : = NewHandl e( kKEnmer gencyMenor ySi ze) ;
Set G owZone( @W G owZone) ;

END;
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The I nitializeEmergencyMenory procedure defined in Listing 1-9 simply allocates
a relocatable block of a predefined size. That block is the emergency memory reserve.

A reasonable size for the memory reserve is whatever size you use for the memory
cushion. Once again, 40 KB is a good size for many applications.

CONST
kEner gencyMenorySi ze = 40 * 1024; {size of nenory reserve}

When using a memory reserve, you need to change the | sMenor yAvai | abl e function
defined earlier in Listing 1-5. You need to make sure, when determining whether a
nonessential memory allocation request should be honored, that the memory reserve has
not been released. To check that the memory reserve is intact, use the function

| sEmer gencyMenor y defined in Listing 1-10.

Listing 1-10 Checking the emergency memory reserve

FUNCTI ON | sEner gencyMenory: Bool ean;
BEG N
| sEmer gencyMenory : =
(gEmergencyMenory <> NIL) & (gEmergencyMenory”® <> N L);
END,

Then, you can replace the function | sMenor yAvai | abl e defined in Listing 1-5
(page 1-43) by the version defined in Listing 1-11.

Listing 1-11 Determining whether allocating memory would deplete the memory cushion

FUNCTI ON | sMenoryAvai | abl e (nenRequest: Longlnt): Bool ean;
VAR

total: Longl nt;; {total free nenory if heap purged}
contig: Longlnt; {largest contiguous block if heap purged}
BEG N

I F NOT | senergencyMenory THEN {i s energency nenory avail abl e?}
| sMenor yAvai | abl e : = FALSE

ELSE

BEG N
Pur geSpace(total, contig);
| sMenoryAvai |l abl e : = ((nenmRequest + kMenTCushi on) < contig);

END;

END;

As you can see, this is exactly like the earlier version except that it indicates that memory
is not available if the memory reserve is not intact.
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Once you have allocated the memory reserve early in your application’s execution, it
should be released only to honor essential memory requests when there is no other space
available in your heap. You can install a simple grow-zone function that takes care of
releasing the reserve at the proper moment. Each time through your main event loop,
you can check whether the reserve is still intact; to do this, add these lines of code to
your main event loop, before you make your event call:

I F NOT | sEmergencyMenory THEN
Recover Emer gencyMenory;

The Recover Ener gencyMenor y function, defined in Listing 1-12, simply attempts to
reallocate the memory reserve.

Listing 1-12 Reallocating the emergency memory reserve

1-48

PROCEDURE Recover Emer gencyMenory;,
BEG N

Real | ocat eHandl e( gEner gencyMenory, kEmergencyMenorySi ze);
END;

If you are unable to reallocate the memory reserve, you might want to notify the user

that because memory is in short supply, steps should be taken to save any important
data and to free some memory.

Defining a Grow-Zone Function

The Memory Manager calls your heap’s grow-zone function only after other attempts to
obtain enough memory to satisfy a memory allocation request have failed. A grow-zone
function should be of the following form:

FUNCTI ON MyGrowZone (cbNeeded: Size): Longlnt;

The Memory Manager passes to your function (in the cbNeeded parameter) the number
of bytes it needs. Your function can do whatever it likes to free that much space in the
heap. For example, your grow-zone function might dispose of certain blocks or make
some unpurgeable blocks purgeable. Your function should return the number of bytes, if
any, it managed to free.

When the function returns, the Memory Manager once again purges and compacts the
heap and tries again to allocate the requested amount of memory. If there is still
insufficient memory, the Memory Manager calls your grow-zone function again, but
only if the function returned a nonzero value when last called. This mechanism allows
your grow-zone function to release memory gradually; if the amount it releases is not
enough, the Memory Manager calls it again and gives it the opportunity to take more
drastic measures.
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Typically a grow-zone function frees space by calling the Enpt yHandl e procedure,
which purges a relocatable block from the heap and sets the block’s master pointer to
NI L. This is preferable to disposing of the space (by calling the Di sposeHandl e
procedure), because you are likely to want to reallocate the block.

The Memory Manager might designate a particular relocatable block in the heap as
protected; your grow-zone function should not move or purge that block. You can
determine which block, if any, the Memory Manager has protected by calling the
&ZSaveHnd function in your grow-zone function.

Listing 1-13 defines a very basic grow-zone function. The My G- owZone function

attempts to create space in the application heap simply by releasing the block of
emergency memory. First, however, it checks that (1) the emergency memory hasn’t
already been released and (2) the emergency memory is not a protected block of memory
(as it would be, for example, during an attempt to reallocate the emergency memory
block). If either of these conditions isn’t true, then My Gr owZone returns 0 to indicate that
no memory was released.

Listing 1-13 A grow-zone function that releases emergency storage

FUNCTI ON MyGrowZone (cbNeeded: Size): Longlnt;

VAR

t heA5:
BEG N
t heA5

Longl nt ; {val ue of A5 when function is called}

: = Set Current A5; {remenber current value of A5; install ours}

| F (gEmergencyMenory” <> NIL) & (gEnergencyMenory <> &ZSaveHnd) THEN

ELSE
My G owZone : = O; {no nore nmenory to rel ease}

theA5 : = Set A5(t heA5); {restore previous val ue of A5}

END;

BEG N
Enmpt yHandl e( gEmer gencyMenory) ;
My G owZone : = kEnergencyMenorySi ze;

The function MyGr owZone defined in Listing 1-13 saves the current value of the A5
register when it begins and then restores the previous value before it exits. This is
necessary because your grow-zone function might be called at a time when the system is
attempting to allocate memory and value in the A5 register is not correct. See the chapter
“Memory Management Utilities” in this book for more information about saving and
restoring the A5 register.

Note

You need to save and restore the A5 register only if your grow-zone
function accesses your A5 world. (In Listing 1-13, the grow-zone
function uses the global variable gEner gencyMenory.) u
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Memory Management Reference

This section describes the routines used to illustrate the memory-management
techniques presented earlier in this chapter. In particular, it describes the routines that
allow you to manipulate blocks of memory in your application heap.

Note

For a complete description of all Memory Manager data types and
routines, see the chapter “Memory Manager” in this book. u

Memory Management Routines

This section describes the routines you can use to set up your application’s heap, allocate
and dispose of relocatable and nonrelocatable blocks, manipulate those blocks, assess the
availability of memory in your application’s heap, free memory from the heap, and
install a grow-zone function for your heap.

Note

The result codes listed for Memory Manager routines are usually not
directly returned to your application. You need to call the MenEr r or
function (or, from assembly language, inspect the MerrEr r global
variable) to get a routine’s result code. u

You cannot call most Memory Manager routines at interrupt time for several reasons.
You cannot allocate memory at interrupt time because the Memory Manager might
already be handling a memory-allocation request and the heap might be in an
inconsistent state. More generally, you cannot call at interrupt time any Memory
Manager routine that returns its result code via the MenEr r or function, even if that
routine doesn’t allocate or move memory. Resetting the MenEr r global variable at
interrupt time can lead to unexpected results if the interrupted code depends on the
value of MenEr r. Note that Memory Manager routines like HLock return their results
via MenEr r or and therefore should not be called in interrupt code.

Setting Up the Application Heap
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The Operating System automatically initializes your application’s heap when your
application is launched. To help prevent heap fragmentation, you should call the
procedures in this section before you allocate any blocks of memory in your heap.

Use the MaxAppl Zone procedure to extend the application heap zone to the application
heap limit so that the Memory Manager does not do so gradually as memory requests
require. Use the Mor eMast er s procedure to preallocate enough blocks of master
pointers so that the Memory Manager never needs to allocate new master pointer blocks
for you.
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MaxApplZone

DESCRIPTION

To help ensure that you can use as much of the application heap zone as possible, call the
MaxAppl Zone procedure. Call this once near the beginning of your program, after you
have expanded your stack.

PROCEDURE MaxAppl Zone;

The MaxAppl Zone procedure expands the application heap zone to the application heap
limit. If you do not call MaxAppl Zone, the application heap zone grows as necessary to
fulfill memory requests. The MaxAppl Zone procedure does not purge any blocks
currently in the zone. If the zone already extends to the limit, MaxAppl Zone does
nothing.

It is a good idea to call MaxAppl Zone once at the beginning of your program if you
intend to maintain an effectively partitioned heap. If you do not call MaxAppl Zone and
then call MoveHH to move relocatable blocks to the top of the heap zone before locking
them, the heap zone could later grow beyond these locked blocks to fulfill a memory
request. If the Memory Manager were to allocate a nonrelocatable block in this new
space, your heap would be fragmented.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on exit for MaxAppl Zone are

Registers on exit
DO Result code

noErr 0 No error

MoreMasters

Call the Mbr eMast er s procedure several times at the beginning of your program to
prevent the Memory Manager from running out of master pointers in the middle of
application execution. If it does run out, it allocates more, possibly causing heap
fragmentation.

PROCEDURE Mbr eMast ers;
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DESCRIPTION

The Mor eMast er s procedure allocates another block of master pointers in the current
heap zone. In the application heap, a block of master pointers consists of 64 master
pointers, and in the system heap, a block consists of 32 master pointers. (These values,
however, might change in future versions of system software.) When you initialize
additional heap zones, you can specify the number of master pointers you want to have
in a block of master pointers.

The Memory Manager automatically calls Mor eMast er s once for every new heap zone,
including the application heap zone.

You should call Mor eMast er s at the beginning of your program enough times to ensure
that the Memory Manager never needs to call it for you. For example, if your application
never allocates more than 300 relocatable blocks in its heap zone, then five calls to the
Mor eMast er s should be enough. It’s better to call Mor eMast er s too many times than
too few. For instance, if your application usually allocates about 100 relocatable blocks
but might allocate 1000 in a particularly busy session, call Mor eMast er s enough times
at the beginning of the program to accommodate times of greater memory use.

If you are forced to call Mor eMast er s so many times that it causes a significant
slowdown, you could change the nor eMast field of the zone header to the total number
of master pointers you need and then call Mor eMast er s just once. Afterward, be sure to
restore the nor eMast field to its original value.

SPECIAL CONSIDERATIONS
Because Mor eMast er s allocates memory, you should not call it at interrupt time.

The calls to Mor eMast er s at the beginning of your application should be in the main
code segment of your application or in a segment that the main segment never unloads.

ASSEMBLY-LANGUAGE INFORMATION
The registers on exit for Mor eMast er s are
Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
mentul | Err -108 Not enough memory
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GetApplLimit

DESCRIPTION

Use the Get Appl Li mi t function to get the application heap limit, beyond which the
application heap cannot expand.

FUNCTI ON Get Appl Limt: Ptr;

The Get Appl Li mi t function returns the current application heap limit. The Memory
Manager expands the application heap only up to the byte preceding this limit.

Nothing prevents the stack from growing below the application limit. If the Operating
System detects that the stack has crashed into the heap, it generates a system error. To
avoid this, use Get Appl Li mi t and the Set Appl Li mi t procedure to set the application
limit low enough so that a growing stack does not encounter the heap.

Note
The Get Appl Li mi t function does not indicate the amount of memory
available to your application. u

ASSEMBLY-LANGUAGE INFORMATION

The global variable Appl Li mi t contains the current application heap limit.

SetApplLimit

DESCRIPTION

Use the Set Appl Li mi t procedure to set the application heap limit, beyond which the
application heap cannot expand.

PROCEDURE Set Appl Limt (zoneLimt: Ptr);
zoneLimt A pointer to a byte in memory demarcating the upper boundary of the

application heap zone. The zone can grow to include the byte preceding
zoneLi m t in memory, but no further.

The Set Appl Li mi t procedure sets the current application heap limit to zoneLi mi t.
The Memory Manager then can expand the application heap only up to the byte
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preceding the application limit. If the zone already extends beyond the specified limit,
the Memory Manager does not cut it back but does prevent it from growing further.

Note

The zonelLi mi t parameter is not a byte count, but an absolute byte in
memory. Thus, you should use the Set Appl Li mi t procedure only with
a value obtained from the Memory Manager functions Get Appl Li mi t
orAppl i cati onZone. u

You cannot change the limit of zones other than the application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The registers on entry and exit for Set Appl Li mi t are
Registers on entry

A0 Pointer to desired new zone limit

Registers on exit
DO Result code

noErr 0 No error
mentul | Err -108 Not enough memory

Touse Set Appl Li ni t to expand the default size of the stack, see the discussion in
“Changing the Size of the Stack” on page 1-39.

Allocating and Releasing Relocatable Blocks of Memory
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You can use the NewHandl e function to allocate a relocatable block of memory. If you
want to allocate new blocks of memory with their bits precleared to 0, you can use the
NewHand| eC ear function.

WARNING

You should not call any of these memory-allocation routines at
interrupt time. s

You can use the Di sposeHandl e procedure to free relocatable blocks of memory you
have allocated.
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NewHandle

You can use the NewHandl e function to allocate a relocatable memory block of a
specified size.

FUNCTI ON NewHandl e (1 ogi cal Si ze: Size): Handl e;

| ogi cal Si ze
The requested size (in bytes) of the relocatable block.

DESCRIPTION
The NewHandl e function attempts to allocate a new relocatable block in the current heap
zone with a logical size of | ogi cal Si ze bytes and then return a handle to the block.
The new block is unlocked and unpurgeable. If NewHandl e cannot allocate a block of
the requested size, it returns NI L.

S WARNING
Do not try to manufacture your own handles without this function by
simply assigning the address of a variable of type Pt r to a variable of
type Handl e. The resulting “fake handle” would not reference a
relocatable block and could cause a system crash. s

The NewHandl e function pursues all available avenues to create a block of the requested
size, including compacting the heap zone, increasing its size, and purging blocks from it.
If all of these techniques fail and the heap zone has a grow-zone function installed,
NewHandl e calls the function. Then NewHandl e tries again to free the necessary amount
of memory, once more compacting and purging the heap zone if necessary. If memory
still cannot be allocated, NewHandl e calls the grow-zone function again, unless that
function had returned 0, in which case NewHand| e gives up and returns NI L.

SPECIAL CONSIDERATIONS
Because NewHandl e allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for NewHand| e are
Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block’s master pointer or
NI L

DO Result code
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If you want to clear the bytes of a block of memory to 0 when you allocate it with the
NewHandl e function, set bit 9 of the routine trap word. You can usually do this by
supplying the word CLEAR as the second argument to the routine macro, as follows:

_NewHandl e , CLEAR

RESULT CODES

noErr 0 No error
mentul | Err -108 Not enough memory in heap zone

SEE ALSO

If you allocate a relocatable block that you plan to lock for long periods of time, you can
prevent heap fragmentation by allocating the block as low as possible in the heap zone.
To do this, see the description of the Reser veMemprocedure on page 1-70.

If you plan to lock a relocatable block for short periods of time, you might want to move
it to the top of the heap zone to prevent heap fragmentation. For more information, see
the description of the MoveHHi procedure on page 1-71.

NewHandleClear

You can use the NewHand| eC ear function to allocate prezeroed memory in a
relocatable block of a specified size.

FUNCTI ON NewHandl eC ear (| ogical Si ze: Size): Handl e;

| ogi cal Si ze
The requested size (in bytes) of the relocatable block. The
NewHandl ed ear function sets each of these bytes to 0.

DESCRIPTION
The NewHandl| eCl ear function works much as the NewHandI e function does but sets
all bytes in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewHand| e ear clears the block one byte at a time. For a large block, it
might be faster to clear the block manually a long word at a time.

RESULT CODES

nokErr 0 No error
mentul | Err -108 Not enough memory in heap zone
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DisposeHandle

When you are completely done with a relocatable block, call the Di sposeHandl e
procedure to free it and its master pointer for other uses.

PROCEDURE Di sposeHandl e (h: Handl e);

h A handle to a relocatable block.

DESCRIPTION

The Di sposeHand! e procedure releases the memory occupied by the relocatable block
whose handle is h. It also frees the handle’s master pointer for other uses.

S WARNING

After a call to Di sposeHandl e, all handles to the released block
become invalid and should not be used again. Any subsequent calls to
Di sposeHandl e using an invalid handle might damage the master
pointer list. s

Do not use Di sposeHandl e to dispose of a handle obtained from the Resource
Manager (for example, by a previous call to Get Resour ce); use Rel easeResour ce
instead. If, however, you have called Det achResour ce on a resource handle, you
should dispose of the storage by calling Di sposeHandl e.

SPECIAL CONSIDERATIONS
Because Di sposeHandl| e purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Di sposeHandl e are
Registers on entry
A0 Handle to the relocatable block to be disposed of

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
memAZEr r -111 Attempt to operate on a free block
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Allocating and Releasing Nonrelocatable Blocks of Memory

You can use the NewPt r function to allocate a nonrelocatable block of memory. If you
want to allocate new blocks of memory with their bits precleared to 0, you can use the
NewPt r Cl ear function.

S WARNING
You should not call any of these memory-allocation routines at
interrupt time. s
You can use the Di sposePt r procedure to free nonrelocatable blocks of memory you
have allocated.
NewPtr
You can use the NewPt r function to allocate a nonrelocatable block of memory of a
specified size.
FUNCTI ON NewPtr (| ogical Size: Size): Ptr;
| ogi cal Si ze
The requested size (in bytes) of the nonrelocatable block.
DESCRIPTION

The NewPt r function attempts to allocate, in the current heap zone, a nonrelocatable
block with a logical size of | ogi cal Si ze bytes and then return a pointer to the block. If
the requested number of bytes cannot be allocated, NewPt r returns NI L.

The NewPt r function attempts to reserve space as low in the heap zone as possible for
the new block. If it is able to reserve the requested amount of space, NewPt r allocates the
nonrelocatable block in the gap Reser veMemcreates. Otherwise, NewPt r returns NI L
and generates a nentul | Er r error.

SPECIAL CONSIDERATIONS
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Because NewPt r allocates memory, you should not call it at interrupt time.
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ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for NewPt r are
Registers on entry
A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block or
NI L

DO Result code

If you want to clear the bytes of a block of memory to 0 when you allocate it with the
NewPt r function, set bit 9 of the routine trap word. You can usually do this by supplying
the word CLEAR as the second argument to the routine macro, as follows:

_NewPtr , CLEAR

RESULT CODES

noErr 0 No error
mentul | Err -108 Not enough memory

NewPtrClear

You can use the NewPt r C ear function to allocate prezeroed memory in a
nonrelocatable block of a specified size.

FUNCTI ON NewPt rCl ear (1l ogical Size: Size): Ptr;

| ogi cal Si ze
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION
The NewPt r O ear function works much as the NewPt r function does, but sets all bytes
in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewPt r Cl ear clears the block one byte at a time. For a large block, it might
be faster to clear the block manually a long word at a time.

RESULT CODES

noErr 0 No error
mentul | Err -108 Not enough memory
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DisposePtr

When you are completely done with a nonrelocatable block, call the Di sposePt r
procedure to free it for other uses.

PROCEDURE Di sposePtr (p: Ptr);

p A pointer to the nonrelocatable block you want to dispose of.

DESCRIPTION

The Di sposePt r procedure releases the memory occupied by the nonrelocatable block
specified by p.

S WARNING

After a call to Di sposePt r, all pointers to the released block become
invalid and should not be used again. Any subsequent use of a pointer
to the released block might cause a system error. s

SPECIAL CONSIDERATIONS
Because Di sposePt r purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Di sposePtr are
Registers on entry

A0 Pointer to the nonrelocatable block to be disposed of

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
memAZEr r -111 Attempt to operate on a free block

Setting the Properties of Relocatable Blocks

A relocatable block can be either locked or unlocked and either purgeable or
unpurgeable. In addition, it can have its resource bit either set or cleared. To determine
the state of any of these properties, use the HGet St at e function. To change these
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properties, use the HLock, HUnl ock, HPur ge, HNoPur ge, HSet RBi t , and HCl r RBi t
procedures. To restore these properties, use the HSet St at e procedure.

WARNING

Be sure to use these procedures to get and set the properties of
relocatable blocks. In particular, do not rely on the structure of master
pointers, because their structure in 24-bit mode is different from their
structure in 32-bit mode. s

DESCRIPTION

You can use the HGet St at e function to get the current properties of a relocatable block
(perhaps so that you can change and then later restore those properties).

FUNCTI ON HGet State (h: Handl e): Si gnedByte;

h A handle to a relocatable block.

The HGet St at e function returns a signed byte containing the flags of the master pointer
for the given handle. You can save this byte, change the state of any of the flags, and

then restore their original states by passing the byte to the HSet St at e procedure,
described next.

You can use bit-manipulation functions on the returned signed byte to determine the
value of a given attribute. Currently the following bits are used:

Bit Meaning
0-4 Reserved

5 Set if relocatable block is a resource
6 Set if relocatable block is purgeable
7 Set if relocatable block is locked

If an error occurs during an attempt to get the state flags of the specified relocatable
block, HGet St at e returns the low-order byte of the result code as its function result. For
example, if the handle h points to a master pointer whose value is NI L, then the signed
byte returned by HGet St at e will contain the value —109.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

HSetState

The registers on entry and exit for HGet St at e are
Registers on entry
A0 Handle whose properties you want to get

Registers on exit
DO Byte containing flags

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

DESCRIPTION
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You can use the HSet St at e procedure to restore properties of a block after a call to
HCet St at e.

PROCEDURE HSet State (h: Handle; flags: SignedByte);

h A handle to a relocatable block.

flags A signed byte specifying the properties to which you want to set the
relocatable block.

The HSet St at e procedure restores to the handle h the properties specified in the f | ags
signed byte. See the description of the HGet St at e function for a list of the currently
used bits in that byte. Because additional bits of the f | ags byte could become significant
in future versions of system software, use HSet St at e only with a byte returned by

HGet St at e. If you need to set two or three properties of a relocatable block at once, it is
better to use the procedures that set individual properties than to manipulate the bits
returned by HGet St at e and then call HSet St at e.
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ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for HSet St at e are
Registers on entry
A0 Handle whose properties you want to set
DO Byte containing flags indicating the handle’s new properties

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
HLock

You can use the HLock procedure to lock a relocatable block so that it does not move in
the heap. If you plan to dereference a handle and then allocate, move, or purge memory
(or call a routine that does so), then you should lock the handle before using the
dereferenced handle.

PROCEDURE HLock (h: Handl e);

h A handle to a relocatable block.

DESCRIPTION

The HLock procedure locks the relocatable block to which h is a handle, preventing it
from being moved within its heap zone. If the block is already locked, HLock does
nothing.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

HUnlock

The registers on entry and exit for HLock are

Registers on entry
A0 Handle to lock

Registers on exit
DO Result code

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

If you plan to lock a relocatable block for long periods of time, you can prevent
fragmentation by ensuring that the block is as low as possible in the heap zone. To do
this, see the description of the Reser veMemprocedure on page 1-70.

If you plan to lock a relocatable block for short periods of time, you can prevent heap
fragmentation by moving the block to the top of the heap zone before locking. For more
information, see the description of the MoveHHi procedure on page 1-71.

DESCRIPTION
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You can use the HUnl ock procedure to unlock a relocatable block so that it is free to
move in its heap zone.

PROCEDURE HuUnl ock (h: Handl e);

h A handle to a relocatable block.

The HUnl ock procedure unlocks the relocatable block to which h is a handle, allowing it
to be moved within its heap zone. If the block is already unlocked, HUnl ock does
nothing.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

HPurge

The registers on entry and exit for HUnl ock are

Registers on entry
A0 Handle to unlock

Registers on exit
DO Result code

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

DESCRIPTION

You can use the HPur ge procedure to mark a relocatable block so that it can be purged if
a memory request cannot be fulfilled after compaction.

PROCEDURE HPurge (h: Handle);

h A handle to a relocatable block.

The HPur ge procedure makes the relocatable block to which h is a handle purgeable. If
the block is already purgeable, HPur ge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone
containing the block to satisfy a memory request. A direct call to the Pur geMem
procedure or the Max Memfunction would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to
the block are not empty before you access the block. If they are empty, you must
reallocate space for the block and recopy the block’s data from another source, such as a
resource file, before using the information in the block.

If the block to which h is a handle is locked, HPur ge does not unlock the block but does
mark it as purgeable. If you later call HUnl ock onh, the block is subject to purging.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

HNoPurge

The registers on entry and exit for HPur ge are
Registers on entry
A0 Handle to make purgeable

Registers on exit
DO Result code

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

If the Memory Manager has purged a block, you can reallocate space for it by using the
Real | ocat eHandl e procedure, described on page 1-68.

You can immediately free the space taken by a handle without disposing of it by calling
Enmpt yHandl e. This procedure, described on page 1-67, does not require that the block
be purgeable.

DESCRIPTION

1-66

You can use the HNoPur ge procedure to mark a relocatable block so that it cannot be
purged.

PROCEDURE HNoPurge (h: Handl e);

h A handle to a relocatable block.

The HNoPur ge procedure makes the relocatable block to which h is a handle
unpurgeable. If the block is already unpurgeable, HNoPur ge does nothing.

The HNoPur ge procedure does not reallocate memory for a handle if it has already
been purged.
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ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for HNoPur ge are
Registers on entry
A0 Handle to make unpurgeable

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
SEE ALSO

If you want to reallocate memory for a relocatable block that has already been purged,
you can use the Real | ocat eHandl e procedure, described in the next section,
“Managing Relocatable Blocks.”

Managing Relocatable Blocks

The Memory Manager provides routines that allow you to purge and later reallocate
space for relocatable blocks and control where in their heap zone relocatable blocks are
located.

To free the memory taken up by a relocatable block without releasing the master pointer
to the block for other uses, use the Enpt yHandl e procedure. To reallocate space for a
handle that you have emptied or the Memory Manager has purged, use the

Real | ocat eHandl e procedure.

To ensure that a relocatable block that you plan to lock for short or long periods of time
does not cause heap fragmentation, use the MoveHH and the Reser veMemprocedures,
respectively.

EmptyHandle

The Enpt yHandl e procedure allows you to free memory taken by a relocatable block
without freeing the relocatable block’s master pointer for other uses.

PROCEDURE Enpt yHandl e (h: Handl e);

h A handle to a relocatable block.
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DESCRIPTION

The Enpt yHandl e procedure purges the relocatable block whose handle is h and sets
the handle’s master pointer to NI L. The block whose handle is h must be unlocked but
need not be purgeable.

Note

If there are multiple handles to the relocatable block, then calling
the Enpt yHandl e procedure empties them all, because all of the
handles share a common master pointer. When you later use

Real | ocat eHandl e to reallocate space for the block, the master
pointer is updated, and all of the handles reference the new block
correctly. u

SPECIAL CONSIDERATIONS
Because Enpt yHandl e purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Enpt yHandl e are
Registers on entry
A0 Handle to relocatable block

Registers on exit
A0 Handle to relocatable block
DO Result code

RESULT CODES
nokErr 0 No error
memAZEr r -111 Attempt to operate on a free block
menPur Er r -112 Attempt to purge a locked block
SEE ALSO

To free the memory taken up by a relocatable block and release the block’s master
pointer for other uses, use the Di sposeHandl| e procedure, described on page 1-57.

ReallocateHandle

To recover space for a relocatable block that you have emptied or the Memory Manager
has purged, use the Real | ocat eHandl| e procedure.

PROCEDURE Real | ocat eHandl e (h: Handl e; |ogical Size: Size);

1-68 Memory Management Reference



DESCRIPTION

CHAPTER 1

Introduction to Memory Management

h A handle to a relocatable block.

| ogi cal Si ze
The desired new logical size (in bytes) of the relocatable block.

The Real | ocat eHand| e procedure allocates a new relocatable block with a logical size
of | ogi cal Si ze bytes. It updates the handle h by setting its master pointer to point to
the new block. The new block is unlocked and unpurgeable.

Usually you use Real | ocat eHandl e to reallocate space for a block that you have
emptied or the Memory Manager has purged. If the handle references an existing block,
Real | ocat eHandl e releases that block before creating a new one.

Note
To reallocate space for a resource that has been purged, you should call
LoadResour ce, not Real | ocat eHandl e. u

If many handles reference a single purged, relocatable block, you need to call
Real | ocat eHandl e on just one of them.

In case of an error, Real | ocat eHandl e neither allocates a new block nor changes the
master pointer to which handle h points.

SPECIAL CONSIDERATIONS

Because Real | ocat eHandl e might purge and allocate memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on entry and exit for Real | ocat eHandl e are
Registers on entry

A0 Handle for new relocatable block

DO Desired logical size, in bytes, of new block

Registers on exit
DO Result code

noErr 0 No error

menmROZEr r -99 Heap zone is read-only

menful | Err -108 Not enough memory

memAZEr r -111 Attempt to operate on a free block
menPur Er r -112 Attempt to purge a locked block
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ReserveMem

DESCRIPTION

Use the Reser veMemprocedure when you allocate a relocatable block that you intend to
lock for long periods of time. This helps prevent heap fragmentation because it reserves
space for the block as close to the bottom of the heap as possible. Consistent use of

Reser veMemfor this purpose ensures that all locked, relocatable blocks and
nonrelocatable blocks are together at the bottom of the heap zone and thus do not
prevent unlocked relocatable blocks from moving about the zone.

PROCEDURE ReserveMem (cbNeeded: Size);

cbNeeded  The number of bytes to reserve near the bottom of the heap.

The Reser veMemprocedure attempts to create free space for a block of cbNeeded
contiguous logical bytes at the lowest possible position in the current heap zone. It
pursues every available means of placing the block as close as possible to the bottom of
the zone, including moving other relocatable blocks upward, expanding the zone (if
possible), and purging blocks from it.

Because Reser veMemdoes not actually allocate the block, you must combine calls to
Reser veMemwith calls to the NewHandl e function.

Do not use the Reser veMemprocedure for a relocatable block you intend to lock for
only a short period of time. If you do so and then allocate a nonrelocatable block above
it, the relocatable block becomes trapped under the nonrelocatable block when you
unlock that relocatable block.

Note

It isn’t necessary to call Reser veMemto reserve space for a
nonrelocatable block, because the NewPt r function calls it automatically.
Also, you do not need to call Reser veMemto reserve memory before

you load a locked resource into memory, because the Resource Manager
calls Reser veMemautomatically. u

SPECIAL CONSIDERATIONS
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Because the Reser veMemprocedure could move and purge memory, you should not call
it at interrupt time.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

MoveHHi

The registers on entry and exit for Reser veMemare
Registers on entry
DO Number of bytes to reserve

Registers on exit
DO Result code

noErr 0 No error
menful | Err -108 Not enough memory

DESCRIPTION

If you plan to lock a relocatable block for a short period of time, use the MoveHHi
procedure, which moves the block to the top of the heap and thus helps prevent heap
fragmentation.

PROCEDURE MoveHH (h: Handl e);

h A handle to a relocatable block.

The MoveHH procedure attempts to move the relocatable block referenced by the handle
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of
the heap.

WARNING

If you call MoveHHi to move a handle to a resource that has its

r esChanged bit set, the Resource Manager updates the resource by
using the Wi t eResour ce procedure to write the contents of the block
to disk. If you want to avoid this behavior, call the Resource Manager
procedure Set ResPur ge( FALSE) before you call MoveHHi , and then
call Set ResPur ge( TRUE) to restore the default setting. s

By using the MoveHH procedure on relocatable blocks you plan to allocate for short
periods of time, you help prevent islands of immovable memory from accumulating in
(and thus fragmenting) the heap.
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Do not use the MoveHHi procedure to move blocks you plan to lock for long periods of
time. The MoveHHi procedure moves such blocks to the top of the heap, perhaps
preventing other blocks already at the top of the heap from moving down once they are
unlocked. Instead, use the Reser veMemprocedure before allocating such blocks, thus
keeping them in the bottom partition of the heap, where they do not prevent relocatable
blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi
each time slows down your application, you might consider leaving the block always
locked and calling the Reser veMemprocedure before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the
Memory Manager to move it back to the middle partition as soon as it can. (The
MoveHH procedure cannot move locked blocks; be sure to lock blocks after, not before,
calling MoveHHi .)

Note

Using the MoveHH procedure without taking other precautionary
measures to prevent heap fragmentation is useless, because even one
small nonrelocatable or locked relocatable block in the middle of the
heap might prevent MoveHH from moving blocks to the top of

the heap. u

SPECIAL CONSIDERATIONS

Because the MoveHH procedure moves memory, you should not call it at interrupt time.

Don’t call MoveHH on blocks in the system heap. Don’t call MoveHH from a desk
accessory.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES
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The registers on entry and exit for MoveHHi are
Registers on entry
A0 Handle to move

Registers on exit
DO Result code

nokErr 0 No error

ni | Handl eErr -109 NI L master pointer
menlLockedEr r =117 Block is locked
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HLockHi
You can use the HLockHi procedure to move a relocatable block to the top of the heap
and lock it.
PROCEDURE HLockHi (h: Handl e);
h A handle to a relocatable block.
DESCRIPTION

The HLockHi procedure attempts to move the relocatable block referenced by the handle
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of
the heap. Then HLockHi locks the block.

The HLockHi procedure is simply a convenient replacement for the pair of procedures
MoveHH andHLock.

SPECIAL CONSIDERATIONS

Because the HLockHi procedure moves memory, you should not call it at interrupt time.

Don’t call HLockHi on blocks in the system heap. Don’t call HLockH from a desk
accessory.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on entry and exit for HLockHi are
Registers on entry

A0 Handle to move and lock

Registers on exit
DO Result code

noErr 0 No error

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
menmLockedEr r -117 Block is locked

Manipulating Blocks of Memory

The Memory Manager provides a routine for copying blocks of memory referenced by
pointers. To copy a block of memory to a nonrelocatable block, you can use the
Bl ockMbve procedure.
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DESCRIPTION

To copy a sequence of bytes from one location in memory to another, you can use the
Bl ockMbve procedure.

PROCEDURE Bl ockMbve (sourcePtr, destPtr: Ptr; byteCount: Size);

sourcePtr The address of the first byte to copy.
desthtr The address of the first byte to copy to.

byt eCount  The number of bytes to copy. If the value of byt eCount is 0, Bl ockMove
does nothing.

The Bl ockMove procedure moves a block of byt eCount consecutive bytes from the
address designated by sour cePt r to that designated by dest Pt r. It updates no
pointers.

The Bl ockMove procedure works correctly even if the source and destination blocks
overlap.

SPECIAL CONSIDERATIONS

You can safely call Bl ockMove at interrupt time. Even though it moves memory,
Bl ockMbve does not move relocatable blocks, but simply copies bytes.

The Bl ockMove procedure currently flushes the processor caches whenever the number
of bytes to be moved is greater than 12. This behavior can adversely affect your
application’s performance. You might want to avoid calling Bl ockMbve to move small
amounts of data in memory if there is no possibility of moving stale data or instructions.
For more information about stale data and instructions, see the discussion of the
processor caches in the chapter “Memory Management Utilities” in this book.

ASSEMBLY-LANGUAGE INFORMATION
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The registers on entry and exit for Bl ockMove are
Registers on entry

A0 Pointer to source

Al Pointer to destination

DO Number of bytes to copy

Registers on exit
DO Result code
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RESULT CODE
noErr 0 No error

Assessing Memory Conditions

The Memory Manager provides routines to test how much memory is available. To
determine the total amount of free space in the current heap zone or the size of the
maximum block that could be obtained after a purge of the heap, call the Pur geSpace
function.

To find out whether a Memory Manager operation finished successfully, use the
MenEr r or function.

PurgeSpace

Use the Pur geSpace procedure to determine the total amount of free memory and the
size of the largest allocatable block after a purge of the heap.

PROCEDURE PurgeSpace (VAR total: Longlnt; VAR contig: Longlnt);

t ot al On exit, the total amount of free memory in the current heap zone if it
were purged.

contig On exit, the size of the largest contiguous block of free memory in the
current heap zone if it were purged.

DESCRIPTION

The Pur geSpace procedure returns, in the t ot al parameter, the total amount of space
(in bytes) that could be obtained after a general purge of the current heap zone; this
amount includes space that is already free. In the cont i g parameter, Pur geSpace
returns the size of the largest allocatable block in the current heap zone that could be
obtained after a purge of the zone.

The Pur geSpace procedure does not actually purge the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION
The registers on exit for Pur geSpace are
Registers on exit
A0 Maximum number of contiguous bytes after purge
DO Total free memory after purge

RESULT CODES
noErr 0 No error
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DESCRIPTION

To find out whether your application’s last direct call to a Memory Manager routine
executed successfully, use the MenEr r or function.

FUNCTI ON MenError: OSErr;

The MentEr r or function returns the result code produced by the last Memory Manager
routine your application called directly.

This function is useful during application debugging. You might also use the function as
one part of a memory-management scheme to identify instances in which the Memory
Manager rejects overly large memory requests by returning the error code menful | Err.

WARNING

Do not rely on the MenEr r or function as the only component of a
memory-management scheme. For example, suppose you call

NewHand| e or NewPt r and receive the result code noEr r, indicating
that the Memory Manager was able to allocate sufficient memory. In this
case, you have no guarantee that the allocation did not deplete your
application’s memory reserves to levels so low that simple operations
might cause your application to crash. Instead of relying on Mentr r or,
check before making a memory request that there is enough memory
both to fulfill the request and to support essential operations. s

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES
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Because most Memory Manager routines return a result code in register DO, you do not
ordinarily need to call the MenEr r or function if you program in assembly language. See
the description of an individual routine to find out whether it returns a result code in
register DO. If not, you can examine the global variable MerEr r. When MenEr r or
returns, register DO contains the result code.

Registers on exit
DO Result code

noErr 0 No error

par antrr -50 Error in parameter list

menmROZEr r -99 Operation on a read-only zone
menful | Err -108 Not enough memory

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
menPur Er r -112 Attempt to purge a locked block
menBCEr r -115 Block check failed

menmLockedEr r -117 Block is locked
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Grow-Zone Operations

You can implement a grow-zone function that the Memory Manager calls when it cannot
fulfill a memory request. You should use the grow-zone function only as a last resort to
free memory when all else fails.

The Set G- owZone procedure specifies which function the Memory Manager should use
for the current zone. The grow-zone function should call the GZSaveHnd function to
receive a handle to a relocatable block that the grow-zone function must not move

or purge.

SetGrowZone

To specify a grow-zone function for the current heap zone, pass a pointer to that function
to the Set G- owZone procedure. Ordinarily, you call this procedure early in the
execution of your application.

If you initialize your own heap zones besides the application and system zones, you can
alternatively specify a grow-zone function as a parameter to the | ni t Zone procedure.

PROCEDURE Set Gr owZone (growZone: ProcPkPtr);

gr owZone A pointer to the grow-zone function.

DESCRIPTION

The Set Gr owZone procedure sets the current heap zone’s grow-zone function as
designated by the gr owZone parameter. A NI L parameter value removes any grow-zone
function the zone might previously have had.

The Memory Manager calls the grow-zone function only after exhausting all other
avenues of satisfying a memory request, including compacting the zone, increasing its
size (if it is the original application zone and is not yet at its maximum size), and purging
blocks from it.

See “Grow-Zone Functions” on page 1-80 for a complete description of a grow-zone
function.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Set G owZone are

Registers on entry

A0 Pointer to new grow-zone function

Registers on exit
DO Result code
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noErr 0 No error

SEE ALSO
See “Defining a Grow-Zone Function” on page 1-48 for a description of a grow-zone
function.

GZSaveHnd
Your grow-zone function must call the GZSaveHnd function to obtain a handle to a
protected relocatable block that the grow-zone function must not move, purge, or delete.
FUNCTI ON &ZSaveHnd: Handl e;

DESCRIPTION

The GZSaveHnd function returns a handle to a relocatable block that the grow-zone
function must not move, purge, or delete. It returns NI L if there is no such block. The
returned handle is a handle to the block of memory being manipulated by the Memory
Manager at the time that the grow-zone function is called.

ASSEMBLY-LANGUAGE INFORMATION

You can find the same handle in the global variable GZRoot Hnd.

Setting and Restoring the A5 Register

1-78

Any code that runs asynchronously or as a callback routine and that accesses the calling
application’s A5 world must ensure that the A5 register correctly points to the boundary
between the application parameters and the application global variables. To accomplish
this, you can call the Set Cur r ent A5 function at the beginning of any asynchronous or
callback code that isn’t executed at interrupt time. If the code is executed at interrupt
time, you must use the Set A5 function to set the value of the A5 register. (You determine
this value at noninterrupt time by calling Set Cur r ent A5.) Then you must restore the
ADb register to its previous value before the interrupt code returns.
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SetCurrentA5

DESCRIPTION

You can use the Set Cur r ent A5 function to get the current value of the system global
variable Curr ent A5.

FUNCTI ON Set Current A5: Longl nt;

The Set Cur r ent A5 function does two things: First, it gets the current value in the

A5 register and returns it to your application. Second, Set Cur r ent A5 sets register A5 to
the value of the low-memory global variable Cur r ent A5. This variable points to the
boundary between the parameters and global variables of the current application.

SPECIAL CONSIDERATIONS

You cannot reliably call Set Cur r ent A5 in code that is executed at interrupt time unless
you first guarantee that your application is the current process (for example, by calling
the Process Manager function Get Cur r ent Pr ocess). In general, you should call

Set Cur r ent A5 at noninterrupt time and then pass the returned value to the

interrupt code.

ASSEMBLY-LANGUAGE INFORMATION

You can access the value of the current application’s A5 register with the low-memory
global variable Cur r ent A5.

SetA5
In interrupt code that accesses application global variables, use the Set A5 function first
to restore a value previously saved using Set Cur r ent A5, and then, at the end of the
code, to restore the A5 register to the value it had before the first call to Set A5.
FUNCTI ON Set A5 (newA5: Longlnt): Longlnt;
newA5 The value to which the A5 register is to be changed.

DESCRIPTION

The Set A5 function performs two tasks: it returns the address in the A5 register when
the function is called, and it sets the A5 register to the address specified in newA5.
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Application-Defined Routines

The techniques illustrated in this chapter use only one application-defined routine, a
grow-zone function.

Grow-Zone Functions

The Memory Manager calls your application’s grow-zone function whenever it cannot
find enough contiguous memory to satisfy a memory allocation request and has
exhausted other means of obtaining the space.

MyGrowZone

DESCRIPTION

1-80

A grow-zone function should have the following form:
FUNCTI ON MyG owZone (cbNeeded: Size): Longlnt;

cbNeeded The physical size, in bytes, of the needed block, including the block
header. The grow-zone function should attempt to create a free block of at
least this size.

Whenever the Memory Manager has exhausted all available means of creating space
within your application heap—including purging, compacting, and (if possible)
expanding the heap—it calls your application-defined grow-zone function. The
grow-zone function can do whatever is necessary to create free space in the heap.
Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an
emergency memory reserve maintained by your application.

The grow-zone function should return a nonzero value equal to the number of bytes of
memory it has freed, or zero if it is unable to free any. When the function returns a
nonzero value, the Memory Manager once again purges and compacts the heap zone
and tries to reallocate memory. If there is still insufficient memory, the Memory Manager
calls the grow-zone function again (but only if the function returned a nonzero value the
previous time it was called). This mechanism allows your grow-zone function to release
just a little bit of memory at a time. If the amount it releases at any time is not enough,
the Memory Manager calls it again and gives it the opportunity to take more drastic
measures.
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The Memory Manager might designate a particular relocatable block in the heap as
protected; your grow-zone function should not move or purge that block. You can
determine which block, if any, the Memory Manager has protected by calling the
&ZSaveHnd function in your grow-zone function.

Remember that a grow-zone function is called while the Memory Manager is attempting
to allocate memory. As a result, your grow-zone function should not allocate memory
itself or perform any other actions that might indirectly cause memory to be allocated
(such as calling routines in unloaded code segments or displaying dialog boxes).

You install a grow-zone function by passing its address to the | ni t Zone procedure
when you create a new heap zone or by calling the Set G- owZone procedure at any
other time.

SPECIAL CONSIDERATIONS

SEE ALSO

Your grow-zone function might be called at a time when the system is attempting to
allocate memory and the value in the A5 register is not correct. If your function accesses
your application’s A5 world or makes any trap calls, you need to set up and later restore
the A5 register by calling Set Cur r ent A5 and Set A5.

Because of the optimizations performed by some compilers, the actual work of the
grow-zone function and the setting and restoring of the A5 register might have to be
placed in separate procedures.

See “Defining a Grow-Zone Function” on page 1-48 for a definition of a sample
grow-zone function.
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Summary of Memory Management

Pascal Summary

Data Types

TYPE
Si gnedByt e = -128..127; {arbitrary byte of nenory}
Byt e = 0..255; {unsi gned, arbitrary byte}
Ptr = "Si gnedByt e; {pointer to nonrel ocatabl e bl ock}
Handl e = "Ptr; {handl e to rel ocatabl e bl ock}
ProcPtr = Ptr; {procedure pointer}
Size = Longl nt; {size, in bytes, of block}

Memory Management Routines

Setting Up the Application Heap

PROCEDURE MaxAppl Zone;

PROCEDURE Mor eMast er s;

FUNCTI ON Get Appl Li mi t : Ptr;

PROCEDURE Set Appl Limt (zoneLimt: Ptr);

Allocating and Releasing Relocatable Blocks of Memory

FUNCTI ON NewHandl e (1 ogical Si ze: Size): Handle;
FUNCTI ON NewHandl ed ear (l ogical Si ze: Size): Handle;
PROCEDURE Di sposeHandl e (h: Handl e);

Allocating and Releasing Nonrelocatable Blocks of Memory

FUNCTI ON Newft r (l ogical Si ze: Size): Ptr;
FUNCTI ON NewPt r C ear (l ogical Size: Size): Ptr;
PROCEDURE Di sposePtr (p: Ptr);
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Setting the Properties of Relocatable Blocks

FUNCTI ON HCet St at e (h: Handl e): SignedByte;
PROCEDURE HSet St at e (h: Handle; flags: SignedByte);
PROCEDURE HLock (h: Handl e);

PROCEDURE HuUnI ock (h: Handl e);

PROCEDURE HPur ge (h: Handl e);

PROCEDURE HNoPur ge (h: Handl e);

Managing Relocatable Blocks

PROCEDURE Enpt yHandl e (h: Handl e);

PROCEDURE Real | ocat eHandl e (h: Handl e; | ogical Size: Size);
PROCEDURE ReserveMem (cbNeeded: Size);

PROCEDURE MbveHHi (h: Handl e);

PROCEDURE HLockHi (h: Handl e);

Manipulating Blocks of Memory

PROCEDURE Bl ockMve (sourcePtr, destPtr: Ptr; byteCount: Size);
Assessing Memory Conditions

PROCEDURE Pur geSpace (VAR total: Longlnt; VAR contig: Longlnt);
FUNCTI ON MenError: OSErr;

Grow-Zone Operations

PROCEDURE Set G- owZone (growZone: ProcPkPtr);

FUNCTI ON GZSaveHnd Handl e;

Setting and Restoring the A5 Register

FUNCTI ON Set Current AS Longl nt ;

FUNCTI ON Set A5 (newA5: Longlnt) Longl nt;
Application-Defined Routines

Grow-Zone Functions

FUNCTI ON MyGr owZone (cbNeeded: Size): Longlnt;

Summary of Memory Management
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C Summary

Data Types

typedef char Si gnedByte; [*arbitrary byte of menory*/
typedef unsi gned char Byte; /*unsi gned, arbitrary byte*/
typedef char *Ptr; /*poi nter to nonrel ocatabl e bl ock*/
typedef Ptr *Handl e; /*handl e to rel ocatabl e bl ock*/
typedef long (*ProcPtr)(); / *procedure pointer*/

typedef |ong Size; /*size in bytes of block*/

Memory Management Routines

Setting Up the Application Heap

pascal void MaxAppl Zone (void);

pascal void MreMsters (void);

#def i ne Get Appl Linmit() (* (Ptr*) 0x0130)
pascal void Set Appl Limnit (void *zonelLimt);

Allocating and Releasing Relocatable Blocks of Memory

pascal Handl e NewHandl e (Si ze byteCount);
pascal Handl e NewHandl eCl ear ( Si ze byt eCount);
pascal void Di sposeHandl e (Handl e h);

Allocating and Releasing Nonrelocatable Blocks of Memory

pascal Ptr NewPtr (Si ze byteCount);
pascal Ptr NewPtrd ear (Si ze byteCount);
pascal void D sposePtr (Ptr p);

Setting the Properties of Relocatable Blocks

pascal char HGet State (Handl e h);
pascal void HSet State (Handl e h, char flags);
pascal void HLock (Handl e h);
pascal void Hunl ock (Handl e h);
pascal void HPurge (Handl e h);
pascal voi d HNoPurge (Handl e h);
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Managing Relocatable Blocks

pascal void EnptyHandl e (Handl e h);

pascal void Real | ocat eHandl e(Handl e h, Size byteCount);
pascal void ReserveMem (Si ze cbNeeded);

pascal void MyveHH (Handl e h);

pascal void HLockHi (Handl e h);

Manipulating Blocks of Memory

pascal void Bl ockMbve (const void *srcPtr, void *destPtr,
Si ze byt eCount);

Assessing Memory Conditions

pascal void PurgeSpace (long *total, long *contig);
#defi ne Menkrror() (* (CSErr*) 0x0220)

Grow-Zone Operations

pascal void Set G owZone (G owZonePr ocPtr growZone);
#def i ne GZSaveHnd() (* (Handl e*) 0x0328)

Setting and Restoring the A5 Register

| ong Set Current A5 (void);
| ong Set A5 (1ong newA5);

Application-Defined Routines

Grow-Zone Functions

pascal | ong MyG owZone (Si ze cbNeeded);

Summary of Memory Management
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Assembly-Language Summary

Global Variables

Appl Limt
Appl Zone
Buf Pt r
Current A5

GZRoot Hnd

long
long
long
long

long

Result Codes

The application heap limit, beyond which the heap cannot expand.
A pointer to the original application heap zone.
Address of highest byte of allocatable memory.

Address of the boundary between the application global variables and the
application parameters of the current application.

A handle to a block that the grow-zone function must not move.

noErr
parantrr
menROZEr r
menful | Err
ni | Handl eErr
memA\ZEr r
menPur Err
menBCEr r
menLockedErr

-50

-99
-108
-109
-111
-112
-115
-117

No error

Error in parameter list

Heap zone is read-only

Not enough memory

NI L master pointer

Attempt to operate on a free block
Attempt to purge a locked block
Block check failed

Block is locked
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CHAPTER 2

Memory Manager

This chapter describes how your application can use the Memory Manager to manage
memory both in its own partition and outside its partition. Ordinarily, you allocate
memory in your application heap only. You might, however, occasionally need to
access memory outside of your application partition, or you might want to create
additional heap zones within your application partition.

You need to read this chapter if you want to use Memory Manager routines other than
those described in the chapter “Introduction to Memory Management” in this book. That
chapter shows how to use the Memory Manager and other system software components
to perform the most common memory-manipulation operations while avoiding heap
fragmentation and low memory situations. This chapter addresses a number of other
important memory-related issues.

This chapter begins with a description of areas of memory that are outside your
application’s partition and their typical uses. Then it describes how you can

n allocate temporary memory

n allocate memory in and install code into the system heap

n read and change the values of system global variables

n allocate high memory during the startup process

n create additional heap zones within your application’s partition
n install a purge-warning procedure for a heap zone

This chapter also addresses some advanced topics that are generally of use only to
developers of very specialized applications or memory utilities. These advanced
topics include

n how the Memory Manager organizes heap zones
n how the Memory Manager organizes memory blocks

To use this chapter, you should be familiar with ordinary use of the Memory Manager
and other system software components that allow you to manage memory, as described
in the chapter “Introduction to Memory Management” earlier in this book.

The “Memory Manager Reference” and “Summary of the Memory Manager” sections in
this chapter provide a complete reference and summary of the constants, data types, and
routines provided by the Memory Manager.

About the Memory Manager

The Memory Manager is the part of the Macintosh Operating System that controls the
dynamic allocation of memory space. Ordinarily, you need to access information only
within your own application’s heap, stack, and A5 world. Occasionally, however, you
might need to use the Memory Manager to allocate temporary memory outside of your
application’s partition or to initialize new heap zones within your application partition.
You might also need to read a system global variable to obtain information about the
environment in which your application is executing.
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The Memory Manager provides a large number of routines that you can use to perform
various operations on blocks within your application partition. You can use the Memory
Manager to

n set up your application partition

n allocate and release both relocatable and nonrelocatable blocks in your
application heap

n copy data from nonrelocatable blocks to relocatable blocks, and vice versa

n determine how much space is free in your heap

n determine the location of the top of your stack

n determine the size of a memory block and, if necessary, change that size

n change the properties of relocatable blocks

n install or remove a grow-zone function for your heap

n obtain the result code of the most recent Memory Manager routine executed

The Memory Manager also provides routines that you can use to access areas of memory
outside your application partition. You can use the Memory Manager to

n allocate memory outside your partition that is currently unused by any open
application or by the Operating System

n allocate memory in the system heap

This section describes the areas of memory that lie outside your application partition.
It also describes multiple heap zones.

Temporary Memory

In the Macintosh multitasking environment, your application is limited to a particular
memory partition (whose size is determined by information in the' SI ZE' resource of
your application). The size of your application’s partition places certain limits on the size
of your application heap and hence on the sizes of the buffers and other data structures
that your application can use.

If for some reason you need more memory than is currently available in your application
heap, you can ask the Operating System to let you use any available memory that is not
yet allocated to any other application. This memory, called temporary memory, is
allocated from the available unused RAM; in general, that memory is not contiguous
with the memory in your application’s zone

Your application should use temporary memory only for occasional short-term purposes
that could be accomplished in less space, though perhaps less efficiently. For example, if
you want to copy a large file, you might try to allocate a fairly large buffer of temporary
memory. If you receive the temporary memory, you can use the large buffer to copy data
from the source file into the destination file. If, however, the request for temporary
memory fails, you can instead use a smaller buffer within your application heap.
Although the use of a smaller buffer might prolong the copy operation, the file is
nonetheless copied.
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One good reason for using temporary memory only occasionally is that you cannot
assume that you will always receive the temporary memory you request. For example, if
two or more applications use all available memory outside the system partition, then a
request by any of them for some temporary memory would fail.

Another strategy for using temporary memory is to use it, when possible, for all
nonessential memory requests. For example, you could allocate window records and any
associated window data using temporary memory. This scheme allows you to keep your
application partition relatively small (because you don’t need space for nonessential
tasks) but assumes that users will not fill up the available memory with other
applications.

Multiple Heap Zones

A heap zone is a heap (that is, an area in which you can dynamically allocate and release
memory on demand) together with a zone header and a zone trailer. The zone header is
an area of memory that contains essential information about the heap, such as the
number of free bytes in the heap and the addresses of the heap’s grow-zone function and
purge-warning procedure. The zone trailer is just a minimume-sized block placed as a
marker at the end of the heap zone. (See “Heap Zones” on page 2-19 for a complete
description of zone headers and trailers.)

When your application is executing, there exist at least two heap zones: your
application’s heap zone (created when your application was launched) and the
system heap zone (created when the system was started up). The system heap zone is
the heap zone that contains the system heap. Your application heap zone (also known
as the original application heap zone) is the heap zone initially provided by the
Memory Manager for use by your application and any system software routines your
application calls.

Ordinarily, you allocate and release blocks of memory in the current heap zone, which
by default is your application heap zone. Unless you change the current heap zone (for
example, by calling the | ni t Zone or Set Zone procedures), you do not need to worry
about which is the current zone; all blocks that you access are taken from the current
heap zone, that is, your application heap zone.

Occasionally, however, you might need to allocate memory in the system heap zone.
System software uses the system heap to store information it needs. Although, in
general, you should not allocate memory in the system heap, there are several valid
reasons for doing so. First, if you are implementing a system extension, the extension can
use the system heap to store information. Second, if you want the Time Manager or
Vertical Retrace Manager to execute some interrupt code when your application is not
the current application, you might in certain cases need to store the task record and the
task code in the system heap. Third, if you write interrupt code that itself uses heap
memory, you should either place that memory in the system heap or hold it in real RAM
to prevent page faults at interrupt time, as discussed in the chapter “Virtual Memory
Manager” in this book.
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You can create additional heap zones for your application’s own use by calling the

I ni t Zone procedure. If you do maintain more than one heap zone, you can find out
which heap zone is the current one at any time by calling the Get Zone function, and
you can switch zones by calling the Set Zone procedure. Almost all Memory Manager
operations implicitly apply to the current heap zone. To refer to the system heap zone or
to the (original) application heap zone, you can call the functions Syst enZone or
Appl i cati onZone. To find out which zone a particular block resides in, you can call
the Handl eZone function (if the block is relocatable) or the Pt r Zone function (if it’s
nonrelocatable).

WARNING
Be sure, when calling routines that access blocks, that the zone in which
the block is located is the current zone. If, for example, you attempt to
release an empty resource in the system zone when the current zone is
not the system zone, the Operating System might incorrectly update the
list of free master pointers in your partition. s

Once you have created a heap zone, it remains fixed in size and location. For this reason,
it usually makes more sense to use the undivided application heap zone for all of your
memory-allocation needs. You might, however, choose to initialize an additional heap
zone in circumstances like these:

n If you are implementing a software development environment and want to launch
applications within the development environment’s partition, you can initialize a
heap zone for the launched application to use as its heap zone.

n If you want to avoid heap fragmentation but cannot prevent allocation of small
nonrelocatable blocks in the middle of your program’s execution, you could, soon
after your application starts up, allocate a small heap zone to hold the nonrelocatable
blocks you allocate during execution.

n If you need to resize a particular handle quite often, you can minimize the resizing
time by creating a heap zone whose size is set to the maximum size the handle will
ever be assigned. Because there is only one relocatable block in the new heap zone, the
resizing is likely to happen more quickly than if that block were in the original heap
zone (where other relocatable blocks in the zone might need to be moved).

Before deciding to create additional heap zones, however, make sure that you really need
to. Maintaining multiple heap zones requires a considerable amount of extra work. You
must always make sure to allocate or release memory in the correct zone, and you must
monitor memory conditions in each zone so that your application doesn’t run out

of memory.

The System Global Variables

Just as the Toolbox stores information about your drawing environment in a set of
QuickDraw global variables within your application partition, the Operating System and
Toolbox store information about the entire multiple-application environment in a set of
system global variables, also called low-memory global variables. The system global
variables are stored in the lowest part of the physical RAM, in the system partition.
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Most system global variables are intended for use by system software only, and you
should never need to read or write them directly. Current versions of system software
contain functions that return values equivalent to most of the important system global
variables. Use those routines whenever they are available. However, you might
occasionally need to access the value of a system global variable to maintain
compatibility with previous versions of system software, or you might need to access a
system global variable whose value no equivalent function returns.

The MPW interface file SysEqu. p defines the memory locations at which system global
variables are stored in the latest version of system software. For example, SysEqu. p
contains lines like these:

CONST
RndSeed = $156; {random nunber seed (long)}
Ti cks = $16A; {ticks since |last boot (unsigned |ong)}
DeskHook = $A6C;, {hook for painting desktop (pointer)}
VBar Hei ght = $BAA;  {height of menu bar (integer)}

You can use these memory locations to examine the value of one of these variables. See
“Reading and Writing System Global Variables” on page 2-8 for instructions on reading
and writing the values of system global variables from a high-level language.

You should avoid relying on the value of a system global variable whenever possible.
The meanings of many global variables have changed in the past and will change again
in the future. Using the system global variables documented in Inside Macintosh is fairly
safe, but you risk incompatibility with future versions of system software if you attempt
to access global variables defined in the interface files but not explicitly documented.

Even when Inside Macintosh does document a particular system global variable, you
should use any available routines to access that variable’s value instead of examining it
directly. For example, you should use the Ti ckCount function to find the number of
ticks since startup instead of examining the Ti cks global variable directly.

IMPORTANT

You should read or write the value of a system global variable only
when that variable is documented in Inside Macintosh and when there is
no alternate method of reading or writing the information you need. s

Using the Memory Manager

This section discusses the techniques you can use both to deal with memory outside of
your application’s partition and to manipulate your own application’s partition.

You can use the techniques in this section to

n read and write the values of system global variables when there is no Toolbox routine
that would accomplish the work for you

Using the Memory Manager 2-7



CHAPTER 2

Memory Manager

n check for the availability of temporary memory and use it to speed operations that
depend on memory buffers

n allocate memory in the system heap
n install code into the system heap

n allocate memory at the high end of the available RAM from within a system extension
during the startup process

n initialize new heap zones within your application heap zone, on your application’s
stack, or in the application global variables area

n install a purge-warning procedure for your application heap zone

Reading and Writing System Global Variables

In general, you should avoid relying on the values of system global variables whenever
possible. However, you might occasionally need to access the value of one of these
variables. Because the actual values associated with global variables in MPW'’s
SysEqu. p interface file are memory locations, you can access the value of a
low-memory variable simply by dereferencing a memory location.

Many system global variables are process-independent, but some are process-specific.
The Operating System swaps the values of the process-specific variables as it switches
processes. If you write interrupt code that reads low memory, that code could execute at
a time when another process’s system global variables are installed. Therefore, before
reading low memory from interrupt code, you should call the Process Manager to ensure
that your process is the current process. If it is not, you should not rely on the value of
system global variables that could conceivably be process-specific.

Note
No available documentation distinguishes process-specific from
process-independent system global variables. u

The routine defined in Listing 2-1 illustrates how you can read a system global variable,
in this case the system global variable Buf Pt r, which gives the address of the highest
byte of allocatable memory.

Listing 2-1 Reading the value of a system global variable

2-8

FUNCTI ON Fi ndHi ghest Byte: Longl nt;

TYPE

LongPtr = “Longl nt;
BEG N

Fi ndHi ghestByte : = LongPtr (BufPtr)”;
END,;

In Pascal, the main technique for reading system global variables is to define a new data
type that points to the variable type you want to read. In this example, the address is
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stored as a long integer. Thus, the memory location Buf Pt r is really a pointer to a long
integer. Because of Pascal’s strict typing rules, you must cast the low-memory address
into a pointer to a long integer. Then, you can dereference the pointer and return the
long integer itself as the function result.

You can use a similar technique to change the value of a system global variable. For
example, suppose you are writing an extension that displays a window at startup time.
To maintain compatibility with pre-Macintosh Il systems, you need to clear the system
global variable named DeskHook. This global variable holds a Pr ocPt r that references
a procedure called by system software to paint the desktop. If the value of the pointer is
NI L, the system software uses the standard desktop pattern. If you do not set DeskHook
to NI L, the system software might attempt to use whatever random data it contains to
call an updating procedure when you move or close your window. The procedure
defined in Listing 2-2 sets DeskHook to NI L.

Listing 2-2 Changing the value of a system global variable

PROCEDURE Cl ear DeskHook;

TYPE
ProcPtrPtr = "ProcPtr; {pointer to ProcPtr}
VAR
deskHookProc: ProcPtrPtr;
BEG N
deskHookProc : = ProcPtrPtr(DeskHook); {initialize variable}
deskHookProc” := NL; {cl ear DeskHook proc}
END,

You can use a similar technique to change the value of any other documented system
global variable.

Extending an Application’s Memory

Rather than using your application’s' SI ZE' resource to specify a preferred partition
size that is large enough to contain the largest possible application heap, you should
specify a smaller but adequate partition size. When you need more memory for
temporary use, you can use a set of Memory Manager routines for the allocation

of temporary memory.

By using the routines for allocating temporary memory, your application can request
some additional memory for occasional short-term needs. For example, the Finder uses
these temporary-memory routines to secure buffer space for use during file copy
operations. Any available memory (that is, memory currently unallocated to any
application’s partition) is dedicated to this purpose. The Finder releases this memory as
soon as the copy is completed, thus making the memory available to other applications
or to the Operating System for launching new applications.
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Because the requested amount of memory might not be available, you cannot be sure
that every request for temporary memory will be honored. Thus, you should make sure
that your application will work even if your request for temporary memory is denied.
For example, if the Finder cannot allocate a large temporary copy buffer, it uses a
reserved small copy buffer from within its own heap zone, prolonging the copying but
performing it nonetheless.

Temporary memory is taken from RAM that is reserved for (but not yet used by) other
applications. Thus, if you use too much temporary memory or hold temporary memory
for long periods of time, you might prevent the user from being able to launch other
applications. In certain circumstances, however, you can hold temporary memory
indefinitely. For example, if the temporary memory is used for open files and the user
can free that memory simply by closing those files, it is safe to hold onto that memory as
long as necessary.

Temporary memory is tracked (or monitored) for each application, and so you must use
it only for code that is running on an application’s behalf. Moreover, the Operating
System frees all temporary memory allocated to an application when the application
quits or crashes. As a result, you should not use temporary memory for VBL tasks, Time
Manager tasks, or other procedures that should continue to be executed after your
application quits. Similarly, it is wise not to use temporary memory for an interprocess
buffer (that is, a buffer whose address is passed to another application in a high-level
event) because the originating application could crash, quit, or be terminated, thereby
causing the temporary memory to be released before (or even while) the receiving
application uses that memory.

Although you can usually perform ordinary Memory Manager operations on temporary
memory, there are two restrictions. First, you must never lock temporary memory across
calls to Get Next Event orWai t Next Event . Second, although you can determine the
zone from which temporary memory is generated (using the Handl eZone function),
you should not use this information to make new blocks or perform heap operations on
your own.

Allocating Temporary Memory

You can request a block of memory for temporary use by calling the Memory Manager’s
TenpNewHand| e function. This function attempts to allocate a new relocatable block of
the specified size for temporary use. For example, to request a block that is one-quarter
megabyte in size, you might issue this command:

nmyHandl e : = TenpNewHandl e( $40000, nyErr); {request tenp menory}

If the routine succeeds, it returns a handle to the block of memory. The block of memory
returned by a successful call to TenrpNewHandl e is initially unlocked. If an error occurs
and TenpNewHand| e fails, it returns a NI L handle. You should always check for NI L
handles before using any temporary memory. If you detect a NI L handle, the second
parameter (in this example, myEr r ) contains the result code from the function.
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Instead of asking for a specific amount of memory and then checking the returned
handle to find out whether it was allocated, you might prefer to determine beforehand
how much temporary memory is available. There are two functions that return
information on the amount of free memory available for temporary allocation. The first
is the TenpFr eeMemfunction, which you can use as follows:

menfree : = TenpFreeMem {find anount of free tenporary nenory}

The result is a long integer containing the amount, in bytes, of free memory available for
temporary allocation. It usually isn’t possible to allocate a block of this size because of
fragmentation. Consequently, you’ll probably want to use the second function,
TenpMaxMem to determine the size of the largest contiguous block of space available. To
allocate that block, you can write

mySi ze : = TenpMaxMen( grow) ;
nmyHandl e : = TenpNewHandl e(nySi ze, nyErr);

The TenpMaxMemfunction returns the size, in bytes, of the largest contiguous free block
available for temporary allocation. (The TenpMax Memfunction is analogous to the
Max Memfunction.) The gr ow parameter is a variable parameter of type Si ze; after the
function returns, it always contains 0, because the temporary memory does not come
from the application’s heap. Even when you use TenpMaxMemto determine the size of
the available memory, you should check that the handle returned by TenpNewHandl e
isnotNI L.

Determining the Features of Temporary Memory

Only computers running system software version 7.0 and later can use temporary
memory as described in this chapter. For this reason, you should always check that the
routines are available and that they have the features you require before calling them.

Note

The temporary-memory routines are available in some earlier system
software versions when MultiFinder is running. However, the handles
to blocks of temporary memory are neither tracked nor real. u

The Gest al t function includes a selector to determine whether the temporary-memory
routines are present in the operating environment and, if they are, whether

the temporary-memory handles are tracked and whether they are real. If
temporary-memory handles are not tracked, you must release temporary memory before
your next call to Get Next Event or Wi t Next Event . If temporary-memory handles are
not real, then you cannot use normal Memory Manager routines such as HLock to
manipulate them.
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To determine whether the temporary-memory routines are implemented, you can check
the value returned by the TenpMentCal | sAvai | abl e function, defined in Listing 2-3.

Listing 2-3 Determining whether temporary-memory routines are available

2-12

FUNCTI ON TenpMental | sAvai | abl e: Bool ean;

VAR

myErr: CSErr; {Gestalt result code}

myRsp: Longl nt; {response returned by Gestalt}
BEG N

TenpMental | sAvai | abl e : = FALSE;
myErr := Gestalt(gestaltOSAttr, nyRsp);
I F myErr <> noErr THEN
DoError (nyErr) {Gestalt failed}
ELSE {check bit for tenp nmem support}
TenpMental | sAvai l abl e : =
BAND( nyRsp, gestalt TenpMenSupport) <> O;
END;

You can use similar code to determine whether temporary-memory handles are real and
whether the temporary memory is tracked.

Using the System Heap

The system heap is used to store most of the information needed by the Operating
System and other system software components. As a result, it is ideal for storing
information needed by a system extension (which by definition extends the capabilities
of system software). You might also need to use the system heap to store a task record
and the code for an interrupt task that should continue to be executed when your
application is not the current application.

Allocating blocks in the system heap is straightforward. Most ordinary Memory
Manager routines have counterparts that allocate memory in the system heap zone
instead of the current heap zone. For example, the counterpart of the NewPt r function is
the NewPt r Sys function. The following line of code allocates a new nonrelocatable
block of memory in the system heap to store a Time Manager task record:

myTaskPtr : = QEl enPtr (NewPt r Sys(Si zeOr (TMrask) ) ) ;

Alternatively, you can change the current zone and use ordinary Memory Manager
operations, as follows:

Set Zone( Syst enZone) ;
myTaskPtr = QEl enPtr (NewPtr (Si zeOf (TMrask)));

Set Zone( Appl i cat i onZone) ;
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You might also need to store the interrupt code itself in the system heap. For example,
when an application that installed a vertical retrace task with the VI nst al | functionis
in the background, the Vertical Retrace Manager executes the task only if the vbl Addr
field of the task record points to a routine in the system heap.

Unfortunately, manually copying a routine into the system heap is difficult in Pascal.

The easiest way to install code into the system heap is to place the code into a separate
stand-alone code resource in your application’s resource fork. You should set the system
heap bit and the locked bit of the code resource’s attributes. Then, when you need to use
the code, you must load the resource from the resource file and cast the resource handle’s
master pointer into a procedure pointer (a variable of type ProcPt r), as follows:

nmyProcHandl e : = Get Resour ce(kProcType, kProclD);
I F myProcHandl e <> NIL THEN
myTaskPt r~. vbl Addr : = ProcPtr (nyProcHandl e?);

Because the resource is locked in memory, you don’t have to worry about creating

a dangling pointer when you dereference a handle to the resource. If you want the
code to remain in the system heap after the user quits your application, you can call
the Resource Manager procedure Det achResour ce so that closing your application’s
resource fork does not destroy the resource data. Note, however, that if you do so and
your application crashes, the code still remains in the system heap.

Once you have loaded a code resource into memory and created a Pr ocPt r that
references the entry point of the code resource, you can use that Pr ocPt r just as you can
use any such variable. For example, you could assign the value of the variable to the
vbl Addr field of a vertical retrace task record (as shown just above). If you are
programming in assembly language, you can then call the code directly. To call the
routine from a high-level language such as Pascal, you’ll need to use some inline
assembly-language code. Listing 2-4 defines a routine that you can use to execute a
procedure by address.

Listing 2-4 Calling a procedure by address

PROCEDURE Cal | ByAddress (aRoutine: ProcPtr);
I NLINE  $205F, {MOVE. L (SP)+, A0}
$4EDO; {IMP (A0)}

Allocating Memory at Startup Time

If you are implementing a system extension, you might need to allocate memory at
startup time. As explained in the previous section, an ideal place to allocate such
memory is in the system heap. To allocate memory in the system heap under system
software version 7.0 and later, you merely need to call the appropriate Memory Manager
routines, and the system heap expands dynamically to meet your request. In earlier
versions of system software, you mustuse a' sysz' resource to indicate how much the
Operating System should increase the size of the system zone.
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Alternatively, however, you can allocate blocks in high memory. The global variable
Buf Pt r always references the highest byte in memory that might become part of an
application partition. You can lower the value of Buf Pt r and then use the memory
between the old and new values of Buf Pt r.

Note

In general, if you are implementing a system extension, you should
allocate memory in the system heap instead of high memory. In this
way, you avoid the problems associated with lowering the value of

Buf Pt r too far (described in the following paragraphs) and ensure that
the extension is not paged out if virtual memory is operating. u

Lowering the value of Buf Pt r too far can be dangerous for several reasons. In 128K
ROM Macintosh computers running system software version 4.1, you must avoid
lowering the value of Buf Pt r so that it points in the system startup blocks. The highest
byte of these blocks can always be found relative to the global variable MeniTop, at
Menifop DIV 2 + 1024.

In later versions of the Macintosh system software, the system startup blocks were no
longer barriers to Buf Pt r, but new barriers arose, including Macintosh llci video
storage, for example. To maintain compatibility with extensions that rely on the ability to
lower Buf Pt r relative to Menirop, the system software simply adjusts MemTop so that
the formula still holds. Thus, at startup, the MenmTop global variable currently does not
reference any memory location in particular. Instead, it holds a value that guarantees
that the formula allowing you to lower Buf Pt r as low as Menifop DIV 2 + 1024 but
no further still holds.

Beginning in system software version 7.0, the Operating System can detect excessive
lowering of Buf Pt r, but only after the fact. When the Operating System does detect
that the value of Buf Pt r has fallen too low, it generates an out-of-memory system error.

WARNING
Although the above formula has been true since system software version
4.1, a bug in the Macintosh llci and later ROMs made it invalid in certain
versions of system software 6.X. s

Because there is no calling interface for lowering Buf Pt r, you must do it manually, by
changing the value of the system variable, as explained in “Reading and Writing System
Global Variables” on page 2-8. To obtain the value of the MenTop global variable, you
can use the TopMemfunction.

Creating Heap Zones

You can create heap zones as subzones of your application heap zone or (in rare
instances) either in space reserved for the application global variables or on the stack.
You can also create heap zones in a block of temporary memory or within the system
heap zone. This section describes how to create new heap zones by calling the

I ni t Zone procedure.
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Note
Most applications do not need to create heap zones. u

To create a new heap zone in the application heap, you must allocate nonrelocatable
blocks in your application heap to hold new subzones of the application heap. In
addition to being able to create subzones of the application zone, you can create
subzones of any other zone to which you have access, including a zone that is itself
a subzone of another zone.

You create a heap zone by calling the | ni t Zone procedure, which takes four
parameters. The first parameter specifies a grow-zone function for the new zone, or NI L
if you do not want the zone to have a grow-zone function. The second parameter
specifies the number of new master pointers that you want each block of master pointers
in the zone to contain. The | ni t Zone procedure allocates one such block to start with,
and you can allocate more by calling the Mor eMast er s procedure. The third and fourth
parameters specify, respectively, the first byte beyond the end of the new zone and the
first byte of the zone.

When initializing a zone with the | ni t Zone procedure, make sure that you are
subdividing the current zone. When | ni t Zone returns, the new zone becomes

current. Thus, if you subdivide the application zone into several subzones, you must
call Set Zone( Appl i cat i onZone) before you create the second and each of the
subsequent subzones. Listing 2-5 shows a technique for creating a single subzone of the
original application zone, assuming that the application zone is the current zone. The
technique for subdividing subzones is similar.

Listing 2-5 Creating a subzone of the original application heap zone

FUNCTI ON Cr eat eSubZone: THz;

CONST
kZoneSi ze = 10240; {10K zone}
kNumvast er Poi nters = 16; {num of master ptrs for new zone}
VAR
start: Ptr; {first byte in zone}
limt: Ptr; {first byte beyond zone}
BEG N
start := NewpPtr(kZoneSi ze); {all ocate storage for zone}
IF MenError <> noErr THEN
BEA N {al | ocation successful}
limt := Ptr(ORD4(start) + kZoneSi ze);
{conput e byte beyond end of zone}
InitZone(N L, kNumVhsterPointers, limt, start);
{initialize zone header, trailer}
END;
Creat eSubZone := THz(start); {cast storage to a zone pointer}
END,
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To create a subzone in the system heap zone, you can call Set Zone( Syst enZone) at
the beginning of the procedure in Listing 2-5. You might find this technique useful if you
are implementing a system extension but want to manage your extension’s memory
much as you manage memory in an application. Instead of simply allocating blocks in
the system heap, you can make your zone current whenever your extension is executed.
Then, you can call regular Memory Manager routines to allocate memory in your
subzone of the system heap, and you can compact and purge your subzone without
compacting and purging the entire system heap zone.

When you allocate memory for a subzone, you must allocate that memory in a
nonrelocatable block (as in Listing 2-5) or in a locked relocatable block. If you create a
subzone within an unlocked relocatable block, the Memory Manager might move your
entire subzone during memory operations in the zone containing your subzone. If so,
any references to nonrelocatable blocks that you allocated in the subzone would become
invalid. Even handles to relocatable blocks in the subzone would no longer be valid,
because the Memory Manager does not update the handles’ master pointers correctly.
This happens because the Memory Manager views a subzone of another zone as a
single block. If that subzone is a relocatable block, the Memory Manager updates only
that block’s master pointer when moving it, and does not update the block’s contents
(that is, the blocks allocated within the subzone).

If you use a block of temporary memory as a heap zone, you must lock the temporary
memory immediately after allocating it. Then, you can pass to | ni t Zone a dereferenced
copy of a handle to the temporary memory. If you find (after a call to the Gest al t
function) that temporary memory handles are not real, then you must dispose of the new
zone before any calls to Get Next Event or Wi t Next Event . You must dispose of the
new zone because you cannot lock a handle to temporary memory across event calls if
the handle is not real.

Once you have created a subzone as a nonrelocatable block or a locked relocatable block,
you can allocate both relocatable and nonrelocatable blocks within it. Although the
Memory Manager can move such relocatable blocks only within the subzone, it correctly
updates those blocks’ master pointers, which are also in the subzone.

Installing a Purge-Warning Procedure

You can define a purge-warning procedure that the Memory Manager calls whenever it
is about to purge a block from your application heap. You can use this procedure to save
the data in the block, if necessary, or to perform other processing in response to this
notification.

Note

Most applications don’t need to install a purge-warning procedure. This
capability is provided primarily for applications that require greater
control over their heap. Examples are applications that maintain
purgeable handles containing important data and applications that for
any other reason need notification when a block is about to be purged. u
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When your purge-warning procedure is called, the Memory Manager passes it a handle
to the block about to be purged. In your procedure, you can test the handle to determine
whether it contains data that needs to be saved; if so, you can save the data (possibly by
writing it to some open file). Listing 2-6 defines a very simple purge-warning procedure.

Listing 2-6 A purge-warning procedure

PROCEDURE MyPur geProc (h: Handl e);

VAR
t heA5: Longl nt; {val ue of A5 when procedure is called}
BEG N
t heA5 : = Set Current A5; {renmenber current value of A5; install ours}
| F BAND( HGet St at e(h), $20) = 0 THEN
BEG N {if the handle isn’t a resource handl e}
| F I nSaveli st (h) THEN
WiteData(h); {save the data in the bl ock}
END;
theA5 : = Set A5(t heA5); {restore previous val ue of A5}
END;

The MyPur gePr oc procedure defined in Listing 2-6 inspects the handle’s properties
(using HGet St at e) to see whether its resource bit is clear. If so, the procedure next
determines whether the handle is contained in an application-maintained list of
handles whose data should be saved before purging. If the handle is in that list, the
purge-warning procedure writes its data to disk. (The file into which the data is written
should already be open at the time the procedure is called, because opening a file might
cause memory to move.)

Note that MyPur gePr oc sets up the A5 register with the application’s A5 value upon
entry and restores it to its previous value before exiting. This is necessary because you
cannot rely on the A5 register within a purge-warning procedure.

S WARNING
Because of the optimizations performed by some compilers, the actual
work of the purge-warning procedure and the setting and restoring of
the A5 register might have to be placed in separate procedures. See the
chapter “Vertical Retrace Manager” in Inside Macintosh: Processes for an
illustration of how you can do this. s

To install a purge-warning procedure, you need to install the address of the
procedure into the pur gePr oc field of your application’s heap zone header.
Listing 2-7 illustrates one way to do this.
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Listing 2-7 Installing a purge-warning procedure

PROCEDURE | nst al | Pur gePr oc;

VAR
nmyZone: THz;

BEG N
myZone : = Get Zone; {find the current zone header}
gPrevProc := nyZone”. pur geProc; {renmenber previous procedure}
nmyZone”. purgeProc : = @#PurgeProc; {install new procedure}

END,

The | nst al | Pur gePr oc procedure defined in Listing 2-7 first obtains the address of
the current heap zone by calling the Get Zone function. Then it saves the address of any
existing purge-warning procedure in the global variable gPr evPr oc. Finally,

I nst al | Pur gePr oc installs the new procedure by putting its address directly into the
pur gePr oc field of the zone header. (For more information on zone headers, see “Heap
Zones” on page 2-19.)

Keep in mind that the Memory Manager calls your purge-warning procedure each time
it decides to purge any purgeable block, and it might call your procedure far more often
than you would expect. Your purge-warning procedure might be passed handles not
only to blocks that you explicitly mark as purgeable (by calling HPur ge), but also to
resources whose purgeable attribute is set. (In general, applications don’t need to take
any action on handles that belong to the Resource Manager.) Because of the potentially
large number of times your purge-warning procedure might be called, it should be able
to determine quickly whether a handle that is about to be purged needs additional
processing.

Remember that a purge-warning procedure is called during the execution of some
Memory Manager routine. As a result, your procedure cannot cause memory to be
moved or purged. In addition, it should not dispose of the handle it is passed or change
the purge status of the handle. See “Purge-Warning Procedures” on page 2-90 for a
complete description of the limitations on purge-warning procedures.

S WARNING

If your application calls the Resource Manager procedure

Set ResPur ge with the parameter TRUE (to have the Resource Manager
automatically save any modified resources that are about to be purged),
you should avoid using a purge-warning procedure. This is because the
Resource Manager installs its own purge-warning procedure when you
call Set ResPur ge in this way. If you must install your own
purge-warning procedure, you should remove your procedure, call

Set ResPur ge, then reinstall your procedure as shown in Listing 2-7.
You then need to make sure that your procedure calls the Resource
Manager’s purge-warning procedure (which is saved in the global
variable gPr evPr oc) before exiting. Most applications do not need to
call Set ResPur ge at all. s
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If your application does call Set ResPur ge( TRUE) , you should use the version of
My Pur gePr oc defined in Listing 2-8. It is just like the version defined in Listing 2-6
except that it calls the Resource Manager’s purge-warning procedure before exiting.

Listing 2-8 A purge-warning procedure that calls the Resource Manager's procedure

PROCEDURE MyPur geProc (h: Handl e);

VAR
t heA5: Longl nt; {val ue of A5 when procedure is call ed}
BEG N
t heA5 : = Set Current A5; {renmenber current value of A5; install ours}
| F BAND( HGet St at e(h), $20) = 0 THEN
BEG N {if the handle isn’t a resource handl e}
| F I nSaveli st (h) THEN
WitebData(h); {save the data in the bl ock}
END

ELSE | F gPrevProc <> NIL THEN
Cal | ByAddr ess(gPrevProc);
theA5 : = Set A5(t heA5); {restore previous value of A5}
END,

See Listing 2-4 on page 2-13 for a definition of the procedure Cal | By Addr ess.

Organization of Memory

This section describes the organization of heap zones and block headers. In general, you
do not need to know how the Memory Manager organizes heap zones or block headers
if your application simply allocates and releases blocks of memory. The information
described in this section is used by the Memory Manager for its own purposes.
Developers of some specialized applications and utilities might, however, need to know
exactly how zones and block headers are organized. This information is also sometimes
useful for debugging.

S WARNING

This section is provided primarily for informational purposes. The
organization and size of heap zones and block headers is subject to
change in future system software versions. s

Heap Zones

Except for temporary memory blocks, all relocatable and nonrelocatable blocks
exist within heap zones. A heap zone consists of a zone header, a zone trailer block,
and usable bytes in between. The header contains all of the information the
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Memory Manager needs about that heap zone; the trailer is just a minimume-sized free
block placed as a marker at the end of the zone.

In Pascal, a heap zone is defined as a zone record of type Zone. The zone record contains
all of the fields of the zone header. A heap zone is always referred to with a zone pointer
of data type THz.

WARNING

The fields of the zone header are for the Memory Manager’s own
internal use. You can examine the contents of the zone’s fields, but in
general it doesn’t make sense for your application to try to change them.
The only fields of the zone record that you can safely modify directly are
the nor eMast and pur gePr oc fields. s

TYPE Zone =
RECORD
bkLi m Ptr; {first usable byte after zone}
purgePtr: Ptr; {used internally}
hFst Fr ee: Ptr; {first free master pointer}
zcbFr ee: Longl nt; {nunber of free bytes in zone}
gzProc: ProcPtr; {grow zone function}
nmor eMast : I nt eger; {num of master ptrs to allocate}
fl ags: I nt eger; {used internally}
cnt Rel : I nt eger; {reserved}
maxRel : I nt eger; {reserved}
cnt NRel : I nt eger; {reserved}
maxNRel : I nt eger; {reserved}
cnt Enpty: I nt eger; {reserved}
cnt Handl es: I nt eger; {reserved}
m nCBFr ee: Longl nt;; {reserved}
pur gePr oc: ProcPtr; {pur ge-war ni ng procedur e}
sparePtr: Ptr; {used internally}
al | ocPtr: Ptr; {used internally}
heapDat a: I nt eger; {first usable byte in zone}
END;
THz = "~Zone; {zone pointer}

Field descriptions

bkLi m A pointer to the byte following the last byte of usable space in
the zone.

pur gePtr Used internally.

hFst Fr ee A pointer to the first free master pointer in the zone. All master

pointers that are allocated but not currently in use are linked
together into a list. The hFst Fr ee field references the head node of
this list. The Memory Manager updates this list every time it
allocates a new relocatable block or releases one, so that the list
contains all unused master pointers. If the Memory Manager needs
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zcbFr ee

gzProc

nor eMast

flags

cnt Rel

max Rel

cnt NRel
max NRel

cnt Enpty
cnt Handl es
m nCBFr ee
pur geProc

sparePtr
all ocPtr
heapDat a

a new master pointer but this field is set to NI L, it allocates a new
nonrelocatable block of master pointers. You can check the value of
this field to see whether allocating a relocatable block would cause a
new block of master pointers to be allocated.

The number of free bytes remaining in the zone. As blocks are
allocated and released, the Memory Manager adjusts this field
accordingly. You can use the Fr eeMemfunction to determine the
value of this field for the current heap zone.

A pointer to a grow-zone function that system software uses to
maintain control over the heap. The system’s grow-zone function
subsequently calls the grow-zone function you specify for your
heap, if any. You can change a heap zone’s grow-zone function at
any time but should do so only by calling the | ni t Zone or

Set G owZone procedures. Note that in current versions of system
software, this field does not contain a pointer to the grow-zone
function that your application defines.

The number of master pointers the Memory Manager should
allocate at a time. The Memory Manager allocates this many
automatically when a heap zone is initialized. By default, master
pointers are allocated 32 at a time for the system heap zone and 64
at a time for the application heap zone, but this might change in
future versions of system software.

Used internally.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.

A pointer to the zone’s purge-warning procedure, or NI L if there is
none. The Memory Manager calls this procedure before it purges a
block from the zone. Note that whenever you call the Resource
Manager procedure Set ResPur ge with the parameter set to TRUE,
the Resource Manager installs its own purge-warning procedure,
overriding any purge-warning procedure you have specified here.

Used internally.
Used internally.

A dummy field marking the beginning of the zone’s usable
memory space. The integer in this field has no significance in
itself; it is just the first 2 bytes in the block header of the first

block in the zone. For example, if nyZone is a zone pointer, then
@ nyZone”. heapDat a) is the address of the first usable byte in
the zone, and myZone”. bkLi mis a pointer to the byte following
the last usable byte in the zone.
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The structure of a heap zone is the same in both 24-bit and 32-bit addressing modes. The
use of several of the fields that are reserved or used internally, however, may differ in
24-bit and 32-bit heap zones.

Block Headers

Every block in a heap zone, whether allocated or free, has a block header that the
Memory Manager uses to find its way around in the zone. Block headers are completely
transparent to your application. All pointers and handles to allocated blocks reference
the beginning of the block’s logical contents, following the end of the header. Similarly,
whenever you use a variable of type Si ze, that variable refers to the number of bytes in
the block’s logical contents, not including the block header. That size is known as the
block’s logical size, as opposed to its physical size, the number of bytes it actually
occupies in memory, including the header and any unused bytes at the end of the block.

There are two reasons that a block might contain such unused bytes:

n The Memory Manager allocates space only in even numbers of bytes. (This practice
guarantees that both the contents and the address of a master pointer are even.)
If a block’s logical size is odd, an extra, unused byte is added at the end to make the
physical size an even number. On computers containing the MC68020, MC68030,
or MC68040 microprocessor, blocks are padded to 4-byte boundaries.

n The minimum number of bytes in a block is 12. This minimum applies to all
blocks, free as well as allocated. If allocating the required number of bytes from a
free block would leave a fragment of fewer than 12 free bytes, the leftover bytes are
included unused at the end of the newly allocated block instead of being returned to
free storage.

There is no Pascal record type defining the structure of block headers because you
shouldn’t normally need to access them directly. In addition, the structure of a block
header depends on whether the block is located in a 24-bit or 32-bit zone.

In a 24-bit zone, a block header consists of 8 bytes, which together make up two long
words, as shown in Figure 2-1.

Figure 2-1 A block header in a 24-bit zone
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In the first long word, the low-order 3 bytes contain the block’s physical size in bytes.
Adding this number to the block’s address gives the address of the next block in the

zone. The first byte of the block header is a tag byte that provides other information on

the block. The bits in the tag byte have these meanings:

Bit Meaning
0-3 The block’s size correction

4-5 Reserved
6-7 The block type

In the tag byte, the high-order 2 bits determine whether a block is free (binary 00),
relocatable (binary 10), or nonrelocatable (binary 01). The low-order 4 bits contain a

block’s size correction, the number of unused bytes at the end of the block, beyond the
end of the block’s contents. This correction is equal to the difference between the block’s
logical and physical sizes, excluding the 8 bytes of overhead for the block header, as in

the following formula:

physi cal Si ze = | ogi cal Si ze + sizeCorrection + 8

The contents of the second long word (4 bytes) in the 24-bit block header depend on the
type of block. For relocatable blocks, the second long word contains the block’s relative
handle: a pointer to the block’s master pointer, expressed as an offset relative to the start
of the heap zone rather than as an absolute memory address. Adding the relative handle
to the zone pointer produces a true handle for this block. For nonrelocatable blocks, the
second long word of the header is just a pointer to the block’s zone. For free blocks, the

contents of these 4 bytes are undefined.

In a 32-bit zone, a block header consists of 12 bytes, which together make up three long

words, as shown in Figure 2-2.

Figure 2-2 A block header in a 32-bit zone
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The first byte of the block header is a tag byte that indicates the type of the block. The
bits in the tag byte have these meanings:

Bit Meaning
0-5 Reserved
6-7 The block type

In the tag byte, the high-order 2 bits determine whether a block is free (binary 00),
relocatable (binary 10), or nonrelocatable (binary 01).

The second byte in the block header contains the master pointer flag bits, if the block is a
relocatable block. Otherwise, this byte is undefined. The bits in this byte have these
meanings:

Bit Meaning

0-4 Reserved
If set, block contains resource data
If set, block is purgeable
If set, block is locked

The low-order byte of the high-order long word contains the block’s size correction. This
correction is equal to the difference between the block’s logical and physical sizes,
excluding the 12 bytes of overhead for the block header, as follows:

physi cal Si ze = | ogi cal Si ze + sizeCorrection + 12

The second long word in the 32-bit block header contains the block’s physical size, and
the third long word contains the block’s relative handle. These fields have the same
meaning as the corresponding fields in the 24-bit block header.

Memory Manager Reference

This section describes the data types and routines provided by the Memory Manager. It
describes the general-purpose data types the Memory Manager defines and all routines
that relate to manipulating blocks of memory or managing memory in the application
heap zone. This section also describes the data structures and routines that allow your
application to allocate temporary memory and to use multiple heap zones.

Data Types

This section discusses the general-purpose data types defined by the Memory Manager.
Most of these types are used throughout the system software.
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The Memory Manager uses pointers and handles to reference nonrelocatable and
relocatable blocks, respectively. The data types Pt r and Handl e define pointers and
handles as follows:

TYPE
Si gnedByt e = -128..127;
Byt e = 0.. 255;
Ptr = "Si gnedByt e;
Handl e = "ptr;

The Si gnedByt e type stands for an arbitrary byte in memory, just to give Pt r and
Handl e something to point to. The Byt e type is an alternative definition that treats
byte-length data as an unsigned rather than a signed quantity.

Many other data types also use the concept of pointers and handles. For example, the
Macintosh system software stores strings in arrays of up to 255 characters, with the first
byte of the array storing the length of the string. Some Toolbox routines allow you to
pass such a string directly; others require that you pass a pointer or handle to a string.
The following type definitions define character strings:

TYPE
Str 255 = STRI N{ 255];
StringPtr = AStr255;
Stri ngHandl e = AStringPtr;

Some Toolbox routines allow you to execute code after a certain amount of time elapses
or after a certain condition is met. Any such routine requires you to pass the address of
the routine containing the code to be executed so that it knows what routine to call when
the time has elapsed or the condition has been met. You use the data type Pr ocPtr to
define a pointer to a procedure or function.

TYPE ProcPtr = Ptr;
For example, after the declarations

VAR
aProcPtr: ProcPtr;

PROCEDURE MyPr oc;
BEG N

END;

you can make aPr ocPt r reference the MyPr oc procedure by using the @operator,
as follows:

aProcPtr := @WProc;
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With the @operator, you can assign procedures and functions to variables of type

Pr ocPt r, embed them in data structures, and pass them as arguments to other routines.
Notice, however, that the data type Pr ocPt r technically points to an arbitrary byte, not
an actual routine. As a result, there’s no direct way in Pascal to access the underlying
routine via this pointer in order to call it. (See Listing 2-4 on page 2-13 for some
assembly-language code you can use to do so.) The routines in the Operating System
and Toolbox, which are written in assembly language, can however, call routines
designated by pointers of type ProcPtr.

Note

You can’t use the @operator to reference procedures or functions whose

declarations are nested within other routines. u

The Memory Manager uses the Si ze data type to refer to the size, in bytes, of memory
blocks. For example, when specifying how large a relocatable block you want to allocate,
you pass a parameter of type Si ze. The Si ze data type is also defined as a long integer.

TYPE Si ze = Longl nt;

Memory Manager Routines

2-26

This section describes the routines provided by the Memory Manager. You can use these
routines to set up your application’s partition, allocate and dispose of relocatable and
nonrelocatable blocks, manipulate those blocks, assess the availability of memory in
your application’s heap, free memory from the heap, and install a grow-zone function
for your heap. The Memory Manager also provides routines that allow you to allocate
temporary memory and manipulate heap zones.

Note

The result codes listed for Memory Manager routines are usually not
directly returned to your application. You need to call the MentEr r or
function (or, from assembly language, inspect the MenEr r global
variable) to get a routine’s result code. u

You cannot call most Memory Manager routines at interrupt time for several reasons.
You cannot allocate memory at interrupt time because the Memory Manager might
already be handling a memory-allocation request and the heap might be in an
inconsistent state. More generally, you cannot call at interrupt time any Memory
Manager routine that returns its result code via the MenEr r or function, even if that
routine doesn’t allocate or move memory. Resetting the MenEr r global variable at
interrupt time can lead to unexpected results if the interrupted code depends on the
value of MentEr r. Note that Memory Manager routines like HLock return their results
via MenEr r or and therefore should not be called in interrupt code.
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Setting Up the Application Heap

The Operating System automatically initializes your application’s heap when your
application is launched. To help prevent heap fragmentation, you should call the
procedures in this section before you allocate any blocks of memory in your heap.

Use the MaxAppl Zone procedure to extend the application heap zone to the application
heap limit so that the Memory Manager does not do so gradually as memory requests
require. Use the Mor eMast er s procedure to preallocate enough blocks of master
pointers so that the Memory Manager never needs to allocate new master pointer blocks
for you.

MaxApplZone

DESCRIPTION

To help ensure that you can use as much of the application heap zone as possible, call the
MaxAppl Zone procedure. Call this once near the beginning of your program, after you
have expanded your stack.

PROCEDURE MaxAppl Zone;

The MaxAppl Zone procedure expands the application heap zone to the application heap
limit. If you do not call MaxAppl Zone, the application heap zone grows as necessary to
fulfill memory requests. The MaxAppl Zone procedure does not purge any blocks
currently in the zone. If the zone already extends to the limit, MaxAppl Zone does
nothing.

It is a good idea to call MaxAppl Zone once at the beginning of your program if you
intend to maintain an effectively partitioned heap. If you do not call MaxAppl Zone and
then call MoveHH to move relocatable blocks to the top of the heap zone before locking
them, the heap zone could later grow beyond these locked blocks to fulfill a memory
request. If the Memory Manager were to allocate a nonrelocatable block in this new
space, your heap would be fragmented.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on exit for MaxAppl Zone are

Registers on exit
DO Result code

noErr 0 No error
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MoreMasters

Call the Mbr eMast er s procedure several times at the beginning of your program to
prevent the Memory Manager from running out of master pointers in the middle of
application execution. If it does run out, it allocates more, possibly causing heap
fragmentation.

PROCEDURE Mor eMast ers;

DESCRIPTION
The Mor eMast er s procedure allocates another block of master pointers in the current
heap zone. In the application heap, a block of master pointers consists of 64 master
pointers, and in the system heap, a block consists of 32 master pointers. (These values,
however, might change in future versions of system software.) When you initialize
additional heap zones, you can specify the number of master pointers you want to have
in a block of master pointers.

The Memory Manager automatically calls Mor eMast er s once for every new heap zone,
including the application heap zone.

You should call Mor eMast er s at the beginning of your program enough times to ensure
that the Memory Manager never needs to call it for you. For example, if your application
never allocates more than 300 relocatable blocks in its heap zone, then five calls to the
Mor eMast er s should be enough. It’s better to call Mor eMast er s too many times than
too few. For instance, if your application usually allocates about 100 relocatable blocks
but might allocate 1000 in a particularly busy session, call Mor eMast er s enough times
at the beginning of the program to accommodate times of greater memory use.

If you are forced to call Mor eMast er s so many times that it causes a significant
slowdown, you could change the nor eMast field of the zone header to the total number
of master pointers you need and then call Mor eMast er s just once. Afterward, be sure to
restore the mor eMast field to its original value.

SPECIAL CONSIDERATIONS
Because Mor eMast er s allocates memory, you should not call it at interrupt time.

The calls to Mor eMast er s at the beginning of your application should be in the main
code segment of your application or in a segment that the main segment never unloads.

ASSEMBLY-LANGUAGE INFORMATION
The registers on exit for Mor eMast er s are

Registers on exit
DO Result code
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RESULT CODES

noErr 0 No error
menful | Err -108 Not enough memory

SEE ALSO

If you initialize a new zone, you can specify the number of master pointers that a master
pointer block should contain. See the description of the | ni t Zone procedure on
page 2-86 for details.

Allocating and Releasing Relocatable Blocks of Memory

You can use the NewHandl e function to allocate a relocatable block of memory, or the
NewEnpt yHandl e function to allocate handles for which you do not yet need blocks of
memory. If you want to allocate new blocks of memory in the system heap or with their
bits precleared to 0, you can use the functions NewHandl eSys, NewHandl eCl ear, and
NewHand| eSysC ear.

S WARNING

You should not call any of these memory-allocation routines at
interrupt time. s

You can use the Di sposeHandl e procedure to free relocatable blocks of memory you
have allocated.

NewHandle

You can use the NewHandl e function to allocate a relocatable memory block of a
specified size.

FUNCTI ON NewHandl e (| ogi cal Si ze: Size): Handl e;
| ogi cal Si ze

The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandl e function attempts to allocate a new relocatable block in the current heap
zone with a logical size of | ogi cal Si ze bytes and then return a handle to the block.
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The new block is unlocked and unpurgeable. If NewHand!| e cannot allocate a block of
the requested size, it returns NI L.

WARNING

Do not try to manufacture your own handles without this function by
simply assigning the address of a variable of type Pt r to a variable of
type Handl e. The resulting “fake handle” would not reference a
relocatable block and could cause a system crash. s

The NewHandl e function pursues all available avenues to create a block of the requested
size, including compacting the heap zone, increasing its size, and purging blocks from it.
If all of these techniques fail and the heap zone has a grow-zone function installed,
NewHandl e calls the function. Then NewHandl e tries again to free the necessary amount
of memory, once more compacting and purging the heap zone if necessary. If memory
still cannot be allocated, NewHand! e calls the grow-zone function again, unless that
function had returned 0, in which case NewHand| e gives up and returns NI L.

SPECIAL CONSIDERATIONS

Because NewHandlI e allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

2-30

The registers on entry and exit for NewHand| e are
Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block’s master pointer or
NI L

DO Result code

You can specify that the NewHand! e function apply to the system heap zone instead of
the current zone by setting bit 10 of the routine trap word. In most development systems,
you can do this by supplying the word SYS as the second argument to the routine macro,
as follows:

_NewHandl e , SYS

If you want to clear the bytes of a block of memory to 0 when you allocate it with the
NewHandl e function, set bit 9 of the routine trap word. You can usually do this by
supplying the word CLEAR as the second argument to the routine macro, as follows:

_NewHandl e , CLEAR
You can combine SYS and CLEAR in the same macro call, but SYS must come first.

_NewHandl e , SYS, CLEAR
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RESULT CODES

nokErr 0 No error
menful | Err -108 Not enough memory in heap zone

SEE ALSO

If you allocate a relocatable block that you plan to lock for long periods of time, you can
prevent heap fragmentation by allocating the block as low as possible in the heap zone.
To do this, see the description of the Reser veMemprocedure on page 2-55.

If you plan to lock a relocatable block for short periods of time, you might want to move
it to the top of the heap zone to prevent heap fragmentation. For more information, see
the description of the MoveHHi procedure on page 2-56.

NewHandleSys

You can use the NewHand| eSys function to allocate a relocatable block of memory of a
specified size in the system heap.

FUNCTI ON NewHandl eSys (| ogi cal Si ze: Size): Handl e;

| ogi cal Si ze
The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandl eSys function works much as the NewHand!| e function does, but
attempts to allocate the requested block in the system heap zone instead of in the current
heap zone. If it cannot, it returns NI L.

RESULT CODES

noErr 0 No error
mentul | Err -108 Not enough memory in heap zone

NewHandleClear

You can use the NewHand| eC ear function to allocate prezeroed memory in a
relocatable block of a specified size.

FUNCTI ON NewHandl eC ear (| ogical Si ze: Size): Handl e;
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| ogi cal Si ze
The requested size (in bytes) of the relocatable block. The
NewHandl eC ear function sets each of these bytes to 0.

The NewHand| e ear function works much as the NewHand| e function does but sets
all bytes in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewHand| ed ear clears the block one byte at a time. For a large block, it
might be faster to clear the block manually a long word at a time.

noErr 0 No error
menful | Err -108 Not enough memory in heap zone

NewHandleSysClear

DESCRIPTION

RESULT CODES

2-32

You can use the NewHandl eSysC ear function to allocate, in the system heap,
prezeroed memory in a relocatable block of a specified size.

FUNCTI ON NewHandl eSysC ear (| ogical Si ze: Size): Handl e;

| ogi cal Si ze
The requested size (in bytes) of the relocatable block. The
NewHandl eSysC ear function sets each of these bytes to 0.

The NewHandl eSysd ear function works much as the NewHandl eCl ear function
does, but attempts to allocate the requested block in the system heap zone instead of in
the current heap zone. NewHandl eSysCl ear sets all bytes in the new block to 0 instead
of leaving the contents of the block undefined.

noErr 0 No error
mentul | Err -108 Not enough memory in heap zone
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NewEmptyHandle

DESCRIPTION

If you want to initialize a handle but not allocate any space for it, use the
NewEnpt yHandl e function. The Resource Manager uses this function extensively,
but you probably won’t need to use it.

FUNCTI ON Newenpt yHandl e: Handl g;

The NewEnpt yHandl e function initializes a new handle by allocating a master pointer
for it, but it does not allocate any memory for the handle to control. NewEnpt yHandl e
sets the handle’s master pointer to NI L.

SPECIAL CONSIDERATIONS

Because NewEnpt yHandl e might need to call the Mor eMast er s procedure to
allocate new master pointers, it might allocate memory. Thus, you should not call
NewEnpt yHandl e at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The registers on exit for NewEnpt yHandl e are
Registers on exit

A0 Address of the new block’s master pointer
DO Result code

You can specify that the NewEnpt yHandl e function apply to the system heap zone
instead of the current zone. To do so, set bit 10 of the routine trap word. In most
development systems, you can do this by supplying the word SYS as the second
argument to the routine macro, as follows:

_NewEnpt yHandl e , SYS

noErr 0 No error
mentul | Err -108 Not enough memory

When you want to allocate memory for the empty handle, use the Real | ocat eHandl e
procedure, described on page 2-52.
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NewEmptyHandleSys

If you want to initialize a handle in the system heap but not allocate any space for it, use
the NewEnpt yHandl eSys function. The Resource Manager uses this function
extensively, but you probably won’t need to use it.

FUNCTI ON Newenpt yHandl eSys: Handl g;

DESCRIPTION

The NewEnpt yHandl eSys function initializes a new handle in the system heap by
allocating a master pointer for it, but it does not allocate any memory for the handle to
control. NewEnpt yHandl eSys sets the handle’s master pointer to NI L.

SPECIAL CONSIDERATIONS

Because NewEnpt yHandl eSys might need to call the Mor eMast er s procedure to
allocate new master pointers, it might allocate memory. Thus, you should not call
NewEnpt yHandl eSys at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on exit for NewEnpt yHandl eSys are
Registers on exit
A0 Address of the new block’s master pointer
DO Result code

RESULT CODES

nokErr 0 No error
menful | Err -108 Not enough memory

SEE ALSO

When you want to allocate memory for the empty handle, use the Real | ocat eHandl e
procedure, described on page 2-52.

DisposeHandle

When you are completely done with a relocatable block, call the Di sposeHandl e
procedure to free it and its master pointer for other uses.

PROCEDURE Di sposeHandl e (h: Handl e);
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h A handle to a relocatable block.

DESCRIPTION

The Di sposeHand| e procedure releases the memory occupied by the relocatable block
whose handle is h. It also frees the handle’s master pointer for other uses.

S WARNING

After a call to Di sposeHandl e, all handles to the released block
become invalid and should not be used again. Any subsequent calls to
Di sposeHandl! e using an invalid handle might damage the master
pointer list. s

Do not use Di sposeHandl e to dispose of a handle obtained from the Resource
Manager (for example, by a previous call to Get Resour ce); use Rel easeResour ce
instead. If, however, you have called Det achResour ce on a resource handle, you
should dispose of the storage by calling Di sposeHandl e.

SPECIAL CONSIDERATIONS

Because Di sposeHandl| e purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Di sposeHandl e are
Registers on entry
A0 Handle to the relocatable block to be disposed of

Registers on exit

DO Result code

RESULT CODES

noErr 0 No error
memAZEr r -111 Attempt to operate on a free block

Allocating and Releasing Nonrelocatable Blocks of Memory

You can use the NewPt r function to allocate a nonrelocatable block of memory. If you
want to allocate new blocks of memory in the system heap or with their bits precleared
to 0, you can use the NewPt r Sys, NewPt r Cl ear, and NewPt r Sysd ear functions.

S WARNING

You should not call any of these memory-allocation routines at
interrupt time. s

You can use the Di sposePt r procedure to free nonrelocatable blocks of memory you
have allocated.
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NewPtr
You can use the NewPt r function to allocate a nonrelocatable block of memory of a
specified size.
FUNCTI ON NewPtr (| ogical Size: Size): Ptr;
| ogi cal Si ze
The requested size (in bytes) of the nonrelocatable block.
DESCRIPTION

The NewPt r function attempts to allocate, in the current heap zone, a nonrelocatable
block with a logical size of | ogi cal Si ze bytes and then return a pointer to the block.
the requested number of bytes cannot be allocated, NewPt r returns NI L.

The NewPt r function attempts to reserve space as low in the heap zone as possible for
the new block. If it is able to reserve the requested amount of space, NewPt r allocates
the nonrelocatable block in the gap Reser veMemcreates. Otherwise, NewPt r returns
NI L and generates a menful | Err error.

SPECIAL CONSIDERATIONS

Because NewPt r allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

2-36

The registers on entry and exit for NewPt r are
Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block or
NI L

DO Result code

You can specify that the NewPt r function apply to the system heap zone instead of the
current zone. To do so, set bit 10 of the routine trap word. In most development systems,
you can do this by supplying the word SYS as the second argument to the routine macro,
as follows:

_NewPtr , SYS

If you want to clear the bytes of a block of memory to 0 when you allocate it with the
NewPt r function, set bit 9 of the routine trap word. You can usually do this by supplying
the word CLEAR as the second argument to the routine macro, as follows:

_NewPtr , CLEAR
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You can combine SYS and CLEAR in the same macro call, but SYS must come first.

_NewPtr , SYS, CLEAR

RESULT CODES

noErr 0 No error
mentul | Err -108 Not enough memory

NewPtrSys

You can use the NewPt r Sys function to allocate a nonrelocatable block of memory of a
specified size in the system heap.

FUNCTI ON NewPt r Sys (| ogi cal Si ze: Size): Ptr;
| ogi cal Si ze

The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPt r Sys function works much as the NewPt r function does, but attempts to
allocate the requested block in the system heap zone instead of in the current heap zone.

RESULT CODES

noErr 0 No error
mentul | Err -108 Not enough memory

NewPtrClear

You can use the NewPt r Cl ear function to allocate prezeroed memory in a
nonrelocatable block of a specified size.

FUNCTI ON NewPt r Cl ear (| ogical Size: Size): Ptr;

| ogi cal Si ze
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPt r O ear function works much as the NewPt r function does, but sets all bytes
in the new block to 0 instead of leaving the contents of the block undefined.
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Currently, NewPt r Cl ear clears the block one byte at a time. For a large block, it might
be faster to clear the block manually a long word at a time.

RESULT CODES

nokErr 0 No error

mentul | Err -108 Not enough memory
NewPtrSysClear

You can use the NewPt r SysC ear function to allocate, in the system heap, prezeroed
memory in a nonrelocatable block of a specified size.

FUNCTI ON NewPt r SysC ear (| ogical Size: Size): Ptr;

| ogi cal Si ze
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPt r SysC ear function works much as the NewPt r function does, but attempts
to allocate the requested block in the system heap zone instead of in the current heap
zone. Also, it sets all bytes in the new block to 0 instead of leaving the contents of the
block undefined.

RESULT CODES

nokErr 0 No error
menful | Err -108 Not enough memory

DisposePtr

When you are completely done with a nonrelocatable block, call the Di sposePt r
procedure to free it for other uses.

PROCEDURE Di sposePtr (p: Ptr);

p A pointer to the nonrelocatable block you want to dispose of.
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DESCRIPTION
The Di sposePt r procedure releases the memory occupied by the nonrelocatable block
specified by p.

S WARNING

After a call to Di sposePt r, all pointers to the released block become
invalid and should not be used again. Any subsequent use of a pointer
to the released block might cause a system error. s

SPECIAL CONSIDERATIONS
Because Di sposePt r purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Di sposePtr are
Registers on entry

A0 Pointer to the nonrelocatable block to be disposed of

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
memAZEr r -111 Attempt to operate on a free block

Changing the Sizes of Relocatable and Nonrelocatable Blocks

You can use the Get Handl eSi ze function and the Set Handl eSi ze procedure to find
out and change the logical size of a relocatable block, and you can use the Get Pt r Si ze
function and the Set Pt r Si ze procedure to find out and change the logical size of a
nonrelocatable block.

GetHandleSize

You can use the Get Handl eSi ze function to find out the logical size of the relocatable
block corresponding to a handle.

FUNCTI ON Get Handl eSi ze (h: Handl e): Size;

h A handle to a relocatable block.
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The Get Handl eSi ze function returns the logical size, in bytes, of the relocatable block
whose handle is h. In case of an error, Get Handl eSi ze returns 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for Get Handl eSi ze are
Registers on entry
A0 Handle to the relocatable block

Registers on exit

DO If >=0, number of bytes in relocatable
block

If <0, result code

The trap dispatcher sets the condition codes before returning from a trap by testing the
low-order word of register DO with a TST. Winstruction. Because the block size returned
in DO by _Get Handl eSi ze is a full 32-bit long word, the word-length test sets the
condition codes incorrectly in this case. To branch on the contents of DO, use your own
TST. L instruction on return from the trap to test the full 32 bits of the register.

SPECIAL CONSIDERATIONS

RESULT CODES

You shouldn’t call Get Handl eSi ze at interrupt time because the heap might be in an
inconsistent state.

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

SetHandleSize

2-40

You can use the Set Handl eSi ze procedure to change the logical size of the relocatable
block corresponding to a handle.

PROCEDURE Set Handl eSi ze (h: Handl e; newSi ze: Size);

h A handle to a relocatable block.
newsSi ze The desired new logical size, in bytes, of the relocatable block.
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The Set Handl eSi ze procedure attempts to change the logical size of the relocatable
block whose handle is h. The new logical size is specified by newSi ze.

Set Handl eSi ze might need to move the relocatable block to obtain enough space for
the resized block. Thus, for best results you should unlock a block before resizing it.

An attempt to increase the size of a locked block might fail, because of blocks above and
below it that are either nonrelocatable or locked. You should be prepared for this
possibility.

SPECIAL CONSIDERATIONS

Because Set Handl eSi ze allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

GetPtrSize

The registers on entry and exit for Set Handl eSi ze are
Registers on entry

A0 Handle to the relocatable block

DO Desired new size of relocatable block

Registers on exit
DO Result code

noErr 0 No error

mentul | Err -108 Not enough memory

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block

Instead of using the Set Handl eSi ze procedure to set the size of a handle to 0, you can
use the Enpt yHandl e procedure, described on page 2-51.

You can use the Get Pt r Si ze function to find out the logical size of the nonrelocatable
block corresponding to a pointer.

FUNCTI ON Get PtrSize (p: Ptr): Size;

p A pointer to a nonrelocatable block.
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The Get Pt r Si ze function returns the logical size, in bytes, of the nonrelocatable block
pointed to by p. In case of an error, Get Pt r Si ze returns 0.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SetPtrSize

The registers on entry and exit for Get Pt r Si ze are
Registers on entry

A0 Pointer to the nonrelocatable block

Registers on exit

DO If >=0, number of bytes in nonrelocatable
block

If <0, result code

The trap dispatcher sets the condition codes before returning from a trap by testing the
low-order word of register DO with a TST. Winstruction. Because the block size returned
inDOby _Get Pt r Si ze is a full 32-bit long word, the word-length test sets the condition
codes incorrectly in this case. To branch on the contents of DO, use your own TST. L
instruction on return from the trap to test the full 32 bits of the register.

nokErr 0 No error
memAZEr r =111 Attempt to operate on a free block

DESCRIPTION

2-42

You can use the Set Pt r Si ze procedure to change the logical size of the nonrelocatable
block corresponding to a pointer.

PROCEDURE Set PtrSize (p: Ptr; newSize: Size);

p A pointer to a nonrelocatable block.
newsi ze The desired new logical size, in bytes, of the nonrelocatable block.

The Set Pt r Si ze procedure attempts to change the logical size of the nonrelocatable
block pointed to by p. The new logical size is specified by newSi ze.

An attempt to increase the size of a nonrelocatable block might fail because of a block
above it that is either nonrelocatable or locked. You should be prepared for this
possibility.
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SPECIAL CONSIDERATIONS
Because Set Pt r Si ze allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Set Pt r Si ze are
Registers on entry
A0 Pointer to the nonrelocatable block
DO Desired new size of nonrelocatable block

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
mentul | Err -108 Not enough memory
memAZEr r -111 Attempt to operate on a free block

Setting the Properties of Relocatable Blocks

A relocatable block can be either locked or unlocked and either purgeable or
unpurgeable. In addition, it can have its resource bit either set or cleared. To determine
the state of any of these properties, use the HGet St at e function. To change these
properties, use the HLock, HUnl ock, HPur ge, HNoPur ge, HSet RBi t , and HCl r RBi t
procedures. To restore these properties, use the HSet St at e procedure.

S WARNING

Be sure to use these procedures to get and set the properties of
relocatable blocks. In particular, do not rely on the structure of master
pointers, because their structure in 24-bit mode is different from their
structure in 32-bit mode. s

HGetState

You can use the HGet St at e function to get the current properties of a relocatable block
(perhaps so that you can change and then later restore those properties).

FUNCTI ON HGet State (h: Handl e): Si gnedByte;

h A handle to a relocatable block.
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DESCRIPTION

The HGet St at e function returns a signed byte containing the flags of the master pointer
for the given handle. You can save this byte, change the state of any of the flags using the
routines described on page 2-45 through page 2-50, and then restore their original states
by passing the byte to the HSet St at e procedure, described next.

You can use bit-manipulation functions on the returned signed byte to determine the
value of a given attribute. Currently the following bits are used:
Bit Meaning
0-4 Reserved
Set if relocatable block is a resource
Set if relocatable block is purgeable
Set if relocatable block is locked

If an error occurs during an attempt to get the state flags of the specified relocatable
block, HGet St at e returns the low-order byte of the result code as its function result. For
example, if the handle h points to a master pointer whose value is NI L, then the signed
byte returned by HGet St at e will contain the value —109.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for HGet St at e are
Registers on entry
A0 Handle whose properties you want to get

Registers on exit
DO Byte containing flags

RESULT CODES

nokErr 0 No error

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
HSetState

You can use the HSet St at e procedure to restore properties of a block after a call to
HGet St at e.

PROCEDURE HSet State (h: Handle; flags: SignedByte);

h A handle to a relocatable block.

flags A signed byte specifying the properties to which you want to set the
relocatable block.
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DESCRIPTION

The HSet St at e procedure restores to the handle h the properties specified in the f | ags
signed byte. See the description of the HGet St at e function for a list of the currently
used bits in that byte. Because additional bits of the f | ags byte could become significant
in future versions of system software, use HSet St at e only with a byte returned by

HGet St at e. If you need to set two or three properties of a relocatable block at once, it is
better to use the procedures that set individual properties than to manipulate the bits
returned by HGet St at e and then call HSet St at e.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for HSet St at e are
Registers on entry
A0 Handle whose properties you want to set
DO Byte containing flags indicating the handle’s new properties

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
HLock

You can use the HLock procedure to lock a relocatable block so that it does not move in
the heap. If you plan to dereference a handle and then allocate, move, or purge memory
(or call a routine that does s0), then you should lock the handle before using the
dereferenced handle.

PROCEDURE HLock (h: Handl e);

h A handle to a relocatable block.

DESCRIPTION

The HLock procedure locks the relocatable block to which h is a handle, preventing it
from being moved within its heap zone. If the block is already locked, HLock does
nothing.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

HUnlock

The registers on entry and exit for HLock are

Registers on entry
A0 Handle to lock

Registers on exit
DO Result code

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

If you plan to lock a relocatable block for long periods of time, you can prevent
fragmentation by ensuring that the block is as low as possible in the heap zone. To do
this, see the description of the Reser veMemprocedure on page 2-55.

If you plan to lock a relocatable block for short periods of time, you can prevent heap
fragmentation by moving the block to the top of the heap zone before locking. For more
information, see the description of the MoveHHi procedure on page 2-56.

DESCRIPTION

2-46

You can use the HUnl ock procedure to unlock a relocatable block so that it is free to
move in its heap zone.

PROCEDURE HuUnl ock (h: Handl e);

h A handle to a relocatable block.

The HUnl ock procedure unlocks the relocatable block to which h is a handle, allowing it
to be moved within its heap zone. If the block is already unlocked, HUnl ock does
nothing.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

HPurge

The registers on entry and exit for HUnl ock are

Registers on entry
A0 Handle to unlock

Registers on exit
DO Result code

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

DESCRIPTION

You can use the HPur ge procedure to mark a relocatable block so that it can be purged if
a memory request cannot be fulfilled after compaction.

PROCEDURE HPurge (h: Handle);

h A handle to a relocatable block.

The HPur ge procedure makes the relocatable block to which h is a handle purgeable. If
the block is already purgeable, HPur ge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone
containing the block to satisfy a memory request. A direct call to the Pur geMem
procedure or the Max Memfunction would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to
the block are not empty before you access the block. If they are empty, you must
reallocate space for the block and recopy the block’s data from another source, such as a
resource file, before using the information in the block.

If the block to which h is a handle is locked, HPur ge does not unlock the block but does
mark it as purgeable. If you later call HUnl ock onh, the block is subject to purging.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

HNoPurge

The registers on entry and exit for HPur ge are
Registers on entry
A0 Handle to make purgeable

Registers on exit
DO Result code

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

If the Memory Manager has purged a block, you can reallocate space for it by using the
Real | ocat eHandl e procedure, described on page 2-52.

You can immediately free the space taken by a handle without disposing of it by calling
Enmpt yHandl e. This procedure, described on page 2-51, does not require that the block
be purgeable.

DESCRIPTION

2-48

You can use the HNoPur ge procedure to mark a relocatable block so that it cannot be
purged.

PROCEDURE HNoPurge (h: Handl e);

h A handle to a relocatable block.

The HNoPur ge procedure makes the relocatable block to which h is a handle
unpurgeable. If the block is already unpurgeable, HNoPur ge does nothing.

The HNoPur ge procedure does not reallocate memory for a handle if it has already
been purged.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

HSetRBit

The registers on entry and exit for HNoPur ge are
Registers on entry
A0 Handle to make unpurgeable

Registers on exit
DO Result code

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block

If you want to reallocate memory for a relocatable block that has already been purged,
you can use the Real | ocat eHandl e procedure, described on page 2-52.

DESCRIPTION

You can use the HSet RBi t procedure to set the resource flag of a relocatable block. The
Resource Manager uses this routine extensively, but you should never need to use it.

PROCEDURE HSet RBit (h: Handl e);

h A handle to a relocatable block.

The HSet RBi t procedure sets the resource flag of the relocatable block to which h is a
handle. It does nothing if the flag is already set.

WARNING

When the resource flag is set, the Resource Manager identifies the
associated relocatable block as belonging to a resource. This can cause
problems if that block wasn’t actually read from a resource. s
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ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for HSet RBi t are
Registers on entry
A0 Handle whose resource flag you want to set

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
HCIrRBIt

You can use the HCl r RBi t procedure to clear the resource flag of a relocatable block.
The Resource Manager uses this routine extensively, but you probably won’t need
to use it.

PROCEDURE HCl rRBit (h: Handl e);

h A handle to a relocatable block.

DESCRIPTION

The HO r RBi t procedure clears the resource flag of a relocatable block. It does nothing
if the flag is already cleared.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for HCl r RBi t are
Registers on entry

A0 Handle whose resource flag you want to clear

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block
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SEE ALSO

To disassociate the data in a resource handle from the resource file, you should use the
Resource Manager procedure Det achResour ce instead of this procedure.

Managing Relocatable Blocks

The Memory Manager provides routines that allow you to purge and later reallocate
space for relocatable blocks, recreate handles to relocatable blocks if you have access to
their master pointers, and control where in their heap zone relocatable blocks are located.

To free the memory taken up by a relocatable block without releasing the master pointer
to the block for other uses, use the Enpt yHandl e procedure. To reallocate space for a
handle that you have emptied or the Memory Manager has purged, use the

Real | ocat eHandl e procedure.

If, because you have dereferenced a handle, you no longer have access to it but do
have access to its master pointer, you can use the Recover Handl e function to recreate
the handle.

To ensure that a relocatable block that you plan to lock for short or long periods of time
does not cause heap fragmentation, use the MoveHH and the Reser veMemprocedures,
respectively.

EmptyHandle

The Enpt yHandl e procedure allows you to free memory taken by a relocatable block
without freeing the relocatable block’s master pointer for other uses.

PROCEDURE Enpt yHandl e (h: Handl e);

h A handle to a relocatable block.

DESCRIPTION

The Enpt yHandl e procedure purges the relocatable block whose handle is h and sets
the handle’s master pointer to NI L. The block whose handle is h must be unlocked but
need not be purgeable.

Note

If there are multiple handles to the relocatable block, then calling
the Enpt yHandl e procedure empties them all, because all of the
handles share a common master pointer. When you later use

Real | ocat eHandl e to reallocate space for the block, the master
pointer is updated, and all of the handles reference the new block
correctly. u
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SPECIAL CONSIDERATIONS

Because Enpt yHandl e purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The registers on entry and exit for Enpt yHandl e are
Registers on entry
A0 Handle to relocatable block

Registers on exit
A0 Handle to relocatable block
DO Result code

noErr 0 No error
memAZEr r -111 Attempt to operate on a free block
memPur Er r -112 Attempt to purge a locked block

To purge all of the blocks in a heap zone that are marked purgeable, use the Pur geMem
procedure, described on page 2-73.

To free the memory taken up by a relocatable block and release the block’s master
pointer for other uses, use the Di sposeHandl| e procedure, described on page 2-34.

ReallocateHandle

DESCRIPTION

2-52

To recover space for a relocatable block that you have emptied or the Memory Manager
has purged, use the Real | ocat eHandl| e procedure.

PROCEDURE Real | ocat eHandl e (h: Handl e; |ogical Size: Size);

h A handle to a relocatable block.

| ogi cal Si ze
The desired new logical size (in bytes) of the relocatable block.

The Real | ocat eHandl| e procedure allocates a new relocatable block with a logical size
of | ogi cal Si ze bytes. It updates the handle h by setting its master pointer to point to
the new block. The new block is unlocked and unpurgeable.
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Usually you use Real | ocat eHandl e to reallocate space for a block that you have
emptied or the Memory Manager has purged. If the handle references an existing block,
Real | ocat eHandl e releases that block before creating a new one.

Note
To reallocate space for a resource that has been purged, you should call
LoadResour ce, not Real | ocat eHandl e. u

If many handles reference a single purged, relocatable block, you need to call
Real | ocat eHandl e on just one of them.

In case of an error, Real | ocat eHandl e neither allocates a new block nor changes the
master pointer to which handle h points.

SPECIAL CONSIDERATIONS

Because Real | ocat eHandl e might purge and allocate memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The registers on entry and exit for Real | ocat eHandl e are
Registers on entry

A0 Handle for new relocatable block

DO Desired logical size, in bytes, of new block

Registers on exit
DO Result code

noErr 0 No error

menRQZEr r -99 Heap zone is read-only

mentul | Err -108 Not enough memory

memAZEr r -111 Attempt to operate on a free block
memPur Er r -112 Attempt to purge a locked block

Because Real | ocat eHandl e releases any existing relocatable block referenced by the
handle h before allocating a new one, it does not provide an efficient technique for
resizing relocatable blocks. To do that, use the Set Handl eSi ze procedure, described on
page 2-40.
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RecoverHandle

DESCRIPTION

The Memory Manager does not allow you to change relocatable blocks into
nonrelocatable blocks, or vice-versa. However, if you no longer have access to a handle
but still have access to its master pointer, you can use the Recover Handl e function to
recreate a handle to the relocatable block referenced by the master pointer.

FUNCTI ON RecoverHandl e (p: Ptr): Handl e;

p The master pointer to a relocatable block.

The Recover Handl e function returns a handle to the relocatable block pointed to by p.
If p doesn’t point to a valid block, the results of Recover Handl e are undefined.

SPECIAL CONSIDERATIONS

Even though Recover Handl e does not move or purge memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
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The registers on entry and exit for Recover Handl e are
Registers on entry

A0 Master pointer

Registers on exit
A0 Handle to master pointer’s relocatable block
DO Unchanged

Unlike most other Memory Manager routines, Recover Handl e does not return a
result code in register DO; the previous contents of DO are preserved unchanged.
The result code is, however, returned by MenEr r or.

The Recover Handl e function looks only in the current heap zone for the relocatable
block pointed to by the parameter p. If you want to use the Recover Handl e function to
recover a handle for a relocatable block in the system heap, set bit 10 of the routine trap
word. In most development systems, you can do this by supplying the word SYS as the
second argument to the routine macro, as follows:

_Recover Handl e , SYS
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RESULT CODES

noErr 0 No error
menBCEr r -115 Block check failed

ReserveMem

Use the Reser veMemprocedure when you allocate a relocatable block that you intend to
lock for long periods of time. This helps prevent heap fragmentation because it reserves
space for the block as close to the bottom of the heap as possible. Consistent use of

Reser veMemfor this purpose ensures that all locked, relocatable blocks and
nonrelocatable blocks are together at the bottom of the heap zone and thus do not
prevent unlocked relocatable blocks from moving about the zone.

PROCEDURE ReserveMem (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the heap.

DESCRIPTION

The Reser veMemprocedure attempts to create free space for a block of cbNeeded
contiguous logical bytes at the lowest possible position in the current heap zone. It
pursues every available means of placing the block as close as possible to the bottom
of the zone, including moving other relocatable blocks upward, expanding the zone
(if possible), and purging blocks from it.

Because Reser veMemdoes not actually allocate the block, you must combine calls to
Reser veMemwith calls to the NewHand! e function.

Do not use the Reser veMemprocedure for a relocatable block you intend to lock for
only a short period of time. If you do so and then allocate a nonrelocatable block above
it, the relocatable block becomes trapped under the nonrelocatable block when you
unlock that relocatable block.

Note

It isn’t necessary to call Reser veMemto reserve space for a
nonrelocatable block, because the NewPt r function calls it automatically.
Also, you do not need to call Reser veMemto reserve memory before

you load a locked resource into memory, because the Resource Manager
calls Reser veMemautomatically. u

SPECIAL CONSIDERATIONS

Because the Reser veMemprocedure could move and purge memory, you should not call
it at interrupt time.
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ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Reser veMemare
Registers on entry
DO Number of bytes to reserve

Registers on exit
DO Result code

The Reser veMemprocedure reserves memory in the current heap zone. If you want to
reserve memory in the system heap zone rather than in the current heap zone, set bit 10
of the routine trap word. In most development systems, you can do this by supplying
the word SYS as the second argument to the routine macro, as follows:

_ResrvMem , SYS

RESULT CODES
nokErr 0 No error
mentul | Err -108 Not enough memory
ReserveMemSys

If you plan to lock a relocatable block for long periods of time in the system heap zone,
use the Reser veMenBys procedure to reserve space for the block as low in the system
heap as possible.

PROCEDURE ReserveMentys (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the system heap.

DESCRIPTION
The Reser veMenBys procedure works much as the Reser veMemprocedure does, but
reserves memory in the system heap zone rather than in the current heap zone.

MoveHHi

If you plan to lock a relocatable block for a short period of time, use the MoveHHi
procedure, which moves the block to the top of the heap and thus helps prevent heap
fragmentation.

PROCEDURE MoveHH (h: Handl e);
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h A handle to a relocatable block.

DESCRIPTION

The MoveHH procedure attempts to move the relocatable block referenced by the handle
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of
the heap.

s WARNING
If you call MoveHH to move a handle to a resource that has its
r esChanged bit set, the Resource Manager updates the resource by
using the Wi t eResour ce procedure to write the contents of the block
to disk. If you want to avoid this behavior, call the Resource Manager
procedure Set ResPur ge( FALSE) before you call MoveHHi , and then
call Set ResPur ge( TRUE) to restore the default setting. s

By using the MoveHHi procedure on relocatable blocks you plan to allocate for short
periods of time, you help prevent islands of immovable memory from accumulating in
(and thus fragmenting) the heap.

Do not use the MoveHHi procedure to move blocks you plan to lock for long periods of
time. The MoveHHi procedure moves such blocks to the top of the heap, perhaps
preventing other blocks already at the top of the heap from moving down once they are
unlocked. Instead, use the Reser veMemprocedure before allocating such blocks, thus
keeping them in the bottom partition of the heap, where they do not prevent relocatable
blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi
each time slows down your application, you might consider leaving the block always
locked and calling the Reser veMemprocedure before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the
Memory Manager to move it back to the middle partition as soon as it can. (The
MoveHH procedure cannot move locked blocks; be sure to lock blocks after, not before,
calling MoveHHi .)

Note

Using the MoveHHi procedure without taking other precautionary
measures to prevent heap fragmentation is useless, because even one
small nonrelocatable or locked relocatable block in the middle of the
heap might prevent MoveHH from moving blocks to the top of

the heap. u

SPECIAL CONSIDERATIONS
Because the MoveHH procedure moves memory, you should not call it at interrupt time.

Don’t call MoveHH on blocks in the system heap. Don’t call MoveHHi from a desk
accessory.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

HLockHi

The registers on entry and exit for MoveHHi are
Registers on entry
A0 Handle to move

Registers on exit
DO Result code

noErr 0 No error
ni | Handl eErr -109 NI L master pointer
menLockedErr =117 Block is locked

DESCRIPTION

You can use the HLockHi procedure to move a relocatable block to the top of the heap
and lock it.

PROCEDURE HLockHi (h: Handl e);

h A handle to a relocatable block.

The HLockHi procedure attempts to move the relocatable block referenced by the handle
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of
the heap. Then HLockH locks the block.

The HLockH procedure is simply a convenient replacement for the pair of procedures
MoveHHi andHLock.

SPECIAL CONSIDERATIONS
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Because the HLockHi procedure moves memory, you should not call it at interrupt time.

Don’t call HLockH on blocks in the system heap. Don’t call HLockHi from a desk
accessory.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on entry and exit for HLockHi are
Registers on entry
A0 Handle to move and lock

Registers on exit
DO Result code

nokErr 0 No error

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
menlLockedEr r =117 Block is locked

Manipulating Blocks of Memory

BlockMove

The Memory Manager provides three routines for copying blocks of memory referenced
by pointers. To copy a block of memory to a nonrelocatable block, use the Bl ockMbve
procedure. To copy to a new relocatable block, use the Pt r ToHand function. To copy to
an existing relocatable block, use the Pt r ToXHand function. If you want to use any of
these routines to copy memory you access with a handle, you must first dereference and
lock the handle. A fourth routine, HandToHand, allows you to copy information from
one handle to another.

To concatenate blocks of memory, you can use the HandAndHand and Pt r AndHand
functions.

DESCRIPTION

To copy a sequence of bytes from one location in memory to another, you can use the
Bl ockMbve procedure.

PROCEDURE Bl ockMbve (sourcePtr, destPtr: Ptr; byteCount: Size);

sourcePtr The address of the first byte to copy.
desthtr The address of the first byte to copy to.

byt eCount  The number of bytes to copy. If the value of byt eCount is 0, Bl ockMove
does nothing.

The Bl ockMove procedure moves a block of byt eCount consecutive bytes from
the address designated by sour cePt r to that designated by dest Pt r. It updates
no pointers.
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The Bl ockMove procedure works correctly even if the source and destination
blocks overlap.

SPECIAL CONSIDERATIONS

You can safely call Bl ockMbve at interrupt time. Even though it moves memory,
Bl ockMbve does not move relocatable blocks, but simply copies bytes.

The Bl ockMove procedure currently flushes the processor caches whenever the number
of bytes to be moved is greater than 12. This behavior can adversely affect your
application’s performance. You might want to avoid calling Bl ockMove to move small
amounts of data in memory if there is no possibility of moving stale data or instructions.
For more information about stale data and instructions, see the discussion of the
processor caches in the chapter “Memory Management Utilities” in this book.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for Bl ockMove are
Registers on entry

A0 Pointer to source

Al Pointer to destination

DO Number of bytes to copy

Registers on exit
DO Result code

RESULT CODE
noErr 0 No error
PtrToHand
To copy data referenced by a pointer to a new relocatable block, use the Pt r ToHand
function.
FUNCTI ON PtrToHand (srcPtr: Ptr; VAR dstHndl: Handl e;
size: Longlnt): OSErr;
srchtr The address of the first byte to copy.
dst Hndl A handle for which you have not yet allocated any memory. The
Pt r ToHand function allocates memory for the handle and copies si ze
bytes beginning atsr cPt r into it.
si ze The number of bytes to copy.
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DESCRIPTION

The Pt r ToHand function returns, in dst Hndl , a newly created handle to a copy of the
number of bytes specified by the si ze parameter, beginning at the location specified by
srcPtr. The dst Hndl parameter must be a handle variable that is not empty and is not
a handle to an allocated block of size 0.

SPECIAL CONSIDERATIONS

Because Pt r ToHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Pt r ToHand are
Registers on entry
A0 Pointer to source
DO Number of bytes to copy

Registers on exit
A0 Destination handle
DO Result code

RESULT CODES

nokErr 0 No error
menful | Err -108 Not enough memory

SEE ALSO

You can use the Pt r ToHand function to copy data from one handle to a new handle

if you dereference and lock the source handle. However, if you want to copy all of

the data from one handle to another, the HandToHand function (described on page 2-62)
is more efficient.

PtrToXHand

To copy data referenced by a pointer to an already existing relocatable block, use the
Pt r ToXHand function.

FUNCTI ON Ptr ToXHand (srcPtr: Ptr; dstHndl: Handle; size: Longlnt):
OSErr;

srcPtr The address of the first byte to copy.
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dst Hndl A handle to an already existing relocatable block to which to copy si ze
bytes, beginning atsr cPt r.

si ze The number of bytes to copy.

DESCRIPTION

The Pt r ToXHand function makes the existing handle, specified by dst Hndl , a handle to
a copy of the number of bytes specified by the si ze parameter, beginning at the location
specified by srcPtr.

SPECIAL CONSIDERATIONS
Because Pt r ToXHand affects memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Pt r ToXHand are
Registers on entry
A0 Pointer to source
Al Handle to destination
DO Number of bytes to copy

Registers on exit
A0 Handle to destination
DO Result code

RESULT CODES

nokErr 0 No error

mentul | Err -108 Not enough memory

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
HandToHand

Use the HandToHand function to copy all of the data from one relocatable block to a new
relocatable block.

FUNCTI ON HandToHand (VAR theHndl : Handle): CSErr;
t heHndl On entry, a handle to the relocatable block whose data is to be copied. On

exit, a handle to a new relocatable block whose data duplicates that of
the original.
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The HandToHand function attempts to copy the information in the relocatable block to
which t heHnd! is a handle; if successful, HandToHand returns a handle to the new
relocatable block in t heHnd! . The new relocatable block is created in the same heap
zone as the original block (which might not be the current heap zone).

Because HandToHand replaces its input parameter with the new handle, you should
retain the original value of the input parameter somewhere else, or you won’t be able to
access it. Here is an example:

VAR
original, copy: Handl e;
nmyErr: OSErr;
copy := original; {both handl es access sane bl ock}

myErr : = HandToHand(copy); {copy now points to copy of bl ock}

SPECIAL CONSIDERATIONS

If successful in creating a new relocatable block, the HandToHand function does not
duplicate the properties of the original block. The new block is unlocked, unpurgeable,
and not a resource. You might need to call HLock, HPur ge, or HSet RBi t (or the
combination of HGet St at e and HSet St at e) to adjust the properties of the new block.

Because HandToHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on entry and exit for HandToHand are
Registers on entry
A0 Handle to original data

Registers on exit
A0 Handle to copy of data
DO Result code

noErr 0 No error

menful | Err -108 Not enough memory

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
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SEE ALSO
If you want to copy only part of a relocatable block into a new relocatable block, use the
Pt r ToHand function, described on page 2-60, after locking and dereferencing a handle
to the relocatable block to be copied.
HandAndHand
Use the HandAndHand function to concatenate two relocatable blocks.
FUNCTI ON HandAndHand (aHndl, bHndl: Handle): OSErr;
aHndl A handle to the first relocatable block, whose contents do not change but
are concatenated to the end of the second relocatable block.
bHndI A handle to the second relocatable block, whose size the Memory
Manager expands so that it can concatenate the information from aHnd|
to the end of the contents of this block.
DESCRIPTION
The HandAndHand function concatenates the information from the relocatable block to
which aHndl is a handle onto the end of the relocatable block to which bHndl isa
handle. The aHndl variable remains unchanged.
S WARNING

The HandAndHand function dereferences the handle aHndl . You must call the
HLock procedure to lock the block before calling HandAndHand. Afterward,
you can call the HUnl ock procedure to unlock it. Alternatively, you can save
the block’s original state by calling the HGet St at e function, lock the block by
calling HLock, and then restore the original settings by calling HSet St at e. s

SPECIAL CONSIDERATIONS

Because HandAndHand moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
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The registers on entry and exit for HandAndHand are
Registers on entry

A0 Handle to be concatenated

Al Handle to contain itself, data from AQ’s handle

Registers on exit
A0 Handle to concatenated data
DO Result code
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RESULT CODES

noErr 0 No error

menful | Err -108 Not enough memory

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
PtrAndHand

Use the Pt r AndHand function to concatenate part or all of a memory block to the end of
a relocatable block.

FUNCTI ON Ptr AndHand (pntr: Ptr; hndl: Handle; size: Longlnt):
OSErr;

pntr A pointer to the beginning of the data that the Memory Manager is to
concatenate onto the end of the relocatable block.

hndl A handle to the relocatable block, whose size the Memory Manager
expands so that it can concatenate the information from pnt r onto the
end of this block.

si ze The number of bytes of the block referenced by pnt r to be copied.

DESCRIPTION

The Pt r AndHand function takes the number of bytes specified by the si ze parameter,
beginning at the location specified by pnt r, and concatenates them onto the end of the
relocatable block to which hndl is a handle.

The contents of the source block remain unchanged.

SPECIAL CONSIDERATIONS
Because Pt r AndHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Pt r AndHand are
Registers on entry
A0 Pointer to data to copy
Al Handle to relocatable block at whose end the copied data concatenated
A2 Number of bytes to concatenate

Registers on exit
A0 Handle to now-concatenated relocatable block
DO Result code
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noErr 0 No error

menful | Err -108 Not enough memory

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block

Assessing Memory Conditions

The Memory Manager provides four routines to test how much memory is available, one
routine used after memory operations to determine if an error occurred, and one routine
to determine the location in memory of the top of your application’s partition.

To determine the total amount of free space in the current heap zone or the size of the
maximum block that could be obtained after compacting the heap, use the Fr eeMemand
MaxBl ock functions, respectively. To determine what those values would be after a
purge of the heap zone, call the Pur geSpace procedure. Finally, to find out how much
your stack can grow before it collides with the heap, use the St ack Space function.

To find out whether a Memory Manager operation finished successfully, use the
MenEr r or function.

FreeMem
By calling the Fr eeMemfunction, you can find out the total amount of free space, in
bytes, in the current heap zone.
FUNCTI ON FreeMem Longlnt;

DESCRIPTION

The Fr eeMemfunction returns the total amount of free space (in bytes) in the current
heap zone. Note that it usually isn’t possible to allocate a block of that size, because
of heap fragmentation due to nonrelocatable or locked blocks.

SPECIAL CONSIDERATIONS

Even though Fr eeMemdoes not move or purge memory, you should not call it at
interrupt time because the heap might be in an inconsistent state.

ASSEMBLY-LANGUAGE INFORMATION
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The registers on exit for Fr eeMemare
Registers on exit

DO Number of bytes available in heap zone
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The Fr eeMemfunction reports the number of free bytes in the current heap zone. If you
want to know how many bytes are available in the system heap zone rather than in the
current heap zone, set bit 10 of the routine trap word. In most development systems, you
can do this by supplying the word SYS as the second argument to the routine macro,

as follows:

_FreeMem , SYS

noErr 0 No error

FreeMemSys

DESCRIPTION

RESULT CODES

MaxBlock

To determine how much free space remains in the system heap zone, use the
Fr eeMenBys function.

FUNCTI ON FreeMenSys: Longl nt;

The Fr eeMenBys function works much as the Fr eeMemfunction does, but returns the
total amount of free memory in the system heap zone instead of in the current heap zone.

noErr 0 No error

DESCRIPTION

Use the MaxBl ock function to determine the size of the largest block you could allocate
in the current heap zone after a compaction.

FUNCTI ON MaxBl ock: Longlnt;

The MaxBl ock function returns the maximum contiguous space, in bytes, that you could
obtain after compacting the current heap zone. MaxBl ock does not actually do the
compaction.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on exit for MaxBl ock are
Registers on exit

DO Size of largest allocatable block

If you want to know the size of the largest allocatable block in the system heap zone,
rather than in the current heap zone, set bit 10 of the routine trap word. In most
development systems, you can do this by supplying the word SYS as the second
argument to the routine macro, as follows:

_MaxBl ock , SYS

noErr 0 No error

MaxBlockSys

Use the MaxBl ockSys function to determine the size of the largest block you could
allocate in the system heap after a compaction.

FUNCTI ON MaxBl ockSys: Longl nt;

DESCRIPTION
The MaxBl ockSys function works much as the Max Bl ock function does, but returns
the maximum contiguous space, in bytes, that you could obtain after compacting the
system heap. MaxBl ockSys does not actually do the compaction.

RESULT CODES
noErr 0 No error

PurgeSpace
Use the Pur geSpace procedure to determine the total amount of free memory and the
size of the largest allocatable block after a purge of the heap.
PROCEDURE PurgeSpace (VAR total: Longlnt; VAR contig: Longlnt);
t ot al On exit, the total amount of free memory in the current heap zone if it

were purged.
2-68 Memory Manager Reference



DESCRIPTION

CHAPTER 2

Memory Manager

contig On exit, the size of the largest contiguous block of free memory in the
current heap zone if it were purged.

The Pur geSpace procedure returns, in the t ot al parameter, the total amount of space
(in bytes) that could be obtained after a general purge of the current heap zone; this
amount includes space that is already free. In the cont i g parameter, Pur geSpace
returns the size of the largest allocatable block in the current heap zone that could be
obtained after a purge of the zone.

The Pur geSpace procedure does not actually purge the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

StackSpace

The registers on exit for Pur geSpace are

Registers on exit

A0 Maximum number of contiguous bytes after purge
DO Total free memory after purge

If you want to test the system heap zone instead of the current zone, set bit 10 of the
routine trap word. In most development systems, you can do this by supplying the word
SYS as the second argument to the routine macro, as follows:

_PurgeSpace , SYS

noErr 0 No error

DESCRIPTION

Use the St ackSpace function to find out how much space there is between the bottom
of the stack and the top of the application heap.

FUNCTI ON St ackSpace: Longlnt;

The St ackSpace function returns the current amount of stack space (in bytes) between
the current stack pointer and the application heap at the instant of return from the trap.
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SPECIAL CONSIDERATIONS

Ordinarily, you determine the maximum amount of stack space you need before you
ship your application. In general, therefore, this routine is useful only during debugging
to determine how big to make the stack. However, if your application calls a recursive
function that conceivably could call itself many times, that function should keep track of
the stack space and take appropriate action if it becomes too low.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

MemError

The registers on exit for St ackSpace are
Registers on exit
DO Number of bytes between stack and heap

noErr 0 No error

DESCRIPTION
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To find out whether your application’s last direct call to a Memory Manager routine
executed successfully, use the MenEr r or function.

FUNCTI ON MenError: OSErr;

The MenEr r or function returns the result code produced by the last Memory Manager
routine your application called directly.

This function is useful during application debugging. You might also use the function as
one part of a memory-management scheme to identify instances in which the Memory
Manager rejects overly large memory requests by returning the error code nentul | Err.

WARNING

Do not rely on the MenEr r or function as the only component of a
memory-management scheme. For example, suppose you call

NewHand| e or NewPt r and receive the result code noEr r, indicating
that the Memory Manager was able to allocate sufficient memory. In this
case, you have no guarantee that the allocation did not deplete your
application’s memory reserves to levels so low that simple operations
might cause your application to crash. Instead of relying on Mentr r or,
check before making a memory request that there is enough memory
both to fulfill the request and to support essential operations. s
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ASSEMBLY-LANGUAGE INFORMATION

Because most Memory Manager routines return a result code in register DO, you do not
ordinarily need to call the MenEr r or function if you program in assembly language. See
the description of an individual routine to find out whether it returns a result code in
register DO. If not, you can examine the global variable MenEr r. When MenEr r or
returns, register DO contains the result code.

Registers on exit
DO Result code

RESULT CODES
nokErr 0 No error
par ankrr -50 Error in parameter list
menRQZEr r -99 Operation on a read-only zone
mentul | Err -108 Not enough memory
ni | Handl eErr -109 NI L master pointer
memAZEr r -111 Attempt to operate on a free block
memPur Er r -112 Attempt to purge a locked block
menBCEr r -115 Block check failed
menlLockedEr r =117 Block is locked

Freeing Memory

The Memory Manager compacts and purges the heap whenever necessary to satisfy
requests for memory. You can also compact or purge the heap manually. To compact the
current heap zone manually, use the Conpact Memfunction. To purge it manually, use
the Pur geMemprocedure. To do both at once, use the Max Memfunction. To perform the
same operations on the system heap zone, use the Conpact MenSys function, the

Pur geMentSys procedure, and the MaxMenBys function.

Note

Most applications don’t need to call the routines described in this
section. Normally you should let the Memory Manager compact or
purge your application heap. u

CompactMem

The Memory Manager compacts the heap for you when you make a memory request
that it can’t fill. However, you can use the Conpact Memfunction to compact the current
heap zone manually.

FUNCTI ON Conpact Mem (cbNeeded: Size): Size;

cbNeeded The size, in bytes, of the block for which Conpact Memshould attempt to
make room.
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DESCRIPTION

The Conpact Memfunction compacts the current heap zone by moving unlocked,
relocatable blocks down until they encounter nonrelocatable blocks or locked, relocatable
blocks, but not by purging blocks. It continues compacting until it either finds a
contiguous block of at leastcbNeeded free bytes or has compacted the entire zone.

The Conpact Memfunction returns the size, in bytes, of the largest contiguous free block
for which it could make room, but it does not actually allocate that block.

To compact the entire heap zone, call Conpact Men{ maxSi ze) . The Memory Manager
defines the constant maxSi ze for the largest contiguous block possible in the 24-bit
Memory Manager:

CONST
maxSi ze = $800000; {maxi mum si ze of a bl ock}

SPECIAL CONSIDERATIONS
Because Conpact Memmoves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Conpact Memare
Registers on entry

DO Size of block to make room for
Registers on exit
DO Size of largest allocatable block

The Conpact Memfunction compacts the current heap zone. If you want to compact the
system heap zone rather than the current heap zone, set bit 10 of the routine trap word.
In most development systems, you can do this by supplying the word SYS as the second
argument to the routine macro, as follows:

_Conmpact Mem , SYS

RESULT CODES
noErr 0 No error

CompactMemSys

You can use the Conpact MenSys function to compact the system heap zone manually.

FUNCTI ON Conpact MenSys (cbNeeded: Size): Size;
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cbNeeded The size in bytes of the block for which Conpact MenSys should attempt
to make room.

DESCRIPTION

The Conpact MenBys function works much as the Conpact Memfunction does, but
compacts the system heap instead of the current heap.

RESULT CODES
noErr 0 No error

PurgeMem

The Memory Manager purges the heap for you when you make a memory request that it
can’t fill. However, you can use the Pur geMemprocedure to purge the current heap zone
manually.

PROCEDURE Pur geMem (cbNeeded: Size);

cbNeeded The size, in bytes, of the block for which Pur geMemshould attempt to
make room.

DESCRIPTION

The Pur geMemprocedure sequentially purges blocks from the current heap zone until it
either allocates a contiguous block of at least cbNeeded free bytes or has purged the
entire zone. If it purges the entire zone without creating a contiguous block of at least
cbNeeded free bytes, Pur geMemgenerates a mentul | Err.

The Pur geMemprocedure purges only relocatable, unlocked, purgeable blocks.

The Pur geMemprocedure does not actually attempt to allocate a block of
cbNeeded bytes.

To purge the entire heap zone, call Pur geMen( maxSi ze) .

SPECIAL CONSIDERATIONS
Because Pur geMempurges memory, you should not call it at interrupt time.
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ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Pur geMemare
Registers on entry
DO Size of block to make room for

Registers on exit
DO Result code

The Pur geMemprocedure purges the current heap zone. If you want to purge the system
heap zone rather than the current heap zone, set bit 10 of the routine trap word. In most
development systems, you can do this by supplying the word SYS as the second
argument to the routine macro, as follows:

_PurgeMem , SYS

RESULT CODES
nokErr 0 No error
mentul | Err -108 Not enough memory
PurgeMemSys

You can use the Pur geMenBys procedure to purge the system heap manually.
PROCEDURE Pur geMenBys (cbNeeded: Size);
cbNeeded The size, in bytes, of the block for which Pur geMenSys should attempt

to make room.

DESCRIPTION

The Pur geMenBys procedure works much as the Pur geMemprocedure does, but purges
the system heap instead of the current heap.

RESULT CODES

noErr 0 No error
mentul | Err -108 Not enough memory

MaxMem

Use the MaxMemfunction to compact and purge the current heap zone.

FUNCTI ON MaxMem (VAR grow. Size): Size;
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gr ow On exit, the maximum number of bytes by which the current heap zone
can grow. After a call to MaxAppl Zone, MaxMemalways returns 0 in this
parameter.

DESCRIPTION

The MaxMemfunction compacts the current heap zone and purges all relocatable,
unlocked, and purgeable blocks from the zone. It returns the size, in bytes, of the largest
contiguous free block in the zone after the compacting and purging. If the current zone is
the original application zone, the gr ow parameter is set to the maximum number of
bytes by which the zone can grow. For any other heap zone, gr owis set to 0. MaxMem
doesn’t actually expand the zone or call the zone’s grow-zone function.

SPECIAL CONSIDERATIONS

Because MaxMemmoves and purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The registers on exit for MaxMemare
Registers on exit
A0 Number of bytes zone can grow
DO Size in bytes of largest allocatable block
The MaxMemfunction compacts the current heap zone. If you want to compact and purge
the system heap zone rather than the current heap zone, set bit 10 of the routine trap

word. In most development systems, you can do this by supplying the word SYS as the
second argument to the routine macro, as follows;

_MaxMem , SYS

RESULT CODES
noErr 0 No error

MaxMemSys

You can use the MaxMenBys function to purge and compact the system heap zone
manually.

FUNCTI ON MaxMenBys (VAR grow. Size): Size;

gr ow On exit, the MaxMenBys function sets this parameter to 0. Ignore this
parameter.
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The MaxMenBys function works much as the Max Memfunction does, but compacts and
purges the system heap instead of the current heap. It returns the size, in bytes, of the
largest block you can allocate in the system heap.

noErr 0 No error

Grow-Zone Operations

You can implement a grow-zone function that the Memory Manager calls when it cannot
fulfill a memory request. You should use the grow-zone function only as a last resort to
free memory when all else fails. For explanations of how grow-zone functions work and
an example of a memory-management scheme that uses a grow-zone function, see the
discussion of low-memory conditions in the chapter “Introduction to Memory
Management” in this book.

The Set G- owZone procedure specifies which function the Memory Manager should use
for the current zone. The grow-zone function should call the GZSaveHnd function to
receive a handle to a relocatable block that the grow-zone function must not move

or purge.

SetGrowZone

DESCRIPTION

2-76

To specify a grow-zone function for the current heap zone, pass a pointer to that function
to the Set G owZone procedure. Ordinarily, you call this procedure early in the
execution of your application.

If you initialize your own heap zones besides the application and system zones, you can
alternatively specify a grow-zone function as a parameter to the | ni t Zone procedure.

PROCEDURE Set Gr owZone (growZone: ProcPtr);

gr owzZone A pointer to the grow-zone function.

The Set Gr owZone procedure sets the current heap zone’s grow-zone function as
designated by the gr owZone parameter. A NI L parameter value removes any grow-zone
function the zone might previously have had.

The Memory Manager calls the grow-zone function only after exhausting all other
avenues of satisfying a memory request, including compacting the zone, increasing its
size (if it is the original application zone and is not yet at its maximum size), and purging
blocks from it.
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See “Grow-Zone Functions” on page 2-89 for a complete description of a grow-zone
function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on entry and exit for Set Gr owZone are

Registers on entry
A0 Pointer to new grow-zone function

Registers on exit
DO Result code

noErr 0 No error

GZSaveHnd

DESCRIPTION

Your grow-zone function must call the GZSaveHnd function to obtain a handle to a
protected relocatable block that the grow-zone function must not move, purge, or delete.

FUNCTI ON GZSaveHnd: Handl €;

The &ZSaveHnd function returns a handle to a relocatable block that the grow-zone
function must not move, purge, or delete. It returns NI L if there is no such block.

The returned handle is a handle to the block of memory being manipulated by the
Memory Manager at the time that the grow-zone function is called.

ASSEMBLY-LANGUAGE INFORMATION

You can find the same handle in the global variable GZRoot Hnd.

Allocating Temporary Memory

In system software version 7.0 and later, you can manipulate temporary memory

with three routines that are counterparts to other Memory Manager routines.

The TenpNewHand| e function allocates a new block of relocatable memory, the

TenpFr eeMemfunction returns the total amount of free memory available for temporary
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allocation, and the TenpMaxMemfunction compacts the heap zone and returns the size
of the largest contiguous block available for temporary allocation.

WARNING

You should not call any of these memory-allocation routines at
interrupt time. s

TempNewHandle

DESCRIPTION

To allocate a new relocatable block of temporary memory, call the TenpNewHandl| e
function after making sure that there is enough free space to satisfy the request.

FUNCTI ON TenpNewHandl e (| ogi cal Si ze: Si ze;
VAR resul t Code: OCSErr): Handl e;

| ogi cal Si ze
The requested logical size, in bytes, of the new temporary block of
memory.

resul t Code
On exit, the result code from the function call.

The TenpNewHand! e function returns a handle to a block of size | ogi cal Si ze. If it
cannot allocate a block of that size, the function returns NI L. Before you use the returned
handle, make sure its value isnot NI L.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for TenpNewHandl e are

Trap macro Selector
_OsDhi spatch $001D

SPECIAL CONSIDERATIONS

RESULT CODES
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Because TenpNewHand| e might allocate memory, you should not call it at
interrupt time.

Note that TenpNewHandl e returns its result code in a parameter, not through
MenError.

nokErr 0 No error
menful | Err -108 Not enough memory
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TempFreeMem

DESCRIPTION

To find out the total amount of memory available for temporary allocation, use the
TenpFr eeMemfunction.

FUNCTI ON TenpFreeMem Longlnt;

The TenpFr eeMemfunction returns the total amount of free temporary memory that
you could allocate by calling TenpNewHand! e. The returned value is the total number
of free bytes. Because these bytes might be dispersed throughout memory, it is ordinarily
not possible to allocate a single relocatable block of that size.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for TenpFr eeMemare

Trap macro Selector
_OSDi spat ch $0018

SPECIAL CONSIDERATIONS

Even though TenpFr eeMemdoes not move or purge memory, you should not call it at
interrupt time.

TempMaxMem

DESCRIPTION

To find the size of the largest contiguous block available for temporary allocation, use
the TenmpMaxMemfunction.

FUNCTI ON TenmpMaxMem ( VAR grow. Size): Size;
gr ow On exit, this parameter always contains 0 after the function call because

temporary memory does not come from the application’s heap zone, and
only that zone can grow. Ignore this parameter.

The TenpMaxMemfunction compacts the current heap zone and returns the size of the
largest contiguous block available for temporary allocation.
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ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for TenpMax Memare
Trap macro Selector
_OSDi spat ch $0015

SPECIAL CONSIDERATIONS
Because TenpMaxMemcould move memory, you should not call it at interrupt time.

Accessing Heap Zones

The majority of applications, which allocate memory in their application heap zone
only, do not need to use any of the routines in this section. The few applications

that do allocate memory in zones other than the application heap zone can use the
Get Zone function and the Set Zone procedure to get and set the current zone, the
Appl i cati onZone and Syst enZone functions to obtain pointers to the application
and system zones, and the Handl eZone and Pt r Zone functions to find the zones in
which relocatable and nonrelocatable blocks lie.

GetZone

To find which zone is current, use the Get Zone function.

FUNCTI ON Get Zone: THz;

DESCRIPTION
The Get Zone function returns a pointer to the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION
The registers on exit for Get Zone are
Registers on exit
A0 Pointer to current heap zone
DO Result code

The global variable TheZone contains a pointer to the current heap zone.

RESULT CODES
noErr 0 No error
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SetZone
To change the current heap zone, you can use the Set Zone procedure.
PROCEDURE Set Zone (hz: THz);
hz A pointer to the heap zone to make current.
DESCRIPTION

The Set Zone procedure makes the zone to which hz points the current

heap zone. Often, you use the Set Zone procedure in conjunction with one of

the Appl i cat i onZone, Syst enZone, Handl eZone, and Pt r Zone functions. For
example, the code Set Zone( Syst enZone) makes the system heap zone current.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Set Zone are

Registers on entry

A0 Pointer to new current heap zone

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error

ApplicationZone

To obtain a pointer to the application heap zone, you can use the Appl i cat i onZone
function.

FUNCTI ON Appl i cationZone: THz;

DESCRIPTION
The Appl i cat i onZone function returns a pointer to the original application heap zone.

ASSEMBLY-LANGUAGE INFORMATION
The global variable Appl Zone contains a pointer to the original application heap zone.
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SystemZone

To obtain a pointer to the system heap zone, you can use the Syst enZone function.

FUNCTI ON Syst enZone: THz;

DESCRIPTION
The Syst enZone function returns a pointer to the system heap zone.

ASSEMBLY-LANGUAGE INFORMATION
The global variable SysZone contains a pointer to the system heap zone.

HandleZone

If you need to know which heap zone contains a particular relocatable block, you can
use the Handl eZone function.

FUNCTI ON Handl eZone (h: Handle): THz;

h A handle to a relocatable block.

DESCRIPTION

The Handl eZone function returns a pointer to the heap zone containing the relocatable
block whose handle is h. In case of an error, the result returned by Handl eZone is
undefined and should be ignored.

IMPORTANT

If the handle h is empty (that is, if it points to a NI L master pointer),
Handl eZone returns a pointer to the heap zone that contains the master
pointer. s

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Handl eZone are
Registers on entry

A0 Handle whose zone is to be found

Registers on exit
A0 Pointer to handle’s heap zone
DO Result code
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RESULT CODES

nokErr 0 No error
memAZEr r -111 Attempt to operate on a free block

PtrZone

If you have allocated a nonrelocatable block and need to know in which zone it lies, you
can use the Pt r Zone function.

FUNCTI ON PtrZone (p: Ptr): THz;

p A pointer to a nonrelocatable block.

DESCRIPTION
The Pt r Zone function returns a pointer to the heap zone containing the nonrelocatable
block pointed to by p.

In case of an error, the result returned by Pt r Zone is undefined and should be ignored.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Pt r Zone are
Registers on entry
A0 Pointer whose zone is to be found

Registers on exit
A0 Pointer to heap zone of nonrelocatable block
DO Result code

RESULT CODES

nokErr 0 No error
memAZEr r =111 Attempt to operate on a free block

Manipulating Heap Zones

The Memory Manager provides several routines for initializing and resizing heap zones.

To obtain information about the current application partition, applications can call the
Get Appl Li mi t function and the TopMemfunction. If your application uses the stack
extensively, you might want to ensure that the stack is set to at least some minimum size,
at the expense of the heap. To do so, use the Set Appl Li m t procedure to change the
application heap limit before you call the MaxAppl Zone procedure.
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To initialize a new heap zone, use the | ni t Zone procedure. The Operating System
automatically initializes the application zone by calling the Set Appl Base procedure,
which subsequently calls the | ni t Appl Zone procedure.

GetApplLimit

DESCRIPTION

Use the Get Appl Li mi t function to get the application heap limit, beyond which the
application heap cannot expand.

FUNCTI ON Get Appl Limit: Ptr;

The Get Appl Li mi t function returns the current application heap limit. The Memory
Manager expands the application heap only up to the byte preceding this limit.

Nothing prevents the stack from growing below the application limit. If the Operating
System detects that the stack has crashed into the heap, it generates a system error. To
avoid this, use Get Appl Li mi t and the Set Appl Li mi t procedure to set the application
limit low enough so that a growing stack does not encounter the heap.

Note
The Get Appl Li mi t function does not indicate the amount of memory
available to your application. u

ASSEMBLY-LANGUAGE INFORMATION

The global variable Appl Li ni t contains the current application heap limit.

SetApplLimit

DESCRIPTION
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Use the Set Appl Li mi t procedure to set the application heap limit, beyond which the
application heap cannot expand.

PROCEDURE Set Appl Limt (zoneLimt: Ptr);
zoneLimt A pointer to a byte in memory demarcating the upper boundary of the

application heap zone. The zone can grow to include the byte preceding
zoneLi m t in memory, but no further.

The Set Appl Li mi t procedure sets the current application heap limit to zoneLi mi t.
The Memory Manager then can expand the application heap only up to the byte
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preceding the application limit. If the zone already extends beyond the specified limit,
the Memory Manager does not cut it back but does prevent it from growing further.

Note

The zonelLi mi t parameter is not a byte count, but an absolute byte in
memory. Thus, you should use the Set Appl Li mi t procedure only with
a value obtained from the Memory Manager functions Get Appl Li mi t
orAppl i cati onZone. u

You cannot change the limit of zones other than the application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

TopMem

The registers on entry and exit for Set Appl Li mi t are
Registers on entry

A0 Pointer to desired new zone limit

Registers on exit
DO Result code

noErr 0 No error
mentul | Err -108 Not enough memory

DESCRIPTION

To find out the location of the top of an application’s partition, you can use the TopMem
function, which exhibits special behavior during the startup process.

FUNCTI ON TopMem Ptr;

Except during the startup process, the TopMemfunction returns a pointer to the byte at
the top of an application’s partition, directly above the jump table. The function does this
to maintain compatibility with programs that check TopMemto find out how much
memory is installed in a computer. To obtain this information, you can currently use the
Gest al t function.

The function exhibits special behavior at startup time, and the value it returns controls
the amount by which an extension can lower the value of the global variable Buf Pt r at
startup time. If you are writing a system extension, you should not lower the value of
Buf Pt r by more than MenTop DIV 2 + 1024. If you do lower Buf Pt r too far, the
startup process generates an out-of-memory system error.
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You should never need to call TopMemexcept during the startup process.

ASSEMBLY-LANGUAGE INFORMATION

The TopMemfunction returns the value of the MenmTop global variable.

InitZone
If you want to use heap zones other than the original application heap zone, a temporary
memory zone, or the system heap zone, you can use the | ni t Zone procedure to
initialize a new heap zone.
PROCEDURE | ni t Zone (pG owZone: ProcPtr; chMreMasters: |nteger;
limtPtr, startPtr: Ptr);
pG owZone A pointer to a grow-zone function for the new heap zone. If you do not
want the new zone to have a grow-zone function, set this parameter
to NI L.
cMoreMast ers
The number of master pointers that should be allocated at a time for the
new zone. The Memory Manager allocates this number initially, and, if it
needs to allocate more later, allocates them in increments of this same
number.
limtPtr The first byte beyond the end of the zone.
startPtr The first byte of the new zone.
DESCRIPTION

The | ni t Zone procedure creates a new heap zone, initializes its header and trailer, and
makes it the current zone. Although the new zone occupies memory addresses from
start Ptr through!li m t Pt r—1, the new zone includes a zone header and a zone
trailer. In addition, the new zone contains a block header for the master pointer block
and 4 bytes for each master pointer. If you need to create a zone with some specific
number of usable bytes, see “Organization of Memory,” beginning on page 2-19, for
details on the sizes of the zone header, zone trailer, and block header.

Note

The sizes of zones and block headers may change in future system
software versions. You should ensure that your zones are large enough
to accommodate a reasonable increase in the sizes of those structures. u

SPECIAL CONSIDERATIONS
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Because | ni t Zone changes the current zone, you should not call it at interrupt time.
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ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on entry and exit for | ni t Zone are
Registers on entry
A0 Pointer to parameter block

Registers on exit
DO Result code

The parameter block whose address is passed in register A0 has no Pascal type
definition. It has this structure:

Parameter block

® startPtr Ptr The first byte of the new zone.

® [imtPtr Ptr The first byte beyond the new zone.

® cMoreMasters I nt eger The number of master pointers to be allocated
at a time.

® pG owZone ProcPtr A pointer to the new zone’s grow-zone

function, or NI L if none.

noErr 0 No error

InitApplZone

DESCRIPTION

The Process Manager calls the | ni t Appl Zone procedure indirectly when it
starts up your application. You should never need to call it. It is documented for
completeness only.

PROCEDURE | ni t Appl Zone;

The | ni t Appl Zone procedure initializes the application heap zone and makes it the
current zone. The Memory Manager discards the contents of any previous application
zone and discards all previously existing blocks in that zone. The procedure sets

the zone’s grow-zone function to NI L.

WARNING
Reinitializing the application zone from within a running program is
dangerous, because the application’s code itself normally resides in the
application zone. To do so safely, you must make sure that the code
containing the | ni t Appl Zone call is not in the application zone. s

Memory Manager Reference 2-87



CHAPTER 2

Memory Manager

SPECIAL CONSIDERATIONS

You should not call I ni t Appl Zone at all, but, if you must, be sure not to call it at
interrupt time because it could purge and allocate memory.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on exit for | ni t Appl Zone are

Registers on exit
DO Result code

noErr 0 No error

SetApplBase

DESCRIPTION

The Process Manager calls the Set Appl Base procedure when it starts up your
application. You should never need to call it. It is documented for completeness only.

PROCEDURE Set Appl Base (startPtr: Ptr);

startPtr The starting address for the application heap zone to be initialized.

The Set Appl Base procedure sets the starting address of the application heap zone
for the application being initialized to the address designated by st art Pt r, and
then calls the | ni t Appl Zone procedure.

WARNING

Like I ni t Appl Zone, Set Appl Base is a potentially dangerous
operation, because the program’s code itself normally resides in the
application heap zone. To do so safely, you must make sure that the code
containing the Set Appl Base call is not in the application zone. s

SPECIAL CONSIDERATIONS
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You should not call Set Appl Base at all, but, if you must, be sure not to call it at
interrupt time because it affects memory.

Memory Manager Reference



CHAPTER 2

Memory Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The registers on exit for Set Appl Base are

Registers on exit
DO Result code

noErr 0 No error

Application-Defined Routines

Grow-Zone

The Memory Manager provides a means for you to intervene in its otherwise automatic
operations by allowing you to define a grow-zone function and a purge-warning
procedure.

Note

Many applications use a grow-zone function as part of a general
strategy to prevent low-memory situations. Most applications, however,
do not need to use purge-warning procedures. u

Functions

The Memory Manager calls your application’s grow-zone function whenever it cannot
find enough contiguous memory to satisfy a memory allocation request and has
exhausted other means of obtaining the space.

MyGrowZone

DESCRIPTION

A grow-zone function should have the following form:
FUNCTI ON MyGrowZone (cbNeeded: Size): Longlnt;

cbNeeded The physical size, in bytes, of the needed block, including the block
header. The grow-zone function should attempt to create a free block of at
least this size.

Whenever the Memory Manager has exhausted all available means of creating space
within your application heap—including purging, compacting, and (if possible)
expanding the heap—it calls your application-defined grow-zone function. The
grow-zone function can do whatever is necessary to create free space in the heap.
Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an
emergency memory reserve maintained by your application.
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The grow-zone function should return a nonzero value equal to the number of bytes of
memory it has freed, or zero if it is unable to free any. When the function returns a
nonzero value, the Memory Manager once again purges and compacts the heap zone
and tries to reallocate memory. If there is still insufficient memory, the Memory Manager
calls the grow-zone function again (but only if the function returned a nonzero value the
previous time it was called). This mechanism allows your grow-zone function to release
just a little bit of memory at a time. If the amount it releases at any time is not enough,
the Memory Manager calls it again and gives it the opportunity to take more drastic
measures.

The Memory Manager might designate a particular relocatable block in the heap as
protected; your grow-zone function should not move or purge that block. You can
determine which block, if any, the Memory Manager has protected by calling the
&ZSaveHnd function in your grow-zone function.

Remember that a grow-zone function is called while the Memory Manager is attempting
to allocate memory. As a result, your grow-zone function should not allocate memory
itself or perform any other actions that might indirectly cause memory to be allocated
(such as calling routines in unloaded code segments or displaying dialog boxes).

You install a grow-zone function by passing its address to the | ni t Zone procedure
when you create a new heap zone or by calling the Set G- owZone procedure at any
other time.

SPECIAL CONSIDERATIONS

SEE ALSO

Your grow-zone function might be called at a time when the system is attempting to
allocate memory and the value in the A5 register is not correct. If your function accesses
your application’s A5 world or makes any trap calls, you need to set up and later restore
the A5 register by calling Set Cur r ent A5 and Set A5. See the chapter “Memory
Management Utilities” in this book for a description of these two functions.

Because of the optimizations performed by some compilers, the actual work of the
grow-zone function and the setting and restoring of the A5 register might have to be
placed in separate procedures.

See the chapter “Introduction to Memory Management” in this book for a definition of a
sample grow-zone function.

Purge-Warning Procedures
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The Memory Manager calls your application’s purge-warning procedure whenever it is
about to purge a relocatable block from your application heap.
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MyPurgeProc

A purge-warning procedure should have the following form:
PROCEDURE MyPur geProc (h: Handl e);

h A handle to the block that is about to be purged.

DESCRIPTION

Whenever the Memory Manager needs to purge a block from the application heap, it
first calls any application-defined purge-warning procedure that you have installed. The
purge-warning procedure can, if necessary, save the contents of that block or otherwise
respond to the warning.

Your purge-warning procedure is called during a memory-allocation request. As a result,
you should not call any routines that might cause memory to be moved or purged. In
particular, if you save the data of the block in a file, the file should already be open when
your purge-warning procedure is called, and you should write the data synchronously.

You should not dispose of or change the purgeable status of the block whose handle is
passed to your procedure.

To install a purge-warning procedure, you need to assign its address to the pur gePr oc
field of the associated zone header.

Note

If you call the Resource Manager procedure Set ResPur ge with the
parameter TRUE, any existing purge-warning procedure is replaced
by a purge-warning procedure installed by the Resource Manager.
You can execute both warning procedures by calling Set ResPur ge,
saving the existing value of the pur gePr oc field of the zone
header, and then reinstalling your purge-warning procedure.

Your purge-warning procedure should call the Resource Manager’s
purge-warning procedure internally. u

SPECIAL CONSIDERATIONS

Your purge-warning procedure might be called at a time when the system is attempting
to allocate memory and the value in the A5 register is not correct. If your function
accesses your application’s A5 world or makes any trap calls, you need to set up and
later restore the A5 register by calling Set Cur r ent A5 and Set A5.

Because of the optimizations performed by some compilers, the actual work of the
purge-warning procedure and the setting and restoring of the A5 register might have to
be placed in separate procedures.
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Your purge-warning procedure is called for every handle that is about to be purged
(not necessarily for every purgeable handle in your heap, however). Your procedure
should be able to determine quickly whether the handle it is passed is one whose
associated data needs to be saved or otherwise processed.

See “Installing a Purge-Warning Procedure” on page 2-16 for a definition of a sample
purge-warning procedure and for instructions on installing the procedure.
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Summary of the Memory Manager

Pascal Summary

Constants
CONST
{Gestalt constants}
gestal t OSAttr ='os ', {Q'S attributes}
gest al t TenpMenSuppor t = 4, {tenp nenory support present}
gest al t Real TenpMenory = b5; {tenp nenory handles are real}

gest al t TenpMenilr acked

[
2

{tenp nmenory handl es tracked}

maxSi ze = $800000; {maximum size of a bl ock}
Data Types
TYPE
Si gnedByt e = -128..127; {arbitrary byte of nenory}
Byt e = 0..255; {unsi gned, arbitrary byte}
Ptr = "Si gnedByt e; {pointer to nonrel ocatabl e bl ock}
Handl e = "Ptr; {handl e to rel ocat abl e bl ock}
Str255 = STRI N{F 255] ; {Pascal string}
StringPtr = NStr255
Stri ngHandl e = AStringPtr
ProcPtr = Ptr; {procedure pointer}
Size = Longl nt; {size in bytes of bl ock}
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Zone =
RECORD
bkLi m Ptr; {first usable byte after zone}
purgePtr: Ptr; {used internally}
hFst Fr ee: Ptr; {first free nmaster pointer}
zcbFr ee: Longl nt; {nunber of free bytes}
gzProc: ProcPtr; {grow zone function}
nmor eMast : I nt eger; {nunber of naster ptrs to allocate}
fl ags: I nt eger; {used internally}
cnt Rel : I nt eger; {reserved}
maxRel : I nt eger; {reserved}
cnt NRel : I nt eger; {reserved}
maxNRel : I nt eger; {reserved}
cnt Enpty: I nt eger; {reserved}
cnt Handl es: I nt eger; {reserved}
m nCBFr ee: Longl nt; {reserved}
pur geProc: ProcPtr; {pur ge-war ni ng procedur e}
sparePtr: Ptr; {used internally}
all ocPtr: Ptr; {used internally}
heapDat a: I nt eger; {first usable byte in zone}
END;
THz = "~Zone; {zone pointer}

Memory Manager Routines

Setting Up the Application Heap

PROCEDURE MaxAppl Zone;
PROCEDURE Mbr eMast ers;

Allocating and Releasing Relocatable Blocks of Memory

FUNCTI ON NewHandl e (1 ogical Si ze: Size): Handle;
FUNCTI ON NewHandl eSys (l ogical Si ze: Size): Handle;
FUNCTI ON NewHandl ed ear (l ogical Si ze: Size): Handl e;
FUNCTI ON NewHandl eSysCl ear (| ogi cal Si ze: Size): Handl e
FUNCTI ON NewEnpt yHandl e . Handl e;

FUNCTI ON Newknpt yHandl eSys : Handl e;

PROCEDURE Di sposeHandl e (h: Handl e);
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Allocating and Releasing Nonrelocatable Blocks of Memory

FUNCTI ON NewPt r (logical Si ze: Size): Ptr;
FUNCTI ON Newft r Sys (l ogi cal Si ze: Size): Ptr;
FUNCTI ON NewPt r d ear (l ogical Si ze: Size): Ptr;
FUNCTI ON NewPt r SysCl ear (logical Si ze: Size): Ptr;
PROCEDURE Di sposePtr (p: Ptr);

Changing the Sizes of Relocatable and Nonrelocatable Blocks

FUNCTI ON Get Handl eSi ze (h: Handle): Size;
PROCEDURE Set Handl eSi ze (h: Handl e; newsSize: Size);
FUNCTI ON CGetPtr Si ze (p: Ptr): Size;

PROCEDURE Set Ptr Si ze (p: Ptr; newSize: Size);

Setting the Properties of Relocatable Blocks

FUNCTI ON HCet St at e (h: Handl e): SignedByte;
PROCEDURE HSet St at e (h: Handle; flags: SignedByte);
PROCEDURE HLock (h: Handl e);

PROCEDURE HuUnI ock (h: Handl e);

PROCEDURE HPur ge (h: Handl e);

PROCEDURE HNoPur ge (h: Handl e);

PROCEDURE HSet RBi t (h: Handl e);

PROCEDURE HC r RBi t (h: Handl e);

Managing Relocatable Blocks

PROCEDURE Enpt yHandl e (h: Handl e);

PROCEDURE Real | ocat eHandl e (h: Handl e; |ogical Size: Size);
FUNCTI ON Recover Handl e (p: Ptr): Handl e;

PROCEDURE ReserveMem (cbNeeded: Size);

PROCEDURE ReserveMentys (cbNeeded: Size);

PROCEDURE MbveHHi (h: Handl e);

PROCEDURE HLockHi (h: Handl e);

Manipulating Blocks of Memory

PROCEDURE Bl ockMve (sourcePtr, destPtr: Ptr; byteCount:

FUNCTI ON Pt r ToHand (srchPtr: Ptr; VAR dstHndl: Handl e;
size: Longlnt): OSErr;

FUNCTI ON Pt r ToXHand (srchPtr: Ptr; dstHndl: Handle; size:
OSErr;
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FUNCTI ON HandToHand
FUNCTI ON HandAndHand
FUNCTI ON Pt r AndHand

Assessing Memory Conditions
FUNCTI ON FreeMem

FUNCTI ON Fr eeMentys

FUNCTI ON MaxBI ock

FUNCTI ON MaxBIl ockSys
PROCEDURE Pur geSpace
FUNCTI ON St ackSpace

FUNCTI ON MenErr or

Freeing Memory

FUNCTI ON Conpact Mem
FUNCTI ON Conpact MenfSys
PROCEDURE Pur geMem
PROCEDURE Pur geMentys
FUNCTI ON MaxMem

FUNCTI ON MaxMenBys

Grow-Zone Operations

PROCEDURE Set Gr owZone
FUNCTI ON GZSaveHnd

Allocating Temporary Memory
FUNCTI ON TenpNewHandl e

FUNCTI ON TenpFreeMem
FUNCTI ON TenmpMaxMem

Accessing Heap Zones
FUNCTI ON Cet Zone
PROCEDURE Set Zone

FUNCTI ON Appl i cati onZone
FUNCTI ON Syst enZone
FUNCTI ON Handl eZone
FUNCTI ON Ptr Zone
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Longlnt):

CSErr;

CSErr):

(VAR t heHndl : Handl e): OSErr;
(aHndl, bHndl: Handle): OSErr
(pntr: Ptr; hndl: Handle; size:
Longl nt;
Longl nt ;
Longl nt;
. Longl nt;
(VAR total: Longlnt; VAR contig: Longlnt);
Longl nt;
CSErr;
(cbNeeded: Size): Size;
(cbNeeded: Size): Size;
(cbNeeded: Size);
(cbNeeded: Size);
(VAR grow. Size): Size;
(VAR grow. Size): Size;
(growZone: ProcPtr);
Handl e;
(l ogical Si ze: Size; VAR resultCode
Handl e;
Longl nt;

(VAR grow. Size): Size;

: THz;
(hz: THz);
THz;
: THz;
(h: Handl e): THz;
(p: Ptr): THz;
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Manipulating Heap Zones

FUNCTI ON Get Appl Lim t : btr;

PROCEDURE Set Appl Li m t (zoneLimt: Ptr);

FUNCTI ON TopMem . Ptr;

PROCEDURE | ni t Zone (pG owZone: ProcPtr; cMreMasters: |nteger;

l[imtPtr, startPtr: Ptr);

PROCEDURE | ni t Appl Zone;
PROCEDURE Set Appl Base (startPtr: Ptr);

Application-Defined Routines

Grow-Zone Functions

FUNCTI ON MyGr owZone (cbNeeded: Size): Longlnt;

Purge-Warning Procedures
PROCEDURE MyPur gePr oc (h: Handl e);

C Summary

Constants

/| *Gestalt constants*/

#define gestal t OSAttr ‘os ' [*Q S attributes*/

#def i ne gestal t TenpMenSupport 4; [*tenp nmenory support present*/
#def i ne gestal t Real TenpMenory 5; [*temp menory handl es are real */
#defi ne gestalt TenpMentr acked 6; /*tenp nmenory handl es tracked*/
#defi ne maxSi ze 0x800000; / *maxi mum si ze of a bl ock*/

Data Types

typedef char Si gnedByte; [*arbitrary byte of menory*/

typedef unsi gned char Byte; /*unsi gned, arbitrary byte*/

typedef char *Ptr; [ *poi nter to nonrel ocatabl e bl ock*/
typedef Ptr *Handl e; /*handl e to rel ocatabl e bl ock*/
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typedef unsi gned char Str255[256]; [ *Pascal string*/
typedef unsigned char *StringPtr;
typedef unsigned char **Stri ngHandl e;

typedef long (*ProcPtr)(); [ *procedure pointer*/
typedef |ong Size; [*size in bytes of bl ock*/

struct Zone {

Ptr bkLi m [*first usable byte after zone*/
Ptr purgePtr; [*used internally*/
Ptr hFst Fr ee; [*first free nmaster pointer*/
| ong zcbFr ee; [ *nunber of free bytes*/
G owZoneProcPktr gzProc; [ *grow zone function*/
short nmor eMast ; [ *nunber of master ptrs to allocate*/
short fl ags; [*used internally*/
short cnt Rel ; [ *reserved*/
short maxRel ; [ *reserved*/
short cnt NRel ; [ *reserved*/
short maxNRel ; [ *reserved*/
short cnt Enpty; [ *reserved*/
short cnt Handl es; [ *reserved*/
| ong m nCBFr ee; [ *reserved*/
ProcPtr pur gePr oc; [ * pur ge-war ni ng procedure*/
Ptr sparePtr; [*used internally*/
Ptr al |l ocPtr; [*used internally*/
short heapDat a; [*first usable byte in zone*/
s
typedef struct Zone Zone;
typedef Zone *THz; [ *zone pointer*/

Memory Manager Routines

Setting Up the Application Heap

pascal void MaxAppl Zone (void);
pascal void MreMasters (void);

Allocating and Releasing Relocatable Blocks of Memory

pascal Handl e NewHandl e (Si ze byteCount);
pascal Handl e NewHandl eSys (Size byteCount);
pascal Handl e NewHandl eCl ear (Si ze byt eCount);
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pascal Handl e NewHandl eSysC ear
(Si ze byteCount);
pascal Handl e NewEnpt yHandl e(voi d);
pascal Handl e NewkEnpt yHandl eSys
(void);
pascal void Di sposeHandl e (Handl e h);

Allocating and Releasing Nonrelocatable Blocks of Memory

pascal Ptr NewPtr (Si ze byteCount);
pascal Ptr NewPtr Sys (Si ze byteCount);
pascal Ptr NewPtrd ear (Si ze byteCount);
pascal Ptr NewPtr Sysd ear (Si ze byteCount);
pascal void D sposePtr (Ptr p);

Changing the Sizes of Relocatable and Nonrelocatable Blocks

pascal Size GetHandl eSi ze (Handl e h);

pascal void SetHandl eSi ze (Handl e h, Size newSize);
pascal Size GetPtrSize (Ptr p);

pascal void SetPtrSize (Ptr p, Size newSize);

Setting the Properties of Relocatable Blocks

pascal char HGet State (Handl e h);
pascal void HSet State (Handl e h, char flags);
pascal void HLock (Handl e h);
pascal void HUnl ock (Handl e h);
pascal void HPurge (Handl e h);
pascal void HNoPurge (Handl e h);
pascal void HSet RBit (Handl e h);
pascal void HCOrRBit (Handl e h);

Managing Relocatable Blocks

pascal void EnptyHandl e (Handl e h);

pascal void Real | ocat eHandl e(Handl e h, Size byteCount);
pascal Handl e RecoverHandl e (Ptr p);

pascal void ReserveMem (Si ze cbNeeded);

pascal void ReserveMenBys (Si ze cbNeeded);

pascal void MyveHH (Handl e h);

pascal void HLockHi (Handl e h);

Summary of the Memory Manager
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Manipulating Blocks of Memory

pascal void Bl ockMbve (const void *srcPtr, void *destPtr,

Si ze byt eCount);
pascal OSErr PtrToHand (Ptr srcPtr, Handle *dstHndl, |ong size);
pascal OSErr PtrToXHand (Ptr srcPtr, Handl e dstHndl, |ong size);
pascal OSErr HandToHand (Handl e *t heHndl);
pascal OSErr HandAndHand (Handl e handl, Handl e hand2);
pascal OSErr PtrAndHand (Ptr ptr1, Handle hand2, |ong size);

Assessing Memory Conditions

pascal |ong FreeMem (void);

pascal |ong FreeMenBys (void);

pascal |ong MaxBl ock (void);

pascal |ong MaxBl ockSys (void);

pascal void PurgeSpace (long *total, long *contig);
pascal |ong StackSpace (void);

#defi ne MenError() (* (CsErr*) 0x0220)

Freeing Memory

pascal Size Conpact Mem (Si ze cbNeeded);
pascal Size Conpact MenBys (Si ze cbNeeded);
pascal void PurgeMem (Si ze cbNeeded);
pascal void PurgeMenbys (Si ze cbNeeded);
pascal Size MaxMem (Size *grow);
pascal Size MaxMenBys (Size *grow);

Grow-Zone Operations

pascal void Set G owZone ( GrowZoneProcPtr growZone);
#def i ne GZSaveHnd() (* (Handl e*) 0x0328)

Allocating Temporary Memory

pascal Handl e TenpNewHandl e (Size |ogical Size, OSErr *result Code);
pascal |ong TenpFreeMem (void);
pascal Size TenpMaxMem (Size *grow);
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Accessing Heap Zones

pascal THz Get Zone (void);

pascal void SetZone (THz hz);

#def i ne Appli cationZone() (* (THz*) O0x02AA)
#def i ne Systen?Zone() (* (THz*) 0x02A6)
pascal THz Handl eZone (Handl e h);

pascal THz PtrZone (Ptr p);

Manipulating Heap Zones

#def i ne Get Appl Linmit() (* (Ptr*) 0x0130)

pascal void SetAppl Limnit (void *zoneLimt);

#def i ne TopMem() (* (Ptr*) 0x0108)

pascal void InitZone (G owZoneProcPtr pgrowZone, short cnoreMasters,
void *IimtPtr, void *startPtr);

pascal void |nitAppl Zone (void);

pascal void Set Appl Base (void *starthtr);

Application-Defined Routines

Grow-Zone Functions
pascal | ong MyG owZone (Si ze cbNeeded);

Purge-Warning Procedures

pascal void MyPurgeProc (Handl e h);

Assembly-Language Summary

Constants

;flags in trap words
CLEAR EQU $200 ;set all bytes in block to O
SYS EQU $400 ;use the system heap

;values for the tag byte of a bl ock header

t yBkFree EQU 0 ;free bl ock
t yBkNRel EQU 1 ; nonrel ocat abl e bl ock
t yBkRel EQU 2 ;rel ocatabl e bl ock
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;flags for the high-order byte of a 24-bit master pointer

| ock EQU 7 ;lock bit
pur ge EQU 6 ;purge bit
resource EQU 5 ;resource bit
Data Structures
Zone Data Structure
0 bkLi m long pointer to first usable byte after zone
4 purgePtr long used internally
8 hFst Fr ee long first free master pointer
12 zcbFree 4 bytes number of free bytes in zone
16 gzProc long grow-zone function
20 mAl | ocCnt word number of master pointers to allocate
22 flags word used internally
24 cnt Rel word reserved
26 maxRel word reserved
28 cnt NRel word reserved
30 maxNRel word reserved
32 cnt Enpty word reserved
34 cnt Handl es word reserved
36 m nCBFr ee long reserved
40 pur gePr oc long purge-warning procedure
44 sparePbtr long used internally
48 al | ocPtr long used internally
52 heapDat a word first usable byte in zone

Parameter Block for I ni t Zone Procedure

0
4
8
10

startPtr
limtPtr
cMoreMasters
pG owZone

Trap Macros

long
long
word
long

first byte of new zone

first byte beyond new zone

number of master pointers to be allocated at a time
pointer to grow-zone function for new zone

Trap Macro Names

Pascal

name

Bl ockMbve
Conpact Mem
Conmpact Mentys
D sposeHandl e

Di sposePtr
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Trap macro name
_ Bl ockMove
_Conpact Mem

_Conpact Mem
_Di sposeHandl e

_Di sposePtr
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Pascal name

Enpt yHandl e
FreeMem
FreeMentys

Get Handl eSi ze
GetPtrSi ze

Get Zone
HandAndHand
Handl eZone
HandToHand

HO r RBi t

HCet St at e
HLock

HNoPur ge

HPur ge

HSet RBi t

HSet St at e

HUnl ock

I ni t Appl Zone

I nitZone
MaxAppl Zone
MaxBl ock

MaxBl ockSys
MaxMem
MaxMenBys

Mor eMast er s
Mov e HHi

NewEnpt yHandl e
NewEnpt yHandl eSys
NewHand! e
NewHand| eCl ear
NewHandl eSys
NewHand| eSysd ear
NewPt r

NewPt r Cl ear
NewPt r Sys
NewPt r Sysd ear

Trap macro name
_Enpt yHandl e
_FreeMem
_FreeMem

_CGet Handl eSi ze
_CGetPtrSize
_Get Zone
_HandAndHand
_Handl eZone
_HandToHand
_HArRBit
_HCGet State
_HLock
_HNoPur ge
_HPur ge

_HSet RBi t
_HSet State
_HuUnl ock

_I'ni t Appl Zone
_InitZone
_MaxAppl Zone
_MaxBl ock
_MaxBl ock
_MaxMem
_MaxMem
_MoreMasters
_MoveHHi
__NewEnpt yHandl e
__NewEnpt yHandl e
_NewHandl e
_NewHandl e
_NewHandl e
_NewHandl e
_NewPt r

_NewPt r

_NewPt r

_NewPt r
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Pt r AndHand

Pt r ToHand

Pt r ToXHand

Pt r Zone
Pur geMem

Pur geMentys
Pur geSpace
Real | ocat eHandl e

Recover Handl e

ReserveMem

Reser veMentys
Set Appl Base
Set Appl Li m t
Set G owZone
Set Handl eSi ze
SetPtrSize

Set Zone

St ackSpace

Trap macro name
_Ptr AndHand
_PtrToHand
_PtrToXHand
_PtrZone
_PurgeMem
_PurgeMem

_Pur geSpace
_Real | ocHandl e
_Recover Handl e
_ResrvMem
_ResrvMem

_Set Appl Base
_Set Appl Lim t
_Set G owZone
_Set Handl eSi ze
_SetPtrSize
_Set Zone
_StackSpace

Trap Macro Requiring Routine Selectors

_OSDi spat ch

Selector Routine

$0015 TenpMaxMem
$0018 TenpFr eeMem
$001D TenmpNewHandl| e

Global Variables

Appl Li mt long
Appl Zone long
Buf Ptr long
Cur St ackBase long
&ZRoot Hnd long
HeapEnd long
MentEr r word
MenmTop long
SysZone long
TheZone long
2-104

The application heap limit, beyond which the heap cannot expand.

A pointer to the original application heap zone.

Address of highest byte of allocatable memory.

Address of base of stack; start of application global variables.

A handle to a block that the grow-zone function must not move.
Address of end of application heap zone.

The current value that MenEr r or would return.

After startup time, the address at the end of an application’s partition.
A pointer to the system heap zone.

A pointer to the current heap zone.
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Result Codes

noErr 0 No error

par ankrr -50 Error in parameter list

menROZEr r -99 Operation on a read-only zone
mentul | Err -108 Not enough memory

ni | Handl eErr -109 NI L master pointer

memAZEr r -111 Attempt to operate on a free block
menPur Er r -112 Attempt to purge a locked block
menBCEr r -115 Block check failed

menLockedErr -117 Block is locked
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Virtual Memory Manager

This chapter describes the Virtual Memory Manager, the part of the Operating System
that allows memory to be extended beyond the limits of the physical address space
provided by the available RAM. A user can select (in the Memory control panel) whether
to enable this larger or “virtual” address space.

Most applications are completely unaffected by the operation of the Virtual Memory
Manager and have no need to know whether any virtual memory is available.

You might, however, need to intervene in the otherwise automatic workings of

the Virtual Memory Manager if your application has critical timing requirements,
executes code at interrupt time, or performs debugging operations.

The Virtual Memory Manager also offers services that might be of use to software
components even if virtual memory is not enabled on a particular computer. On some
Macintosh computers, the physical address space is discontiguous and is therefore not
identical with the logical address space. In normal operations, the Operating System uses
the MMU coprocessor to map logical addresses to their corresponding physical
addresses. In some cases, however, you might need to perform this address mapping
yourself. For example, if you are writing software that runs in the Macintosh Operating
System but communicates addresses to NuBus™ expansion cards with bus master

or direct memory access (DMA) capabilities, you need to pass physical and not

logical addresses. You can use the Virtual Memory Manager to determine those
physical addresses.

To use this chapter, you should be familiar with the normal operation of the Memory
Manager, as described in the chapter “Introduction to Memory Management” in this
book. If your application or other software executes code at interrupt time, you should
also be familiar with the process of scheduling interrupt code, as described in the chapter
“Introduction to Processes and Tasks” in Inside Macintosh: Processes.

This chapter begins with a description of how the Virtual Memory Manager provides
virtual memory. It explains how the logical and physical address spaces are mapped to
one another and when you might need to use the services provided by the Virtual
Memory Manager. Then it explains how you can use the Virtual Memory Manager to

n make portions of the logical address space resident in physical RAM

n make portions of the logical address space immovable in physical RAM
n map logical to physical addresses

n defer execution of application-defined interrupt code until a safe time

This chapter also provides information about a number of routines that are useful only
for the implementation of debuggers that operate under virtual memory.

About the Virtual Memory Manager

The Virtual Memory Manager is the part of the Operating System that provides virtual
memory, addressable memory beyond the limits of the available physical RAM. The
principal benefit of using virtual memory is that a user can run more applications at once
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and work with larger amounts of data than would be possible if the logical address
space were limited to the available RAM. Instead of equipping a computer with amounts
of RAM large enough to handle all possible needs, the user can install only enough RAM
to meet average needs. Then, during those occasional times when more memory is
needed for large tasks or many applications, the user can take advantage of virtual
memory. When virtual memory is present, the perceived amount of RAM can be
extended to as much as 14 MB on systems with 24-bit addressing and as much as 1 GB
on systems with 32-bit addressing.

The Virtual Memory Manager also provides a number of routines that your software can
use to modify or get information about its operations. You can use the Virtual Memory
Manager to

n hold portions of the logical address space in physical RAM
n lock portions of the logical address space in their physical RAM locations

n determine whether a particular portion of the logical address space is currently in
physical RAM

n determine, from a logical address, the physical address of a block of memory

This section describes how the Virtual Memory Manager provides virtual memory. It
also explains why you might need to use certain Virtual Memory Manager routines even
when virtual memory is not available.

Virtual Memory

The Virtual Memory Manager extends the logical address space by using part of the
available secondary storage (such as a hard disk) to hold portions of applications and
data that are not currently in use in physical memory. When an application needs to
operate on portions of memory that have been transferred to disk, the Virtual Memory
Manager loads those portions back into physical memory by making them trade places
with other, unused segments of memory. This process of moving portions (or pages) of
memory between physical RAM and the hard disk is called paging.

For the most part, the Virtual Memory Manager operates invisibly to applications and to
the user. Most applications do not need to know whether virtual memory is installed
unless they have critical timing requirements, execute code at interrupt time, or perform
debugging operations. The only time that users need to know about virtual memory is
when they configure it in the Memory control panel. One visible cost of this extra
memory is the use of an equivalent amount of storage on a storage device, such as a SCSI
hard disk. Another cost of using virtual memory is a possible perception of sluggishness
as paged-out segments of memory are pulled back into physical memory. Performance
degradation due to the use of virtual memory ranges from unnoticeable to severe,
depending on the ratio of virtual memory to physical RAM and the behavior of the
actual applications running.
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There are two main requirements for running virtual memory. First, the computer must
be running system software version 7.0 or later. Second, the computer must be equipped
with an MMU or PMMU coprocessor. Apple’s 68040- and 68030-based machines have
an MMU built into the CPU and are ready to run virtual memory with no additional
hardware. A Macintosh Il (68020-based) computer can take advantage of virtual memory
if it has the 68851 PMMU coprocessor on its main logic board in place of the standard
Address Management Unit (AMU). (The PMMU is the same coprocessor needed to run
A/UX.) Apple’s 68000-based machines cannot take advantage of virtual memory.

Users control and configure virtual memory through the Memory control panel. Controls
in this panel allow the user to turn virtual memory on or off, set the size of virtual
memory, and set the volume on which the invisible backing-store file resides. (The
backing-store file is the file in which the Operating System stores the contents of
nonresident pages of memory.) Other memory-related user controls appear in this
control panel. These include settings for the disk cache and for 24-bit or 32-bit Memory
Manager addressing. If users change the virtual memory, addressing, or disk cache
settings, they must restart the computer for the changes to take effect.

The virtual memory setting in the control panel reflects the total amount of memory
available to the system (and not simply the amount of memory to be added to available
RAM). Also, the backing-store file is as large as the amount of virtual memory. This
backing-store file can be located on any HFS volume that allows block-level access. (This
volume is known as the paging device or backing volume.) Because the paging device
must support block-level access, users cannot select as the paging device a volume
mounted through AppleShare. Also, users cannot select removable disks, including
floppy disks, as paging devices.

The Logical Address Space

When virtual memory is present, the logical address space is larger than the physical
address space provided by the available RAM. The actual size of the logical address
space, and hence the amount of virtual memory, depends on a number of factors,
including

n the addressing mode currently used by the Memory Manager

n the amount of space available on a secondary storage device for use by the
backing-store file

n if 24-bit addressing is in operation, the number of NuBus expansion cards, if any,
installed in the computer

24-Bit Addressing

When running with 24-bit addressing, the Memory Manager can address at most

224 bytes, or 16 MB. Of these 16 MB, at most 8 MB can be used to address physical RAM.
The remaining 8 MB are devoted to ROM addresses, 1/0 device addresses, and NuBus
slot addresses. Figure 3-1 illustrates the logical address space mapping used by the 24-bit
Memory Manager.
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Note

In some Macintosh computers, the ROM is mapped to the address range
$01000000 to $010FFFFF (indicated as belonging to slot $A in Figure 3-1).
In these computers, the maximum amount of physical RAM is 10 MB
instead of 8 MB. The remainder of this section describes the original
layout of the 24-bit logical address space only. u

3-6

Figure 3-1 24-bit Memory Manager logical address space
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When 24-bit addressing is in operation and virtual memory is available, the Virtual
Memory Manager uses, as part of the addressable application memory, any 1 MB
segments not assigned to a NuBus card. For example, if a Macintosh computer has three
NuBus expansion cards installed, that computer can address at most 11 MB of virtual
memory. The maximum amount of virtual memory possible in a 24-bit environment is
14 MB (that is, 8 MB of physical RAM + 6 MB of additional space previously reserved for
the NuBus); this maximum is achievable only on a computer with no NuBus expansion
cards installed.

Notice in Figure 3-1 that addresses from $00800000 to $008FFFFF are reserved for ROM.
In other words, the largest contiguous block of space that an application can allocate
when virtual memory is available is somewhat less than 8 MB, even though the total
amount of virtual memory available can be as large as 14 MB. The rest of the virtual
memory can be in a contiguous block as large as 4 or 5 MB, unless the user has
fragmented the NuBus space by making a poor choice of slots in which to install
expansion cards. To maximize the amount of contiguous virtual memory, users should
place cards in consecutive slots at either end of the expansion bus. A haphazard
placement of NuBus cards may result in a number of 1 MB or 2 MB “islands” in the
upper portion of the 24-bit address space; in general, this kind of fragmentation reduces
the effectiveness of a large virtual address space.

Note

Some Macintosh computers have fewer than six NuBus slots, and the
numbering of the slots is not consistent across different models. In a
Macintosh llcx, the three available slots are numbered $9 through $B, so
expansion cards should be grouped toward the lowest-numbered slot
(contiguous with the ROM space). In a Macintosh lici, the slots are
numbered $C through $E, so expansion cards should be grouped toward
the highest-numbered slot (contiguous with the 1/0 space). However,
the RAM-based video on the Macintosh llci occupies addresses reserved
for slot $B; as a result, it is impossible to avoid some degree of
fragmentation of the virtual address space when you use the
RAM-based video option on that computer. u

32-Bit Addressing

When running with 32-bit addressing, the Memory Manager can address at most

232 bytes, or 4 GB. Of these 4 GB, at most 1 GB can be used to address physical RAM. The
remaining 3 GB are devoted to ROM addresses, 1/0 device addresses, and NuBus slot
addresses. Figure 3-2 illustrates the logical address space mapping used by the 32-bit
Memory Manager.
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Figure 3-2 32-bit Memory Manager logical address space
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Note

The fragmentation of the virtual address space that sometimes occurs

when 24-bit addressing is in operation is never a problem when 32-bit
addressing is in operation. In the 32-bit address space, virtual memory
and the NuBus slots do not share space. u

The Physical Address Space

The original versions of the Macintosh Operating System used physical addresses
exclusively. A particular location in RAM could be accessed by its physical address,
regardless of whether that address was generated by an application, by the system
software, or even by a NuBus expansion card. In short, there was no difference between
the logical and the physical address spaces.

However, both hardware and software advances have forced the Operating System

to abstract the logical address space from the physical address space. As you have seen,
the logical address space is larger than the physical address space when virtual memory
is available. The Operating System uses the MMU coprocessor to map logical addresses
to their corresponding physical addresses.

In addition, some Macintosh computers have a discontiguous physical address space.
For example, on a Macintosh llci with 8 MB of physical RAM, the physical memory
appears to the CPU and to the NuBus expansion bus as two separate 4 MB ranges
(see Figure 3-3). As you can see, the physical RAM occupies two separate ranges:

the RAM installed in bank A, ranging from $00000000 to $003FFFFF, and the RAM
installed in bank B, ranging from $04000000 to $043FFFFF.
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Figure 3-3 The physical address space on a Macintosh lici with 8 MB of RAM
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In most cases, a discontiguous physical address space causes no problems, because the
Operating System uses the MMU coprocessor to map the available physical memory into
a single contiguous logical address space. All memory addresses returned to your
application by the Memory Manager (for instance, when you allocate a new block by
calling NewHandl e) are logical addresses. When you read or write a logical memory
address, the Operating System uses the MMU coprocessor to determine the physical
address corresponding to your logical address. This address translation is completely
transparent to your application. For example, if you read the system global variable
located at address $10C, it doesn’t matter that the CPU actually looks at the physical
address $0400010C.
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In some cases, however, you can run into problems if you don’t account for the
possibility that the logical address space and the physical address space might differ.
Suppose, for instance, that you are developing a driver that passes addresses to NuBus
master hardware. In this case, you need to take care to pass it physical addresses only,
because NuBus hardware does not use the MMU to translate logical addresses into
physical addresses. If your driver passes a logical address, the NuBus hardware cannot
translate it into a physical address because it does not have access to the MMU’s
address-mapping tables. If your hardware then attempts to write data to that address, it
is likely to overwrite some other portion of physical memory.

To prevent this problem, you need to make certain that you always convert logical
addresses to their corresponding physical addresses before you pass those addresses to
any alternate bus master. You can do this by calling the Get Physi cal function, as
described later in “Mapping Logical to Physical Addresses,” which begins on page 3-16.
The Get Physi cal function is implemented in ROM on all machines that have a
discontiguous physical address space—whether or not virtual memory is available.
Accordingly, before you pass addresses to an alternate bus master, you should check for
the availability of the Get Physi cal call; if it's available, you should use it to translate
logical to physical addresses.

Note

Passive or slave NuBus cards (such as video cards) that do not read or
write physical RAM are not likely to be affected by the presence of
virtual memory or by a discontiguous physical address space. u

Page Faults

When an application or other software component tries to access data in a page of
memory that is not currently resident in RAM, the Operating System issues a special
kind of bus error known as a page fault. The Virtual Memory Manager intercepts page
faults and tries to load the affected page or pages into memory. It does so by executing
its own internal page-fault handler, which handles page faults and passes other bus
errors to the standard bus-error vector in low memory.

To load the required pages into memory, the Virtual Memory Manager’s page-fault
handler takes over the SCSI bus and makes calls directly to the driver of the
backing-store file. While the Virtual Memory Manager is handling a page fault, it is
essential that no other page faults occur. If a page fault did occur during page-fault
handling—a condition known as a double page fault—the Virtual Memory Manager
would have to interrupt the driver of the paging device to make a further request to load
the needed page. Unless the driver of the paging device is concurrent (that is, able to
handle several requests at once), the driver cannot handle this second request.
Unfortunately, current versions of most SCSI disk drivers are not concurrent. As a result,
a double page fault results in a system crash.

The Virtual Memory Manager takes special steps to avoid double page faults caused by
user code (that is, code that is not executed as the result of an exception). It defers all
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user code while the driver of the paging device is busy. In particular, the Virtual Memory
Manager defers until a safe time the following types of code:

n VBL tasks
n Slot-based VBL tasks
n Time Manager tasks

n 1/0 completion routines

Note

Because these types of tasks may be deferred under virtual memory,
any application or device driver that uses them to achieve real-time
performance might be adversely affected by the operation of the Virtual
Memory Manager. u

Other software components must take care not to cause page faults at interrupt time. In
particular, device drivers, which commonly run at interrupt time, should make certain
that any data structures or buffers that they reference at interrupt time are in physical
memory at that time. You can make sure that this happens by holding the required data
in physical memory, as described in “Holding and Releasing Memory” on page 3-14.

In an effort to maintain compatibility with existing drivers, the Operating System
automatically keeps the entire system heap in physical memory at all times. Therefore,
if your device driver and its associated data structures are loaded into the system heap,
you do not need to worry about causing page faults at interrupt time.

WARNING

Future versions of the system software are not guaranteed to keep the
entire system heap in physical memory. To be safe, you should explicitly
hold in physical memory any code or data that you know might be
accessed at interrupt time. s

The Virtual Memory Manager provides this further level of protection against page
faults caused by device drivers at interrupt time: it automatically holds in physical
memory any buffers used by the Device Manager _Read and _W i t e operations. Any
driver that uses the _Read and_W i t e calls to move data between main memory and
the driver’s associated hardware device is therefore automatically compatible with
virtual memory. If, however, you use _St at us or _Cont rol calls to move data at
interrupt time, you must explicitly hold or lock all buffers that are referenced in the
_Status or_Control parameter block. If possible, you should rewrite your driver
so that ituses _Read and_W i t e calls instead of _St at us and_Contr ol calls to
move data.

The Virtual Memory Manager provides one other routine that you can use to help
prevent double page faults. If your application or other code installs interrupt routines
other than those handled automatically by the Virtual Memory Manager (such as VBL
tasks, Time Manager tasks, and Device Manager completion calls), you can explicitly
defer the execution of the routine by calling it via the function Def er User Fn. See
“Deferring User Interrupt Handling” on page 3-20 for details on calling Def er User Fn.
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Using the Virtual Memory Manager

The routines described in this section allow drivers and applications with critical timing
needs to intervene in the otherwise automatic workings of the Virtual Memory
Manager’s paging mechanism.

Note

The vast majority of applications do not need to use these

routines. They are used primarily by drivers, debuggers, and other
interrupt-servicing code. u

If necessary, your software can request that a range of memory be held in physical
memory. Holding means that the specified memory range cannot be paged out to disk,
although it might be moved within physical RAM. As a result, no page faults can result
from reading or writing memory addresses of pages that are held in memory.

Similarly, a page or range of pages can be locked in physical memory. Locking means
that the specified memory cannot be paged out to disk and that the memory cannot
change its real (physical) RAM location. You can also request that a range of pages be
locked in a contiguous range of physical memory, although contiguity is not guaranteed.
The need to lock pages in a contiguous area of memory arises primarily when external
hardware transfers data directly into physical RAM. In this case, locking might be useful
for keeping a contiguous range of memory stationary during operations of an external
CPU (on a NuBus card, for example) that cannot support a DMA action.

Most applications do not need to hold or lock pages in physical RAM. The Virtual
Memory Manager usually works quickly enough that your application is not affected by
any delay that might result from paging. Device drivers or sound and animation
applications with critical timing requirements usually need only to hold memory, not
lock it. Here are some general rules regarding when to hold or lock memory:

n Avoid executing tasks that could cause page faults at interrupt time. The less work
done at interrupt time, the better for all applications running.

n You cannot hold or lock memory (or call any Memory Manager routines that move or
purge memory) at interrupt time.

n Don’t lock or hold everything in RAM. Sometimes you do need to hold or lock pages
in RAM, but if you are in doubt, then probably you need to do neither.

n Your application must explicitly release or unlock whatever it held or locked. If for
some reason an area of RAM is held and locked, or held twice, then it must be
released and unlocked, or released twice.

The last directive is especially important. Your application is responsible for undoing the
effects of locking or holding ranges of memory. In particular, the Virtual Memory
Manager does not automatically unlock pages that have been locked. If you do not undo
these effects in a timely fashion, you are likely to degrade performance. In the worst
case, you could cause the system to run out of physical memory.
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Obtaining Information About Virtual Memory

You should always determine whether virtual memory is available before attempting to
use any Virtual Memory Manager routines. To do this, pass the Gest al t function the
gestal t VMAt t r selector. The Gest al t function’s response indicates the version of
virtual memory, if any, installed. If bit 0 of the response is set to 1, then the system
software version 7.0 implementation of virtual memory is installed.

Note

Sometimes you don’t need to check whether virtual memory is actually
available before calling some Virtual Memory Manager routines. For
example, you might need to call the Get Physi cal function even if
virtual memory is not enabled. Instead of calling Gest al t to see
whether virtual memory is available, you should simply test whether
the appropriate trap is available. In the case of the Get Physi cal
function, you should check that the _Menor yDi spat chAOResul t trap
is available. u

You can also use the Gest al t function to obtain information about the memory
configuration of the system, in particular, information about the amount of physical
memory installed in a computer, the amount of logical memory available in a computer,
the version of virtual memory installed (if any), and the size of a logical page. By
obtaining this information from Gest al t , you can help insulate your applications or
drivers from possible future changes in the details of the virtual memory
implementation.

Holding and Releasing Memory

You can use the Hol dMenor y function to make a portion of the address space resident in
physical memory and ineligible for paging. This function is intended primarily for use
by drivers that access user data buffers at interrupt level, whether transferring data to or
from them. Calling Hol dMenor y on the appropriate memory ranges thus prevents them
from causing page faults at interrupt level and effectively prevents them from generating
fatal double page faults. The contents of the specified range of virtual addresses can
move in physical memory, but they are guaranteed always to be in physical memory
when accessed.

Note

If you use the device-level Read and_W i t e functions when doing

data transfers, the Virtual Memory Manager automatically ensures that

the data buffers and parameter blocks are held before the transfer

of data. u

The following sample code instructs the Virtual Memory Manager to hold in RAM an
8192-byte range of memory starting at address $32500:

nyAddress : = $32500;
myLength : = 8192;
myErr := Hol dMenory( nyAddress, nyLength);
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Note that whole pages of the virtual address space are held, regardless of the starting
address and length parameters you supply. If the starting address parameter supplied to
the Hol dMenor y function is not on a page boundary, then it is rounded down to the
nearest page boundary. Similarly, if the specified range does not end on a page boundary,
the length parameter is rounded up so that one or more whole pages are held. This
rounding might result in the holding of several pages of physical memory, even if the
specified range is less than a page in length.

To release memory held as a result of a call to Hol dMenor y, you must use the

Unhol dMenor y function, which simply reverses the effects of the Hol dMenory
function. For example, the page or pages held in memory in the previous example can be
released as follows:

myErr : = Unhol dMenory(nmyAddress, nylLength);

Like holding, releasing applies to whole pages of the virtual address space. Similar
rounding of the address and length parameters is performed, as required, to make the
range begin and end on page boundaries.

Note

In current versions of system software, the system heap is always held
in memory and is never paged out. u

Locking and Unlocking Memory

You can use the LockMenor y function to make a portion of the address space
immovable in physical memory and ineligible for paging. The Operating System may
move the contents of the specified range of logical addresses to a more convenient
location in physical memory during the locking operation, but on completion, the
contents of the specified range of logical addresses are resident and do not move in
physical memory.

Locking a range of memory is a more drastic measure than just holding it. Locking not
only forces the range to be held resident in RAM but also prevents its logical address
from moving with respect to its physical address. The LockMenor y function is used by
drivers and other code when hardware other than the Macintosh CPU is transferring
data to or from user buffers, such as any NuBus master peripheral card or DMA
hardware. This function prevents both paging and physical relocation of a specified
memory area and allows the physical addresses of a memory area to be exported to the
non-CPU hardware. Typically, you would use this service for the duration of a single
1/0 request. However, you could use this service to lock data structures that are
permanently shared between a driver (or other code) and a NuBus master.

Note

Don’t confuse locking address ranges in RAM (using LockMenor y)
with locking a handle (using HLock). A locked handle can still be
paged out. u
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The main reason to disable movement of pages in physical memory is to allow
translation of virtual memory addresses to physical addresses. This translation is needed
by bus masters, which must write to memory in the physical address space. To avoid
stale data, the memory locked in RAM is marked as noncacheable in the MMU

page tables.

You can lock a range of memory in a contiguous range of physical memory by calling the
LockMenor yCont i guous function. This function can be used by driver and NuBus
master or driver and DMA hardware combinations when a non-CPU device accessing
memory cannot handle physically discontiguous data transfers. You can also use this
service when the transfer of physically discontiguous data would degrade performance.
However, the call to LockMenor yCont i guous may be expensive, because sometimes
entire pages must be copied to make a range contiguous.

Note

It might not be possible to make a range physically contiguous if any of
the pages in the range are already locked. Because a call to

LockMenor yCont i guous is not guaranteed to return the desired
results, you must include in your code an alternate method for locking
the necessary ranges of memory. In general, you should avoid calling
LockMenor yCont i guous if at all possible. If you must call it, do so as
early as possible—preferably at system startup time—to increase the
likelihood of finding enough contiguous memory. u

To unlock a range of previously locked pages, use the Unl ockMenor y function. This
function reverses the effects of LockMenory or LockMenor yCont i guous. Unlocked
pages are marked as cacheable.

Locking, contiguous locking, and unlocking operations are applied to ranges of the
logical address space. If hecessary to force the ranges onto page boundaries, the Virtual
Memory Manager performs rounding of addresses and sizes, as described in “Holding
and Releasing Memory” on page 3-14.

Mapping Logical to Physical Addresses

To obtain information about page mapping between logical and physical addresses, use
the Get Physi cal function, which translates logical addresses into their corresponding
physical addresses. It provides drivers and other software with the actual physical
memory addresses of a specified logical address range. Non-CPU devices need this
information to access memory mapped by the CPU.
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The Get Physi cal function allows you to obtain the physical addresses that correspond
to any logically addressable range of main memory. To specify the logical address

range to be translated, you use a memory-block record, defined by the Menor yBl ock
data type.

TYPE MenoryBl ock =

RECORD
addr ess: Ptr; {start of bl ock}
count: Longl nt ; {si ze of bl ock}
END,

A memory-block record identifies a single contiguous block of memory by specifying the
first byte in the block and the length of the block.

Note

Don’t confuse the blocks of memory defined by the Menor yBI ock data
type with memory blocks as manipulated by the Memory Manager. The
portion of the logical address space to be translated by Get Physi cal
can overlap several Memory Manager memory blocks or be just a part of
one. Typically, however, that range coincides with the contents of a
single Memory Manager block. u

A single logical address range sometimes corresponds to more than one range of
physical addresses. As a result, Get Physi cal needs to pass back to your application an
array of memory-block records. You pass a logical address range to Get Physi cal , and
it returns an array of physical address ranges. This operation requires the use of a
logical-to-physical translation table, defined by the Logi cal ToPhysi cal Tabl e
data type.

TYPE Logi cal ToPhysi cal Tabl e =

RECORD
| ogi cal : Menor yBl ock; {a | ogi cal bl ock}
physi cal : ARRAY][ 0. . def aul t Physi cal EntryCount-1] OF
Menor yBl ock; {equival ent physical bl ocks}
END;

To call Get Physi cal , you need to pass a translation table whose | ogi cal field
specifies the logical address range you want to translate. You also need to specify how
many contiguous physical address ranges you want returned. In this way, you can adjust
the number of elements in the array to suit your own needs. By default, a translation
table contains enough space for eight physical memory blocks.

CONST def aul t Physi cal EntryCount = 8;
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If the variable nmyTabl e is of type Logi cal ToPhysi cal Tabl e and myCount is of type
Longl nt, you can call Get Physi cal as follows:

myCount := (SizeO (nyTable) DV SizeO'(MenoryBl ock)) - 1;
myErr := Get Physical (nmyTabl e, nyCount);

The algorithm used here to calculate the number of physical entries returned (myCount )
allows you to change the size (and hence the type) of the nyTabl e variable to include
more or fewer memory blocks. The default size of the translation table is sufficient for
most purposes. Before you do the translation, you can determine how many physical
blocks you need to accommodate the entire logical address space specified in the table’s

| ogi cal parameter. To determine this, you pass a variable whose initial value is 0:

myCount : = 0; {get nunber of bl ocks needed for given range}
myErr := Get Physical (myTabl e, nyCount);

If the value of its second parameter is 0, Get Physi cal returns in that parameter the
total number of physical blocks that would be required to translate the entire logical
address range. In this case, both the | ogi cal andphysi cal fields of the translation
table are unchanged.

If the value of its second parameter is not 0, Get Physi cal returnsin the physi cal
field of the translation table an array specifying the physical blocks that correspond to
the logical address specified in the | ogi cal field. The Get Physi cal function returns
in its second parameter the number of entries in that array (which may be fewer than
were asked for). If the translation table was not large enough to contain all the physical
blocks corresponding to the logical block, Get Physi cal updates the fields of the

| ogi cal memory block to reflect the remaining number of bytes in the logical range left
to translate (count field) and the next address in the logical address range to translate
(start field).

Note

You must lock (using LockMenor y) the address range passed to

Get Physi cal to guarantee that the translation data returned are
accurate (that is, that the logical pages do not move around in physical
memory and that paging activity has not invalidated the translation
data). An error is returned if you call Get Physi cal onan address
range that is not locked. u

Recall that you sometimes need to call Get Physi cal even if virtual memory is not
available. (See “The Physical Address Space” on page 3-9 for details.) In general, if
Get Physi cal is available in the operating environment, then you should call it
any time your software exports addresses to a NuBus expansion card that can read or
write physical RAM directly. Listing 3-1 defines a general algorithm for implementing
driver calls to a generic NuBus master card. To maximize compatibility with virtual
memory, make sure that your hardware and device drivers support this method of
issuing driver calls.
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Listing 3-1 Translating logical to physical addresses

PROGRAM Get Physi cal Usage;
USES Types, Traps, Menory, UWilities;

CONST
kTest PtrSi ze = $100000;
VAR
myPtr: Ptr;
nyPtr Si ze: Longl nt;
hasGet Physi cal : Bool ean; {does this nmachi ne have Get Physi cal ?}
| ockOK: Bool ean; {was the block successfully |ocked?}
nyErr: OSErr;
myTabl e: Logi cal ToPhysi cal Tabl e;
my Count : Longl nt;
i ndex: | nt eger;

PROCEDURE SendDVACnd (addr: Ptr; count: Longlnt);
BEG N
{This is where you woul d probably nmake a driver call }
{ toinitiate DVA froma NuBus master or simlar hardware.}
END;
BEG N
myPtrSize := kTestPtrSize;
nmyPtr := NewPtr(nyPtrSize);
IF nyPtr <> NIL THEN

BEG N
hasGet Physi cal := TrapAvail abl e(_MenoryDi spat ch);
| F hasGet Physi cal THEN
BEG N

nyErr := LockMenory(myPtr, nyPtrSize);
| ockOK := (nmyErr = noErr);
I F 1 ockOK THEN
BEG N
myTabl e. | ogi cal . address : = nyPtr;
myTabl e. | ogi cal . count := nyPtrSi ze;

nyErr := noErr;
VWHI LE (nmyErr = noErr) & (myTabl e.logical.count <> 0) DO
BEG N

myCount := SizeO (nyTable) DIV SizeO (MenoryBl ock) - 1;
myErr := Get Physical (nmyTabl e, nyCount);
IF nyErr = noErr THEN
FOR index := 0 TO (myCount - 1) DO
W TH nyTabl e DO
SendDMACTd( physi cal [ i ndex] . addr ess,
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physi cal [ i ndex] . count)
ELSE
BEG N
{Handl e Get Physical error indicated by nyErr.}
{Loop will terminate unless nyErr is reset to noErr.}
END,
END;, {WH LE}
{Always unl ock a range you | ocked; ignore any error here.}
myErr := Unl ockMenory(nyPtr, nyPtrSize);

END
ELSE {not | ockOK}
BEG N
{handl e LockMenory error indicated by nyErr}
END,;
END
ELSE {Get Physi cal not avail abl e}

SendDVACd( myPtr, nyPtrSize);

END, {IF nyPtr}
END.

If the Get Physi cal function is not available, the program defined in Listing 3-1 simply
calls your routine to send a DMA command to the NuBus hardware. In that case, no
address translation is necessary. If, however, Get Physi cal is available, you need to
lock the logical address range whose physical addresses you want to get. If you
successfully lock the range, you can call Get Physi cal as illustrated earlier. Be sure to
unlock the range you previously locked before exiting the program.

WARNING

Some Macintosh computers contain the_Menor yDi spat ch trap in
ROM, even though they do not contain an MMU coprocessor. In this
case, the system software patches the _Menor yDi spat ch trap to make
it appear unimplemented. However, software that executes before
system patches are installed cannot use this as a test of whether to call
Get Physi cal or not. If your code is executed before the installation of
system patches, you should use the Gest al t function to test directly for
the existence of an MMU coprocessor. s

Deferring User Interrupt Handling

During the time that the Macintosh is handling a page fault, it is critical that no other
page faults occur. Because the system performs no other work while it is handling a page
fault, only code that runs as a result of an interrupt can generate a second page fault. For
this reason, you must call the Hol dMenor y function on buffers or code that are to be
referenced by any interrupt service routine. You must call this function at noninterrupt
level because the Menor yDi spat ch calls may cause movement of logical memory or
physical memory and possible 1/0.
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The use of procedure pointers (variables of type Pr ocPt r) in specifying 1/0 completion
routines, socket listeners, and so forth makes it impossible for drivers to know the exact
location and size of all code or buffers that might be referenced when these routines are
invoked. However, these routines must still be called only at a safe time, when paging is
not currently in progress. Because the locations of all needed pages cannot be known, an
alternate strategy is used to prevent a fatal double page fault.

The Def er User Fn function is provided to allow interrupt service routines to defer, until
a safe time, code that might cause page faults. This function determines whether the call
can be made immediately and, if it is safe, makes the call. If a page fault is in progress,
the address of the service routine and its parameter are saved, and the routine is deferred
until page faults are again permitted.

Virtual Memory and Debuggers

Note

You need the information in this section only if you are writing a
debugger that is to operate under virtual memory. u

Debuggers running under virtual memory can use any of the virtual memory routines
discussed in the previous sections. For example, if a debugger is in a situation where
page faulting would be fatal, it can use Def er User Fn to defer the debugging until
paging is safe. However, debuggers running under virtual memory might require a few
routines that differ from those available to other applications. In addition, debuggers
might depend on some specific features of virtual memory that other applications
should not depend on.

For example, because debugger code might be entered at a time when paging would be
unsafe, you should lock (and not just hold) the debugger and all of its data and buffer
space in memory. Normally, the locking operation is used to allow NuBus masters or
other DMA devices to transfer data directly into physical memory. This requires that
data caching be disabled on the locked page. You might, however, want your debugger
to benefit from the performance of the data cache on pages belonging solely to the
debugger. The Debugger LockMenor y function does exactly what LockMenor y does,
except that it leaves data caching enabled on the affected pages. You can call the
Debugger Unl ockMenor y function to reverse the effects of Debugger LockMenory.

Other special debugger support functions

n determine whether paging is safe

n allow the debugger to enter supervisor mode

n enter and exit the debugging state

n obtain keyboard input while in the debugging state

n determine the state of a page of logical memory
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All of these functions are implemented as extensions of _DebugUt i | , a trap intended
for use by debuggers to allow greater machine independence. This trap is not present in
the Macintosh Il, Macintosh 11x, Macintosh llcx, or Macintosh SE/30 models, but it is
present in all later models. The Virtual Memory Manager implements this trap for all
machines that it supports, so a debugger can use _DebugUt i | (and functions defined in
terms of _DebugUti | ) if Gest al t reports that virtual memory is present.

When the virtual memory extensions to _DebugUti | are not present (that is, when the
computer supports virtual memory but is not a Macintosh 11, Macintosh I1x, Macintosh
llcx, or Macintosh SE/30), _DebugUt i | provides functions that can determine the
highest _DebugUt i | function supported, enter the debugging state, poll the keyboard
for input, and exit the debugging state.

Bus-Error Vectors

The Operating System needs to intercept page faults and do the necessary paging. In
addition, various applications and pieces of system software need to handle other kinds
of bus errors. Virtual memory takes care of the complications of bus-error handling by
providing two bus-error vectors. The vector that applications and other system software
see is the one in low memory (at address $8). The vector that virtual memory uses (the
one actually used by the processor) is in virtual memory’s private storage and is pointed
to by the Vector Base Register (VBR). Virtual memory’s bus-error handler handles page
faults and passes other bus errors to the vector in low memory at address $8.

When a debugger wants the contents of a page to be loaded into memory, it can read a
byte from that page. The Operating System detects the page fault and loads the
appropriate page (perhaps swapping another page to disk).

Note that a debugger will probably temporarily replace one or both of the bus-error
vectors while it is executing. A debugger that wants virtual memory to continue paging
while the debugger runs can put a handler only in the low-memory bus-error vector. A
debugger that displays memory without allowing virtual memory to continue paging
can put a handler in the virtual memory’s bus-error vector (at VBR + $8).

Because the current version of virtual memory is not reentrant, there are times when
trying to load a page into memory would be fatal. To allow for this, you can use the
PageFaul t Fat al function to determine whether a page fault would be fatal at that
time. If this function returns TRUE, the debugger should not allow the virtual memory’s
bus-error handler to detect any page faults. Thus, you should always replace the virtual
memory’s bus-error vector if the PageFaul t Fat al function returns TRUE.

Special Nonmaskable Interrupt Needs

Because a debugger can be triggered with a nonmaskable interrupt (level 7, triggered by
the interrupt switch), it has special needs that other code in the system does not. For
example, because a nonmaskable interrupt might occur while virtual memory is moving
pages (to make them contiguous, for example), debugger code must be locked (instead
of held, like most other code that must run at a time when page faults would be fatal).
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Unfortunately, the LockMenor y function is intended for use by device drivers and
automatically disables data caching for the locked pages. Because this is not desirable for
the debugger, the functions Debugger LockMenor y and Debugger Unl ockMenory

lock pages without inhibiting the caching of those pages. Note that both stack, code, and
other storage used by the debugger might need to be locked in this way.

Supervisor Mode

Because a debugger is typically activated through one of the processor vectors, it usually
executes in supervisor mode, allowing it access to all of memory and all processor
registers. When the debugger is entered in another way—for example, through

the Debugger or_DebugSt r trap or when it is first loaded—it is necessary to enter
supervisor mode. You can accomplish this with the following assembly-language
instructions:

MOVEQ #Ent er Super vi sor Mode, DO
_DebugUti | ;OS trap to DebugUtils
;on exit, DO still holds old SR

The code switches the caller into supervisor mode, and the previous status register is
returned in register DO. Thus, when the debugger returns to the interrupted code, you
can restore the previous interrupt level, condition codes, and so forth. When the
debugger is ready to return to user mode, it simply loads the status register with the
result returned in DO. Entering supervisor mode also switches the stack pointer from the
user stack pointer (USP) to the interrupt stack pointer (ISP); reentering user mode
changes the stack pointer back to the user stack pointer.

The Debugging State

When activated by an exception, Debug or _DebugSt r trap, or any other means, the
debugger should call the Debugger Ent er procedure to notify _DebugUti | that the
debugger is entering the debugging state. Then _DebugUt i | can place hardware in a
quiescent state and prepare for subsequent _DebugUti | calls.

Before returning to the interrupted application code, the debugger must call
the Debugger Exi t procedure to allow DebugUt i | to return hardware affected by
Debugger Ent er to its previous state.

Keyboard Input

A debugger can obtain the user’s keyboard input by calling the Debugger Pol |
procedure. This routine can obtain keyboard input even when interrupts are disabled.
After you call this service, you must then obtain keyboard events through the normal
event-queue mechanism.
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Page States

Debuggers need a way to display the contents of memory without paging or to display
the contents of pages currently on disk. The Get PageSt at e function returns one of
these values to specify the state of a page containing a virtual address:

TYPE PageState = |nteger;

CONST
kPagel nMenory = 0, {page is in RAM
kPageOnDi sk = 1, {page is on disk}
kNot Paged = 2, {address is not paged}

A debugger can use this information to determine whether certain memory addresses
should be referenced. Note that ROM and 170 space are not pageable and therefore are
considered not paged.

Virtual Memory Manager Reference

This section describes the data structures and routines that are provided by the Virtual
Memory Manager.

Data Structures

The Virtual Memory Manager defines two data structures for use with the
Get Physi cal function, the memory-block record and the translation table.

Memory-Block Record

3-24

The Get Physi cal function uses a memory-block record to hold information about a
block of memory, either logical or physical. The memory-block record is a data structure
of type Menor yBI ock.

TYPE MenoryBl ock =

RECORD
addr ess: Ptr; {start of bl ock}
count : Longl nt; {size of bl ock}
END;

Field descriptions
addr ess A pointer to the beginning of a block of memory.
count The number of bytes in the block of memory.
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Translation Table

The Get Physi cal function uses a translation table to hold information about a logical
address range and its corresponding physical addresses. A translation table is defined by
the data type Logi cal ToPhysi cal Tabl e.

TYPE Logi cal ToPhysi cal Tabl e =

RECORD
| ogi cal : Menor yBl ock; {a | ogi cal bl ock}
physi cal : ARRAY][ 0. . def aul t Physi cal EntryCount-1] OF
Menor yBl ock; {equival ent physical bl ocks}
END;

Field descriptions

| ogi cal A logical block of memory whose corresponding physical blocks are
to be determined.
physi cal A physical translation table that identifies the blocks of physical

memory corresponding to the logical block identified in the
| ogi cal field.

Routines

This section describes the routines you can use to control virtual memory. The section
“Virtual Memory Management” describes the routines that allow you to control pages in
physical memory, and the section “Virtual Memory Debugger Support Routines”
describes the routines that only programmers implementing debuggers need to use.

Virtual Memory Management

This section describes the routines you can use to hold logical pages in physical memory
and let go of them, lock and unlock pages in physical memory, obtain information about
page mapping, and handle interrupts. To hold and release pages, use the Hol dMenor y
and Unhol dMenor y functions. To lock and unlock pages, use the LockMenor y,
LockMenor yCont i guous, and Unl ockMenor y functions. To obtain page-mapping
information, use the Get Physi cal function. To defer user interrupt handling, use the
Def er User Fn function.

HoldMemory

To make a portion of the address space resident in physical memory and ineligible for
paging, use the Hol dMenor y function.

FUNCTI ON Hol dMenory (address: UNIV Ptr; count: Longlnt): OSErr;
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addr ess The starting address of the range of memory to be held in RAM.
count The size, in bytes, of the range of memory to be held in RAM.

The Hol dMenor y function makes the portion of the address space beginning at
addr ess and having a size of count bytes resident in physical memory and ineligible
for paging.

If the addr ess parameter supplied to the Hol dMenor y function is not on a page
boundary, then it is rounded down to the nearest page boundary. Similarly, if the
specified range does not end on a page boundary, the count parameter is rounded up so
that the entire range of memory is held.

SPECIAL CONSIDERATIONS

Even though Hol dMenor y does not move or purge memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES
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The trap macro and routine selector for the Hol dMenor y function are

Trap macro Selector
_Menor yDi spat ch $0000

The registers on entry and exit for this routine are
Registers on entry

DO Selector code

A0 Starting address

Al Number of bytes to hold

Registers on exit
DO Result code

noErr 0 No error

par antrr -50 Error in parameter list

not EnoughMenor yEr r —620 Insufficient physical memory

i nt errupt svaskedErr —624 Called with interrupts masked
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UnholdMemory

To make a currently held range of memory eligible for paging again, use the
Unhol dMenor y function.

FUNCTI ON Unhol dMenory (address: UNIV Ptr; count: Longlnt): OSErr;

addr ess The starting address of the range of memory to be released.
count The size, in bytes, of the range of memory to be released.

DESCRIPTION
The Unhol dMenor y function makes the portion of the address space beginning at
addr ess and having a size of count bytes eligible for paging.

If the addr ess parameter supplied to the Unhol dMenor y function is not on a page
boundary, then it is rounded down to the nearest page boundary. Similarly, if the
specified range does not end on a page boundary, the count parameter is rounded up so
that the entire range of memory is released.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Unhol dMenor y function are
Trap macro Selector
_MenoryDi spat ch $0001
The registers on entry and exit for this routine are
Registers on entry
DO Selector code
A0 Starting address
Al Number of bytes to release

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
par antrr -50 Error in parameter list
not Hel dErr -621 Specified range of memory is not held
i nterruptsivaskedErr —624 Called with interrupts masked
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LockMemory

DESCRIPTION

To make a portion of the address space immovable in physical memory and ineligible for
paging, use the LockMenor y function.

FUNCTI ON LockMenory (address: UNIV Ptr; count: Longlnt): OSErr;

addr ess The starting address of the range of memory to be locked in RAM.
count The size, in bytes, of the range of memory to be locked in RAM.

The LockMenor y function makes the portion of the address space beginning at
addr ess and having a size of count bytes immovable in physical memory and
ineligible for paging.

If the addr ess parameter supplied to the LockMenor y function is not on a page
boundary, it is rounded down to the nearest page boundary. Similarly, if the specified
range does not end on a page boundary, the count parameter is rounded up so that the
entire range of memory is locked.

The CPU marks locked pages as noncacheable. On Macintosh computers containing the
Macintosh lici ROM, all physical RAM is marked noncacheable.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES
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The trap macro and routine selector for the LockMenor y function are
Trap macro Selector

_Menor yDi spat ch $0002

The registers on entry and exit for this routine are

Registers on entry

DO Selector code

A0 Starting address

Al Number of bytes to lock

Registers on exit
DO Result code

noErr 0 No error

par antrr -50 Error in parameter list

not EnoughMenor yErr -620 Insufficient physical memory

i nt errupt svaskedErr —624 Called with interrupts masked
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LockMemoryContiguous

The LockMenor yCont i guous function is exactly like the LockMenor y function,
except that it attempts to obtain a contiguous block of physical memory associated
with the specified logical address range.

FUNCTI ON LockMenoryConti guous (address: UNIV Ptr; count: Longlnt):

CSErr;
addr ess The starting address of the range of memory to be locked in RAM.
count The size, in bytes, of the range of memory to be locked in RAM.

DESCRIPTION

The LockMenor yCont i guous function makes the portion of the address space
beginning ataddr ess and having a size of count bytes immovable in physical memory
and ineligible for paging. The function attempts to obtain a contiguous block of physical
memory associated with the specified logical address range. It might not be possible to
make a range physically contiguous if any of the pages contained in the range are
already locked.

If the addr ess parameter supplied to the LockMenor yCont i guous function is not on
a page boundary, it is rounded down to the nearest page boundary. Similarly, if the
specified range does not end on a page boundary, the count parameter is rounded up so
that the entire range of memory is locked.

The CPU marks locked pages as noncacheable. On Macintosh computers containing the
Macintosh lici ROM, all physical RAM is marked noncacheable.

SPECIAL CONSIDERATIONS

Because a call to LockMenor yCont i guous is not guaranteed to succeed,

all code that uses LockMenor yCont i guous must have an alternate method

for locking the necessary ranges of memory. In general, you should avoid using
LockMenor yCont i guous if at all possible. If you must call it, do so as early as
possible—preferably at system startup time—to increase the likelihood that enough
contiguous memory can be found.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the LockMenor yCont i guous function are

Trap macro Selector
_Menor yDi spat ch $0004
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The registers on entry and exit for this routine are
Registers on entry

DO Selector code

A0 Starting address

Al Number of bytes to unlock

Registers on exit
DO Result code

noErr 0 No error

par antrr -50 Error in parameter list

not EnoughMenor yErr -620 Insufficient physical memory

cannot MakeCont i guousErr —622 Cannot make specified range contiguous
i nterrupt svaskedErr —624 Called with interrupts masked

UnlockMemory

DESCRIPTION

To undo the effects of either LockMenory or LockMenor yCont i guous, use the
Unl ockMenor y function.

FUNCTI ON Unl ockMenory (address: UNIV Ptr; count: Longlnt): OSErr;

addr ess The starting address of the range of memory to be unlocked.
count The size, in bytes, of the range of memory to be unlocked.

The Unl ockMenor y function makes the portion of the address space beginning at
addr ess and having a size of count bytes movable in real memory and eligible for
paging again.

If the addr ess parameter supplied to the Unl ockMenor y function is not on a page
boundary, then it is rounded down to the nearest page boundary. Similarly, if the
specified range does not end on a page boundary, the count parameter is rounded up so
that the entire range of memory is unlocked.

ASSEMBLY-LANGUAGE INFORMATION
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The trap macro and routine selector for the Unl ockMenor y function are

Trap macro Selector
_Menor yDi spat ch $0003
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The registers on entry and exit for this routine are
Registers on entry

DO Selector code

A0 Starting address

Al Number of bytes to unlock

Registers on exit
DO Result code

noErr 0 No error

par antrr -50 Error in parameter list

not LockedErr -623 Specified range of memory is not locked
i nterruptsivaskedErr —624 Called with interrupts masked

DESCRIPTION

To translate logical addresses into their corresponding physical addresses, use the
Get Physi cal function.

FUNCTI ON Get Physi cal (VAR addresses: Logi cal ToPhysi cal Tabl e;
VAR physi cal EntryCount: Longlnt): OSErr;

addresses A translation table. On entry, set the | ogi cal field of this record to the
block of memory to translate. On exit, the physi cal field of this record
holds the corresponding physical address blocks.

physi cal Ent r yCount
The number of physical entries to translate. On entry, set this field to 0 if
you want Get Physi cal to return the number of table entries needed to
translate the entire logical address range.

The Get Physi cal function translates a logical address range into its corresponding
physical address ranges. The | ogi cal field of the addr esses translation table specifies
the logical address range to be translated. Get Physi cal translates up to the size of the
physical table or until it completes the translation, whichever occurs first.

If you call Get Physi cal with the physi cal Ent r yCount parameter set to 0, it returns
in physi cal Ent r yCount the number of table entries needed to translate the entire
address range. In this case, the translation table specified by the addr esses parameter
is unchanged.
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If you call Get Physi cal with the physi cal Ent r yCount parameter set to a number
greater than 0, it returns in the physi cal field of the addr esses translation table an
array specifying the physical blocks that correspond to the logical address specified in
the | ogi cal field. In the physi cal Ent r yCount parameter, Get Physi cal returnsthe
number of entries in that array (which may be fewer than were asked for). If the

physi cal field of the translation table was not large enough to contain all the physical
blocks corresponding to the logical block, Get Physi cal updates the fields of the

| ogi cal memory block to reflect the remaining number of bytes in the logical range

left to translate (count field) and the next address in the logical address range to
translate (st art field).

Note

The logical address range must be locked to ensure validity of the
translation data. u

SPECIAL CONSIDERATIONS

The Get Physi cal function as currently implemented under virtual memory supports
only logical RAM. You cannot use Get Physi cal to translate addresses in the address
spaces of the ROM, 1/0 devices, or NuBus slots. Some Macintosh computers map a
portion of the physical RAM into NuBus space, to simulate the presence of a video
expansion card. Get Physi cal returns the result code par antr r if you attempt to read
that memory.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES
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The trap macro and routine selector for the Get Physi cal function are

Trap macro Selector
_Menor yDi spat chAOResul t $0005

The registers on entry and exit for this routine are
Registers on entry

DO Selector code

A0 Pointer to a translation table

Al physi cal Ent r yCount in table

Registers on exit
A0 physi cal Ent r yCount translated
DO Result code

nokErr 0 No error

par antrr -50 Error in parameter list

not LockedEr r -623 Specified range of memory is not locked
i nt errupt svaskedErr —624 Called with interrupts masked
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SEE ALSO
See “Mapping Logical to Physical Addresses,” beginning on page 3-16, for a method of
calling Get Physi cal to translate addresses to be sent to a NuBus master card.
DeferUserFn

To determine whether code that might cause page faults can safely be called
immediately, use the Def er User Fn function.

FUNCTI ON Def er User Fn (user Function: ProcPtr;
argunent: UNIV Ptr): OSErr;

user Functi on
The address of the routine to run.

ar gunent A pointer to the argument to pass to the specified routine.

DESCRIPTION

The Def er User Fn function determines whether or not code that might call page faults
can safely be called immediately. If the code can be called safely, Def er User Fn calls the
routine designated by user Funct i on with register A0 containing the value designated
by ar gurrent . If a page fault is in progress, however, the routine address and its
parameter are saved, and the routine is deferred until page faults are again permitted.

Note that the routine might be called immediately (before returning to the caller of
Def er User Fn). Deferred functions must follow the register conventions used by
interrupt handlers: they can use registers A0-A3 and D0-D3, and they must restore all
other registers used.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for the Def er User Fn function are
Registers on entry
A0 Address of function
DO Argument for function

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
cannot Def er Err -625 Unable to defer additional user functions
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Virtual Memory Debugger Support Routines

This section describes the virtual-memory routines that pertain primarily to

debuggers. You need to read this section only if you are implementing a debugger.

To determine which debugger functions are present, use the Debugger Get Max
function. When entering and exiting the debugging state, use the Debugger Ent er

and the Debugger Exi t procedures. To determine whether paging is safe, use the
PageFaul t Fat al function. To lock and unlock memory with caching enabled, use

the Debugger LockMenor y and the Debugger Unl ockMenor y functions. To poll for
keyboard input, use the Debugger Pol | procedure. To determine the state of a page of
logical memory, use the Get PageSt at e function.

DebuggerGetMax

DESCRIPTION

The Memory Manager includes a special routine that debuggers use, instead of the
Gest al t function, to determine which debugger functions are present.

FUNCTI ON Debugger Get Max: Longl nt;

The Debugger Get Max function returns the highest selector number of the debugger
routines that are defined in terms of the _DebugUt i | trap. The numbers correspond to
the following routines:

Selector Routine

$0000 Debugger Get Max

$0001 Debugger Ent er

$0002 Debugger Exi t

$0003 Debugger Pol |

$0004 Get PageSt at e

$0005 PageFaul t Fat al

$0006 Debugger LockMenory
$0007 Debugger Unl ockMenory
$0008 Ent er Super vi sor Mbde

Of course, you should use the Gest al t function to check whether virtual memory
is available at all before you call the Debugger Get Max function.

ASSEMBLY-LANGUAGE INFORMATION
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The trap macro and routine selector for the Debugger Get Max function are

Trap macro Selector
_DebugUti | $0000
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The registers on entry and exit for this routine are
Registers on entry

DO Selector code

Registers on exit
DO Highest available selector

DebuggerEnter

Before entering the debugging state, call the Debugger Ent er procedure.

PROCEDURE Debugger Ent er;

DESCRIPTION

Call the Debugger Ent er procedure to enter the debugging state. This allows the
_DebugUti | trap to make preparations for subsequent debugging calls.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Debugger Ent er procedure are
Trap macro Selector
_DebugUti | $0001
The registers on entry for this routine are
Registers on entry
DO Selector code

DebuggerExit

Before exiting the debugging state, call the Debugger Exi t procedure.

PROCEDURE Debugger Exi t;

DESCRIPTION

The Debugger Exi t procedure allows the _DebugUti | trap to clean up after all
debugging calls are completed.

Virtual Memory Manager Reference 3-35



CHAPTER 3

Virtual Memory Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Debugger Exi t procedure are
Trap macro Selector
_DebugUtil $0002
The registers on entry for this routine are
Registers on entry

DO Selector code

PageFaultFatal

A debugger can use the PageFaul t Fat al function to determine whether it should
capture all bus errors or whether it is safe to allow them to flow through to virtual
memory. When paging is safe, the debugger can allow virtual memory to continue
servicing page faults, and the user can view all of memory.

FUNCTI ON PageFaul t Fat al : Bool ean;

DESCRIPTION

The PageFaul t Fat al function returns TRUE if the debugger should not allow the
virtual memory’s bus-error handler to detect any page faults.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the PageFaul t Fat al function are
Trap macro Selector
_Debugltil $0005
The registers on entry and exit for this routine are
Registers on entry
DO Selector code

Registers on exit
DO Returned value
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DebuggerLockMemory

To lock a portion of the address space (as the LockMenor y function does) while leaving
data caching enabled on the affected pages, use the Debugger LockMenor y function.

FUNCTI ON Debugger LockMenory (address: UNIV Ptr; count: Longlnt):

CSErr;
addr ess The start address of the range of memory that is to be locked in RAM.
count The size in bytes of the range of memory that is to be locked in RAM.

DESCRIPTION

The Debugger LockMenor y function makes the portion of the address space beginning
at addr ess and having a size of count bytes immovable in physical memory and
ineligible for paging. The function leaves data caching enabled on the affected pages.

If the addr ess parameter supplied to the Debugger LockMenor y function is not on a
page boundary, then it is rounded down to the nearest page boundary. Similarly, if the
specified range does not end on a page boundary, the count parameter is rounded up so
that the entire range of memory is locked.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Debugger LockMenor y function are
Trap macro Selector
_Debugger LockMenory $0006

The registers on entry and exit for this routine are
Registers on entry

DO Selector code

A0 Starting address

Al Number of bytes to hold

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
par antrr -50 Error in parameter list
not EnoughMenor yEr r —620 Insufficient physical memory
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DebuggerUnlockMemory

To reverse the effects of Debugger LockMenor y, use the Debugger Unl ockMenory
function.

FUNCTI ON Debugger Unl ockMenory (address: UNIV Ptr; count: Longlnt):

CSErr;
addr ess The starting address of the range of memory that is to be unlocked.
count The size, in bytes, of the range of memory that is to be unlocked.

DESCRIPTION

The Debugger Unl ockMenor y function makes the portion of the address space
beginning ataddr ess and having a size of count bytes movable in real memory and
eligible for paging again.

If the addr ess parameter supplied to the Debugger Unl ockMenor y function is not on
a page boundary, then it is rounded down to the nearest page boundary. Similarly, if the
specified range does not end on a page boundary, the count parameter is rounded up so
that the entire range of memory is unlocked.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Debugger Unl ockMenor y function are
Trap macro Selector
_DebugUti | $0007

The registers on entry and exit for this routine are
Registers on entry

DO Selector code

A0 Starting address

Al Number of bytes to hold

Registers on exit
DO Result code

RESULT CODES
nokErr 0 No error
par antrr -50 Error in parameter list
not LockedEr r -623 Specified range of memory is not locked
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DebuggerPoll

To poll for keyboard input, use the Debugger Pol | procedure.

PROCEDURE Debugger Pol | ;

DESCRIPTION

Call the Debugger Pol | procedure, which you can use even if interrupts are disabled,
to poll for keyboard input.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Debugger Pol | procedure are

Trap macro Selector

_Debugltil $0003

The registers on entry and exit for this routine are
Registers on entry

DO Selector code

Registers on exit
DO Result code

GetPageState

To obtain the state of a page of logical memory, use the Get PageSt at e function.
FUNCTI ON Get PageState (address: UNIV Ptr): PageState;

addr ess An address in the page whose state you want to determine.

DESCRIPTION

The Get PageSt at e function returns the page state of the page containing the address
passed in the addr ess parameter. The returned value is one of these constants:

TYPE PageState = |nteger;

CONST
kPagel nMenory = 0; {page is in RAM
kPageOnDi sk = 1; {page is on disk}
kNot Paged = 2; {address is not paged}
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ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get PageSt at e function are
Trap macro Selector
_DebugUti | $0004
The registers on entry and exit for this routine are
Registers on entry

A0 Address in the page whose state is to be determined
DO Selector code

Registers on exit
DO Page state
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Summary of the Virtual Memory Manager

Pascal Summary

Constants

CONST

{Gestalt constants}

gestal t VMAL t r
gest al t VMPr esent

‘vm ' {virtual menory attributes}

{default nunber of physical blocks in a translation table}
def aul t Physi cal EntryCount = 8;

{page st ates}
kPagel nMenory

I
e

{page is in RAM

0; {bit set if virtual menory present}

kPageOnDi sk = 1, {page is on disk}
kNot Paged = 2, {address is not paged}
Data Types
TYPE
PageSt at e = I nteger;
Logi cal ToPhysi cal Tabl e = {transl ation tabl e}
RECORD
| ogi cal : Menor yBl ock; {l ogi cal bl ock}
physi cal : ARRAY[ 0. . def aul t Physi cal Ent ryCount -1] OF Menor yBl ock;
{equi val ent physical bl ocks}
END,
Menor yBl ock = {menory- bl ock record}
RECORD
addr ess: Ptr; {start of bl ock}
count: Longl nt ; {si ze of bl ock}
END,;
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Routines

Virtual Memory Management

FUNCTI ON Hol dMenory (address: UNIV Ptr; count: Longlnt): OSErr;
FUNCTI ON Unhol dMenory (address: UNIV Ptr; count: Longlnt): OSErr;
FUNCTI ON LockMenory (address: UNIV Ptr; count: Longint): OSErr;

FUNCTI ON LockMenor yCont i guous
(address: UNIV Ptr; count: Longlnt): OSErr;

FUNCTI ON Unl ockMenory (address: UNIV Ptr; count: Longint): OSErr;
FUNCTI ON Get Physi cal (VAR addresses: Logi cal ToPhysi cal Tabl e;
VAR physi cal EntryCount: Longlnt): OSErr;
FUNCTI ON Def er User Fn (userFunction: ProcPtr; argunent: UNIV Ptr):
CSErr;

Virtual Memory Debugger Support Routines

FUNCTI ON Debugger Get Max : Longl nt;
PROCEDURE Debugger Ent er;
PROCEDURE Debugger Exi t ;
FUNCTI ON PageFaul t Fat al . Bool ean;
FUNCTI ON Debugger LockMenory (address: UNIV Ptr; count: Longint): OSErr;
FUNCTI ON Debugger Unl ockMenor y
(address: UNIV Ptr; count: Longlnt): OSErr;
PROCEDURE Debugger Pol | ;
FUNCTI ON Get PageSt at e (address: UNIV Ptr): PageState;

C Summary

Constants

[ *Cestalt constants*/
#define gestalt VMAttr ‘vm '; /*virtual nenory attributes*/
#def i ne gestal t VMPresent 0; /[*bit set if virtual nenory present*/

[ *default nunber of physical blocks in table*/
enum {
def aul t Physi cal Ent r yCount

1]
(o0}

b
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[ *page states*/

enum {
kPagel nMenory = 0, /*page is in RAM/
kPageOnDi sk =1, [ *page is on disk*/
kNot Paged =2 /[ *address is not paged*/
s
Data Types

typedef short PageSt at e;

struct Logical ToPhysi cal Tabl e { /*transl ation tabl e*/
Menor yBl ock | ogi cal ; /*1 ogi cal block*/
Menor yBl ock physi cal [ def aul t Physi cal Ent r yCount ] ;
[ *equi val ent physi cal bl ocks*/
b
typedef struct Logi cal ToPhysical Tabl e Logi cal ToPhysi cal Tabl e;
struct MenoryBl ock { / *menory- bl ock record*/
voi d *addr ess; /*start of block*/
unsi gned | ong count; [ *size of block*/
b

typedef struct MenoryBl ock MenoryBl ock;

Routines

Virtual Memory Management

pascal OSErr Hol dMenory (void *address, unsigned |ong count);
pascal OSErr Unhol dMenory (void *address, unsigned |ong count);
pascal OSErr LockMenory (void *address, unsigned |ong count);
pascal OSErr LockMenoryConti guous

(void *address, unsigned |ong count);
pascal OSErr Unl ockMenory (void *address, unsigned |ong count);

pascal OSErr Get Physi cal (Logi cal ToPhysi cal Tabl e *addr esses,
unsi gned | ong *physi cal EntryCount);

pascal OSErr DeferUserFn (ProcPtr userFunction, void *argunent);
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Virtual Memory Debugger Support Routines

pascal |ong Debugger Get Max (voi d);
pascal voi d Debugger Ent er (void);
pascal void Debugger Exit (void);
pascal Bool ean PageFaul t Fat al
(void);
pascal OSErr Debugger LockMenory
(void *address, unsigned |ong count);
pascal OSErr Debugger Unl ockMenory
(void *address, unsigned |ong count);
pascal voi d Debugger Pol | (void);
pascal PageState GetPageState
(const void *address);

Assembly-Language Summary

Data Types

Memory-Block Data Structure

0 addr ess long start of block
4 count 4 bytes size of block

Translation Table Data Structure

0 | ogi cal 8 bytes logical block
8 physi cal 64 bytes equivalent physical blocks

Trap Macros

Trap Macros Requiring Routine Selectors
_Menor yDi spat ch

Selector Routine

$0000 Hol dMenor y

$0001 Unhol dMenory

$0002 LockMenory

$0003 Unl ockMenory

$0004 LockMenor yCont i guous
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_Menor yDi spat chAOResul t

Selector Routine

$0005 Get Physi cal
_DebugUti |

Selector Routine

$0000 Debugger Get Max

$0001 Debugger Ent er

$0002 Debugger Exi t

$0003 Debugger Pol |

$0004 CGet PageSt at e

$0005 PageFaul t Fat al

$0006 Debugger LockMenory
$0007 Debugger Unl ockMenory
$0008 Ent er Super vi sor Mbde

Result Codes

nokErr

par antrr

not EnoughMenor yErr

not Hel dEr r

cannot MakeCont i guousErr
not LockedEr r

i nt erruptsivaskedErr
cannot Def er Err

-50
—620
-621
—622
—623
—624
—625

No error

Error in parameter list

Insufficient physical memory

Specified range of memory is not held
Cannot make specified range contiguous
Specified range of memory is not locked
Called with interrupts masked

Unable to defer additional user functions
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Memory Management Utilities

This chapter describes a number of utility routines you can use to control certain aspects
of the memory environment in Macintosh computers. Some features of the memory
environment are controlled by the user through the Memory control panel; others are
controlled by the Process Manager or other parts of the Macintosh Operating System and
Toolbox. The utility routines described in this chapter allow you to modify some of the
normal operations of the Operating System or the Toolbox.

You need to read this chapter if your application or driver

n installs completion routines or interrupt tasks that are executed by the Operating
System or Toolbox, not directly by your application

n modifies the addressing mode or converts addresses from one form to another
n moves executable code in memory, or performs DMA operations

To use this chapter, you should be familiar with the information in the chapter
“Introduction to Memory Management” earlier in this book. Also, you can read the
chapter “Introduction to Processes and Tasks” in Inside Macintosh: Processes for a related
discussion of the A5 register.

This chapter begins with a brief description of the Memory control panel, which allows
users to alter several aspects of the Operating System’s memory configuration. Then it
shows how you can use the Memory Management Utilities to

n set up the A5 register so that your application-defined completion routines and
interrupt tasks can access your application’s global variables

n get the value of the A5 register so that you can read your application’s QuickDraw
global variables from within stand-alone code

n getor set a computer’s address-translation mode
n strip the flag bits from a master pointer or other memory address
n convert 24-bit addresses to 32-bit addresses

n flush the microprocessor’s instruction and data caches

The Memory Control Panel

A user can alter several aspects of the system memory configuration by setting certain
controls in the Memory control panel. This panel contains controls governing the
operation of the disk cache, virtual memory, and the addressing mode used by the
Memory Manager. Figure 4-1 shows the Memory control panel.

The Memory Control Panel 4-3



CHAPTER 4

Memory Management Utilities
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Figure 4-1 The Memory control panel
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The Disk Cache panel replaces the HFS RAM Cache panel (part of the General control
panel) used in earlier versions of system software. A disk cache is a part of RAM that
acts as an intermediate buffer when data is read from and written to file systems on
secondary storage devices. Data is saved there in case it is needed again in the very near
future. If it is, the Operating System reads the data from the disk cache rather than the
secondary storage device (which would take considerably longer). By increasing the
cache size, the user increases the likelihood that data recently read from or written to the
file system will be in the cache. The controls in the Disk Cache panel allow the user to
configure the size of the disk cache used by the Operating System during file-access
operations. In system software version 7.0, unlike earlier versions, the user cannot turn
off disk caching.

In system software version 7.0, the minimum cache size is 16 KB. The default size is

32 KB per megabyte of installed RAM (thus, the default disk cache size for a computer
with 4 MB of RAM is 128 KB). The maximum disk cache size is 320 KB per megabyte of
installed RAM (thus, the maximum disk cache size for a computer with 4 MB of RAM is
1280 KB). The operation of the disk cache is completely transparent to your application.

Note

These cache size values are provided for informational purposes only
and may differ in later system software versions or on different
Macintosh computers. In addition, the use of RAM for a RAM-based
video interface or a RAM disk affects the amount of RAM available for
the disk cache. u
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The Virtual Memory panel allows the user to set various features of virtual memory,
including whether virtual memory is turned on and, if so, how much is available. The
user can also specify the volume of the backing-store file, in which the Virtual Memory
Manager stores unused portions of code and data. Changes to the virtual memory
configuration do not take effect until the user restarts the computer. Note that the Virtual
Memory panel appears only on computers that support virtual memory. For information
on how your application can interact with virtual memory, see the chapter “Virtual
Memory Manager” in this book.

Using the 32-Bit Addressing controls, the user can select the maximum size of the
address space used in the computer. The maximum size of the address space is
determined by the number of bits used to store memory addresses, as explained in the
chapter “Virtual Memory Manager” in this book. The 32-Bit Addressing panel appears
only on computers that support 32-bit addressing mode. By clicking the panel’s controls,
the user can turn 32-bit addressing off and on. Changes made in this panel do not go into
effect until the user restarts the computer.

Using the RAM Disk controls, the user can determine the amount of the available RAM
that is to be treated as a RAM disk, a portion of RAM reserved for use as a temporary
storage device. It is most useful to create a RAM disk on battery-powered computers
(such as the Macintosh PowerBook computers) because the computer uses less energy to
access RAM than to access a hard disk or a floppy disk.

About the Memory Management Utilities

You can use the Memory Management Utilities to ensure that

n your application’s callback routines, interrupt tasks, and stand-alone code can access
application global variables or QuickDraw global variables

n your application or driver functions properly in both 24- and 32-bit modes

n data or instructions in the microprocessor’s internal caches remain consistent with
data or instructions in RAM

This section explains when and why you might need to use these utilities; for actual
implementation details, see the section “Using the Memory Management Utilities,”
which begins on page 4-13.

The A5 Register

If you write code that accesses your application’s A5 world (usually to read or write
the application global variables) at a time that your application is not the current
application, you must ensure that the A5 register points to the boundary between
your application’s parameters and global variables. Because the Operating System
accesses your A5 world relative to the address stored in the A5 register, you can obtain
unpredictable results if you attempt to read or write data in your A5 world when the
contents of A5 are not valid.
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There are two general cases in which code might execute when the contents of the A5
register are invalid:

n when you install a completion routine that is executed when some other operation
(for instance, writing data to disk or playing a sound) is completed

n when you install a routine (for instance, a VBL task) that is called in response to
an interrupt

If you install code that is to be executed at either of these times, you must make sure to
set up the A5 register upon entry and to restore it before exit. The sections “Accessing
the A5 World in Completion Routines” on page 4-14 and “Accessing the A5 World in
Interrupt Tasks” on page 4-16 describe how to do this in each case.

You might also need to determine the location of your application’s A5 world if you
want to read information in it from within a stand-alone code segment. You might want
to do this in application-defined definition procedures called on behalf of your
application. These include

n control definition functions
n window definition functions
n menu definition functions

The problem with these kinds of stand-alone code segments is not that the value in the
ADb register is incorrect at the time they are executed; rather, it is that they have no A5
world at all. During execution, these stand-alone code segments can effectively “borrow
the A5 world of the current application. However, they must be compiled and linked
separately from your application. (A custom window definition procedure, for example,
is separately compiled and linked, and then included as a resource of type ' WDEF' in
your application’s resource fork.) The linker cannot resolve any offsets from the value in
the A5 register, because the code segment doesn’t have an A5 world.

A stand-alone code segment can solve this problem quite simply at run time, by
determining the location of your application’s A5 world and then copying the data it
needs to access into blocks of memory that it allocates itself. In the code segment, all
references to data in the A5 world are indirect: the code segment manipulates local
copies of the relevant data. Using this technique, you can avoid explicit symbolic
references to the A5 world, which the linker cannot resolve.

In theory, you could use this technique of copying global data into a stand-alone code
segment’s private storage to access any data contained in your application’s A5 world. In
practice, however, the A5 world can contain so much data that you wouldn’t want to
make local copies of it all. In addition, the precise organization of the entire A5 world is
not generally determinate. Usually, a custom definition procedure or other stand-alone
code segment needs to read only the QuickDraw global variables, which are of fixed size
and have a well-documented organization. See the section “Using QuickDraw Global
Variables in Stand-Alone Code” on page 4-18 for a complete description of how to read
your application’s QuickDraw global variables from within a stand-alone code segment.
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Addressing Modes

The Memory Manager on the original Macintosh computers uses a 24-bit addressing
mode. To the underlying hardware, only the lower 24 bits of any 32-bit address are
significant. The CPU effectively ignores the upper 8 bits in a memory address by using a
24-bit address-translation mode. In this mode, the CPU (or the MMU coprocessor, if
present) maps all addresses to their lower-order 24 bits whenever it reads or writes a
memory location. This led both system software developers and third-party software
developers to put those upper 8 bits to other uses. For example, the Memory Manager
itself uses the upper 8 bits of the address in a master pointer to maintain information
about the associated relocatable block. These upper 8 bits are known as master pointer
flag bits.

When the Operating System is running in 24-bit mode, you can address at most 1 MB of
the address space assigned to a NuBus expansion card. Some cards, however, can work
with far more than 1 MB of memory. As a result, a device driver might need to switch the
Operating System into 32-bit mode temporarily, so that it can access the entire address
range of the associated device (perhaps to copy data from the device’s RAM into the
heap). When 32-bit address translation is enabled, the CPU or the MMU does not ignore
the upper 8 bits of a memory address.

Note

Don’t confuse the current address-translation mode of the Macintosh
hardware with the current addressing state of the Memory Manager.
The addressing state of the Memory Manager is selectable on a per-boot
basis and cannot be changed by an application or driver. The
address-translation mode of the underlying hardware is controlled by
the CPU and MMU (if one is available) and can be changed, if necessary,
atany time. u

The Operating System provides two utilities, Get MMUMbde and SwapMVUMbde, that
allow you to get and set the current address-translation mode. See “Switching
Addressing Modes” on page 4-20 for details.

If your device driver does in fact temporarily set the Macintosh hardware into 32-bit
address-translation mode, you need to be careful when you pass addresses to the
associated device. Suppose, for example, that your driver wants to transfer data to an
address in the heap (which is under the control of the Memory Manager). If the

24-bit Memory Manager is in operation, you need to strip the high byte from the
memory address; otherwise, the CPU would interpret the high byte of flags as part of the
address and transfer the data to the wrong location.

Note

You might also need to make the block of memory in the heap
immovable in physical memory, so that it is not paged out under virtual
memory. See the discussion of locking memory in the chapter “Virtual
Memory Manager” in this book. u
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The Operating System provides the St ri pAddr ess function, which you can use to strip
the high-order byte from a memory address. Even if you are not writing Macintosh
drivers, you might still find it useful to call St ri pAddr ess. For example, suppose you
need to compare two memory addresses (two master pointers, perhaps). If the system is
running the 24-bit Memory Manager and you compare those addresses without first
clearing the flag bits, you might get invalid results. You should first call St r i pAddr ess
to convert those addresses to their correct format before comparing them.

As you can see, the operation of St ri pAddr ess is not dependent on the 24-bit or 32-bit
address translation state of the hardware, but on the 24-bit or 32-bit addressing state of
the Memory Manager. You need to call St ri pAddr ess only when the 24-bit Memory
Manager is operating. When the 32-bit Memory Manager is operating, St ri pAddr ess
returns unchanged any addresses passed to it, because they are already valid 32-bit
addresses. See “Stripping Flag Bits From Memory Addresses” on page 4-21 for complete
details on calling St ri pAddr ess.

Address Translation

When a driver or other software component switches the system to the 32-bit
address-translation mode (perhaps to manipulate special hardware on a slot device),
certain addresses normally accessible in 24-bit mode are not mapped to the same
location by the Macintosh hardware. In particular, the Virtual Memory Manager uses
some of the slot address space as part of the addressable RAM. In that case, the standard
24-t0-32 bit translation is not valid for slot spaces that the MMU has remapped into the
application address space.

You can use the Tr ans| at e24To32 function to translate 24-bit addresses that might
have been remapped by the Macintosh hardware. If you intend to use 24-bit addresses
when your software is executing in 32-bit mode, your code should check for the presence
of that function. If it is available, you should use it to map 24-bit addresses into the 32-bit
address space. For details, see “Translating Memory Addresses” on page 4-23.

Processor Caches

Some members of the Motorola MC680x0 family of microprocessors contain internal
caches that can significantly improve the overall performance of software executing on
those microprocessors. For example, the MC68020 microprocessor contains a 256-byte
on-board instruction cache, an area of memory within the microprocessor that stores
the most recently executed instructions. Whenever the processor needs to fetch an
instruction, it first checks the instruction cache to determine whether the word required
is in the cache. The operation is much faster when the information is in the cache than
when it is only in RAM (which is external to the microprocessor).

Some other members of the MC680x0 family of microprocessors also contain an internal
data cache, an area of memory that holds recently accessed data. The data cache operates
much as the instruction cache does, but it caches data instead of instructions. Before
reading data from RAM, the microprocessor checks the data cache to determine whether
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the operand required for an instruction is in the cache. Again, the overall performance of
the software is greatly increased by the operation of the data cache.

Table 4-1 lists the available caches and their sizes for the various microprocessors
currently used in Macintosh computers.

Table 4-1 Caches available in MC680x0 microprocessors
Microprocessor Instruction cache? Data cache?
MC68000 No No

MC68020 Yes (256 bytes) No

MC68030 Yes (256 bytes) Yes (256 bytes)
MC68040 Yes (4 KB) Yes (4 KB)

The operation of any available instruction and data caches is generally transparent to
your application. In certain cases, however, you need to make sure that the information
in the caches and the corresponding information in main memory remain consistent.
When some information in RAM changes but the corresponding information in the
cache does not, the cached information is said to be stale. The following two sections
describe in detail how cached instructions and data can become stale. You can avoid
using stale instructions or data by flushing the affected cache whenever you do
something that can cause instructions or data to become stale. See “Manipulating the
Processor Caches,” beginning on page 4-29, for routines that you can use to maintain
consistency between a cache and main memory.

Stale Instructions

Any time that you modify part of the executable code of your application or other
software, you risk creating stale instructions in the instruction cache. Recall that the
microprocessor stores the most recently executed instructions in its internal instruction
cache, separately from main memory. Whenever your code modifies itself or any data in
memory that contains executable code, there is a possibility that a copy of the modified
instructions will be in the instruction cache (because they were executed recently). If so,
attempting to execute the modified instructions actually results in the execution of the
cached instructions, which are stale.

You can avoid using stale instructions by flushing the instruction cache every time you
modify executable instructions in memory. Flushing the cache invalidates all entries in it
and forces the processor to refill the cache from main memory.

IMPORTANT

Flushing the instruction cache has an adverse effect on the CPU’s
performance. You should flush the instruction cache only when
absolutely necessary. s
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Any code that modifies itself directly is likely to create stale instructions in the
instruction cache. In addition, you can create stale instructions by modifying other parts
of memory that contain executable instructions. For example, if you modify jump table
entries, you’ll need to flush the instruction cache to avoid using stale instructions.
Similarly, if you install patches by copying code from one part of memory to another and
modifying JMP instructions in order to execute the original routine, you’ll need to flush
the instruction cache. See the description of the FI ushl nst ruct i onCache procedure
on page 4-30 for details.

The system software automatically flushes the instruction cache when you call certain
traps that are often used to move code from one location to another in memory. The
system flushes the instruction cache whenever you call Bl ockMove, Read,
_LoadSeg, and _Unl oadSeg.

WARNING

The _Bl ockMove trap is not guaranteed to flush the instruction cache
for blocks that are 12 bytes or smaller. If you use _Bl ockMbve to move
very small blocks of code, you should flush the instruction cache
yourself. s

Other traps may flush the instruction cache. In general, you need to worry about stale
instructions only when your application moves code and not when the system software
moves it.

Stale Data

A cache may contain stale data whenever information in RAM is changed and that
information is already cached in the microprocessor’s data cache. Suppose, for example,
that a computer contains an expansion card capable of DMA data transfers from the card
to main memory. The card typically reads commands from a buffer in RAM, executes the
commands, and writes status information back to the buffer when the command
completes. Before the card reads a command, the CPU sets up the command buffer and
initializes the status code to 0. Figure 4-2 shows this situation on a computer with an
MC68030 microprocessor.
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Figure 4-2 Initializing a status code
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The MC68030 has a write-through cache: any data written to the cache is immediately
written out to RAM (to avoid stale data in RAM). As a result, the cache and RAM both
contain the same value (0) for the status code. Suppose next that the expansion card
executes the first command and writes a nonzero status code to RAM. The card then
sends an interrupt to the CPU, indicating that the operation has completed.

At this point, the microprocessor might attempt to read the status code returned by the
external hardware. However, because the status code is in the microprocessor’s data
cache, the CPU reads the value in the cache, which is stale, instead of the value in main
memory (see Figure 4-3).
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Figure 4-3 Reading stale data
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To avoid using this stale data, have your driver flush the data cache whenever you
transfer data directly into main memory.

IMPORTANT

Flushing the data cache has an adverse effect on the CPU’s performance.
You should flush the data cache only when absolutely necessary. s

The MC68040 has a copy-back cache: any data written to the cache is written to RAM
only when necessary to make room in the cache for data accessed more recently or when
the cache is explicitly flushed. As you can see, a copy-back cache allows for even greater
performance improvements than a write-through cache, because the data in the cache
has to be written to main memory less often. This is extremely valuable for relatively
small amounts of data that are needed for only a short while, such as local stack frames
for C or Pascal function calls.

Because the data in a copy-back cache is written to main memory only in certain
circumstances, it’s possible to get stale data in RAM. If you write data that is to be read
by non-CPU devices (such as an expansion card that performs DMA operations), you
need to flush the data cache before instructing the alternate bus master to read that data.
If you don’t update the RAM, the DMA transfer from RAM will read stale data.

A copy-back data cache can also lead to the use of invalid instructions if the stale

data in RAM contains executable code. When fetching instructions, the CPU looks only
in the instruction cache and (if necessary) in main memory, not in the data cache.
Because the instruction and data caches are separate, it’s possible that the CPU will fetch
invalid instructions from memory, in the following way. Suppose that you alter some
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jump table entries and, in doing so, write the value $A9FO0 (that is, the trap number of the
_LoadSeg trap) to memory. If the data cache is a copy-back cache, the data in main
memory is not updated immediately, but only when necessary to make room in the
cache (or when you explicitly flush the cache). As a result, the CPU might read invalid
instructions from memory when attempting to execute a routine whose jump table entry
you changed. Figure 4-4 illustrates this problem.

Figure 4-4 Reading invalid instructions

To avoid reading invalid instructions in this way, you need to flush the data cache before
calling any routines whose jump table entries you’ve altered. More generally, whenever
you need to flush the instruction cache, you also first need to flush the data cache—but
only if you’ve changed any executable code and those changes might not have been
written to main memory.

Another way to avoid using stale data is to prevent the data from being cached (and
hence from becoming stale). The Virtual Memory Manager function LockMenory locks
a specified range of pages in physical RAM and either disables the data cache or marks
the specified pages as noncacheable (depending on what’s possible and what makes the
most sense). Accordingly, you need not explicitly flush the processor’s data cache for
data buffers located in pages that are locked in memory. See the chapter “Virtual
Memory Manager” in this book for more information about locking page ranges.

Using the Memory Management Utilities

This section describes how you can

n save and restore the value of the A5 register so that you can access your application’s
A5 world in completion routines or other interrupt tasks

n access your application’s QuickDraw global variables from within stand-alone code

n change the address-translation mode so that you can temporarily use 32-bit addresses
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n strip the flag bits from a master pointer or other memory address

n convert 24-bit addresses to 32-bit addresses

Accessing the A5 World in Completion Routines

Some Toolbox and Operating System routines require you to pass the address of an
application-defined callback routine, usually in a variable of type Pr ocPt r. After a
certain condition has been met, the Toolbox executes the specified routine. The exact
time at which the Toolbox executes the routine varies. The timing of execution is
determined by the Toolbox routine to which you passed the routine’s address and the
action that must be completed before the routine is called.

Callback routines are quite common in the Macintosh system software. A grow-zone
function, for instance, is an application-defined callback routine that is called every time
the Memory Manager cannot find enough space in your heap to honor a
memory-allocation request. Similarly, if your application plays a sound asynchronously,
you can have the Sound Manager execute a completion routine after the sound is
played. The completion routine might release the sound channel used to play the sound
or perform other cleanup operations.

In general, you cannot predict what your application will be doing when an
asynchronous completion or callback routine is actually executed. The routine could be
called while your application is executing code of its own or executing another Toolbox
or Operating System routine.

Note

The completion or callback routine might even be called when your
application is in the background. Before executing a completion or
callback routine belonging to your application, the Process Manager
checks whether your application is in the foreground. If not, the Process
Manager performs a minor switch to give your application temporary
control of the CPU. u

Many Toolbox and Operating System routines do not need to access the calling
application’s global variables, QuickDraw global variables, or jump table. As a result,
they sometimes use the A5 register for their own purposes. They save the current value
of the register upon entry, modify the register as necessary, and then restore the original
value on exit. As you can see, if one of these routines is executing when your callback
routine is executed, your callback routine cannot depend on the value in the A5 register.
This effectively prevents your callback routine from using any part of its A5 world.

To solve this problem, simply use the strategy that the Toolbox employs when it takes
over the A5 register: save the current value in the A5 register at the start of your callback
procedure, install your application’s A5 value, and then restore the original value when
you exit. Listing 4-1 illustrates a very simple grow-zone function that uses this

technique. It uses the Set Cur r ent A5 and Set A5 utilities to manipulate the A5 register.
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Listing 4-1 A sample grow-zone function

FUNCTI ON MyGrowZone (cbNeeded: Size): Longlnt;

VAR

t heA5:
BEG N
t heA5

Longl nt; {val ue of A5 when function is call ed}

;= Set Current A5; {renmenber current value of A5; install ours}

| F (gEmergencyMenory” <> NI L) & (gEmergencyMenory <> &ZSaveHnd) THEN

ELSE
My G owZone : = O; {no nmore menory to rel ease}

theA5 : = Set A5(t heA5); {restore previous val ue of A5}

END;

BEG N
Enpt yHandl e( gEner gencyMenory) ;
MyG owZone : = kEner gencyMenorySi ze;

The function Set Cur r ent A5 does two things: it returns the current value in the A5
register, and it sets the A5 register to the value of the Cur r ent A5 low-memory global
variable. This global variable always contains a value that points to the boundary
between the current application’s parameters and its global variables. The MyGr owZone
function defined in Listing 4-1 calls Set Cur r ent A5 on entry to make sure that it can
read the value of the gEner gencyMenory global variable.

The function Set A5 also does two things: it returns the current value in the A5 register,
and it sets the A5 register to whatever value you pass to the function. The MyGr owZone
function calls Set A5 with the original value of the A5 register as the parameter. In this
case, the value returned by Set A5 is ignored.

There is no way to test whether, at the time your callback routine is called, your
application is executing a Toolbox routine that could change the A5 register. Therefore, to
be safe, you should save and restore the A5 register in any callback routine that accesses
any part of your A5 world. Such routines include

n grow-zone functions

n Sound Manager completion routines

n File Manager 1/0 completion routines

n control-action procedures

n TextEdit word-break and click-loop routines

n trap patches

n custom menu definition, window definition, and control definition procedures

See the section of Inside Macintosh describing any particular completion or callback
routine for details on whether you need to save and restore the A5 register in this way.
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Accessing the A5 World in Interrupt Tasks

Sometimes, an application-defined routine executes at a time when you can’t reliably call
Set Cur r ent A5. For example, if your application is not the current application and you
call Set Current A5 as illustrated in Listing 4-1, the function will not return your
application’s value of Cur r ent A5. The Set Cur r ent A5 function always returns the
value of the low-memory global variable Cur r ent A5, which always belongs to the
current application. You’ll end up reading some other application’s A5 world.

In general, you cannot reliably call Set Cur r ent A5 in any code that is executed in
response to an interrupt, including the following:

n Time Manager tasks

n VBL tasks

n tasks installed using the Deferred Task Manager
n Notification Manager response procedures

Instead of calling Set Cur r ent A5 at interrupt time, you can call it at noninterrupt time
when yours is the current application. Then store the returned value where you can read
it at interrupt time. For example, the Notification Manager allows you to store
information in the notification record passed to NM nst al | . When you set up a
notification record, you can use the nnmRef Con field to hold the value in the A5 register.
Listing 4-2 illustrates how to save the current value in the A5 register and pass that value
to a response procedure.

Listing 4-2 Passing A5 to a notification response procedure
VAR
gMyNoti fication: NMRec; {a notification record}
BEG N
W TH gM/Noti ficati on DO
BEG N
qType : = ORD(nnype); {set queue type}
nmvark := 1; {put mark in Application nmenu}
nm con := NL; {no alternating icon}
nSound : = Handl e(-1); {play system al ert sound}
nnstr = NL; {no al ert box}
nmResp : = @anpl eResponse; {set response procedure}
nmRef Con : = Set Curr ent A5; {pass A5 to notification task}
END;
END;
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The key step is to save the value of Cur r ent A5 where the response procedure can find
it—in this case, in the nnRef Con field. You must call Set Cur r ent A5 at noninterrupt
time; otherwise, you cannot be certain that it will return the correct value.

When the notification response procedure is executed, its first task should be to call the
Set A5 function, which sets register A5 to the value stored in the nnRef Con field. At the
end of the routine, the notification response procedure should call the Set A5 function
again to restore the previous value of register A5. Listing 4-3 shows a simple response
procedure that sets up the A5 register, modifies a global variable, and then restores the
A5 register.

Listing 4-3 Setting up and restoring the A5 register at interrupt time

PROCEDURE Sanpl eResponse (nnReqPtr: NMRecPtr);
VAR
ol dA5: Longl nt; {A5 when procedure is call ed}
BEG N
ol dA5 : = Set A5(nnmReqPt r ~. nnRef Con) ;
{set A5 to the application’s A5}

gNot i f Recei ved : = TRUE; {set an application global }
{ to show alert was received}
ol dA5 : = Set A5(ol dAS); {restore A5 to original value}
END;
Note

Many optimizing compilers (including MPW) might put the address of a
global variable used by the interrupt routine into a register before the
call to Set A5, thereby possibly generating incorrect references to global
data. To avoid this problem, you can divide your completion routine
into two separate routines, one to set up and restore A5 and one to do
the actual completion work. Check the documentation for your
development system to see if this division is necessary, or contact
Macintosh Developer Technical Support. u

Several of the other managers that you can use to install interrupt code—including the
Deferred Task Manager, the Time Manager, and the Vertical Retrace Manager—do not
include a reference constant field in their task records. Therefore, if you wish to access
global variables from within one of these tasks, you must use another mechanism to
attach the value of the A5 register to the task record.

To do this, you can define a new record that contains the task record and your own
reference constant field. You can initialize the task record as you normally would and
then copy the value of your application’s A5 register into the reference constant field you
created. Then, when you obtain a pointer to the task record at interrupt time, you can
use your knowledge of the size of the task record to compute the location of your
reference constant field. See the chapters “Time Manager” and “Vertical Retrace
Manager” in Inside Macintosh: Processes for detailed illustrations of these techniques.
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Using QuickDraw Global Variables in Stand-Alone Code

If you are writing a stand-alone code segment such as a definition procedure for a
window, menu, or control, you might want routines in that segment to examine the
QuickDraw global variables of the current application. For example, you might want a
control definition function to reference some of the QuickDraw global variables, such as
t hePort, screenBits, or the predefined patterns. Stand-alone segments, however,
have no A5 world; if you try to link a stand-alone code segment that references your
application’s global variables, the linker may be unable to resolve those references.

To solve this problem, you can have the definition function find the value of the
application’s A5 register (by calling the Set Cur r ent A5 function) and then use that
information to copy all of the application’s QuickDraw global variables into a record in
the function’s own private storage. Listing 4-4 defines a record type with the same
structure as the QuickDraw global variables. Note that r andSeed is stored lowest in
memory and t hePor t is stored highest in memory.

Listing 4-4 Structure of the QuickDraw global variables
TYPE
QDVar RecPtr = ~(QDVar Rec;
Dvar Rec =
RECORD
r andSeed: Longl nt; {for random nunber generator}
screenBits: BitMp; {rectangl e encl osi ng screen}
arr ow. Cur sor; {standard arrow cursor}
dkGray: Patt ern; {75% gray pattern}
It G ay: Patt ern; {25% gray pattern}
gray: Patt ern; {50% gray pattern}
bl ack: Pat t ern; {all -bl ack pattern}
whi t e: Patt ern; {all -white pattern}
t hePort: Gafbtr; {pointer to current G afPort}
END;

The location of these variables is linker-dependent. However, the A5 register always
points to the last of these global variables, t hePor t . The Operating System references all
other QuickDraw global variables as negative offsets from t hePor t . Therefore, you
must dereference the value in A5 (to obtain the address of t hePor t ), and then subtract
the combined size of the other QuickDraw global variables from that address. The
difference is a pointer to the first of the QuickDraw global variables, r andSeed.

You can copy the entire record into a local variable simply by dereferencing that pointer,
as illustrated in Listing 4-5.
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Listing 4-5 Copying the QuickDraw global variables into a record

PROCEDURE Get QDVars (VAR gdVars: QDVar Rec);

TYPE
LongPtr = “~Longl nt;
BEG N
gdVars : = (Var RecPtr (LongPtr (Set Current A5) " -
(SizeO (@Var Rec) - SizeO (thePort)))”;
END;

Thereafter, your stand-alone code segment can read QuickDraw global variables through
the structure returned by Get QDVar s. Listing 4-6 defines a very simple draw routine for
a control definition function. After reading the calling application’s QuickDraw global
variables, the draw routine paints a rectangle with a pattern.

Listing 4-6 A control’s draw routine using the calling application’s QuickDraw patterns

PROCEDURE DoDr aw (var Code: |nteger; nyControl: Control Handl e;
flag: Integer);
VAR
cRect: Rect;
gdVars: QDVar Rec;
ori gPenSt ate: PenSt at e;

CONST
kDraw = 1; {constant to specify draw ng}
BEG N
Get PenSt at e(ori gPenSt at e) ; {get original pen state}
cRect := nyControl . contrl Rect; {get control’s rectangl e}
IF flag = kDraw THEN
BEG N
Get @Var s(qdVvars) ; {patterns are @ gl obal s}
PenPat (qdVars. gray); {install desired pattern}
Pai nt Rect (cRect); {paint the control}
END;
Set PenSt at e(ori gPenSt at e) ; {restore original pen state}
END;

The DoDr awdrawing routine defined in Listing 4-6 retrieves the calling application’s
QuickDraw global variables and paints the control rectangle with a light gray pattern. It
also saves and restores the pen state, because the PenPat procedure changes that state.
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Switching Addressing Modes

If you are writing a driver for a slot-card device, you can use the SwapMViUMbde
procedure to change to 32-bit address-translation mode temporarily, as follows:

myMode : = true32b; {specify switch to 32-bit node}
SwapMMUMbde( nyMbde) ; {perform sw tch}

The parameter passed to SwapMMUMbde must be a variable that is equal to the constant
f al se32b or the constantt r ue32b.

CONST
fal se32b = 0; {24-bit addressi ng node}
true32b = 1, {32-bit addressi ng node}

The SwapMVUMbde procedure switches to the specified mode and then changes the
parameter to indicate the mode previously in use. Thereafter, you can restore the
previous address-translation mode by again calling

SwapMVUMbde( my Mbde) ;

Note

You should switch to 32-bit mode only if the computer supports 32-bit
addressing. To find out whether a system supports 32-bit mode and
whether a system started up in 32-bit mode, use the Gest al t function,
described in the chapter “Gestalt Manager” in Inside Macintosh:
Operating System Utilities. To determine the current address-translation
mode, call the Get MMUMbde function. u

If you do call SwapMMUMode, be careful to avoid situations that can cause the system to
read an invalid address from the program counter. When the system is in 24-bit mode
and you load a code resource into a block of memory (for example, by calling

Get Resour ce), the high byte of that block’s master pointer contains Memory Manager
flag bits. If you try to execute that code by performing an assembly-language JSR
instruction (typically JSR ( AO), with the master pointer in register A0), the entire
master pointer is translated directly into the program counter. This, however, is hot a
valid 32-bit address. As soon as you switch to 32-bit mode, the program counter contains
an invalid value. This is virtually certain to cause the system to crash.

Note

This problem can arise when you change to 32-bit mode in code loaded
from a resource or placed into a block of memory that was allocated by
calls to Memory Manager routines. It does not arise with standard

' CODE' resources because the Segment Manager fixes the program
counter. u
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To avoid this problem, simply call St ri pAddr ess on the address in the program
counter before you call SwapMVIUMbde. Listing 4-7 shows one way to do this.

Listing 4-7 Stripping the program counter

PROCEDURE Fi xPC;
INLINE  $41FA, $000A, {LEA *+$000C, A0}

$2008, {MOVE. L A0, DO}

$A055, {_StripAddress}

$2040, { MOVEA. L DO, A0}

$4EDO; {JMP (AO); junp to next instruction}

For these same reasons, you also need to call St ri pAddr ess on any address you pass to
the _Set Tr apAddr ess trap, if the address references a block in your application heap.

Stripping Flag Bits From Memory Addresses

If your code runs on a system that might have started up with the 24-bit Memory
Manager, you sometimes need to strip the flag bits from a memory address before you
use it. The Operating System provides the St ri pAddr ess function for this purpose.

The Stri pAddr ess function takes an address as a parameter and returns the value of
the address’s low-order 3 bytes if the computer started up in 24-bit mode. If the system
started up in 32-bit mode, St r i pAddr ess returns the address unchanged (because it
must already be a valid 32-bit address). Note that if a system starts up in 32-bit mode,
you cannot switch it to 24-bit mode.

WARNING
If you pass a valid 32-bit address to St ri pAddr ess and the computer
started in 24-bit mode, the function still strips off the high byte of the
address, thus probably rendering the address invalid. You can pass
32-bit addresses to St ri pAddr ess if the system started up in 32-bit
mode, but then the function does nothing to the address. Therefore, you
should ordinarily pass only 24-bit addresses to the St ri pAddr ess
function. s

You needtouse St ri pAddr ess primarily in device drivers or other software that
communicates heap addresses to external hardware (such as a NuBus card). Because the
external hardware might interpret the flag bits of a master pointer as part of the address,
you need to call St ri pAddr ess to clear those flag bits.

There is nothing inherently dangerous about 24-bit addresses. They cause problems only
when you try to use them in 32-bit mode. So, unless you are switching addressing modes
(by calling SwapMVUMbde), you generally don’t need to call St ri pAddr ess.
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You might, however, need to call St ri pAddr ess in these special cases, even if you are
not designing a driver:

n Making ordered address comparisons. If you want to sort an array by address or do
any other kind of ordered address comparison (that is, using <, >, 3, or £), you need to
call St ri pAddr ess on each address before the comparison. Even though the CPU
uses only the lower 3 bytes when it determines memory addresses in 24-bit mode, it
uses all 32 bits when it performs arithmetic operations.

n Comparing master pointers. If you want to perform any type of comparison on
master pointers (that is, on dereferenced handles), you must first call St ri pAddr ess
on each address. The master pointer flag bits can change at any time, so you need to
clear them before making the comparison. In general, you should call St ri pAddr ess
when comparing any two pointers, if either of them might be a dereferenced handle.

n Accessing addresses in 32-bit mode. If you switch the computer to 32-bit mode
manually, you need to call St ri pAddr ess on all 24-bit pointers and handles that you
access while in 32-bit mode. Be careful, however, not to call St ri pAddr ess ona
valid 32-bit address.

n Fixing the program counter. You might need to use St r i pAddr ess to fix the value of
the program counter before you switch manually to 32-bit mode. See “Switching
Addressing Modes” on page 4-20 for details.

n Overcoming Resource Manager limitations. To avoid a limitation in the Resource
Manager’s OpenResFi | e and OQpenRFPer mroutines, you should call
St ri pAddr ess on pointers to the filenames that you pass to those functions, but
only if the strings that represent the files are hard-coded into your application’s code
instead of in a separate resource. When the string is embedded in a code resource, the
Resource Manager calls the Recover Handl e function with an invalid master pointer.
Here is an example of the correct way to call OpenResFi | e:

fileName := "This file';

myRef := OpenResFile(StringPtr(StripAddress(@il eNanme))”?);
In virtually all other cases, you don’t need to call St ri pAddr ess before using a
valid 24-bit address. In particular, you don’t need to call St ri pAddr ess before
dereferencing a pointer or handle in 24-bit mode, unless you subsequently switch
to 32-bit mode by calling SwapMVUMbde. Also, you don’t need to call St ri pAddr ess
when checking pointers and handles for equality or when performing address arithmetic.

Because you need to call St ri pAddr ess rarely (if ever), the additional processing time
required to call St ri pAddr ess shouldn’t adversely affect the execution of your
software. In some cases, however, you might want to avoid the overhead of calling the
trap dispatcher every time you need to call St ri pAddr ess. (A good example might be
a time-critical loop in an interrupt task.) You can use the Qui ckSt ri p function defined
in Listing 4-8 in place of St ri pAddr ess when speed is a real concern.
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Listing 4-8 Stripping addresses in time-critical code

FUNCTI ON Qui ckStrip (thePtr: Ptr): Ptr;
BEG N

QuickStrip := Ptr(BAND(Longlnt(thePtr), gStripAddressiask));
END;

The Qui ckStri p function defined in Listing 4-8 simply masks the address it is passed

with the same mask St ri pAddr ess uses. You can calculate that mask by executing the
lines of code in Listing 4-9 early in the execution of your software:

Listing 4-9 Calculating the St r i pAddr ess mask

VAR
gStri pAddr essMask: Longl nt;; {gl obal nmask vari abl e}

gStri pAddr essMask :
gStri pAddressMask : =
Longl nt (Stri pAddress(Ptr(gStri pAddressMask)));

$FFFFFFFF;

Unless you are calling St ri pAddr ess repeatedly at interrupt time, you probably don’t
need to use this technique.

Translating Memory Addresses

As explained earlier in “Address Translation” on page 4-8, you sometimes need to
override the Operating System’s standard translation of 24-bit addresses into their 32-bit
equivalents. This is necessary because the Virtual Memory Manager might have
programmed the MMU to map unused NuBus slot addresses into the address space
reserved for RAM. If you try to use a 24-bit address when the system switches to 32-bit
mode, the standard translation might result in a 32-bit address that points to the space
reserved for expansion cards. In that case, you are virtually guaranteed to obtain

invalid results.

To prevent this problem, you can use the Tr ans| at e24To32 function to get the
32-bit equivalent of a 24-bit address. In general, you should test for the presence of
the _Transl at e24To32 trap before you use any 24-bit addresses in 32-bit mode.

If it is available, you should use it in place of the static translation process performed
automatically by the Operating System while running in 32-bit mode.

Note

You need to use the Tr ansl at e24To032 function only when the
computer is running in 32-bit mode, it was booted in 24-bit mode, and
you are communicating with external hardware. Most applications do
not need to use it. u
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Listing 4-10 illustrates how to use Tr ans| at e24To32. The DoRout i ne procedure
defined there calls the application-defined routine MyRout i ne to process a block of
data while in 32-bit mode. It checks whether the _Tr ansl at e24To32 trap is available,
and if so, makes sure that the address to be read is a valid 32-bit address.

Listing 4-10 Translating 24-bit to 32-bit addresses

PROCEDURE DoRouti ne (ol dAddr: Ptr; length: Longlnt);
BEG N
I F TrapAvai |l abl e(_Transl at e24To32) THEN
MyRout i ne( Tr ansl at e24To32( ol dAddr), | ength);
ELSE
MyRout i ne(ol dAddr, | ength);
END,

Note that you don’t need to call St ri pAddr ess before calling Tr ansl at e24T032,
because the Tr ansl at e24To32 function automatically ignores the high-order byte of
the 24-bit address you pass it. (For a definition of the Tr apAvai | abl e function, see the
chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.)

Memory Management Utilities Reference

Routines

This section describes the memory management utilities provided by the
Operating System.

This section describes the routines you use to set and restore the A5 register, change the
addressing mode, manipulate memory addresses, and manipulate the processor caches.

Setting and Restoring the A5 Register

4-24

Any code that runs asynchronously or as a callback routine and that accesses the calling
application’s A5 world must ensure that the A5 register correctly points to the boundary
between the application parameters and the application global variables. To accomplish
this, you can call the Set Cur r ent A5 function at the beginning of any asynchronous or
callback code that isn’t executed at interrupt time. If the code is executed at interrupt
time, you must use the Set A5 function to set the value of the A5 register. (You determine
this value at noninterrupt time by calling Set Cur r ent A5.) Then you must restore the
A5 register to its previous value before the interrupt code returns.
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SetCurrentA5

DESCRIPTION

You can use the Set Cur r ent A5 function to get the current value of the system global
variable Curr ent A5.

FUNCTI ON Set Current A5: Longl nt;

The Set Cur r ent A5 function does two things: First, it gets the current value in the A5
register and returns it to your application. Second, Set Cur r ent A5 sets register A5 to
the value of the low-memory global variable Cur r ent A5. This variable points to the
boundary between the parameters and global variables of the current application.

SPECIAL CONSIDERATIONS

You cannot reliably call Set Cur r ent A5 in code that is executed at interrupt time unless
you first guarantee that your application is the current process (for example, by calling
the Process Manager function Get Cur r ent Pr ocess). In general, you should call

Set Cur r ent A5 at noninterrupt time and then pass the returned value to the

interrupt code.

ASSEMBLY-LANGUAGE INFORMATION

SetA5

You can access the value of the current application’s A5 register with the low-memory
global variable Cur r ent A5.

DESCRIPTION

SEE ALSO

In interrupt code that accesses application global variables, use the Set A5 function first
to restore a value previously saved using Set Cur r ent A5, and then, at the end of the
code, to restore the A5 register to the value it had before the first call to Set A5.

FUNCTI ON Set A5 (newA5: Longlnt): Longlnt;

newA5 The value to which the A5 register is to be changed.

The Set A5 function performs two tasks: it returns the address in the A5 register when
the function is called, and it sets the A5 register to the address specified in newA5.

See “The A5 Register” on page 4-5 for a discussion of when you need to call Set A5.
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Changing the Addressing Mode

If you wish to change address-translation modes manually, you can use the
Get MMUMbde function to find out which mode is currently in use and the SwapMVIUMode
procedure to swap modes.

Note

In general, you need to alter the CPU’s addressing mode manually only
if you are designing device drivers or other software that communicates
with NuBus expansion cards. u

GetMMUMode

DESCRIPTION

To find out which address-translation mode (24-bit or 32-bit) is currently in use, use the
Get MMUMbde function.

FUNCTI ON Get MMUMbde: Si gnedByt e;

The Get MMUMbde function returns the address-translation mode currently in use. On
exit, Get MMUMbde returns one of the following constants:

CONST
fal se32b = 0; {24-bit addressi ng node}
true32b = 1, {32-bit addressi ng node}

SPECIAL CONSIDERATIONS

To find out which addressing mode was in effect at system startup, use the Gest al t
function.

ASSEMBLY-LANGUAGE INFORMATION

To determine the current address-translation mode, you can test the contents of the
global variable MMU32Bi t . The value TRUE indicates that 32-bit mode is in effect.

SwapMMUMode

4-26

To change the address-translation mode from 24-bit to 32- bit or vice versa, use the
SwapMMUMbde procedure.

PROCEDURE SwapMVUMbde (VAR node: SighedByte);
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nmode On entry, the desired address-translation mode. On exit, the address
translation mode previously in use.

DESCRIPTION

The SwapMVUMbde procedure sets the address-translation mode to the value specified
by the node parameter. The mode in use prior to the call is returned in node, and you
can restore the previous mode by calling SwapMVUMode again. The value of nmode
should be one of the following constants on entry and will be one of the following
constants on exit:

CONST
fal se32b = 0; {24-bit addressi ng node}
true32b = 1, {32-bit addressi ng node}

SPECIAL CONSIDERATIONS

You might cause a system crash if you switch to 32-bit addressing mode when your
application is executing a code resource you loaded into memory while 24-bit mode was
in effect. See “Switching Addressing Modes” on page 4-20 for a description of how this
problem arises and how you can avoid it.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for SwapMMUNbde are

Registers on entry
DO New mode

Registers on exit
DO Previous mode

Manipulating Memory Addresses

Sometimes you need to modify a memory address before using it. You can strip off a
master pointer’s flag bits, if any, by calling the St ri pAddr ess function. You can map
24-bit addresses into the 32-bit address space by calling the Tr ans| at e24To32 function.

StripAddress

Use the St ri pAddr ess function to strip the flag bits from a 24-bit memory address.
FUNCTI ON Stri pAddress (address: UNIV Ptr): Ptr;

addr ess The address to strip.
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DESCRIPTION

The Stri pAddr ess function returns a pointer that references the same address
passed in the addr ess parameter, but in a form that is comprehensible to the 32-bit
Memory Manager.

The effect of the St ri pAddr ess function depends on the startup mode of the Memory
Manager, not on the current mode. Thus, if the Memory Manager started up in 32-bit
mode, the address passed to St ri pAddr ess is unchanged (because it already must be a
32-bit address). If the Memory Manager started up in 24-bit mode, the function returns
the low-order 3 bytes of the address. You should not pass valid 32-bit addresses to

Stri pAddr ess if the Memory Manager started up in 24-bit mode.

ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for St ri pAddr ess are
Registers on entry
DO The address to strip

Registers on exit
DO The function result

Translate24To32

You can use the Tr ansl at e24To32 function to map 24-bit addresses into the 32-bit
address space.

FUNCTI ON Transl at e24To32 (addr24: UNIV Ptr): Ptr;

addr 24 An address that is meaningful to the 24-bit Memory Manager.

DESCRIPTION

The Tr ansl at e24To32 function translates the address specified by the addr 24
parameter from 24-bit into 32-bit addressing mode and returns that address. If addr 24 is
already a 32-bit address, the function returns it unchanged.

Unlike the St ri pAddr ess function, Tr ans| at e24To32 does not necessarily return an
address that can be used in 24-bit mode. Also, you cannot meaningfully call
Tr ansl at e24To32 on the result of a previous translation.

SPECIAL CONSIDERATIONS

You need to call Tr ansl at e24To32 only if you use 24-bit addresses while
communicating with external hardware in 32-bit mode and virtual memory is enabled.
See “Translating Memory Addresses” on page 4-23 for details.
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ASSEMBLY-LANGUAGE INFORMATION
The registers on entry and exit for Tr ansl at e24To32 are
Registers on entry
DO A 24-bit addressing mode address

Registers on exit
DO The translated address

Manipulating the Processor Caches

The system software provides routines that allow you to enable, disable, and flush the
processor caches. Before you call any of the routines described in this section, be sure to
check that the trap _HWPr i v is implemented. The only exception is the

Fl ushCodeCache procedure, which is available whenever the processor has a cache
that can be flushed.

S WARNING

If you call these routines and _HWPr i v isn’t implemented, your
application will crash. s

SwaplnstructionCache

You can use the Swapl nst ruct i onCache function to enable or disable the
instruction cache.

FUNCTI ON Swapl nst ructi onCache (cacheEnabl e: Bool ean): Bool ean;

cacheEnabl e
The desired state of the instruction cache.

DESCRIPTION

The Swapl nst ruct i onCache function enables or disables the instruction cache,
depending on whether the cacheEnabl e parameter is set to TRUE or FALSE. On exit,
Swapl nst ruct i onCache returns the previous state of the instruction cache.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for Swapl nst ruct i onCache are
Trap macro Selector
_HWPriv $0000
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FlushlnstructionCache

You can use the Fl ushl nst ruct i onCache procedure to flush the instruction cache.

PROCEDURE Fl ushl nstructi onCache;

DESCRIPTION

The Fl ushl nst ruct i onCache procedure flushes the current contents of the
instruction cache. Because flushing this cache degrades performance of the CPU, you
should call this routine only when absolutely necessary. See “Stale Instructions” on
page 4-9 for details on when to call this procedure.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for Fl ushl nstruct i onCache are

Trap macro Selector
_HWpPriv $0001

SPECIAL CONSIDERATIONS

On processors with a copy-back data cache, Fl ushl nst ructi onCache also flushes the
data cache before it flushes the instruction cache, to ensure that any instructions
subsequently copied to the instruction cache are not copied from stale RAM.

SwapDataCache

You can use the SwapDat aCache function to enable or disable the data cache.
FUNCTI ON SwapDat aCache (cacheEnabl e: Bool ean): Bool ean;

cacheEnabl e
The desired state of the data cache.

DESCRIPTION

The SwapDat aCache function enables or disables the data cache, depending on
whether the cacheEnabl e parameter is set to TRUE or FALSE. On exit,
SwapDat aCache returns the previous state of the data cache.
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ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for SwapDat aCache are
Trap macro Selector
_HWPriv $0002

FlushDataCache

You can use the Fl ushDat aCache procedure to flush the data cache.

PROCEDURE Fl ushbDat aCache;

DESCRIPTION

The Fl ushDat aCache procedure flushes the current contents of the data cache. Because
flushing this cache degrades performance of the CPU, you should call this routine only
when absolutely necessary. See “Processor Caches” beginning on page 4-8 for details on
when to call this procedure.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for Fl ushDat aCache are

Trap macro Selector
_HWpriv $0003

FlushCodeCache

You can use the Fl ushCodeCache procedure to flush the instruction cache.

PROCEDURE Fl ushCodeCache;

DESCRIPTION

The Fl ushCodeCache procedure flushes the current contents of the instruction cache.
Because flushing this cache degrades performance of the CPU, you should call this
routine only when absolutely necessary. See “Processor Caches” beginning on page 4-8
for details on when to call this procedure.
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SPECIAL CONSIDERATIONS

On processors with a copy-back data cache, FIl ushCodeCache also flushes the data
cache before it flushes the instruction cache, to ensure that any instructions subsequently
copied to the instruction cache are not copied from stale RAM.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for Fl ushCodeCache is _CacheFl ush.

FlushCodeCacheRange

DESCRIPTION

You can use the FI ushCodeCacheRange function to flush a portion of the instruction
cache.

FUNCTI ON Fl ushCodeCacheRange (address: UNIV Ptr; count: Longlnt):

CSErr;
addr ess The starting address of the range to flush.
count The size, in bytes, of the range to flush.

The Fl ushCodeCacheRange function flushes the current contents of the instruction
cache. Fl ushCodeCacheRange is an optimized version of Fl ushCodeCache and is
intended for use on processors such as the MC68040 that support flushing only a portion
of the instruction cache. On processors that do not have this capability,

Fl ushCodeCacheRange simply flushes the entire instruction cache.

The Fl ushCodeCacheRange function might flush a larger portion of the instruction
cache than requested if it would be inefficient to satisfy the request exactly.

ASSEMBLY-LANGUAGE INFORMATION

4-32

The trap macro and routine selector for Fl ushCodeCacheRange are

Trap macro  Selector
_HWPriv $0009
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The registers on entry and exit for Fl ushCodeCacheRange are
Registers on entry

A0 Starting address of the range to flush

Al Number of bytes to flush

DO Routine selector

Registers on exit

DO Result code

RESULT CODES

nokErr 0 No error
hwPar aner r -502 Processor does not support flushing a range
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Summary of the Memory Management Utilities

Pascal Summary

Constants

CONST
{Gestalt constants}
gest al t Addr essi nghvbdeAttr = 'addr'; {addr essi ng node attri butes}
gest al t 32Bi t Addr essi ng = 0; {started in 32-bit node}
gest al t 32Bi t SysZone = 1, {32-bit conpatible sys. zone}
gest al t 32Bi t Capabl e = 2, {machine is 32-bit capabl e}

{addr essi ng node const ant s}
fal se32b = 0; {24-bit addressing
true32b = 1; {32-bit addressing

Routines

nmode}
nmode}

Setting and Restoring the A5 Register

FUNCTI ON Set Current A5 : Longl nt;
FUNCTI ON Set A5 (newA5: Longlnt): Longlnt;

Changing the Addressing Mode

FUNCTI ON Get MMUMbde: Si gnedByt €;
PROCEDURE SwapMVUMbde (VAR node: SignedByte);

Manipulating Memory Addresses

FUNCTI ON Stri pAddress (address: UNIV Ptr): Ptr;
FUNCTI ON Tr ansl at e24To32 (addr24: UNIV Ptr): Ptr;

Manipulating the Processor Caches

FUNCTI ON Swapl nst ructi onCache(cacheEnabl e: Bool ean): Bool ean;
PROCEDURE Fl ushl nstructi onCache;
FUNCTI ON SwapDat aCache (cacheEnabl e: Bool ean): Bool ean;
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PROCEDURE FI ushDat aCache;
PROCEDURE FI ushCodeCache;
FUNCTI ON Fl ushCodeCacheRange(address: UNIV Ptr; count: Longlnt): OSErr

C Summary

Constants

/| *Gestalt constants*/

#def i ne gestal t Addr essi nghbdeAt tr "addr'; /*addressing node attributes*/
#def i ne gestal t 32Bi t Addr essi ng 0; [*started in 32-bit node*/
#def i ne gestal t32Bi t SysZone 1, [*32-bit conpatible sys. zone*/
#defi ne gestal t 32Bi t Capabl e 2; /*machine is 32-bit capabl e*/

[ *addr essi ng node constants*/

enum {fal se32b = 0}; [*24-Dbit addressing node*/
enum {true32b = 1}; [*32-bit addressing node*/
Routines

Setting and Restoring the A5 Register

I ong Set Current A5 (void);
| ong Set A5 (1ong newA5);

Changing the Addressing Mode

pascal char Get MMUMbde (void);
pascal void SwapMVUMbde (char *node);

Manipulating Memory Addresses

pascal Ptr StripAddress (Ptr address);
pascal Ptr Transl ate24To32 (Ptr addr24);

Manipulating the Processor Caches

pascal Bool ean Swapl nstructi onCache
(Bool ean cacheEnabl e) ;

pascal void FlushlnstructionCache
(void);
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pascal Bool ean SwapDat aCache(Bool ean cacheEnabl e);

pascal void FlushDataCache (void);

voi d Fl ushCodeCache (void);

OSErr Fl ushCodeCacheRange (void *address, unsigned |ong count);

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_HWPriv

Selector Routine

$0000 Swapl nstructi onCache
$0001 Fl ushl nstructi onCache
$0002 SwapDat aCache

$0003 Fl ushDat aCache

$0009 FI ushCodeCacheRange

Global Variables

Cur rent A5 long Address of the boundary between the application global variables and the
application parameters of the current application.
MVU32Bi t byte TRUE if 32-bit addressing mode is in effect.

Result Codes

noErr 0 No error
hwPar anEr r -502 Processor does not support flushing a range
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0-length handle A handle whose associated
relocatable block has a logical size of 0 bytes.

24-bit addressing The addressing mode in
which only the low-order 24 bits of a pointer or
handle are used in determining memory
addresses.

32-bit addressing The ability of the Operating
System to use all 32 bits of a pointer or handle in
determining memory addresses.

32-bit clean Said of an application that is able
to run in an environment where all 32 bits of a
memory address are used for addressing.

A5 world An area of memory in an
application’s partition that contains the
QuickDraw global variables, the application
global variables, the application parameters, and
the jump table—all of which are accessed
through the A5 register.

address A number that specifies the location of
a byte in memory.

Address Management Unit (AMU) The
Apple custom integrated circuit in Macintosh Il
computers that performs 24-bit to 32-bit address
mapping.

address map The assignment of portions of the
address space of a computer to specific devices.

address mapping See address translation.

address space A range of accessible memory.
See also address map.

address translation The conversion of one set
of addresses into another, corresponding set. For
example, software designed for the original
Macintosh computers uses only 24 bits for
addresses, whereas the Macintosh Il and later
models have a 32-bit address bus. As a result, the
Macintosh Il and later models convert (or map)
the 24-bit addresses used by the software into the
32-bit addresses used by the hardware.

allocate To assign an area of memory for use.

AMU See Address Management Unit.

application global variables A set of variables
stored in the application’s A5 world that are
global to the application.

application heap An area of memory in the
application heap zone in which memory is
dynamically allocated and released on demand.
The heap contains the application’s ' CODE'
segment 1, data structures, resources, and other
code segments as needed.

application heap zone The heap zone initially
provided by the Memory Manager for use by an
application and the Toolbox; initially equivalent
to the application heap, but may be subdivided
into two or more independent heap zones.

application parameters Thirty-two bytes of
memory in the application partition that are
reserved for system use. The first long word is
the address of the first QuickDraw global
variable.

application partition A partition of memory
reserved for use by an application. The
application partition consists of free space along
with the application’s heap, stack, and A5 world.

application space Memory that’s reserved for
dynamic allocation by applications.

asynchronous execution A mode of invoking
a routine. During the asynchronous execution
of a routine, an application is free to perform
other tasks.

backing-store file The file in which the Virtual
Memory Manager stores the contents of
unneeded pages of memory.

backing volume See paging device.
block See memory block.

block contents The area that’s available for use
in a memory block.
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block header The internal housekeeping
information maintained by the Memory Manager
at the beginning of each block in a heap zone.

cache See data cache, disk cache, or
instruction cache.

callback routine A routine that is executed as
part of the operation of some other routine.

compact See heap compaction.

completion routine A routine that is executed
when an asynchronous call to some other routine
is completed.

concurrent driver A driver that can handle
several requests at once.

copy-back cache A cache whose data is written
to RAM only when necessary to make room in
the cache for data accessed more recently or
when the cache is explicitly flushed. See also
write-through cache.

current heap zone The heap zone currently
under attention, to which most Memory Manager
operations implicitly apply.

cushion See memory cushion.

dangling pointer A copy of a master pointer
that no longer points to the correct memory
address.

data cache An area of memory internal to some
microprocessors (for example, the MC68030 and
MC68040 microprocessors) that holds recently
accessed data. See also instruction cache.

dereference To refer to a block by its master
pointer instead of its handle.

direct memory access (DMA) A technique for
transferring data in or out of memory without
using the CPU.

disk cache A part of RAM that acts as an
intermediate buffer when data is read from
and written to file systems on secondary
storage devices.

disposed handle A handle whose associated
relocatable block has been disposed of.

DMA See direct memory access.
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double indirection The means by which the
Memory Manager or an application accesses the
data associated with a handle variable.

double page fault A page fault that occurs
while the Virtual Memory Manager is handling
another page fault. See also page fault.

empty handle A handle whose master pointer
has the value NI L (possibly indicating that the
underlying relocatable block has been purged).

fake handle A handle that was not created by
the Memory Manager.

flush (1) To write data from a cache in memory
to a volume. (2) To write data or instructions
from a cache in the microprocessor to RAM.

fragmentation See heap fragmentation.

free block A memory block containing space
available for allocation.

GB Abbreviation for gigabyte. A gigabyte is
1024 megabytes, or 1,073,741,824 bytes.

global variables See application global
variables, system global variables, and
QuickDraw global variables.

grow-zone function A function supplied by the
application program to help the Memory
Manager create free space within a heap.

handle A variable containing the address of a
master pointer, used to access a relocatable block.
See also pointer.

heap An area of memory in which space
is dynamically allocated and released on
demand, using the Memory Manager. See
also application heap.

heap compaction The process of moving
allocated blocks within a heap to collect the free
space into a single block.

heap fragmentation The state of a heap when
the available free space is scattered throughout
the heap in numerous unused blocks.

heap zone An area of memory initialized by the
Memory Manager for heap allocation. A heap
zone consists of a zone header, a heap, and a
zone trailer.
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hold To temporarily prevent a range of physical
memory from being paged out by the Virtual
Memory Manager.

instruction cache An area of memory internal
to some microprocessors (for example, the
MC68020, MC68030, and MC68040
microprocessors) that holds recently used
instructions. See also data cache.

jump table An area of memory in an
application’s A5 world that contains one entry
for every externally referenced routine in every
code segment of the application. The jump table
is the means by which the loading and unloading
of segments is implemented.

KB Abbreviation for kilobyte. A kilobyte is
1024 bytes.

lock (1) To temporarily prevent a relocatable
block from being moved during heap
compaction. (2) To temporarily prevent a range
of physical memory from being paged out or
moved by the Virtual Memory Manager.

logical address An address used by

software. The logical address might be translated
into a physical address by the memory
management unit.

logical size The number of bytes in a memory
block’s contents.

low-memory system global variables See
system global variables.

master pointer A pointer to a relocatable block,
maintained by the Memory Manager and
updated whenever the block is moved, purged,
or reallocated. All handles to a relocatable block
refer to it by double indirection through the
master pointer.

master pointer block A nonrelocatable block of
memory that contains master pointers. A master
pointer block in your application heap contains
64 master pointers, and a master pointer block in
the system heap contains 32 master pointers.

master pointer flag bits The high-order 8 bits of
a master pointer. In 24-bit addressing mode,
some of these bits are used to store information
about the relocatable block referenced by the
master pointer.

MB Abbreviation for megabyte. A megabyte is
1024 kilobytes, or 1,048,576 bytes.

memory block An area of contiguous memory
within a heap.

memory-block record A data structure used by
the translation parameter block to indicate the
starting address and length of a given block of
memory. This parameter block is defined by the
Menor yBl ock data type.

memory cushion An application-defined
threshold below which the application should
refuse to honor any requests to allocate memory
for nonessential operations.

memory management unit (MMU) Any
component that performs address mapping in a
Macintosh computer. In Macintosh Il computers,
it is either the Address Management Unit (AMU)
or the Paged Memory Management Unit
(PMMU). The MMU function is built into the
MC68030 and MC68040 microprocessors.

Memory Manager The part of the Operating
System that dynamically allocates and releases
memory space in the heap.

memory map See address map.

memory reservation The process of creating a
free space at the bottom of the heap for a newly
allocated block by moving unlocked relocatable
blocks upward.

memory reserve An allocated block of memory
in the application heap that is held in reserve and
released only for essential operations when
memory in the heap is low.

MMU See memory management unit.

nonrelocatable block A block whose location
in the heap is fixed. This block can’t be moved
during heap compaction or other memory
operations.

NuBus The 32-bit wide synchronous bus used
for expansion cards in the Macintosh 11 family
of computers.

NuBus expansion slot A connector attached to
the NuBus in a Macintosh Il computer, into
which an expansion card can be installed.
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original application heap zone See application
heap zone.

page The basic unit of memory used in virtual
memory.

Paged Memory Management Unit

(PMMU) The Motorola MC68851 chip, used in
the Macintosh Il computer to perform
logical-to-physical address translation and paged
memory management.

page fault A special kind of bus error caused
by an attempt to access data in a page of memory
that is not currently resident in RAM. See also
double page fault.

paging The process of moving data between
physical memory and the backing-store file.

paging device The volume that contains the
backing-store file.

partition A contiguous block of memory
reserved for use by the Operating System or by
an application. See also application partition and
system partition.

physical address An address represented

by bits on a physical address bus. The

physical address may be different from the
logical address, in which case the memory
management unit translates the logical address
into a physical address.

physical size The actual number of bytes a
memory block occupies in its heap zone,
including the block header and any unused bytes
at the end of the block.

PMMU See Paged Memory Management Unit.

pointer A variable containing the address of a
byte in memory. See also handle.

processor cache See data cache or
instruction cache.

program counter A register in the CPU that
contains a pointer to the memory location of the
next instruction to be executed.

protected block A block of memory that should

not be moved or purged by a grow-zone function.

purge To remove a relocatable block from the
heap, leaving its master pointer allocated but set
toN L.
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purgeable block A relocatable block that can be
purged from the heap.

purge-warning procedure A procedure
associated with a particular heap zone. The
Memory Manager calls this procedure whenever
a block is about to be purged from the zone.

QuickDraw global variables A set of variables
stored in the application’s A5 world that contain
information used by QuickDraw.

RAM See random-access memory.

RAM disk A portion of the available RAM
reserved for use as a temporary storage device.
A user can configure a RAM disk or disable it
altogether using controls in the Memory
control panel.

random-access memory (RAM) Memory
whose contents can be changed. The RAM in a
Macintosh computer contains exception vectors,
buffers used by hardware devices, the system
and application heaps, the stack, and other
information used by applications.

read-only memory (ROM) Memory whose
contents are permanent. The ROM in a
Macintosh computer contains routines for the
Toolbox and the Operating System, and the
various system traps.

reallocate To allocate new space in the heap for
a purged block and to update the block’s master
pointer to point to its new location.

reentrant driver A driver that can be
interrupted while servicing a request, service
the new request, and then complete the original
request.

relative handle A pointer to a block’s master
pointer, expressed as an offset relative to the start
of the heap zone rather than as an absolute
memory address. A block’s relative handle is
contained in its block header.

release (1) To free an allocated area of memory,
making it available for reuse. (2) To allow a
previously held range of pages to be movable in
physical memory.

relocatable block A block that can be moved
within the heap during compaction.

reservation See memaory reservation.
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reserve See memory reserve.
ROM See read-only memory.

size correction The number of unused bytes at
the end of the block, beyond the end of the
block’s contents.

stack An area of memory in the application

partition that is used to store temporary variables.

stack frame The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

stale data Data in the microprocessor’s data
cache whose corresponding value in RAM has
changed. You might need to flush the data cache
to avoid using stale data.

stale instructions Instructions in the
microprocessor’s instruction cache whose
corresponding value in RAM has changed. You
might need to flush the instruction cache to avoid
using stale instructions.

strip an address To clear the high-order byte of
a 24-bit address, making it usable in 32-bit mode.

synchronous execution A mode of invoking a
routine. After calling a routine synchronously, an
application cannot perform other tasks until the
routine is completed.

system global variables A collection of global
variables stored in the system partition.

system heap An area of memory in the
system partition reserved for use by the
Operating System.

system heap zone The heap zone provided by
the Memory Manager for use by the Operating
System; equivalent to the system heap.

system partition A partition of memory
reserved for use by the Operating System.

tag byte The first byte of a block header.

temporary memory Memory allocated outside
an application partition that may be available for
occasional short-term use.

translation table A data structure used by the
Get Physi cal function to indicate which
physical blocks correspond to a given logical
block. This parameter block is defined by the
Logi cal ToPhysi cal Tabl e data type.

unlock (1) To allow a relocatable block to be
moved during heap compaction. (2) To allow a
previously locked range of pages to be paged out.

unpurgeable block A relocatable block that
can’t be purged from the heap.

virtual memory Addressable memory beyond
the limits of the available physical RAM. The
Operating System extends the logical address
space by allowing unused applications and data
to be stored on a secondary storage device
instead of in physical RAM.

Virtual Memory Manager The part of the
Operating System that provides virtual memory.

write-through cache A cache whose
information is immediately written to RAM
whenever that information changes. See also
copy-back cache.

zero-length handle See 0-length handle.

zone header An area of memory at the
beginning of a heap zone that contains essential
information about the heap, such as the number
of bytes free in the heap and the addresses of the
heap’s grow-zone function and purge-warning
procedure.

zone pointer A pointer to a zone record.

zone record A data structure representing a
heap zone.

zone trailer A minimum-sized free block
marking the end of a heap zone.
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Symbols

&operator 1-34
@operator 2-25

Numerals

0 (memory location) 1-4, 1-35

0-length handles 1-34

24-bit addressing 3-5to 3-7, 4-7 to 4-8
defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

32-bit addressing 3-7 to 3-9, 4-8
defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16

A

Ab register
and A5 world 1-13, 4-5to 4-6

grow-zone functions saving and restoring 1-49, 4-14

setting and restoring 1-78 to 1-79, 4-14, 4-24 to 4-25
use of by Toolbox and Operating System
routines 4-14
using to access QuickDraw globals 4-18 to 4-19
A5 world
accessing in completion routines 4-14 to 4-15
accessing in interrupt tasks 4-16 to 4-17
defined 1-12, 1-13
setting 1-78 to 1-79, 4-24 to 4-25
addresses. See memory addresses
addressing modes
24-bit 4-7
32-bit 4-7t04-8
current mode, getting 4-26
switching 4-20 to 4-21, 4-26 to 4-27
Address Management Unit (AMU) 3-5
address space. See logical address space; physical
address space
address-translation mode
getting 4-26

setting 4-26 to 4-27
temporarily changing 4-20
AMU (Address Management Unit) 3-5
ANDoperator 1-34
AppleShare, and paging devices 3-5
application global variables 1-12
accessing in completion routines 4-14
accessing in interrupt tasks 4-17
application heap 1-9to 1-11
defined 1-10
determining amount of free space 1-42 to 1-44
maximizing space to prevent fragmentation 1-40
setting up 1-38 to 1-42, 1-50 to 1-52, 2-27 to 2-29
application heap limit
getting 1-53, 2-84
setting 1-53 to 1-54, 2-84 to 2-85
application heap zone
See also heap zones
defined 2-5
getting a pointer to 2-81
initializing 2-87 to 2-88
maximizing size of 1-51, 2-27
subdividing into multiple heap zones 2-14 to 2-16
application parameters 1-13
application partitions 1-4, 1-7 to 1-13
Appl i cat i onZone function 2-81
Appl Li m t global variable 1-8, 1-40, 1-53, 2-84
Appl Zone global variable 2-81

B

backing-store files
defined 3-5
volume specified in Memory control panel 4-5
backing volume. See paging device
block contents 2-22
block headers 2-22 to 2-24
Bl ockMove procedure 1-74 to 1-75, 2-59 to 2-60

_Bl ockMove trap, flushing instruction cache 4-10

blocks, memory
See also nonrelocatable blocks; relocatable blocks
allocating 1-44 to 1-46
concatenating 2-64 to 2-66
copying 1-74 to 1-75, 2-59 to 2-64
defined 1-10
how allocated 1-22
manipulating 2-59 to 2-66
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blocks, memory (continued)
releasing 1-44 to 1-46
size correction for 2-23, 2-24
Boolean operators, short-circuit 1-34
Buf Pt r global variable 2-14
limitation on lowering during startup 2-85
bus-error vectors 3-22
Byt e data type 2-25

C

caches. See data cache; disk cache; instruction cache
callback routines

and code segmentation 1-32 to 1-33

maintaining the A5 register in 4-14 to 4-15
click-loop routines, and the A5 register 4-15
code resources, copying into system heap 2-13
code segmenting

and dangling pointers 1-31to 1-32

effect on callback routines 1-32 to 1-33
compacting heap zones 2-71 to 2-73
compaction. See heap compaction
Conpact Memfunction 2-71 to 2-72
Conpact MenBys function 2-72 to 2-73
completion routines

deferred under virtual memory 3-12

maintaining the A5 register in 4-14 to 4-15
concatenating memory blocks 2-64 to 2-66
concurrent drivers 3-11
control action procedures, and the A5 register 4-15
control definition procedures, and the A5 register 4-15
control panels, Memory

See Memory control panel
copy-back cache 4-12
copying memory blocks 1-74 to 1-75, 2-59 to 2-64
Current A5 global variable 1-79, 4-25

and callback routines 4-15

defined 1-13

getting value 1-79, 4-25
current heap zone 2-5
Cur St ackBase global variable 2-104
cushions. See memory cushions

D

introduced 1-20

locking blocks to prevent 1-29 to 1-30

referencing callback routines 1-32 to 1-33

using local variables to prevent 1-31
data cache 4-30 to 4-31

and virtual memory 3-21

defined 4-9

flushing 4-9, 4-12
Debugger Ent er procedure 3-23, 3-35
Debugger Exi t procedure 3-23, 3-35 to 3-36
Debugger Get Max function 3-34 to 3-35
Debugger LockMenor y function 3-21, 3-23, 3-37
Debugger Pol | procedure 3-23, 3-39
debuggers, and virtual memory 3-21 to 3-24
Debugger Unl ockMenor y function 3-21, 3-23, 3-38
_Debugtil trap 3-22, 3-45
deferred tasks, and the A5 register 4-16
Def er User Fn function 3-33

introduced 3-21

using 3-20 to 3-21
dereferenced handles 1-29
DeskHook global variable

clearing in Pascal 2-9

and displaying windows during startup time 2-9
Det achResour ce procedure 2-13
device drivers, avoiding page faults 3-12
dialog boxes, and low-memory situations 1-44
direct memory access (DMA) 3-3, 3-13, 3-15, 3-16, 3-18,

3-20, 3-21, 4-3, 4-10

and stale data 4-12
disk cache

defined 4-4

setting with the Memory control panel 4-4
disposed handles

checking for 1-33

defined 1-33

preventing dereferencing of 1-33

problems using 1-33
Di sposeHandl e procedure 1-46, 1-57, 2-34 to 2-35
Di sposePt r procedure 1-46, 1-60, 2-38 to 2-39
DMA. See direct memory access
double indirection 1-18
double page faults 3-11 to 3-12, 3-14
duplicating relocatable blocks 2-62 to 2-64

E

dangling pointers
avoiding 1-29 to 1-33
causes of 1-29 to 1-33
dangling procedure pointers 1-32 to 1-33
defined 1-29
detecting 1-29
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Enpt yHandl e procedure 1-67 to 1-68, 2-51 to 2-52
used by a grow-zone function 1-49

empty handles
checking for 1-34
defined 1-34
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F

H

fake handles 1-35 to 1-36, 1-55, 2-30

creating 1-35, 1-36

defined 1-35

problems using 1-35, 1-55, 2-30
Finder, allocation of memory for disk copying 2-9
flag bits

master pointer 4-7

stripping 4-7, 4-27
FI ushCodeCache procedure 4-31 to 4-32
FI ushCodeCacheRange function 4-32 to 4-33
Fl ushDat aCache procedure 4-31
flushing

data cache 4-9, 4-12, 4-31

instruction cache 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33
Fl ushl nst ruct i onCache procedure 4-30
fragmentation. See heap fragmentation
Fr eeMemfunction 2-66 to 2-67
Fr eeMenBys function 2-67
free space

assessing 2-66 to 2-70

assessing availability for temporary memory

2-79 to 2-80

G

gaps in heaps, danger of 1-25
Get Appl Li mi t function 1-53, 2-84
Get Handl eSi ze function 2-39 to 2-40
Get MMUMbde function 4-26
Get Next Event function, and temporary memory 2-10
Get PageSt at e function 3-24, 3-39 to 3-40
Get Physi cal function 3-31 to 3-33
and discontiguous physical address space 3-11
introduced 3-16
using 3-16 to 3-20
Get Ptr Si ze function 2-41 to 2-42
Get Zone function 2-80
global variables. See application global variables;
system global variables; QuickDraw
global variables
grow-zone functions 1-48 to 1-49, 1-80 to 1-81,
2-89 to 2-90
and the A5 register 4-15
defined 1-38
example of 1-49, 4-15
finding protected block 1-78, 2-77
setting 1-77 to 1-78, 2-76 to 2-77
using Set A5 function 1-81, 2-90
using Set Cur r ent A5 function 1-81, 2-90
&Root Hnd global variable 1-78, 2-77
&SaveHnd function 1-49, 1-78, 2-77

HandAndHand function 2-64 to 2-65
Handl e data type 1-18, 2-25
handles
See also relocatable blocks
checking validity of 1-34
defined 1-18 to 1-19
recovering 2-54 to 2-55
relative 2-23
Handl eZone function 2-82 to 2-83
HandToHand function 2-62 to 2-64
HA r RBi t procedure 2-50 to 2-51
heap compaction
defined 1-11, 1-23
movement of relocatable blocks during 1-24
routines for 2-71 to 2-73, 2-74 to 2-76
HeapEnd global variable 2-104
heap fragmentation
causes of 1-25to 1-28
defined 1-10
during memory reservation 1-25
maximizing heap size to prevent 1-40
preventing 1-24 to 1-28
summary of prevention 1-28
heap purging 1-21to 1-22
routines for 2-73 to 2-76
heap. See application heap; system heap
heap zones
See also zone headers; zone trailers
accessing 2-80 to 2-83
changing 2-81
defined 2-5
getting current zone 2-80
initializing 2-86 to 2-87
manipulating 2-83 to 2-89
organization of 2-19 to 2-22
subdividing into multiple heap zones 2-14 to 2-16
HFS RAM Cache panel 4-4
HCet St at e function 1-30, 1-61 to 1-62, 2-43 to 2-44
high memory, allocating at startup time 2-13 to 2-14
H_ockH procedure 1-73, 2-58 to 2-59
H_ock procedure 1-30, 1-63 to 1-64, 2-45 to 2-46
HN\oPur ge procedure 1-66 to 1-67, 2-48 to 2-49
holding physical memory 3-14
Hol dMenor y function 3-14, 3-25 to 3-26
HPur ge procedure 1-65 to 1-66, 2-47 to 2-48
HSet RBi t procedure 2-49 to 2-50
HSet St at e procedure 1-30, 1-62 to 1-63, 2-44 to 2-45
HuUnl ock procedure 1-64 to 1-65, 2-46 to 2-47
_H\WPri v trap macro 4-36
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I ni t Appl Zone procedure 2-87 to 2-88
initializing new heap zones within other heap
zones 2-14to 2-16
I ni t Zone procedure 1-81, 2-86 to 2-87, 2-90
instruction cache
defined 4-8
flushing 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33
interprocess buffers, and temporary memory 2-10
interrupts, nonmaskable 3-23
interrupt tasks
and Memory Manager routines 1-50, 2-26
deferring under virtual memory 3-12
maintaining the A5 register 4-16 to 4-17
and temporary memory 2-10
interrupt time
avoiding Memory Manager routines at 1-50, 2-26
deferring code execution under virtual memory 3-20
1/0 completion routines, and the A5 register 4-15
ISP. See stack pointer, interrupt

J, K

Logi cal ToPhysi cal Tabl e data structure 3-17, 3-25

logical-to-physical translation table. See translation
table

low-memory conditions 1-36 to 1-38

low-memory global variables. See system global
variables

M

jump table 1-13

jump table entries
and stale instructions 4-10
for callback routines 1-32

L

linked lists, allocating new elements in 1-31
loading code segments, and dangling pointers
1-31 to 1-32

_LoadSeg trap, flushing instruction cache 4-10
locking physical memory

debugger routine 3-37

defined 3-13

routines for 3-28 to 3-30
locking relocatable blocks 1-20 to 1-21, 1-63 to 1-64,

2-45 10 2-46

LockMenor yCont i guous function 3-16, 3-29 to 3-30
LockMenory function 3-28

and stale data 4-13

introduced 3-15
logical address space 3-5to 3-9

possible fragmentation of 3-7

size of with 24-bit addressing 3-5

size of with 32-bit addressing 3-7

translating to physical address space 3-11
logical sizes of blocks 2-22
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master pointer blocks 1-18
master pointer flag bits 4-7
master pointers
allocating manually 1-51 to 1-52, 2-28 to 2-29
comparing 4-22
defined 1-18
determining how many to preallocate 1-41to 1-42
number per block in application zone 1-41
running out of 1-41
MaxAppl Zone procedure 1-51, 2-27
and Appl Li m t global variable 1-8
automatic execution of 1-40, 2-16
and heap fragmentation 1-40
MaxBl ock function 2-67 to 2-68
MaxBl ockSys function 2-68
maximizing heap zone space 2-74 to 2-76
MaxMemfunction 2-74 to 2-75
MaxMenBys function 2-75 to 2-76
maxSi ze constant 2-72
MC680x0 microprocessor
data cache 4-9
instruction cache 4-8, 4-9
size of memory blocks with 2-22
Menkr r global variable 1-50, 1-76, 2-26, 2-71
Mentr r or function 1-50, 1-76, 2-26, 2-70 to 2-71
memory
See also temporary memory; virtual memory
allocating and releasing 1-54 to 1-60, 2-29 to 2-39
allocating during startup 2-13 to 2-14
assessing 2-66 to 2-83
changing sizes of blocks 2-39 to 2-43
freeing 2-71 to 2-76
holding 3-13, 3-14
organization of 1-4to 1-13, 2-19 to 2-24
releasing 3-15
memory addresses
comparing 4-8, 4-22
converting to 32-bit mode 4-7, 4-21 to 4-24,
4-26 to 4-27
mapping logical to physical 3-16 to 3-20
stripping flag bits from 4-7, 4-21 to 4-23, 4-27
translating 4-23 to 4-24, 4-28
Menor yBl ock data structure 3-17, 3-24
memory-block record 3-17
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memory blocks. See blocks, memory
memory configuration, obtaining information
about 3-14
Memory control panel 3-4, 3-5, 4-3 to 4-5
addressing mode controls 4-5
disk cache controls 4-4
illustrated 4-4
introduced 4-3
RAM disk controls 4-5
virtual memory controls 4-5
memory cushions
defined 1-37
determining optimal size of 1-43
maintaining 1-43 to 1-44
_Menor yD spat chAOResul t trap macro 3-45
_Menor yD spat ch trap macro 3-20, 3-44
memory management unit (MMU) 3-5
Memory Manager 2-3 to 2-105
24-bit 1-15
32-bit 1-15
allocating master pointers 1-41
and application heap 1-10to 1-11
application-defined routines 2-89 to 2-92
calling grow-zone function 1-48
capabilities of 2-4
compacting heap 1-23 to 1-24
data types 1-17 to 1-18, 2-24 to 2-26
defined 2-3
movement of blocks by 1-24
purging heap 1-23to 1-24
reserving memory 1-22 to 1-23, 2-55 to 2-56
returning result codes 1-50, 1-76, 2-26, 2-70 to 2-71
routines 2-26 to 2-89
testing for features 2-11 to 2-12
memory reservation. See reserving memory
memory reserves
benefits of 1-37
defined 1-37
maintaining 1-46 to 1-48
Menirop global variable 2-14, 2-86
menu definition procedures, and the A5 register 4-15
MMU (memory management unit) 3-5
Mor eMast er s procedure 1-41 to 1-42, 1-51 to 1-52, 2-28
to 2-29
MoveHH procedure 1-26 to 1-27, 1-71 to 1-72,
2-56 to 2-58
moving relocatable blocks high 1-26 to 1-27,
1-71 to 1-73, 2-56 to 2-59
multiple heap zones
implementing 2-14 to 2-16
uses for 2-6

N

Newenpt yHandl e function 2-33
NewEnpt yHandl eSys function 2-34
NewHandl ed ear function 1-45, 1-56, 2-31 to 2-32
NewHandl e function 1-44, 1-55 to 1-56, 2-29 to 2-31
NewHandl eSysd ear function 2-32
NewHandl eSys function 2-31
NewPt r d ear function 1-59, 2-37 to 2-38
NewPt r function 1-44, 1-58 to 1-59, 2-36 to 2-37
NewPt r Sysd ear function 2-38
Newpt r Sys function 2-37
nonessential memory requests, checking whether to
satisfy 1-43
nonmaskable interrupts 3-23
nonrelocatable blocks
See also blocks, memory
advantages of 1-20
allocating 1-28, 1-58 to 1-59, 2-36 to 2-38
allocating temporarily 1-28
data type for 1-18
defined 1-17
disposal and reallocation of 1-25
releasing 1-60, 2-38 to 2-39
sizing 2-41to 2-43
when to allocate 1-27 to 1-28
Notification Manager, and the A5 world 4-16 to 4-17
notification response procedures, and the
A5 register 4-16

O

penResFi | e function, calling St ri pAddr ess on
filenames 4-22

OpenRFPer mfunction, calling St ri pAddr ess on
filenames 4-22

operating system queues, storing elements in system
heap zone 2-12

ordered address comparisons 4-22

original application heap zone 2-5

_(O8Dhi spat ch trap macro 2-104

P

Paged Memory Management Unit (PMMU) 3-5
PageFaul t Fat al function 3-22, 3-36
page faults

See also double page faults

defined 3-11

handling 3-20
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page faults (continued)
intercepted by Virtual Memory Manager
3-11to 3-12, 3-22
protection against 3-12, 3-14
pages, memory
defined 3-4
holding 3-14, 3-25
locking 3-15, 3-28
locking contiguously 3-29
releasing 3-15, 3-27
unlocking 3-30
PageSt at e data type 3-24
paging 3-4
paging device 3-5
partitions 1-4
See also application partitions; system partition
patches, and stale instructions 4-10
physical address space 3-9 to 3-11
discontiguous 3-9
physical memory 3-14 to 3-20
holding pages in 3-14 to 3-15
locking pages in 3-15 to 3-16
releasing pages 3-15
unlocking pages 3-16
physical sizes of blocks 2-22
PMMU (Paged Memory Management Unit) 3-5
pointers 1-17 to 1-18
See also nonrelocatable blocks; dangling pointers
Process Manager, and callback routines 4-14
processor caches 4-8 to 4-13, 4-29 to 4-33
See also data cache; instruction cache
ProcPtr data type 2-25 to 2-26
and code segmentation 1-32 to 1-33
referencing code in code resources 2-13
program counter, fixing before switching to 32-bit
mode 4-21
protected blocks
defined 1-49
determining which they are 1-81, 2-90
handle to returned by &ZSavethd 1-78, 2-77
Pt r AndHand function 2-65 to 2-66
Ptr data type 1-17,2-25
Pt r ToHand function 2-60 to 2-61
Pt r ToXHand function 2-61 to 2-62
Pt r Zone function 2-83
Pur geMemprocedure 2-73 to 2-74
Pur geMenBys procedure 2-74
Pur geSpace procedure 1-75, 2-68 to 2-69
purge-warning procedures 2-16 to 2-18, 2-21,
2-90 to 2-92
defined 2-16
installed by Set ResPur ge 2-18, 2-91
restrictions on 2-91
sample 2-17
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using Set A5 function 2-91

using Set Qur r ent A5 function 2-91
purging heap zones 1-24, 2-73 to 2-74
purging relocatable blocks 1-21 to 1-22

Q

QuickDraw global variables
defined 1-13
reading in stand-alone code 4-18 to 4-19
structure of 4-18
using in stand-alone code 4-18 to 4-19

R

RAM cache. See disk cache
RAM disks
defined 4-5
setting size of with Memory control panel 4-5
_Read trap, flushing instruction cache 4-10
Real | ocat eHandl e procedure 1-68 to 1-69,
2-52 to 2-53
reallocating relocatable blocks 1-21 to 1-22
Recover Handl e function 2-54 to 2-55
reference constant fields
using to store A5 value 4-17
relative handles 2-23
releasing held pages 3-15
relocatable blocks
See also blocks, memory; handles
allocating 1-55 to 1-56, 2-29 to 2-34
changing properties 1-60 to 1-67, 2-43 to 2-51
clearing resource bit 2-50 to 2-51
concatenating 2-64 to 2-65
data type for 1-17
defined 1-17
disadvantages of 1-20
duplicating 2-62 to 2-64
emptying 1-67 to 1-68, 2-51 to 2-52
getting properties 1-61 to 1-62, 2-43 to 2-44
in bottom of heap zone 1-25
locking 1-20 to 1-21, 1-63 to 1-64, 2-45 to 2-46
for long periods of time 1-28
for short periods of time 1-28
making purgeable 1-65 to 1-66, 2-47 to 2-48
making unpurgeable 1-66 to 1-67, 2-48 to 2-49
managing 1-67 to 1-73, 2-51 to 2-59
master pointers after disposing 1-33
master pointers for 1-41
moving around nonrelocatable blocks 1-24

moving high 1-26 to 1-27, 1-71 to 1-73, 2-56 to 2-59
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properties of 1-20 to 1-22
purging 1-21to 1-22
reallocating 1-21 to 1-22, 1-68 to 1-69, 2-52 to 2-53
releasing 1-57, 2-34 to 2-35
restrictions on locked blocks 1-27
setting properties 1-62 to 1-67, 2-44 to 2-51
setting resource bit 2-49 to 2-50
sizing 2-39to 2-41
movement during 1-24
unlocking 1-20 to 1-21, 1-64 to 1-65, 2-46 to 2-47
when to lock 1-28
removable disks, and virtual memory 3-5
Reser veMemprocedure 1-70 to 1-71, 2-55 to 2-56
Reser veMenBys procedure 2-56
reserves. See memory reserves
reserving memory 1-22 to 1-23
and heap fragmentation 1-25
defined 1-22
for relocatable blocks 1-26
limitation of 1-25
routines 2-55 to 2-56
resource bit
clearing 2-50 to 2-51
setting 2-49 to 2-50
Resource Manager, installing purge-warning
procedures 2-18, 2-91
resource types
'Sl ZE 1-13
'sysz' 2-13

result codes for Memory Manager routines 1-50, 1-76,

2-26,2-70 to 2-71

S

self-modifying code, and stale instructions 4-10
Set A5 function 1-79, 4-14, 4-25
used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91
Set Appl Base procedure 2-88 to 2-89
Set Appl Li mt procedure 1-53 to 1-54, 2-84 to 2-85
using to increase size of stack 1-40
Set Qur r ent A5 function 1-79, 4-25
used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91
Set & owZone procedure 1-77 to 1-78, 1-81,
2-76 to 2-77, 2-90
Set Handl eSi ze procedure 2-40 to 2-41
Set Pt r Si ze procedure 2-42 to 2-43
Set ResPur ge procedure, installing purge-warning
procedures 2-18
Set Zone procedure 2-81
short-circuit Boolean operators 1-34
Si gnedByt e data type 1-17, 2-25

size correction for blocks 2-23, 2-24
Si ze data type 2-26
' SI ZE resource type, specifying partition size 1-13
slot-based VBL tasks, deferred under virtual
memory 3-12
stack
collisions with the heap 1-8
default size of 1-40
defined 1-8
determining available space 2-69
increasing size of 1-39 to 1-40
stack frame 1-9
stack pointer
interrupt (ISP) 3-23
user (USP) 3-23
stack sniffer 1-8
St ackSpace function 2-69 to 2-70
stale data
avoiding problems with 4-13
defined 4-10
stale instructions
avoiding problems with 4-9
defined 4-9
stand-alone code resources, changing
address-translation mode in 4-20
startup process
allocating memory during 2-13 to 2-14
displaying windows during 2-9
St r 255 data type 2-25
St ri ngHandl e data type 2-25
StringPtr datatype 2-25
Stri pAddr ess function 4-21 to 4-23, 4-27 to 4-28
supervisor mode 3-23
SwapDat aCache function 4-30 to 4-31
Swapl nst r uct i onCache function 4-29
SnapMVMode procedure 4-26 to 4-27
calling from stand-alone code 4-20
SysEqu. p interface file 2-7
system extensions, allocating memory at
startup time 2-13
system global variables
changing 2-9
defined 1-6 to 1-7, 2-6
reading 2-8 to 2-9
uses of 2-6 to 2-7
system heap 1-6
defined 1-6
held in RAM under virtual memory 3-12
system heap zone
allocating memory in 2-12
creating new heap zones within 2-16
defined 2-5
getting a pointer to 2-82
installing interrupt code into 2-13
uses for 2-5
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system partition 1-4to 1-7
See also system heap; system global variables
Syst enZone function 2-82
SysZone global variable 2-82
' sysz' resource type 2-13

T

tag bytes 2-23
TenpFr eeMemfunction 2-79
TenpMaxMemfunction 2-79 to 2-80
TenpNewHandl e function 2-78
temporary memory
allocating 2-10 to 2-11
confirming success of allocation 2-10
defined 1-13, 2-4
determining zone of 2-10
limitation on locking 2-10
operating on blocks 2-5
optimal usage of 2-5
release of during application termination 2-10
routines 2-77 to 2-80
testing for features of 2-11 to 2-12
tracking of 2-10
using as a heap zone 2-16
TheZone global variable 2-80
32-bit addressing 3-7 to 3-9, 4-8
defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20
32-bit clean 1-16
THz data type 2-20
Time Manager tasks
and the A5 register 4-16
deferred under virtual memory 3-12
TopMemfunction 2-14, 2-85 to 2-86

Transl at e24To32 function 4-23 to 4-24, 4-28 to 4-29
translating logical to physical addresses 3-16 to 3-20,

3-311t03-33
translation tables 3-17, 3-25
trap patches, and the A5 register 4-15
24-bit addressing 3-5 to 3-7, 4-7 to 4-8
defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

U

unlocking physical memory 3-16, 3-30 to 3-31
debugger routine 3-38

unlocking relocatable blocks 1-20 to 1-21, 1-64 to 1-65,

2-46 to 2-47
Unl ockMenory function 3-16, 3-30 to 3-31

updating windows, saving memory space for 1-44

USP. See stack pointer, user

Vv

VBL tasks
and the A5 register 4-16
deferred under virtual memory 3-12
Vector Base Register (VBR) 3-22
virtual memory
and AppleShare volumes 3-5
and removable disks 3-5
and user interrupts 3-21
backing-store file 4-5
bus-error vectors under 3-22
CPU data caching 3-15
debugger routines 3-34 to 3-40
debugger support for 3-21to 3-24
deferring interrupt code execution 3-12, 3-20
introduced 1-15
management routines 3-25 to 3-33
mapping information, getting 3-16 to 3-18
requirements for running 3-5
setting with the Memory control panel 4-5
testing for availability 3-14
Virtual Memory Manager 3-3 to 3-45
See also virtual memory
data structures 3-24 to 3-25
defined 3-3to 3-4
routines 3-25 to 3-40

W, X, Y

Wi t Next Event function, and temporary memory 2-10

window definition procedures, and the A5
register 4-15

W THstatement (Pascal), and dangling pointers 1-29

word-break routines, and the A5 register 4-15
write-through cache 4-11

Z

Unhol dMenor y function 3-15, 3-27
_Unl oadSeg trap, flushing instruction cache 4-10

IN-8

zero (memory location). See 0 (memory location)
zero-length handles. See 0-length handles
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Zone data structure 2-20

zone headers 2-5, 2-20 to 2-21
zone pointers 2-20

zone records 2-20, 2-20 to 2-21
zone trailer blocks 2-20

zone trailers 2-5
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