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About This Book

This book, Inside Macintosh: PowerPC Numerics, is the reference for the 

PowerPC Numerics environment. PowerPC Numerics is an environment in 

which floating-point operations are performed quickly and as accurately as 

possible. The PowerPC Numerics environment applies to Macintosh 

computers that use the PowerPC processor. The core features of PowerPC 

Numerics are not exclusive to Apple Computer; rather they are taken from 

IEEE Standard 754 for binary floating-point arithmetic and the standard 

proposed by the Floating-Point C Extensions (FPCE) branch of the Numerical 

C Extensions Group (ANSI X3J11.1).

In one sense, PowerPC Numerics is an abstraction: a definition of an 

environment for computer numerics, independent of a specific computer. To 

have an instance of this environment, you need a language in which to 

describe operations and an implementation unit to carry them out. The first 

part of this book describes the PowerPC Numerics definition, and the 

remaining parts describe how numerics is implemented in the PowerPC 

hardware and software.

You should read this book if

■ you want to create PowerPC applications that use floating-point operations

■ you have created a 680x0 application that uses floating-point operations 
and you plan to port it to PowerPC processor-based Macintosh computers 
(in this case, you might want to read Appendix A, “SANE Versus PowerPC 
Numerics,” first)

■ you have not yet created a floating-point application, but you want to learn 
more about IEEE Standard 754 for binary floating-point arithmetic

This book is not for you if you don’t plan to port your 680x0 applications to 

the PowerPC environment. Applications that are 680x0 based will run on 

PowerPC processor-based Macintosh computers without rebuilding, but they 

use the Standard Apple Numerics Environment (SANE) in emulation instead 

of PowerPC Numerics. You should refer to the Apple Numerics Manual, second 

edition, which describes SANE.

Before reading this book, you should already be familiar with the PowerPC 

run-time architecture as described in Inside Macintosh: PowerPC System 

Software. 
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What’s in This Book

Part 1 describes the features shared by all PowerPC Numerics 

implementations and includes examples that show how to use PowerPC 

Numerics effectively. These examples are written in C, although other 

high-level languages might provide support for PowerPC Numerics. Read 

Part 1 to find out how PowerPC Numerics implements IEEE Standard 754 in 

general or to learn more about this standard.

Part 2 explains the numeric implementation in compilers and in the PowerPC 

Numerics library MathLib. This library is provided in ROM to implement 

both IEEE Standard 754 and the recommendations in the FPCE technical 

report. Part 2 is for use exclusively by C language programmers.

Part 3 explains the implementation in PowerPC hardware and the available 

assembly-language tools that perform numeric operations. Part 3 is for use by 

assembly-language programmers and by those who wish to look at compiler 

output. 

The appendixes provide supplementary reference material. They give the 

differences between PowerPC Numerics and SANE, show how to port 

numerical programs to PowerPC processor-based Macintosh computers, 

provide listings of the header files in MathLib, and describe the FPCE 

recommendations for compilers. There are also summaries of the MathLib 

functions and PowerPC assembly-language floating-point instructions for 

your reference. 

The bibliography at the end of this book lists some of the major sources on 

numerics. Refer to this bibliography for more extensive information on IEEE 

Standard 754, the FPCE technical report, or numerical programming in 

general. Also at the end of this book are a glossary of terms and an index.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that 

require special treatment appear in specific fonts or font styles. Certain 

information appears in special formats so that you can scan it quickly.
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Special Fonts
All code listings, reserved words, and the names of actual data structures, 

constants, fields, parameters, and routines are shown in Courier (this is 
Courier).

Words that appear in boldface are key terms or concepts and are defined in 

the glossary at the end of this book.

When a word or character appears in italics, it represents a variable that is 

replaced with a literal value in an actual computation. For example,

means take the square root of any floating-point value x, such as 1.45 or 2.789. 

When a character appears in italics in one of the tables for special cases in 

Chapters 6, 9, or 10, it represents a nonzero, finite floating-point number.

Types of Notes
There are several types of notes used in Inside Macintosh.

Note

A note like this contains information that is interesting but possibly not 
essential to an understanding of the main text. ◆

IMPORTANT

A note like this contains information that is essential for an 
understanding of the main text. ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware 
of as you design your application. Failure to heed these warnings could 
result in system crashes or loss of data. ▲

For More Information

APDA is Apple’s worldwide source for over three hundred development 

tools, technical resources, training products, and information for anyone 

interested in developing applications on Apple platforms. Customers receive 

the quarterly APDA Tools Catalog featuring all current versions of Apple 

development tools and the most popular third-party development tools. 

Ordering is easy; there are no membership fees, and application forms are not 

required for most of our products. APDA offers convenient payment and 

shipping options, including site licensing.

sqrt x( )
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To order products or to request a complimentary copy of the APDA Tools 

Catalog, contact 

APDA 

Apple Computer, Inc. 

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for 

information on the developer support programs available from Apple.

For information of registering signatures, file types, Apple events, and other 

technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T

Cupertino, CA 95014-6299

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511 

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com
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The PowerPC Numerics 
Environment

This part is a general description of PowerPC Numerics. Chapter 1 describes 

the standards for floating-point arithmetic that PowerPC Numerics 

implements (IEEE Standard 754 and the FPCE technical report) and discusses 

why these standards are important. If you are unfamiliar with how computers 

perform floating-point arithmetic, you should read Chapter 1. Chapters 2 

through 6 describe how PowerPC Numerics implements the standards. They 

describe the basic features shared by all PowerPC Numerics implementations, 

including

■ the numeric data formats

■ the special values NaN (Not-a-Number) and Infinity

■ the methods by which floating-point expressions are evaluated

■ environmental controls, such as setting the rounding direction and 
handling exceptions

■ conversions between the different numeric formats

■ operations supported by PowerPC Numerics

Although Part 1 uses the C programming language in its examples, many of 

the facilities of PowerPC Numerics are accessible to users of virtually any 

high-level programming language, as well as to assembly-language 

programmers. 
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IEEE Standard Arithmetic

This chapter describes why IEEE standard floating-point arithmetic is important and 

why you should use it when programming. PowerPC Numerics is an implementation of 

the IEEE Standard 754 for binary floating-point arithmetic as well as the standard 

proposed by the Floating-Point C Extensions (FPCE) branch of the Numerical C 

Extensions Group (NCEG). This chapter explains the benefits that PowerPC Numerics 

provides by conforming to these standards. It provides an overview of both the IEEE and 

the FPCE recommendations—describing the scope of these standards and explaining 

how following them improves the accuracy of your programs. It provides some 

examples to demonstrate how much easier programming is when the standards are 

followed. Finally, it describes in general how PowerPC Numerics differs from the 

Standard Apple Numerics Environment (SANE).

You should read this chapter if you are unfamiliar with IEEE Standard 754 or the FPCE 

technical report and you want to find out more about them. If you are already familiar 

with these standards but you would like to find out how PowerPC Numerics 

implements them, you can skip to the next chapter.

About the IEEE Standard

PowerPC Numerics is a floating-point environment that complies with IEEE 

Standard 754. There are two IEEE standards for floating-point arithmetic: 

IEEE Standard 754 for binary floating-point arithmetic and IEEE Standard 854 for 

radix-independent floating-point arithmetic. When you see the term IEEE standard 

in this book without a number following, it means IEEE Standard 754. 

The IEEE standards ensure that computers represent real numbers as accurately as 

possible and that computers perform arithmetic on real numbers as accurately as 

possible. Although there are infinitely many real numbers, a computer can represent 

only a finite number of them. Computers represent real numbers as binary 
floating-point numbers. Binary floating-point numbers can represent real numbers 

exactly in only a relatively few cases; in all other cases the representation is approximate. 

For example, 1/2 (0.5 in decimal) can be represented exactly in binary as 0.1. Other real 

numbers that can be represented exactly in decimal have repeating digits in binary and 

hence cannot be represented exactly, as shown in Table 1-1. For example, 1/10, or 

decimal 0.1 exactly, is 0.000110011 . . . in binary. Errors of this kind are unavoidable in 

any computer approximation of real numbers. Because of these errors, sums of fractions 

are often slightly incorrect. For example, 4/3 – 5/6 is not exactly equal to 1/2 on any 

computer, even on computers that use IEEE standard arithmetic.
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The IEEE standard defines data formats for floating-point numbers, shows how to 

interpret these formats, and specifies how to perform operations (known as 

floating-point operations) on numbers in these formats. It requires the following types 

of floating-point operations:

■ basic arithmetic operations (add, subtract, multiply, divide, square root, remainder, 
and round-to-integer)

■ conversion operations, which convert numbers to and from the floating-point data 
formats

■ comparison operations, such as less than, greater than, and equal to

■ environmental control operations, which manipulate the floating-point environment

The IEEE standard requires that the basic arithmetic operations have the following 

attributes:

■ The result must be accurate in the precision in which the operation is performed. 
When a numerics environment is performing a floating-point operation, it calculates 
the result to a predetermined number of binary digits. This number of digits is called 
the precision. The result must be correct to the last binary digit.

■ If the result cannot be represented exactly in the destination data format, it must be 
changed to the closest value that can be represented, using rounding. See the section 
“Careful Rounding” on page 1-5 for more information on why careful rounding is 
important.

■ If an invalid input is provided or if the result cannot be represented exactly, a 
floating-point exception must be raised. See the section “Exception Handling” on 
page 1-6 for a description of why exception handling is important in floating-point 
arithmetic.

* 10 significant digits
† 23 significant digits
‡ Exact value

Table 1-1 Approximation of real numbers

Fraction
Decimal 
approximation* Binary approximation†

1/10 0.1000000000‡ 0.000110011001100110011001101

1/2 0.5000000000‡ 0.100000000000000000000000‡

4/3 1.333333333 1.01010101010101010101011

5/6 0.8333333333 0.110101010101010101010101

4/3 – 5/6 0.4999999997 0.100000000000000000000001
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Starting to Use IEEE Arithmetic
You can get the benefit of much of the IEEE standard without special programming 

techniques; you simply use the floating-point variable formats and operations available 

in the programming language in which you are working, and the computer takes care of 

the rest. Other features might require changes to your applications. If you are new to 

numerical programming, you should approach the IEEE standard features in three 

stages:

1. Recompile your old programs with no changes; you will get many of the benefits.

2. Make small changes to obtain more benefits. For example, at this stage you might 
remove all code that tests for division by zero.

3. Use the advanced features, such as environmental controls, for special applications.

If you already use the IEEE standard features but your application is written for a 

non-Macintosh computer, see Appendix B, “Porting Programs to PowerPC Numerics.”

Careful Rounding 
If the result of an IEEE arithmetic operation cannot be represented exactly in binary 

format, the number is rounded. IEEE arithmetic normally rounds results to the nearest 

value that can be represented in the chosen data format. The difference between the 

exact result and the represented result is the roundoff error.

The IEEE standard requires that users be able to choose to round in directions other than 

to the nearest value. For example, sometimes you might want to know that rounding has 

not invalidated a computation. One way to do that would be to force the rounding 

direction so that you can be sure your results are higher (or lower) than the exact answer. 

Because it conforms to the IEEE standard, PowerPC Numerics gives you a means of 

doing that. Fully developed, this strategy is called interval arithmetic (Kahan 1980). For 

complete details on rounding directions, see Chapter 4, “Environmental Controls.” 

The following example is a simple demonstration of the advantages of careful rounding. 

Suppose your application performs operations that are mutually inverse; that is, 

operations ,  ,  such that . There are many such 

operations, such as

,

,

Suppose  is the computed value of , and  is the computed value of . 

Because many numbers cannot be represented exactly in binary, the computed values 

 and  will often differ from  and . Even so, if both functions are 

continuous and well behaved, and if you always round  and  to the nearest 

value, you might expect your computer arithmetic to return x when it performs the cycle 

of inverse operations, . It is difficult to predict when this relation will hold for 

computer numbers. Experience with other computers says it is too much to expect, but 

IEEE arithmetic very often returns the correct inverse value.

y f x( )= x g y( )= g f x( )( ) x=

y x
2= x y=

y 375x= x y 375⁄=

F x( ) f x( ) G y( ) g y( )

F x( ) G y( ) f x( ) g y( )
F x( ) G y( )

G F x( )( )
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The reason for IEEE arithmetic’s good behavior with respect to inverse operations is that 

it rounds so carefully. Even with all operations in, say, single precision, it evaluates the 

expression 3 × 1/3 to 1.0 exactly; some computers that do not follow the standard do not 

evaluate this expression exactly. If you find that surprising, you might enjoy running the 

code example in Listing 1-1 on a computer that does not use IEEE arithmetic and then on 

a PowerPC processor-based Macintosh computer. The default rounding provided by the 

numerics environment gives good results; the PowerPC processor-based Macintosh 

computer prints “No failures.” The program will fail on a computer that doesn’t have 

IEEE arithmetic—in particular, that doesn’t round halfway cases in the same way that 

the IEEE standard’s default rounding direction mode does.

Listing 1-1 Inverse operations

#include <stdio.h>

main()

{

float x, y, a, b;

int ix, iy, 

int nofail = 1; /* Boolean, initialized to true */

for (ix = 1; ix <= 12; ix++) {

if ((ix != 7) && (ix != 11)) { /* x is a sum of powers of two */

for (iy = 1; iy <= 50; iy++) {

x = ix;

y = iy;

a = y / x;

b = x * a; /* b == (x * y / x) == y */

if (b != y) {

nofail = 0; /* false */

printf("It failed for x = %d, y = %d\n", ix, iy);

}

}

}

}

if (nofail) printf("No failures\n");

}

Exception Handling
The IEEE standard defines five exceptions that indicate when an exceptional event has 

occurred. They are

■ invalid operation

■ underflow
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■ overflow

■ division by zero

■ inexact result

There are three ways your application can deal with exceptions:

■ Continue operation.

■ Stop on exceptions, if you think they will invalidate your results.

■ Include code to do something special when exceptions happen.

The IEEE standard lets programs deal with the exceptions in reasonable ways. It defines 

the special values NaN and Infinity, which allow a program to continue operation; see 

the section “Interpreting Floating-Point Values” in Chapter 2, “Floating-Point Data 

Formats.” The IEEE standard also defines exception flags, which a program can test to 

detect exceptional events.

IEEE arithmetic allows the option to stop computation when exceptional events arise, 

but there are good reasons why you might prefer not to have to stop. The following 

examples illustrate some of those reasons.

Example: Finding Zero Return Values

Suppose you want to find the first positive integer that causes a function to cross the 

x-axis. A simple version of the code might look like this:

for (i = 0; i < MAXVALUE; i++)

if (func(i) == 0)

printf("It crosses when x = %g\n", i);

Further, suppose that func was defined like this:

double func(double x)

{

return(sqrt(x - 3));

}

The intent of the for loop is to find out where the function crosses the x-axis and print 

out that information; it does not really care about the value returned from func unless 

the value is 0. However, this loop will fail when i is less than 3 because you cannot take 

the square root of a negative number. With a C compiler that supports PowerPC 

Numerics, performing the square root operation on a negative number returns a NaN, 

allowing the loop to produce the desired result. To obtain the desired result on all 

computers, something more cumbersome would have to be written. By allowing the 

square root of a negative number, PowerPC Numerics allows more straightforward code.
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This program fragment demonstrates the principal service performed by NaNs: they 

permit deferred judgments about variables whose values might be unavailable (that is, 

uninitialized) or the result of invalid operations. Instead of having the computer stop a 

computation as soon as a NaN appears, you might prefer to have it continue, if whatever 

caused the NaN is irrelevant to the solution.

Example: Searching Without Stopping 

Suppose a program has to search through a database for a maximum value that has to be 

calculated. The search loop might call a subroutine to perform some calculation on the 

data in each record and return a value for the program to test or compare. The code 

might look like this:

max = –INFINITY;

for (i = 0; i < MAXRECORDS; i++)

if((temp = computation(record[i].value)) > max)

max = temp;

Suppose that the value field of the record structure is not a required field when the 

data is entered, so that for some records, data might be nonexistent or invalid. In many 

machines, that would cause the program to stop. To avoid having the program stop 

during the search, you would have to add tests for all the exceptional cases. With 

PowerPC Numerics, the subroutine computation does not stop for nonexistent or 

invalid data; it simply returns a NaN.

This is another example of the way arithmetic that includes NaNs allows the program to 

ignore irrelevancies, even when they cause invalid operations. Using arithmetic without 

NaNs, you would have to anticipate all exceptional cases and add code to the program 

to handle every one of them in advance. With NaNs, you can handle all exceptional 

cases after they have occurred, or you can simply ignore them, as in this example.

Example: Parallel Resistances 

Like NaNs, Infinities enable the program to handle cases that otherwise would require 

special programming to keep from stopping. Here is an example where arithmetic with 

Infinities is entirely reasonable.

When three electrical resistances R1, R2, and R3 are connected in parallel, as shown in 

Figure 1-1, their effective resistance is the same as a single resistance whose value R123 is 

given by this formula: 

R123
1

1

R1

1

R2

1

R3
+ +

=
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Figure 1-1 Parallel resistances

The formula gives correct results for positive resistance values between 0 (corresponding 

to a short circuit) and ∞ (corresponding to an open circuit) inclusive. On computers that 

do not allow division by zero, you would have to add tests designed to filter out the 

cases with resistance values of zero. (Negative values can cause trouble for this formula, 

regardless of the style of the arithmetic, but that reflects their troublesome nature in 

circuits, where they can cause instability.)

Arithmetic with Infinities usually gives reasonable results for expressions in which each 

independent variable appears only once.

Using IEEE Arithmetic

This section provides some example computations and describes how using IEEE 

arithmetic in the PowerPC Numerics environment makes programming these 

computations easier.

Evaluating Continued Fractions
Consider a typical continued fraction .cf x( )

cf x( ) 4
3

x 2−
1

x 7−
10

x 2−
2

x 3−
−

+
−

−=
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An algebraically equivalent expression is :

Both expressions represent the same rational function, one whose graph is smooth and 

unexceptional, as shown in Figure 1-2.

Figure 1-2 Graph of continued fraction functions cf(x) and rf(x)

Although the two functions  and  are equal, they are not computationally 

equivalent. For instance, consider  at the following values of x:

Whereas  is perfectly well behaved, those values of x lead to division by zero when 

computing  and cause many computers to stop. In IEEE standard arithmetic, 

division by zero produces an Infinity. Therefore, PowerPC Numerics has no difficulty in 

computing  for those values.

On the other hand, simply computing  instead of  can also cause problems. If 

the absolute value of x is so big that overflows the chosen data format, then  

approaches  but computing  encounters , 

which yields something else. PowerPC Numerics returns NaN for such cases; some other 

machines get . Also, at arguments x 

between 1.6 and 2.4, the formula  suffers from roundoff error much more than 

 does. For those reasons, computing  is preferable to computing  if 

division by zero works the way it does in PowerPC Numerics, that is, if it produces 

Infinity instead of stopping computation.

rf x( )

rf x( )
622 x 751 x 324 x 59 4x−( )−( )−( )−

112 x 151 x 72 x 14 x−( )−( )−( )−
=

rf x( ) cf x( )
rf x( )

x 1= rf 1( ) 7=
x 2= rf 2( ) 4=
x 3= rf 3( ) 8 5⁄=
x 4= rf 4( ) 5 2⁄=

rf x( )
cf x( )

cf x( )

rf x( ) cf x( )
x4 cf x( )

cf ∞( ) 4= rf x( ) overflow( ) underflow( )⁄

maximum value( ) maximum value( )⁄ 1=
rf x( )

cf x( ) cf x( ) rf x( )



C H A P T E R  1

IEEE Standard Arithmetic

Using IEEE Arithmetic 1-11

In general, division by zero is an exceptional event not merely because it is rare but 

because different applications require different consequences. If you are not satisfied 

with the consequences supplied by the default PowerPC Numerics environment, you 

can choose other consequences by making the program test for NaNs and Infinities (or 

for the flags that signal their creation).

Rather than sprinkle tests throughout the program in an attempt to keep exceptions from 

occurring, you might prefer to put one or two tests near the end of the code to detect the 

(rare) occurrence of an exception and modify the results appropriately. That is more 

economical than testing every divisor for zero (since zero divisors are rare).

Computing the Area of a Triangle
Here is a familiar and straightforward task that fails when subtraction is aberrant: 

Compute the area  of a triangle given the lengths  of its sides. The 

formula given here performs this calculation almost as accurately as its individual 

floating-point operations are performed by the computer it runs on, provided the 

computer does not drop digits prematurely during subtraction. The formula works 

correctly, and provably so, on a wide range of machines, including all implementations 

of PowerPC Numerics.

The classical formula, attributed to Heron of Alexandria, is

where .

For needle-shaped triangles, that formula gives incorrect results on computers even when 

every arithmetic operation is correctly rounded. For example, Table 1-2 shows an extreme 

case with results rounded to five decimal digits. With the values shown, rounded 

 must give either 100.01 or 100.02. Substituting those values for s in 

Heron’s formula yields either 0.0 or 1.5813 instead of the correct value 1.000025.

Evidently, Heron’s formula would be a very bad way to calculate ratios of areas of nearly 

congruent needle-shaped triangles.

Table 1-2 Area using Heron’s formula

  Correct
Rounding 
downward

Rounding
upward

x 100.01 100.01 100.01

y 99.995 99.995 99.995

z 0.025 0.025 0.025

( x + ( y + z ) ) / 2 100.015 100.01 100.02

A 1.000025 0.0000 1.5813

A x y z, ,( ) x y z, ,

A x y z, ,( ) s s x−( ) s y−( ) s z−( )=

s x y z+ +( ) 2⁄=

x y z+( )+( ) 2⁄
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A good procedure, numerically stable on machines that do not truncate prematurely 

during subtraction (such as machines that use IEEE arithmetic), is the following:

1. Sort  so that .

2. Test for  to see whether the triangle exists.

3. Compute A by the formula

▲ W A R N I N G

This formula works correctly only if you do not remove any of the 
parentheses. ▲

The success of the formula depends upon the following easily proved theorem:

THEOREM If p and q are represented exactly in the same conventional floating-point format, and 

if , then  too is representable exactly in the same format (unless  suffers 

underflow, something that cannot happen in IEEE arithmetic).

The theorem merely confirms that subtraction is exact when massive cancellation occurs. 

That is why each factor inside the square root expression is computed correctly to within 

a unit or two in its last digit kept, and A is not much worse, on computers that subtract 

the way PowerPC Numerics does. On machines that flush tiny results to zero, this 

formula for A fails because can underflow.

About the FPCE Technical Report

Even though many computers now conform to the IEEE standard, the standard has 

suffered from a lack of high-level portability. The reason is that the standard does not 

define bindings to high-level languages; it only defines a programming environment. For 

instance, the standard defines data formats that should be supported but does not tell 

how these data formats should map to variable types in high-level languages. It also 

specifies that the user must be able to control rounding direction but falls short of 

defining how the user is able to do so. 

However, the definition of a binding is in progress for the C programming language. The 

Floating-Point C Extensions (FPCE) branch of the Numerical C Extensions Group 

(NCEG), or ANSI X3J11.1, has proposed a general floating-point specification for the 

C programming language, called the FPCE technical report, that contains additional 

specifications for implementations that comply with IEEE floating-point standards 754 

and 854. 

The FPCE technical report not only specifies how to implement the requirements of the 

IEEE standards, but also requires some additional functions, called transcendental 
functions (sometimes called elementary functions). These functions are consistent with 

the IEEE standard and can be used as building blocks in numerical functions. The 

transcendental functions include the usual logarithmic and exponential functions, as 

well as  and ; financial functions for compound interest and annuity 

x y z, , x y z≥ ≥

z x y−≥

A x y z+( )+( ) z x y−( )−( ) x y z−( )+( )( ) 4⁄=

1 2⁄ p q⁄ 2≤ ≤ p q− p q−

p q−( )

ln 1 x+( ) ex 1−
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calculations; trigonometric functions; error and gamma functions; and a random number 

generator. The PowerPC Numerics library, contained in the file MathLib, implements 

the transcendental functions. 

Part 2 of this book describes how PowerPC Numerics complies with the 

recommendations in the FPCE technical report. 

PowerPC Numerics Versus SANE

Although PowerPC Numerics is an implementation of the IEEE Standard, it is not the 

Standard Apple Numerics Environment (SANE). SANE is the numerics environment 

used on 680x0-based Macintosh computers, and it is the numerics environment used 

when you run a 680x0 application on a PowerPC processor-based Macintosh computer. 

PowerPC Numerics is the environment used when you run an application built for 

a PowerPC processor-based Macintosh computer.

There are fundamental differences between PowerPC Numerics and SANE because of 

the differences in the microprocessors on which the two environments are used. The 

major difference is that SANE supports an 80-bit extended type and performs all 

floating-point computations in extended precision. This protects the user from roundoff 

error, overflows, and underflows that might occur in an intermediate value when 

determining the result of an expression. Because the PowerPC processor is double-based, 

support of an 80-bit data type would be inefficient. It instead supports a 128-bit type (in 

software) called double-double (which corresponds to the long double type in C). 

PowerPC Numerics provides this wide type only for cases where precision greater than 

that provided by the double format is necessary; PowerPC Numerics does not perform 

all computations in double-double precision. Instead, PowerPC Numerics recommends a 

method by which an expression is evaluated in the widest precision necessary (see 

Chapter 3, “Expression Evaluation”).

Another fundamental difference is that PowerPC Numerics conforms to the FPCE 

recommendations as well as to the IEEE standard. C implementations using SANE do 

not necessarily comply with the FPCE recommendations.

See Appendix A, “SANE Versus PowerPC Numerics,” for more information on the 

differences between PowerPC Numerics and SANE.
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Floating-Point Data Formats 

This chapter describes the data formats your PowerPC application can use to represent 

floating-point numbers. It begins by discussing in general the methods PowerPC 

Numerics uses to store and interpret floating-point values and by explaining why those 

methods were chosen. The chapter introduces the special values zero, NaN 

(Not-a-Number), and Infinity and explains why these special values are necessary. Next 

is an in-depth description of the numeric data formats with a discussion of how these 

formats represent floating-point values. At the end of the chapter, you will find a table 

comparing the size, range, and precision of the numeric data formats. This table can help 

you choose which data format is best for your application. 

You should read this chapter to learn about the floating-point data formats available on 

PowerPC processor-based Macintosh computers and to learn more about how your 

computer encodes and manipulates floating-point numbers. 

About Floating-Point Data Formats

The IEEE standard defines several floating-point data formats, some required and others 

recommended. IEEE requires that each data format have a sign bit (s), an exponent field 

(e), and a fraction field (f). For each format, it lists requirements for the minimum lengths 

of these fields. For example, the standard describes a 32-bit single format whose 

exponent field must be 8 bits long and whose fraction field must be 23 bits long. 

Figure 2-1 shows the IEEE requirements for the single format. (In this figure, msb stands 

for most significant bit and lsb stands for least significant bit.)

Figure 2-1 IEEE single format

The only required data format is the 32-bit single format. A 64-bit double format is 

strongly recommended. The IEEE standard also describes two data formats called 

single-extended and double-extended and recommends that floating-point environments 

provide the extended format corresponding to the widest basic format (single or double) 

they support.

To conform to the IEEE requirements on floating-point data formats, the PowerPC 

Numerics environment provides three data formats: single (32 bits), double (64 bits), and 

double-double (128 bits). The single and double formats are implemented exactly as 

described in the standard. The double-double format is provided in place of the 

recommended double-extended format. IEEE requires that the double-extended format 

be at least 79 bits long with at least a 15-bit exponent. The double-double format is 
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128 bits long and has an 11-bit exponent. The double-double format is just what its name 

sounds like: two double-format numbers combined. The PowerPC assembly-language 

multiply-add instructions, which multiply two double-format numbers and add a third 

with at most one roundoff error, make implementing the double-double format much 

more efficient than implementing a true IEEE double-extended format. See Chapter 14, 

“Assembly-Language Numeric Operations,” for more information on the multiply-add 

instructions. 

Table 2-1 shows how the three numeric data formats correspond to C variable types. For 

more information about data types in C, refer to Chapter 7, “Numeric Data Types in C.”

The IEEE standard also makes requirements about how the values in these data formats 

are interpreted. PowerPC Numerics follows these requirements exactly. They are 

described in the next section.

Interpreting Floating-Point Values 

Regardless of which data format (single, double, or double-double) you use, the 

numerics environment uses the same basic method to interpret which floating-point 

value it represents. This section describes that method.

Every floating-point data format has a sign bit, an exponent field, and a fraction field. 

These three fields provide binary encodings of a sign (+ or –), an exponent, and a 

significand, respectively, of a floating-point value. The value is interpreted as

where 

± is the sign stored in the sign bit (1 is negative, 0 is positive).

significand has the form .  . . .  where  . . .  are 

the bits in the fraction field and  is an implicit bit whose value is 
interpreted as described in the sections “Normalized Numbers” and 

“Denormalized Numbers.” The significand is sometimes called the 
mantissa.

Table 2-1 Names of data types

PowerPC Numerics data format C type

IEEE single float

IEEE double double

Double-double long double

 significand 2
exponent bias−×±

b
0

b
1
b

2
b

3
b

precision 1− b
1
b

2
b

3
b

precision 1−
b0
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exponent is the value of the exponent field. 

bias is the bias of the exponent. The bias is a predefined value (127 for single 
format, 1023 for double and double-double formats) that is added to the 
exponent when it is stored in the exponent field. When the floating-point 
number is evaluated, the bias is subtracted to return the correct exponent. 
The minimum biased exponent field (all 0’s) and maximum biased 
exponent field (all 1’s) are assigned special floating-point values 
(described in the next several sections). 

In a numeric data format, each valid representation belongs to exactly one of these 

classes, which are described in the sections that follow:

■ normalized numbers

■ denormalized numbers

■ Infinities

■ NaNs (signaling or quiet)

■ zeros

Normalized Numbers
The numeric data formats represent most floating-point numbers as normalized 
numbers, meaning that the implicit leading bit (  on page 2-4) of the significand is 1. 

Normalization maximizes the resolution of the data type and ensures that 

representations are unique. Figure 2-2 shows the magnitudes of normalized numbers in 

single precision on the number line. The spacing of the vertical marks indicates the 

relative density of numbers in each binade. (A binade is a collection of numbers between 

two successive powers of 2.) Notice that the numbers get more dense as they approach 0.

Note

The figure shows only the relative density of the numbers; in reality, the 
density is immensely greater than it is possible to show in such a figure. 
For example, there are  (8,388,608) single-precision numbers in the 
interval . ◆

Figure 2-2 Normalized single-precision numbers on the number line

b0

223

2 126− x 2 125−<≤
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Using only normalized representations creates a gap around the value 0, as shown in 

Figure 2-2. If a computer supports only the normalized numbers, it must round all tiny 

values to 0. For example, suppose such a computer must perform the operation , 

where x and y are very close to, but not equal to, each other. If the difference between x 

and y is smaller than the smallest normalized number, the computer must deliver 0 as 

the result. Thus, for such flush-to-zero systems, the following statement is not true for all 

real numbers:

 if and only if  

Denormalized Numbers
Instead of using only normalized numbers and allowing this small gap around 0, 

PowerPC processor-based Macintosh computers use denormalized numbers, in which 

the leading implicit bit (  on page 2-4) of the significand is 0 and the minimum 

exponent is used.

Note

Some references use the term subnormal numbers instead of 
denormalized numbers. ◆

Figure 2-3 illustrates the relative magnitudes of normalized and denormalized numbers 

in single precision. Notice that the denormalized numbers have the same density as the 

numbers in the smallest normalized binade. This means that the roundoff error is the 

same regardless of whether an operation produces a denormalized number or a very 

small normalized number. As stated previously, without denormalized numbers, 

operations would have to round tiny values to 0, which is a much greater roundoff error.

Figure 2-3 Denormalized single-precision numbers on the number line

To put it another way, the use of denormalized numbers makes the following statement 

true for all real numbers: 

 if and only if 

x y−

x y− 0= x y=

b0

x y− 0= x y=
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Another advantage of denormalized numbers is that error analysis involving small 

values is much easier without the gap around zero shown in Figure 2-2 (Demmel 1984).

The computer determines that a floating-point number is denormalized (and therefore 

if its implicit leading bit is interpreted as 0) when the biased exponent field is filled 

with 0’s and the fraction field is nonzero.

Table 2-2 shows how a single-precision value  becomes progressively denormalized as 

it is repeatedly divided by 2, with rounding to nearest. This process is called gradual 
underflow. In the table, values  . . .  are denormalized;  is the smallest positive 

denormalized number in single format. Notice that as soon as the values are too small to 

be normalized, the biased exponent value becomes 0. 

Infinities
An Infinity is a special bit pattern that can arise in one of two ways:

■ When an operation (such as ) should produce a mathematical infinity, the result is 
an Infinity.

■ When an operation attempts to produce a number with a magnitude too great for the 
number’s intended floating-point data type, the result might be a value with the 
largest possible magnitude or it might be an Infinity (depending on the current 
rounding direction).

* Whenever division returns an inexact tiny value, the exception bit for underflow is set to 
indicate that a low-order bit has been lost.

Table 2-2 Example of gradual underflow

Variable or 
operation Value

Biased 
exponent Comment

1.100 1100 1100 1100 1100 1101 × 2

1.100 1100 1100 1100 1100 1101 × 1

0.110 0110 0110 0110 0110 0110 × 0 Inexact*

0.011 0011 0011 0011 0011 0011 × 0 Exact result

0.001 1001 1001 1001 1001 1010 × 0 Inexact*

.

.

.

0.000 0000 0000 0000 0000 0011 × 0 Exact result

0.000 0000 0000 0000 0000 0010 × 0 Inexact*

0.000 0000 0000 0000 0000 0001 × 0 Exact result

0.0 0 Inexact*

A0

A2 A25 A25

A0 2
125−

A1 A0 2⁄= 2
126−

A2 A1 2⁄= 2
126−

A3 A2 2⁄= 2
126−

A4 A3 2⁄= 2
126−

A23 A22 2⁄= 2
126−

A24 A23 2⁄= 2
126−

A25 A24 2⁄= 2
126−

A26 A25 2⁄=

1 0⁄
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These bit patterns (as well as NaNs, introduced next) are recognized in subsequent 

operations and produce predictable results. The Infinities, one positive and one negative, 

generally behave as suggested by the theory of limits. For example:

■ Adding 1 to +∞ yields +∞.

■ Dividing  by +0 yields .

■ Dividing 1 by  yields .

The computer determines that a floating-point number is an Infinity if its exponent field 

is filled with 1’s and its fraction field is filled with 0’s. So, for example, in single format, if 

the sign bit is 1, the exponent field is 255 (which is the maximum biased exponent for the 

single format), and the fraction field is 0, the floating-point number represented is  

(see Figure 2-4).

Figure 2-4 Infinities represented in single precision

NaNs
When a numeric operation cannot produce a meaningful result, the operation delivers a 

special bit pattern called a NaN (Not-a-Number). For example, zero divided by zero, +∞ 

added to , and  yield NaNs. A NaN can occur in any of the numeric data formats 

(single, double, and double-double), but generally, system-specific integer types 

(non-numeric types exclusively for integer values) have no representation for NaNs. 

NaNs propagate through arithmetic operations. Thus, the result of 3.0 added to a NaN is 

the same NaN. If two operands of an operation are NaNs, the result is one of the NaNs. 

NaNs are of two kinds: quiet NaNs, the usual kind produced by floating-point 

operations, and signaling NaNs.

When a signaling NaN is encountered as an operand of an arithmetic operation, the 

invalid-operation exception is signaled and a quiet NaN is the delivered result. Signaling 

NaNs are not created by any numeric operations, but you might find it useful to create 

signaling NaNs manually. For example, you might fill uninitialized memory with 

signaling NaNs so that if one is ever encountered in a program, you will know that 

uninitialized memory is accessed.

A NaN may have an associated code that indicates its origin. These codes are listed 

in Table 2-3. The NaN code is the 8th through 15th most significant bits of the fraction 

field.

1− ∞−

∞− 0−

∞−

∞− 1−
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Note

The PowerPC processor always returns 0 for the NaN code. ◆

The computer determines that a floating-point number is a NaN if its exponent field is 

filled with 1’s and its fraction field is nonzero. The most significant bit of the fraction 

field distinguishes quiet and signaling NaNs. It is set for quiet NaNs and clear for 

signaling NaNs. For example, in single format, if the sign field has the value 1, the 

exponent field has the value 255, and the fraction field has the value 65,280, then the 

number is a signaling NaN. If the sign is 1, the exponent is 255, and the fraction field has 

the value 4,259,584 (which means the fraction field has a leading 1 bit), the value is a 

quiet NaN. Figure 2-5 illustrates these examples.

Table 2-3 NaN codes

Decimal Hexadecimal Meaning

1 0x01 Invalid square root, such as  

2 0x02 Invalid addition, such as 

4 0x04 Invalid division, such as 

8 0x08 Invalid multiplication, such as 

9 0x09 Invalid remainder or modulo such as x rem 0

17 0x11 Attempt to convert invalid ASCII string

21 0x15 Attempt to create a NaN with a zero code

33 0x21 Invalid argument to trigonometric function (such as cos, 
sin, tan)

34 0x22 Invalid argument to inverse trigonometric function (such as 
acos, asin, atan)

36 0x24 Invalid argument to logarithmic function (such as log, 
)

37 0x25 Invalid argument to exponential function (such as exp, 
expm1)

38 0x26 Invalid argument to financial function (compound or 
annuity)

40 0x28 Invalid argument to inverse hyperbolic function (such as 
acosh, asinh)

42 0x2A Invalid argument to gamma function (gamma or lgamma)

1−

+ ∞( ) ∞−( )+

0 0⁄

0 ∞×

10log
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Figure 2-5 NaNs represented in single precision

Zeros
Each floating-point format has two representations for zero: +0 and . Although the 

two zeros compare as equal , their behaviors in IEEE arithmetic are slightly 

different.

Ordinarily, the sign of zero does not matter except (possibly) for a function 

discontinuous at zero. Though the two forms are numerically equal, a program can 

distinguish +0 from  by operations such as division by zero or by performing the 

numeric copysign function.

The sign of zero obeys the usual sign laws for multiplication and division. For example, 

 and . Because extreme negative underflows yield , 

expressions like  produce the correct sign for ∞ when x is tiny and negative. 

Addition and subtraction produce  only in these cases:

■

■

When rounding downward, with x finite,

■

■

The square root of  is .

The sign of zero is important in complex arithmetic (Kahan 1987).

The computer determines that a floating-point number is 0 if its exponent field and its 

fraction field are filled with 0’s. For example, in single format, if the sign bit is 0, the 

exponent field is 0, and the fraction field is 0, the number is +0 (see Figure 2-6).

0−
+0( ) 0−=

0−

+0( ) 1−( )× 0−= 1 0−( )⁄ ∞−= 0−
1 x3⁄

0−

0−( ) +0( )  yields − 0−

0−( ) 0−( )  yields + 0−

x x yields − 0−

x x−( ) yields + 0−

0− 0−
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Figure 2-6 Zeros represented in single precision

Formats 

This section shows the three numeric data formats: single, double, and double-double. 

These are pictorial representations and might not reflect the actual byte order in any 

particular implementation.

Each of the diagrams on the following pages is followed by a table that gives the rules 

for evaluating the number. In each field of each diagram, the leftmost bit is the most 

significant bit (msb) and the rightmost is the least significant bit (lsb). Table 2-4 defines 

the symbols used in the diagrams.

Single Format
The 32-bit single format is divided into three fields having 1, 8, and 23 bits (see 

Figure 2-7).

Table 2-4 Symbols used in format diagrams 

Symbol Description

v Value of number

s Sign bit

e Biased exponent (exponent + bias)

f Fraction (significand without leading bit)
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Figure 2-7 Single format

The interpretation of a single-format number depends on the values of the exponent 

field (e) and the fraction field (f), as shown in Table 2-5. 

Figure 2-8 shows the range and density of the real numbers that can be represented as 

single-format floating-point numbers using normalized and denormalized values. The 

vertical marks indicate the relative density of the numbers that can be represented. As 

explained in the section “Normalized Numbers” on page 2-5, the number of 

representable values gets more dense closer to 0.

Figure 2-8 Single-format floating-point numbers on the real number line

Table 2-5 Values of single-format numbers (32 bits) 

If biased 
exponent e is: 

And 
fraction f 
is: Then value v is: And the class of v is:

(any) Normalized

Denormalized

Zero

Infinity

v is a NaN NaN

0 e 255< < v 1−( ) s 2
e 127−( )

1.f( )××=

e 0= f  0≠ v 1−( ) s 2
126−( )

0.f( )××=

e 0= f 0= v 1−( ) s 0×=

e 255= f 0= v 1−( ) s ∞×=

e 255= f  0≠
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Double Format
The 64-bit double format is divided into three fields having 1, 11, and 52 bits (see 

Figure 2-9).

Figure 2-9 Double format

The interpretation of a double-format number depends on the values of the exponent 

field (e) and the fraction field (f), as shown in Table 2-6. 

Figure 2-10 shows the range and density of the real numbers that can be represented as 

double-format floating-point numbers using normalized and denormalized values. The 

vertical marks indicate the relative density of the numbers that can be represented. As 

explained in the section “Normalized Numbers” on page 2-5, the number of 

representable values gets more dense closer to 0.

Table 2-6 Values of double-format numbers (64 bits) 

If biased 
exponent e is:

And 
fraction f 
is: Then value v is: And the class of v is: 

(any) Normalized

Denormalized

Zero

Infinity

v is a NaN NaN

0 e 2047< < v 1−( ) s 2
e 1023−( )

1.f( )××=

e 0= f   0≠ v 1−( ) s 2
1022−( )

0.f( )××=

e 0= f 0= v 1−( ) s 0×=

e 2047= f 0= v 1−( ) s ∞×=

e 2047= f   0≠



C H A P T E R  2

Floating-Point Data Formats

2-14 Formats

Figure 2-10 Double-format floating-point values on the real number line

Double-Double Format
The 128-bit double-double format is made up of two double-format numbers (see 

Figure 2-11).

Figure 2-11 Double-double format

The value of a double-double number is the sum of its head and tail components. These 

two components are both double numbers, and therefore the value of each component is 

determined as shown in Table 2-6. It is recommended that the tail’s exponent be at least 

54 less than the head’s exponent. Numeric operations that produce double-double 

results always produce numbers in this form. 

IMPORTANT

It is possible, but not recommended, to create a double-double format 
that does not follow this form. If you do not follow this form when 
creating a double-double number, the results are unpredictable. ▲
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The requirement that the tail’s exponent be at least 54 less than the head’s exponent 

guarantees that the significand of the tail is more or less concatenated to the significand 

of the head (which is 53 bits long) when the two values are added together. For example, 

if the head component’s exponent is , the tail component’s exponent can be no 

greater than , so that in the value represented by this double-double format number, 

the head represents the first 53 binary digits and the tail represents the remaining digits. 

Note that the difference between the exponent values may be greater than 54 and that 

the head and the tail can have different signs. To continue with the example, suppose the 

tail’s exponent is  instead of . The binary number represented would be as shown 

in Figure 2-12.

Figure 2-12 Double-double format number example

The head represents the binary places  down to . The tail represents the binary 

places  down to . The zeros between the head and the tail are necessary to 

represent the binary places  to . This particular number has 112 units of 

precision—53 units from the head, 53 from the tail, and 6 units between the head and the 

tail. The double-double format always has at least 107 bits of precision, and if the tail’s 

exponent is more than 54 less than the head’s exponent, it has even greater precision.

If the value of the head component is a normalized number, then the value of the 

double-double number is the sum of the head and the tail. In the recommended form, if 

the head is not a normalized number (meaning it is denormalized, 0, NaN, or Infinity), 

the head contains the value of the double-double number, and the tail contains 0. This 

way, when you add the head and the tail, you still get the value of the head.

Although the precision of the double-double format is much greater than that of the 

double format, the range of the two formats is the same. However, because the 

double-double format is implemented in software, this format is much slower to use 

than the double format. Because of this, you should always use the double format unless 

you need the extra precision provided by the double-double format.

2200

2146

2140 2146

2200 2147

2140 287

2146 2141
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Range and Precision of Data Formats

Table 2-7 shows the precision, range, and memory usage for each numeric data format. 

You can use this table to compare the data formats and choose which one is needed for 

your application. Typically, choosing a data format requires that you determine the 

tradeoffs between

■ fixed-point or floating-point form

■ precision

■ range

■ memory usage

■ speed

In the table, decimal ranges are expressed as rounded, two-digit decimal representations 

of the exact binary values. The speed of a given data format varies depending on the 

particular implementation of PowerPC Numerics. (See Chapter 5, “Conversions,” for 

information on aspects of conversion relating to precision.)

Table 2-7 Summary of PowerPC Numerics data formats

Single Double Double-double

Size (bytes:bits) 4:32 8:64 16:128

Range of binary exponents 

Minimum

Maximum 127 1023 1023

Significand precision

Bits 24 53 ≥ 107

Decimal digits 7–8 15–16 ≥ 32

Decimal range approximate

Maximum positive

Minimum positive norm

Minimum positive denorm

Maximum negative denorm

Maximum negative norm

Minimum negative

126− 1022− 1022−

3.4 10
+38× 1.8 10

+308× 1.8 10
+308×

1.2 10
38−× 2.2 10

308−× 2.2 10
308−×

1.4 10
45−× 4.9 10

324−× 4.9 10
324−×

1.4− 10
45−× 4.9− 10

324−× 4.9− 10
324−×

1.2− 10
38−× 2.2− 10

308−× 2.2− 10
308−×

3.4− 10
+38× 1.8− 10

+308× 1.8− 10
+308×
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For example, in single format, the largest representable number is composed as follows:

significand

.111111111111111111111112

exponent

value

≈

The smallest positive normalized number representable in single format is made up as 

follows:

significand

.000000000000000000000002

exponent

value

≈

For denormalized numbers, the smallest positive value representable in the single 

format is made up as follows:

significand

.000000000000000000000012

exponent

value

≈

2 2
23−−( )=

1=
127=

2 2
23−−( ) 2

127×=
3.403 10

38×

1=
1=

126−=
1 2

126−×=
1.175 10

38−×

2
23−=

0=
126−=

2
23−= 2

126−×
1.401 10

45−×
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Expression Evaluation

This chapter describes the ways in which an expression with floating-point operations 

can be evaluated in the PowerPC Numerics environment. The environment does not 

require that all floating-point operations be performed with a certain precision. Instead, 

it lets each implementation choose the most efficient precision to use. An implementation 

can dictate that all floating-point operations be performed with a given precision, or an 

implementation may define a method by which the best possible precision is chosen for 

each expression. This chapter describes the two methods that numeric implementations 

can use to choose a precision and compares the methods using several examples. 

You should read this chapter to learn how PowerPC Numerics determines the precision 

of a floating-point expression. 

About Expression Evaluation

The evaluation format of a floating-point operation is the data format used to evaluate 

the operation. An expression evaluation method is the means by which evaluation 

formats are determined. The IEEE standard does not cover expression evaluation 

methods, but the FPCE technical report does. Expression evaluation methods in 

PowerPC Numerics comply with the FPCE recommendations.

All PowerPC Numerics expression evaluation methods have a predefined minimum 

evaluation format, and they may or may not have widest-need evaluation. The 

minimum evaluation format is the narrowest evaluation format allowed for any 

operation. Any of the three floating-point data formats (single, double, or 

double-double) can be designated as the minimum evaluation format. Widest-need 
evaluation is a method used to determine the evaluation format for complex 
expressions (expressions with more than one floating-point operation). The following 

sections describe how expressions are evaluated without widest-need evaluation and 

with widest-need evaluation.

Evaluating Expressions Without Widest Need

Without widest-need evaluation, a complex expression is considered as a series of 

simple expressions (expressions with only one floating-point operation), and the 

evaluation format of each simple expression is determined separately. The evaluation 

format of a simple expression is either its semantic type (the widest format used for its 

operands) or the minimum evaluation format, whichever is wider. For example, consider 

the operation

s * d

where s is a single-format variable and d is a double-format variable. The operation’s 

semantic type is double because double is the widest format used for an operand. If the 

minimum format is defined to be single, the operation is evaluated in double precision 
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because double is wider than single. If the minimum format is double-double, 

double-double precision is used because double-double is wider than double. Evaluating 

this operation in double-double precision means that the values of both variables will be 

converted to double-double format before the multiplication is performed and that 

double-double format will be used for temporary storage of the result.

This expression evaluation method applies only to floating-point operations subject to 

the usual arithmetic conversions (automatic conversions performed in the C 

programming language). The following operations are subject to the usual arithmetic 

conversions:

■ arithmetic operations

■ comparison operations

The following operations are not subject to the usual arithmetic conversions:

■ assignment

■ assignment of actual function arguments to formal function parameters

■ explicit conversions to different data types (for example, casts in C)

For example, consider the C expression 

dd + (d = s * s)

where dd denotes a double-double format variable or number, d is double format, s is 

single format, and the minimum evaluation format is double. Without widest-need 

evaluation, this expression is treated as three simple expressions:

■ s * s 

■ d assigned the result of s * s 

■ dd + the result of d = s * s 

The semantic type of the first simple expression (s * s) is single, which is narrower than 

the minimum evaluation format, so it will be evaluated in double. The values of both of 

its operands are converted to double format and are then multiplied to produce a double 

result. The next simple expression is an assignment operation, which is not subject to the 

usual arithmetic conversions so the expression evaluation method does not apply. It 

produces a double format result also. Then, the last simple expression is considered. Its 

semantic type is double-double, so that will be the evaluation format. The result of the 

assignment is converted to double-double format, then added to the double-double 

variable. Figure 3-1 illustrates this process.
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Figure 3-1 Evaluating complex expressions without widest need

Evaluating Expressions With Widest Need 

Widest-need evaluation first looks at all of the operands of all of the subexpressions in a 

complex expression to determine the semantic type of the complex expression. As before, 

if the semantic type is wider than the minimum evaluation format, the semantic type is 

the evaluation format. If not, the minimum evaluation format is used. Only 

subexpressions with operations subject to the usual arithmetic conversions are 

considered when determining the evaluation format; operations such as assignment 

statements or casts are ignored.
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After the evaluation format is determined, widest-need evaluation applies this format to 

the operands of the outermost operation in the expression using one of the following 

rules: 

■ If the operand is a floating-point variable or constant, it is converted to the evaluation 
format.

■ If the operand is an operation subject to the usual arithmetic conversions (for 
example, arithmetic operations, comparison operations, and assignment of values to 
function parameters), its operands are converted to the evaluation format before the 
operation is performed.

■ If the operand is an operation not subject to the usual arithmetic conversions (for 
example, an assignment operation, function call, or cast), its evaluation format is 
determined separately from the outer expression. After the operation has been 
performed, its result is converted to the evaluation format of the complex expression.

These three rules are applied repeatedly until the end of the expression is reached. For 

example, consider the C expression in Figure 3-2. Widest-need evaluation looks at this 

expression as the addition of a double-double variable to the result of another 

expression. To determine the evaluation format of this addition operation, widest need 

first looks at all of the variables and constants in the entire expression that are not part of 

a function call, cast, or assignment operation. There is only one variable that meets these 

requirements, and it is in double-double format. Therefore, double-double format is the 

evaluation format of the addition operation. 

Now, widest-need evaluation can apply the addition operation’s evaluation format to 

the rest of the expression using the three rules just given. Addition is an operation 

subject to the usual arithmetic conversions, and so its operands will be converted before 

the operation is performed. The first operand is a double-double variable, so it will be 

converted to the evaluation format immediately. (In this case, the variable already is in 

the evaluation format.) The second operand is an assignment operation. The assignment 

operation is not subject to arithmetic conversions, so it will be performed before any 

conversion takes place. This means that the evaluation format for the assignment 

operation must be determined. The operation’s semantic type is double, so it will be 

performed in double precision. 

As before, this double format must now be applied to the operands of the assignment. 

The first operand is already in double format. The second operand is a multiplication 

operation. Because multiplication is subject to the usual arithmetic conversions, its 

operands are converted before the operation is performed. Both of the multiplication 

operation’s operands are single-format variables, so the values of these two variables are 

converted to double. The multiplication operation is calculated in double precision. Now 

the assignment can be performed, resulting in a double-format number. This result of the 

assignment statement is now the second operand of the addition operation. It is 

converted to double-double format, and then the addition is performed in 

double-double precision.
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Figure 3-2 Evaluating complex expressions with widest need
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Comparisons of Expression Evaluation Methods

You can think of the difference between using and not using widest-need evaluation 

as the way these two expression evaluation methods navigate the parse tree for a 

complex expression. Widest-need evaluation determines the evaluation format of 

the topmost expression first and enforces that format on all lower expressions. If a 

complex expression is evaluated without widest need, the evaluation format of the 

bottommost expression is determined first, and the results are converted to wider 

formats as wider formats are encountered working back up the tree.

Figure 3-3 shows how an expression is evaluated using both methods. In this example, 

dd is a double-double format constant or variable, d is double format, and s is single 

format. The minimum evaluation format is single. This expression makes a call to a 

function named dfunc, which takes a parameter of type double and returns a double 

value. 

If this expression is evaluated without widest need, the evaluation format of the 

multiplication operation (s * s) is determined first without regard to the rest of the 

expression. Its semantic type is single, which is the same as the minimum evaluation 

format, so it is evaluated in single precision. Its result is then converted to double 

precision when it is passed to the function dfunc, which takes a double parameter. The 

function returns a double result. The next expression is the addition operation, which 

has a semantic type of double-double. The addition will be performed in double-double 

precision because double-double format is wider than the minimum evaluation format. 

The double-format return value from dfunc is converted to double-double, the addition 

is performed, and a double-double result is returned.

If this expression is evaluated with widest-need evaluation, the evaluation format of the 

addition operation is determined first. All of the variables in the expression that are not 

assigned to function parameters or not part of an assignment statement or cast are 

looked at to determine the evaluation format. In this expression, the two variables 

considered are the dd variable and the dfunc function call. Because dd is double-double 

format, the evaluation format of the addition operation is double-double. Now, the 

double-double format is applied down the parse tree to the operands of the addition 

operation. The first operand is already in double-double format. The second operand is a 

function call. As explained on page 3-6, function calls are not subject to the usual 

arithmetic conversions, so their evaluation formats are determined independently of the 

outer expression and their results are determined before any conversion takes place. The 

evaluation format for the assignment of values to dfunc’s parameters is double because 

dfunc takes a parameter of type double. The multiplication operation is an operand 

to this operation, so the multiplication is performed in double precision. The result 

of dfunc is returned in double format, then is converted to double-double format before 

the addition is performed.
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Figure 3-3 Evaluating an expression with a function call
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Figure 3-4 shows how widest-need evaluation protects against midexpression overflow 

and underflow better than expression evaluation methods that do not use widest need. 

In this example, s denotes a single format variable or number, d is double format, dd is 

double-double format, and the minimum evaluation format is single.

Figure 3-4 Evaluating an expression with arithmetic operations

Without widest-need evaluation, the expression in Figure 3-4 is considered as two 

separate simple expressions. The multiplication operation (s * s) is considered first. Its 

semantic type (single format) is the same as the minimum evaluation format, so the 

multiplication is performed in single precision. The semantic type of the addition 

operation is double-double, which is wider than the single minimum format. The 

addition operation is evaluated in double-double precision, so the value of its 

single-format operand is converted to double-double format before the result is 

calculated.
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With widest-need evaluation, all of the operands in the complex expression are looked at 

first to determine the semantic type. The semantic type is double-double because of the 

double-double variable. This means that the multiplication of the two single-format 

variables is performed in double-double precision.

Suppose that the two single variables have the values 1038 and 10, respectively. 

Multiplying these two values produces 1039. However, 1039 is out of the range of single 

format. If these numbers are multiplied in single precision (that is, if widest-need 

evaluation is not used), it will produce +∞ and a floating-point overflow exception. If the 

multiplication is evaluated in double-double precision (that is, if widest-need evaluation 

is used), the correct result is returned because 1039 is within the range of the 

double-double format. 
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Environmental Controls

This chapter describes the parts of the floating-point environment that you can control. 

The IEEE standard specifies that users should be able to control the rounding direction, 

floating-point exceptions, and in some instances the rounding precision. PowerPC 

Numerics implementations provide utilities (called environmental controls) with which 

you can set, clear, and test the rounding direction and floating-point exception flags. (See 

Parts 2 and 3 for the exact names of functions and instructions that control the 

floating-point environment.) This chapter describes the four rounding direction modes 

and the five floating-point exception flags that you can set, clear, and test in PowerPC 

Numerics. You should read it to learn more about the floating-point environment. 

Rounding Direction Modes

The available rounding direction modes are

■ to nearest

■ upward (toward +∞)

■ downward (toward )

■ toward zero

The rounding direction affects all conversions, except conversions between decimal 

structures and decimal strings (described in Chapter 5, “Conversions”), and all 

arithmetic operations except remainder. All operations are calculated without regard to 

the range and precision of the data type in which the result is to be stored. That is, an 

operation first produces a result that is infinitely precise, or exact. If the destination data 

type cannot represent this number exactly, the result is rounded in the direction specified 

by the rounding mode.

The default rounding direction is to nearest. In this mode, floating-point expressions 

deliver the value nearest to the exact result that the destination data type can represent. 

If two representable values are equally close to the exact result, the expression delivers 

the one whose least significant bit is zero. Hence, halfway cases (for example, 1.5) round 

to even when the destination is an integer type or when the round-to-integer operation is 

used. If the magnitude of the exact result is greater than the data type’s largest value (by 

at least one half unit in the last place), then the Infinity with the corresponding sign is 

delivered.

The other rounding directions are upward, downward, and toward zero. When 

rounding upward, the result is the representable value (possibly +∞) closest to, and not 

less than, the exact result. When rounding downward, the result is the representable 

value (possibly ) closest to, and not greater than, the exact result. When rounding 

toward zero, the result is the representable value closest to, and not greater in magnitude 

than, the exact result. Toward-zero rounding truncates a number to an integer (when the 

destination is an integer type). Table 4-1 shows some values rounded to integers using 

different rounding modes.

∞−

∞−
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Rounding Precision

A rounding precision mode specifies a precision to which all numeric operation results 

are rounded. For example, if the rounding precision mode were set to single, the results 

of all operations would be rounded to single precision until the rounding precision mode 

changed. 

The IEEE standard requires rounding precision modes only on systems that always 

deliver results to double or extended format destinations. With a rounding precision 

mode set to a narrower format, such systems round to the precision of that format 

regardless of the destination. Thus, they can use rounding precision modes to emulate 

other systems that deliver results in narrower formats. 

Because PowerPC Numerics delivers results in any of its three data formats, it does not 

support dynamic rounding precision modes. Instead, a PowerPC Numerics 

implementation may support static narrowing of rounding precision at translation time 

through pragmas, compiler options, or narrower expression evaluation methods.

Exception Flags

Floating-point exceptions are signaled with exception flags. When an application begins, 

all floating-point exception flags are cleared and the default rounding direction (to 

nearest) is in effect. This is the default environment. When an exception occurs, the 

appropriate exception flag is set, but the application continues normal operation. 

Floating-point exception flags merely indicate that a particular event has occurred; they 

do not change the flow of control for the application. An application can examine or set 

individual exception flags and can save and retrieve the entire environment (rounding 

direction and exception flags). 

Note

The Exception Manager, described in the book Inside Macintosh: PowerPC 
System Software, does not report floating-point exceptions in the first 
version of the system software for PowerPC processor-based Macintosh 
computers. ◆

Table 4-1 Examples of rounding to integer in different directions

Floating-point
number

Rounded 
to nearest

Rounded
 toward 0

Rounded 
downward

Rounded
upward

  1.5   2   1   1   2

  2.5   2   2   2   3

–2.2 –2 –2 –3 –2
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The numerics environment supports five exception flags:

■ invalid operation (often called simply invalid)

■ underflow

■ overflow

■ divide-by-zero

■ inexact

These are discussed in the paragraphs that follow.

Invalid Operation
The invalid exception (or invalid-operation exception) occurs if an operand is invalid for 

the operation being performed. The result is a quiet NaN if the destination format is 

single, double, or double-double. The invalid conditions for the different operations are 

In addition, any operation on a signaling NaN except the class and sign inquiries and, on 

some implementations, sign manipulations (absolute value and copysign) produce an 

invalid exception. 

Underflow
The underflow exception occurs when a floating-point result is both tiny and inexact 

(and therefore is perhaps significantly less accurate than if there were no limit to the 

exponent range). A result is considered tiny if it must be represented as a denormalized 

number.

Overflow
The overflow exception occurs when the magnitude of a rounded floating-point result is 

greater than the largest finite number that the floating-point destination data format can 

represent. (Invalid, rather than overflow, flags the production of an out-of-range value 

for an integer destination type.) 

Operation Invalid condition

Addition or 
subtraction

Magnitude subtraction of Infinities, 
for example, (+∞) + ( )

Multiplication  

Division  or 

Remainder x rem y, where y is 0 or x is infinite 

Square root A negative operand 

Conversion See Chapter 5, “Conversions” 

Comparison With predicates involving less than or greater than, but not 
unordered, when at least one operand is a NaN 

∞−
0 ∞×
0 0⁄ ∞ ∞⁄
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Divide-by-Zero
The divide-by-zero exception occurs when a finite, nonzero number is divided by zero. 

It also occurs, in the more general case, when an operation on finite operands produces 

an exact infinite result; for example,  returns  and signals divide-by-zero. 

(Overflow, rather than divide-by-zero, flags the production of an inexact infinite result.)

Inexact
The inexact exception occurs if the rounded result of an operation is not identical to the 

exact (infinitely precise) result. Thus, an inexact exception always occurs when an 

overflow or underflow occurs. Valid operations on Infinities are always exact and 

therefore signal no exceptions. Invalid operations on Infinities are described at the 

beginning of this section.

b 0( )log ∞−
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Conversions

This chapter describes how floating-point numbers can be converted in PowerPC 

Numerics. PowerPC Numerics can convert floating-point numbers to different data 

formats automatically or explicitly. For example, when a floating-point expression is 

evaluated, one or more of its operands might automatically be converted to a different 

data format. When a floating-point value is assigned to a variable, another automatic 

conversion might be necessary. You may also perform such conversions explicitly using 

the conversion utilities provided by your numeric implementation. 

This chapter lists the supported numeric conversions and describes how each of these 

conversions is performed. You should read it to find out exactly how a floating-point 

value is converted to a different format. Chapter 3, “Expression Evaluation,” describes 

how PowerPC Numerics decides when operands must be converted during expression 

evaluation. Parts 2 and 3 describe the conversion utilities available to the users of 

different implementations.

About Conversions

The IEEE standard requires the following types of conversions:

■ from floating-point formats to integer formats

■ from integer formats to floating-point formats

■ from floating-point values to integer values, with the result in a floating-point format

■ between all supported floating-point formats

■ between binary and decimal numbers

PowerPC Numerics supports all of these, as well as conversions between decimal 

formats. 

Converting Floating-Point to Integer Formats

In the PowerPC Numerics environment, the following three types of floating-point to 

integer conversions are supported either directly by the programming languages or by 

library implementations:

■ round to integer in current rounding direction (the required conversion, discussed in 
detail in Chapter 4, “Environmental Controls”)

■ chop to integer (or round toward zero)

■ add half to magnitude and chop

Although the IEEE standard specifies that conversions from floating-point to integer 

formats be rounded in the current rounding direction, high-level languages usually 

define their own methods. For example, the default method of converting from 

floating-point to integer formats in C is simply to discard the fractional part (truncate). 
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In general, when a language defines the rounding behavior for conversion to or from an 

integer, PowerPC Numerics languages conform.

Conversions from floating-point to integer formats raise the invalid floating-point 

exception flag in any of the following cases:

■ The floating-point value is out of range for the integer type (for example, an attempt 
to convert a 64-bit integer value stored in the double data type to a 32-bit integer type). 

■ The floating-point value is a NaN.

■ The floating-point value is an Infinity.

All floating-point to integer conversions that are in range but inexact (that is, the 

floating-point value was not an integer) raise the inexact floating-point exception flag, 

although this is not required by the IEEE standard.

Table 5-1 shows some examples of how floating-point values might be converted to a 

32-bit integer format by rounding in the current rounding direction. Note that IEEE 

rounding in the default direction (to nearest) differs from most common rounding 

functions on halfway cases.

Rounding Floating-Point Numbers to Integers

PowerPC Numerics can also round floating-point numbers to integers and leave them 

stored in the same floating-point data format. These conversions may round in the 

current rounding direction, or they may explicitly round upward, downward, to the 

nearest value, or toward zero. These operations do not affect zeros, NaNs, or Infinities, 

because these three types of special values are already considered integers. 

Table 5-1 Examples of floating-point to integer conversion 

Floating-point 
number

Rounded 
to nearest

Rounded
 toward 0

Rounded 
downward

Rounded 
upward

  1.5   2   1   1   2

  2.5   2   2   2   3

–2.2 –2 –2 –3 –2

2,147,483,648.5 NaN NaN NaN NaN
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Converting Integers to Floating-Point Formats

When an integer is converted to a floating-point format whose precision is greater than 

or equal to the size of the integer format, the conversion is exact. When an integer is 

converted to a floating-point format whose precision is less than the size of the integer 

format, the integer is rounded in the current rounding direction. For example, because 

the single format has 24 bits in the significand, any integer requiring more than 24 bits of 

precision will not be converted to its exact value. 

Converting Between Floating-Point Formats

PowerPC Numerics supports conversions between all three of its floating-point data 

formats. This section describes these conversions. 

Converting Between Single and Double Formats
The PowerPC microprocessor directly supports the single and double formats and 

conversions between them. When a single format number is converted to a double 

format number, the conversion is exact.

When a double format number is converted to a single format number, it is rounded to 

the closest single value in the current rounding direction. The conversion might raise the 

exceptions shown in Table 5-2.

Converting Between Single and Double-Double Formats
When a single format number is converted to a double-double format number, the result 

is exact. The following actions take place (as shown in Figure 5-1):

1. The single number is converted to double format.

2. The resulting double number is placed in the head of the double-double number.

3. The tail of the double-double number is set to 0.

4. The sign of the tail is set to the sign of the head.

Table 5-2 Double to single conversion: Possible exceptions

Exception Raised when

Inexact Significand requires > 24 bits of precision

Overflow Exponent > 127

Underflow Exponent < –126
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Figure 5-1 Single to double-double conversion

When a double-double number is converted to a single number, the following actions 

take place (as shown in Figure 5-2):

1. The head and tail of the double-double number are added together.

2. The sum is rounded to the closest single value in the current rounding direction.

Figure 5-2 Double-double to single conversion
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The double-double to single conversion might raise the exceptions shown in Table 5-3.

Converting Between Double and Double-Double Formats
When a double format number is converted to a double-double format number, the 

result is exact. The following actions take place:

1. The double number is placed in the head of the double-double number.

2. The tail of the double-double number is set to 0.

3. The sign of the tail is set to the sign of the head.

When a double-double number is converted to a double number, the following actions 

take place:

1. The head and tail of the double-double number are added together.

2. The sum is rounded to the closest double value in the current rounding direction.

The conversion might raise the inexact exception if the significand requires more than 53 

bits of precision.

Converting Between Binary and Decimal Numbers

PowerPC Numerics automatically converts between binary and decimal numbers, and 

some implementations allow you to perform such conversions manually. This section 

describes when conversions between binary and decimal numbers are performed and 

how they are performed. 

Accuracy of Decimal-to-Binary Conversions
As explained in Chapter 1, “IEEE Standard Arithmetic,” some real numbers that can be 

represented exactly in decimal cannot be represented exactly as binary floating-point 

numbers. As a result, it is important that conversions between the two types of numbers 

be as accurate as possible. Given a rounding direction, for every decimal value there is a 

best—that is, correctly rounded—binary value for each binary format. Conversely, for 

any rounding direction, each binary value has a corresponding best decimal 

representation for a given decimal format. Ideally, binary-to-decimal conversions should 

obtain this best value to reduce accumulated errors.

Table 5-3 Double-double to single conversion: Possible exceptions

Exception Raised when

Inexact Significand requires > 24 bits of precision

Overflow Exponent > 127

Underflow Exponent < –126
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Conversion functions in PowerPC Numerics meet or exceed the stringent error bounds 

specified by the IEEE standard. This means that even though in extreme cases the 

conversions do not deliver the correctly rounded results, the results they do deliver are 

very nearly as good as the correctly rounded results. (The IEEE standard does not 

specify error bounds for conversions involving values beyond the double format. See 

IEEE Standard 754-1985 for a more detailed description of error bounds.)

Automatic Conversions
Whenever a computer reads a decimal number into a binary format, it automatically 

converts the number to binary. Similarly, whenever a computer writes a binary number 

and a decimal format is specified for the output, it automatically converts the number 

from binary to decimal. 

Suppose an application repeatedly reads and writes decimal data, meaning that it 

repeatedly converts values from decimal to binary and back. Such conversion cycles 

would occur, for example, in repeated execution of an application that updates a decimal 

file on a binary computer. Each time the application runs, it deliberately changes only a 

handful of values, but all the values get converted from decimal to binary and back 

again. Some computers use a conversion strategy that just drops extra digits; that is, it 

truncates the value. If the application were run on such a computer, the computer’s 

rounding by truncation could cause severe downward drift. Using IEEE arithmetic with 

rounding to nearest, the values do not drift when you run the application repeatedly. 

That is, even though the conversions might change a few values the first time you run 

the program, there will be no further changes on subsequent conversions.

Figure 5-3 is a graphical model of such a conversion cycle with rounding to nearest, 

where the vertical marks represent decimal and binary computer numbers on the 

number line. The one-way arrow shows a decimal-to-binary conversion that does not get 

converted back to the original decimal value; the two-way arrow shows subsequent 

conversions returning the same value. In all cases, repeated conversions after the first 

give the same binary value; the error does not keep increasing.

Figure 5-3 Conversion cycle with first-time error



C H A P T E R  5

Conversions

Converting Between Binary and Decimal Numbers 5-9

What’s more, if the binary format has enough extra precision beyond that of the decimal 

format, to-nearest rounding returns the original value the first time. The two-way arrow 

in Figure 5-4 shows a conversion cycle with different degrees of precision; here, the 

nearest decimal value to the binary result is always the original decimal value.

Figure 5-4 Conversion cycle with correct result

For the round-trip conversion from decimal to binary and back to decimal, the size of the 

decimal number you can start with and be sure that the round-trip produces the original 

value exactly depends on the binary data format. For single format, at most 6 decimal 

digits can be converted and return you the exact original value. For double format, 15 

decimal digits, and for double-double format, 31 decimal digits.

You might also want to be sure conversions from binary numbers to decimal and back 

return the original value. For example, suppose your program writes out some stored 

values, and the output from this program is used as input to another program. You want 

to know how many decimal digits to print out to ensure that the conversion back to 

binary results in the original value. Again, the binary data format determines how many 

decimal digits are required for the conversion to return the original value. For single 

format, printing out 9 decimal digits insures an exact round trip; for double format, 17 

decimal digits.

Note

These values bracket the ones given in Table 2-7 on page 2-16. ◆

Note that for the double-double format, because of its indefinite precision, there is no 

reasonable number of decimal digits you can print out to guarantee the conversion 

returns the original value. The number of decimal digits required varies with the 

difference between the head’s exponent value and the tail’s exponent. In the best case, 

the head’s exponent is exactly 54 greater than the tail’s exponent so that there is no gap 

between the head and the tail. In this case, 34 decimal digits are required to reproduce 

the original double-double value exactly. The worst case is when the tail is 0. No number 

of decimal digits is sufficient to provide an exact round trip when the tail is 0 (assuming 

an infinite exponent range).
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Consider the case where a double-format number is converted to double-double format. 

For example, if you take 1.2 represented in double format and convert it to 

double-double format, the result (in hexadecimal) is

0x3FF33333 0x33333333 0x00000000 0x00000000

The first two hexadecimal numbers are stored in the head, and the last two are stored in 

the tail. Suppose you want to convert this double-double number to decimal. If you 

choose 34 decimal digits, the result is

1.199999999999999955591079014993738

This result is the closest 34-decimal digit approximation of the above double-double 

number. It is also the closest 34-decimal digit approximation of an infinitely precise 

binary value whose exponent is 0 and whose fractional part is represented by 13 

sequences of “0011” followed by 52 binary zeros followed by some nonzero bits. When 

you convert this decimal value back to double-double format, PowerPC Numerics 

returns the closest double-double approximation of the infinitely precise value using all 

of the bits of precision available to it. That is, it will use all 53 bits in the head and 53 bits 

in the tail to store nonzero values and adjust the exponent of the tail accordingly. The 

result is

0x3FF33333 0x33333333 0xXXXYZZZZ 0xZZZZZZZZ

where XXX represents the sign and exponent of the tail, and Y represents the start of a 

nonzero value. Because the tail is always nonzero, this value is guaranteed to be not 

equal to the original double-double value.

Manual Conversions
A numeric implementation may provide functions that convert binary floating-point 

numbers to decimal and that convert decimal numbers to binary floating-point numbers. 

The decimal number can be input in one of two formats: as part of a decimal structure 

(described next) or as a character string. A numeric implementation also may provide a 

scanner for converting from decimal strings to decimal structures and a formatter for 

converting from decimal structures to decimal strings.

Converting Between Floating-Point and Decimal Structures

If the decimal number is part of a decimal structure, the structure contains

■ a sign field

■ an exponent field

■ a significand field
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For example, the file fp.h defines the following decimal structure for C:

typedef struct decimal 

{

char sgn;

char unused;

short exp;

struct 

{

unsigned char length;

unsigned char text[SIGDIGLEN];

unsigned chard unused;

} sig;

} decimal;

The field sgn represents the sign, exp represents the exponent, and the structure sig 

represents the significand. The length field of the sig structure gives the length of the 

significand, and the character array text contains the significand. The decimal 

structure may either be input for a function that converts it to a binary floating-point 

number or output for a function that converts a binary floating-point number to this 

format.

IMPORTANT

When you create a decimal structure, you must set sig.length to the 
size of the string you place in sig.text. You cannot leave the length 
field undefined. ▲

Conversions from floating-point types to decimal structures also require a decimal 
format structure to specify how the decimal number should look. The decimal format 

structure contains the following information:

■ whether the number should be in fixed or floating style

■ if fixed style, the number of digits that should be to the right of the decimal point

■ if floating style, the number of significant digits

For example, the file fp.h defines the decform structure for this purpose for the 

C programming language:

typedef struct decform 

{

char style; /* FLOATDECIMAL OR FIXEDDECIMAL */

char unused;

short digits;

} decform;
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Converting Between Floating-Point and Decimal Strings

Languages may provide routines to convert between numeric decimal strings and the 

numeric data formats. Note that conversions take place in the following cases:

■ use of decimal constants in source code

■ input of decimal strings (by procedures such as read in Pascal)

■ calls to explicit routines

All conversions to decimal strings are controlled by a decimal formatting structure as 

described in the previous section.
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Numeric Operations and Functions

This chapter describes the operations (comparisons, arithmetic operations, and auxiliary 

and transcendental functions) that PowerPC Numerics allows you to perform on 

floating-point numbers. Numeric operations are evaluated as floating-point expressions; 

as such they are affected by, and might affect, the floating-point environment. 

Read this chapter to find out what numeric operations are supported and how they 

work. For more information about how floating-point operations are evaluated in 

general, see Chapter 3, “Expression Evaluation.” For a description of the floating-point 

environment, see Chapter 4, “Environmental Controls.”

Comparisons 

PowerPC Numerics supports the usual numeric comparisons: less than, less than or 

equal, greater than, greater than or equal, equal, and not equal (plus a few more 

described later). For real numbers, these comparisons behave according to the familiar 

ordering of real numbers.

Comparisons With NaNs and Infinities
Numeric comparisons handle NaNs and Infinities as well as real numbers. The usual 

trichotomy for real numbers is extended so that, for any numeric values a and b, exactly 

one of the following statements is true:

■ a < b

■ a > b

■ a = b

■ a and b are unordered

The following rule determines which statement is true: If a or b is a NaN, then a and b are 

unordered; otherwise, a is less than, equal to, or greater than b according to the ordering 

of the real numbers, with the understanding that 

and < every real number < +∞ 

Comparison Operators
The meaning of high-level language relational operators is a natural extension of their 

old meaning based on trichotomy. For example, the C expression  is true if x is 

less than y or if x equals y, and is false if x is greater than y or if x and y are unordered. 

Note that the numeric not-equal relation means less than, greater than, or unordered. 

+0 0−= ∞−

x y=<
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The FPCE technical report extends the usual set of C relational operators to a set of 14 

comparisons, shown in Table 6-1.

Some relational operators in high-level language comparisons contain the predicate less 

than or greater than, but not unordered. In C, those relational operators are <, <=, >, 

and >= (but not == and !=). For those relations, comparisons signal invalid if the 

operands are unordered, that is, if either operand is a NaN. For the operators equal and 

nonequal, comparisons with NaN are not misleading; thus, when x or y is a NaN, the 

relation x == y is false, which is not misleading. Likewise, when x or y is a NaN, x != y 

returns true, again not misleading. On the other hand, when x or y is a NaN, x < y being 

false might tempt you to conclude that x ≥ y, so PowerPC Numerics signals invalid to 

help you avoid the pitfall. Table 6-1 shows the results of such comparisons in C.

The full 26 distinct comparison predicates of the IEEE standard may be obtained by 

logical negation of all of the operators except for == and !=, which never signal invalid. 

For example, (x < y) and !(x !< y) are logically equivalent for all possible values of a 

and b, but the former raises the invalid exception flag when x and y compare unordered 

while the latter does not.

A comparison with a signaling NaN as an operand always signals invalid, just as in 

arithmetic operations.

Table 6-1 Comparison symbols

Symbol Relation
Invalid if
unordered?

< Less than Yes

> Greater than Yes

<= Less than or equal to Yes

>= Greater than or equal to Yes

== Equal to No

!= Not equal to (unordered, less than, or greater than) No

!<>= Unordered No

<> Less than or greater than Yes

<>= Not unordered (less than, equal to, or greater than) Yes

!<= Not less than or equal to (unordered or greater than) No

!< Not less than (unordered, greater than, or equal to) No

!>= Not greater than or equal to (unordered or less than) No

!> Not greater than (unordered, less than, or equal to) No

!<> Unordered or equal No
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In addition to the comparison operators, there are also library functions that perform 

comparisons. See the section “Comparison Functions,” in Chapter 10, “Transcendental 

Functions.”

Arithmetic Operations 

PowerPC Numerics provides the seven arithmetic operations required by the IEEE 

standard for its three data types, as shown for the language C in Table 6-2.

The language processors for the PowerPC automatically use their chosen expression 

evaluation methods for the normal inline operators (+, –, *, /). All the arithmetic 

operations produce the best possible result: the mathematically exact result, coerced to 

the precision and range of the evaluation format. The coercions honor the user-selectable 

rounding direction and handle all exceptions according to the requirements of the IEEE 

standard (see Chapter 4, “Environmental Controls”).

Some of the arithmetic operations are implemented in software. These operations are 

declared to be type double_t, which is defined to be type double. 

+

You can use the + symbol to add two real numbers.

x + y

x Any floating-point number.

y Any floating-point number.

Table 6-2 Arithmetic operations in C

Operation C symbol

Add + 

Subtract – 

Multiply * 

Divide / 

Square root sqrt 

Remainder remainder 

Round-to-integer rint 
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DESCRIPTION

The + operator performs the standard addition of two floating-point numbers.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of x + y is exact or it raises 

one of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 6-3 shows the results when one of the operands of the addition operation is a zero, 

a NaN, or an Infinity. In this table, x is any floating-point number.

–

You can use the – symbol to subtract one real number from another.

x – y

x Any floating-point number.

y Any floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-3 Special cases for floating-point addition

Operation Result Exceptions raised

x None

x None

+0 None

None

NaN None*

+∞ None

None

NaN Invalid

x +0( )+

x 0−( )+

0−( ) +0( )+

0−( ) 0−( )+ 0−

x NaN+

x +∞( )+

x ∞−( )+ ∞−

+∞ ∞−( )+
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DESCRIPTION

The – operator performs the standard subtraction of two floating-point numbers.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of x – y is exact or it raises one 

of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 6-4 shows the results when one of the operands of the subtraction operation is a 

zero, a NaN, or an Infinity. In this table, x is any floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-4 Special cases for floating-point subtraction

Operation Result Exceptions raised

x None

−x None

+0 None

x None

−x None

None

+0 None

x – NaN NaN None*

NaN – x NaN None*

None

+∞ None

NaN Invalid

+∞ None

None

NaN Invalid

x +0( )−

+0( ) x−

+0( ) 0−( )−

x 0−( )−

0−( ) x−

0−( ) +0( )− 0−

0−( ) 0−( )−

x +∞( )− ∞−

+∞( ) x−

+∞( ) +∞( )−

x ∞−( )−

∞−( ) x− ∞−

∞−( ) ∞−( )−
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*

You can use the * symbol to multiply two real numbers.

x * y

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The * operator performs the standard multiplication of two floating-point numbers 

.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of x * y is exact or it raises 

one of the following exceptions:

■ inexact (if the result of x * y must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 6-5 shows the results when one of the operands of the multiplication operation is a 

zero, a NaN, or an Infinity. In this table, x is a nonzero floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-5 Special cases for floating-point multiplication

Operation Result Exceptions raised

x * +0 ±0 None

x * ±0 None

±∞ * ±0 NaN Invalid

x * NaN NaN None*

x * +∞ ±∞ None

x * ±∞ None

±0 * ±∞ NaN Invalid

x y×( )

0−

∞−
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/

You can use the / symbol to divide one real number by another.

x / y

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The / operator performs the standard division of two floating-point numbers.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of  is exact or it raises one 

of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 6-6 shows the results when one of the operands of the division operation is a zero, 

a NaN, or an Infinity. In this table, x is any floating-point number.

Table 6-6 Special cases for floating-point division 

Operation Result Exceptions raised

±0 None

±∞ Divide-by-zero

±0 None

±∞ Divide-by-zero

NaN Invalid

NaN None*

NaN None*

±0 None

continued

x y⁄

+0( ) x⁄

x +0( )⁄

0−( ) x⁄

x 0−( )⁄

±0 ±0⁄

x NaN⁄

NaN x⁄

x +∞( )⁄
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sqrt

You can use the square root (sqrt) function to compute the square root of a real number.

double_t sqrt(double_t x);

x Any positive floating-point number.

DESCRIPTION

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of the 

following exceptions:

■ inexact (if the result must be rounded)

■ invalid (if x is negative)

SPECIAL CASES

Table 6-7 shows the results when the argument to the square root function is a zero, a 

NaN, or an Infinity, plus other special cases for the square root function. In this table, x is 

a finite, nonzero floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

±∞ None

x / ±0 None

±∞ None

NaN Invalid

Table 6-6 Special cases for floating-point division (continued)

Operation Result Exceptions raised

+∞( ) x⁄

∞−( )

∞−( ) x⁄

∞±( ) ±(⁄

sqrt x( ) x=

sqrt x( )
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remainder, remquo, and fmod

You can use the remainder, remquo, and fmod functions to perform the remainder 

operation recommended in the IEEE standard. 

double_t remainder (double_t x, double_t y);

double_t remquo (double_t x, double_t y, int *quo);

double_t fmod (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

quo On return, the signed lowest seven bits (in the range of −127 to +127, 
inclusive) of the integer value closest to the quotient . This partial 
quotient might be of use in certain argument reduction algorithms.

DESCRIPTION

The IEEE remainder (rem) operation returns the result of the following computation.

 rem 

where n is the integer nearest the exact value of the quotient . This expression can be 

found even in the conventional integer-division algorithm, shown in Figure 6-1.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-7 Special cases for floating-point square root

Operation Result Exceptions raised

NaN Invalid

+0 None

None

 NaN None*

+∞ None

NaN Invalid

sqrt x( )   for x < 0

sqrt +0( )

sqrt 0−( ) 0−

sqrt NaN( )

sqrt +∞( )

sqrt ∞−( )

x y⁄

r x= y x y n×−=

x y⁄
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Figure 6-1 Integer-division algorithm

Whenever , n is even. 

If the value of r is 0, the sign of r is that of x.

The rem operation is always exact.

The IEEE rem operation differs from other commonly used remainder and modulo 

operations. It returns a remainder of the smallest possible magnitude, and it always 

returns an exact remainder. Other remainder functions can be constructed from the IEEE 

remainder function by appropriately adding or subtracting y. 

EXCEPTIONS

When x and y are finite, nonzero floating-point numbers in single or double format, the 

result of x rem y is exact.

SPECIAL CASES

Table 6-8 shows the results when one of the arguments to the rem operation is a zero, a 

NaN, or an Infinity. In this table, x is a finite, nonzero floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-8 Special cases for floating-point remainder

Operation Result Exceptions raised

+0 rem x +0 None

x rem NaN Invalid

 rem x None

x rem NaN Invalid

x rem NaN NaN None*

NaN rem x NaN None*

x rem +∞ x None

+∞ rem x NaN Invalid

x rem  x None

 rem x NaN Invalid

n x y⁄− 1 2⁄=

+0( )

0− 0−

0−( )

∞−

∞−
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EXAMPLES

z = remainder(5, 3); /* z = –1. */

/* 5 rem 3 = 5 – 3 × 2 = –1 because 1 < 5/3 < 2 and because 
5/3 = 1.66666... is closer to 2 than to 1, quo is taken to 

be 2. */

z = remainder(43.75, 2.5); /* z = –1.25. */

/* 43.75 rem 2.5 = 43.75 – 2.5 × 18 = –1.25 because 
17 < 43.75/2.5 < 18 and because 43.75/2.5 = 17.5 is 

equally close to both 17 and 18, quo is taken to be the 

even quotient, 18. */

z = remainder(43.75, +INFINITY); /* z = 43.75 */

/* 43.75 rem ∞ = 43.75 – 0 × ∞ = 43.75 because 43.75 / ∞ = 0, 
quo is taken to be 0. */

rint

You can use the round-to-integer operation (rint) to round a number to the nearest 

integer in the current rounding direction.

double_t rint(double_t x);

x Any floating-point number.

DESCRIPTION

The rint function rounds its argument to an integer in the current rounding direction. 

The available rounding directions are upward, downward, to nearest (default), and 

toward zero. With the default rounding direction, if the argument is equally near two 

integers, the even integer is used as the result.

In each floating-point data type, all values of sufficiently great magnitude are integers. 

For example, in single format, all numbers whose magnitudes are at least  are 

integers. This means that +∞ and  are already integers and return exact results.

The rint function performs the round-to-integer arithmetic operation described in the 

IEEE standard. For other functions that perform rounding to integer, see Chapter 9, 

“Conversion Functions.”

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises the 

following exception

■ inexact (if x is not an integer)

223

∞−

rint x( )
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SPECIAL CASES

Table 6-9 shows the results when the argument to the round-to-integer function is a zero, 

a NaN, or an Infinity.

EXAMPLES

Table 6-10 shows some examples results of rint, given different rounding directions.

Auxiliary Functions 

The IEEE standard defines a number of recommended functions (called auxiliary 

functions) that are generally useful in numerical programming. The recommended 

functions supported by PowerPC Numerics are

■ : copy the sign

■ : absolute value

■ : binary exponent

■ nan functions: NaN generators

■ nextafter functions

■ : binary scaling

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-9 Special cases for floating-point round-to-integer

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

Table 6-10 Examples of rint 

Example

Current rounding direction

To nearest Toward 0 Downward Upward

rint(1.5) 2 1 1 2

rint(2.5) 2 2 2 3

rint(–2.2) –2 –2 –3 –2

rint +0( )

rint 0−( ) 0−

rint NaN( )

rint +∞( )

rint ∞−( ) ∞−

copysign x y,( )

fabs x( )

logb x( )

scalb x( )
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The auxiliary functions are provided in the C library MathLib. For more information 

about these functions, see Part 2.

Transcendental Functions

PowerPC Numerics provides several basic mathematical functions in addition to the 

auxiliary functions recommended in the IEEE standard. These functions include 

■ logarithms

■ exponentials

■ two important financial functions

■ trigonometric functions

■ a random number generator

■ error and gamma functions 

For information about the transcendental functions supported, see Part 2.
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The PowerPC Numerics C 
Implementation

This part describes the PowerPC Numerics implementation for the C 

programming language. The numeric implementation for the C language 

conforms to both IEEE standard 754, referred to in this book as the IEEE 

standard, and the recommendations in the FPCE technical report. As stated in 

Part 1, the FPCE report proposes a standard way of doing floating-point 

arithmetic for the C programming language. The IEEE standard specifies a 

standard for floating-point arithmetic for all computers regardless of the 

architecture or of any high-level language. The FPCE recommendations 

conform to the IEEE standard and standardize its implementation for the C 

programming language, so that if you write a program that uses FPCE 

features, it will compile with any FPCE-compliant compiler.

PowerPC Numerics in C is supported largely through a library called 

MathLib. This library contains macros, functions, and type definitions that 

provide conformance to the IEEE standard and the FPCE technical report. 

Some of the functions in the PowerPC Numerics library have two 

implementations: double precision and double-double precision. The 

double-double-precision implementation has the letter l appended to the 

name of the function and performs exactly the same as the double version. 

This book uses the double-precision implementation’s name to mean both of 

these implementations. 

This part describes the MathLib PowerPC Numerics library, its adherence to 

each piece of the PowerPC Numerics environment, and its additional features 

that conform to the FPCE technical report. For more information about the 

semantics of PowerPC Numerics, see Part 1. Read Part 2 if you are a 

programmer and you want to find out how to access the features described in 

Part 1 using the C language. You might also find Appendixes C, D, and E (in 

the back of this book) useful as reference material.
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Numeric Data Types in C

This chapter describes the numeric data types available in C and shows how to 

determine the class and sign of values represented in numeric data types. As stated in 

Chapter 2, “Floating-Point Data Formats,” the PowerPC Numerics environment 

provides three numeric data formats: single (32 bits long), double (64 bits long), and 

double-double (two double formats combined, resulting in 128 bits). Each can represent 

normalized numbers, denormalized numbers, zeros, NaNs, and Infinities. See Chapter 2 

for information about the numeric data formats and about how they represent values. 

Read this chapter to find out about the mapping of numeric formats to floating-point 

types in C, about the floating-point type declarations made in the PowerPC Numerics 

library (MathLib), and about the library utilities available that can determine the class of 

a floating-point value.

C Data Types 

Table 7-1 shows how the PowerPC Numerics data formats map to the C floating-point 

variable types. This mapping follows the recommendations in the FPCE technical report.

Efficient Type Declarations

MathLib contains two floating-point type definitions, float_t and double_t in the 

header Types.h. If you define a variable to be float_t or double_t, it means “use 

the most efficient floating-point format for this architecture.” Table 7-2 shows the 

definitions for float_t and double_t for both the PowerPC and 680x0 architecture.

Table 7-1 Names of data types

PowerPC Numerics format C type

IEEE single float

IEEE double double

Double-double long double

Table 7-2 float_t and double_t types

Architecture float_t type double_t type

PowerPC float double

680x0 long double long double
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For the PowerPC architecture, the most natural format for computations is double, but 

the architecture allows computations in single precision as well. Therefore, for the 

PowerPC architecture, float_t is defined to be float (single precision) and 

double_t is defined to be double. The 680x0 architecture is based on an 80-bit 

double-extended format (known as extended) and performs all computations in this 

format regardless of the type of the operands. Therefore, float_t and double_t are 

both long double (extended precision) for the 680x0 architecture.

If you declare a variable to be type double_t and you compile the program as a 

PowerPC application, the variable is a double. If you recompile the same program as an 

680x0 application, the variable is long double.

Inquiries: Class and Sign

MathLib provides macros you can use to determine the class and sign of a floating-point 

value. All of these macros return type long int. They are listed in Table 7-3.

Table 7-3 Class and sign inquiry macros

Macro Value returned Condition

fpclassify(x) FP_SNAN x is a signaling NaN

FP_QNAN x is a quiet NaN

FP_INFINITE x is  or +∞

FP_ZERO x is +0 or 

FP_NORMAL x is a normalized number

FP_SUBNORMAL x is a denormalized (subnormal) number

isnormal(x) TRUE x is a normalized number

isfinite(x) TRUE x is not , +∞, or NaN

isnan(x) TRUE x is a NaN (quiet or signaling)

signbit(x) 1 The sign bit of x is 1 (x is negative)

0 The sign bit of x is 0 (x is positive)

∞−

0−

∞−
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Creating Infinities and NaNs

MathLib defines the constants INFINITY and NAN, so that you can assign these values to 

variables in your program, and provides the following function that returns NaNs:

double nan  (const char *tagp);

The nan function returns a quiet NaN with a fraction field that is equal to the argument 

tagp. The argument tagp is a pointer to a string that will be copied into bits 8 through 

15 of the NaN’s fraction field. The string should specify a decimal number between 0 

and 255. For example:

nan("32")

creates a NaN with code 32. If you supply a negative string, it is the same as supplying 

the string “0”. If you supply a string greater than 255, it is the same as supplying the 

string “255”. For a list of predefined NaN codes, see Chapter 2, “Floating-Point Data 

Formats.”
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Numeric Data Types Summary

This section summarizes the C constants, macros, functions, and type definitions 

associated with creating floating-point values or determining the class and sign of a 

floating-point value. 

C Summary

Constants

#ifdef powerc

#define LONG_DOUBLE_SIZE 16

#elif mc68881

#define LONG_DOUBLE_SIZE 12

#else

#define LONG_DOUBLE_SIZE 10

#endif      /* powerc */

#define HUGE_VAL _ _inf()

#define INFINITY _ _inf()

#define NAN nan("255")

Class and Sign Inquiry Macros

#define fpclassify (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _fpclassify  (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _fpclassifyd (x) : \

_ _fpclassifyf (x))

#define isnormal (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isnormal (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isnormald (x) : \

_ _isnormalf (x))
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#define isfinite (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isfinite (x) : \

( sizeof (x) == DOUBLE_SIZE) ? \

_ _isfinited (x) : \

_ _isfinitef (x))

#define isnan (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isnan (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isnand (x) : \

_ _isnanf (x))

#define signbit (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _signbit (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _signbitd (x) : \

_ _signbitf (x))

enum NumberKind

{

FP_SNAN = 0, /* signaling NaN */

FP_QNAN, /* quiet NaN */

FP_INFINITE, /* + or – infinity */

FP_ZERO, /* + or – zero */

FP_NORMAL, /* all normal numbers */

FP_SUBNORMAL /* denormal numbers */

};

Data Types

#ifdef powerpc

typedef float float_t;

typedef double double_t;

#else

typedef long double float_t;

typedef long double double_t;

#endif      /* powerpc */

Special Value Routines and Macros

Creating NaNs

double nan (const char *tagp);
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Environmental Control Functions

This chapter describes how to control the floating-point environment using functions 

defined in MathLib. 

As described in Chapter 4, “Environmental Controls,” the rounding direction and the 

exception flags are the parts of the environment that you can access. You can test and 

change the rounding direction, and you can test, set, and clear the exceptions flags. You 

may also save and restore both the rounding direction and exception flags together as a 

single entity. This chapter describes the functions that perform these tasks. For the 

definitions of rounding direction and exception flags, see Chapter 4.

Read this chapter to learn how to access and manipulate the floating-point environment 

in the C language. All of the environmental control function declarations appear in the 

file fenv.h.

IMPORTANT

If your compiler supports the environmental access switch described in 
Appendix D, “FPCE Recommendations for Compilers,” the switch must 
be turned on in the program before you use any of the functions 
described in this chapter. ▲

Controlling the Rounding Direction

In MathLib, the following functions control the rounding direction:

The four rounding direction modes are defined as the constants shown in Table 8-1. 

fegetround

You can use the fegetround function to save the current rounding direction.

int fegetround (void);

fegetround  Returns the current rounding direction.

fesetround  Sets the rounding direction.

Table 8-1 Rounding direction modes in MathLib

Rounding direction Constant

To nearest FE_TONEAREST

Toward zero FE_TOWARDZERO

Upward FE_UPWARD

Downward FE_DOWNWARD
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DESCRIPTION

The fegetround function returns an integer that specifies which rounding direction is 

currently being used. The integer it returns will be equal to one of the constants shown 

in Table 8-1. You can save the returned value in an integer variable to save the current 

rounding direction.

EXAMPLES

int rounddir;

double_t x, y, result;

rounddir = fegetround(); /* save rounding direction */

result = x + y;

if (rounddir == FE_TONEAREST) 

printf("The result was rounded to the nearest value.\n");

else if (rounddir == FE_UPWARD)

printf("The result was rounded upward.\n");

else if (rounddir == FE_DOWNWARD)

printf("The result was rounded downward.\n");

else if (rounddir == FE_TOWARDZERO)

printf("The result was rounded toward zero.\n");

fesetround

You can use the fesetround function to change the rounding direction.

int fesetround (int round);

round One of the four rounding direction constants (see Table 8-1).

DESCRIPTION

The fesetround function sets the rounding direction to the mode specified by its 

argument. If the value of round does not match any of the rounding direction constants, 

the function returns 0 and does not change the rounding direction.

By convention, if you change the rounding direction inside a function, first save the 

rounding direction of the calling function using fegetround and restore the saved 

direction at the end of the function. This way, the function does not affect the rounding 

direction of its caller. If the function is to be reentrant, then storage for the caller’s 

rounding direction must be local.
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One reason to change the rounding direction would be to put bounds on errors (at least 

for the basic arithmetic operations and square root). Suppose you want to evaluate an 

expression such as

where a, b, c, d, f, and g are positive.

To make sure that the result is always larger than the exact value, you can change the 

expression such that all roundings cause errors in the same direction. The example that 

follows changes the rounding direction to compute an upper bound for the expression, 

and then restores the previous rounding.

EXAMPLES

double_t big_divide(void)

{

double_t x_up, a, b, c, d, f, g;

int r; /* specifies rounding direction */

r = fegetround(); /* save caller’s rounding direction */

fesetround(FE_DOWNWARD);

/* downward rounding for denominator */

x_up = f + g; 

fesetround(FE_UPWARD);

/* upward rounding for expression */

x_up = (a * b + c * d) / x_up; 

fesetround(r);

/* restore caller’s rounding direction */

return(x_up);

}

Controlling the Exception Flags

In MathLib, the following functions control the floating-point exception flags:

feclearexcept Clears one or more exceptions.

fegetexcept Saves one or more exception flags.

feraiseexcept Raises one or more exceptions. 

fesetexcept Restores the state of one or more exception flags.

fetestexcept Returns the value of one or more exception flags.

x a b c d×+×( ) f g+( )⁄=
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The five floating-point exception flags are defined as the constants shown in Table 8-2. 

MathLib also defines another constant, FE_ALL_EXCEPT, which is the logical OR of all 

five exceptions. Using FE_ALL_EXCEPT, you can manipulate all five floating-point 

exception flags as a single entity. The type fexcept_t also exists so that all 

the exception flags may be accessed at once.

feclearexcept

You can use the feclearexcept function to clear one or more floating-point exceptions.

void feclearexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be cleared. 

DESCRIPTION

The feclearexcept function clears the floating-point exceptions specified by its 

argument. The argument may be one of the constants in Table 8-2, two or more of these 

constants ORed together, or the constant FE_ALL_EXCEPT.

EXAMPLES

feclearexcept(FE_INEXACT); /* clears the inexact flag */

feclearexcept(FE_INEXACT|FE_UNDERFLOW);

/* clears the inexact and underflow flags */

feclearexcept(FE_ALL_EXCEPT); /* clears all flags */

Table 8-2 Floating-point exception flags in MathLib

Exception Constant

Inexact FE_INEXACT

Divide-by-zero FE_DIVBYZERO

Underflow FE_UNDERFLOW

Overflow FE_OVERFLOW

Invalid FE_INVALID
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fegetexcept

You can use the fegetexcept function to save the current value of one or more 

floating-point exception flags.

void fegetexcept (fexcept_t *flagp, int excepts);

flagp A pointer to where the exception flag values are to be stored.

excepts A mask indicating which exception flags to save. 

DESCRIPTION

The fegetexcept function saves the values of the floating-point exception flags 

specified by the argument excepts to the area pointed to by the argument flagp. The 

excepts argument may be one of the constants in Table 8-2 on page 8-6, two or more of 

these constants ORed together, or the constant FE_ALL_EXCEPT.

EXAMPLES

fegetexcept(flagp, FE_INVALID); /* saves the invalid flag */

fegetexcept(flagp, FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);

/* saves the invalid, overflow, and divide-by-zero flags */

fegetexcept(flagp, FE_ALL_EXCEPT); /* saves all flags */

feraiseexcept

You can use the feraiseexcept function to raise one or more floating-point exceptions.

void feraiseexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be set. 

DESCRIPTION

The feraiseexcept function sets the floating-point exception flags specified by its 

argument. The argument may be one of the constants in Table 8-2 on page 8-6, two or 

more of these constants ORed together, or the constant FE_ALL_EXCEPT.
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EXAMPLES

feraiseexcept(FE_OVERFLOW); /* sets the overflow flag */

feraiseexcept(FE_INEXACT|FE_UNDERFLOW);

/* sets the inexact and underflow flags */

feraiseexcept(FE_ALL_EXCEPT); /* sets all flags */

fesetexcept

You can use the fesetexcept function to restore the values of the floating-point 

exception flags previously saved by a call to fegetexcept.

void fesetexcept (const fexcept_t *flagp, int excepts);

flagp A pointer to the values the floating-point exception flags should have.

excepts A mask indicating which exception flags should have their values 
changed. 

DESCRIPTION

The fesetexcept function sets the floating-point exception flags indicated by 

the argument excepts to the values indicated by the argument flagp. The excepts 

argument may be one of the constants in Table 8-2 on page 8-6, two or more of these 

constants ORed together, or the constant FE_ALL_EXCEPT.

You must call fegetexcept before this function to set the flagp argument. This 

argument cannot be set in any other way.

EXAMPLES

fesetexcept(flagp, FE_INVALID); /* restores the invalid flag */

fesetexcept(flagp, FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);

/* restores the invalid, overflow, and divide-by-zero flags */

fesetexcept(flagp, FE_ALL_EXCEPT); /* restores all flags */

fetestexcept

You can use the fetestexcept function to find out if one or more floating-point 

exceptions has occurred.

int fetestexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be tested. 
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DESCRIPTION

The fetestexcept function tests the floating-point exception flags specified by its 

argument. The argument may be one of the constants in Table 8-2 on page 8-6, two or 

more of these constants ORed together, or the constant FE_ALL_EXCEPT. 

If all exception flags being tested are clear, fetestexcept returns a 0. If one of the 

flags being tested is set, fetestexcept returns the constant associated with that flag. If 

more than one flag is set, fetestexcept returns the result of ORing their constants 

together. For example, if the inexact exception is set, fetestexcept returns 

FE_INEXACT. If both the inexact and overflow exceptions flags are set, fetestexcept 

returns FE_INEXACT | FE_OVERFLOW.

EXAMPLES

feraiseexcept(FE_DIVBYZERO|FE_OVERFLOW);

feclearexcept(FE_INEXACT|FE_UNDERFLOW|FE_INVALID);

/* Now the divide-by-zero and overflow flags are 1, and the

rest of the flags are 0. */

i = fetestexcept(FE_INEXACT);

/* i = 0 because inexact is clear */

i = fetestexcept(FE_DIVBYZERO);

/* i = FE_DIVBYZERO */

i = fetestexcept(FE_UNDERFLOW);

/* i = 0 */

i = fetestexcept(FE_OVERFLOW);

/* i = FE_OVERFLOW */

i = fetestexcept(FE_ALL_EXCEPT);

/* i = FE_DIVBYZERO | FE_OVERFLOW */

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);

/* i = FE_DIVBYZERO */

Accessing the Floating-Point Environment

MathLib defines four functions that access the entire floating-point environment:

fegetenv Returns the current environment.

feholdexcept Saves the previous environment and clears all exception flags.

fesetenv Sets new environmental values.

feupdateenv Restores a previously saved environment.
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These functions take parameters of type fenv_t. Type fenv_t is the environment word 

type. In general, the environmental access functions either take a pointer to a variable of 

type fenv_t or accept the macro FE_DFL_ENV, which defines the default environment 

(default rounding direction and all exceptions cleared).

fegetenv

You can use the fegetenv function to save the current state of the floating-point 

environment.

void fegetenv (fenv_t *envp);

envp A pointer to an environment word that will store the current state of the 
environment upon the function’s return.

DESCRIPTION

The fegetenv function saves the current state of the rounding direction modes and the 

floating-point exception flags in the object pointed to by its envp argument.

EXAMPLES

double_t func (double_t x, double_t y)

{

fenv_t *env;

x = x + y; /* floating-point op; may raise exceptions */

fegetenv(env); /* save state of env after add */

y = y * x; /* floating-point op; may raise exceptions */

.

.

.

}

feholdexcept

You can use the feholdexcept function to save the current floating-point environment 

and then clear all exception flags.
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int feholdexcept (fenv_t *envp);

envp A pointer to an environment word where the environment should be 
saved.

DESCRIPTION

The feholdexcept function stores the current environment in the argument envp and 

clears the floating-point exception flags. Note that this function does not affect the 

rounding direction. It is the same as performing the following two calls:

fegetenv(envp);

feclearexcept(FE_ALL_EXCEPT);

Call feholdexcept at the beginning of a function so that the function can start with all 

exceptions cleared but not change the caller’s environment. Use feupdateenv to 

restore the caller’s environment at the end of the function. The feupdateenv function 

keeps any exceptions raised by the current function set while restoring the rest of the 

caller’s environment. Thus, using feholdexcept and feupdateenv together 

preserves all raised floating-point exceptions while allowing new ones to be raised as 

well.

EXAMPLES

void subroutine(void)

{

fenv_t *e; /* local storage for environment */

feholdexcept(e); /* save caller’s environment and

clear exceptions */

/* subroutine’s operations here */

  feupdateenv(e); /* restore caller’s environment */

}

fesetenv

You can use the fesetenv function to restore the floating-point environment.

void fesetenv (const fenv_t *envp);

envp A pointer to a word containing the value to which the environment 
should be set.
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DESCRIPTION

The fesetenv function sets the floating-point environment to the value pointed to by 

its argument envp. The value of envp must come from a call to either fegetenv or 

feholdexcept, or it may be the constant FE_DFL_ENV, which specifies the default 

environment. In the default environment, all exception flags are clear and the rounding 

direction is set to the default.

EXAMPLES

double_t func (double_t x, double_t y)

{

fenv_t *env;

fesetenv(FE_DFL_ENV); /* clear environment */

x = x + y; /* floating-point op; may raise exceptions */

fegetenv(env); /* save state of env after add */

y = y * x; /* floating-point op; may raise exceptions */

fesetenv(env);

/* ignore environmental changes by times op */

.

.

.

}

feupdateenv

You can use the feupdateenv function to restore the floating-point environment 

previously saved with feholdexcept.

void feupdateenv (const fenv_t *envp);

envp A pointer to the word containing the environment to be restored.

DESCRIPTION

The feupdateenv function, which takes a saved environment as argument, does the 

following: 

1. It temporarily saves the exception flags (raised by the current function).

2. It restores the environment received as an argument.

3. It signals the temporarily saved exceptions.
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The feupdateenv function facilitates writing subroutines that appear to their callers to 

be atomic operations (such as addition, square root, and others). Atomic operations pass 

extra information back to their callers by signaling exceptions; however, they hide 

internal exceptions, which might be irrelevant or misleading. Thus, exceptions signaled 

between the feholdexcept and feupdateenv functions are hidden from the calling 

function unless the exceptions remain raised when the feupdateenv procedure is 

called. 

EXAMPLES

/* NumFcn signals underflow if its result is denormalized, 

overflow if its result is INFINITY, and inexact always, but hides 

spurious exceptions occurring from internal computations. */ 

long double NumFcn(void)

{

fenv_t e; /* local environment storage */

enum NumKind c; /* for class inquiry */

fexcept_t * flagp; 

long double result;

feholdexcept(&e); /* save caller’s environment and

  clear exceptions */

/* internal computation */

c = fpclassify(result); /* class inquiry */

feclearexcept(FE_ALL_EXCEPT); /* clear all exceptions */

 feraiseexcept(FE_INEXACT); /* signal inexact */

 if (c == FP_INFINITE)

 feraiseexcept(FE_OVERFLOW);

else if (c == FP_SUBNORMAL) 

 feraiseexcept(FE_UNDERFLOW);

feupdateenv(&e);

/* restore caller’s environment, and then signal

   exceptions raised by NumFcn */

return(result);

}
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Environmental Controls Summary

This section summarizes the C constants, macros, functions, and type definitions 

associated with controlling the floating-point environment. 

C Summary

Constants

Rounding Direction Modes

#define FE_TONEAREST 0x00000000 

#define FE_TOWARDZERO 0x00000001 

#define FE_UPWARD 0x00000002 

#define FE_DOWNWARD 0x00000003

Floating-Point Exception Flags

#define FE_INEXACT 0x02000000 /* inexact */

#define FE_DIVBYZERO 0x04000000 /* divide-by-zero */

#define FE_UNDERFLOW 0x08000000 /* underflow */

#define FE_OVERFLOW 0x10000000 /* overflow */

#define FE_INVALID 0x20000000 /* invalid */

#define FE_ALL_EXCEPT ( FE_INEXACT | FE_DIVBYZERO | FE_UNDERFLOW | \

FE_OVERFLOW | FE_INVALID )

#define FE_DFL_ENV &_FE_DFL_ENV /* pointer to default environment*/

Data Types

typedef long int fenv_t;

typedef long int fexcept_t;



C H A P T E R  8

Environmental Control Functions

Environmental Controls Summary 8-15

Environment Access Routines

Controlling Rounding Direction

int fegetround (void);

int fesetround (int round);

Controlling the Exception Flags

void feclearexcept (int excepts);

void fegetexcept (fexcept_t *flagp, int excepts);

void feraiseexcept (int excepts);

void fesetexcept (const fexcept_t *flagp, int excepts);

int fetestexcept (int excepts);

Accessing the Floating-Point Environment

void fegetenv (fenv_t *envp);

int feholdexcept (fenv_t *envp);

void fesetenv (const fenv_t *envp);

void feupdateenv (const fenv_t *envp);
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Conversion Functions

This chapter describes how you can perform the conversions required by the IEEE 

standard using MathLib C functions. For each type of conversion, this chapter lists the 

functions you can use to perform that conversion. It shows the declarations of these 

functions, describes what they do, describes when they raise floating-point exceptions, 

and gives examples of how to use them. For a description of the conversions required by 

the IEEE standard and the details of how each conversion is performed in PowerPC 

Numerics, see Chapter 5, “Conversions.” All of the conversion function declarations 

appear in the file fp.h. 

Converting Floating-Point to Integer Formats

In C, the default method of converting floating-point numbers to integers is to simply 

discard the fractional part (truncate). MathLib provides two functions that convert 

floating-point numbers to integers using methods other than the default C method and 

that return the integers in integer types.

rinttol

You can use the rinttol function to round a real number to the nearest integer in the 

current rounding direction.

long int rinttol (double_t x);

x Any floating-point number.

DESCRIPTION

The rinttol function rounds its argument to the nearest integer in the current 

rounding direction and places the result in a long int type. The available rounding 

directions are upward, downward, to nearest, and toward zero.

The rinttol function provides the floating-point to integer conversion as described in 

the IEEE standard. It differs from rint (described on page 6-13) in that it returns the 

value in an integer type; rint returns the value in a floating-point type.

Returns the nearest integer to x in the current rounding direction as an 
integer type.

Adds 1/2 to the magnitude of x, chops to an integer, and returns the 
value as an integer type.

rinttol x( )

roundtol x( )
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EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of the 

following exceptions:

■ inexact (if x is not an integer)

■ invalid (if the integer result is outside the range of the long int type)

SPECIAL CASES

Table 9-1 shows the results when the argument to the rinttol function is a zero, a 

NaN, or an Infinity.

EXAMPLES

z = rinttol(+INFINITY);/* z = unspecified value for all rounding 

directions because +INFINITY exceeds the 

range of long int. The invalid exception 

is raised. */

z = rinttol(300.1);   /* z = 301 if rounding direction is upward

else z = 300. The inexact exception is 

raised.*/

z = rinttol(–300.1);   /* z = –301 if rounding direction is 

downward else z = –300. The inexact 

exception is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-1 Special cases for the rinttol function

Operation Result Exceptions raised

+0 None

None

Undefined None*

Undefined Invalid

Undefined Invalid

rinttol x( )

rinttol +0( )

rinttol 0−( ) 0−

rinttol NaN( )

rinttol + ∞( )

rinttol ∞−( )
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roundtol

You can use the roundtol function to round a real number to the nearest integer value 

by adding 1/2 to the magnitude and truncating.

long int roundtol (double_t x);

x Any floating-point number.

DESCRIPTION

The roundtol function adds 1/2 to the magnitude of its argument and chops to integer, 

returning the answer in long int type.

The result is returned in an integer data type. (The return type is the difference between 

roundtol and the round function described on page 9-10.)

This function is not affected by the current rounding direction. Notice that the 

roundtol function rounds halfway cases (1.5, 2.5, and so on) away from 0. With the 

default rounding direction, rinttol (described on page 9-3) rounds halfway cases to 

the even integer.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of 

the following exceptions:

■ inexact (if x is not an integer)

■ invalid (if the integer result is outside the range of the long int type)

SPECIAL CASES

Table 9-2 shows the results when the argument to the roundtol function is a zero, a 

NaN, or an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-2 Special cases for the roundtol function

Operation Result Exceptions raised

+0 None

None

Undefined None*

Undefined Invalid

Undefined Invalid

roundtol x( )

roundtol +0( )

roundtol 0−( ) 0−

roundtol NaN( )

roundtol + ∞( )

roundtol ∞−( )



C H A P T E R  9

Conversion Functions

9-6 Rounding Floating-Point Numbers to Integers

EXAMPLES

z = roundtol(+INFINITY); /* z = an unspecified value because 

+∞ is outside of the range of long 
int. */

z = roundtol(0.5); /* z = 1 because |0.5| + 0.5 = 1.0. The 

inexact exception is raised. */

z = roundtol(–0.9); /* z = –1 because |–0.9| + 0.5 = 1.4. 

The inexact exception is raised. */

Rounding Floating-Point Numbers to Integers

MathLib provides six functions that convert floating-point numbers to integers and 

return the integer in the floating-point type. The first is the rint function, which 

performs the round-to-integer operation as described in Chapter 6, “Numeric Operations 

and Functions.” The other functions either round in a specific direction or perform a 

variation of the rint operation.

ceil

You can use the ceil function to round a real number upward to the nearest integer 

value.

double_t ceil (double_t x);

x Any floating-point number.

DESCRIPTION

The ceil function rounds its argument upward. This is an ANSI standard C library 

function. The result is returned in a floating-point data type.

Returns the nearest integer not less than x.

Returns the nearest integer not greater than x.

Returns the nearest integer to x in the current rounding direction.

Adds 1/2 to the magnitude of x and chops to an integer.

Truncates the fractional part of x.

ceil x( )
floor x( )
nearbyint x( )
round x( )
trunc x( )
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This function is the same as performing the following code sequence:

r = fegetround(); /* save current rounding direction */

fesetround(FE_UPWARD); /* round upward */

rint(x); /* round to integer */

fesetround(r); /* restore rounding direction */

EXCEPTIONS

When x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 9-3 shows the results when the argument to the ceil function is a zero, a NaN, or 

an Infinity.

EXAMPLES

z = ceil(+INFINITY); /* z = +INFINITY because +INFINITY is already 

an integer value by definition. */

z = ceil(300.1); /* z = 301.0 */

z = ceil(–300.1); /* z = –300.0 */

floor

You can use the floor function to round a real number downward to the next integer 

value.

double_t floor (double_t x);

x Any floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-3 Special cases for the ceil function

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

ceil x( )

ceil +0( )

ceil 0−( ) 0−

ceil NaN( )

ceil +∞( )

ceil ∞−( ) ∞−
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DESCRIPTION

The floor function rounds its argument downward. This is an ANSI standard C library 

function. The result is returned in a floating-point data type.

This function is the same as performing the following code sequence:

r = fegetround(); /* save current rounding direction */

fesetround(FE_DOWNWARD); /* round downward */

rint(x); /* round to integer */

fesetround(r); /* restore rounding direction */

EXCEPTIONS

When x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 9-4 shows the results when the argument to the floor function is a zero, a NaN, 

or an Infinity.

EXAMPLES

z = floor(+INFINITY); /* z = +INFINITY because +∞ is already an 
integer value by definition. */

z = floor(300.1); /* z = 300.0 */

z = floor(–300.1); /* z = –301.0 */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-4 Special cases for the floor function

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

floor x( )

floor +0( )

floor 0−( ) 0−

floor NaN( )

floor +∞( )

floor ∞−( ) ∞−
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nearbyint

You can use the nearbyint function to round a real number to the nearest integer in the 

current rounding direction.

double_t nearbyint (double_t x);

x Any floating-point number.

DESCRIPTION

The nearbyint function rounds its argument to the nearest integer in the current 

rounding direction. The available rounding directions are upward, downward, to 

nearest, and toward zero.

The nearbyint function provides the floating-point to integer conversion described in 

the IEEE Standard 854. It differs from rint (described on page 6-13) only in that it does 

not raise the inexact flag when the argument is not already an integer.

EXCEPTIONS

When x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 9-5 shows the results when the argument to the nearbyint function is a zero, a 

NaN, or an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-5 Special cases for the nearbyint function

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

nearbyint x( )

nearbyint +0( )

nearbyint 0−( ) 0−

nearbyint NaN( )

nearbyint +∞( )

nearbyint ∞−( ) ∞−
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EXAMPLES

z = nearbyint(+INFINITY); /* z = +INFINITY for all rounding 

directions. */

z = nearbyint(300.1); /* z = 301.0 if rounding direction is 

upward, else z = 300.0. */

z = nearbyint(–300.1); /* z = –301.0 if rounding direction is 

downward, else z = –300.0. */

round

You can use the round function to round a real number to the integer value obtained by 

adding 1/2 to the magnitude and truncating.

double_t round (double_t x);

x Any floating-point number.

DESCRIPTION

The round function adds 1/2 to the magnitude of its argument and chops to integer. The 

result is returned in a floating-point data type.

This function is not affected by the current rounding direction. Notice that the round 

function rounds halfway cases (1.5, 2.5, and so on) away from 0. With the default 

rounding direction, rint (described on page 6-13) rounds halfway cases to the even 

integer.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises the 

following exception:

■ inexact (if x is not an integer value)

SPECIAL CASES

Table 9-6 shows the results when the argument to the round function is a zero, a NaN, 

or an Infinity.

round x( )
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EXAMPLES

z = round(+INFINITY); /* z = +INFINITY because +∞ is already an 
integer value by definition. */

z = round(0.5); /* z = 1.0 because |0.5| + 0.5 = 1.0. The 

inexact exception is raised. */

z = round(–0.9); /* z = –1.0 because |–0.9| + 0.5 = 1.4. 

The inexact exception is raised. */

trunc

You can use the trunc function to truncate the fractional part of a real number so that 

just the integer part remains.

double_t trunc (double_t x);

x Any floating-point number.

DESCRIPTION

The trunc function chops off the fractional part of its argument. This is an ANSI 

standard C library function.

This function is the same as performing the code sequence:

r = fegetround(); /* save current rounding direction */

fesetround(FE_TOWARDZERO); /* round toward zero */

rint(x); /* round to integer */

fesetround(r); /* restore rounding direction */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-6 Special cases for the round function

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

round +0( )

round 0−( ) 0−

round NaN( )

round +∞( )

round ∞−( ) ∞−
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EXCEPTIONS

When x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 9-7 shows the results when the argument to the trunc function is a zero, a NaN, 

or an Infinity.

EXAMPLES

z = trunc(+INFINITY); /* z = +INFINITY because +∞ is already an 
integer value by definition. */

z = trunc(300.1); /* z = 300.0 */

z = trunc(–300.1); /* z = –300.0 */

Converting Integers to Floating-Point Formats

In the C programming language, conversions from integers stored in an integer format 

to floating-point formats are automatic when you assign an integer to a floating-point 

variable.

double d;

int x = 1;

d = x; /* value 1 automatically converted to double format */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-7 Special cases for the trunc function

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

trunc x( )

trunc +0( )

trunc 0−( ) 0−

trunc NaN( )

trunc + ∞( )

trunc ∞−( ) ∞−
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Converting Between Floating-Point Formats

In the C programming language, conversions between floating-point formats are 

automatic when you assign a floating-point number of one type to a variable of another 

type.

float f = 0.0f; /* single format */

double d = 1.1;

long double ld; /* double-double format */

f = d; /* double 1.1 converted to single format */

ld = f; /* single 1.1 converted to double-double format */

d = ld; /* double-double 1.1 converted to double format */

Converting Between Binary and Decimal Numbers

MathLib provides two functions that let you manually convert between binary and 

decimal formats. 

Conversions between binary floating-point numbers and decimal numbers use 

structures of type decimal. The decimal structure is defined in the header file fp.h as

struct decimal 

{

char sgn;

char unused;

short exp;

struct 

{

unsigned char length;

unsigned char text[SIGDIGLEN];

unsigned char unused;

} sig;

} decimal;

sgn The sign of the number (0 is positive, 1 is negative).

exp The exponent of the number. The exponent is expressed as a power of 10.

dec2num Converts a decimal number to a binary number.

num2dec Converts a binary number to a decimal number.
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sig The significand. String sig.text contains the significand as a decimal 
integer in the form of a string, that is, with the string length in the zeroth 
byte (sig.length) and the initial character of the string in the first byte 
(sig.text[0] to sig.text[SIGDIGLEN – 1]). 

The value represented is

For example, if sgn equals 1, exp equals −3, and sig equals “85” (string length 

sig.length equals 2, not shown), then the number represented is −0.085.

Note
The maximum length of the string sig is implementation dependent. 
The limit is 36 characters. Also, the representations of 0 and 1 in the 
16-bit word sgn are implementation dependent. ◆

Conversions from binary to decimal use a decimal format structure to specify how the 

number should look in decimal. The decform structure is defined in the header file 

fp.h as

struct decform 

{

char style; /* FLOATDECIMAL or FIXEDDECIMAL */

char unused;

short digits;

} decform;

style The style of output. This field equals 0 (FLOATDECIMAL) for floating and 
1 (FIXEDDECIMAL) for fixed. 

digits The number of significant digits for the floating style and the number of 
digits to the right of the decimal point for the fixed style. (The value of 
digits may be negative if the style is fixed.) 

Note
Formatting details, such as the representations of 0 and 1 in the 16-bit 
style word, are implementation dependent. ◆

If the style field of the decform structure equals 0 (in C, f.style == 
FLOATDECIMAL), the output is formatted in floating style, with the digits field 

specifying the number of significant digits required. Output in floating style is 

represented in the following format; Table 9-8 defines its components.

[– |    ]m[.nnn]e[+ | -]dddd

1−( ) sgn sig 10exp××
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If the style field of the decform structure equals 1 (in C, f.style == FIXEDDECIMAL), 

the output is formatted in fixed style, with the digits field specifying the number of digits 

to follow the decimal point. All output in fixed style is represented in the following format; 

Table 9-9 defines its components.

[-]mmm[.nnn]

Note that if sgn equals 0, then floating-style output begins with a space but fixed-style 

output does not.

Double-double values being converted to decimal strings are first rounded to 113 bits (if 

they in fact span more than that number of bits in their significands) and then converted 

to the decimal string of the desired length.

Table 9-8 Format of decimal output string in floating style

Component Description

Minus sign (–) or space Minus sign if sgn is 1; space if sgn is 0

m Single digit, 0 only if value represented is 0

Point (.) Present if digits > 1

nnn String of digits; present if digits > 1

e The letter e 

Plus sign (+) or minus sign (–) Plus sign if exp ≥ 0; minus sign if exp < 0.

dddd One to four exponent digits

Table 9-9 Format of decimal output string in fixed style

Component Description

Minus sign (–) Present if sgn = 1

mmm String of digits; at least one digit but no superfluous leading zeros

Point (.) Present if digits > 0

nnn String of digits of length equal to digits; present if digits > 0
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dec2num

You can use the dec2num function to convert a decimal number to a binary 

floating-point number.

float dec2f (const decimal *d);

double_t dec2num (const decimal *d);

long double dec2numl (const decimal *d);

short int dec2s (const decimal *d);

long int dec2l (const decimal *d);

d The decimal structure to be converted. See page 9-13 for the definition of 
decimal structure.

DESCRIPTION

The dec2num function converts a decimal number in a decimal structure to a double 

format floating-point number. Conversions from the decimal structure type handle any 

sig string of length 36 or less (with an implicit decimal point at the right end). 

There are three versions of this function that convert to a floating-point type: dec2f 

converts the decimal number to the float type, dec2num converts to the double type, 

and dec2numl converts to the long double type. The other two versions of this 

function, dec2s and dec2l, convert to the short and long integer types, respectively.

IMPORTANT

When you create a decimal structure, you must set sig.length to the 
size of the string you place in sig.text. You cannot leave the length 
field undefined. ▲

You can use the numeric formatter (str2dec) before using this function to convert a 

decimal string to a decimal structure suitable for input to the dec2num function.

EXCEPTIONS

When the sig string is longer than 36 characters, the result is undefined.

SPECIAL CASES

The following special cases apply:

■ If sig.text[0] is “0” (zero), the decimal structure is converted to zero. For 
example, a decimal structure with sig = “0913” is converted to zero.
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■ If sig.text[0] is “N”, the decimal structure is converted to a NaN. The 
succeeding characters of sig are interpreted as a hexadecimal representation of the 
result’s significand: if fewer than four characters follow the N, then they are right 
aligned in the high-order 15 bits of the field f illustrated in the section “Formats” in 
Chapter 2, “Floating-Point Data Formats”; if four or more characters follow the N, 
then they are left aligned in the result’s significand.

■ If sig.text[0] is “I”, the decimal structure is converted to an Infinity. 

EXAMPLES

decimal d;

double_t result;

d.sgn = 0;

d.exp = 3;

d.sig.length = 3;

d.sig.text[0] = '2';

d.sig.text[1] = '0';

d.sig.text[2] = '8';

result = dec2num(&d); /* result = 208,000 stored in double 

format */

num2dec

You can use the num2dec function to convert a binary floating-point number to a 

decimal number.

void num2dec (const decform *f, double_t x, decimal *d);

void num2decl (const decform *f, long double x, decimal *d);

f A decform structure that describes how the number should look in 
decimal. See page 9-14 for a description of the decform structure.

x The floating-point number to be converted.

d Upon return, a pointer to the decimal structure containing the number. 
See page 9-13 for a description of the decimal structure. 

DESCRIPTION

The num2dec function converts a floating-point number to a decimal number. The 

decimal number is contained in a decimal structure. Each conversion to a decimal 

structure d is controlled by a decform structure f. All implementations allow 36 digits 

to be returned in the sig field of the decimal structure. The implied decimal point is at 

the right end of sig, with exp set accordingly.
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After using the num2dec function, you can use the dec2str function to convert the 

decimal structure to a character string.

IMPORTANT

Use the same decimal format structure settings for dec2str as you 
used for num2dec; otherwise, the results are unspecified. ▲

EXCEPTIONS

When the number of digits specified in a decform structure exceeds an implementation 

maximum (which is 36), the result is undefined.

A number might be too large to represent in a chosen fixed style. For instance, if the 

implementation’s maximum length for sig is 36, then  (which requires 33 digits to 

the left of the point in fixed-style representations) is too large for a fixed-style 

representation specifying more than two digits to the right of the point. If a number is 

too large for a chosen fixed style, then (depending on the numeric implementation) one 

of two results is returned: an implementation might return the most significant digits of 

the number in sig and set exp so that the decimal structure contains a valid 

floating-style approximation of the number; alternatively, an implementation might 

simply set sig to the string “?”. Note that in any implementation, the following test 

determines whether a nonzero finite number is too large for the chosen fixed style.

decimal d;

decform f;

int too_big; /* Boolean */

too_big = (-d.exp != f.digits) || (d.sig.text[0] == "?");

For fixed-point formatting, PowerPC Numerics treats a negative value for digits as a 

specification for rounding to the left of the decimal; for example, digits = –2 means to 

round to hundreds. For floating-point formatting, a negative value for digits gives 

unspecified results.

SPECIAL CASES

■ For zeros, the character “0” is placed in sig.text[0].

■ For NaNs, The character “N” is placed in sig.text[0]. The character “N” might be 
followed by a hexadecimal representation of the input significand. The third and 
fourth hexadecimal digits following the “N” give the NaN code. For example, 
“N4021000000000000” has NaN code 0x21.

■ For Infinities, the character “I” is placed in sig.text[0].

In all three of these cases, exp is undefined.

1035
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EXAMPLES

decimal d;

decform f;

double_t fp_num = 1.000007;

f.style = FLOATDECIMAL; /* floating-point format */

f.digits = 7; /* seven significant digits */

num2dec(&f, fp_num, &d); /* d now contains 1.000007 expressed

in decimal structure */

Converting Between Decimal Formats

MathLib provides a scanner for converting from decimal strings to decimal structures 

and a formatter for converting from decimal structures to decimal strings.

dec2str

You can use the dec2str function to convert a number in a decimal structure to a 

decimal string.

void dec2str (const decform *f, const decimal *d, char *s);

f A decform structure that describes how the number should look in 
decimal. See page 9-14 for a description of the decform structure.

d The decimal structure to be converted. See page 9-13 for the definition of 
the decimal structure.

s On return, a string representing the number in decimal.

DESCRIPTION

The dec2str function is the PowerPC Numerics formatter. It takes a number from a 

decimal structure and converts it to a string. You can use the num2dec function to 

convert a binary floating-point number to a decimal structure appropriate for input to 

the dec2str function.

dec2str Converts decimal structures to decimal strings. The PowerPC Numerics 
formatter.

str2dec Converts decimal strings to decimal structures. The PowerPC Numerics 
scanner.
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IMPORTANT

Use the same decimal format structure settings for dec2str as you 
used for num2dec; otherwise, results are unspecified. ▲

The numeric formatter is controlled by a decform structure f. With floating style, 

numbers formatted using the same value for f.digits have aligning decimal points 

and e’s. To ensure that numbers have the same width also, pad the exponent-digits field 

with spaces to a width of 4. For example, if f.digits = 12, then pad 12 + 8 – length(s) 

spaces on the right of the result string s. The value 8 accounts for the sign, point, letter e, 

exponent sign, and four exponent digits. Note that this scheme gives the correct field 

width for NaNs and Infinities too.

With fixed style, numbers formatted using the same value for f.digits have aligning 

decimal points if enough leading spaces are added to the result string s to attain a fixed 

width, which must be no narrower than the widest s.

IMPORTANT

When you create a decimal structure, you must set sig.length to the 
size of the string you place in sig.text. You cannot leave the length 
field undefined. ▲

EXCEPTIONS

The formatter is always exact and signals no exceptions.

SPECIAL CASES

For fixed-point formatting, dec2str treats a negative value for digits as a 

specification for rounding to the left of the decimal; for example, digits = –2 means to 

round to hundreds. For floating-point formatting, a values for digits less than 1 are 

treated as 1.

NaNs are formatted as NAN; Infinities are formatted as INF. A leading sign or space is 

included according to the style convention.

The formatter never returns fewer significant digits than are contained in sig. However, 

if the decform structure calls for more significant digits than are contained in sig, then 

the formatter pads with zeros as needed.

If more than 80 characters are required to honor digits, then the formatter returns the 

string “?”.

EXAMPLES

Suppose you have an accounting program that computes exact values using binary 

numbers of pennies and prints outputs in dollars and cents. If you simply divide 

the number of pennies by 100 to get dollars, you incur errors because hundredths are not 

exact in binary. One way to print out exact values in dollars and cents is to convert the 

number of pennies to a decimal structure, perform the division by adjusting the 

exponent, and print the result, as shown in Listing 9-1.
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Listing 9-1 Accounting program

#include <fp.h>

decform df;

double pennies; /* This is the input value */

decimal dpennies; /* decimal value for pennies */

char * dollars; /* string to print as $$$.¢¢ */

{

df.style = FIXEDDECIMAL;

df.digits = 0; /* start with 0 digits after decimal point */

num2dec(&df, pennies, &dpennies); /* decimal pennies */

dpennies.exp = dpennies.exp – 2; /* divide by 100 */

df.digits = 2; /* request 2 digits after decimal point */

dec2str(&df, &dpennies, dollars);

/* dollar string to print */

}

str2dec

You can use the str2dec function to convert a decimal string to a decimal structure.

void str2dec (const char *s, short *ix, decimal *d, short *vp); 

s The character string containing the number to be converted.

ix On entry, the starting position in the string. On return, one greater than 
the position of the last character in the string that was parsed if the entire 
string was not converted successfully. 

d On return, a pointer to the decimal structure containing the decimal 
number. See page 9-13 for a description of the decimal structure. 

vp On return, a Boolean argument indicating the success of the function. If 
the entire string was parsed, vp is true. If part of the string was parsed, 
vp is false and ix indicates where the function stopped parsing.

DESCRIPTION

The str2dec function is the PowerPC Numerics scanner, which is designed for use both 

with fixed strings and with strings being received interactively character by character. 

The scanner parses the longest possible numeric substring; if no numeric substring is 

recognized, then the value of ix remains unchanged. 
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To convert floating-point strings embedded in text, parse to the beginning of a 

floating-point string ([+ | –] digit) and pass the current scan location as the index into the 

text. The conversion routine will return the value scanned and a new value of the index 

for continued parsing.

You might need to distinguish those numeric ASCII strings that represent values of an 

integer format. You can do this by scanning the source, looking for integer syntax. You 

can handle integers yourself and send to the numeric scanner any strings with 

floating-point syntax (that is, containing a period (.), an E, or an e). You might also want 

to pass along to the scanner any strings that cause integer overflow.

EXCEPTIONS

The scanner signals no exceptions. It faithfully converts all values within range that are 

representable in the decimal structure format.

SPECIAL CASES

To convert a zero, NaN, or Infinity, use one of the following as input:

EXAMPLES

Listing 9-2 shows an example of how to scan decimal strings input into an application 

and then convert the strings to binary floating-point numbers using MathLib functions. 

Table 9-10 shows some sample inputs to the loop shown in Listing 9-2 and the results 

after each string has been converted to a decimal structure using str2dec. 

Listing 9-2 Scanning algorithm

s = ""; /* initialize string */

/* loop until string is not a valid prefix*/

do

  {

/* code to get next character and append to string goes here */

/* scan string */

  ix = 0;

  str2dec(s, &ix, &d, &vp);

  }

while (vp = false);

/* convert from decimal to numeric-format result */

result = dec2num(d);

–0 +0 0 –INF Inf NAN –NaN() nan
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Table 9-10 Examples of conversions to decimal structures

Input string

Index

Output value Valid prefixIn Out

12 0 2 12 True

12E 0 2 12 True

12E– 0 2 12 True

12E–3 0 5 12E–3 True

12E–X 0 2 12 False

12E–3X 0 5 12E–3 False

x12E–3 1 6 12E–3 True

IN 0 0 NAN True

INF 0 3 INF True
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Conversions Summary

This section summarizes the C constants, macros, functions, and type definitions 

associated with converting floating-point values. 

C Summary

Constants

#define      SIGDIGLEN      36            /* significant decimal digits */

#define      DECSTROUTLEN   80            /* max length for dec2str output */

#define      FLOATDECIMAL   ((char)(0))

#define      FIXEDDECIMAL   ((char)(1))

Data Types

struct decimal 

{

char sgn; /* sign 0 for +, 1 for – */

char unused;

short exp; /* decimal exponent */

struct

{

unsigned char length;

unsigned char text[SIGDIGLEN]; /* significant digits */

unsigned char unused;

} sig;

};

typedef struct decimal decimal;

struct decform 

{

char style; /* FLOATDECIMAL or FIXEDDECIMAL */

char unused;

short digits;

};

typedef struct decform decform;
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Conversion Routines

Converting Floating-Point Formats to Integer Formats

long int rinttol (double_t x);

long int roundtol (double_t x);

Rounding Floating-Point Numbers to Integers

double_t ceil (double_t x);

double_t floor (double_t x); 

double_t nearbyint (double_t x);

double_t round (double_t x);

double_t trunc (double_t x);

Converting Decimal Numbers to Binary Numbers

float dec2f (const decimal *d);

double_t dec2num (const decimal *d);

long double dec2numl (const decimal *d);

short int dec2s (const decimal *d);

long int dec2l (const decimal *d);

Converting Binary Numbers to Decimal Numbers

void num2dec (const decform *f, double_t x, decimal *d);

void num2decl (const decform *f, long double x, decimal *d);

Converting Between Decimal Formats

void dec2str (const decform *f, const decimal *d, char *s);

void str2dec (const char *s, short *ix, decimal *d, 
short *vp); 
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Transcendental Functions

This chapter describes how to use the transcendental and auxiliary functions declared in 

MathLib. This chapter describes the following types of functions:

■ comparison 

■ sign manipulation

■ exponential 

■ logarithmic

■ trigonometric

■ hyperbolic

■ financialv

■ error and gamma

It shows the declarations of these functions, describes what they do, describes 

when they raise floating-point exceptions, and gives examples of how to use them. 

For functions that manipulate the floating-point environment, see Chapter 8, 

“Environmental Control Functions.” For functions that perform conversions, see 

Chapter 9, “Conversion Functions.” For basic arithmetic and comparison operations, 

see Chapter 6, “Numeric Operations and Functions.”

Some transcendental functions have two implementations: double precision and 

double-double precision. The double-double-precision implementation has the letter l 

appended to the name of the function and performs exactly the same as the double 

version. This book uses the double-precision implementation’s name to mean both of 

these implementations. All of the transcendental function declarations appear in the 

file fp.h.

Comparison Functions

MathLib provides four functions that perform comparisons between two floating-point 

arguments:

These functions take advantage of the rule from the IEEE standard that every value 

besides NaNs have an order:

< all negative real numbers <  = +0 < all positive real numbers < +∞

These functions also make special cases of NaNs so that they raise no floating-point 

exceptions.

Returns the positive difference x – y or 0.

Returns the maximum of x or y.

Returns the minimum of x or y.

Returns the relationship between x and y.

fdim x y,( )
fmax x y,( )
fmin x y,( )
relation x y,( )

∞− 0−
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fdim

You can use the fdim function to determine the positive difference between two real 

numbers.

double_t fdim (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The fdim function returns the positive difference between its two arguments.

if x > y 

if x ≤ y 

EXCEPTIONS

When x and y are finite and nonzero and x > y, either the result of  is exact or 

it raises one of the following exceptions:

■ inexact (if the result of x – y must be rounded)

■ overflow (if the result of x – y is outside the range of the data type)

■ underflow (if the result of x – y is inexact and must be represented as a denormalized 
number or 0)

SPECIAL CASES

Table 10-1 shows the results when one of the arguments to the fdim function is a zero, a 

NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

Table 10-1 Special cases for the fdim function 

Operation Result Exceptions raised

+0 None

x None

+0 None

x None

NaN* None†

NaN None†

fdim x y,( ) x y−=
fdim x y,( ) +0=

fdim x y,( )

fdim +0 y,( )

fdim x +0,( )

fdim 0− y,( )

fdim x 0−,( )

fdim NaN y,( )

fdim x NaN,( )
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EXAMPLES

z = fdim(+INFINITY, 300); /* z = +∞ – 300 = +INFINITY because 
+∞ > 300 */

z = fdim(300, +INFINITY); /* z = +0 because 300 ≤ +∞ */

fmax

You can use the fmax function to find out which is the larger of two real numbers.

double_t fmax (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The fmax function determines the larger of its two arguments.

if x ≥ y

if x < y 

If one of the arguments is a NaN, the other argument is returned.

EXCEPTIONS

When x and y are finite and nonzero, the result of is exact.

* If both arguments are NaN, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

+0 None

+0 None

+∞ None

Table 10-1 Special cases for the fdim function (continued)

Operation Result Exceptions raised

fdim + ∞ y,( )

fdim x +∞,( )

fdim ∞− y,( )

fdim x ∞−,( )

fmax x y,( ) x=
fmax x y,( ) y=

fmax x y,( )
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SPECIAL CASES

Table 10-2 shows the results when one of the arguments to the fmax function is a zero, a 

NaN, or an Infinity. In this table, x is a finite, nonzero floating-point number. (Note that 

the order of operands for this function does not matter.)

EXAMPLES

z = fmax(–INFINITY, –300,000); /* z = –300,000 because any 

integer is greater than –∞ */
z = fmax(NAN, –300,000); /* z = –300,000 by definition of the

function fmax. */

fmin

You can use the fmin function to determine which is the smaller of two real numbers.

double_t fmin (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

* If both arguments are NaNs, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-2 Special cases for the fmax function

Operation Result Exceptions raised

x if x > 0 None

+0 if x < 
0

x if x > 0 None

–0 if x < 0

+0 None

x* None†

+∞ None

x None

fmax +0 x,( )

fmax 0− x,( )

fmax 0± 0±,( )

fmax NaN x,( )

fmax +∞ x,( )

fmax ∞− x,( )
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DESCRIPTION

The fmin function determines the lesser of its two arguments.

if x ≤ y

if y < x 

If one of the arguments is a NaN, the other argument is returned.

EXCEPTIONS

When x and y are finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 10-3 shows the results when one of the arguments to the fmin function is a zero, a 

NaN, or an Infinity. In this table, x is a finite, nonzero floating-point number. (Note that 

the order of operands for this function does not matter.)

EXAMPLES

z = fmin(–INFINITY, –300,000); /* z = –INFINITY because –∞ is 
smaller than any integer. */

z = fmin(NAN, –300,000); /* z = –300,000 by definition of the 

function fmin. */

* If both arguments are NaNs, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-3 Special cases for the fmin function

Operation Result Exceptions raised

x if x < 0 None

+0 if x > 0

x if x < 0 None

+0 if x > 0

+0 None

x* None†

x None

None

fmin x y,( ) x=
fmin x y,( ) y=

fmin x y,( )

fmin +0 x,( )

fmin 0− x,( )

fmin 0± 0±,( )

fmin NaN x,( )

fmin +∞ x,( )

fmin ∞− x,( ) ∞−
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relation

You can use the relation function to determine the relationship (less than, greater 

than, equal, or unordered) between two real numbers.

relop relation (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The relation function returns the relationship between its two arguments.

The relation function is type relop, which is an enumerated type. This function 

returns one of the following values:

if x > y GREATERTHAN 

if x < y LESSTHAN 

if x = y EQUALTO 

if x or y is a NaN
UNORDERED 

Programs can use the result of this function in expressions to test for combinations not 

supported by the comparison operators, such as “less than or unordered.”

EXCEPTIONS

When x and y are finite and nonzero, the result of is exact.

SPECIAL CASES

Table 10-4 shows the results when one of the arguments to the relation function is a 

zero, a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point 

numbers.

Table 10-4 Special cases for the relation function 

Operation Result Exceptions raised

< if y > 0 None

> if y < 0 None

> if x > 0 None

< if x < 0 None

relation x y,( )

relation +0 y,( )

relation x +0,( )
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EXAMPLES

r = relation(x, y);

if ((r == LESSTHAN) || (r == UNORDERED))

printf("No, y is not greater than x.\n");

Sign Manipulation Functions

MathLib provides two functions that manipulate the sign bit of the floating-point value:

Because these functions only manipulate the sign bit of the value and do not try to 

compute the value at all, they raise no floating-point exceptions.

* If the NaN is a signaling NaN, the invalid exception is raised.

< if y > 0 None

> if y < 0 None

> if x > 0 None

< if x < 0 None

= None

Unordered None*

Unordered None*

> None

< None

= None

< None

> None

= None

Copies the sign of y to x.

Returns the absolute value (positive form) of x.

Table 10-4 Special cases for the relation function (continued)

Operation Result Exceptions raised

relation 0− y,( )

relation x 0−,( )

relation +0 0−,( )

relation NaN y,( )

relation x NaN,( )

relation +∞ y,( )

relation x +∞,( )

relation +∞ +∞,( )

relation ∞− y,( )

relation x ∞−,( )

relation ∞− ∞−,( )

copysign x y,( )
fabs x( )
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copysign

You can use the copysign function to assign to some real number the sign of a second 

value.

double_t copysign (double_t x, double_t y);

long double copysignl (long double x, long double y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The copysign function copies the sign of the y parameter into the x parameter and 

returns the resulting number. 

copysign(x, 1.0) is always the absolute value of x. The copysign function simply 

manipulates sign bits and hence raises no exception flags.

EXCEPTIONS

When x and y are finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 10-5 shows the results when one of the arguments to the copysign function is a 

zero, a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point 

numbers.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-5 Special cases for the copysign function

Operation Result Exceptions raised

0 with sign of y None

|x| None

0 with sign of y None

–|x| None

NaN with sign of y None*

x with sign of NaN None*

∞ with sign of y None

|x| None

∞ with sign of y None

–|x| None

copysign x y,( )

copysign +0 y,( )

copysign x +0,( )

copysign 0− y,( )

copysign x 0−,( )

copysign NaN y,( )

copysign x NaN,( )

copysign +∞ y,( )

copysign x +∞,( )

copysign ∞− y,( )

copysign x ∞−,( )
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EXAMPLES

z = copysign(–1234.567, 1.0);/* z = 1234.567 */

z = copysign(1.0, –1234.567);/* z = –1.0 */

fabs

You can use the fabs function to determine the absolute value of a real number. 

double_t fabs (double_t x);

long double fabsl (long double x);

x Any floating-point number.

DESCRIPTION

The fabs function returns the absolute value (positive value) of its argument.

This function looks only at the sign bit, not the value, of its argument.

EXCEPTIONS

When x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 10-6 shows the results when the argument to the fabs function is a zero, a NaN, or 

an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-6 Special cases for the fabs function

Operation Result Exceptions raised

+0 None

+0 None

NaN None*

+∞ None

+∞ None

fabs x( ) x=

fabs x( )

fabs +0( )

fabs 0−( )

fabs NaN( )

fabs +∞( )

fabs ∞−( )
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EXAMPLES

z = fabs(–1.0); /* z = 1 */

z = fabs(245.0); /* z = 245 */

Exponential Functions

MathLib provides six exponential functions:

exp

You can use the exp function to raise e to some power.

double_t exp (double_t x);

x Any floating-point number.

DESCRIPTION

The exp function performs the exponential function on its argument. 

The log function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise the following exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

The base e or natural exponential .

The base 2 exponential .

The base e exponential minus 1. 

Returns  (equivalent to scalb).

Returns . 

Returns .

exp x( ) e
x

exp2 x( ) 2
x

expm1 x( )
ldexp x n,( ) x 2

n×
pow x y,( ) x

y

scalb x n,( ) x 2
n×

exp x( ) e
x=

ln e
x( )

exp x( )
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SPECIAL CASES

Table 10-7 shows the results when the argument to the exp function is a zero, a NaN, or 

an Infinity.

EXAMPLES

z = exp(0.0); /* z = e0 = 1. */

z = exp(1.0); /* z = e1 ≈ 2.71828128 . . . The inexact exception is 
raised. ∗/

exp2

You can use the exp2 function to raise 2 to some power. 

double_t exp2 (double_t x);

x Any floating-point number.

DESCRIPTION

The exp2 function returns the base 2 exponential of its argument.

The log2 function performs the inverse operation .

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-7 Special cases for the exp function

Operation Result Exceptions raised

+1 None

+1 None

NaN None*

+∞ None

+0 None

exp +0( )

exp 0−( )

exp NaN( )

exp +∞( )

exp ∞−( )

exp2 x( ) 2x=

log
2 

2x( )
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EXCEPTIONS

When x is finite and nonzero, the result of  might raise the following exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-8 shows the results when the argument to the exp2 function is a zero, a NaN, or 

an Infinity.

EXAMPLES

z = exp2(2.0); /* z = 22 = 4. The inexact exception is raised. */

z = exp2(1.5); /* z = 21.5 ≈ 2.82843. The inexact exception is 
raised. */

expm1

You can use the expm1 function to raise e to some power and subtract 1.

double_t expm1 (double_t x);

x Any floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-8 Special cases for the exp2 function

Operation Result Exceptions raised

+1 None

+1 None

NaN None*

+∞ None

+0 None

exp2 x( )

exp2 +0( )

exp2 0−( )

exp2 NaN( )

exp2 +∞( )

exp2 ∞−( )
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DESCRIPTION

The expm1 function returns the natural exponential decreased by 1. 

For small numbers, use the function call expm1(x) instead of the expression

exp(x) – 1

The call expm1(x) produces a more exact result because it avoids the roundoff error 

that might occur when the expression is computed. 

EXCEPTIONS

When x is finite and nonzero, the result of  might raise the following 

exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-9 shows the results when the argument to the expm1 function is a zero, a NaN, 

or an Infinity.

EXAMPLES

z = expm1(–2.1); /* z = e–2.1 – 1 = –0.877544. The inexact

exception is raised. */

z = expm1(6); /* z = e6 – 1 = 402.429. The inexact 

exception is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-9 Special cases for the expm1 function

Operation Result Exceptions raised

+0 None

–0 None

NaN None*

+∞ None

–1 None

expm1 x( ) e
x

1−=

expm1 x( )

expm1 +0( )

expm1 0−( )

expm1 NaN( )

expm1 +∞( )

expm1 ∞−( )
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ldexp

You can use the ldexp function to perform efficient scaling by a power of 2.

double_t ldexp (double_t x, int n);

x Any floating-point number.

n An integer representing a power of 2 by which x should be multiplied.

DESCRIPTION

The ldexp function computes the value  without computing . This is an ANSI 

standard C library function.

The scalb function (described on page 10-19) performs the same operation as this 

function. The frexp function performs the inverse operation; that is, it splits x into its 

fraction field and exponent field.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of 

the following exceptions:

■ inexact (if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-10 shows the results when the floating-point argument to the ldexp function is 

a zero, a NaN, or an Infinity. In this table, n is any integer.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-10 Special cases for the ldexp function 

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

x 2n× 2n

ldexp x n,( ) x 2n×=

ldexp x n,( )

ldexp +0 n,( )

ldexp 0− n,( ) 0−

ldexp NaN n,( )

ldexp +∞ n,( )

ldexp ∞− n,( ) ∞−
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EXAMPLES

z = ldexp(3.0, 3); /* z = 3 × 23 = 24 */
z = ldexp(0.0, 3); /* z = 0 × 23 = 0 */

pow

You can use the pow function to raise a real number to the power of some other real 

number.

double_t pow (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The pow function computes x to the y power. This is an ANSI standard C library 

function.

Use the function call pow(x,y) instead of the expression

exp(y * log(x))

The call pow(x,y) produces a more exact result. 

There are some differences between this implementation and the behavior of the pow 

function in a SANE implementation. For example, in SANE pow(NAN,0) returns a NaN, 

whereas in PowerPC Numerics, pow(NAN,0) returns a 1.

EXCEPTIONS

When x and y are finite and nonzero, either the result of  is exact or it raises 

one of the following exceptions:

■ inexact (if y is not an integer or an underflow or overflow occurs)

■ invalid (if x is negative and y is not an integer)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-11 shows the results when one of the arguments to the pow function is a zero, a 

NaN, or an Infinity, plus other special cases for the pow function. In this table, x and y are 

finite, nonzero floating-point numbers.

pow x y,( ) x
y=

pow x y,( )
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* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-11 Special cases for the pow function 

Operation Result Exceptions raised

for x < 0 NaN if y is not integer Invalid

if y is integer None

±0 if y is odd integer > 0 None

+0 if y > 0 but not odd integer None

±∞ if y is odd integer < 0 Divide-by-zero

+∞ if y < 0 but not odd integer Divide-by-zero

+1 None

±0 if y is odd integer > 0 None

+0 if y > 0 but not odd integer None

±∞ if y is odd integer < 0 Divide-by-zero

+∞ if y < 0 but not odd integer Divide-by-zero

+1 None

NaN if y ≠ 0 None*

+1 if y = 0 None*

NaN None*

+∞ if y > 0 None

+0 if y < 0 None

+1 if y = 0 None

+∞ if |x| > 1 None

+0 if |x| < 1 None

NaN if |x| = 1 Invalid

if y is odd integer > 0 None

+∞ if y > 0 but not odd integer None

if y is odd integer < 0 None

+0 if y < 0 but not odd integer None

+1 if y = 0 None

+0 if |x| > 1 None

+∞ if |x| < 1 None

NaN if |x| = 1 Invalid

pow x y,( )

x
y

pow +0 y,( )

pow x +0,( )

pow 0− y,( )

pow x 0−,( )

pow NaN y,( )

pow x NaN,( )

pow +∞ y,( )

pow x +∞,( )

pow ∞− y,( ) ∞−

0−

pow x ∞−,( )
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EXAMPLES

z = pow(NAN, 0); /* z = 1 */

scalb

You can use the scalb function to perform efficient scaling by a power of 2.

double_t scalb (double_t x, long int n);

x Any floating-point number.

n An integer representing a power of 2 by which x should be multiplied.

DESCRIPTION

The scalb function performs efficient scaling of its floating-point argument by a power 

of 2.

Using the scalb function is more efficient than performing the actual arithmetic.

This function performs the same operation as the ldexp transcendental function 

described on page 10-16.

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of 

the following exceptions:

■ inexact (if the result causes an overflow or underflow exception)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-12 shows the results when the floating-point argument to the scalb function is 

a zero, a NaN, or an Infinity. In this table, n is any integer.

scalb x n,( ) x 2n×=

scalb x n,( )
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EXAMPLES

z = scalb(1, 3); /* z = 1 × 23 = 8 */

Logarithmic Functions 

MathLib provides seven logarithmic functions:

frexp

You can use the frexp function to find out the values of a floating-point number’s 

fraction field and exponent field.

double_t frexp (double_t x, int *exponent);

x Any floating-point number.

exponent A pointer to an integer in which the value of the exponent can be 
returned.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-12 Special cases for the scalb function

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

Splits x into fraction and exponent fields.

Base e or natural logarithm. 

Base 10 logarithm.

Computes .

Base 2 logarithm. 

Returns exponent part of x.

Splits x into an integer and a fraction.

scalb +0 n,( )

scalb 0− n,( ) 0−

scalb NaN n,( )

scalb +∞ n,( )

scalb ∞− n,( ) ∞−

frexp x exp,( )
x( )log

10 x( )log

1p x( )log 1 x+( )log

2 x( )log

b x( )log

modf x iptr,( )
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DESCRIPTION

The frexp function splits its first argument into a fraction part and a base 2 exponent 

part. This is an ANSI standard C library function.

such that  

or

such that  and 

The return value of frexp is the value of the fraction field of the argument x. The 

exponent field of x is stored in the address pointed to by the exponent argument.

For finite nonzero inputs, frexp returns either 0.0 or a value whose magnitude is 

between 0.5 and 1.0. 

The ldexp and scalb functions perform the inverse operation (compute ).

EXCEPTIONS

If x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 10-13 shows the results when the input argument to the frexp function is a zero, a 

NaN, or an Infinity.

EXAMPLES

z = frexp(2E300, n); /* z ≈ 0.746611 and n = 998. In other
words, 2 × 10300 ≈ 0.746611 × 2998. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-13 Special cases for the frexp function

Operation Result Exceptions raised

+0 (n = 0) None

 (n = 0) None

NaN (n is undefined) None*

+∞ (n is undefined) None

 (n is undefined) None

frexp x n,( ) f= x f 2
n×=

frexp x n,( ) f= n 1 b x( )log+( )= f scalb x n−,( )=

f 2
n×

frexp x n,( )

frexp +0 n,( )

frexp 0− n,( ) 0−

frexp NaN n,( )

frexp +∞ n,( )

frexp ∞− n,( ) ∞−
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log

You can use the log function to compute the natural logarithm of a real number.

double_t log (double_t x);

x Any positive floating-point number.

DESCRIPTION

The log function returns the natural (base e) logarithm of its argument. 

 such that 

The exp function performs the inverse (exponential) operation.

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x other than +1)

■ invalid (if x is negative)

SPECIAL CASES

Table 10-14 shows the results when the argument to the log function is a zero, a NaN, or 

an Infinity, plus other special cases for the log function.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-14 Special cases for the log function

Operation Result Exceptions raised

for x < 0 NaN Invalid

+0 None

Divide-by-zero

Divide-by-zero

NaN None*

+∞ None

NaN Invalid

x( )log log
e 

x ln x y= = = x e
y=

x( )log

x( )log

+1( )log

+0( )log ∞−

0−( )log ∞−

NaN( )log

+ ∞( )log

∞−( )log
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EXAMPLES

z = log(+1.0); /* z = +0.0 because e0 = 1 */

z = log(–1.0); /* z = NAN because negative arguments are not 

allowed. The invalid exception is raised. */

log10

You can use the log10 function to compute the common logarithm of a real number.

double_t log10 (double_t x);

x Any positive floating-point number.

DESCRIPTION

The log10 function returns the common (base 10) logarithm of its argument. 

 such that 

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x other than +1)

■ invalid (when x is negative)

SPECIAL CASES

Table 10-15 shows the results when the argument to the log10 function is a zero, a NaN, 

or an Infinity, plus other special cases for the log10 function.

10 x( )log log
10 

x y= = x 10y=

10 x( )log
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EXAMPLES

z = log10(+1.0); /* z = 0.0 because 100 = 1 */

z = log10(10.0); /* z = 1.0 because 101 = 10. The inexact 

exception is raised. */

z = log10(–1.0); /* z = NAN because negative arguments are not 

allowed. The invalid exception is raised. */

log1p

You can use the log1p function to compute the natural logarithm of 1 plus a real 

number.

double_t log1p (double_t x);

x Any floating-point number greater than –1.

DESCRIPTION

The log1p function computes the natural logarithm of 1 plus its argument. 

 such that 

For small numbers, use the function call log1p(x) instead of the function call 

log(1 + x). The call log1p(x) produces a more exact result because it avoids the 

roundoff error that might occur when the expression 1 + x is computed. 

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-15 Special cases for the log10 function 

Operation Result Exceptions raised

 for x < 0 NaN Invalid

+0 None

–∞ Divide-by-zero

–∞ Divide-by-zero

NaN None*

+∞ None

NaN Invalid

10 x( )log

10 +1( )log

10 +0( )log

10 0−( )log

10 NaN( )log

10 +∞( )log

10 ∞−( )log

1p x( )log log
e  

x 1+( ) ln x 1+( ) y= = = 1 x+ 10y=



C H A P T E R  1 0

Transcendental Functions

Logarithmic Functions 10-25

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x > –1)

■ invalid (when x is less than –1)

■ divide-by-zero (when x is –1)

SPECIAL CASES

Table 10-16 shows the results when the argument to the log1p function is a zero, a NaN, 

or an Infinity, plus other special cases for the log1p function.

EXAMPLES

z = log1p(–1.0); /* z = log(0) = –INFINITY. The divide-by-zero 

and inexact exceptions are raised. */

z = log1p(0.0); /* z = log(1) = 0.0 because e0 = 1. */

z = log1p(–2.0); /* z = log(–1) = NAN because logarithms of 

negative numbers are not allowed. The 

invalid exception is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-16 Special cases for the log1p function

Operation Result Exceptions raised

for x < –1 NaN Invalid

–∞ Divide-by-zero

+0 None

–0 None

NaN None*

+∞ None

NaN Invalid

1p x( )log

1p x( )log

1p 1−( )log

1p +0( )log

1p 0−( )log

1p NaN( )log

1p +∞( )log

1p ∞−( )log
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log2

You can use the log2 function to compute the binary logarithm of a real number.

double_t log2 (double_t x);

x Any positive floating-point number.

DESCRIPTION

The log2 function returns the binary (base 2) logarithm of its argument. 

 such that 

The exp2 function performs the inverse operation.

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x other than +1)

■ invalid (when x is negative)

SPECIAL CASES

Table 10-17 shows the results when the argument to the log2 function is a zero, a NaN, 

or an Infinity, plus other special cases for the log2 function.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-17 Special cases for the log2 function 

Operation Result Exceptions raised

 for x < 0 NaN Invalid

+0 None

Divide-by-zero

Divide-by-zero

NaN None*

+∞ None

NaN Invalid

2 x( )log log
2 

x y= = x 2y=

2 x( )log

2 x( )log

2 +1( )log

2 +0( )log ∞−

2 0−( )log ∞−

2 NaN( )log

2 +∞( )log

2 ∞−( )log
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EXAMPLES

z = log2(+1.0); /* z = +0 because 20 = 1 */

z = log2(2.0); /* z = 1 because 21 = 2. The inexact exception 

is raised. */

z = log2(–1.0); /* z = NAN because negative arguments are not 

allowed. The invalid exception is raised.*/

logb

You can use the logb function to determine the value in the exponent field of a 

floating-point number.

double_t logb (double_t x);

x Any floating-point number.

DESCRIPTION

The logb function returns the signed exponent of its argument x as a signed integer 

value.

 such that  

When the argument is a denormalized number, the exponent is determined as if the 

input argument had first been normalized. 

Note that for a nonzero finite x, .

That is, for a nonzero finite x, the magnitude of x taken to the power of its inverse 

exponent is between 1 and 2.

This function conforms to IEEE Standard 854, which differs from IEEE Standard 754 on 

the treatment of a denormalized argument x. 

EXCEPTIONS

If x is finite and nonzero, the result of  is exact.

b x( )log y= x f 2y×=

1 fabs scalb x b x( )log−,( )( ) 2<≤

b x( )log
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SPECIAL CASES

Table 10-18 shows the results when the argument to the logb function is a zero, a NaN, 

or an Infinity.

EXAMPLES

z = logb(789.9); /* z = 9.0 because 789.9 ≈ 1.54 × 29 */
z = logb(21456789);/* z = 24.0 because 21456789 ≈ 1.28 × 224 */

modf

You can use the modf function to split a real number into a fractional part and an integer 

part.

float modff (float x, float *iptrf);

double modf (double x, double *iptr);

x Any floating-point number.

iptr A pointer to a floating-point variable in which the integer part can be 
stored upon return.

DESCRIPTION

The modf function splits its first argument into a fractional part and an integer part. This 

is an ANSI standard C function.

 such that |f| < 1.0 and 

The fractional part is returned as the value of the function, and the integer part is stored 

as a floating-point number in the area pointed to by iptr. The fractional part and the 

integer part both have the same sign as the argument x.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-18 Special cases for the logb function

Operation Result Exceptions raised

–∞ Divide-by-zero

–∞ Divide-by-zero

NaN None*

+∞ None

+∞ None

b +0( )log

b 0−( )log

b NaN( )log

b +∞( )log

b ∞−( )log

modf x n,( ) f= f n+ x=
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EXCEPTIONS

If x is finite and nonzero, the result of  is exact.

SPECIAL CASES

Table 10-19 shows the results when the floating-point argument to the modf function is a 

zero, a NaN, or an Infinity.

EXAMPLES

z = modf(1.0, n); /* z = 0.0 and n = 1.0 */

z = modf(+INFINITY, n); /* z = 0.0 and n = +INFINITY because the 

value +∞ is an integer. */

Trigonometric Functions

MathLib provides the following trigonometric functions:

The remaining trigonometric functions can be computed easily and efficiently from the 

transcendental functions provided.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-19 Special cases for the modf function

Operation Result Exceptions raised

+0 (n = 0) None

 (n = 0) None

NaN (n = NaN) None*

+0 (n = +∞) None

 (n = ) None

 Computes the cosine of x.

Computes the sine of x.

Computes the tangent of x. 

Computes the arc cosine of x.

Computes the arc sine of x.

Computes the arc tangent of x.

Computes the arc tangent of y/x.

modf x n,( )

modf +0 n,( )

modf 0− n,( ) 0−

modf NaN n,( )

modf +∞ n,( )

modf ∞− n,( ) 0− ∞−

x( )cos

x( )sin

x( )tan

x( )acos

x( )asin

x( )atan

atan2 y x,( )
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The arguments for trigonometric functions (cos, sin, and tan) and return values for 

inverse trigonometric functions (acos, asin, atan, and atan2) are expressed in 

radians. The cosine, sine, and tangent functions use an argument reduction based on the 

remainder function (see Chapter 6, “Numeric Operations and Functions”) and the 

constant pi, where pi is the nearest approximation of π with 53 bits of precision. The 

cosine, sine, and tangent functions are periodic with respect to the constant pi, so their 

periods are different from their mathematical counterparts and diverge from their 

counterparts when their arguments become very large. 

cos

You can use the cos function to compute the cosine of a real number.

double_t cos (double_t x);

x Any finite floating-point number.

DESCRIPTION

The cos function returns the cosine of its argument. The argument is the measure of 

an angle expressed in radians. This function is symmetric with respect to the y-axis 

(cos x = cos –x). 

The acos function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero,  raises the inexact exception.

SPECIAL CASES

Table 10-20 shows the results when the argument to the cos function is a zero, a NaN, or 

an Infinity, plus other special cases for the cos function.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-20 Special cases for the cos function

Operation Result Exceptions raised

–1 Inexact

1 None

1 None

NaN None*

NaN Invalid

NaN Invalid

arccos y( )( )

x( )cos

π( )cos

+0( )cos

0−( )cos

NaN( )cos

+∞( )cos

∞−( )cos
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EXAMPLES

z = cos(0); /* z = 1.0. */

z = cos(pi/2); /* z = –0.0. The inexact exception is raised. */

z = cos(pi); /* z = –1.0. The inexact exception is raised. */

z = cos(–pi/2);/* z = 0.0. The inexact exception is raised. */

z = cos(–pi); /* z = –1.0. The inexact exception is raised. */

sin

You can use the sin function to compute the sine of a real number.

double_t sin (double_t x);

x Any finite floating-point number.

DESCRIPTION

The sin function returns the sine of its argument. The argument is the measure of an 

angle expressed in radians. This function is antisymmetric with respect to the y-axis 

(sin x ≠ sin –x). 

The asin function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-21 shows the results when the argument to the sin function is a zero, a NaN, or 

an Infinity, plus other special cases for the sin function.

arcsin y( )( )

x( )sin
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EXAMPLES

z = sin(pi/2); /* z = 1. The inexact exception is raised. */

z = sin(pi); /* z = 0. The inexact exception is raised. */

z = sin(–pi/2); /* z = –1. The inexact exception is raised. */

z = sin(–pi); /* z = 0. The inexact exception is raised. */

tan

You can use the tan function to compute the tangent of a real number.

double_t tan (double_t x);

x Any finite floating-point number.

DESCRIPTION

The tan function returns the tangent of its argument. The argument is the measure of an 

angle expressed in radians. This function is antisymmetric. 

The atan function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-21 Special cases for the sin function

Operation Result Exceptions raised

0 Inexact

+0 None

–0 None

NaN None*

NaN Invalid

NaN Invalid

π( )sin

+0( )sin

0−( )sin

NaN( )sin

+∞( )sin

∞−( )sin

arctan y( )( )

x( )tan
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SPECIAL CASES

Table 10-22 shows the results when the argument to the tan function is a zero, a NaN, or 

an Infinity, plus other special cases for the tan function.

EXAMPLES

z = tan(pi); /* z = 0. The inexact exception is raised. */

z = tan(pi/2); /* z = +INFINITY. The inexact exception is 

raised. */

z = tan(pi/4); /* z = 1. The inexact exception is raised. */

acos

You can use the acos function to compute the arc cosine of a real number between –1 

and +1.

double_t acos (double_t x);

x Any floating-point number in the range –1 ≤ x ≤ 1.

DESCRIPTION

The acos function returns the arc cosine of its argument x. The return value is expressed 

in radians in the range [0, π].

such that  for –1 ≤ x ≤ 1

The cos function performs the inverse operation .

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-22 Special cases for the tan function

Operation Result Exceptions raised

0 Inexact

+∞ Inexact

+0 None

None

NaN None*

NaN Invalid

NaN Invalid

π( )tan

π 2⁄( )tan

+0( )tan

0−( )tan 0−

NaN( )tan

+∞( )tan

∞−( )tan

x( )acos arccos x( ) y= = y( )cos x=

y( )cos( )
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EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x other than 1) 

■ invalid (if |x|>1)

SPECIAL CASES

Table 10-23 shows the results when the argument to the acos function is a zero, a NaN, 

or an Infinity, plus other special cases for the acos function.

EXAMPLES

z = acos(1.0); /* z = arccos (1) = 0.0 */

z = acos(–1.0); /* z = arccos (–1) = π. The inexact exception is 
raised. */

asin

You can use the asin function to compute the arc sine of a real number between –1 

and 1.

double_t asin (double_t x);

x Any floating-point number in the range –1 ≤ x ≤ 1.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-23 Special cases for the acos function 

Operation Result Exceptions raised

 for |x| > 1 NaN Invalid

π Inexact

+0 None

π/2 Inexact

π/2 Inexact

NaN None*

NaN Invalid

NaN Invalid

x( )acos

x( )acos

1−( )acos

+1( )acos

+0( )acos

0−( )acos

NaN( )acos

+∞( )acos

∞−( )acos
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DESCRIPTION

The asin function returns the arc sine of its argument. The return value is expressed in 

radians in the range [ , + ]. This function is antisymmetric.

such that  for –1 ≤ x ≤ 1

The sin function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x)

■ invalid (if |x| > 1)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-24 shows the results when the argument to the asin function is a zero, a NaN, 

or an Infinity, plus other special cases for the asin function.

EXAMPLES

z = asin(1.0); /* z = arcsin 1 = π/2. The inexact exception is 
raised. */

z = asin(–1.0); /* z = arcsin –1 = –π/2. The inexact exception 
is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-24 Special cases for the asin function

Operation Result Exceptions raised

 for |x| > 1 NaN Invalid

–π/2 Inexact

π/2 Inexact

+0 None

None

NaN None*

NaN Invalid

NaN Invalid

π 2⁄− π 2⁄

x( )asin arcsin x( ) y= = y( )sin x=

y( )sin( )

x( )asin

x( )asin

1−( )asin

+1( )asin

+0( )asin

0−( )asin 0−

NaN( )asin

+∞( )asin

∞−( )asin
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atan

You can use the atan function to compute the arc tangent of a real number.

double_t atan (double_t x);

x Any floating-point number.

DESCRIPTION

The atan function returns the arc tangent of its argument. The return value is expressed 

in radians in the range [ , + ]. This function is antisymmetric. 

 such that  for all x 

The tan function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-25 shows the results when the argument to the atan function is a zero, a NaN, 

or an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-25 Special cases for the atan function

Operation Result Exceptions raised

+0 None

None

NaN None*

+ Inexact

– Inexact

π 2⁄− π 2⁄

x( )atan arctan x( ) y= = y( )tan x=

y( )tan( )

x( )atan

+0( )atan

0−( )atan 0−

NaN( )atan

+∞( )atan π 2⁄

∞−( )atan π 2⁄
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EXAMPLES

z = atan(1.0); /* z = arctan 1 = π/4 */
z = atan(–1.0); /* z = arctan –1 = –π/4. The inexact exception 

is raised. */

atan2

You can use the atan2 function to compute the arc tangent of a real number divided by 

another real number.

double_t atan2 (double_t y, double_t x);

y Any floating-point number.

x Any floating-point number.

DESCRIPTION

The atan2 function returns the arc tangent of its first argument divided by its second 

argument. The return value is expressed in radians in the range [–π, +π], using the signs 

of its operands to determine the quadrant. 

such that  

EXCEPTIONS

When x and y are finite and nonzero, the result of  might raise one of the 

following exceptions:

■ inexact (if either x or y is any finite, nonzero value)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

2 y x,( )atan arctan y x⁄( ) z= = z( )tan y x⁄=

2 y x,( )atan
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SPECIAL CASES

Table 10-26 shows the results when one of the arguments to the atan2 function is a zero, 

a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers. 

EXAMPLES

z = atan2(1.0, 1.0); /* z = arctan 1/1 = arctan 1 = π/4. The 
inexact exception is raised. */

z = atan2(3.5, 0.0); /* z = arctan 3.5/0 = arctan ∞ = π/2 */

* If both arguments are NaNs, it is undefined which one atan2  returns.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-26 Special cases for the atan2 function 

Operation Result Exceptions raised

+0 x > 0 None

+π x < 0 None

+π/2 y > 0 None

–π/2 y < 0 None

±0 None

x > 0 Inexact

–π x < 0 Inexact

+π/2 y > 0 None

–π/2 y < 0 None

±π Inexact

NaN* None†

NaN None†

π/2 Inexact

±0 None

±3π/4 Inexact

–π/2 Inexact

±π None

±3π/4 Inexact

2 +0 x,( )atan

2 y +0,( )atan

2 0± +0,( )atan

2 0− x,( )atan 0−

2 y 0−,( )atan

2 0± 0−,( )atan

2 NaN x,( )atan

2 y NaN,( )atan

2 +∞ x,( )atan

2 y +∞,( )atan

2 ∞± +∞,( )atan

2 ∞− x,( )atan

2 y ∞−,( )atan

2 ∞± ∞−,( )atan
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Hyperbolic Functions

MathLib provides a core of hyperbolic and inverse hyperbolic functions. 

These functions are based on other transcendental functions and defer most exception 

generation to the core functions they use.

cosh

You can use the cosh function to compute the hyperbolic cosine of a real number.

double_t cosh (double_t x);

x Any floating-point number.

DESCRIPTION

The cosh function returns the hyperbolic cosine of its argument. This function is 

symmetric. 

The acosh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

Hyperbolic cosine of x.

Hyperbolic sine of x.

Hyperbolic tangent of x.

Inverse hyperbolic cosine of x.

Inverse hyperbolic sine of x.

Inverse hyperbolic tangent of x.

x( )cosh

x( )sinh

x( )tanh

x( )acosh

x( )asinh

x( )atanh

arccosh y( )( )

x( )cosh



C H A P T E R  1 0

Transcendental Functions

10-40 Hyperbolic Functions

SPECIAL CASES

Table 10-27 shows the results when the argument to the cosh function is a zero, a NaN, 

or an Infinity.

EXAMPLES

z = cosh(1.0); /* z ≈ 1.54308. The inexact exception is 
raised. */

z = cosh(–1.0); /* z ≈ 1.54308. The inexact exception is 
raised. */

sinh

You can use the sinh function to compute the hyperbolic sine of a real number.

double_t sinh (double_t x);

x Any floating-point number.

DESCRIPTION

The sinh function returns the hyperbolic sine of its argument.   This function is 

antisymmetric. 

The asinh function performs the inverse operation .

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-27 Special cases for the cosh function

Operation Result Exceptions raised

+1 None

+1 None

NaN None*

+∞ None

+∞ None

+0( )cosh

0−( )cosh

NaN( )cosh

+∞( )cosh

∞−( )cosh

arcsinh y( )( )
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EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-28 shows the results when the argument to the sinh function is a zero, a NaN, 

or an Infinity.

EXAMPLES

sinh(1.0); /* z ≈ 1.175201. The inexact exception is raised. */
sinh(–1.0); /* z ≈ –1.175201. The inexact exception is raised. */

tanh

You can use the tanh function to compute the hyperbolic tangent of a real number.

double_t tanh (double_t x);

x Any floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-28 Special cases for the sinh function

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

x( )sinh

+0( )sinh

0−( )sinh 0−

NaN( )sinh

+∞( )sinh

∞−( )sinh ∞−
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DESCRIPTION

The tanh function returns the hyperbolic tangent of its argument. The return value is in 

the range [–1, +1]. This function is antisymmetric. 

The atanh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x)

SPECIAL CASES

Table 10-29 shows the results when the argument to the tanh function is a zero, a NaN, 

or an Infinity.

EXAMPLES

z = tanh(1.0); /* z ≈ 0.761594. The inexact exception is 
raised. */

z = tanh(–1.0); /* z ≈ 0.761594. The inexact exception is 
raised. */

acosh

You can use the acosh function to compute the inverse hyperbolic cosine of a real 

number.

double_t acosh (double_t x);

x Any floating-point number in the range 1 ≤ x ≤ +∞.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-29 Special cases for the tanh function

Operation Result Exceptions raised

+0 None

None

NaN None*

+1 None

–1 None

arctanh y( )( )

x( )tanh

+0( )tanh

0−( )tanh 0−

NaN( )tanh

+ ∞( )tanh

∞−( )tanh
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DESCRIPTION

The acosh function returns the inverse hyperbolic cosine of its argument.   This function 

is antisymmetric.

such that 

The cosh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite values of x > 1)

■ invalid (if x < 1)

SPECIAL CASES

Table 10-30 shows the results when the argument to the acosh function is a zero, a NaN, 

or an Infinity, plus other special cases for the acosh function.

EXAMPLES

z = acosh(1.0); /* z = +0 */

z = acosh(0.0); /* z = NAN. The invalid exception is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-30 Special cases for the acosh function

Operation Result Exceptions raised

 for x < 1 NaN Invalid

+0 None

NaN Invalid

NaN Invalid

NaN None*

+∞ None

NaN Invalid

x( )acosh arccosh x y= = cosh y x=

y( )cosh( )

x( )acosh

x( )acosh

1( )acosh

+0( )acosh

0−( )acosh

NaN( )acosh

+∞( )acosh

∞−( )acosh
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asinh

You can use the asinh function to compute the inverse hyperbolic sine of a real number.

double_t asinh (double_t x);

x Any floating-point number.

DESCRIPTION

The asinh function returns the inverse hyperbolic sine of its argument. This function is 

antisymmetric. 

such that 

The sinh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-31 shows the results when the argument to the asinh function is a zero, a NaN, 

or an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-31 Special cases for the asinh function 

Operation Result Exceptions raised

+0 None

None

NaN None*

+∞ None

None

x( )asinh arcsinh x y= = sinh y x=

y( )sinh( )

x( )asinh

+0( )asinh

0−( )asinh 0−

NaN( )asinh

+∞( )asinh

∞−( )asinh ∞−
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EXAMPLES

z = asinh(1.0); /* z ≈ 0.881374. The inexact exception is 
raised.*/

z = asinh(–1.0); /* z ≈ 0.881374. The inexact exception is 
raised.*/

atanh

You can use the atanh function to perform the inverse hyperbolic tangent of a real 

number.

double_t atanh (double_t x);

x Any floating-point number in the range –1 ≤ x ≤ 1.

DESCRIPTION

The atanh function returns the inverse hyperbolic tangent of its argument.   This 

function is antisymmetric. 

such that 

The tanh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of  might raise one of the following 

exceptions:

■ inexact (for all finite, nonzero values of x other than +1 and –1)

■ invalid (if |x| > 1)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

x( )atanh arctanh x y= = tanh y x=

y( )tanh( )

x( )atanh
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SPECIAL CASES

Table 10-32 shows the results when the argument to the atanh function is a zero, a NaN, 

or an Infinity, plus other special cases for the atanh function.

EXAMPLES

z = atanh(1.0); /* z = +INFINITY */

z = atanh(–1.0); /* z = –INFINITY */

Financial Functions

MathLib provides two functions, compound and annuity, that can be used to solve 

various financial or time-value-of-money problems.

compound

You can use the compound function to determine the compound interest earned given 

an interest rate and period.

double_t compound (double_t rate, double_t periods);

rate The interest rate (any positive floating-point number).

periods The number of interest periods (any positive floating-point number). This 
argument might or might not be an integer.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-32 Special cases for the atanh function

Operation Result Exceptions raised

 for |x| > 1 NaN Invalid

None

+∞ None

+0 None

None

NaN None*

NaN Invalid

NaN Invalid

x( )atanh

1−( )atanh ∞−

+1( )atanh

+0( )atanh

0−( )atanh 0−

NaN( )atanh

+∞( )atanh

∞−( )atanh
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DESCRIPTION

The compound function computes the compound interest earned.

 

When rate is a small number, use the function call compound(rate,n) instead of the 

function call pow((1 + rate),n). The call compound(rate,n) produces a more 

exact result because it avoids the roundoff error that might occur when the expression 1 
+ rate is computed. 

The compound function is directly applicable to computation of present and future 

values: 

where PV is the amount of money borrowed and FV is the total amount that will be paid 

on the loan.

EXCEPTIONS

When r and n are finite and nonzero, the result of  might raise one of 

the following exceptions:

■ inexact (for all finite, nonzero values of r > –1)

■ invalid (if r < –1)

■ divide-by-zero (if r is –1 and n < 0)

SPECIAL CASES

Table 10-33 shows the results when one of the arguments to the compound function is a 

zero, a NaN, or an Infinity, plus other special cases for the compound function. In this 

table, r and n are finite, nonzero floating-point numbers.

Table 10-33 Special cases for the compound function 

Operation Result Exceptions raised

 for r < –1 NaN Invalid

0 if n > 0 None

+∞ if n < 0 Divide-by-zero

1 None

1 None

continued

compound r n,( ) 1 r+( ) n=

PV FV 1 r+( ) n−×
FV

compound r n,( )
= =

FV PV 1 r+( ) n× PV compound× r n,( )= =

compound r n,( )

compound r n,( )

compound 1− n,( )

compound +0 n,( )

compound r +0,( )
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EXAMPLES

z = compound(–2, 12); /* z = NAN because a negative interest 

rate does not make sense. The invalid 

exception is raised. */

z = compound(–1, –1); /* z = +INFINITY because a negative 

interest rate and negative loan period 

do not make sense. The divide-by-zero 

exception is raised. */

z = compound(0, INFINITY);/* z = NAN. The invalid exception is 

raised. */

annuity

You can use the annuity function to compute the present and future value of annuities.

double_t annuity (double_t rate, double_t periods);

rate The interest rate (any positive floating-point number).

periods The number of interest periods (any positive floating-point number). This 
argument might or might not be an integer.

* If both arguments are NaNs, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

1 None

1 None

NaN Invalid

NaN* None†

NaN None†

+∞ if n > 0 None

0 if n < 0 None

+∞ None

NaN Invalid

0 None

Table 10-33 Special cases for the compound function (continued)

Operation Result Exceptions raised

compound 0− n,( )

compound r 0−,( )

compound 0± ∞±,( )

compound NaN n,( )

compound r NaN,( )

compound +∞ n,( )

compound r +∞,( )

compound ∞− n,( )

compound r ∞−,( )
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DESCRIPTION

The annuity function computes the present and future values of annuities.

When rate is a small number, use the function call annuity(rate,n) instead of the 

expression:

(1 – compound(rate, –n)) / rate

The call annuity(rate,n) produces a more exact result because it avoids the roundoff 

errors that might occur when this expression is computed. 

This function is directly applicable to the computation of present and future values of 

ordinary annuities:

 

where PV is the amount of money borrowed, FV is the total amount that will be paid on 

the loan, and PMT is the amount of one periodic payment.

EXCEPTIONS

When r and n are finite and nonzero, the result of annuity(r, n) might raise one of the 

following exceptions:

■ inexact (for all finite, nonzero values of r > –1)

■ invalid (if r < –1)

■ divide-by-zero (if r = –1 and n > 0)

annuity r n,( )
1 1 r+( ) n−−

r
=

PV PMT
1 1 r+( ) n−−

r
× PMT annuity r n,( )×= =

FV PMT
1 1 r+( ) n−

r
× PMT 1 r+( ) n

1 1 r+( ) n−−
r

××= =

PMT compound× r n,( ) annuity r n,( )×=
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SPECIAL CASES

Table 10-34 shows the results when one of the arguments to the annuity function is a 

zero, a NaN, or an Infinity, plus other special cases for the annuity function. In this 

table, r and n are finite, nonzero floating-point numbers.

EXAMPLES

z = annuity(–1, 5); /* z = +INFINITY. The divide-by-zero 

exception is raised. */

z = annuity(–2, –2); /* z = NAN. The invalid exception 

is raised. */

* If both arguments are NaNs, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-34 Special cases for the annuity function  

Operation Result Exceptions raised

 for r < –1 NaN Invalid

+∞ if n > 0 Divide-by-zero

–1 if n < 0 None

n None

+0 None

n None

+0 None

NaN* None†

NaN None†

0 if n > 0 None

if n < 0 None

1/r None

NaN Invalid

None

annuity r n,( )

annuity 1− n,( )

annuity +0 n,( )

annuity r +0,( )

annuity 0− n,( )

annuity r 0−,( )

annuity NaN n,( )

annuity r NaN,( )

annuity +∞ n,( )

∞−

annuity r + ∞,( )

annuity ∞− n,( )

annuity r ∞−,( ) ∞−
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Error and Gamma Functions

MathLib provides four error and gamma functions:

erf

You can use the erf function to perform the error function.

double_t erf (double_t x);

x Any floating-point number.

DESCRIPTION

The erf function computes the error function of its argument. This function is 

antisymmetric.

EXCEPTIONS

When x is finite and nonzero, either the result of erf(x) is exact or it raises one of the 

following exceptions:

■ inexact (if the result must be rounded or an underflow occurs)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

Error function

Complementary error function

Computes Γ(x)

Computes the natural logarithm of the absolute value of gamma(x)

erf x( )
erfc x( )
gamma x( )
lgamma x( )

erf x( )
2

π
e t−( ) 2

dt

0

x

∫=
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SPECIAL CASES

Table 10-35 shows the results when the argument to the erf function is a zero, a NaN, or 

an Infinity.

EXAMPLES

z = erf(1.0); /* z ≈ 0.842701. The inexact exception is 
raised. */

z = erf(–1.0); /* z ≈ –0.842701. The inexact exception is 
raised. */

erfc

You can use the erfc function to perform the complementary error function.

double_t erfc (double_t x);

x Any floating-point number.

DESCRIPTION

The erfc function computes the complementary error of its argument. This function is 

antisymmetric.

For large positive numbers (around 10), use the function call erfc(x) instead of the 

expression 1.0 – erf(x). The call erfc(x) produces a more exact result. 

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-35 Special cases for the erf function

Operation Result Exceptions raised

+0 None

None

NaN None*

+1 None

–1 None

erf +0( )

erf 0−( ) 0−

erf NaN( )

erf +∞( )

erf ∞−( )

erfc x( ) 1.0 erf x( )−=
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EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of the 

following exceptions:

■ inexact (if the result must be rounded or an underflow occurs)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

SPECIAL CASES

Table 10-36 shows the results when the argument to the erfc function is a zero, a NaN, 

or an Infinity.

EXAMPLES

z = erfc(–INFINITY); /* z = 1 – erf(–∞) = 1 – –1 = +2.0 */
z = erfc(0.0); /* z = 1 – erf(0) = 1 – 0 = 1.0 */

gamma

You can use the gamma function to perform . 

double_t gamma (double_t x);

x Any positive floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-36 Special cases for the erfc function 

Operation Result Exceptions raised

+1 None

+1 None

NaN None*

+0 None

+2 None

erfc x( )

erfc +0( )

erfc 0−( )

erfc NaN( )

erfc +∞( )

erfc ∞−( )

Γ x( )
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DESCRIPTION

The gamma function performs . 

The gamma function reaches overflow very fast as x approaches +∞. For large values, use 

the lgamma function instead.

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of 

the following exceptions:

■ inexact (if the result must be rounded or an overflow occurs)

■ invalid (if x is a negative integer)

■ overflow (if the result is outside the range of the data type)

SPECIAL CASES

Table 10-37 shows the results when the argument to the gamma function is a zero, a NaN, 

or an Infinity, plus other special cases for the gamma function.

EXAMPLES

z = gamma(–1.0); /* z = NAN. The invalid exception is raised. */

z = gamma(6); /* z = 120 */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-37 Special cases for the gamma function 

Operation Result Exceptions raised

for negative integer x NaN Invalid

NaN Invalid

NaN Invalid

NaN None*

+∞ Overflow

NaN Invalid

Γ x( )

gamma x( ) Γ x( ) e
t−
t
x 1−

dt

0

∞

∫= =

gamma x( )

gamma x( )

gamma +0( )

gamma 0−( )

gamma NaN( )

gamma +∞( )

gamma ∞−( )
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lgamma

You can use the lgamma function to compute the natural logarithm of the absolute value 

of . 

double_t lgamma (double_t x);

x Any positive floating-point number.

DESCRIPTION

The lgamma function computes the natural logarithm of the absolute value of . 

EXCEPTIONS

When x is finite and nonzero, either the result of  is exact or it raises one of 

the following exceptions:

■ inexact (if the result must be rounded or an overflow occurs)

■ overflow (if the result is outside the range of the data type)

■ invalid (if x ≤ 0)

SPECIAL CASES

Table 10-38 shows the results when the argument to the lgamma function is a zero, a 

NaN, or an Infinity, plus other special cases for the lgamma function.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-38 Special cases for the lgamma function

Operation Result Exceptions raised

for x < 0 NaN Invalid

NaN Invalid

NaN Invalid

NaN None*

+∞ Overflow

NaN Invalid

Γ x( )

Γ x( )

lgamma x( ) log
e

Γ x( )( ) ln Γ x( )( )= =

lgamma x( )

lgamma x( )

lgamma +0( )

lgamma 0−( )

lgamma NaN( )

lgamma +∞( )

lgamma ∞−( )
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EXAMPLES

z = lgamma(–1.0); /* z = NAN. The invalid exception is 

raised. */

z = lgamma(3.41); /* z = 1.10304. The inexact exception is 

raised. */

Miscellaneous Functions

There are three remaining MathLib transcendental functions:

nextafter

You can use the nextafter functions to find out the next value that can be represented 

after a given value in a particular floating-point type. 

float       nextafterf (float x, float y);

double      nextafterd (double x, double y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The nextafter functions (one for each data type) generate the next representable neighbor 

of x in the direction of y in the proper format.

The floating-point values representable in single and double formats constitute a finite 

set of real numbers. The nextafter functions illustrate this fact by returning the next 

representable value.

If ,  returns x if x and y are not signed zeros.

Returns next representable number after x in direction of y.

Computes hypotenuse of a right triangle.

A pseudorandom number generator.

nextafter x y,( )
hypot x( )
randomx x( )

x y= nextafter x y,( )
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EXCEPTIONS

When x and y are finite and nonzero, either the result of  is exact or it 

raises one of the following exceptions:

■ inexact (if an overflow or underflow exception occurs)

■ overflow (if x is finite and the result is infinite)

■ underflow (if the result is inexact, must be represented as a denormalized number 
or 0, and x ≠ y)

SPECIAL CASES

Table 10-39 shows the results when one of the arguments to a nextafter function is a zero, 

a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

* If both arguments are NaNs, the value of the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-39 Special cases for the nextafter functions 

Operation Result Exceptions raised

Next representable 
number in direction of y

Underflow

Next representable 
number in direction of 0

None

Next representable 
number in direction of y

Underflow

+0 None

Next representable 
number in direction of 0

None

None

NaN* None†

NaN None†

Largest respresentable 
number

None

Next representable 
number greater than x

None

Smallest representable 
number

None

Next representable 
number smaller than x

None

nextafter x y,( )

nextafter +0 y,( )

nextafter x +0,( )

nextafter 0− y,( )

nextafter 0− +0,( )

nextafter x 0−,( )

nextafter +0 0−,( ) 0−

nextafter NaN y,( )

nextafter x NaN,( )

nextafter +∞ y,( )

nextafter x +∞,( )

nextafter ∞− y,( )

nextafter x ∞−,( )
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EXAMPLES

z = nextafterf(1.0, +∞);/* z = 1.000000000000000000000012 
  ≈ 1.000000119209289551 */

z = nextafterd(1.0, +∞);/* z = 1.00000000…0000000000000000012 

  ≈ 1.000000000000000222 */ 

hypot

You can use the hypot function to compute the length of a hypotenuse of a right triangle.

double_t hypot(double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The hypot function computes the square root of the sum of the squares of its arguments. 

This is an ANSI standard C library function.

The function hypot performs it computation without undeserved overflow or 

underflow. For example, if  is greater than the maximum representable value of 

the data type but their square root is not, then no overflow occurs.

EXCEPTIONS

When x and y are finite and nonzero, either the result of  is exact or it raises 

one of the following exceptions:

■ inexact (if the result must be rounded or an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number 
or 0)

hypot x y,( ) x2 y2+=

x2 y2+

hypot x y,( )
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SPECIAL CASES

Table 10-40 shows the results when one of the arguments to the hypot function is a zero, 

a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

EXAMPLES

z = hypot(2.0, 2.0); /* z = sqrt(8.0) ≈ 2.82843. The inexact 
exception is raised. */

randomx

You can use the randomx function to generate a random number.

double_t randomx (double_t * x);

x The address of an integer in the range  stored as a 
floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-40 Special cases for the hypot function

Operation Result Exceptions raised

|y| None

|x| None

|y| None

|x| None

NaN None*

NaN None*

∞ None

∞ None

+∞ None

+∞ None

+∞ None

+∞ None

hypot +0 y,( )

hypot x +0,( )

hypot 0− y,( )

hypot x 0−,( )

hypot NaN y,( )

hypot x NaN,( )

hypot NaN ∞±,( )

hypot ∞± NaN,( )

hypot +∞ y,( )

hypot x +∞,( )

hypot ∞− y,( )

hypot x ∞−,( )

1 x 2
31

2−≤ ≤
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DESCRIPTION

The randomx function is a pseudorandom number generator. The function randomx 

returns a pseudorandom number in the range of its argument. It uses the iteration 

formula

If seed values of x are not integers or are outside the range specified for x, then results 

are unspecified. A pseudorandom rectangular distribution on the interval (0, 1) can be 

obtained by dividing the results from randomx by

EXCEPTIONS

The results are unspecified if the value of x is a noninteger or is outside of the range

SPECIAL CASES

If x is a zero, NaN, or Infinity, the results are unspecified.

EXAMPLES

 = any value in the range .

x 75 x×( ) mod 2
31

1−( )←

2
31

1− scalb 31 1,( ) 1−=

1 x 2
31≤ ≤ 2−

randomx 1( ) 1 x 2
31≤ ≤ 2−
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Transcendental Functions Summary

This section summarizes the transcendental functions declared in the MathLib header 

file fp.h and the constants and data types that they use.

C Summary

Constants

extern const double_t pi;

Data Types

typedef short relop;

enum 

{

GREATERTHAN = ((relop) (0)),

LESSTHAN,

EQUALTO,

UNORDERED

};

Transcendental Functions

Comparison Functions

double_t fdim (double_t x, double_t y);

double_t fmax (double_t x, double_t y);

double_t fmin (double_t x, double_t y);

relop relation (double_t x, double_t y);

Sign Manipulation Functions

double_t copysign (double_t x, double_t y);

double_t fabs (double_t x);

long double copysignl (long double x, long double y);

long double fabsl (long double x);
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Exponential Functions

double_t exp (double_t x);

double_t exp2  (double_t x);

double_t expm1  (double_t x);

double_t ldexp (double_t x, int n);

double_t pow   (double_t x, double_t y);

double_t scalb (double_t x, long int n); 

Logarithmic Functions

double_t frexp (double_t x, int *exponent);

double_t log (double_t x);

double_t log10 (double_t x); 

double_t log1p (double_t x);

double_t log2 (double_t x);

double_t logb (double_t x);

float modff (float x, float *iptrf);

double modf  (double x, double *iptr);

Trigonometric Functions

double_t cos (double_t x);

double_t sin (double_t x);

double_t tan (double_t x);

double_t acos (double_t x);

double_t asin (double_t x);

double_t atan (double_t x);

double_t atan2 (double_t y, double_t x);

Hyperbolic Functions

double_t cosh (double_t x);

double_t sinh (double_t x);

double_t tanh (double_t x);

double_t acosh (double_t x);

double_t asinh (double_t x);

double_t atanh (double_t x);
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Financial Functions

double_t compound (double_t rate, double_t periods);

double_t annuity (double_t rate, double_t periods);

Error and Gamma Functions

double_t erf  (double_t x);

double_t erfc (double_t x);

double_t gamma (double_t x);

double_t lgamma (double_t x);

Nextafter Functions

float nextafterf (float x, float y);

double nextafterd (double x, double y);

Hypotenuse Function
double_t hypot (double_t x, double_t y);

Random Number Generator Function

double_t randomx (double_t * x);
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Numerics in PowerPC 
Assembly Language

This part summarizes the numeric features available to PowerPC 

assembly-language programmers. The first chapter in Part 3 describes the 

basics of PowerPC floating-point architecture. The rest of the chapters 

describe how to access numeric features in assembly language.

The PowerPC architecture contains a floating-point processor that conforms 

to the IEEE standard. It directly supports a subset of the floating-point data 

formats and the arithmetic operations described in Part 1. Numeric operations 

are supported through assembly-language instructions. 

By reading Part 3, you should gain an understanding of how the PowerPC 

architecture complies with the IEEE standard. Part 3 does not teach you how 

to write a numeric application in assembly language; it merely summarizes 

the numeric features available. Refer to the Motorola PowerPC 601 RISC 

Microprocessor User’s Manual for complete details on the information 

presented here.

If your application is written in a high-level language, you might find this 

part of the book useful when debugging in low-level mode. You also might 

find Appendix F, “PowerPC Assembly-Language Numerics Reference,” 

useful for this purpose. 
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Introduction to Assembly-Language Numerics

This chapter introduces the numeric implementation in PowerPC assembly language. It 

describes the basics of the floating-point architecture, showing what floating-point data 

formats and registers are available, what numeric operations are available in assembly 

language, and what load and store instructions you must use before you can perform 

assembly-language numeric operations. An example application using 

assembly-language numeric operations is shown at the end of this chapter. 

Read this chapter to learn how to use the numeric assembly-language instructions 

described in Chapters 12 through 14. 

PowerPC Floating-Point Architecture

This section describes those pieces of the PowerPC architecture used in floating-point 

operations, which include

■ floating-point data formats

■ floating-point registers

■ floating-point special-purpose registers

■ the Machine State Register

Floating-Point Data Formats
The PowerPC architecture supports only the single and double floating-point data 

formats. These formats can represent normalized numbers, denormalized numbers, 

zeros, NaNs, and Infinities, and are interpreted exactly as described in Chapter 2, 

“Floating-Point Data Formats.” The double-double data format is implemented in 

software and therefore is not a valid format in PowerPC hardware.

The PowerPC hardware is double-based. This means that when you load a single-format 

number into a register, it is automatically converted to double format. In addition, all 

arithmetic operations are performed on double-format numbers unless they are 

specifically forced to be performed on single-format numbers. 

Floating-Point Registers
The PowerPC architecture contains thirty-two 64-bit floating-point registers labeled F0 

through F31 (or FP0 through FP31). Because the registers are 64 bits long, they store 

values using the double data format.



C H A P T E R  1 1

Introduction to Assembly-Language Numerics

11-4 Floating-Point Instructions

Floating-Point Special-Purpose Registers
The two special-purpose registers that affect floating-point operations are the 

Floating-Point Status and Control Register and the Condition Register.

The Floating-Point Status and Control Register (FPSCR) is a 32-bit register that stores 

the current state of the floating-point environment. It specifies the current rounding 

direction and notes whether any floating-point exceptions are enabled and whether any 

floating-point exceptions have occurred. 

The Condition Register is a 32-bit register that stores the current state of the entire 

PowerPC processor. It is grouped into eight 4-bit fields labeled CR0 through CR7. Field 

CR1 reflects the results of floating-point operations. You may also specify one of the 

Condition Register fields as a place to store the result of a floating-point comparison 

operation or the result of a floating-point environment manipulation operation.

The FPSCR and the Condition Register are discussed more fully in Chapter 12, 

“Assembly-Language Environmental Controls.”

The Machine State Register
The Machine State Register is a 32-bit supervisor-level register that reflects the current 

state of the entire PowerPC processor. It differs from the Condition Register in that it is 

accessible only by supervisor-level software and in that it stores the processor state in a 

different way. The Machine State Register contains 3 bits that control floating-point 

computations: 

■ Bit 18 specifies whether the floating-point instructions are available. If bit 18 is 0, the 
processor cannot execute floating-point instructions. 

■ Bits 20 and 23 specify whether floating-point exceptions are enabled. If both of these 
bits are 0, floating-point instructions will not raise any floating-point exceptions. If 
either of these bits is set, instructions can raise floating-point exceptions.

Floating-Point Instructions

Most floating-point operations are performed by the PowerPC floating-point processor. 

Floating-point arithmetic, conversion, comparison, and other operations are supported 

through assembler instructions. The only basic arithmetic operations supported are add, 

subtract, multiply, divide, and round-to-integer. In addition to instructions that perform 

the basic numeric operations, PowerPC assembly language provides instructions that 

can perform both a multiply and an add or subtract with at most a single roundoff error 

(called multiply-add instructions) and instructions that manipulate the sign bit of a 

number. All PowerPC floating-point assembler instructions conform to the IEEE 

standard.

All floating-point instructions (other than load instructions) operate on data located in 

the floating-point registers. The data must be loaded into a floating-point registers before 

any operation can be performed.
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Even though the floating-point registers are double format, the data can be in either 

single or double format. The instruction mnemonic specifies whether the data in the 

floating-point register is interpreted as single or double format. For example, fadd 

means add two double-format numbers, and fadds means add two single-format 

numbers.

Load and Store Instructions

Before you perform any floating-point computation, you must load a value into a 

floating-point register. To do this, use one of the load instructions. Load instructions load 

either single or double floating-point numbers from memory into floating-point 

registers. Store instructions take the contents of a floating-point register and store them 

in memory.

Load and store instructions take one of two forms depending on which address mode is 

used. The first form is

instr FPR, D(GPR)

instr Specifies which type of load or store is to be performed.

FPR A floating-point register, which is either the source or the destination for 
the operation, depending on whether it is a load or a store.

D A 16-bit signed integer value.

GPR A general-purpose register or the value 0. 

The D(GPR) part of the instruction determines the memory address involved. If GPR is 

not 0, it is interpreted as a general-purpose register and the contents of register GPR are 

added to the value D to produce the memory address. If GPR is 0, it is interpreted as the 

value 0 rather than as register GPR0, so 0 is added to D to produce the memory address.

Load instructions of this form are interpreted as FPR ← (D + (GPR)), which means that 

the instruction loads into FPR the contents of the memory address obtained by adding D 

to the contents of GPR (unless GPR is 0).

Store instructions of this form are interpreted as D + (GPR) ← (FPR), which means that 

the instruction stores the contents of FPR at the memory address obtained by adding D 

to the contents of GPR (unless GPR is 0).

The second form for load and store operations uses a different address mode:

instr FPR, GPR1, GPR2 

instr Specifies which type of load or store is to be performed.

FPR A floating-point register, which is either the source or the destination for 
the operation, depending on whether it is a load or a store.

GPR1  A general purpose register or the value 0.

GPR2 A general-purpose register. 
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GPR1 and GPR2 determine the memory address involved. If GPR1 is not 0, it is 

interpreted as a general-purpose register, and the contents of register GPR1 are added to 

the contents of register GPR2 to produce the memory address. If GPR1 is 0, it is 

interpreted as the value 0 rather than as register GPR0, so 0 is added to the contents of 

register GPR2 to produce the memory address.

Load instructions of this form are interpreted as FPR ← ((GPR1) + (GPR2)) unless GPR1 

is 0.

Store instructions of this form are interpreted as (GPR1) + (GPR2) ← (FPR) unless 

GPR1 is 0.

Table 11-1 lists and describes the PowerPC load and store instructions. There are two 

load and two store instructions for each address mode. One version simply performs 

the load or store, and the other version puts the effective memory address into the 

general-purpose register specified in the instruction (shown as Rn in the table).

Each of the load and store instructions has a single and a double form, making a total of 

eight load and eight store instructions. If the single form of a load instruction is used, the 

number is converted to double format before the load is performed. If the single form of 

a store instruction is used, the number is converted to single format before it is stored. 

See Chapter 13, “Assembly-Language Numeric Conversions,” for more information 

about conversions performed during load and store operations.

None of the load and store instructions raise floating-point exceptions or make special 

cases of zeros, NaNs, or Infinities.

Table 11-1 Load and store floating-point instructions 

Address
mode Instruction syntax Operation

d(Rn) lfd DST, n(GPR) Load double format

stfd SRC,n(GPR) Store double format

lfs DST, n(GPR) Load single format

stfs SRC,n(GPR) Store single format

lfdu DST, n(GPR) Load double format and update

stfdu SRC,n(GPR) Store double format and update

lfsu DST, n(GPR) Load single format and update

stfsu SRC,n(GPR) Store single format and update
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Numerics Example Using PowerPC Assembly Language

Listing 11-1 is a code example that shows when the PowerPC assembly-language 

numeric features might be useful. The instructions used in this example are described in 

the Motorola PowerPC 601 RISC Microprocessor User’s Manual. This example evaluates the 

polynomial

It illustrates the evaluation of a polynomial

using Horner’s recurrence

On entry, general-purpose register GPR0 contains the degree n (<256) of the polynomial, 

and floating-point register F1 points to a function argument x. The coefficient table 

consists of  double-format coefficients, starting with . In this particular 

polynomial, .

Rn,Rm lfdx DST, GPR1,GPR2 Load double format indexed

stfdx SRC,GPR1,GPR2 Store double format indexed

lfsx DST, GPR1,GPR2 Load single format indexed

stfsx SRC,GPR1,GPR2 Store single format indexed

lfdux DST, GPR1,GPR2 Load double format and update indexed

stfdux SRC,GPR1,GPR2 Store double format and update indexed

lfsux DST, GPR1,GPR2 Load single format and update indexed

stfsux SRC,GPR1,GPR2 Store single format and update indexed

Table 11-1 Load and store floating-point instructions (continued)

Address
mode Instruction syntax Operation

x
3

2x
2

5−+

c0x
n

c1x
n 1−

. . . cn+ + +

r c0←

r r x×( )← cj for j+ 1 to n=

n 1+ c0

n 3, c0 1, c1 2, c2 0, and c3 5−= = = = =
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Listing 11-1 Polynomial evaluation

r0: equ 0 # general-purpose register 0

r5: equ 5 # general-purpose register 5

f0: equ 0 # floating-point register 0

f1: equ 1 # floating-point register 1

f2: equ 2 # floating-point register 2

CTR: equ 9 # Count Register for loops

extern polyeval{DS} # export the routine descriptor

extern .polyeval # export the entry point

# put the code in a program control section

csect polyeval{PR}

 

#high-level languages prepend a period to function names

.polyeval:

 lwz r0,0(r5) # r0 = degree

 lfd f0,4(r5) # f0 = leading coefficient, c0

 addic r5,r5,4 # r5 = address of leading coeff. &c0

 mtspr CTR,r0 # CTR = r0

loop:

lfdu f2,8(r5) # f2 = next coefficient 

# update r5 = r5 + 8

 fmadd f0,f0,f1,f2 # f0 = f0 * f1 + f2; ...

# res = res * x + c[j]

bdnz loop # CTR = CTR - 1, branch if CTR ≠ 0
 fmr f1,f0 # f1 = f0

 blr # return through the Link Register

nop

 

 

#

# Set up the table of contents.  It must include at least the 

# exported routines. It may also contain global data or pointers 

# to data.

#

polyeval_TOC: tc polyeval{tc}, polyeval{PR}
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#

# Build a transition vector for all exported routines so they can 

# be accessed through an inter-TOC call.

#

 csect polyeval{DS} # it’s in a separate control section

 dc.l .polyeval # contains the entry point

 dc.l 0 # loader will fill in correct TOC 

# pointer

 dc.l 0 # save space for environment pointer
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Assembly-Language Environmental Controls

This chapter describes how to use assembly-language instructions to control the 

floating-point environment (rounding direction and exception flags) described in 

Chapter 4, “Environmental Controls.” The current state of the floating-point 

environment is stored in the Floating-Point Status and Control Register and summarized 

in the Condition Register. This chapter describes exactly how these two registers store 

the environment. Then it describes the PowerPC assembler instructions you can use to 

test or change the environment.

Read this chapter to learn how to access and manipulate the floating-point environment 

in assembly language or to learn how the PowerPC architecture stores the floating-point 

environment.

The Floating-Point Environment

The two special-purpose registers that reflect and control the floating-point environment 

are the Floating-Point Status and Control Register and the Condition Register.

The Floating-Point Status and Control Register
The Floating-Point Status and Control Register (FPSCR) is a 32-bit register that stores the 

current state of the floating-point environment. It specifies the current rounding 

direction, whether any floating-point exceptions are enabled, and whether any 

floating-point exceptions have occurred. Many instructions that manipulate the FPSCR 

operate on 4-bit fields numbered 0 through 7. Figure 12-1 highlights some of the more 

useful fields in the FPSCR, and Table 12-1 shows their bit assignments. For more 

information on floating-point instructions, see the Motorola PowerPC 601 RISC 

Microprocessor User’s Manual.

Figure 12-1 Floating-Point Status and Control Register (FPSCR)
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Table 12-1 Bit assignments for FPSCR fields 

FPSCR
field Bit Meaning if set

0  0 One or more of the floating-point exceptions occurred.

 1 One or more of the floating-point exceptions is enabled.

 2 One or more of the invalid exceptions occurred.

 3 An overflow exception occurred.

1  4 An underflow exception occurred.

 5 A divide-by-zero exception occurred.

 6 An inexact exception occurred.

 7 An invalid exception occurred because an operation other than load, store, move, 
select, or mtfsf was attempted on a signaling NaN.

2  8 An invalid exception occurred because  was attempted.

 9 An invalid exception occurred because  was attempted.

10 An invalid exception occurred because  was attempted.

11 An invalid exception occurred because  was attempted.

3 12 An invalid comparison operation was attempted.

13 The fraction field of the result has been rounded.

14 The fraction field of the result is inexact.

15 Class descriptor. See “Inquiries: Class and Sign” on page 12-7. 

4 16 Less than or less than 0. See “Inquiries: Class and Sign” on page 12-7. 

17 Greater than or greater than 0. See “Inquiries: Class and Sign” on page 12-7. 

18 Equal to or equal to 0. See “Inquiries: Class and Sign” on page 12-7. 

19 Unordered or NaN. See “Inquiries: Class and Sign” on page 12-7. 

5 20 Reserved. 

21 An invalid exception occurred because of a software request. Not implemented in 
MPC601. 

22 An invalid square-root operation was attempted. Not implemented in MPC601.

23 An invalid exception occurred because of an invalid convert-to-integer operation.

6 24 The invalid exceptions are enabled.

25 The overflow exception is enabled.

26 The underflow exception is enabled.

27 The divide-by-zero exception is enabled.

∞ ∞−

∞ ∞⁄

0 0⁄

0 ∞×
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IMPORTANT

Bit 20 or 23 of the Machine State Register must be set for the FPSCR 
exception enable bits to be valid. For more information, see the Motorola 
PowerPC 601 RISC Microprocessor User’s Manual. ▲

The Condition Register
The Condition Register is a 32-bit register that stores the current state of the entire 

PowerPC processor. It is grouped into eight 4-bit fields labeled CR0 through CR7 (see 

Figure 12-2). Field CR1 (bits 4 through 7) reflects the results of floating-point operations.

Figure 12-2 Condition Register

7 28 The inexact exception is enabled.

29 Reserved.

30 Rounding direction. See “Setting the Rounding Direction” on page 12-9. 

31 Rounding direction. See “Setting the Rounding Direction” on page 12-9. 

Table 12-1 Bit assignments for FPSCR fields (continued)

FPSCR
field Bit Meaning if set



C H A P T E R  1 2

Assembly-Language Environmental Controls

12-6 The Floating-Point Environment

If you append a dot (.) to a floating-point instruction, its status will be recorded in the 

Condition Register as well as in the FPSCR. If you do not append a dot, the Condition 

Register will not reflect the result of that instruction.

Use Condition Register fields in conditional branch instructions. Several instructions 

allow you to store certain FPSCR bits in fields CR2 through CR4. After using one of these 

instructions, you then use a conditional branch instruction of the form

instr field, address

where field is the Condition Register field 2 through 4 and address is the address to branch 

to if the condition is true. Table 12-2 shows some commonly used PowerPC branch 

instructions. Examples of how to use the conditional branch instructions appear later in 

this chapter. For a complete list of conditional branch instructions, see the Motorola 

PowerPC 601 RISC Microprocessor User’s Manual. 

Bit Meaning

4 Set if bit 0 of the FPSCR is set. That is, this bit indicates whether any 
floating-point exception has occurred.

5 Set if bit 1 of the FPSCR is set. That is, this bit indicates whether any of the 
floating-point exceptions are enabled.

6 Set if bit 2 of the FPSCR is set. That is, this bit indicates whether an invalid 
exception has occurred for any reason.

7 Set if bit 3 of the FPSCR is set. That is, this bit indicates whether an overflow has 
occurred.

Table 12-2 Branch instructions using the Condition Register 

Instruction Description

bta bit, address Branch to address if condition is true (bit = 1)

blt field, address Branch to address if less than (bit 0 of field = 1)

ble field, address Branch to address if less than or equal (bit 0 of field = 1 or bit 2 = 1)

beq field, address Branch to address if equal (bit 2 of field = 1)

bge field, address Branch to address if greater than or equal (bit 1 of field = 1 or 
bit 2 = 1)

bgt field, address Branch to address if greater than (bit 1 of field = 1)

bnl field, address Branch to address if not less than (bit 0 of field = 0)

bne field, address Branch to address if not equal (bit 2 of field = 0)

bng field, address Branch to address if not greater than (bit 1 of field = 0)

bun field, address Branch to address if unordered (bit 3 of field = 1)

bnu field, address Branch to address if not unordered (bit 3 of field = 0)
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Inquiries: Class and Sign

As stated in Chapter 2, “Floating-Point Data Formats,” the result of a floating-point 

operation is either a normalized number, a denormalized number, a zero, a NaN, or an 

Infinity. This section describes how the class and sign of a floating-point number can be 

determined in PowerPC assembly language.

Floating-Point Result Flags and Condition Codes
FPSCR bits 15 through 19 are the floating-point result flags. Bit 15 is in FPSCR field 3, 

and bits 16 through 19 are in FPSCR field 4. For many instructions, FPSCR bits 15 

through 19 specify the class and sign of the instruction’s result. For comparison 

instructions, bits 16 through 19 store the result of the comparison.

Table 12-3 shows how bits 15 through 19 are interpreted, depending on whether the 

previous instruction was a comparison operation or not. 

Bit Meaning

15 The class descriptor. If this bit is set, the result is either a quiet NaN or a 
denormalized number, depending on the settings of bits 16 through 19. 

16 < or < 0. For comparison operations, this bit is set if the first operand is less than 
the second operand. For other operations, this bit is set if the result is negative 
(< 0).

17 > or > 0. For comparison operations, this bit is set if the first operand is greater 
than the second operand. For other operations, this bit is set if the result is 
positive (> 0).

18 = or = 0. For comparison operations, this bit is set if the first operand is equal to 
the second operand. For other operations, this bit is set if the result is 0 (= 0).

19 Unordered or NaN. For comparison operations, this bit is set if either of the 
operands is a NaN. For other operations, this bit is set if the result is a NaN or an 
Infinity, depending on the value of bit 15.

Table 12-3 Values for FPSCR bits 15 through 19 

Bits 15–19 Result for comparisons Result for other operations

00001 Unordered Not applicable

00010 == (equal to) +0

00100 > (greater than) Positive normalized number

00101 Not applicable +∞

01000 < (less than) Negative normalized number

continued
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Example: Determining Class
To determine the class of a floating-point operation, copy the FPSCR bits to the 

Condition Register and then branch on the Condition Register field, as shown in 

Listing 12-1. To copy FPSCR bits to the Condition Register, use the mcrfs instruction, 

which has the form 

mcrfs  DST, SRC 

where DST is a 4-bit Condition Register field and SRC is an FPSCR field. 

Listing 12-1 Determining the class of an assembler instruction result

fadd f0,f1,f2 # sets FPSCR bits 15–19 from f0

mcrfs 2,3 # copy FPSCR bits 12–15 to CR2

mcrfs 3,4 # copy FPSCR bits 16–19 to CR3

# CR bits 11 – 15 are class and sign of f0

bun 3,inf # if bit 3 of CR3 is 1, result is 

# Infinity or NaN

beq 3,zero # if bit 2 of CR3 is 1, result is zero

blt 3,norm # if bit 0 or 1 of CR3 is 1, 

bgt 3,norm # result is a normalized or 

# denormalized number

inf:

bta 11,NaN # if bit 11 is set, result = quiet NaN

# else result is an Infinity

01001 Not applicable

10001 Unordered Quiet NaN

10010 == (equal to)

10100 > (greater than) Positive denormalized number

11000 < (less than) Negative denormalized number

Table 12-3 Values for FPSCR bits 15 through 19 (continued)

Bits 15–19 Result for comparisons Result for other operations

∞−

0−
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norm:

bta 11,denorm # if bit 11 is set, result is denorm

# else result is norm

zero:

# return class of zero

denorm:

# return class of denormalized number

The fadd instruction, which adds two floating-point numbers, is one of the many 

floating-point instructions that set FPSCR bits 15 through 19 to the class and sign of its 

result. To read these FPSCR bits, Listing 12-1 copies them to the Condition Register using 

the mcrfs instruction. This instruction operates on 4-bit fields. Bits 15 through 19 are 

contained in two fields (3 and 4), so two separate mcrfs instructions are required to 

copy all pertinent bits to the Condition Register. Once the bits are copied, Condition 

Register fields 2 and 3 contain FPSCR fields 3 and 4, which means that Condition 

Register bits 11 through 15 reflect FPSCR bits 15 through 19. Next, the branch 

instructions test the values in the Condition Register and determine what type of result 

the fadd instruction had.

Setting the Rounding Direction

Bits 30 through 31 of the FPSCR specify the current rounding direction, as shown in 

Table 12-4. The section “Rounding Direction Modes” in Chapter 4, “Environmental 

Controls,” describes what the different rounding directions do.

Bits 30 and 31 are in FPSCR field 7.

Table 12-4 Rounding direction bits in the FPSCR

Mode Bit 30 Bit 31

To nearest (default) 0 0

Toward zero 0 1

Upward 1 0

Downward 1 1
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To set the rounding direction, use the mtfsfi instruction. It has the form 

mtfsfi  DST, n 

where DST is a 4-bit FPSCR field and n is an integer value to be copied into DST. Here 

are some examples.

mtfsfi 7,0 # set rounding direction to to-nearest

mtfsfi 7,1 # set rounding direction to toward-zero

mtfsfi 7,2 # set rounding direction to upward

mtfsfi 7,3 # set rounding direction to downward

Floating-Point Exceptions

The assembly-language numeric implementation contains the same five floating-point 

exception flags that are described in the IEEE standard. This section describes how to 

enable, disable, set, clear, and test these exception flags.

Exception Bits in the FPSCR
Table 12-5 summarizes the FPSCR bits that control floating-point exceptions. For each 

bit, it shows which FPSCR field contains that bit. Note that all of these bits, unless 

otherwise specified, are sticky; that is, once set, they stay set until you specifically clear 

them. For information on exactly what happens when a floating-point exception occurs, 

see the Motorola PowerPC 601 RISC Microprocessor User’s Manual. 

Table 12-5 Floating-point exception bits in the FPSCR 

Exception
FPSCR
field Bit Comment

All 0 0 Exception summary; set if any floating-point 
exception has occurred

0 1* Exception enable summary; set if any 
floating-point exception is enabled

Invalid 0 2* Invalid exception summary; bits 7 through 12 or 
21 through 23 tell why the exception occurred

1 7 Signaling NaN 

2 8

2 9

2 10

2 11

∞ ∞−

∞ ∞⁄

0 0⁄

0 ∞×
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Signaling and Clearing Floating-Point Exceptions
To signal or clear a floating-point exception explicitly, set or clear its bit in the FPSCR. 

For example, the following instructions signal an overflow exception and then clear that 

exception:

mtfsb1 3 # sets FPSCR bit 3 to 1, signaling overflow

mtfsb0 3 # clears FPSCR bit 3, so no overflow

These two instructions operate on individual FPSCR bits rather than on 4-bit FPSCR 

fields. The instruction mtfsb1 sets the specified bit in the FPSCR to 1. The mtfsb1 

instruction shown here sets bit 3, which is the overflow exception flag; therefore this 

instruction signals that an overflow has occurred. Similarly, the mtfsb0 instruction sets 

the specified FPSCR bit to 0 and therefore clears the overflow exception.

* This field is not sticky; it applies only for the last instruction executed.
† Not implemented in MPC601.

3 12 Comparison operation produced invalid

5 21 Software request produced invalid†

5 22 Square root produced invalid†

5 23 Convert-to-integer operation produced invalid

6 24 Invalid exception enable/disable

Overflow 0 3 Overflow flag

6 25 Overflow enable/disable

Underflow 1 4 Underflow flag

6 26 Underflow enable/disable

Divide-by-zero 1  5 Divide-by-zero flag

6 27 Divide-by-zero enable/disable

Inexact 1 6 Inexact flag

3 13* Fraction rounded

3 14* Fraction inexact

6 28 Inexact enable/disable

Table 12-5 Floating-point exception bits in the FPSCR (continued)

Exception
FPSCR
field Bit Comment
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Enabling and Disabling Floating-Point Exceptions
To enable or disable a floating-point exception, set or clear its enable bit in the FPSCR. 

Note

Disabling a floating-point exception does not mean that its flag will 
never be set. For the exact meaning of disabling a particular 
floating-point exception, see the Motorola PowerPC 601 RISC 
Microprocessor User’s Manual. ◆

For example, the following instructions enable and then disable the overflow exception:

mtfsb1 25 # sets FPSCR bit 25; overflow enabled

mtfsb0 25 # clears FPSCR bit 25; overflow disabled

You can also use the following commands to enable and disable all floating-point 

exceptions at once:

mtfsfi 6,0 # disables all floating-point exceptions

mtfsfi 6,15 # enables all floating-point exceptions

As you can see from Table 12-1 on page 12-4, FPSCR field 6 contains all of the 

floating-point exception enable switches, so to enable or disable all floating-point 

exceptions at once, you need to set or clear this field. The mtfsfi instruction (described 

on page 12-10) copies a 16-bit signed integer value into an FPSCR field; so the first 

instruction shown here disables all floating-point exceptions by clearing all bits in 

field 6, and the second instruction enables all floating-point exceptions by setting all bits 

in field 6. 

IMPORTANT

For the FPSCR exception enable bits to be valid, bit 20 or 23 of the 
Machine State Register must be set. For more information, see the 
Motorola PowerPC 601 RISC Microprocessor User’s Manual. ▲

Testing for Floating-Point Exceptions
If you would like to see whether an exception occurred, test the Condition Register. 

Listing 12-2 checks the Condition Register to see if an exception has occurred and, if so, 

branches to a routine that determines the type of exception. It uses the fadd. form of 

the floating-point add instruction to copy the exception summary bits to Condition 

Register field 1. If the add instruction causes an exception, this example uses the mcrfs 

instruction (described on page 12-8) to copy the FPSCR fields containing floating-point 

exception flags to Condition Register fields 2 through 5 and then uses branch 

instructions to see which type of exception has occurred.
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Listing 12-2 Testing for occurrence of floating-point exceptions

fadd. f0,f1,f2 # f1 + f2 = f0. CR1 contains except.summary

bta 4,error # if bit 0 of CR1 is set, go to error

# bit 0 is set if any exception occurs

. # if clear, continue operation

.

.

error:

mcrfs 2,1 # copy FPSCR bits 4–7 to CR field 2

# now CR1 and CR2 (bits 6 through 10)

# contain all exception bits from FPSCR

bta 6,invalid # CR bit 6 signals invalid

bta 7,overflow # CR bit 7 signals overflow

bta 8,underflow # CR bit 8 signals underflow

bta 9,divbyzero # CR bit 9 signals divide-by-zero

bta 10,inexact # CR bit 10 signals inexact

invalid:

mcrfs 2,2 # copy FPSCR bits 8–11 to CR field 2

mcrfs 3,3 # copy FPSCR bits 12–15 to CR field 3

mcrfs 4,5 # copy FPSCR bits 20–23 to CR field 4

# invalid bits are now CR bits 11–16 and bit 23

# now do exception handling based on which invalid bit

# is set

overflow:

# do exception handling for overflow exception

underflow:

# do exception handling for underflow exception

divbyzero:

#do exception handling for the divide-by-zero exception

inexact:

# do exception handling for the inexact exception
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Saving and Restoring the Floating-Point Environment

To save and restore the state of the entire floating-point environment, use the mffs and 

mtfsf instructions. 

The mffs instruction saves the FPSCR to a floating-point register. It has the form

mffs  DST 

where DST is the floating-point register into which the FPSCR should be copied. For 

example, the instruction

mffs f0

saves the current state of the FPSCR register in bits 32 through 63 of floating-point 

register F0. Bits 0 through 31 of register F0 are set to 1’s.

To restore a floating-point environment that you have previously saved, use the mtfsf 

instruction. This instruction copies a 4-bit field from a floating-point register into an 

FPSCR field. It has the form

mtfsf  DST, SRC 

where DST is a 4-bit FPSCR field and SRC is the floating-point register from which the 

field should be copied. The instruction assumes that the last half of the floating-point 

register SRC contains an FPSCR value. Thus, if you specify

mtfsf 3,f0

bits 44 through 47 of register F0 are copied into FPSCR field 3, bits 12 through 15. 

Figure 12-3 shows how the FPSCR fields map to a floating-point register.
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Figure 12-3 SRC and DST fields for mtfsf instruction

Listing 12-3 saves the floating-point environment and then restores it.

Listing 12-3 Saving and restoring the floating-point environment

mffs f10 # FPSCR copied into register f10

# other floating-point computations occur here

mtfsf 0,f10 # restore bits 0 and 3

mtfsf 1,f10 # restore bits 4 through 7

mtfsf 2,f10 # restore bits 8 through 11

mtfsf 3,f10 # restore bits 12 through 15

mtfsf 4,f10 # restore bits 16 through 19

mtfsf 5,f10 # restore bits 20 through 23

mtfsf 6,f10 # restore bits 24 through 27

mtfsf 7,f10 # restore bits 28 through 31

# entire FPSCR now restored
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Assembly-Language Numeric Conversions

This chapter describes how you can use PowerPC assembly-language instructions to 

perform the conversions required by the IEEE standard (described in Chapter 5, 

“Conversions”). The assembler provides instructions that perform many of these 

conversions. The conversion instructions have two operands, both of which are 

floating-point registers. They are of the form

instr DST, SRC 

and are interpreted as

DST ← op SRC 

where SRC and DST are floating-point registers and op is some operation.

For each type of conversion, this chapter lists the assembly-language instructions you 

can use to perform that conversion and gives an example of how to use the instructions.

Conversions From Integer to Floating-Point Formats

No single instruction is available to convert an integer to floating-point format. 

However, you can perform this operation using the algorithm that follows. First, define 

the following constant:

kmagic: word 0x43300000,0x80000000

This constant must have an exponent of 52 after subtracting the bias for the double 

format (1023), and the lower half of the constant (bit 33) must begin with a 1. In the 

constant kmagic above, the first word (eight hexadecimal digits) corresponds to the 

exponent part and the last word corresponds to the integer part.

When you have an integer you want to convert, invert its sign, append the exponent part 

of the constant to the integer to be converted, and then load it into a floating-point 

register with the new exponent appended. Finally, subtract the floating-point constant 

from the newly formed floating-point integer. The following assembly code shows how 

this is done. The code fragment assumes that general-purpose register GPR0 contains the 

value 0 and that register GPR3 contains the value to be converted.
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Listing 13-1 Converting a number from integer format to floating-point format

addis r1,r0,0x4330 # r1 contains 0x4300000

stw r1,20000(r0) # store exponent part for integer

xoris r3,r3,0x8000 # invert sign of integer

stw r3,20004(r0) # store fraction part for integer

# now all parts are in memory

lfd f0,20000(r0) # load integer in double format into f0

lfd f1,kmagic(r0) # load constant into f1

fsub f0,f0,f1 # f0 contains converted integer

Conversions From Floating-Point to Integer Formats

To convert numbers in floating-point format to integer format, use one of two 

instructions:

To convert double-format numbers to 32-bit integers, perform the following sequence of 

instructions:

lfd f1,d(r2) # load double float input into f1

fctiw f2,f1 # f2 is fixed 32-bit integer version of input

stfd f2,d(r1) # store f2 at location d + (r1)

lwz r3,d+4(r1) # r3 is fixed 32-bit integer version of input

To convert single-format numbers to 32-bit integers, perform the following sequence of 

instructions:

lfs f1,d(r2) # load single float input into f1

# input automatically converted to double format

fctiw f2,f1 # f2 is fixed 32-bit integer version of input

stfs f2,d(r1) # store f2 at location d + (r1)

lwz r3,d+4(r1) # r3 is fixed 32-bit integer version of input

To truncate double- or single-format numbers, replace fctiw in the above examples 

with fctiwz.

fctiw Convert and round in current direction.

fctiwz Convert and round toward zero (truncate).
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Note
The conversion instructions might raise floating-point exceptions. For 
more information, see the Motorola PowerPC 601 RISC Microprocessor 
User’s Manual. ◆

Conversions From Single to Double Format

To convert a single floating-point number to double format, you simply load a 

single-format number into a floating-point register; the conversion takes place 

automatically. The following load instructions automatically convert single format to 

double. These instructions raise no floating-point exceptions and treat 0s, NaNs, and 

Infinities like any other value.

For more information on the load instructions, see Chapter 11, “Introduction to 

Assembly-Language Numerics.”

Conversions From Double to Single Format

To convert a double floating-point number to single format, either store the double 

number in single format (described in Chapter 11) or use the frsp instruction. 

For store instructions, the conversion takes place automatically. The store instructions 

raise no floating-point exceptions and treat zeros, NaNs, and Infinities like any other 

value. The frsp instruction converts a double-format number to single format and then 

places it in the last half of a floating-point register. Use the frsp instruction immediately 

before using the single form of any arithmetic instruction. The following example 

performs single-precision addition on a number that has been converted to single format 

using the frsp instruction.

lfs Load single format.

lfsu Load single format and update.

lfsux Load single format and update indexed.

lfsx Load single format indexed.

frsp Convert double to single format.

stfs Store in single format.

stfsu Store in single format and update.

stfsux Store in single format and update indexed.

stfsx Store in single format indexed.
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lfs f1,d(r1) #load single format number into f1

#conversion to double format is automatic

frsp f1,f1 #f1 is now in single format

fadds f0,f1,f1 #so that it can be added as single format number

Note

The frsp instruction might raise floating-point exceptions. See the 
Motorola PowerPC 601 RISC Microprocessor User’s Manual for more 
information. ◆
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Assembly-Language Numeric Operations

This chapter describes how you can perform comparison and arithmetic numeric 

operations using PowerPC assembly language. This chapter describes the following 

types of instructions:

■ comparison 

■ arithmetic 

■ multiply-add 

■ move 

It shows the format of these instructions and gives examples of use. For complete details 

on any of these instructions, see the Motorola PowerPC 601 RISC Microprocessor User’s 

Manual. For operations that manipulate the floating-point environment, see Chapter 12, 

“Assembly-Language Environmental Controls.” For operations that perform 

conversions, see Chapter 13, “Assembly-Language Numeric Conversions.” 

Comparison Operations

The assembler provides two floating-point comparison instructions:

The only difference is that the ordered comparison instruction generates an invalid 

exception if one of the input registers contains a NaN.

The comparison instructions have three operands. They are of the form

instr DST, SRC1, SRC2 

DST A field in the Condition Register (0 through 7) into which the result of the 
comparison is placed.

SRC1, SRC2 Two floating-point registers.

Comparison instructions are interpreted as

DST ← SRC1 compare SRC2 

The comparison instructions compare the contents of two floating-point registers and 

place the results of the comparison in a Condition Register field as well as in bits 16 

through 19 (field 5) of the FPSCR. The results in the Condition Register and FPSCR are 

interpreted as follows:

fcmpo Ordered comparison

fcmpu Unordered comparison
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Use a conditional branch instruction after the comparison instruction to use the results of 

the comparison, as shown in the following example:

fcmpo 2,f0,f11 # compare f0 to f11 and put result in CR2

blt 2,addr1 # go to addr1 if bit 0 (<) of CR2 is 1

bgt 2,addr2 # go to addr2 if bit 1 (>) of CR2 is 1

beq 2,addr3 # go to addr3 if bit 2 (=) of CR2 is 1

bun 2,addr4 # go to addr4 if bit 3 (unordered) of CR2 is 1

Arithmetic Operations

PowerPC assembly language supports five of the seven IEEE arithmetic operations:

■ add

■ subtract

■ multiply

■ divide

■ round-to-integer

Except for the round-to-integer operation, these operations may be performed by a 

variety of instructions. The instructions that perform arithmetic operations are divided 

into three categories: arithmetic instructions, multiply-add instructions, and move 

instructions. (fctiw, described in Chapter 13, “Assembly-Language Numeric 

Conversions,” performs the round-to-integer operation.)

Arithmetic Instructions
There are four arithmetic instructions:

Result Meaning

0001 Unordered

0010 SRC1 = SRC2

0100 SRC1 > SRC2

1000 SRC1 < SRC2

fadd Adds two floating-point values.

fsub Subtracts two floating-point values.

fmul Multiplies two floating-point values.

fdiv Divides two floating-point values.
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Note
These instructions might raise floating-point exceptions. See the 
Motorola PowerPC 601 RISC Microprocessor User’s Manual for more 
information. ◆

Floating-point arithmetic instructions have three operands, all of which are 

floating-point registers. They are of the form

instr DST, SRC1, SRC2 

Arithmetic instructions are interpreted as

DST ← SRC1 op SRC2 

where SRC1, SRC2, and DST are floating-point registers and op is some operation.

Each of these instructions works on both single and double floating-point numbers. 

There are four versions of each instruction:

instr Perform operation specified by instr. Interpret data in floating-point 
registers as double format.

instr. Perform operation specified by instr. Interpret data in floating-point 
registers as double format. Record any exceptions raised in the Condition 
Register.

instrs Perform operation specified by instr. Interpret data in floating-point 
registers as single format.

instrs. Perform operation specified by instr. Interpret data in floating-point 
registers as single format. Record any exceptions raised in the Condition 
Register.

Note that all exceptions are always recorded in the FPSCR and are sometimes recorded 

in the Condition Register as well.

The following example adds two double floating-point numbers and stores the results:

lfd f1,d(r1) # load double number into register f1

lfd f2,d(r2) # load double number into register f2

fadd f0,f1,f2 # f0 contains result

stfd f0,d(r3) # store result in double format

And the next example adds two single floating-point numbers and stores the results:

lfs f1,d(r4) # load single number into register f1

frsp f1,f1 # stay single

lfs f2,d(r5) # load single number into register f2

frsp f2,f2 # stay single

fadds. f0,f1,f2 # result placed in f0 in single format

# CR1 reflects any exceptions

stfs f0,d(r6) # store result in single format
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Multiply-Add Instructions
There are four multiply-add instructions:

Note

These instructions might raise floating-point exceptions. See the 
Motorola PowerPC 601 RISC Microprocessor User’s Manual for more 
information. ◆

PowerPC assembly language provides the multiply-add instructions to perform more 

complex operations with at most a single roundoff error rather than the two potential 

roundoff errors that would result from performing the operations separately.

The multiply-add instructions take four operands, all of which are floating-point 

registers:

instr DST, SRC1, SRC2, SRC3 

Multiply-add instructions are interpreted as

DST ← (SRC1 × SRC2) ± SRC3 

where SRC1, SRC2, SRC3, and DST are floating-point registers.

Multiply-add instructions can take one of four forms:

instr Perform operation specified by instr. Interpret data in floating-point 
registers as double format.

instr. Perform operation specified by instr. Interpret data in floating-point 
registers as double format. Record any exceptions raised in the Condition 
Register.

instrs Perform operation specified by instr. Interpret data in floating-point 
registers as single format.

instrs. Perform operation specified by instr. Interpret data in floating-point 
registers as single format. Record any exceptions raised in the Condition 
Register.

Note that all exceptions are always recorded in the FPSCR and are sometimes recorded 

in the Condition Register as well.

fmadd Perform multiply, add.

fmsub Perform multiply, subtract.

fnmadd Perform multiply, add, and negate.

fnmsub Perform multiply, subtract, and negate.
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The following example multiplies two double-format numbers, adds a third, and stores 

the result:

lfd f1,d(r1) # load double number into register f1
lfd f2,d(r2) # load double number into register f2

lfd f3,d(r3) # load double number into register f3
fmadd f0,f1,f2,f3 # f0 = f1 × f2 + f3
stfd f0,d(r4) # store result as double format

The following example performs the same operations on single-format numbers:

lfs f1,d(r5) # load single number into register f1

frsp f1,f1 # stay single
lfs f2,d(r6) # load single number into register f2

frsp f2,f2 # stay single
lfs f3,d(r7) # load single number into register f3

frsp f3,f3 # stay single
fmadds. f0,f1,f2 # f0 = f1 × f2 + f3

# f0 contains single format number
# CR1 reflects any exceptions

stfs f0,d(r8) # store result in single format

Move Instructions
There are four move instructions:

Move instructions perform sign manipulations while copying a value from one 

floating-point register to another. Because they manipulate only the sign bit, they 

generate no floating-point exceptions. They take two operands, both of which are 

floating-point registers. They are of the form

instr DST, SRC 

Floating-point move instructions are interpreted as

DST ← op SRC 

where SRC and DST are floating-point registers and op is some operation that is 

performed on the contents of SRC.

Note that you may copy a value from a register into the same register. For example:

fneg f1,f1 # f1 has just been negated

fabs Move absolute value of register.

fmr Move register value.

fneg Move negative value of register.

fnabs Move negative absolute value of register.
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Transcendental and Auxiliary Functions

PowerPC assembly language does not directly support any of the IEEE auxiliary 

functions or the transcendental functions listed in this book. If you are writing a 

numerics application in assembly language, you can access the routines in the C library 

MathLib to perform these operations, provided you set up the stack frame properly. For 

information on how to set up the stack frame, see the book Assembler for Macintosh With 

PowerPC. 
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SANE Versus PowerPC 
Numerics 

This appendix describes how PowerPC Numerics differs from the Standard Apple 

Numerics Environment (SANE) and tells you how to port programs that use SANE 

features so that they use PowerPC Numerics features instead. SANE is the numerics 

environment used on 680x0-based Macintosh computers. If you have written programs 

that perform floating-point computations for a 680x0-based Macintosh computer, that 

program uses SANE features. Unlike PowerPC Numerics, SANE is not compliant with 

the recommendations in the FPCE technical report. Compliance with the FPCE report 

allows a higher level of portability.

If you run a 680x0 application on a PowerPC processor-based Macintosh computer, it 

uses SANE instead of the PowerPC Numerics environment unless you recompile the 

program with a PowerPC compiler. If you want to recompile a program written for the 

680x0-based Macintosh computer, you might have to modify some of your code. 

Read this chapter if you are familiar with SANE and you want to know how PowerPC 

Numerics compares with SANE. The first section lists the differences between SANE and 

PowerPC Numerics. The last section provides some suggestions for porting your code.

Comparison of SANE and PowerPC Numerics

This section goes chapter by chapter through Part 1 of the Apple Numerics Manual, second 

edition, and tells where the two environments are alike and where they differ.

Floating-Point Data Formats 
The single and double data formats supported by PowerPC Numerics are identical to the 

single and double data formats supported by SANE. PowerPC Numerics adds the 

double-double format not supported in SANE. PowerPC Numerics does not support the 

SANE floating-point formats comp (integral value) and 80-bit (and 96-bit) extended. 

Conversions 
PowerPC Numerics converts any floating-point format or integer format to any other 

floating-point format. SANE supports only conversions to and from the extended data 

format because it performs all floating-point operations in extended precision. 
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Conversions between binary and decimal in SANE are accurate up to a certain number 

of decimal digits for each floating-point data format. All conversions in PowerPC 

Numerics except conversions to or from double-double are correctly rounded.

Expression Evaluation 
SANE uses the extended data format as the minimum evaluation format for all 

floating-point operations. All operations are evaluated with the greatest amount of 

precision possible, which ensures against midexpression overflow and underflow. 

PowerPC Numerics does not specify one evaluation method but strongly recommends a 

single or double minimum evaluation format with widest-need evaluation. This method 

permits all expressions to be evaluated in as wide a format as is necessary without 

forcing a wider format on expressions that could be done more quickly and as accurately 

with a narrower format.

Note that with PowerPC Numerics, you are not ensured against midexpression overflow 

and underflow as you are with SANE. For example, suppose you have the following 

expression:

double d1, d2, d3, result;

d1 = d2 = d3 =  1.7E308; /* maximum number in double */

result = (d1 + d2) / d3;

With PowerPC Numerics, the expression d1 + d2 will overflow the double format, thus 

producing +∞. Infinity divided by the variable d3 will still be +∞, and so the variable 

result will be assigned +∞. With SANE, d1, d2, and d3 are converted to extended 

format. The expression d1 + d2 will not overflow the extended format, and so the 

variable result will be assigned the value 2. 

Infinities, NaNs, and Denormalized Numbers
Infinities, NaNs, and denormalized numbers are represented and used identically in 

SANE and PowerPC Numerics.

Arithmetic and Comparison Operations
SANE and PowerPC Numerics support the same seven basic arithmetic operations (add, 

subtract, multiply, divide, square root, remainder, and round-to-integer). SANE has only 

one version of the remainder and round-to-integer functions. PowerPC Numerics has 

two versions of the remainder function and several round-to-integer functions.

Note

SANE’s square root, remainder, and round-to-integer functions return 
type extended and take type extended as input. PowerPC Numerics 
uses type double instead. ◆
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Both SANE and PowerPC Numerics support the following comparison operators: <, <=, 

>=, >, ==, and !=. All other comparison operators shown in Table 6-1 on page 6-4 in this 

book are not supported by SANE.

Environmental Controls
SANE and PowerPC Numerics support the same rounding direction modes and the 

same floating-point exception flags.

SANE supports dynamic rounding precision modes because it performs all operations in 

extended and is therefore required by IEEE to support dynamic rounding precision 

modes. PowerPC Numerics does not support rounding precision modes. 

SANE supports halts for each of the five floating-point exceptions. PowerPC Numerics 

does not currently support halts, although it might in the future. 

Transcendental (Elementary) Functions
In SANE, all transcendental functions are in extended format. That is, all of them take 

type extended for floating-point input and all of them return type extended. In 

PowerPC Numerics, all transcendental functions take double for floating-point input 

and return type double. Some of the functions have a version that performs the same 

operation in double-double precision.

SANE supports a subset of the transcendental functions that PowerPC Numerics 

supports. The functions not supported by SANE are

Of the functions supported by both SANE and PowerPC Numerics, a few are 

implemented differently in the two environments. See the section “Differences in 

Transcendental Functions” on page A-5 for details.

Porting SANE to PowerPC Numerics

If you have a program that is written to take advantage of SANE features, you might 

want to port it to the PowerPC processor to take advantage of the increased speed. This 

section provides tips on how to do so.

erf erfc fdim

fmax fmin gamma

lgamma nearbyint rinttol

round roundtol trunc
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Perform the following steps to be sure that your program will run on both 680x0-based 

and PowerPC processor-based Macintosh computers:

1. Replace all uses of type comp with type double or long int.

2. Replace sane.h and math.h with fp.h and fenv.h.

3. Replace uses of extended with double_t or, if this is not possible, with long 
double.

4. Replace SANE-specific functions with their MathLib equivalents. SANE-specific 
functions include the functions listed as implemented differently in MathLib in the 
section “Differences in Transcendental Functions” on page A-5, all class and sign 
inquiry functions, and all environmental control functions. 

The following sections guide you through these four steps.

Replacing Variables of Type comp 
The first step in porting a SANE program is to remove uses of the data type comp. The 

type comp is a floating-point type with 64 bits of precision. In SANE, type comp is 

automatically converted to extended format whenever an expression is evaluated, just 

like every other SANE data format. In other words, comp is a floating-point type 

disguised as an integer type. In most cases you can replace type comp with type double, 

which provides 53 bits of precision. If your comp variables require greater than 53 bits of 

precision, you might need to write your own integer arithmetic package.

Using MathLib Instead of the SANE Library
The next step in porting a SANE program is to use the header files fp.h and fenv.h. 

The files fp.h and fenv.h replace sane.h and math.h. All of the transcendental 

functions declared in sane.h are now declared in fp.h, and most of them work exactly 

the same way in the two environments. If your program includes the header file math.h 

instead of sane.h, you should replace it with fp.h as well. The fp.h file declares all of 

the functions and macros declared in the ANSI header file math.h plus some additional 

ones.

Be aware of the differences in function prototypes in the files sane.h and fp.h. If your 

program currently uses sane.h, the declarations for transcendental functions look like 

this:

extended func_name (extended func_params);

In other words, all transcendental functions in sane.h are type extended and take 

type extended as arguments. These declarations mean that you can pass any 

floating-point type to a transcendental function without losing precision.

In fp.h, the typical transcendental function declaration has the form

double_t func_name (double_t func_params);
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The double_t type changes definition based on which processor the program is run. 

For the PowerPC processor, double_t is defined to be type double. For the 680x0 

processor, double_t is defined to be type extended. Therefore, when you change from 

using sane.h to using fp.h, your program will compile on both the 680x0 and the 

PowerPC processors and there will be no change in the way your program runs on the 

680x0. For more information on the double_t type, see “Portable Declarations” on 

page A-9. 

In some cases, a numeric function also has a long double implementation in MathLib. 

The declarations of the long double implementations are in fp.h and have the form

long double func_namel (long double func_params);

See the function descriptions in Part 2 of this book to find out if a function you are using 

has a long double implementation. If it does, you should examine the types of the 

parameters you are passing to that function and you should examine the return values. If 

a function parameter or return value requires more than 53 bits of precision, you may 

need to use the long double implementation of the function when it runs on a 

PowerPC processor. To do this, you simply add the letter l to the function call.

Replacing Extended Format Variables
When changing extended variables, first change all variables that are declared as 

extended to type double_t. For the 680x0 processor, double_t is defined as 

extended. For the PowerPC processor, double_t is defined as double. Once you 

make this change, your program runs with no changes on the 680x0 processor but now 

also runs on the PowerPC processor. Next, you need to examine each double_t variable 

to see if it will overflow on the PowerPC processor. If the variable requires more than 53 

bits of precision, change its declaration to long double.

Using MathLib Functions
As mentioned previously, PowerPC Numerics (specifically, the MathLib library) 

provides a superset of the functions that SANE provides. In most cases you don’t need to 

make any changes to your existing calls to the SANE library. However, there are a few 

transcendental functions that have a different implementation in MathLib. Also, the 

names have changed for the class and sign inquiries and floating-point environmental 

controls.

Differences in Transcendental Functions

The following transcendental functions are implemented differently in MathLib than in 

the SANE library:

■ The copysign function does not follow the IEEE standard in SANE, which reverses 
the order of the function’s parameters. PowerPC Numerics follows the parameter 
order described in the IEEE standard.
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■ The exp1 function in SANE is named expm1 in PowerPC Numerics.

■ The ipower function is replaced with the pow function in PowerPC Numerics.

■ The log1 function in SANE is named log1p in PowerPC Numerics.

■ The nextafter functions in SANE are nextfloat, nextdouble, and nextextended. 
In PowerPC Numerics, they are nexafterf, nextafterd, and nextafterl for 
float, double, and long double, respectively.

■ The nan function in SANE takes a character parameter, but the PowerPC Numerics 
nan function takes a character string parameter.

■ The SANE pi function is replaced with the constant pi, the SANE inf function is 
replaced with the constant INFINITY, and the NAN constant remains the same.

■ The pow function behaves differently in the two environments. For example, in SANE 
pow(NAN,0) returns a NaN, whereas in PowerPC Numerics, pow(NAN,0) returns 
a 1.

■ The remainder function in SANE takes three parameters, the last one being a return 
value. The PowerPC Numerics remainder function takes two parameters. The 
remquo function is analogous to the SANE remainder function.

■ The scalb function does not follow the IEEE standard in SANE, which reverses the 
order of the function’s parameters. PowerPC Numerics follows the parameter order 
described in the IEEE standard.

Differences in Class and Sign Inquiries

The class and sign inquiry functions declared in sane.h are not implemented in 

MathLib. Instead, MathLib provides a set of macros that perform the same actions. 

Table A-1 shows the declarations in sane.h on the left and the corresponding 

declaration in the MathLib header file fp.h on the right.

* The fpclassify macro returns a long integer.

Table A-1 Class and sign inquiries in SANE versus MathLib

sane.h declaration fp.h declaration

#define SNAN        0
#define QNAN        1
#define INFINITE    2
#define ZERONUM     3
#define NORMALNUM   4
#define DENORMALNUM 5
typedef short numclass;

enum NumberKind { 
FP_SNAN = 0, 
FP_QNAN, 
FP_INFINITE, 
FP_ZERO, 
FP_NORMAL, 
FP_SUBNORMAL };

numclass classfloat (extended x);
numclass classdouble(extended x);
numclass classcomp(extended x);
numclass classextended(extended x);

#define fp_classify(x)*

long signnum (extended x); #define signbit(x)
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Differences in Environmental Controls

MathLib’s environmental control functions are declared in the header file fenv.h. They 

affect only rounding direction modes and floating-point exceptions, and they are 

different from the functions that perform the same tasks in the SANE library. 

If the SANE program uses rounding precision modes, you must remove this code to run 

it on the PowerPC processor. The PowerPC processor almost always uses less precision 

than SANE when evaluating expressions, so this should not be a problem. See Chapter 3, 

“Expression Evaluation,” for details.

If the SANE program uses halts, you need to replace them with your own exception 

handling routines.

Replace the floating-point environmental access function or macro on the left side of 

Table A-2 with the corresponding function or macro on the right side. If your compiler 

supports the environmental access switch described in Appendix D, “FPCE 

Recommendations for Compilers,” you must turn the switch on before using any of the 

functions or macros from Table A-2. 

Table A-2 Environmental access functions in SANE versus MathLib 

sane.h declaration fenv.h declaration

#define INVALID   1
#define UNDERFLOW 2
#define OVERFLOW  4
#define DIVBYZERO 8
#define INEXACT  16

#define FE_INEXACT     0x02000000
#define FE_DIVBYZERO   0x04000000
#define FE_UNDERFLOW   0x08000000
#define FE_OVERFLOW    0x10000000
#define FE_INVALID     0x20000000

#define IEEEDEFAULTENV #define FE_DFL_ENV &_FE_DFL_ENV

typedef short exception; typedef long int fexcept_t;

typedef short environment typedef long int fenv_t;

#define TONEAREST  0
#define UPWARD     1
#define DOWNWARD   2
#define TOWARDZERO 3

#define FE_TONEAREST    0x00000000
#define FE_TOWARDZERO   0x00000001
#define FE_UPWARD       0x00000002
#define FE_DOWNWARD     0x00000003

typedef short rounddir; —

void setexception(exception e, 
                  long s);

int fesetexcept(const fexcept_t 
                *flagp, int excepts);
int feclearexcept(int excepts);
int feraiseexcept(int excepts);

long testexception(exception e); int fetestexcept(int excepts);

void setround (rounddir r); int fesetround(int round);

rounddir getround(void); int fegetround(void);

continued
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Listing A-1 is a C code fragment that runs on both the 680x0 and PowerPC processors. It 

performs the pow function, tests for the occurrence of the inexact exception, and prints 

the results.

Listing A-1 Using environmental controls in SANE and PowerPC Numerics

double_t x, y, result;/* double on PowerPC,extended on 680x0 */

#ifdef _ _SANE_ _ /* 680x0 processor */

exception fp_inexact;

#else /* PowerPC processor */

fexcept_t fp_inexact;

#endif

#ifdef _ _SANE_ _ /* 680x0 processor */

setenvironment(IEEEDEFAULTENV);

#else /* PowerPC processor */

fesetenv(FE_DFL_ENV);

#endif

result = pow(x, y);

#ifdef _ _SANE_ _ /* 680x0 processor */

fp_inexact = testexception (INEXACT);

#else /* PowerPC processor */

fp_inexact = fetestexcept (FE_INEXACT);

#endif

printf ("pow(%g,%g) = %g\t", x, y, result);

if (fp_inexact) 

printf ("INEXACT\n");

* The feholdexcept function, although it replaces the procentry SANE function, affects only the exception 
flags. It does not affect the rounding direction. 

void setenvironment(environment e); void fesetenv(const fenv_t *envp);

void getenvironment(environment *e); void fegetenv(fenv_t *envp);

void procentry(environment *e); int feholdexcept(fenv_t *envp);*

void procexit(environment e); void feupdateenv(const fenv_t *envp);

Table A-2 Environmental access functions in SANE versus MathLib (continued)

sane.h declaration fenv.h declaration



A P P E N D I X  A

SANE Versus PowerPC Numerics

Porting SANE to PowerPC Numerics A-9

Compatibility Tools in MathLib
This section describes some tools provided in MathLib that help with compatibility 

between two environments. The tools include type definitions that help you make 

efficient, portable variable declarations and macros that are defined differently on the 

two architectures.

Portable Declarations

MathLib defines two floating-point type definitions, float_t and double_t, in the 

header file Types.h. If you define a variable to be float_t or double_t, it means 

“use the most efficient floating-point type for this architecture.” Table A-3 shows the 

definitions for float_t and double_t on PowerPC architecture compared with 680x0 

architecture.

The PowerPC architecture is based on the IEEE double format. The most natural format 

for computations is double, but the architecture allows computations in single format as 

well. Therefore, float_t is defined to be float (single precision) and double_t is 

defined to be double for the PowerPC architecture. The 680x0 architecture is based on 

the extended format and performs all computations in extended format regardless of the 

type of the operands. Therefore, float_t and double_t are both long double 

(extended precision) for the 680x0 architecture.

If you declare a variable to be type double_t and you compile the source code as a 

PowerPC application, the variable is double format. If you recompile the same source 

code as an 680x0 application, the variable is extended format.

If your compiler is FPCE-compliant, it also supports the pragmas that allow the most 

efficient floating-point type to be used for function return values, parameters, and local 

variables. See Appendix D, “FPCE Recommendations for Compilers,” for more 

information on these pragmas. 

Table A-3 float_t and double_t definitions

Architecture float_t double_t

PowerPC float double

680x0 long double long double
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Macros

You might find the following macros useful to isolate 680x0-specific code from 

PowerPC-specific code:

Macro Description

_ _SANE_ _ Defined if sane.h is used

_ _FP_ _ Defined if fp.h is used

LONG_DOUBLE_SIZE Returns the size in bytes of long double on the processor on 
which the program is run

DOUBLE_SIZE Returns the size in bytes of double on the processor on which 
the program is run

DECIMAL_DIG Returns the maximum size in digits of a decimal number that 
can be converted to binary
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Porting Programs to PowerPC 
Numerics

This appendix contains information of interest to programmers who are porting 

programs from a non-Macintosh computer to run on a PowerPC processor-based 

Macintosh computer using PowerPC Numerics. If you are such a programmer and you 

think you are getting errors because of differences in numerics, you should read this 

appendix. 

Porting applications to run in the PowerPC Numerics environment is easier than porting 

to other computers. Expressions that produce good results on other computers usually 

give at least as good results using PowerPC Numerics. 

Note

If you are porting a program that uses SANE, read Appendix A, “SANE 
Versus PowerPC Numerics,” instead of this appendix. ◆

Semantics of Arithmetic Evaluation

When you translate programs from one language to another, be aware of the hidden 

pitfalls in translation. For example, an operation in one language might have similar 

syntax to an operation in another language without being similar semantically. Here’s an 

example of similar functions with different syntaxes:

■ Fortran, SIGN(A,B) (two operands)

■ BASIC, SIGN(A) (one operand)

Languages can also differ in how they treat mixed integers and reals. For example, 

Fortran truncates integer quotients to integers, so  (you have to write  to 

obtain a fraction). The programmer translating must be aware that the results of such 

expressions depend on the language used.

Languages also differ in how they convert from a real number to an integer. For 

example, in Fortran, assigning a floating-point value to an integer rounds toward zero.

Here are the operations used to truncate a real number to an integer in three languages:

■ C: assignments and casts

■ Fortran: AINT, INT

■ Pascal: Trunc

3 7⁄ 0= 3.0 7.0⁄
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Mixed Formats 

On certain computers, the formats for single and double are identical except for their 

length. On those machines, for arguments passed by address, a calling routine can store 

data in one format and a called routine can read data in another format without apparent 

error. 

If you have a program that exploits this confusion, you’ll have to revise it before you can 

run it on a machine that uses PowerPC Numerics. (Type checking is of no help here; if 

the discrepancy was such that type checking could detect it, the original compiler would 

have caught it.) 

Floating-Point Precision 

Floating-point precision may differ from the original machine to the target machine. 

Some computers have floating-point formats that have a wider range than the current 

PowerPC Numerics formats. Wider formats include the VAX H format, the IBM Q 

format, and the HP quad format. Programs use these wide formats for computation 

involving input data from a narrower format to minimize the occurrence of overflow 

and underflow and to preserve accuracy. The double-double data format provides 

enough precision to preserve accuracy; but it offers no greater range than the double 

format, so it will not protect against overflow and underflow. Keep in mind that 

problems may arise when a program uses formats wider than double-double.

CDC and Cray computers have a single format that is wider than IEEE single and a 

double format that is wider than IEEE double format. When porting code from those 

machines, you should consider changing type declarations from single to double format.

The Rules of Evaluation

Each computer uses different rules of evaluation. Here are three reasonable ones: 

■ Rule 1: Round the result to the wider of the two operand formats.

■ Rule 2: Round the result to the widest available format.

■ Rule 3: Round the result to the widest format in the expression. 

Rule 1 is instant rounding. It is the rule on computers having many registers the same 

width as memory. This rule has been used by IBM and CDC Fortran since 1963. It is not 

part of the Fortran standard, though it is often thought to be.
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Rule 2 is what SANE does by evaluating in extended precision. Other machines using 

this approach include the PDP-11C (using double precision) and floating-point 

coprocessors such as the 8087 and the MC68881. This approach does not take best 

advantage of machines with separate processing units for each floating-point format.

Rule 3 is what PowerPC Numerics does and is the way you do it when computing by 

hand. It was the rule in Fortran until 1963. By this rule, if you see an expression with 

mixed precision, you assume the user wants the widest visible precision.

With PowerPC Numerics, you can write code to simulate any of these rules. To simulate 

rule 1, use separate assignments when computing subexpressions. To simulate rule 2, 

convert all operands to double-double format before performing an expression.

For transported code, either you have to understand the programmer’s tricks or you 

have to mimic the way rounding works on the programmer’s machine. With PowerPC 

Numerics, you can set the rounding direction to mimic other machines. 

The Invalid Exception

Many computers used to stop on an invalid operation, such as 0/0. Programmers have 

made the best of this and not bothered to test in advance for values that could cause an 

invalid operation. It is better to stop than to give a plausible but incorrect answer. 

When a program written that way runs on PowerPC Numerics, it produces a NaN 

where it formerly would have stopped. The NaN might cause the program to take an 

unplanned branch and thus produce an erroneous answer. Because the program does 

not test for invalid operations, the user will not know whether the answers the program 

finally delivers have been influenced by exceptional events that formerly would have 

stopped the computer. 

Programs sometimes contain code that depends on an ill-documented effect or on one 

that varies from machine to machine. If you have inherited such a program and you do 

not know what it does about exceptional conditions, here are some possible strategies:

■ Insert tests on operands that could cause invalid operations.

■ Change the program to make sure that NaNs propagate as NaNs rather than as 
plausible answers.

■ After evaluations, add code to test the invalid flag and deliver a meaningful result or 
message and then clear the flag. 

If you have a program with code you can’t change and you distrust the results it gives 

when invalid operations occur, you should set up tests that halt programming on those 

invalid operations and set the environment to simulate the environment in which the 

program was designed to run.
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MathLib Header Files

This appendix shows the contents of the two MathLib header files fp.h and fenv.h. 

You can use this appendix to see where and how a MathLib function is defined and to 

see which transcendental functions are available in MathLib.

Floating-Point Header File (fp.h)

The header file fp.h defines a collection of numerical functions designed to facilitate a 

wide range of numerical programming. It is modeled after the FPCE technical report. 

This file declares many functions in support of numerical programming. It provides a 

superset of math.h and sane.h functions. Some functionality previously found in 

sane.h on 680x0-based Macintosh computers and not in the FPCE fp.h can be found 

in this fp.h under the heading _ _NOEXTENSIONS_ _.

Constants

#ifndef _ _FP_ _

#define _ _FP_ _

/* efficient types are included in Types.h. */

#ifndef _ _TYPES_ _

#include <Types.h>

#endif

#ifdef powerc

#define LONG_DOUBLE_SIZE 16

#elif mc68881

#define LONG_DOUBLE_SIZE 12

#else

#define LONG_DOUBLE_SIZE 10

#endif      /* powerc */

#define DOUBLE_SIZE  8

#define HUGE_VAL _ _inf()

#define INFINITY _ _inf()

#define NAN nan("255")
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/* the macro DECIMAL_DIG is obtained by satisfying the constraint that the

   conversion from double to decimal and back is the identity function. */

#ifdef powerc

#define DECIMAL_DIG 36

#else

#define DECIMAL_DIG 21

#endif /* powerc */

#define      SIGDIGLEN      36            /* significant decimal digits */

#define      DECSTROUTLEN   80            /* max length for dec2str output */

#define      FLOATDECIMAL   ((char)(0))

#define      FIXEDDECIMAL   ((char)(1))

Inquiry Macros

#define fpclassify (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _fpclassify  (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _fpclassifyd (x) : \

_ _fpclassifyf (x))

/* isnormal is nonzero if and only if the argument x is normalized. */

#define isnormal (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isnormal (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isnormald (x) : \

_ _isnormalf (x))

/* isfinite is nonzero if and only if the argument x is finite. */

#define isfinite (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isfinite (x) : \

( sizeof (x) == DOUBLE_SIZE) ? \

_ _isfinited (x) : \

_ _isfinitef (x))

/* isnan is nonzero if and only if the argument x is a NaN. */
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#define isnan (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isnan (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isnand (x) : \

_ _isnanf (x))

/* signbit is nonzero if and only if the sign of the argument x is

   negative. This includes NaNs, infinities and zeros. */

#define signbit (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _signbit (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _signbitd (x) : \

_ _signbitf (x))

Data Types

enum NumberKind

{

FP_SNAN = 0, /* signaling NaN */

FP_QNAN, /* quiet NaN */

FP_INFINITE, /* + or – infinity */

FP_ZERO, /* + or – zero */

FP_NORMAL, /* all normal numbers */

FP_SUBNORMAL /* denormal numbers */

};

typedef short relop;

enum 

{

GREATERTHAN = ((relop) (0)),

LESSTHAN,

EQUALTO,

UNORDERED

};

struct decimal 

{

char sgn; /* sign 0 for +, 1 for – */

char unused;

short exp; /* decimal exponent */

struct
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{

unsigned char length;

unsigned char text[SIGDIGLEN]; /* significant digits */

unsigned char unused;

} sig;

};

typedef struct decimal decimal;

struct decform 

{

char style; /* FLOATDECIMAL or FIXEDDECIMAL */

char unused;

short digits;

};

typedef struct decform decform;

extern const double_t pi;

Functions

Trigonometric Functions

double_t cos (double_t x);

double_t sin (double_t x);

double_t tan (double_t x);

double_t acos (double_t x);  /* argument is in [0,pi] */

double_t asin (double_t x);  /* argument is in [-pi/2,pi/2] */

double_t atan (double_t x);  /* argument is in [-pi/2,pi/2] */

#ifdef powerc

long double cosl (long double x);

long double sinl (long double x);

long double tanl (long double x);

long double acosl (long double x); /*argument is in [0,pi]*/

long double asinl (long double x); /*argument is in [-pi/2,pi/2]*/

long double atanl (long double x); /*argument is in [-pi/2,pi/2]*/

#endif /* powerc */
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double_t atan2 (double_t y, double_t x);

#ifdef powerc

long double atan2l (long double y, long double x);

#endif /* powerc */

Hyperbolic Functions

double_t cosh (double_t x);

double_t sinh (double_t x);

double_t tanh (double_t x);

double_t acosh (double_t x);

double_t asinh (double_t x);

double_t atanh (double_t x);

#ifdef powerc

long double coshl (long double x);

long double sinhl (long double x);

long double tanhl (long double x);

long double acoshl (long double x);

long double asinhl (long double x);

long double atanhl (long double x);

#endif /* powerc */

Exponential Functions

double_t exp (double_t x);

#ifdef powerc

long double expl (long double x);

#endif /* powerc */

double_t expm1  (double_t x);

#ifdef powerc

long double expm1l (long double x);

#endif /* powerc */
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double_t exp2  (double_t x);

double_t frexp (double_t x, int *exponent);

double_t ldexp (double_t x, int n);

double_t log (double_t x);

#ifdef powerc

long double exp2l  (long double x);

long double frexpl (long double x, int *exponent);

long double ldexpl (long double x, int n);

long double logl (long double x);

#endif /* powerc */

double_t log2 (double_t x);

#ifdef powerc

long double log2l (long double x);

#endif /* powerc */

double_t log1p (double_t x);

double_t log10 (double_t x); 

#ifdef powerc

long double log1pl (long double x);

long double log10l (long double x); 

#endif /* powerc */

double_t logb (double_t x);

#ifdef powerc

long double logbl (long double x);

#endif /* powerc */

long double modfl (long double x, long double *iptrl);

double modf  (double x, double *iptr);

float modff (float x, float *iptrf);
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double_t scalb (double_t x, long int n); 

#ifdef powerc

long double scalbl (long double x, long int n); 

#endif      /* powerc */

Power and Absolute Value Functions

double_t fabs (double_t x);

#ifdef powerc

long double fabsl (long double x);

#endif /* powerc */

double_t hypot (double_t x, double_t y);

double_t pow   (double_t x, double_t y);

double_t sqrt  (double_t x);

#ifdef powerc

long double hypotl (long double x, long double y);

long double powl   (long double x, long double y);

long double sqrtl  (long double x);

#endif /* powerc */

Gamma and Error Functions

double_t erf  (double_t x);           /* the error function */

double_t erfc (double_t x); /* complementary error function */

double_t gamma (double_t x);

#ifdef powerc

long double erfl  (long double x);        /* the error function */

long double erfcl (long double x);/*complementary error function*/

long double gammal (long double x);

#endif /* powerc */

double_t lgamma (double_t x);

#ifdef powerc

long double lgammal (long double x);

#endif /* powerc */
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Nearest Integer Functions

double_t ceil (double_t x);

double_t floor (double_t x); 

#ifdef powerc

long double ceill (long double x);

long double floorl (long double x);

#endif /* powerc */

double_t rint (double_t x);

#ifdef powerc

long double rintl (long double x);

#endif /* powerc */

double_t nearbyint (double_t x);

#ifdef powerc

long double nearbyintl (long double x);

#endif /* powerc */

long int rinttol (double_t x);

#ifdef powerc

long int rinttoll (long double x);

#endif /* powerc */

double_t round (double_t x);

#ifdef powerc

long double roundl (long double x);

#endif /* powerc */

long int roundtol (double_t round);

#ifdef powerc

long int roundtoll (long double round);

#endif /* powerc */
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double_t trunc (double_t x);

#ifdef powerc

long double truncl (long double x);

#endif /* powerc */

Remainder Functions

double_t fmod (double_t x, double_t y);

double_t remainder (double_t x, double_t y);

double_t remquo (double_t x, double_t y, int *quo);

#ifdef powerc

long double remainderl (long double x, long double y);

long double remquol    (long double x, long double y, int *quo);

#endif /* powerc */

Auxiliary Functions

double_t copysign (double_t x, double_t y);

#ifdef powerc

long double copysignl (long double x, long double y);

#endif /* powerc */

long double nanl (const char *tagp);

double nan (const char *tagp);

float nanf (const char *tagp);

long double nextafterl (long double x, long double y);

double nextafterd (double x, double y);

float nextafterf (float x, float y);

Maximum, Minimum, and Positive Difference Functions

double_t fdim (double_t x, double_t y);

#ifdef powerc

long double fdiml (long double x, long double y);

#endif
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double_t fmax (double_t x, double_t y);

double_t fmin (double_t x, double_t y);

#ifdef powerc

long double fmaxl (long double x, long double y);

long double fminl (long double x, long double y);

#endif

Internal Prototypes

long int _ _fpclassify (long double x);

long int _ _fpclassifyd (double x);

long int _ _fpclassifyf (float x);

long int _ _isnormal (long double x);

long int _ _isnormald (double x);

long int _ _isnormalf (float x);

long int _ _isfinite (long double x);

long int _ _isfinited (double x);

long int _ _isfinitef (float x);

long int _ _isnan (long double x);

long int _ _isnand (double x);

long int _ _isnanf (float x);

long int _ _signbit (long double x);

long int _ _signbitd (double x);

long int _ _signbitf (float x);

double _ _inf (void);

Non-NCEG Extensions 

#ifndef _ _NOEXTENSIONS_ _

Financial functions

double_t compound (double_t rate, double_t periods);

double_t annuity (double_t rate, double_t periods);



A P P E N D I X  C

MathLib Header Files

Floating-Point Header File (fp.h) C-11

Random Function

double_t randomx (double_t *x);

Relational Operator

relop relation (double_t x, double_t y);

#ifdef powerc

relop relationl (long double x, long double y);

#endif /* powerc */

Data Exchange Routines

#ifdef powerc

void x80told (const extended80 *x80, long double *x);

void ldtox80 (const long double *x, extended80 *x80);

#endif /* powerc */

Binary-to-Decimal Conversions

void num2dec (const decform *f, double_t x, decimal *d);

#ifdef powerc

void num2decl (const decform *f, long double x, decimal *d);

#endif /* powerc */

double_t dec2num (const decimal *d);

void dec2str (const decform *f, const decimal *d, char *s);

void str2dec (const char *s, short *ix, decimal *d, 
 short *vp); 

#ifdef powerc

long double dec2numl (const decimal *d);

#endif /* powerc */

float dec2f (const decimal *d);

short int dec2s (const decimal *d);

long int dec2l (const decimal *d);

#endif      /* _ _NOEXTENSIONS_ _ */

#endif 
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Floating-Point Environment Header File (fenv.h)

The file fenv.h defines a collection of functions designed to provide access to the 

floating-point environment for numerical programming. The file fenv.h declares many 

functions in support of numerical programming. It provides a set of environmental 

controls similar to the ones found in the SANE library. 

Constants

#ifndef _ _FENV_ _

#define _ _FENV_ _

Floating-Point Exception Flags

#define FE_INEXACT 0x02000000 /* inexact */

#define FE_DIVBYZERO 0x04000000 /* divide-by-zero */

#define FE_UNDERFLOW 0x08000000 /* underflow */

#define FE_OVERFLOW 0x10000000 /* overflow */

#define FE_INVALID 0x20000000 /* invalid */

/* The bitwise OR of all exception macros */

#define FE_ALL_EXCEPT ( FE_INEXACT | FE_DIVBYZERO | FE_UNDERFLOW | \

FE_OVERFLOW | FE_INVALID )

Rounding Direction Modes

#define FE_TONEAREST 0x00000000 

#define FE_TOWARDZERO 0x00000001 

#define FE_UPWARD 0x00000002 

#define FE_DOWNWARD 0x00000003

#define FE_DFL_ENV &_FE_DFL_ENV /* pointer to default environment*/
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Data Types

typedef long int fenv_t;

typedef long int fexcept_t;

/* Definition of pointer to IEEE default environment object */

extern fenv_t _FE_DFL_ENV; /* default environment object */

Functions

Controlling the Floating-Point Exceptions

void feclearexcept (int excepts);

void fegetexcept (fexcept_t *flagp, int excepts);

void feraiseexcept (int excepts);

void fesetexcept (const fexcept_t *flagp, int excepts);

int fetestexcept (int excepts);

Controlling the Rounding Direction

int fegetround (void);

int fesetround (int round);

Controlling the Floating-Point Environment

void fegetenv (fenv_t *envp);

int feholdexcept (fenv_t *envp);

void fesetenv (const fenv_t *envp);

void feupdateenv (const fenv_t * envp);

#endif
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FPCE Recommendations for 
Compilers

This appendix gives some recommendations for what compilers should implement to 

comply with the FPCE technical report. The PowerPC Numerics library provides much 

of this compliance, but some aspects of the report must be implemented by the compiler. 

This appendix describes those features that must be implemented in the compiler and 

recommends how they should be implemented. You should read this appendix if you are 

a compiler designer, or if you are a programmer and want to know what numeric 

features to look for in your compiler. 

Environmental Access Switch

To allow compilers to better optimize applications without ignoring the floating-point 

environment altogether, the FPCE technical report defines the following pragma to be 

used as an environmental access switch:

#pragma fenv_access on | off | default

The environmental access switch specifies whether an application may access the 

floating-point environment. Access to the floating-point environment must occur as if at 

run time, whereas optimizations occur at compile time. At compile time, the default (to 

nearest) rounding mode is in effect and all exception flags are clear (this is the default 

environment). Without an environmental access switch, the compiler must always 

assume that every floating-point expression might produce an exception, and therefore 

the compiler cannot perform some types of optimizations (such as forward and 

backward code motion) on floating-point expressions. 

If the environmental access switch is supported, whenever programmers use any of the 

environmental control functions (described in Chapter 8, “Environmental Control 

Functions”), they should first turn on the switch. Where the switch is on, the compiler 

does not fully optimize floating-point expressions, because it assumes that that part of 

the application can access the floating-point environment. (Accessing the floating-point 

environment means setting the rounding direction or reading the status of the exception 

flags.) Where the switch is off, the compiler can fully optimize any floating-point 

expression because it assumes that that part of the application does not access the 

floating-point environment. If the application accesses the floating-point environment 

when the switch is off, the result is undefined. 
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If an application uses the default rounding mode and does not access floating-point 

exception flags, the programmer may turn off the environmental access switch, allowing 

the application to be fully optimized. If the application contains modules that must 

access the floating-point environment, the programmer must turn on the environmental 

access switch in those modules and turn it off in all other modules. In this way, the 

modules that do not require access can be fully optimized.

The FPCE technical report recommends these programming conventions:

■ A function call must not alter its caller’s modes, clear its caller’s flags, or depend on 
the state of its caller’s flags unless the function is so documented.

■ A function call is assumed to require default modes unless its documentation 
specifically promises otherwise or unless it does not contain floating-point 
expressions.

■ A function call is assumed to have the potential of raising floating-point exceptions 
unless its documentation specifically promises otherwise or unless it does not contain 
floating-point expressions.

■ At compile time, the default environment is in effect.

These conventions allow the programmer to ignore the floating-point environment 

altogether if default modes are sufficient for the application or function. 

Where supported, the fenv_access pragma can occur only outside external 

declarations. It enables or disables compiler optimizations until another fenv_access 

pragma is encountered or until the end of the module. The default state for 

fenv_access is implementation dependent. 

Contraction Operator Switch

To allow programmer control of whether contraction operators are used, the FPCE 

technical report defines the following pragma:

#pragma fp_contract on | off 

When the fp_contract pragma is turned on, the compiler can produce contraction 

operators in the generated code. For the PowerPC processor, the contraction operators 

are the multiply-add instructions. These instructions perform a multiplication operation 

and either an addition or a subtraction operation with at most a single roundoff error. 

For some input values, the result of a multiply-add instruction is slightly different than if 

the operations were performed separately. This difference in value might be 

unacceptable in certain programs. Compilers that support the fp_contract pragma 

allow programmers to disable the generation of multiply-add instructions where 

necessary.
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Where supported, the fp_contract pragma can occur only outside external 

declarations. It enables or disables contraction operators until another fp_contract 

pragma is encountered or until the end of the module. The default state for 

fp_contract is implementation dependent.

Hexadecimal Floating-Point Constants

The FPCE technical report expands the definition of a floating-point constant in C to 

include hexadecimal floating-point constants. This format makes it easier to represent 

constants equal to or near arbitrary powers of 2 because they can be represented in 

hexadecimal instead of having to be converted to decimal. 

A hexadecimal floating-point constant has the form

0xhex_digit_seq[.hex_digit_seq]p[+|-]binary_exponent[suffix]

which is interpreted as

hex_digit_seq A sequence of hexadecimal digits. The first digit sequence must be 
preceded by the characters 0X or 0x. The hexadecimal point and the digit 
sequence appearing after it are optional.

binary_exponent
A decimal integer representing a power of 2. The exponent may or may 
not have a sign, but it must be preceded by the character p.

suffix One of the standard C floating-point constant suffixes such as f for 
float. All floating-point constants are type double unless specified 
otherwise.

Some examples of hexadecimal floating-point constant expressions are

0x1.1111p–2 /* interpreted as 1.111116 × 2–2 */
0x256p35f /* interpreted as 25616 × 235 */

Implementing an Expression Evaluation Method

Though PowerPC Numerics can recommend certain expression evaluation methods, 

these methods must be implemented by the compiler. As described in Chapter 3, 

“Expression Evaluation,” compilers may or may not support widest-need evaluation. 

This section describes 

■ the advantages and disadvantages of supporting and not supporting widest-need 
evaluation

hex_digit_seq.hex_digit_seq 2
+|-( ) binary _ exponent×
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■ some special issues compilers must consider regarding evaluating floating-point 
constants and initializing floating-point variables

■ the FPCE-recommended macros and pragmas that help programmers use the most 
efficient types possible and determine which expression evaluation method is being 
used

Expression Evaluation Without Widest Need
The main advantage of using an expression evaluation method without widest-need 

evaluation is that it is simple to implement. The PowerPC architecture is based on 

single-precision and double-precision operations, so either single or double is a logical 

choice for the minimum evaluation format. 

Choosing single as the minimum format provides the highest performance for 

single-precision algorithms yet still allows double and double-double algorithms to be 

performed with greater precision and range. A single minimum evaluation format, then, 

allows the best possible performance for all expressions by allowing the semantic type of 

a simple expression to determine its evaluation format.

Choosing double as the minimum format provides extra precision and range to 

single-precision operations and conforms to the traditional behavior of the C 

programming language (traditional C performs all floating-point operations in double 

precision). Performing all single-precision operations in double precision protects the 

operations against roundoff errors and against encountering an overflow or underflow 

in an intermediate value. For example, consider the following expression:

If you perform this expression by hand, you get . If all constants are in single format, 

the expression produces +∞. The constant  is near the end of the range of single 

format. Multiplying by  produces , which is rounded to +∞. Then, +∞ is divided 

by , and the answer is still +∞.

If the minimum evaluation format is double, the constants  and  are converted 

to double format before the result is calculated. The multiplication operation no longer 

overflows the range of the data type because the double format can easily hold . The 

value  divided by  produces , which is then converted back to single format. 

Choosing the double-double format provides the greatest available precision to all 

floating-point operations, protecting double-precision operations as well as 

single-precision operations from roundoff errors. However, it significantly decreases 

performance for those expressions that would normally be evaluated in a narrower 

format. In most cases, the extra precision is not necessary. 

Imposing a narrow format allows the best possible performance for narrow-format 

operations but might produce more roundoff errors in places where the extra precision 

really is necessary. Using widest-need evaluation for complex expressions in conjunction 

with a minimum evaluation format minimizes the disadvantages of choosing one 

minimum evaluation format.

10
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Expression Evaluation With Widest Need
Widest-need evaluation provides some of the advantages of using double-double as the 

minimum format while eliminating the pitfalls. With widest-need evaluation, if an 

expression contains a double-double variable, all other variables in that expression will 

ultimately be converted to double-double format, thus reducing the chance of roundoff 

error in these expressions. If an expression does not contain a double-double variable, 

widest-need evaluation allows the expression to be evaluated in the narrowest format 

possible, allowing the best possible performance for that expression. 

Widest-need evaluation can seriously inhibit the common subexpression removal 

optimization for subexpressions of narrower types. If the type of a subexpression is 

narrower than the type of its enclosing expression, the format of the enclosing expression 

is imposed on that subexpression. The subexpression’s operands are converted to the 

wider format. Because the conversion must occur as if at run time, the common 

subexpression removal optimization is in effect disabled for this subexpression.

Floating-Point Constant Evaluation
When a floating-point constant expression appears in a program, the expression 

evaluation method determines its evaluation format. When widest-need evaluation is 

not used, the constant is the wider of the minimum evaluation format and the semantic 

type of the expression. With widest-need evaluation in effect, the constant is converted to 

the evaluation format of the complex expression it is part of. 

In most cases, floating-point constant expressions must be evaluated as if at run time, 

although they may actually be evaluated at compile time. At compile time, the default 

rounding direction is in effect, and no floating-point exceptions may be flagged. (These 

conditions are known as the default floating-point environment. See Chapter 4, 

“Environmental Controls,” for more information.) However, if evaluation takes place as 

if at run time, the floating-point environment may affect or be affected by the evaluation. 

This means that if an expression is unexceptional and the default rounding direction is in 

effect, the expression can be evaluated at compile time. If the expression is exceptional or 

the current environment is not in the default state, the expression must be evaluated at 

run time.

In the following two cases the evaluation always takes place at compile time:

■ The constant expression appears within the declaration of a variable explicitly 
declared to be static:

static double x = 0.3 + 0.3;

■ The constant expression appears within the declaration of an aggregate type variable 
(array, structure, or union):

struct {int x = 0; double y = 0.3 + 0.3;} numbers;
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The requirement that floating-point constant expressions be evaluated as if at run time 

usually inhibits the constant folding optimization, in which values of constants are 

combined at compile time to produce fewer operations at run time. However, constant 

folding can occur

■ if a floating-point constant expression is required to be evaluated at compile time (that 
is, if the expression is part of the declaration of either an explicitly declared static 
variable or an aggregate type)

■ if the evaluation of the expression at compile time has exactly the same results as it 
would if evaluated at run time. This can happen under the following conditions:

■ If an expression evaluates to be nonexceptional at compile time, it would also 
evaluate to be nonexceptional at run time.

■ If the expression appears in a portion of the program where access to the 
floating-point environment is disabled, the default environment will be in effect at 
run time, just as it is at compile time.

The following example illustrates when floating-point constant expressions are 

evaluated:

#pragma fenv_access on

void f(void) {

float w[] = {0.0 / 0.0}; /* no exception raised */

static float x = 0.0 / 0.0; /* no exception raised */

float y = 0.0 / 0.0; /* exception raised */

x = 1.0 / 4.0; /* exact (no exception raised) */

y = 1.0 / 3.0; /* exception raised */

}

#pragma fenv_access off

void g(void) {

double z;

z = 0.0 / 0.0; /* no exception raised */

}

In the declaration of the array w, a floating-point constant expression contains division by 

zero. This operation is evaluated at compile time because it appears in the declaration of 

an aggregate type. Similarly, the division by zero in the declaration of x is evaluated at 

compile time because it is declared static. Neither of these expressions generates an 

exception, because they occur at compile time, although the compiler should generate a 

warning message in each case.

The next declaration (of float y) also includes the expression . This expression 

is evaluated at run time, and the invalid-operation exception is raised.

The first statement in function f assigns to x the value of the floating-point constant 

expression . The compiler looks at this expression to determine if it will raise any 

exceptions. The expression is found to be exact, so the compiler can optimize it.

0.0 0.0⁄

1.0 4.0⁄



A P P E N D I X  D

FPCE Recommendations for Compilers

Implementing an Expression Evaluation Method D-7

The second statement of the function f assigns to y the value of the floating-point 

constant expression . The compiler determines that this expression will raise the 

inexact exception, so it must be evaluated at run time. The compiler cannot optimize it.

Finally, function g assigns to the double variable z the value of the floating-point 

constant expression . This statement appears after the fenv_access pragma has 

been turned off. This pragma (described in the section “Environmental Access Switch” 

on page D-1) signals to the compiler that the default environment will be in effect at run 

time. Because exceptions are disabled in the default environment, this statement will not 

raise a run-time exception, and so it may be evaluated at compile time and optimized. 

Initializing Floating-Point Objects
A program achieves better performance if it initializes data (including floating-point 

data) at compile time. The degree to which this is possible depends on the programming 

language and the compiler options that are supported.

As specified for the C programming language, floating-point constant expressions are 

generally evaluated as if at run time. This includes floating-point constants that initialize 

floating-point variables. However a floating-point variable may be initialized at compile 

time

■ if the variable is declared to be static

static float x = 0.3;

■ if the variable is part of an aggregate type

struct {int x = 0; float y = 0.3;} numbers;

■ if the initializing value is nonexceptional (exact) and is in the format of the variable

double y = 0.0;
float x = 0.0f;

■ if access to the floating-point environment is disabled in the part of the program 
where the variable is initialized

#pragma fenv_acess off
float x = 0.3;

For programming languages other than C, the data initialization model may be simpler. 

For example, in Fortran static initialization is accomplished with the DATA statement 

(embedded in a BLOCK DATA subprogram for labeled COMMON initialization), and 

the initializing values may only be constants or parameters. Such initialization is 

accomplished as if at compile time. Variables not initialized by the DATA statement are 

considered uninitialized and are assigned values at execution time with executable 

statements.

Data initialization rules for Pascal compilers are implementation defined and must be 

fully documented. In MPW Pascal targeting 680x0-based Macintosh computers, for 

example, a unit requiring initialization of its data declares a public procedure, called at 

execution time by the host program, that performs the initialization. Apple II Pascal, on 

the other hand, supports an initialization section within the unit.

1.0 3.0⁄

0.0 0.0⁄
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Compiler Extensions for Expression Evaluation
The FPCE technical report recommends that compilers implement two macros that help 

a programmer determine which expression evaluation method is being used and three 

pragmas that help a programmer use the most efficient data type for functions.

Determining the Expression Evaluation Method

Two macros that characterize the evaluation method for floating-point expressions may 

be defined in the float.h header file. The macro _MIN_EVAL_FORMAT tells which 

numeric data format is used as the minimum evaluation format:

0 float (single)

1 double

2 long double (double-double)

The macro _WIDEST_NEED_EVAL specifies if widest-need evaluation is performed:

0 no

1 yes

Widening for Efficiency

In general, programmers want to use the most efficient floating-point data type for the 

architecture on which their applications will run. If the application is to run on more 

than one architecture, you cannot guarantee that the most efficient type on one 

architecture will be the most efficient type for the others. The FPCE technical report 

recommends three preprocessor pragmas to facilitate running the same application 

efficiently on different architectures. When these pragmas are turned on, the compiler 

uses the wider of the architecture’s most efficient type and the declared type for any 

function, parameter, or local variable declared after the pragma. 

#pragma fp_wide_function_returns on | off

#pragma fp_wide_function_parameters on | off

#pragma fp_wide_variables on | off

If the first pragma, fp_wide_function_returns, is turned on in a module, all of the 

functions defined below the pragma will have return values in the most efficient data 

type for the architecture if it is wider than the declared return type. If the following 

example is compiled for the 680x0 architecture, both functions ffunc and ldfunc 

return type long double. If compiled for the PowerPC architecture, ffunc returns 

type double and ldfunc returns type long double (because data types may be 

widened to the most efficient type but not narrowed).

#pragma fp_wide_function_returns on

float ffunc (float f) { /* code for ffunc */ }

long double ldfunc (double y) { /* code for ldfunc */ }
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If the second pragma, fp_wide_function_parameters, is turned on in a module, all 

of the parameters for all of the functions defined below the pragma are converted to the 

most efficient data type for the architecture if it is wider than the declared types of the 

parameters. In the following example, the parameters x and y are both type double on 

the PowerPC architecture and type long double on the 680x0 architecture. If an 

architecture’s most efficient type was float, the types for both parameters would 

remain the same (because a parameter’s type may be widened to the most efficient type 

but never narrowed).

#pragma fp_wide_function_parameters on 

float func(float x, double y) { /* code for func */ }

If the third pragma, fp_wide_variables, is turned on in a module, all local variables 

defined below the pragma are converted to the most efficient data type for the 

architecture if it is wider than the declared types of the variables. In the following 

example, the variables z and q are both type double on the PowerPC architecture and 

type long double on the 680x0 architecture. If an architecture’s most efficient type was 

float, the types for both variables would remain the same (because a variables’s type 

may be widened to the most efficient type but never narrowed).

#pragma fp_wide_variables on 

float func(float x) 

{ 

float z; 

double q; 

/* code */

}

These pragmas can occur only outside external declarations. Each pragma remains in 

effect until it is explicitly turned off or until the end of the module. The default state for 

all three pragmas is off.

If an address or sizeof operator is applied to a widened parameter or variable, a 

compile-time warning is issued. Casts avoid widening in areas where one of these 

pragmas is turned on. 





A P P E N D I X  E

Floating-Point Data Formats E-1

MathLib Reference

This appendix provides a reference for the numeric implementation in the 

C programming language. It summarizes the data formats available and tells how to 

determine the floating-point class for a value. It also lists functions that control the 

floating-point environment, functions that perform floating-point operations, 

and the exceptions those functions might raise.

Floating-Point Data Formats

Figure E-1 Floating-point data formats
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Environmental Controls

* bias = 127 for float , 1023 for double, long double.
† From enumerated type NumKind.
‡ max = 255 for float , 2047 for double, long double.
§ For long double both head and tail are evaluated this way and added together.
¶ minexp = –126 for float , –1022 for double, long double.

Table E-1 Interpreting floating-point values

If biased* 
exponent e is:

And 
fraction f 
is: Then value v is: And class of v is: †

‡ (any) § FP_NORMAL

¶ FP_SUBNORMAL

FP_ZERO

FP_INFINITE

FP_SNAN (first bit is 0)
FP_QNAN (first bit is 1)

Table E-2 Class and sign inquiry macros

fpclassify(x)

isnormal(x)

isfinite(x)

isnan(x)

signbit(x)

Table E-3 Environmental access

Action Function prototype

Get void fegetenv (fenv_t *envp);

Set void fesetenv (const fenv_t *envp);

Save int feholdexcept (fenv_t * envp);

Restore void feupdateenv (const fenv_t *envp);

0 e max< < v 1−( ) s 2
e bias−( )

1.f( )××=

e 0= f  0≠ v 1−( ) s 2minexp 0.f( )××=

e 0= f 0= v 1−( ) s 0×=

e max= f 0= v 1−( ) s ∞×=

e max= f  0≠ v NaN=
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Operations and Functions

Note

Throughout the tables that follow, in the Exceptions column, I = invalid; 
X = inexact; O = overflow; U = underflow; D = divide by zero. ◆

Table E-4 Floating-point exceptions

Exceptions Action Function prototype

FE_INEXACT Get void fegetexcept(fexcept_t *flagp, 
int excepts);

FE_DIVBYZERO Set void feraiseexcept (int excepts);

FE_UNDERFLOW Clear void feclearexcept (int excepts);

FE_OVERFLOW void fesetexcept (const fexcept_t *flagp, 
int excepts);

FE_INVALID Test int fetestexcept (int excepts);

Table E-5 Rounding direction modes

Modes Action Function prototype

FE_TONEAREST Get int fegetround (void);

FE_TOWARDZERO Set int fesetround (int round);

FE_UPWARD

FE_DOWNWARD

Table E-6 Arithmetic operations

Compute Syntax Valid input range Exceptions

Sum x + y  to +∞ I X O U -

Difference x – y  to +∞ I X O U -

Product x * y  to +∞ I X O U -

Quotient x / y  to +∞ I X O U D

Square root sqrt(x) 0 to +∞ I X - - -

Remainder remainder(x,y)
remquo(x,y,quo)
fmod(x,y)

 to +∞ I - - - -

∞−

∞−

∞−

∞−

∞−
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* Return type of long int. 

Table E-7 Conversions to integer type

Compute Syntax Valid input range Exceptions

Round in current direction rinttol(x)* I X - - -

Add 1/2 to magnitude 
and chop

roundtol(x)* I X - - -

Table E-8 Conversions to integer in floating-point type

Compute Syntax Valid input range Exceptions

Round in current 
direction

rint(x)  to +∞ - X - - - 

nearbyint(x)  to +∞ - - - - -

Round upward ceil(x)  to +∞ - - - - -

Round downward floor(x)  to +∞ - - - - -

Add 1/2 to magnitude 
and chop

round(x)  to +∞ - X - - -

Round toward zero trunc(x)  to +∞ - - - - -

Table E-9 Conversions between binary and decimal formats

Compute Syntax Valid input range Exceptions

Convert decimal 
struct to binary

dec2num(&d) decimal struct – – – – –

Convert binary to 
decimal struct

num2dec(&f,x,&d)  to +∞ – – – – –

2
31

 to 2
31− 1−

2
31

 to 2
31− 1−

∞−

∞−

∞−

∞−

∞−

∞−

∞−
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Table E-10 Conversions between decimal formats

Compute Syntax Valid input range Exceptions

Convert decimal 
struct to string

dec2str(&f,&d,s) decimal struct – – – – –

Convert decimal 
string to struct

str2dec(s,&ix,&d,&vp) Numeric string – – – – –

Table E-11 Comparison operations

Compute Syntax Valid input range Exceptions

Positive difference or 0 fdim(x,y)  to +∞ - X O U -

Maximum of 2 numbers fmax(x,y)  to +∞ - - - - -

Minimum of 2 numbers fmin(x,y)  to +∞ - - - - -

Relationship of x, y relation(x,y)  to +∞ - - - - -

Table E-12 Sign manipulation functions

Compute Syntax Valid input range Exceptions

Copy the sign copysign(x,y)  to +∞ - - - - -

|x| fabs(x)  to +∞ - - - - -

Table E-13 Exponential functions

Compute Syntax Valid input range Exceptions

exp(x)  to +∞ - X O U -

exp2(x)  to +∞ - X O U -

expm1(x)  to +∞ - X O U -

ldexp(x,n)  to +∞ - X O U -

scalb(x,n) - X O U -

pow(x,y)  to +∞ I X O U D

∞−

∞−

∞−

∞−

∞−

∞−

e
x ∞−

2x ∞−

e
x

1− ∞−

x 2n× ∞−

x
y ∞−
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Table E-14 Logarithmic functions

Compute Syntax Valid input range Exceptions

Fraction and exponent fields 
of floating-point number

frexp(x,&n)  to +∞ - - - - -

ln x log(x) 0 to +∞ I X - - D

log10(x) 0 to +∞ I X - - D

ln (x + 1) log1p(x) > –1 I X - - D

log2(x) 0 to +∞ I X - - D

Exponent field of 
floating-point number

logb(x)  to +∞ - - - - D

Split real number into 
fractional part and integer 
part

modf(x,&y)  to +∞ - - - - -

Table E-15 Trigonometric functions

Compute Syntax Valid input range Exceptions

cos x cos(x) Any finite number I X - - -

sin x sin(x) Any finite number I X - U -

tan x tan(x) Any finite number I X - U -

arccos x acos(x) –1 to +1 I X - - -

arcsin x asin(x) –1 to +1 I X - U -

arctan x atan(x)  to +∞ - X - U -

arctan y/x atan2(x,y)  to +∞ - X - U -

∞−

log
10

x

log
2
x

∞−

∞−

∞−

∞−
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Table E-16 Hyperbolic functions

Compute Syntax Valid input range Exceptions

cosh x cosh(x)  to +∞ - X O - -

sinh x sinh(x)  to +∞ - X O U -

tanh x tanh(x)  to +∞ - X - - -

arccosh x acosh(x) 1 to +∞ I X - - -

arcsinh x asinh(x)  to +∞ - X - U -

arctanh x atanh(x) –1 to +1 I X - U -

Table E-17 Financial functions

Compute Syntax Valid input range Exceptions

Compound interest compound(r,p) 0 to +∞ I X - - D

Annuity annuity(r,p) 0 to +∞ I X - - D

Table E-18 Error and gamma functions

Compute Syntax Valid input range Exceptions

error erf(x)  to +∞ - X - U -

1 – error erfc(x)  to +∞ - X - U -

Γ(x) gamma(x) 0 to +∞ I X O - -

ln(|Γ(x)|) lgamma(x) 0 to +∞ I X O - -

Table E-19 Miscellaneous functions

Compute Syntax Valid input range Exceptions

Create NaN nan(tagp) character string - - - - -

Next representable 
number after x in 
direction of y 

nextafterd(x,y)  to +∞ - X O U -

Hypotenuse hypot(x,y)  to +∞ - X O U -

Random number 
generator

randomx(&x) - - - - -

∞−

∞−

∞−

∞−

∞−

∞−

∞−

∞−

1 to 2
31

2−
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Floating-Point Data Formats F-1

PowerPC Assembly-Language 
Numerics Reference

This appendix provides a reference for the numeric implementation in PowerPC 

assembly language. It summarizes the data formats available, how to determine the 

floating-point class for a value, the FPSCR, instructions that access the FPSCR, and 

instructions that perform floating-point operations and the exceptions they might raise.

Floating-Point Data Formats

Figure F-1 Floating-point data formats

† bias = 127 for single format, 1023 for double format.
‡ max = 255 for single format, 2047 for double format.
§ minexp = –126 for single format, –1022 for double format.

Table F-1 Interpreting floating-point values

If biased† 
exponent e is: 

And 
fraction f is: Then value v is: And class of v is:

‡ (any) Normalized number

§ Denormalized 
number

Zero

Infinity

NaN

0 e max< < v 1−( ) s
2

e bias−( )
1.f( )××=

e 0= f  0≠ v 1−( ) s
2

minexp
0.f( )××=

e 0= f 0= v 1−( ) s
0×=

e max= f 0= v 1−( ) s ∞×=

e max= f  0≠ v NaN=
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F-2 Floating-Point Status and Control Register

Floating-Point Status and Control Register

Table F-2 Bit assignments for FPSCR fields 

FPSCR
field Bit Meaning if set

0  0 Exception summary

 1 Exception enable summary

 2 Invalid-operation exception summary

 3 Overflow exception

1  4 Underflow exception

 5 Divide-by-zero exception

 6 Inexact exception

 7 Invalid-operation exception; signaling NaN as input

2  8 Invalid-operation exception;  

 9 Invalid-operation exception; 

10 Invalid-operation exception;  

11 Invalid-operation exception;  

3 12 Invalid-operation exception; comparison operation

13 Fraction field rounded

14 Fraction field inexact

15 Class descriptor 

4 16 < or < 0 

17 > or > 0

18 = or = 0

19 Unordered or NaN 

5 20 Reserved 

21 Invalid-operation exception; software request (not implemented in 
MPC601) 

22 Invalid-operation exception; square root (not implemented in 
MPC601)

23 Invalid-operation exception; convert-to-integer operation

continued

∞ ∞−

∞ ∞⁄

0 0⁄

0 ∞×
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Floating-Point Status and Control Register F-3

6 24 Invalid-operation exception enable/disable

25 Overflow exception enable/disable

26 Underflow exception enable/disable

27 Divide-by-zero exception enable/disable

7 28 Inexact exception enable/disable

29 Reserved

30 Rounding direction 

31 Rounding direction

Table F-3 Rounding direction bits in the FPSCR

Modes Bits

30 31

To-nearest 0 0

Upward 1 0

Downward 1 1

Toward-zero 0 1

Table F-4 Class and sign inquiry bits in the FPSCR

Class/sign Bits

15 16 17 18 19

+0 0 0 0 1 0

1 0 0 1 0

Positive normalized number 0 0 1 0 0

Negative normalized number 0 1 0 0 0

Positive denormalized number 1 0 1 0 0

Negative denormalized number 1 1 0 0 0

+∞ 0 0 1 0 1

0 1 0 0 1

Quiet NaN 1 0 0 0 1

Table F-2 Bit assignments for FPSCR fields (continued)

FPSCR
field Bit Meaning if set

0−

∞−
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F-4 Instructions

Instructions

Note

Throughout the tables that follow, in the Exceptions column, I = invalid; 
X = inexact; O = overflow; U = underflow; D = divide by zero. In the 
Instructions column, * = append dot (.) to instruction name to update 
CR1. ◆

† If GPR or GPR1 is 0, the value 0 is used instead of the contents of the register.
‡ Converts single to double format automatically.

Table F-5 FPSCR instructions

Instruction Description SRC DST Exceptions

mcrfs DST, SRC DST ← (SRC) FPSCR field CR field - - - - -

mffs* DST DST ← (FPSCR) FPSCR FPR - - - - -

mtfsf* DST, SRC DST ← SRC FPR FPSCR field - - - - -

mtfsfi* DST, n DST ← n 16-bit signed int FPSCR field - - - - -

mtfsb1* DST DST ← 1 — FPSCR bit - - - - -

mtfsb0* DST DST ← 0 — FPSCR bit - - - - -

Table F-6 Load instructions

Instruction Description† SRC DST Exceptions

lfd DST, n(GPR) DST ← (n + (GPR)) Memory FPR - - - - -

lfdu DST, n(GPR) DST ← (n + (GPR)) 
GPR ← n + (GPR)

Memory FPR - - - - -

lfdx DST, GPR1, GPR2 DST ← ((GPR1) + (GPR2)) Memory FPR - - - - -

lfdux DST, GPR1, GPR2 DST ← ((GPR1) + (GPR2)) 
GPR1 ← (GPR1) + (GPR2) 

Memory FPR - - - - -

lfs DST, n(GPR) DST ← (n + (GPR)) ‡ Memory FPR - - - - -

lfsu DST, n(GPR) DST ← (n + (GPR)) 
GPR ← n + (GPR)‡

Memory FPR - - - - -

lfsx DST, GPR1, GPR2 DST ← ((GPR1) + (GPR2))‡ Memory FPR - - - - -

lfsux DST, GPR1, GPR2 DST ← ((GPR1) + (GPR2)) 
GPR1 ← (GPR1) + (GPR2) ‡

Memory FPR - - - - -
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† If GPR or GPR1 is 0, the value 0 is used instead of the contents of the register.
‡ Converts double to single automatically.

Table F-7 Store instructions

Instruction Description† SRC DST Exceptions

stfd SRC, n(GPR) n + (GPR)← (SRC) FPR Memory - - - - -

stfdu SRC, n(GPR) n + (GPR)← (SRC) 
GPR ← n + (GPR)

FPR Memory - - - - -

stfdx SRC, GPR1, GPR2 (GPR1) + (GPR2)← (SRC) FPR Memory - - - - -

stfdux SRC, GPR1, GPR2 (GPR1) + (GPR2)← (SRC) 
GPR1 ← (GPR1) + (GPR2) 

FPR Memory - - - - -

stfs SRC, n(GPR) n + (GPR)← (SRC) ‡ FPR Memory - - - - -

stfsu SRC, n(GPR) n + (GPR)← (SRC) 
GPR ← n + (GPR)‡

FPR Memory - - - - -

stfsx SRC, GPR1, GPR2 (GPR1) + (GPR2)← (SRC) ‡ FPR Memory - - - - -

stfsux SRC, GPR1, GPR2 (GPR1) + (GPR2)← (SRC) 
GPR1 ← (GPR1) + (GPR2) ‡

FPR Memory - - - - -

Table F-8 Conversions to integer format

Instruction Description SRC DST Exceptions

fctiw* DST, SRC DST ← (SRC) rounded to 32-bit int FPR GPR I X - - -

fctiwz* DST, SRC DST ← (SRC) truncated to 32-bit int FPR GPR I X - - -

Table F-9 Conversions from double to single format

Instruction Description SRC DST Exceptions

frsp* DST, SRC DST ← (SRC) rounded to single format FPR FPR I X O U -

Table F-10 Comparison instructions

Instruction Description SRC DST Exceptions

fcmpo DST, SRC1, SRC2 DST ← (SRC1) compare (SRC2) FPRs CR field I - - - -

fcmpu DST, SRC1, SRC2 DST ← (SRC1) compare (SRC2) FPRs CR field - - - - -
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F-6 Instructions

Table F-11 Arithmetic instructions

Instruction Description SRC DST Exceptions

fadd* DST, SRC1, SRC2 DST ← (SRC1) + (SRC2) FPRs FPR I X O U -

fsub* DST, SRC1, SRC2 DST ← (SRC1) – (SRC2) FPRs FPR I X O U -

fmul* DST, SRC1, SRC2 DST ← (SRC1) × (SRC2) FPRs FPR I X O U -

fdiv* DST, SRC1, SRC2 DST ← (SRC1) / (SRC2) FPRs FPR I X O U D

Table F-12 Multiply-add instructions

Instruction Description SRC DST Exceptions

fmadd* DST, SRC1, SRC2, SRC3 DST ← (SRC1) × (SRC2) 
+ (SRC3)

FPRs FPR I X O U -

fmsub* DST, SRC1, SRC2, SRC3 DST ← (SRC1) × (SRC2) 
– (SRC3)

FPRs FPR I X O U -

fnmadd* DST, SRC1, SRC2, SRC3 DST ← – ((SRC1) × (SRC2) 
+ (SRC3))

FPRs FPR I X O U -

fnmsub* DST, SRC1, SRC2, SRC3 DST ← – ((SRC1) × (SRC2) 
– (SRC3))

FPRs FPR I X O U -

Table F-13 Move instructions

Instruction Description SRC DST Exceptions

fabs* DST, SRC DST ← |(SRC)| FPR FPR - - - - -

fmr* DST, SRC DST ← (SRC) FPR FPR - - - - -

fneg* DST, SRC DST ← – (SRC) FPR FPR - - - - - 

fnabs* DST, SRC DST ← – |(SRC)| FPR FPR - - - - -
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680x0-based Macintosh computer Any 
computer containing a 680x0 central processing 
unit that runs Macintosh system software. See 
also PowerPC processor-based Macintosh 
computer.

ANSI X3J11.1 A branch of the American 
National Standards Institute (ANSI) that is 
working on a numerics standard for the C 
programming language. This group is also called 
the Numerical C Extensions Group (NCEG) and 
has produced the Floating-Point C Extensions 
(FPCE) technical report.

antisymmetric Used to describe a function 
whose graph is not symmetrical across the y-axis; 
that is func(x) ≠ func(–x) for all x.

atomic operations Operations that pass extra 
information back to their callers by signaling 
exceptions but that hide internal exceptions, 
which might be irrelevant or misleading.

bias A number added to the binary exponent of 
a floating-point number so that the exponent 
field will always be positive. The bias is 
subtracted when the floating-point value is 
evaluated.

binade The collection of numbers that lie 
between two successive powers of 2.

binary floating-point number A collection of 
bits representing a sign, an exponent, and a 
significand. Its numerical value, if any, is the 
signed product of the significand and 2 raised to 
the power of the exponent.

complex expression An expression made up of 
more than one simple expression, that is, an 
expression with more than one floating-point 
operation.

Condition Register A 32-bit PowerPC register 
used to summarize the states of the fixed-point 
and floating-point processors and to store results 
of comparison operations.

decimal format structure A data type for 
specifying the formatting for decimal (base 10) 
numbers (of conversions). It specifies the decimal 
number’s style and number of digits. It is defined 
by the decform data type.

decimal structure A data type for storing 
decimal data. It consists of three fields: sign, 
exponent, and significand (a C string). It is 
defined by the decimal data type.

default environment The environment settings 
when a PowerPC Numerics implementation 
starts up: rounding is to nearest and all exception 
flags are clear.

denormalized number A nonzero binary 
floating-point number whose significand has an 
implicit leading bit of 0 and whose exponent is 
the minimum exponent for the number’s data 
format. Also called denorm. See also normalized 
number.

divide-by-zero exception A floating-point 
exception that occurs when a finite, nonzero 
number is divided by zero or some other 
improper operation on zero has occurred.

double format A 64-bit application data format 
for storing floating-point values of up to 15- or 
16-decimal digit precision. 

double-double format A 128-bit application 
data format made up of two double-format 
numbers. It has the same range as the double 
format but much greater precision. 

environmental access switch A switch, 
recommended in the FPCE technical report, that 
specifies whether a program accesses the 
rounding direction modes and exception flags.

environmental controls The rounding direction 
modes and the exception flags.

Glossary
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evaluation format The data format used to 
evaluate the result of an expression. The 
evaluation format must be at least as wide as the 
expression’s semantic type. (It may be the same 
as the semantic type.) 

exception An error or other special condition 
detected by the microprocessor in the course of 
program execution. The floating-point exceptions 
are invalid, underflow, overflow, divide-by-zero, 
and inexact.

exception flag Each exception has a flag that 
can be set, cleared, and tested. It is set when its 
respective exception occurs and stays set until 
explicitly cleared.

exponent The part of a binary floating-point 
number that indicates the power to which 2 is 
raised in determining the value of the number. 
The wider the exponent field in a numeric data 
format, the greater range the format will handle.

expression evaluation method The method by 
which an evaluation format is determined for an 
expression.

floating-point operation An operation that is 
performed on numbers in floating-point formats. 
The IEEE standard requires that a numerics 
environment support addition, subtraction, 
multiplication, division, square root, remainder, 
and round-to-integer as the basic floating-point 
arithmetic operations.

Floating-Point Status and Control Register 
(FPSCR) A 32-bit PowerPC register used to 
store the floating-point environment.

flush-to-zero system A system that excludes 
denormalized numbers. Results smaller than the 
smallest normalized number are rounded to zero.

FPCE technical report A report authored by the 
Numerical C Extensions Group (ANSI X3J11.1) 
that proposes a standard for floating-point 
operations in the C programming language.

FPSCR See Floating-Point Status and Control 
Register.

fraction A field in a floating-point data format 
that stores all but the leading bit of the 
significand of a floating-point number.

gradual underflow A computer system that 
includes denormalized numbers.

IEEE standard A term used in this book to 
mean IEEE Standard 754. 

IEEE Standard 754 A standard that defines 
how computers should perform binary 
floating-point arithmetic.

IEEE Standard 854 A standard that defines 
how computers should perform radix- 
independent floating-point arithmetic.

inexact exception A floating-point exception 
that occurs when the exact result of a 
floating-point operation must be rounded.

Infinity A special value produced when a 
floating-point operation should produce a 
mathematical infinity or when a floating-point 
operation attempts to produce a number greater 
in magnitude than the largest representable 
number in a given format. Infinities are signed.

integer types System types for integral values. 
Integer types typically use 16- or 32-bit 
two’s-complement integers. Integer types are not 
PowerPC Numerics formats but are available to 
PowerPC Numerics users.

integral value A value, perhaps in a numeric 
data format, that is exactly equal to a 
mathematical integer. For example, –2, –1, 0, 1, 2, 
and so on.

invalid exception A floating-point exception 
that occurs if an operand is invalid for the 
operation being performed.

invalid-operation exception See invalid 
exception.

Machine State Register A 32-bit PowerPC 
supervisor-level register that records the state of 
the processor, including if floating-point 
instructions and floating-point exceptions are 
enabled.

mantissa See significand.

MathLib See PowerPC Numerics library.
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minimum evaluation format The narrowest 
format in which a floating-point operation can be 
performed. Each implementation of PowerPC 
Numerics defines its own minimum evaluation 
format.

multiply-add instruction A type of instruction 
unique to the PowerPC architecture. 
Multiply-add instructions perform a multiply 
plus an addition or subtraction operation with at 
most a single roundoff error.

NaN (Not-a-Number) A special bit pattern 
produced when a floating-point operation cannot 
produce a meaningful result (for example, 0/0 
produces a NaN). NaNs propagate through 
arithmetic operations.

NCEG (Numerical C Extensions Group) See 
ANSI X3J11.1.

nextafter functions Functions that return the 
next value after the input value that is 
representable in one of the floating-point data 
formats. For example, nextafterd(0, +∞) returns 
the value that comes immediately after 0 in the 
direction of +∞ in double format. 

normalized number A binary floating-point 
number in which all significand bits are 
significant: that is, the leading bit of the 
significand is 1. Compare denormalized number.

Numerical C Extensions Group (NCEG) See 
ANSI X3J11.1.

overflow exception A floating-point exception 
that occurs when the magnitude of a 
floating-point result is greater than the largest 
finite number that the destination data format 
can represent.

PowerPC Numerics The floating-point 
environment on PowerPC processor-based 
Macintosh computers. This environment 
provides floating-point data formats and 
operations plus some advanced numerical 
functions, such as logarithmic and trigonometric 
functions.

PowerPC Numerics library A C library that 
implements floating-point transcendental 
functions and contains type definitions and 
macros used for floating-point operations. It is 
contained in the file MathLib.

PowerPC processor Any member of the family 
of PowerPC microprocessors. The MPC601 
processor is the first PowerPC central processing 
unit.

PowerPC processor-based Macintosh 
computer Any computer containing a PowerPC 
central processing unit that runs Macintosh 
system software. See also 680x0-based 
Macintosh computer.

precision The number of digits required to 
accurately represent a number. For example, the 
value 3.2 requires two decimal digits of precision, 
and the value 3.002 requires four decimal digits. 
In numeric data formats, the precision is equal to 
the number of bits (both implicit and explicit) in 
the significand.

quiet NaN A NaN that propagates through 
arithmetic operations without signaling an 
exception. 

rounding An action performed when a result of 
an arithmetic operation cannot be represented 
exactly in a numeric data format. With rounding, 
the computer changes the result to a close value 
that can be represented exactly. 

rounding direction modes Modes that specify 
the direction a computer will round when the 
result of an arithmetic operation cannot be 
represented exactly in a numeric data format. 
Under PowerPC Numerics, the computer 
resolves rounding decisions in one of the four 
directions chosen by the user: to nearest (the 
default), upward, downward, and toward zero.

roundoff error The difference between the 
exact result of an IEEE arithmetic operation and 
the result as it is represented in the numeric data 
format if the result has been rounded.

SANE See Standard Apple Numerics 
Environment.

semantic type The widest type of the operands 
of an expression.

signaling NaN A NaN that signals an invalid 
exception when the NaN is an operand of an 
arithmetic operation. If no halt occurs, a quiet 
NaN is produced for the result. No PowerPC 
Numerics operation creates signaling NaNs.
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sign bit The bit of a single, double, or 
double-double number that indicates the 
number’s sign: 0 indicates a positive number; 1, a 
negative number.

significand The part of a binary floating-point 
number that indicates where the number falls 
between two successive powers of 2. The wider 
the significand field in a numeric format, the 
more precision the format has.

simple expression An expression containing 
one floating-point operation.

single format A 32-bit application data format 
for storing floating-point values that have a 
precision of up to seven or eight decimal digits. It 
is used by engineering applications, among 
others.

Standard Apple Numerics Environment 
(SANE) The floating-point environment on 
680x0-based Macintosh computers. This 
environment provides floating-point data 
formats and operations as well as some advanced 
numerical functions such as logarithmic and 
trigonometric functions.

sticky Used to describe a condition in which a 
bit stays set until it is explicitly cleared. 
Floating-point exception flags in the FPSCR are 
sticky, so if one instruction sets an exception flag 
and another instruction is performed before the 
flag is tested, it is impossible to tell which 
instruction caused the exception.

subnormal number A denormalized number.

symmetric Used to describe a function whose 
graph looks the same on both sides of the y-axis; 
that is, func(x) = func(–x) for all x.

tiny Used to describe a number whose 
magnitude is smaller than the smallest positive 
normalized number in the format of the number.

transcendental functions Functions that can be 
used as building blocks in numerical functions. 
All of the functions contained in the PowerPC 
Numerics library are transcendental functions.

trigonometric functions Functions that 
perform trigonometric operations, such as cosine, 
sine, and tangent.

truncate To chop off the fractional part of a real 
number so that only the integer part remains. For 
example, if the real number 1.99999999999 is 
truncated, the truncated value is 1.

underflow exception An exception that occurs 
when the result of an operation is both tiny and 
inexact.

usual arithmetic conversions Automatic 
conversions performed in the C programming 
language. The ANSI C specification defines these 
conversions.

widest-need evaluation An evaluation method 
in which the widest format of all of the operands 
in a complex expression is used as the format in 
which the expression is evaluated.
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Index

Symbols

/ (divide) operator 6-9 to 6-10
– (minus) operator 6-6 to 6-7
!< (not less than) operator 6-4
!<= (not less than or equal) operator 6-4
!<> (not less or greater than) operator 6-4
!<>= (unordered) operator 6-4
!= (not equal) operator 6-4
!> (not greater than) operator 6-4
!>= (not greater than or equal) operator 6-4
* (multiply) operator 6-8
+ (plus) operator 6-5 to 6-6
< (less than) operator

assembler 12-7
defined 6-4

<= (less than or equal to) operator 6-4
<> (less or greater than) operator 6-4
<>= (ordered) operator 6-4
== (equal to) operator

assembler 12-7
defined 6-4

> (greater than) operator
assembler 12-7
defined 6-4

>= (greater than or equal to) operator 6-4
∞ See Infinities

Numerals

±0 See zero
680x0-based Macintosh computers

numerics environment 1-13
porting from A-1 to A-10

8087 coprocessor B-3

A

absolute value 4-5
assembler 14-7
compiler 10-11 to 10-12

accessing the environment
assembler instructions 12-14 to 12-15
C functions 8-9 to 8-13
C functions, prerequisite D-1 to D-2

accuracy
of basic arithmetic operations 1-4
decimal to binary conversions 5-7 to 5-8

acos function 10-33 to 10-34
acosh function 10-42 to 10-43
addition 6-5 to 6-6

assembler 14-4
invalid exception, generating 4-5

address mode 11-5
AINT B-1
annuity function 10-48 to 10-50
ANSI X3J11.1 1-12 to 1-13
antilog functions. See exponential functions
APDA xix
arc cosine 10-33 to 10-34
arc cosine, hyperbolic 10-42 to 10-43
arc sine 10-34 to 10-35
arc sine, hyperbolic 10-44 to 10-45
arc tangent 10-36 to 10-37, 10-37 to 10-38
arc tangent, hyperbolic 10-45 to 10-46
argument reduction 6-11, 10-30
arithmetic assembler instructions 14-4 to 14-5
arithmetic operations 6-5 to 6-14

addition 6-5 to 6-6
assembler 14-4 to 14-7
automatic type conversions 3-10
division 6-9 to 6-10
multiplication 6-8
remainder 6-11 to 6-13
round-to-integer 6-13 to 6-14
square root 6-10 to 6-11
subtraction 6-6 to 6-7

arithmetic, IEEE standard 1-3 to 1-13, 6-5 to 6-14
asin function 10-34 to 10-35
asinh function 10-44 to 10-45
assembler 11-3 to 14-8

conversions 13-3 to 13-6
data formats 11-3
environmental access 12-3 to 12-15
operations supported 14-3 to 14-8

atan function 10-36 to 10-37
atan2 function 10-37 to 10-38
atanh function 10-45 to 10-46
atomic operations 8-13
auxiliary functions 6-14 to 6-15

assembler 14-8
exponent field, return 10-27 to 10-28
nan function 7-5
nextafter functions 10-56 to 10-58
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auxiliary functions (continued)
scaling 10-19 to 10-20
sign manipulation 10-10 to 10-11

B

base 2 exponential 10-13 to 10-14
BASIC B-1
beq assembler instruction 12-6
bge assembler instruction 12-6
bgt assembler instruction 12-6
bias of exponents 2-5
binary logarithm 10-26 to 10-27
binary to decimal conversions 5-7 to 5-12

C functions 9-17 to 9-19
double-double format 5-9 to 5-10
strings 5-12
structures 5-10 to 5-11, 9-13 to 9-15

ble assembler instruction 12-6
blt assembler instruction 12-6
bne assembler instruction 12-6
bng assembler instruction 12-6
bnl assembler instruction 12-6
bnu assembler instruction 12-6
branch assembler instructions 12-6
bta assembler instruction 12-6
bun assembler instruction 12-6

C

C language
compilers, FPCE recommendations for D-1 to D-9
conformance to IEEE 754 1-12 to 1-13
constants, floating-point D-3, D-5 to D-7
conversions 9-3 to 9-25
data types, new 7-3 to 7-8
double type. See double format
environmental controls 8-3 to 8-15
expression evaluation D-3 to D-9
float type. See single format
function calls, conversions during 3-8
long double type. See double-double format
transcendental functions 10-3 to 10-63

CDC computers B-2
ceil function 9-6 to 9-7
classcomp SANE function A-6
classdouble SANE function A-6
classes of floating-point numbers 2-5 to 2-11

assembler 12-7 to 12-9
compiler 7-4 to 7-5

classextended SANE function A-6

classfloat SANE function A-6
common logarithm 10-23 to 10-24
comp data type (porting) A-4
comparison functions 10-3 to 10-9
comparison operations. See comparisons
comparison operators 6-3 to 6-5
comparisons 6-3 to 6-5

assembler (branch instructions) 12-6
assembler instructions 14-3 to 14-4
C functions 10-3 to 10-9
invalid exception, generating 4-5
involving Infinities 6-3
involving NaNs 6-3

compatibility across architectures A-9 to A-10
compiler optimizations

and evaluation of floating-point constant 
expressions D-5

and floating-point environment D-1 to D-2
and widest-need evaluation D-5

complementary error function 10-52 to 10-53
compound function 10-46 to 10-48
computer approximation of real numbers 1-3
Condition Register 11-4, 12-5 to 12-6
constants, floating-point

evaluation D-5 to D-7
hexadecimal D-3

contraction operators D-2 to D-3
controlling the environment

assembler instructions 12-3 to 12-15
C functions 8-3 to 8-15

conversions 5-3 to 5-12
accuracy of decimal to binary 5-7 to 5-8
assembler 13-3 to 13-6
between decimal formats 5-10, 9-19 to 9-23
between floating-point formats 5-5 to 5-7, 9-13, 13-5
binary to decimal 5-7 to 5-12, 9-13 to 9-19
C functions 9-3 to 9-25
ceil function 9-6 to 9-7
decimal to binary 5-7 to 5-12

C functions 9-13 to 9-19
double-double format 5-9 to 5-10

double-double to decimal 5-9 to 5-10
during expression evaluation 3-3 to 3-11
floating-point to integer 5-3 to 5-5, 6-13 to 6-14, 9-3 

to 9-11, 13-4 to 13-5
floor function 9-7 to 9-8
inexact exception 5-4, 5-5, 5-7
integer to floating-point 5-3 to 5-5, 9-12, 13-3 to 13-4
invalid exception 4-5, 5-4
nearbyint function 9-9 to 9-10
overflow exception 5-5, 5-7
rint function 6-13 to 6-14
rinttol function 9-3 to 9-4
round function 9-10 to 9-11
roundtol function 9-5 to 9-6
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SANE A-1 to A-2
trunc function 9-11 to 9-12
underflow exception 5-5, 5-7

copysign function 10-10 to 10-11
invalid exception 4-5
SANE A-5

copysignl function 10-10 to 10-11
cos function 10-30 to 10-31
cosh function 10-39 to 10-40
cosine 10-30 to 10-31
cosine, hyperbolic 10-39 to 10-40
CR. See Condition Register
Cray computers B-2
current rounding direction 4-3 to 4-4
nearbyint function 9-9 to 9-10
rint function 6-13 to 6-14
rinttol function 9-3 to 9-4

D

data formats 2-3 to 2-17
assembler 11-3
choosing 2-16
classes of numbers 2-5 to 2-11

assembler 12-7 to 12-9
compiler 7-4 to 7-5

compiler 7-3 to 7-8
converting between 5-5 to 5-7, 9-13, 13-5
diagrams 2-11 to 2-15
diagrams, symbols used in 2-11
double format 2-13 to 2-14
double-double format 2-14 to 2-15
expression evaluation format 3-3
minimum evaluation format 3-3 to 3-5, D-4
precision of 2-16 to 2-17
range of 2-16 to 2-17
SANE A-1, A-4 to A-5
semantic type 3-3
single format 2-11 to 2-12
widening for efficiency 7-3 to 7-4, A-9

dec2f function 9-16 to 9-17
dec2l function 9-16 to 9-17
dec2num function 9-16 to 9-17
dec2numl function 9-16 to 9-17
dec2s function 9-16 to 9-17
dec2str function 9-19 to 9-21
decform structure 5-11

definition 9-14 to 9-15
digits field 9-14 to 9-15, 9-18, 9-20
style field 9-14 to 9-15

decimal data, reading and writing 5-8 to 5-10
decimal formatting structure 5-11, 9-14 to 9-15
decimal fractions 1-3

decimal output
fixed-style 9-15
floating-style 9-14 to 9-15

decimal strings 5-12
decimal structure 5-10 to 5-11
decimal structure 5-10 to 5-11

definition 9-13 to 9-14
exp field 9-13 to 9-14, 9-15, 9-17, 9-18
sgn field 9-13 to 9-14, 9-15
sig field 9-14, 9-16 to 9-17, 9-18, 9-20

decimal to binary conversions 5-7 to 5-12
C functions 9-16 to 9-17
double-double format 5-9 to 5-10
strings 5-12
structures 5-10 to 5-11, 9-13 to 9-15

decimal to decimal conversions 5-10, 9-19 to 9-23
DECIMAL_DIG constant A-10
default environment 4-4
default rounding direction 4-3
denormalized numbers 2-6 to 2-7

density of 2-6
double-double format 2-15
SANE A-2

DENORMALNUM SANE constant A-6
density of denormalized numbers 2-6
density of single-precision numbers 2-5
difference operation

assembler 14-4
defined 6-6 to 6-7

difference, positive function 10-4 to 10-5
DIVBYZERO SANE constant A-7
/ (divide) operator 6-9 to 6-10
divide-by-zero exception

assembler 12-11
defined 4-6

division 6-9 to 6-10
assembler 14-4
invalid exception, generating 4-5
by zero 1-9

double format 2-13 to 2-14
compiler 2-4, 7-3
converting from double-double format 5-7
converting from single format

assembler 13-5
defined 5-5

converting to double-double format 5-7
converting to single format

assembler 13-5 to 13-6
defined 5-5

diagram 2-13
diagram, symbols used in 2-11
as minimum evaluation format D-4
precision 2-16
range 2-14
representation of values 2-13
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double type. See double format
DOUBLE_SIZE macro A-10
double_t typedef 7-3 to 7-4

for compatibility A-9
in transcendental function declarations A-4

double-double format 2-14 to 2-15
compared to extended format 2-3 to 2-4
compiler 2-4, 7-3
converting from double format 5-7
converting from single format 5-5 to 5-7
converting to decimal 5-9 to 5-10
converting to double format 5-7
converting to single format 5-5 to 5-7
diagram 2-14
diagram, symbols used in 2-11
interpretation of values 2-14 to 2-15
as minimum evaluation format D-4, D-5
precision 2-14 to 2-15, 2-16
range 2-15

downward rounding
defined 4-3
floor function 9-7 to 9-8

DOWNWARD SANE constant A-7

E

elementary functions. See transcendental functions
environment 4-3 to 4-6

accessing
assembler instructions 12-14 to 12-15
C functions 8-9 to 8-13
C functions prerequisite D-1 to D-2

assembler 12-3 to 12-15
C functions, types 8-3 to 8-15
default 4-4
ignoring D-2
restoring

assembler 12-14 to 12-15
compiler 8-11 to 8-12, 8-12 to 8-13

SANE A-3, A-7 to A-8
saving

assembler 12-14 to 12-15
compiler 8-10, 8-10 to 8-11

setting (compiler) 8-11 to 8-12
use B-3

environment SANE type A-7
environmental access switch

defined D-1 to D-2
purpose, note on 8-3

environmental controls 4-3 to 4-6
assembler instructions 12-3 to 12-15
C functions 8-3 to 8-15
SANE A-3, A-7 to A-8

== (equal to) operator
assembler 12-7
defined 6-4

erf function 10-51 to 10-52
erfc function 10-52 to 10-53
error functions 10-51 to 10-56
evaluation format 3-3

minimum 3-3, D-4
widest need 3-5 to 3-7

evaluation rules B-2
exception handling 1-7 to 1-9
exception SANE type A-7
exceptional events 1-6 to 1-9
exceptions 1-6 to 1-9

assembler instructions 12-10 to 12-13
C functions 8-5 to 8-9
clearing

assembler 12-11
compiler 8-6, 8-10 to 8-11

in Condition Register 12-6
descriptions of 4-4 to 4-6
divide-by-zero 4-6
enabling and disabling (assembler) 12-12
inexact 4-6
invalid 4-5
overflow 4-5
preserving

assembler 12-14 to 12-15
compiler 8-10 to 8-11, 8-12 to 8-13

raising
assembler 12-11
compiler 8-7 to 8-8

restoring (compiler) 8-8
saving

assembler 12-14 to 12-15
compiler 8-7, 8-10 to 8-11

setting
assembler 12-11
compiler 8-7 to 8-8, 8-12 to 8-13

spurious 8-13
testing

assembler 12-12 to 12-13
compiler 8-8 to 8-9

underflow 4-5
exp function 10-12 to 10-13
exp1 SANE function A-6
exp2 function 10-13 to 10-14
expm1 function 10-14 to 10-15
exponent

defined 2-5
determining value of 10-20 to 10-21, 10-27 to 10-28

exponential functions 10-12 to 10-20
base 2 exponential 10-13 to 10-14
natural exponential 10-12 to 10-13
natural exponential – 1 10-14 to 10-15
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expression evaluation format 3-3
expression evaluation methods 3-3 to 3-11

compared 3-8 to 3-11
compiler D-3 to D-9
examples 3-8 to 3-11
floating-point constants D-5 to D-7
minimum evaluation format only 3-3 to 3-5, D-4
SANE A-2
widest-need evaluation 3-5 to 3-6, D-5

extended data type A-5
compared to double-double format 2-3 to 2-4
in definitions of float_t and double_t 7-4
in transcendental function declarations A-4

F

fabs assembler instruction 14-7
fabs function 4-5, 10-11 to 10-12
fabsl function 10-11 to 10-12
fadd assembler instruction 14-4 to 14-5
fcmpo assembler instruction 14-3 to 14-4
fcmpu assembler instruction 14-3 to 14-4
fctiw assembler instruction 13-4 to 13-5
fctiwz assembler instruction 13-4 to 13-5
fdim function 10-4 to 10-5
fdiv assembler instruction 14-4 to 14-5
FE_ALL_EXCEPT constant 8-6
FE_DFL_ENV constant 8-10
FE_DIVBYZERO constant 8-6
FE_DOWNWARD constant 8-3
FE_INEXACT constant 8-6
FE_INVALID constant 8-6
FE_OVERFLOW constant 8-6
FE_TONEAREST constant 8-3
FE_TOWARDZERO constant 8-3
FE_UNDERFLOW constant 8-6
FE_UPWARD constant 8-3
feclearexcept function 8-6
fegetenv function

definition 8-10
difference from feholdexcept function 8-11

fegetexcept function
definition 8-7
with fesetexcept function 8-8

fegetround function
definition 8-3 to 8-4
with fesetround function 8-4, 8-5

feholdexcept function 8-10 to 8-11
fenv_access pragma option D-1 to D-2
fenv_t type 8-10
fenv.h file 8-3 to 8-15, C-12 to C-13
feraiseexcept function 8-7 to 8-8
fesetenv function 8-11 to 8-12

fesetexcept function 8-8
fesetround function 8-4 to 8-5
fetestexcept function 8-8 to 8-9
feupdateenv function

definition 8-12 to 8-13
with feholdexcept function 8-11

fexcept_t type 8-6
financial functions 10-46 to 10-50
float type. See single format
float_t typedef 7-3 to 7-4, A-9
floating-point constants

evaluation D-5 to D-7
hexadecimal D-3

floating-point data formats. See data formats
floating-point environment. See environment
floating-point exceptions. See exceptions
floating-point expressions, evaluating 3-3 to 3-11, D-3 

to D-9
floating-point numbers

classes of 2-5 to 2-11
assembler 12-7 to 12-9
compiler 7-4 to 7-5

converting to integer 6-13 to 6-14
integers, converting to 5-3 to 5-5

assembler 13-4 to 13-5
compiler 9-3 to 9-11
truncating 4-3

splitting 10-28 to 10-29
floating-point registers 11-3
floating-point result flags 12-7
Floating-Point Status and Control Register (FPSCR). 

See FPSCR
floating-point values, interpreting 2-4 to 2-11
floating-point variables, initialization D-7
floor function 9-7 to 9-8
flush-to-zero systems 2-6
fmadd assembler instruction 14-6 to 14-7
fmax function 10-5 to 10-6
fmin function 10-6 to 10-7
fmod function 6-11 to 6-13
fmr assembler instruction 14-7
fmsub assembler instruction 14-6 to 14-7
fmul assembler instruction 14-4 to 14-5
fnabs assembler instruction 14-7
fneg assembler instruction 14-7
fnmadd assembler instruction 14-6 to 14-7
fnmsub assembler instruction 14-6 to 14-7
format conventions for this book xviii to xix
formats. See data formats
formatters, numeric 9-19 to 9-21
formatting output

fixed-style decimal 9-15
floating-style decimal 9-14 to 9-15

Fortran B-1, B-2, B-3
__FP__  macro A-10
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fp_contract pragma D-2 to D-3
FPCE technical report 1-12 to 1-13

compiler, recommendations for D-1 to D-9
conversions 9-3 to 9-25
data types 7-3
environmental access 8-3 to 8-15
expression evaluation D-3 to D-9
transcendental functions 10-3 to 10-63

fpclassify macro 7-4
fp.h file C-1 to C-11

functions 9-3 to 9-25, 10-3 to 10-63
porting to A-4 to A-8

FPSCR 11-4
exception bits 12-10 to 12-11
format 12-3 to 12-5
manipulation 12-3 to 12-15
result flags 12-7
rounding direction 12-9 to 12-10

fp_wide_function_parameters pragma D-9
fp_wide_function_returns pragma D-8
fp_wide_variables pragma D-9
fraction field

defined 2-3
determining value of 10-20 to 10-21

frexp function 10-20 to 10-21
frsp assembler instruction 13-5
fsub assembler instruction 14-4 to 14-5
functions 6-3 to 6-15

auxiliary 6-14 to 6-15
comparison 10-3 to 10-9
error 10-51 to 10-56
exponential 10-12 to 10-20
financial 10-46 to 10-50
gamma 10-51 to 10-56
hyperbolic 10-39 to 10-46
logarithmic 10-20 to 10-29
sign manipulation 10-9 to 10-12
trigonometric 10-29 to 10-38

G

gamma function 10-53 to 10-54
gamma functions 10-51 to 10-56
getenvironment SANE function A-8
getround SANE function A-7
gradual underflow 2-7
> (greater than) operator

assembler 12-7
defined 6-4

>= (greater than or equal to) operator 6-4

H

hexadecimal floating-point constants in C D-3
HP Spectrum quad format B-2
hyperbolic functions 10-39 to 10-46
hypot function 10-58 to 10-59
hypotenuse 10-58 to 10-59

I, J, K

IBM Q format B-2
IEEE arithmetic

advantages 1-3 to 1-9
operations 6-5 to 6-14

IEEE data formats 2-3 to 2-4. See also single format, 
double format

IEEE standard xvii
advantages 1-3 to 1-13
arithmetic operations 6-5 to 6-14
auxiliary functions 6-14 to 6-15
C language 1-12 to 1-13
comparisons 6-4
conversions required 5-3
data formats 2-3 to 2-4
exceptions 4-4 to 4-6
rounding direction modes 4-3 to 4-4, 5-4. See also 

rounding direction
rounding precision modes 4-4

IEEE Standard 754. See IEEE standard
IEEE Standard 854 1-3
logb function 10-27
nearbyint function 9-9

IEEE standard arithmetic. See IEEE arithmetic
IEEEDEFAULTENV SANE constant A-7
inexact exception 4-6

assembler 12-11
conversions 5-4, 5-5, 5-7

INEXACT SANE constant A-7
INFINITE SANE constant A-6
Infinities 2-7 to 2-8

as alternative to stopping 1-7, 1-8 to 1-9
comparisons 6-3
converting to decimal 9-18
converting to floating-point 9-17
converting to integer 5-4
converting to string 9-20
double-double format 2-15
negative 2-8
positive 2-8
SANE A-2

INFINITY constant 7-5
initialization of floating-point variables D-7
instant rounding B-2
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INT B-1
integer types 2-8
integers, converting 5-3 to 5-5

assembler 13-3 to 13-4
compiler 9-12
rounding 4-3
truncating 4-3

interpreting floating-point values 2-4 to 2-11
interval arithmetic 1-5
invalid exception 4-5

assembler 12-10
conversions 5-4
signaling NaN, result of 2-8

invalid operation flag B-3
INVALID SANE constant A-7
invalid-operation exception. See invalid exception
inverse operations 1-5 to 1-6
ipower SANE function A-6
isfinite macro 7-4
isnan macro 7-4
isnormal macro 7-4

L

ldexp function 10-16 to 10-17
<> (less or greater than) operator 6-4
< (less than) operator

assembler 12-7
defined 6-4

<= (less than or equal to) operator 6-4
lfd assembler instruction 11-6
lfdu assembler instruction 11-6
lfdux assembler instruction 11-7
lfdx assembler instruction 11-7
lfs assembler instruction 11-6, 13-5
lfsu assembler instruction 11-6, 13-5
lfsux assembler instruction 11-7, 13-5
lfsx assembler instruction 11-7, 13-5
lgamma function 10-55 to 10-56
load assembler instructions 11-5 to 11-7

as conversion operations 13-5
formats 11-5 to 11-6

log function 10-22 to 10-23
log1 SANE function A-6
log10 function 10-23 to 10-24
log1p function 10-24 to 10-25
log2 function 10-26 to 10-27
logarithmic functions 10-20 to 10-29

binary 10-26 to 10-27
common 10-23 to 10-24
log of gamma 10-55 to 10-56
natural 10-22 to 10-23, 10-24 to 10-25

logb function 10-27 to 10-28

long double type. See double-double format
LONG_DOUBLE_SIZE macro A-10

M

MathLib 1-12 to 1-13
conversions 9-3 to 9-25
data types, new 7-3 to 7-8
environmental controls 8-3 to 8-15
expression evaluation extensions D-8, D-8 to D-9
porting to A-4 to A-8
transcendental functions 10-3 to 10-63

maximum function 10-5 to 10-6
MC68881 coprocessor B-3
mcrfs assembler instruction 12-9, 12-12
mffs assembler instruction 12-14
_MIN_EVAL_FORMAT macro D-8
minimum evaluation format 3-3 to 3-5

compared to widest-need evaluation 3-8 to 3-11
compiler recommendations D-4
examples 3-8 to 3-11

minimum function 10-6 to 10-7
– (minus) operator 6-6 to 6-7
mixed formats B-2
modf function 10-28 to 10-29
modulo function 6-12
move assembler instructions 14-7
mtfsb0 assembler instruction 12-11, 12-12
mtfsb1 assembler instruction 12-11, 12-12
mtfsf assembler instruction 12-14
mtfsfi assembler instruction 12-10, 12-12
multiplication 6-8

assembler 14-4
invalid exception, generating 4-5

* (multiply) operator 6-8
multiply-add assembler instructions 14-6 to 14-7

enabling and disabling D-2 to D-3
format 14-6

N

NAN constant 7-5
nan function

PowerPC Numerics 7-5
SANE A-6

NaNs 2-8 to 2-10
as alternative to stopping 1-7, 1-8
comparisons 6-3
converting to decimal 9-18
converting to floating-point 9-17
converting to integer 5-4
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NaNs (continued)
converting to string 9-20
creating 7-5
double-double format 2-15
porting programs B-3
quiet 2-8 to 2-10, 4-5
SANE A-2
signaling 2-8 to 2-10, 4-5, 6-4

natural exponential 10-12 to 10-13
natural exponential minus 1 10-14 to 10-15
natural logarithm 10-22 to 10-23, 10-24 to 10-25
NCEG 1-12 to 1-13
nearbyint function 9-9 to 9-10
negative Infinity. See Infinities
negative zero. See zero
nextafter functions

PowerPC Numerics 10-56 to 10-58
SANE A-6

normalized numbers 2-5 to 2-6
compared to denormalized numbers 2-6
double-double format 2-15

NORMALNUM SANE constant A-6
!= (not equal) operator 6-4
!> (not greater than) operator 6-4
!>= (not greater than or equal) operator 6-4
!<> (not less or greater than) operator 6-4
!< (not less than) operator 6-4
!<= (not less than or equal) operator 6-4
!<>= (unordered) operator 6-4
not unordered comparison 6-4
Not-a-Number. See NaNs
num2dec function

definition 9-17 to 9-19
with dec2str function 9-21

numbers, classes of 2-5 to 2-11
assembler 12-7 to 12-9
compiler 7-4 to 7-5

numclass SANE type A-6
Numerical C Extensions Group 1-12 to 1-13

O

operations 6-3 to 6-15
arithmetic

assembler 14-4 to 14-7
defined 6-5 to 6-14

assembler 14-3 to 14-8
comparison

assembler 12-6, 14-3 to 14-4
defined 6-3 to 6-5

compiler 6-3 to 6-15
conversion

assembler 13-3 to 13-6

compiler 9-3 to 9-25
SANE A-2 to A-3
subject to arithmetic conversions 3-4

optimizations
and evaluation of floating-point constant 

expressions D-5
and floating-point environment D-1 to D-2
and widest-need evaluation D-5

ordered comparison
assembler 14-3
defined 6-4

<>= (ordered) operator 6-4
output

fixed-style decimal 9-15
floating-style decimal 9-14 to 9-15

overflow 4-5
assembler 12-11
conversions 5-5, 5-7

OVERFLOW SANE constant A-7

P

Pascal B-1
PDP-11C B-3
pi constant 10-30
pi SANE function A-6
+ (plus) operator 6-5 to 6-6
porting programs

from SANE A-3 to A-10
from non-Macintosh computers B-1 to B-3

positive difference function 10-4 to 10-5
positive Infinity. See Infinities
positive zero. See zero
pow function

PowerPC Numerics 10-17 to 10-19
SANE A-6

power function 10-17 to 10-19
PowerPC floating-point architecture 11-3 to 14-8

conversions 13-3 to 13-6
data formats 11-3
environmental access 12-3 to 12-15
operations supported 14-3 to 14-8

PowerPC Numerics xvii
advantages 1-3 to 1-9
conversions supported 5-3 to 5-12
data formats 2-3 to 2-17
environmental controls 4-3 to 4-6
expression evaluation 3-3 to 3-11
functions supported 6-3 to 6-15
operations supported 6-3 to 6-15
SANE, compared to 1-13, A-1 to A-10
SANE, porting from A-3 to A-10
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pragmas
fenv_access D-1 to D-2
fp_contract D-2 to D-3
fp_wide_function_parameters D-8 to D-9
fp_wide_function_returns D-8 to D-9
fp_wide_variables D-8 to D-9

precision 1-4
of data formats 2-16 to 2-17
of expression evaluation 3-3 to 3-11

procentry SANE function A-8
procexit SANE function A-8

Q

QNAN SANE constant A-6
quiet NaNs 2-8 to 2-10, 4-5

R

random number generator 10-59 to 10-60
randomx function 10-59 to 10-60
range of data formats 2-16 to 2-17
real numbers

computer approximation 1-3
order of 6-3

recommendations, FPCE for compilers D-1 to D-9
registers

Condition Register 11-4, 12-5 to 12-6
floating-point 11-3
FPSCR 11-4, 12-3 to 12-15
special-purpose 11-4

relation function 10-8 to 10-9
relational operators 6-3 to 6-5
remainder function

defined 6-11 to 6-13
invalid exception, generating 4-5

remquo function 6-11 to 6-13
result flags 12-7
result, tiny 4-5
rint function 6-13 to 6-14
rinttol function 9-3 to 9-4
round function 9-10 to 9-11
round to integer operation 6-13 to 6-14
rounddir SANE type A-7
rounding

defined 1-5 to 1-6
instant B-2

rounding direction 4-3 to 4-4
assembler 12-9 to 12-10
compiler 8-3 to 8-5
control 1-5

current 6-13 to 6-14, 9-3 to 9-4, 9-9 to 9-10
default 4-3
downward 4-3
saving (compiler) 8-3 to 8-4
setting

assembler 12-9 to 12-10
compiler 8-4 to 8-5

to nearest 4-3
toward zero 4-3
upward 4-3

rounding downward
defined 4-3
floor function 9-7 to 9-8

rounding modes. See rounding direction
rounding precision modes 4-4
rounding to integer 4-3
rounding to nearest value 4-3
rounding toward zero

defined 4-3
trunc function 9-11 to 9-12

rounding upward
ceil function 9-6 to 9-7
defined 4-3
example 8-5

roundoff error with denormalized numbers 2-6
roundtol function 9-5 to 9-6

S

SANE xvii
compared to PowerPC Numerics 1-13, A-1 to A-10
conversions A-1 to A-2
data formats A-1
denormalized numbers A-2
environment A-3, A-7 to A-8
expression evaluation A-2
Infinities A-2
NaNs A-2
operations A-2 to A-3
porting programs from A-3 to A-10
transcendental functions A-3, A-5 to A-6

__SANE__  macro A-10
sane.h file A-4 to A-8
scalb function

PowerPC Numerics 10-19 to 10-20
SANE A-6

scaling functions
ldexp function 10-16 to 10-17
scalb function 10-19 to 10-20

scanners 9-21 to 9-23
semantic type 3-3
setenvironment SANE function A-8
setexception SANE function A-7
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setround SANE function A-7
sign bit 2-3, 2-4
sign manipulation functions 10-9 to 10-12
copysign 10-10 to 10-11
fabs function 10-11 to 10-12

sign of zero 2-10 to 2-11
SIGN(A) B-1
SIGN(A,B) B-1
signaling NaNs 2-8 to 2-10

comparisons 6-4
invalid exception 4-5

signbit macro 7-4
significand 2-4
signnum SANE function A-6
sin function 10-31 to 10-32
sine 10-31 to 10-32
sine, hyperbolic 10-40 to 10-41
single format 2-11 to 2-12

compiler 2-4, 7-3
converting from double format

assembler 13-5 to 13-6
defined 5-5

converting from double-double format 5-5 to 5-7
converting to double format

assembler 13-5
defined 5-5

converting to double-double format 5-5 to 5-7
diagram 2-12
diagram, symbols used in 2-11
as minimum evaluation format D-4
precision 2-16
range 2-12
representation of values 2-12

single-precision numbers, density of 2-5
sinh function 10-40 to 10-41
small values

and error analysis 2-7
representing 2-6 to 2-7

SNAN SANE constant A-6
special-purpose registers 11-4
spurious exceptions 8-13
sqrt function 6-10 to 6-11
square root operation

defined 6-10 to 6-11
invalid exception, generating 4-5

Standard Apple Numerics Environment (SANE). 
See SANE

stfd assembler instruction 11-6
stfdu assembler instruction 11-6
stfdux assembler instruction 11-7
stfdx assembler instruction 11-7
stfs assembler instruction 11-6, 13-5
stfsu assembler instruction 11-6, 13-5
stfsux assembler instruction 11-7, 13-5
stfsx assembler instruction 11-7, 13-5

stopping program B-3
store assembler instructions 11-5 to 11-7

as conversion operations 13-5 to 13-6
formats 11-5 to 11-6

str2dec function 9-21 to 9-23
string conversions 5-12
subtraction operation

assembler 14-4
defined 6-6 to 6-7

symbols in format diagrams 2-11

T

tagp parameter 7-5
tan function 10-32 to 10-33
tangent 10-32 to 10-33
tangent, hyperbolic 10-41 to 10-42
tanh function 10-41 to 10-42
testexception SANE function A-7
tiny result 4-5
to-nearest rounding 4-3
TONEAREST SANE constant A-7
toward +∞ rounding. See upward rounding
toward –∞ rounding. See downward rounding
toward-zero rounding

defined 4-3
trunc function 9-11 to 9-12

TOWARDZERO SANE constant A-7
transcendental functions 10-3 to 10-63

assembler 14-8
defined 1-12 to 1-13, 6-15
SANE A-3, A-5 to A-6

transported code B-3
trigonometric functions 10-29 to 10-38
trigonometric functions, hyperbolic 10-39 to 10-46
Trunc function B-1
trunc function 9-11 to 9-12
truncating floating-point to integer 4-3, 9-11 to 9-12
types. See data formats

U

underflow 4-5
assembler 12-11
conversions 5-5, 5-7
gradual 2-7

UNDERFLOW SANE constant A-7
unordered (comparison)

assembler 12-7
defined 6-4
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upward rounding 4-3
ceil function 9-6 to 9-7
example 8-5

UPWARD SANE constant A-7

V

values, interpreting 2-4 to 2-11
variable types. See data formats
VAX H format B-2

W, X, Y

widening for efficiency 7-3 to 7-4, A-9
_WIDEST_NEED_EVAL macro D-8
widest-need evaluation 3-5 to 3-6, D-5

compared to minimum evaluation 3-8 to 3-11
examples 3-8 to 3-11

Z

zero
division by 1-9
double-double format 2-15
–0 as a result 2-10
rounding toward 4-3, 9-11 to 9-12
sign of 2-10 to 2-11

ZERONUM SANE constant A-6
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