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P REFACE

About This Book

This book, Inside Macintosh: PowerPC System Software, describes the new
process execution environment and system software services provided with
the first version of the system software for Macintosh on PowerPC computers.
It contains information you need to know to write applications and other
software that can run on PowerPC processor-based Macintosh computers.

The first release of the system software for Macintosh on PowerPC computers
provides a mixed or hybrid environment: the system software provides the
ability to execute both applications that use the native instruction set of the
PowerPC microprocessor and applications that use the 680x0 instruction set.
It accomplishes this by providing a very efficient 68LC040 Emulator that
emulates 680x0 instructions with PowerPC instructions. As a result, virtually
all existing 680x0-based Macintosh applications and other software modules
that conform to the programming interfaces and techniques documented in
the Inside Macintosh suite of books will execute without modification on
PowerPC processor-based Macintosh computers.

To take maximum advantage of the much greater processing speed of the
PowerPC microprocessor, however, you’ll need to recompile your application’s
source code into a PowerPC application. Apple Computer, Inc., provides
MPW-based C and C++ compilers and other tools that you can use to create
native PowerPC applications. In general, if your source code is already
compliant with ANSI C standards or the de facto ANSI C++ standards, you
should be able, with moderately little effort, to rework your source code so that
it can be compiled and built using the Apple-supplied tools into a PowerPC
application. This book is intended to provide much of the information you
need to port your existing 680x0 application (or other software) to the
PowerPC platform.

Note

There will also be third-party compilers and development
environments capable of generating PowerPC code. u

Although the native run-time execution environment of the first version of the
system software for PowerPC processor-based Macintosh computers is
significantly different from the execution environment of current 680x0-based
Macintosh computers, you won’t need to worry about those differences
unless your existing code relies on specific information about the 680x0
execution environment. For example, if for some reason you directly access
information in your application’s A5 world, you’ll need to rewrite those

parts of code when porting your application to the PowerPC environment.
Similarly, you’ll need to rewrite any parts of your code that depend on

data being passed in certain 680x0 registers. VBL tasks, for instance, very
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often depend on the fact that a pointer to the VBL task record is passed in
register AQ.

The first chapter in this book, “Introduction to PowerPC System Software,”
provides a general overview of the system software that runs on PowerPC
processor-based Macintosh computers. It also describes in detail the mixed
environment provided by the 68LC040 Emulator and the Mixed Mode
Manager, as well as the new run-time environment used for native PowerPC
applications. You should read this chapter for general information about
porting your existing software to the PowerPC environment. Even if you do
not intend to port your existing 680x0 software, you might still want to read
this chapter for information about running under the 68LC040 Emulator.

The remaining chapters in this book provide reference material for the three
new system software managers introduced in the first version of the system
software for PowerPC processor-based Macintosh computers. You should
read these chapters for specific information on using the services provided by
those managers. The new system software managers are

n the Mixed Mode Manager, which manages the mixed environment of
PowerPC processor-based Macintosh computers running 680x0-based code

n the Code Fragment Manager, which loads fragments (blocks of executable
PowerPC code and their associated data) into memory and prepares them
for execution

n the Exception Manager, which handles exceptions that occur during the
execution of PowerPC applications or other software

IMPORTANT
Some of the system software services introduced in the first version of
the system software for PowerPC processor-based Macintosh computers
might in the future be available on Macintosh computers that are not
based on the PowerPC microprocessor. For example, it’s possible that
the Code Fragment Manager (and the entire run-time environment
based on fragments) will be included in future versions of the system
software for 680x0-based Macintosh computers. As a result, some of the
information in this book might eventually be more generally applicable
than the title of this book might suggest. s

If you are new to programming for Macintosh computers, you should read the
book Inside Macintosh: Overview for an introduction to general concepts

of Macintosh programming. You should also read other books in the Inside
Macintosh series for specific information about other aspects of the Macintosh
Toolbox and the Macintosh Operating System. In particular, to benefit most
from this book, you should already be familiar with the run-time environment
of 680x0 applications, as described in the two books Inside Macintosh: Processes
and Inside Macintosh: Memory.
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Related Documentation

This book is part of a larger suite of books that contain information essential
for developing PowerPC applications and other software.

n

For information about the PPCC compiler that you can use to compile your
source code into a PowerPC application, see the book C/C++ Compiler for
Macintosh With PowerPC.

For information about the PPCAsm assembler, see the book Assembler for
Macintosh With PowerPC.

For information about debugging and measuring the performance of
PowerPC applications, see the book Macintosh Debugger Reference.

For information about performing floating-point calculations in PowerPC
applications, see the book Inside Macintosh: PowerPC Numerics.

For information about building PowerPC applications and other kinds of
PowerPC software for Macintosh computers, see Building Programs for
Macintosh With PowerPC.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the
chapter “Mixed Mode Manager” contains these sections:

n

“About the Mixed Mode Manager.” This section describes the Mixed Mode
Manager. You should read this section for a general understanding of

what the Mixed Mode Manager does and when you might need to call

it explicitly.

“Using the Mixed Mode Manager.” This section provides detailed instruc-
tions on using the Mixed Mode Manager. You should read this section if
you need to use the services provided by the Mixed Mode Manager.

“Mixed Mode Manager Reference.” This section provides a complete
reference to the constants, data structures, and routines provided by the
Mixed Mode Manager. Each routine description also follows a standard
format, which presents the routine declaration followed by a description

of every parameter of the routine. Some routine descriptions also give
additional descriptive information, such as circumstances under which you
cannot call the routine or result codes.

“Summary of the Mixed Mode Manager.” This section provides the C
interfaces for the constants, data structures, routines, and result codes
associated with the Mixed Mode Manager.

Xi
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Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, appears in special formats so that you
can scan it quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (this is
Couri er).

Words that appear in boldface are key terms or concepts and are defined in
the glossary at the end of this book. Note that numerical entries (for example,
32-bit clean) are sorted before all alphabetical entries in the glossary and in
the index.

Types of Notes

There are several types of notes used in Inside Macintosh.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-6.) u

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-19.) s

S WARNING
Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings
could result in system crashes or loss of data. (An example appears on
page 1-8.) s

Bit Numbering and Word Size

This book departs from the conventions followed in previous Inside Macintosh
books in regard to the numbering of bits within a range of data. Previously,
for example, the bits in a 32-bit data type were numbered 0 to 31, from right to
left, as shown in Figure P-1 on the following page. The least significant bit of a
32-bit data type was addressed as bit 0, and the most significant bit was
addressed as bit 31. This convention was in accordance with that used by

Xil
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Motorola in the books documenting their 680x0 family of microprocessors (for
example, the MC68040 32-Bit Microprocessor User’s Manual).

Figure P-1 680x0 bit numbering

a1

In this book, the bits in a 32-bit data type are numbered 0 to 31, from left to
right. The most significant bit of a 32-bit data type is addressed as bit 0, and
the least significant bit is addressed as bit 31. This convention, illustrated in
Figure P-2, is in accordance with the bit-numbering conventions used by
Motorola in the books documenting the PowerPC family of microprocessors
(for example, the PowerPC 601 RISC Microprocessor User’s Manual).

Figure P-2 PowerPC bit numbering

el |

In addition, there are differences between 680x0 and the PowerPC terminology
to describe the sizes of certain memory operands, as shown in Table P-1.

Table P-1 Sizes of memory operands

Size 680x0 terminology PowerPC terminology
8 bits Byte Byte

2 bytes Word Half word

4 bytes Long word Word

8 bytes N/A Double word

16 bytes N/A Quad word

To avoid confusion, however, this book generally uses bytes to give the sizes
of objects in memory.

xiii
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Assembly-Language Information

Inside Macintosh presents information about the fields of a parameter block in
this format:

Parameter block

« i nAndQut Handl e Input/output parameter.
- out put1 Ptr Output parameter.
® i nput 1 Ptr Input parameter.

The arrow in the far-left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The routine returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the MPW C interface
files; the third column indicates the C data type of that field. The fourth
column provides a brief description of the use of the field. For a complete
description of each field, see the discussion that follows the parameter
block or the description of the parameter block in the reference section of
the chapter.

Development Environment

Xiv

The system software routines described in this book are available using C
or assembly-language interfaces. How you access these routines depends
on the development environment you are using. This book shows system
software routines in their C interface using the Macintosh Programmer’s
Workshop (MPW).

All code listings in this book are shown in C (except for listings that describe
resources, which are shown in Rez-input format). They show methods of using
various routines and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and, in most cases, tested. However,
Apple Computer does not intend that you use these code samples in your
application. You can find the location of this book’s code listings in the list of
figures, tables, and listings.

To make the code listings in this book more readable, only limited error
handling is shown. You need to develop your own techniques for detecting
and handling errors.

This book occasionally illustrates concepts by reference to a sample applica-
tion called SurfWriter and a sample import library called SurfTools; these are
not actual products of Apple Computer, Inc.
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For More Information

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other
technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 303-2T
Cupertino, CA 95014-6299

XV
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CHAPTER 1

Introduction to PowerPC System Software

This chapter is a general introduction to the system software provided on PowerPC
processor-based Macintosh computers. It describes the mixed environment provided by
the 68LC040 Emulator and the Mixed Mode Manager. These two new system software
services work together to allow existing 680x0 applications, extensions, drivers, and
other software to execute without modification on PowerPC processor-based Macintosh
computers. The 68LC040 Emulator and the Mixed Mode Manager also make it possible
for parts of the system software to remain as 680x0 code, while other parts of the system
software are reimplemented (primarily for reasons of speed) as native PowerPC code.

This chapter also describes the native PowerPC execution environment. Although the
process-scheduling mechanism used for both native and emulated applications has not
changed, the run-time environment for PowerPC applications is significantly different
from the run-time environment used for 680x0-based Macintosh applications. In cases
where your application (or other software) relies on features of the 680x0 run-time
environment, you’ll need to modify your application before recompiling it as a PowerPC
application. For example, if your application directly accesses information stored in low
memory (such as system global variables) or in its A5 world, you might need to rewrite
parts of your application to remove the dependence on that information. See “The
PowerPC Native Environment” beginning on page 1-19 for complete instructions on
doing this.

You should read this chapter if you want your application to run on PowerPC processor-
based Macintosh computers, either under the 68LC040 Emulator or in the PowerPC
native environment. If you choose not to rebuild your application for the PowerPC
environment, you should at least make certain that it doesn’t violate any of the known
restrictions on the emulator. See “Emulator Limitations” on page 1-8 for specific informa-
tion about the known operational differences between the 68LC040 Emulator and a
680x0 microprocessor.

You should also read this chapter for information about the PowerPC execution environ-
ment. Although the existing software development tools build your source code into
executable PowerPC code that conforms to the requirements of this new environment,
you might need to know about the native run-time environment for debugging purposes
or if your application uses external code modules. Otherwise, the new execution environ-
ment should be completely transparent to your application.

You should be able to accomplish much of the work involved in porting your application
from the 680x0 platform to the PowerPC platform using the information in this chapter.
If your application installs callback routines with nonstandard calling conventions,
however, you might need to read the chapter “Mixed Mode Manager” in this book. In
addition, if your application explicitly loads external code modules (such as file trans-
lators or custom definition procedures), you might need to read the chapter “Code
Fragment Manager” in this book. Read the chapter “Exception Manager” if you want
your native application to handle any exceptions that arise while it is executing.

To use this chapter, you should already be generally familiar with the Macintosh
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory
for information about the run-time environment of 680x0-based Macintosh computers.

1-3



CHAPTER 1

Introduction to PowerPC System Software

This chapter begins with a description of the mixed environment provided by the
PowerPC system software. Then it gives information about the native PowerPC run-time
environment. This chapter ends by explaining how to perform a number of specific

tasks in the PowerPC environment, such as patching system software traps.

Note

For ease of exposition, this book occasionally focuses on porting
applications from the 680x0 environment to the PowerPC environment.
In general, however, any changes required for applications are required
also for all other kinds of software. u

Overview of the PowerPC System Software

1-4

The system software for PowerPC processor-based Macintosh computers is System 7.1,
with suitable changes made to support the mixed environment that allows both 680x0
software and PowerPC software to execute on a computer. The mixed environment
provides virtually complete compatibility for existing 680x0 software, as well as vastly
increased performance for applications and other software that are built to use the native
instruction set of the PowerPC microprocessor.

Because the system software for PowerPC processor-based Macintosh computers is
derived from System 7.1 for 680x0-based Macintosh computers, your application—
whether 680x0 or PowerPC—must conform to the basic requirements imposed by
system software versions 7.0 and later. In particular, your application (or other software)
must be

n 32-bit clean
n compatible with the operations of the Virtual Memory Manager

n able to operate smoothly in the cooperative multitasking environment maintained by
the Process Manager

If your 680x0 software conforms to these specific requirements and to the general
requirements for Macintosh software documented throughout Inside Macintosh, it is
highly probable that it will execute without problems on PowerPC processor-based
Macintosh computers. This is because the system software for PowerPC processor-based
Macintosh computers includes a very efficient 68LC040 Emulator that emulates 680x0
instructions with PowerPC instructions. In addition, the system software includes the
Mixed Mode Manager, which is responsible for handling any necessary mode switches
between the native PowerPC environment and the 680x0 environment.

Figure 1-1 shows a general overview of the system software for PowerPC processor-
based Macintosh computers. A small kernel, called the nanokernel, communicates
directly with the PowerPC processor and provides very low-level services (such as
interrupt handling and memory management).
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Figure 1-1 The system software for PowerPC processor-based Macintosh computers
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Even applications written entirely in 680x0 code might cause mode switches while they
are executing, because some portions of the Macintosh Operating System have been
rewritten in PowerPC code for increased performance. For example, the Memory
Manager has been rewritten in C and recompiled into PowerPC code. In general,
however, mode switches occur completely transparently to 680x0 software. Only native
PowerPC software needs to worry about mode switches. See “Mixed Mode” beginning
on page 1-13 for details.

As you would expect, the emulation environment provided by the 68LC040 Emulator
uses the standard 680x0 run-time model. The organization of an application partition
and the run-time behavior of emulated software are identical to what is provided on
680x0-based Macintosh computers. However, the execution environment for native
PowerPC software is significantly different from the standard 680x0 run-time environ-
ment. The PowerPC environment provides a much simpler and easier-to-use run-time
model based on fragments. A fragment is any block of executable PowerPC code and its
associated data. Fragments are created by your development system’s linker.

Overview of the PowerPC System Software 1-5
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Note

The term fragment is not intended to suggest that the block of code and
data is in any way either small, detached, or incomplete. Fragments can
be of virtually any size, and they are complete, executable entities. The
term fragment was chosen to avoid confusion with the terms already
used in Inside Macintosh to describe executable code (such as component
and module). u

Fragments use a method of addressing the data they contain that is different and more
general than the A5-relative method that 680x0 applications use to address their global
data. One important consequence is that any PowerPC software packaged as a fragment
has easy access to global data. In the 680x0-based system software, it was sometimes
difficult to use global data within types of software other than applications.

In addition, it was often complicated for a routine installed by some code to gain

access to the code’s global variables. For example, you cannot—in the current 680x0
environment—write a VBL task that uses your application’s global variables without
somehow passing your application’s A5 value to the VBL task. (A VBL task is a task that
executes during a vertical blanking interrupt.) In the PowerPC environment, any routine
contained in an application has automatic access to the application’s global variables.
You do not need to devise special ways to pass the address of your application’s A5
world to the installed routine. More generally, any routine executing in the PowerPC
environment has access to the global data of the fragment it’s contained in.

The new run-time model used for native PowerPC software incorporates other
important simplifications as well. In native applications, there is ho segmentation of

the executable code. The existing compilers that produce PowerPC code ignore any
segmentation directives you include in your source code. In addition, any calls you make
to the Segment Manager’s Unl oadSeg procedure are simply ignored by the PowerPC
system software. The task of keeping required code in memory is handled completely by
the Virtual Memory Manager or the Process Manager, not by your application.

The remaining sections in this chapter describe in greater detail the mixed environment
of PowerPC processor-based Macintosh computers and the new native run-time
environment. If you're interested mainly in rebuilding your application as native
PowerPC code, you can skip to the section “Mixed Mode” beginning on page 1-13,
which describes the ways in which you might need to use the Mixed Mode Manager

to make your native application compatible with the mixed environment.

The 68LC040 Emulator

1-6

The 68LC040 Emulator is the part of the PowerPC system software that allows 680x0
applications and other software to execute on PowerPC processor-based Macintosh
computers. This emulator provides an execution environment that is virtually identical
to the execution environment found on 680x0-based Macintosh computers. The emulator
converts 680x0 instructions into PowerPC instructions, issues those instructions to the
PowerPC microprocessor, and updates the emulated environment (such as the emulated
680x0 registers) in response to the operations of the PowerPC microprocessor.

The 68LC040 Emulator
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In general, the 680x0 emulation environment supports all existing 680x0 applications
that already work correctly on all Macintosh computers containing a Motorola 68020,
68030, or 68040 microprocessor. There are, however, some differences between the
operation of the 68LC040 Emulator and an actual 68040 microprocessor. The following
two sections provide some information on the general operation and limitations of the
68LC040 Emulator.

Note

Unless you are programming in assembly language or doing very
low-level debugging, you’re not likely to need the information in
the following two sections. u

Emulator Operation

The 68LC040 Emulator implements the basic Motorola 68040 user mode instruction set.
It does not, however, support any of the instructions from the optional 68881 or 68882
floating-point coprocessors. Moreover, although the emulator supports the operations of
the Virtual Memory Manager, it does not support instructions from the 68851 Paged
Memory Management Unit (PMMU). The 680x0-based Macintosh computer whose
hardware configuration most closely resembles the software configuration of the
68LC040 Emulator is the Macintosh Centris 610, which contains the Motorola 68LC040
microprocessor. (The 68LC040 microprocessor is identical to the 68040 microprocessor
except that it has no floating-point unit.) As a result, if your application or other software
runs without problems on the Macintosh Centris 610, it is very likely to run without
problems under the 68LC040 Emulator.

Note

For the complete specification of how you can expect both a
real 68040 and the 68LC040 Emulator to behave, see the
MC68040 32-Bit Microprocessor User’s Manual. u

The Gest al t function returns the value gest al t 68020 when you pass it the selector
gest al t Processor Type and the calling software is executing under the emulator.
This return value is intended to highlight the two ways in which the 68LC040 Emulator
more closely resembles a 68020 processor than a 68040 processor:

n The emulated environment does not support either the FPU or the MMU contained in
an actual 68040 processor.

n The emulated environment creates exception stack frames in accordance with the
68020 exception frame model.

The 68LC040 Emulator consists of two main parts, a main dispatch table and a block of
additional code called by entries in the main dispatch table. The main dispatch table
contains two native PowerPC instructions for each recognized 680x0 operation code (or
opcode). In cases where a 680x0 opcode can be handled by a single PowerPC instruction,
the first native instruction in the dispatch table is enough to complete the requested
operation. In most cases, however, the handling of a 680x0 opcode requires more than
one PowerPC instruction. In that case, the first native instruction in the main dispatch
table simply begins the emulation process.
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The second native instruction in the emulator’s main dispatch table is usually a
PC-relative branch into the block of additional code. The additional code continues
the emulation of the 680x0 opcode begun by the first instruction.

The emulator’s main dispatch table also includes entries that support private opcodes
reserved for use by the system software, including both A-line and F-line instructions.
For example, the Mixed Mode Manager communicates with the 68LC040 Emulator using
A-line instructions embedded in routine descriptors. (See “Routine Descriptors”
beginning on page 1-15 for details.) Other system software services, including the Virtual
Memory Manager, also issue reserved opcodes to the emulator.

When the emulator is active, it maps all 680x0 registers to the registers on the PowerPC
microprocessor, including the 680x0 program counter (PC) and Status Register (SR). The
general-purpose register GPR1 serves as both the 680x0 and native stack pointer. The
emulator also dedicates a native register to point to the 680x0 context block, a block

of data containing information that needs to be preserved across mode switches. The
context block contains all the 680x0 registers, the addresses of the main dispatch table
and the block of additional code, and other information used internally by the emulator.
The emulator saves information into the context block when it is about to exit (for
example, when a 680x0 application calls a piece of native code) and restores the
information from the block when it is subsequently activated.

WARNING

You should not rely on any specific information about the 68LC040
Emulator’s private data structures or opcodes. s

Emulator Limitations

Largely because it is a purely software implementation of a hardware microprocessor,
the 68LC040 Emulator sometimes exhibits behavior that differs from that of an actual
680x0 microprocessor. These operational differences can lead to problems, ranging from
the obvious (for example, using the floating-point coprocessor instruction set, which is
not supported by the 68LC040 Emulator) to the subtle (for example, depending upon a
value in an undefined condition code bit). If your application or other software depends
on 680x0 behavior that is not reproduced exactly by the 68LC040 Emulator, your product
might have problems when executing under the emulator. The known exceptions to the
documented 680x0 specifications concern

n coprocessors and instruction sets
n instruction timings

n deleted instructions

n unsupported instruction features
n instruction caches

n address error exceptions

n bus error exceptions

n memory-mapped I/0 locations
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The following sections describe these limitations in greater detail.

Coprocessors

As previously indicated, the 68LC040 Emulator does not support the instruction sets of
either the 68881 or the 68882 floating-point coprocessor or of the 68851 PMMU. Any
software that uses floating-point instructions is therefore not compatible with the
68L.C040 Emulator. Because there are several 680x0-based Macintosh computers that
do not contain floating-point coprocessors, this restriction is not likely to cause new
compatibility problems for your software. It’s possible that you have used SANE to
perform hardware-independent floating-point arithmetic. If so, you’ll probably notice
that floating-point calculations are performed even faster under the 68LC040 Emulator
than on a real 680x0-based Macintosh computer. This is because PowerPC processor-
based Macintosh computers include an accelerated version of SANE written in native
PowerPC code.

The 68LC040 Emulator does not support the 68851 PMMU instruction set (which also
includes the 68030 and 68040 internal PMMUSs). The Virtual Memory Manager is still
supported, but using a different mechanism. Very few applications address the PMMU
directly, so this restriction is not likely to affect many developers. Those applications that
do address the PMMU directly are very likely already incompatible with AZ/UX and with
the Virtual Memory Manager.

More generally, the 68LC040 Emulator does not support the coprocessor bus interface.
As a result, the emulator does not support any externally connected hardware
COProcessors.

Instruction Timings

The 68LC040 Emulator executes 680x0 instructions as fast as possible, making no
attempt to maintain the same number of clock counts as on a real 68040 microprocessor.
There are classes of instructions that execute in the same number of cycles whether

on a real 68040 or under the 68L.C040 Emulator, but you should not depend on this.

In general, of course, your 680x0 application is most likely already independent of
instruction timing, because it should run without problem on a wide range of 680x0
microprocessors having quite different clock rates.

Deleted Instructions

Several instructions included in the instruction set of the 68020 microprocessor were
removed from the instruction sets of the 68030 and 68040 microprocessors. The deleted
instructions are the CALLMand RTMinstructions, which were intended for use in module
calls. These instructions are not supported by the 68LC040 Emulator, and any attempt
to execute them will result in an illegal instruction exception. However, because these
instructions are not present in any 680x0 microprocessor either before or after the 68020,
this restriction is not likely to present compatibility problems for your software.
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Unsupported Instruction Features

Several instruction or addressing mode fields and encodings are documented by
Motorola as reserved. In addition, many instructions are documented as producing
undefined condition code result bits or undefined register results. Accordingly, the
behavior of these reserved fields and undefined results differs across the various
members of the 680x0 family of microprocessors and under the 68LC040 Emulator. It is
unlikely that any existing software intentionally depends on either reserved fields or
undefined results. It is, however, remotely possible that through a programming error
some software might be depending on these results and hence might behave differently
under the emulator than on an actual 680x0.

Instruction Caches

The operation of the instruction cache in the 68040 microprocessor is not supported by
the 68LC040 Emulator, although all of the bits in the Cache Control Register (CACR) and
Cache Address Register (CAAR) related to the instruction cache are supported. In
general, of course, your code should not address the cache registers directly.

Because both emulated code and data reside in the PowerPC data cache, the performance
benefits associated with caching are still present. Indeed, the caching scheme used
transparently by the 68LC040 Emulator results in a higher level of software compatibility
than is found on actual 680x0 microprocessors. Some older versions of software that

are incompatible with the 68040 cache mechanism can run without problem under

the emulator.

Requests to invalidate the 68040 instruction cache are ignored by the 68LC040 Emulator.
However, you should continue to issue those calls in order to remain compatible with
680x0-based Macintosh computers. Moreover, all cache flushing required for PowerPC
code fragments is performed automatically by the Code Fragment Manager.

Note

For details on invalidating the 680x0 instruction cache, see the chapter
“Memory Management Utilities” in Inside Macintosh: Memory. u

It is possible, although unlikely, that an application depends on the ability of the 68040
instruction cache to retain a stale copy of instructions after the RAM copy of them has
been changed. Such applications do not work correctly with 68000-based Macintosh
computers (for example, the Macintosh Plus, SE, Classic®, or PowerBook 100) and any
68040-based computers (for example, the Macintosh Quadra 950) when the Cache CDEV
is used to disable caching. As a result, this nonemulated behavior should not present any
new compatibility problems.

Address Error Exceptions

To improve the performance of branch instructions, the 68LC040 Emulator is not
completely compatible with an actual 68040 microprocessor when detecting and
reporting address error exceptions. A 680x0 microprocessor checks for address errors
before completing the execution of a branch instruction; if it finds an address error, the
microprocessor reports (in an address error exception frame that it creates on the stack)
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the PC at the beginning of the branch instruction. By contrast, the 68LC040 Emulator
checks for address errors after executing a branch instruction; as a result, it reports the
odd branch address as the PC in the exception frame. Because the PC of the instruction
that caused the branch is not reported, you might find it more difficult to debug an
application that commits address errors. You might also have compatibility problems if
you install an address error exception handler.

Bus Error Exceptions

The 68LC040 Emulator handles bus error exceptions slightly differently than does a real
680x0 microprocessor. If you install a bus error handler, you might need to be aware of
these differences. You also need to be aware of these differences when debugging your
software, because most debuggers need to handle bus error exceptions.

The 68LC040 Emulator creates format $B exception frames when generating and
handling bus errors. However, several fields within the exception frame are documented
by Motorola as internal fields, and the contents of those fields are very likely to differ
between the 68LC040 Emulator exception stack frame and the exception stack frame
created by a 680x0 microprocessor. You should not rely on these reserved fields. To avoid
any possible confusion that the internal state information in the emulated exception
frame is compatible with the internal state information created by the 680x0 micro-
processors, the exception frame created by the emulator intentionally uses a value in the
Version Number field of the exception frame that is different from the value put there by
any 680x0 microprocessor.

In addition, there are several documented fields of the bus error exception frame that
have slightly different values in the emulator than on a 680x0-based Macintosh
computer. As long as bus error exception handlers do not modify these fields, it is still
possible to use the RTE instruction to continue execution of the instruction that caused
the exception. In particular, the PC field of the exception frame might not point to the
exact beginning of the instruction that generated the exception. Instead, it might point to
some location near the beginning of that instruction. Also, the Stage B address field and
the Stage B and Stage C instruction pipe fields might not contain valid information.

Finally, the Special Status Word (SSW) differs under the 68LC040 Emulator. The 68LC040
Emulator does not distinguish between instruction space and data space accesses;
instead, it converts instruction fetches to data space reads. As a result, the FC2-FCO field
always indicates either a supervisor or a user data space reference. In addition, the
emulator never sets the FC, FB, or RM bits, and it ignores the RC and RB bits. The DF bit
is fully supported, however, allowing both program completion of bus cycles and
rerunning of bus cycles with the RTE instruction. The 68LC040 Emulator also puts valid
values in the RM and SIZ bits.

Memory-Mapped 1/O Locations

In general, most applications do not directly access memory-mapped 1/0 locations.
Instead, they call device drivers or other system software routines to perform the
requested 1/0 operations. For code (such as a device driver) that does directly access
memory-mapped 1/0 locations, there are a number of compatibility issues. In some
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cases, the 680x0 emulation environment might not perform some write operations that a
real 680x0 performs:

n The BSET and BCLR instructions might not write back an operand if none of the bits
were changed as a result of the operation.

n Some memory-to-memory MOVE instructions might not write to memory if the source
and destination addresses are the same.

You might need to modify your application to use different sequences of instructions to
perform the operations if an 1/0 device was expecting these write bus cycles.

The TAS, CAS, and CAS2 instructions in the 68040 instruction set perform indivisible read,
modify, and write memory operations. The 68040 bus architecture provides a special
locked bus cycle for a read-and-write operation without allowing any other devices to
request the bus between them. These indivisible bus cycles cannot be emulated. As a
result, an alternate bus master type of 1/0 device might be allowed to modify a memory
location between the read and the write operations.

The 68020 and 68030 bus interface supports a feature called dynamic bus sizing that
allows 8- or 16-bit-wide 1/0 devices to work with the 32-bit-wide data bus. If the
processor has a memory request for a data width that was larger than the data width of
the device connected to the bus, the memory interface breaks the request into multiple
requests that are the width of the device. For example, if a 32-bit read request is made to
an 8-bit device, the memory interface actually performs four separate 8-bit reads to
assemble the 32-bit data. This feature cannot be emulated. Any application or other
software that depends upon this feature must to be modified to use separate instructions
to access and assemble each piece of data.

The 68020 and 68030 bus interface also supports a feature called byte smearing that
allows 8- or 16-bit data to be duplicated on a write operation across all 32 bits of the
data bus. The 68040 processor does not support this feature. This feature cannot be
emulated, but solutions that were used for the 68040 should be compatible with the
68LC040 Emulator.

The 68020, 68030, and 68040 microprocessors define the NOP instruction as having the
effect of synchronizing the pipeline and waiting for all prior bus operations to complete.
The 68020 and 68030 have a very small pipeline, and bus operations normally finish
soon after they are issued. However, the 68040 and the PowerPC architecture let memory
operations be queued and issued out of order. Because of this, the NOP instruction

might be needed to ensure that accesses to memory-mapped 1/0 devices occur in the
proper order. The 68LC040 Emulator supports the features of the NOP instruction.

Any application that includes NOP instructions should be compatible with all Macintosh
computers.

If an 170 device causes a bus timeout that results in a bus error exception, it might not
be possible for the PowerPC microprocessor—and therefore the 68LC040 Emulator—
to determine the memory address that was accessed. If all locations within a 4 KB

1/0 page consistently time out, this problem might not occur, but if accesses to some
locations within a page sometimes succeed, it is possible for this situation to occur.

A bus error exception is generated in that case, but the Data Fault Address field in

the exception frame will not be accurate and the DF bit in the SSW will not be set.
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Mixed Mode

An instruction set architecture is the set of instructions recognized by a particular
processor or family of processors. The Mixed Mode Manager is the part of the
Macintosh system software that manages mode switches between code in different
instruction set architectures, switching the execution context between the CPU’s native
PowerPC context and the 68LC040 Emulator. The 68LC040 Emulator is responsible for
handling all code in the 680x0 instruction set. This includes existing 680x0 applications,
device drivers, system extensions, and even parts of the system software itself that have
not yet been rewritten to use the PowerPC instruction set.

Mode switches are required not only when the user switches from an emulated to a
native application (or vice versa), but also when any application calls a system software
routine or any other code that exists in a different instruction set. For example, the
Memory Manager has been reimplemented in the first version of system software for
PowerPC processor-based Macintosh computers as native PowerPC code. When an
existing 680x0 application running under the 68LC040 Emulator calls a Memory
Manager routine such as NewHandl e, a mode switch is required to move out of the
emulator and into the native PowerPC environment. Then, once the Memory Manager
routine completes, another mode switch is required to return to the 68LC040 Emulator
and to allow the 680x0 application to continue executing.

Similarly, PowerPC applications cause mode switches whenever they invoke routines
that exist only as 680x0 code. For example, if a PowerPC application calls a part of
the Macintosh Toolbox or Operating System that has not been ported native, a mode
switch is required to move from the native environment to the environment of the
68LC040 Emulator.

The Mixed Mode Manager exists solely to manage these kinds of mode switches. It
makes it possible for the execution environment of PowerPC processor-based Macintosh
computers to accommodate a mixture of 680x0 applications, PowerPC applications,
680x0 system software, PowerPC system software, 680x0 executable resources, PowerPC
executable resources, 680x0 device drivers, PowerPC device drivers, and so forth. The
68L.C040 Emulator and the Mixed Mode Manager together allow both 680x0 code and
PowerPC code to execute on the PowerPC microprocessor.

The Mixed Mode Manager is designed to hide, as much as possible, the hybrid nature of
the mixed environment supported on PowerPC processor-based Macintosh computers.
Occasionally, however, some executable code needs to interact directly with the Mixed
Mode Manager to ensure that a mode switch occurs at the correct time. Because the
68L.C040 Emulator is designed to allow existing 680x0 applications and system software
to execute without modification, it’s always the responsibility of native applications

and system software to implement any changes necessary to interact with the Mixed
Mode Manager.

This section describes the basic operation of the Mixed Mode Manager. It shows you
how, if you’re writing a native application, you might need to modify your application to
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make it compatible with the mixed environment of the system software for PowerPC
processor-based Macintosh computers. If you use fairly simple techniques for calling
code external to your application and use only the standard types of callback routines,
the information in this section might be sufficient for your needs. If not, see the chapter
“Mixed Mode Manager” in this book for complete information about the Mixed

Mode Manager.

Cross-Mode Calls

The Mixed Mode Manager is intended to operate transparently to most applications and
other kinds of software. This means, in particular, that most cross-mode calls (calls

to code in a different instruction set from the caller’s instruction set) are detected
automatically by the Mixed Mode Manager and handled without explicit intervention by
the calling software. For instance, when a 680x0 application calls a Memory Manager
routine—which, as you have already learned, exists as PowerPC code in the system
software for PowerPC processor-based Macintosh computers—the Trap Manager
dispatches to the code pointed to by the appropriate entry in the trap dispatch table. For
routines that are implemented as native code, the entry in the trap dispatch table is a
pointer to a routine descriptor, a data structure used by the Mixed Mode Manager to
encapsulate information about a routine. The first field in a routine descriptor is an
executable 680x0 instruction that invokes the Mixed Mode Manager. The Mixed Mode
Manager handles all the details of switching to the native mode, calling the native code,
and then returning to the 68LC040 Emulator. The calling application is completely
unaware that any mode switches have occurred.

The operation of the Mixed Mode Manager is also completely transparent when a
PowerPC application calls a system software routine that exists as 680x0 code, although
the exact details are slightly different. When a native application calls a system soft-
ware routine, the Operating System executes some glue code in an import library of
executable code. The glue code inspects the trap dispatch table for the address of the
called routine. If the called routine exists only as 680x0 code, the Mixed Mode Manager
switches modes and calls the 680x0 routine. When the 680x0 code returns, the Mixed
Mode Manager switches back to the native PowerPC environment and the execution of
the PowerPC application continues.

Note

See “The PowerPC Native Environment” beginning on page 1-19
for information about the native execution environment, including
import libraries. u

When writing PowerPC code, you need to explicitly intervene in the mode-switching
process only when you execute code (or have code executed on your behalf) whose
instruction set architecture might be different from that of the calling code. For example,
whenever you pass the address of a callback routine to the Operating System or Toolbox,
it’s possible that the instruction set architecture of the code whose address you are
passing is different from the instruction set architecture of the routine you're passing

it to. In such cases, you need to explicitly signal the type of code you’re passing and its
calling conventions. Otherwise, the Mixed Mode Manager might not be called to make a
required mode switch.
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To see this a bit more clearly, suppose that you are writing a native PowerPC application
that calls the Control Manager procedure Tr ackCont r ol . Tr ackCont r ol accepts as
one of its parameters the address of an action procedure that is called repeatedly while
the user holds down the mouse button in a control. Tr ackCont r ol has no way of
determining in advance the instruction set architecture of the code whose address you
will pass it. Moreover, you have no way of determining in advance the instruction set
architecture of the Tr ackCont r ol procedure, so you cannot know whether your action
procedure and the Tr ackCont r ol procedure are of the same instruction set architecture.
As a result, you must explicitly indicate the instruction set architecture of any callback
routines whose addresses you pass to the system software.

Routine Descriptors

You indicate the instruction set architecture of a particular routine by creating a routine
descriptor for that routine. Here is the structure of a routine descriptor.

struct RoutineDescriptor {

unsi gned short goM xedModeTrap; /*ni xed-node A-trap*/
char versi on; /[*routine descriptor version*/
RDFI agsType routi neDescri pt or Fl ags;

[*routine descriptor flags*/
unsi gned | ong reservedl; / *reserved*/
unsi gned char reserved2; [ *reserved*/
unsi gned char sel ectorl nfo; [ *sel ector information*/
short routi neCount ; /*index of last RRin this RD*/
Rout i neRecor d routi neRecords[1];/*the individual routines*/

H

typedef struct RoutineDescriptor RoutineDescriptor;

As you can see, the first field of a routine descriptor is an executable 680x0 instruction that
invokes the Mixed Mode Manager. When the Mixed Mode Manager is called, it inspects
the remaining fields of the routine descriptor—in particular the r out i neRecor ds
field—to determine whether a mode switch is required. The r out i neRecor ds field is
an array of routine records, each element of which describes a single routine. In the
simplest case, the array of routine records contains a single element. Here is the structure
of a routine record.

struct RoutineRecord {

Procl nf oType procl nf o; [*cal ling conventions*/

unsi gned char reservedl; / *reserved*/

| SAType | SA; /*instruction set architecture*/
Rout i neFl agsType routi neFl ags; [*flags for each routine*/
ProcPtr procDescri ptor; /[*the thing we're calling*/

unsi gned | ong reserved?; [ *reserved*/

unsi gned | ong sel ect or; /*sel ector for dispatched calls*/

b

typedef struct RoutineRecord RoutineRecord;
typedef Routi neRecord *RoutineRecordPtr, **RoutineRecordHandl e;
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The most important fields in a routine record are the pr ocl nf o field and the | SAfield.
The | SAfield encodes the instruction set architecture of the routine being described. It
must always contain one of these two constants:

enum {
kMB8KI SA = (1 SAType) O, [/ *MC680x0 architecture*/
kPower PCl SA = (1 SAType) 1 [ * Power PC ar chi tecture*/
b

The pr ocl nf o field contains the routine’s procedure information, which encodes
the routine’s calling conventions and information about the number and location of
the routine’s parameters. For the standard kinds of callback procedures and other
types of “detached” code, the universal interface files include definitions of procedure
information. For example, the C language interface file Cont r ol s. h includes

this definition:

enum {
uppControl Acti onProcl nfo = kPascal St ackBased
| STACK ROUTI NE_PARAMETER( 1, SIZE CODE(si zeof (Control Handl e)))
| STACK_ROUTI NE_PARAMETER(2, S| ZE_CODE(si zeof (short)))

b
This procedure information specification indicates that a control action procedure
follows standard Pascal calling conventions and takes two stack-based parameters,
a control handle and a part code; the action procedure returns no result. Similarly, the
file Cont r ol s. h defines the procedure information for a control definition function
as follows:
enum {
uppCont r ol Def Procl nfo = kPascal St ackBased
| RESULT_SI ZE( SI ZE_CODE( si zeof (1 ong)))
| STACK_ROUTI NE_PARAMETER(1, S| ZE_CODE(si zeof (short)))
| STACK ROUTI NE_PARAMETER(2, S| ZE CODE(si zeof (Control Handl €)))
| STACK ROUTI NE_PARAMETER(3, SIZE CODE(si zeof (short)))
| STACK_ROUTI NE_PARAMETER(4, S| ZE_CODE(si zeof (1 0ong)))
b
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You can create a routine descriptor by calling the Mixed Mode Manager function
NewRout i neDescr i pt or, as shown in Listing 1-1.

Listing 1-1 Creating a routine descriptor

Uni versal ProcPtr myActi onProc;

myActi onProc = NewRouti neDescriptor((ProcPtr)M/Action,
uppCont rol Acti onProcl nf o,
GetCurrentl SA());

Here, MyAct i on is the address of your control action procedure and Get Current | SA
is a C language macro that returns the current instruction set architecture. When
executed in the PowerPC environment, the NewRout i neDescr i pt or function creates
a routine descriptor in your application heap and returns the address of that routine
descriptor. When executed in the 680x0 environment, the NewRout i neDescr i pt or
function simply returns its first parameter. Notice that the result returned by

the NewRout i neDescr i pt or function is of type Uni ver sal ProcPt r. Auniversal
procedure pointer is defined to be either a 680x0 procedure pointer or a pointer to a
routine descriptor, essentially as follows:

#i f | USESROUTI NEDESCRI PTCORS

typedef ProcPtr Universal ProcPtr, *Universal ProcHandl e;

#el se

typedef RoutineDescriptor *Universal ProcPtr, **Universal ProcHandl e;
#endi f

Once you’ve executed the code in Listing 1-1 (probably at application launch time), you
can later call TrackControl like this:

TrackControl (nyControl, nyPoint, myActionProc);

If your application is a PowerPC application, the value passed in the gAct i onPr oc
parameter is not the address of your action procedure itself, but the address of the
routine descriptor created in Listing 1-1. When a 680x0 version of Tr ackCont r ol
executes your action procedure, it begins by executing the instruction contained in the
first field of the routine descriptor. That instruction invokes the Mixed Mode Manager,
which inspects the instruction set architecture of the action routine (contained in the | SA
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field of the routine record contained in the routine descriptor). If that instruction set
architecture differs from the instruction set architecture of the Tr ackCont r ol routine,
the Mixed Mode Manager causes a mode switch. Otherwise, if the two instruction set
architectures are identical, the Mixed Mode Manager simply executes the action
procedure without switching modes.

In short, you solve the general problem of indicating a routine’s instruction set archi-
tecture by creating routine descriptors and by using the addresses of those routine
descriptors where you would have used procedure pointers in the 680x0 programming
environment. You have to do this, however, only when you need to pass the address of a
routine to some external piece of code (such as the Toolbox or Operating System or some
other application) that might be in a different instruction set architecture from that of the
routine. There are quite a number of cases in which you pass procedure pointers to the
system software and which therefore require you to use the techniques illustrated above
for Control Manager action procedures. Some of the typical routines you need to create
routine descriptors for include

n grow-zone functions

n control action procedures
n event filter functions

n VBL tasks

n Time Manager tasks

n trap patches

n completion routines

The interface files for the PowerPC system software have been revised to change

all references to parameters or fields of type Pr ocPt r to references of type

Uni ver sal ProcPt r. In addition, these new universal interface files contain procedure
information definitions for all the standard kinds of callback routines. Moreover, the
universal interface files define new routines that you can use in place of the more general
code shown in Listing 1-1 on page 1-17. For example, the interface file Control s. h
contains the definition shown in Listing 1-2 for the NewCont r ol Act i onPr oc function.

Listing 1-2 The definition of the NewCont r ol Act i onPr oc routine

1-18

typedef Universal ProcPtr Control Acti onUPP;

#def i ne NewCont rol Acti onProc(userRoutine) \
(Control Acti onUPP) NewRouti neDescri ptor((ProcPtr)userRoutine, \
uppControl Acti onProclnfo, GetCurrentl SA())

Because this routine is defined in the universal header files, you can replace the code in
Listing 1-1 with the simpler code shown in Listing 1-3.
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Listing 1-3 Creating a routine descriptor for a control action procedure

Cont rol Acti onUPP nyActi onProc;
myActi onProc = NewControl Acti onProc((ProcPtr)M/Action);

In general, you should use the specific routines defined throughout the universal header
files instead of the general technique illustrated in Listing 1-1.

IMPORTANT

You do not need to create routine descriptors for routines that are called
only by your application. More generally, if you know for certain that a
routine is always called by code of the same instruction set architecture,
you can and should continue to use procedure pointers instead of
universal procedure pointers. If, however, the address of one of your
application’s routines might be passed to a Toolbox or Operating System
routine, you should make sure to use a routine descriptor. s

Memory Considerations

The technique described in the previous section for using routine descriptors is by far the
simplest and easiest to implement: any routine descriptors needed by an application are
allocated in the application heap at application launch time. The descriptors remain
allocated until the application terminates, at which time the entire application heap is
reclaimed by the Process Manager. As a result, you don’t have to dispose of any routine
descriptors created in this way.

If, in some case, you know that you won’t be needing a routine descriptor any more
during the execution of your application, you can explicitly dispose of it by calling

the Di sposeRout i neDescri pt or function. This is most useful when you allocate a
routine descriptor for temporary use only. For example, you might call some code that
uses a callback procedure only very infrequently. In that case you can allocate the routine
descriptor when the code is called and then release it when the code is done.

Finally, you can create a routine descriptor on the stack if you intend to use it only within
a single procedure. The Mixed Mode Manager interface file M xedMbde. h defines the C
language macro BUI LD _ROUTI NE_DESCRI PTOR that you can use for this purpose, as
well as for initializing static routine descriptors. For details, see “Using Static Routine
Descriptors” on page 2-22 in the chapter “Mixed Mode Manager” in this book.

The PowerPC Native Environment

A run-time environment is a set of conventions that determine how code is loaded into
memory, where data is stored and how it is addressed, and how functions call other
functions and system software routines. The run-time environment available on a
specific Macintosh computer is determined jointly by the Macintosh system software
(which manages the loading and scheduling of executable code) and your software
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development system (which generates code to conform to the documented run-time
conventions).

The run-time environment for native PowerPC code is significantly different from the
run-time environment for 680x0 code with which you are probably already familiar.

In general, however, the PowerPC run-time environment is both simpler and more
powerful than the 680x0 run-time environment. This increased simplicity and power
are due primarily to the use of fragments as the standard way of organizing executable
code and data in memory. In the native PowerPC run-time environment, all discrete
collections of executable code—including applications, code resources, extensions, and
even the system software itself—are organized as fragments when loaded into memory.
Accordingly, all executable code shares the benefits that derive from the organization of
fragments, including

n a uniform set of calling conventions

n the ability to store code called by many applications or other software in
import libraries

n asimplified means of addressing global data

n the ability to execute special initialization and termination routines when the
fragment is loaded into and unloaded from memory

This section describes the run-time environment for applications and other software
executing on PowerPC processor-based Macintosh computers. It describes in detail

n the structure of fragments

n how to address global code and data
n Subroutine invocation

n PowerPC stack frames

n import libraries

n the organization of memory

IMPORTANT

Keep in mind that the run-time environment defined by the use of
fragments might in the future be available on 680x0-based Macintosh
computers (and not solely on PowerPC processor-based Macintosh
computers). The new run-time environment based on fragments is
intended to be as processor independent as possible. s

Fragments

In the run-time environment introduced in the first version of the system software for
PowerPC processor-based Macintosh computers, the basic unit of executable code and
its associated data is a fragment. All fragments share a number of fundamental
properties, such as their basic structure and their method of accessing code or data
contained in themselves or in other fragments. There are, however, different uses for
fragments, just as there are different uses for executable code in the 680x0 environment.
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Fragments can be loosely differentiated into three categories, based on how they
are used.

n An application is a fragment that can be launched by the user from the Finder (which
calls the Process Manager to do the actual launching), typically to process documents
or other collections of information. An application almost always has a user interface
and uses standard event-driven programming techniques to control its execution.

n Animport library is a fragment that contains code and data accessed by some other
fragment or fragments. The Macintosh system software, for instance, is an import
library that contains the code (and data) implementing the Macintosh Toolbox and
Operating System routines. When you link an import library with your application,
the import library’s code is not copied into your application. Instead, your application
contains symbols known as imports that refer to some code or data in the import
library. When your application is launched, the system software automatically
resolves any imports your application contains and creates a connection to the
appropriate import libraries.

n An extension is a fragment that extends the capabilities of some other fragment. For
example, your application might use external code modules like menu definition
functions, control definition functions, or data-conversion filters. Unlike import
libraries, extensions must be explicitly connected to your application during its
execution. There are two types of extensions: application extensions and system
extensions. An application extension is an extension that is used by a single
application. A system extension is an extension that is used by the Operating System
or by multiple applications; it is usually installed at system startup time from a
resource of type' INI T' ,' DRVR , or' CDEV' .

Import libraries and system extensions are sometimes called shared libraries, because
the code and data they contain can be shared by multiple clients. Import libraries and
system extensions are also called dynamically linked libraries, because the link between
your application and the external code or data it references occurs dynamically at
application launch time.

The physical storage for a fragment is a container, which can be any kind of object
accessible by the Operating System. The system software import library, for example, is
stored in the ROM of a Macintosh computer. Other import libraries are typically stored
in files of type ' shl b' . The fragment containing an application’s executable code is
stored in the application’s data fork, which is a file of type ' APPL' . An extension can
be stored in a data file or in a resource in some file’s resource fork.

IMPORTANT

In general, it’s best to put an application extension into the data fork of
some file (possibly even the application’s data fork itself), not into a
resource. There is, however, one notable exception to this rule, namely
when the extension is PowerPC code that is intended to operate in the
same way as a 680x0 stand-alone code module. See “Executable
Resources” on page 1-34 for more information. s

Before the code or data in a fragment can be used, it must be loaded into memory from
its container and prepared for execution. This process is usually handled automatically
by the Code Fragment Manager, the part of the Macintosh Operating System responsible
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for loading and preparing fragments. Fragment preparation consists mainly in resolving
any imports in the fragment; the Code Fragment Manager searches for another fragment
(an import library) that exports the symbols imported by the fragment being loaded. Of
course, the import library containing the code or data imported by the first fragment
might itself contain imported symbols from yet a third fragment. If so, the Code
Fragment Manager needs to load and prepare the third fragment, then the second
fragment, and finally the first fragment.

IMPORTANT

In general, the Code Fragment Manager is called by the Operating
System in response to a request to load some specific fragment (for
example, when the user launches an application). The import libraries
used by that fragment are loaded automatically, if the Code Fragment
Manager can find them. The Code Fragment Manager usually operates
completely transparently, just like the 680x0-based Segment Manager.
You need to use the Code Fragment Manager only if your application
uses custom application extensions. See the beginning of the chapter
“Code Fragment Manager” in this book for details. s

To load fragments into memory from the containers they are stored in, the Code
Fragment Manager uses the Code Fragment Loader, a set of low-level services called
mainly by the Code Fragment Manager. The Code Fragment Loader is responsible for
knowing about container formats, such as PEF and XCOFF. Unless you need to design a
new container format, you do not need to use the Code Fragment Loader. Currently,
however, the application programming interface to the Code Fragment Loader is private.

The following sections describe the organization and operation of fragments in
greater detail.

The Structure of Fragments

Once a fragment has been loaded into memory and prepared for execution, the code and
data it contains are available to itself and to any fragments that import parts of that code
and data. The code and data of a particular fragment are loaded into separate sections
or regions of memory. In general, the code and data sections of a loaded fragment are
not contiguous with one another in memory. Instead, the data section of a fragment is
loaded either into your application’s heap or into the system heap. The code section of a
fragment is usually loaded elsewhere in memory. (See “File Mapping” beginning on
page 1-53 for details on the location of the code sections of a fragment.) Regardless of
where it is loaded, there is no segmentation within a code section of a fragment.

Because every fragment contains both code and data sections, it follows that any code
executing in a fragment-based run-time environment—not just application code—can
have global variables. (In the 680x0 run-time environment, it’s difficult for some kinds of
code to have global variables.) In addition, there is no practical limit on the size of a
fragment’s data section. By contrast, the total size of an application’s global variables

in the 680x0 environment is 32 KB, unless your development system provides special
capabilities to exceed that limit.
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Fragments created by the currently available linkers contain one section of code and one
section of static data (although it’s theoretically possible to have more than one of each
type of section). A fragment’s code section must contain pure executable code, that is,
code that is independent of the location in memory where it is loaded. Pure code can be
loaded anywhere in memory. As a result, it cannot contain any absolute branches. In
addition, any references to the fragment’s data must be position-independent: there can
be no absolute data addresses in the code. Because the code contained in a fragment’s
code section must be pure and position-independent, and because a code section is
always read-only, a fragment can be put into ROM or paged directly from an application
file. In addition, it’s much easier to share pure code than it is to share impure code. This
makes it very easy to implement import libraries as fragments.

A fragment’s data section contains the static data defined by the fragment. An applica-
tion’s data section is typically loaded into the application’s heap. An import library’s
data section can be loaded into the system heap or into the heap of any application that
uses the import library. Indeed, it’s possible for an import library’s data section to be
loaded into memory at multiple locations, thereby creating more than one copy of the
data. This is especially useful for providing different applications with their own copy of
a library’s data. See “Import Libraries” beginning on page 1-50 for more details on this.

Even though a fragment’s code and data sections can be loaded anywhere in memory,
those sections cannot be moved within memory once they’ve been loaded. Part of the
process of loading a fragment into memory is to resolve any dependencies it might have
upon other fragments. This preparation involves inserting into part of the fragment’s
data section a number of pointers to data and code imported by the fragment from
other fragments, as described in the following section. To avoid having to perform

this fragment preparation more than once, the Operating System requires that a loaded
fragment remain stationary in memory for as long as it is loaded.

Note

In the 680x0 environment, an application’s code can be unloaded (by the
Memory Manager) and later reloaded into a different place in memory.
This difference in run-time behavior leads to some important restrictions
on stand-alone PowerPC code resources (called accelerated resources)
that mimic the behavior of existing kinds of 680x0 code resources. See
“Executable Resources” beginning on page 1-34 for details. u

Imports and Exports

As you've seen, a fragment (for example, an application) can access the code and data
contained in some other fragment (typically an import library) by importing that code
and data. Conversely, an import library can export code and data for use by other
fragments (applications, extensions, or even other import libraries). It’s the responsibility
of the linker to resolve any imports in your application (or other code fragment) to
exports in some import library. The linker generates symbols that contain the name of
the exporting library and the name of the exported symbol and inserts those symbols
into your linked application.
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Figure 1-2 illustrates how the linker resolves imports in an application. The SurfWriter
object module contains a number of unresolved symbols. Some of the symbols reference
code that is part of the system software contained in the InterfaceLib import library.
Other unresolved symbols reference code in the SurfTool import library. The linker
resolves those symbols and creates the SurfWriter application, which contains the names
of the appropriate import library and function.

Figure 1-2 Creating imports in a fragment
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When your application is launched, the Code Fragment Manager searches for the
linker-generated import symbols and replaces them with the addresses of the imported
code or data. To do this successfully, the Code Fragment Manager needs to find the
appropriate import library and load it into memory if it isn’t already in memory. Then, it
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needs to bind the imported symbols in your application to the actual addresses, in the
import library, of the imported code or data. Once the loading and binding of import
libraries are complete, your application can execute.

Note

When binding imported symbols to external code and data, the Code
Fragment Manager ensures that the version of the import library

used at link time to resolve external symbols is compatible with the
version used at fragment loading time. See the chapter “Code Fragment
Manager” in this book for a description of this version-checking
capability. In general, this all happens transparently to your application
or other code. u

It’s possible to designate some of the imports in your application (or other software) as
soft. Asoft import is an imported symbol whose corresponding code or data might not
be available in any import library on the host machine and which is therefore undefined
at run time. For example, a particular system software component such as QuickTime
might not be available on all Macintosh computers. As a result, if you call QuickTime
routines, you should mark all those imports as soft. When the Code Fragment Manager
loads and prepares your application, it resolves the soft imports if the QuickTime code
and data are available. If the QuickTime code and data aren’t available, the Code
Fragment Manager inserts an invalid address (namely, kUnr esol vedSynbol Addr ess)
into your fragment’s table of contents entry for any QuickTime routines or data items.

WARNING
You should always check to see that any imports declared as soft by
your software were successfully resolved at load time. Trying to access
code or data referenced by an unresolved soft import will cause your
software to crash. s

For most system software services, you can use the Gest al t function to determine if the
necessary code or data is available in the current operating environment. Note that this
is not a new requirement and should not cause you to change your existing source

code; existing 680x0 software should also call Gest al t to ensure that needed system
software services are available. When no Gest al t selector exists to test for the existence
of a particular routine or data item, you can check for unresolved soft imports by
comparing the address of the import to kUnr esol vedSynbol Addr ess. Listing 1-4
illustrates this technique.

Listing 1-4 Testing for unresolved soft imports

extern int printf (char *, ...);

if (printf == kUnresol vedSynbol Addr ess)
DebugStr("\printf is not available.");
el se
printf("Hello, world!'\n");
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See the description of the MakePEF tool in the book Building Programs for Macintosh With
PowerPC for exact details on how to specify imports as soft.

The Table of Contents

The imported symbols in a fragment are contained in a special area in the fragment’s
data section known as the table of contents (TOC). Prior to preparation by the Code
Fragment Manager, a table of contents contains unresolved references to code and data
in some other fragment. After preparation, the table of contents contains a pointer to
each routine or data item that is imported from some other fragment. This provides a
means of global addressing whereby a fragment can locate the code or data it has
imported from other fragments.

Note

As you can see, the phrase “table of contents” is a slight misnomer,
because a fragment’s table of contents does not supply a list of the
addresses of routines or data in the fragment itself. Rather, a fragment’s
table of contents consists (in part) of the addresses of code and data that
the fragment imports, which reside in some other fragment. The table of
contents is more akin to a personal address book. A fragment’s table of
contents is private to the fragment itself and exists solely to provide
external linkage for the code in the fragment. u

A fragment’s table of contents also contains pointers to the fragment’s own static data.
Because the code and data sections of a fragment are usually loaded into different
locations in memory, and because they must both be position-independent, the code
section needs a method of finding its own data, such as data addressed by global
variables. Global variables are addressed through the fragment’s table of contents.
Within the compiled code of your application, references to global variables appear as
indirect references via offsets into the table of contents.

Of course, for this scheme to work, the code section of a fragment needs to know where in
memory its TOC begins. The address of the TOC cannot be compiled into the fragment;
instead, the address of the TOC of the currently executing fragment is maintained in a
register on the microprocessor. Currently, the general-purpose register GPR2 is dedicated
to serve as the Table of Contents Register (RTOC). It contains the address in memory of
the beginning of the TOC of the currently executing fragment.

It’s easy to see how a code fragment can find its own global data. It simply adds the
compiled-in offset of a global variable within the TOC to the address of the TOC
contained in the RTOC. The result is the address of a pointer to the desired data.

It’s slightly more complicated to see how a code fragment can execute an external piece
of code. As it does with global data, the linker accesses external code via an offset into
the TOC. The corresponding address in the TOC, however, is not the address of the piece
of external code itself. Instead, the TOC of the calling fragment contains the address—in
the static data section of the called fragment—of a transition vector, a data structure that
contains two pointers: the address of the routine being called and the address of the
called fragment’s TOC. The basic structure of a transition vector is shown in Figure 1-3.
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Figure 1-3 A transition vector
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Note

Strictly speaking, a transition vector can contain any humber of pointers,
as long as there are at least two. The first pointer is always the address of
the routine being called, and the second pointer is always a value to be
loaded into GPR2 prior to the execution of that routine. The second
pointer in a transition vector can serve any purpose appropriate to the
called routine. In the PowerPC environment for Macintosh computers,
the second pointer is almost always the TOC address of the fragment
containing the called routine. However, the callee is free to use the
second pointer in other ways, if this is deemed useful. Your development
system’s compiler ultimately determines the size and contents of a
transition vector. u

A TOC entry for an external routine points to a transition vector largely so that the
calling routine can set up an RTOC with the called fragment’s TOC value. Then, when
the called routine exits, the caller restores the RTOC to its original value, pointing to the
TOC of the calling fragment. This kind of function call is known as a cross-TOC call.
During a cross-TOC call, GPR12 is assumed to point to the transition vector itself; this
convention allows the called routine to access any additional fields in the transition

vector beyond the first two.
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To access data stored in another fragment, there is no need for the caller to install the
TOC address of the other fragment in the RTOC. Instead, the TOC entry of the calling
fragment contains a pointer to the external data, in exactly the same way that a TOC
entry for global data in the same fragment contains a pointer to that data.

In short, a fragment’s table of contents contains

n one pointer for each imported routine called by the fragment; this pointer is the
address of a transition vector in the data section of the import library.

n one pointer for each external data item used by the fragment; this pointer is the
address of the data in the data section of the import library.

n one pointer for each global variable.

n one pointer for each pool of C st at i ¢ data internal to the fragment.

Note

Compilers and assembly-language programmers may place additional
items in a fragment’s table of contents. u

The size of a fragment’s TOC is determined at the time your source code is compiled
and linked, but the actual values in the TOC cannot be determined until the fragment

is loaded and prepared for execution. When the Code Fragment Manager loads a
fragment, it also loads any fragments that contain exports used by that fragment; at that
time, the addresses of those exports can be determined and placed into the original
fragment’s TOC.

The TOC provides the means whereby a routine in a given fragment can find its own
static data and any external routines it calls. In providing access to a fragment’s own
data, the TOC is analogous to the A5 world in applications created for the 680x0 run-
time environment. The TOC is more general than the A5 world, however, at least insofar
as it allows stand-alone code to have global data; in the 680x0 environment, only
applications have an A5 world and its resulting easy access to global data.

The Code Fragment Manager is responsible for dynamically resolving symbols in an
unprepared TOC by binding them with their referents. This process involves finding
unresolved imported symbols in the TOC, searching for the code or data they refer to,
and replacing the symbols with the relevant addresses. This indirection through the TOC
gives rise to a number of useful features.

n Routines external to a fragment can be specified by name, not by address. This allows
routines to be grouped into import libraries.

n Data can be specified by name, not by address.
n Callback routines can be specified by name, not by address.

n Initialization and termination routines can be included in a fragment and are executed
automatically by the Code Fragment Manager when the fragment is connected and
disconnected, respectively.

n A fragment’s data can be either shared among multiple applications or instantiated
separately for each application that uses the fragment. This feature is especially useful
for fragments that are import libraries.
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n The Code Fragment Manager can treat two import libraries as a single import library
for the purposes of symbol resolution. This feature is especially useful for creating an
update library—an import library that contains enhancements or bug fixes for an
existing import library.

n A fragment’s code and data can be loaded anywhere in memory, because the address
of a routine or a piece of data is always relative to the address contained in the RTOC.

Notice that TOC entries that point into another fragment always point into the data
section of that fragment. This is a consequence of the fact that code is exported only
through a transition vector in the fragment’s data section. Code symbols are never
exported directly, but only via data symbols.

Because entries in a TOC are addressed using a register value plus an offset, and because
offsets are signed 16-bit quantities, a table of contents can be at most 64 KB in size, with
at most 16,384 entries. As already noted, current compilers and linkers create only one
TOC per fragment. If you need to work with more than 16,384 pointers, you can create
one or more import libraries, each of which can itself contain up to 16,384 pointers. As a
practical matter, this is not a serious limitation.

Note

Future development tools might not create a TOC at all. The method

of collecting a fragment’s imported symbols and global data references
into a table of contents is independent of the method of packaging code
and data into a fragment. A fragment doesn’t need to have a table of
contents, but all current development systems that create fragments do
in fact create a single table of contents in each fragment. u

Although transition vectors are used primarily for cross-TOC calls (as described above),
they are also used for pointer-based function calls. Whenever your application takes the
address of a function (even one inside the same fragment), a transition vector is allocated
to point to that function. Indeed, all function pointers in PowerPC code are actually
pointers to transition vectors. If you are writing in assembly language, you need to be
sure to export pointers to transition vectors instead of to actual code.

Special Routines

A fragment can define three special symbols that are separate from the list of symbols
exported by the fragment. These symbols define an initialization routine, a termination
routine, and a main routine (or block of data). These routines, if present, are called at
specific times during the loading, unloading, or normal execution of a fragment. A
fragment that is an application must define a main symbol that is the application’s entry
point. Import libraries and extensions may or may not define any of these symbols.

A fragment’s initialization routine is called as part of the process of loading and
preparing the fragment. You can use the initialization routine to perform any actions that
should be performed before any of the fragment’s other code or static data is accessed.
When a fragment’s initialization routine is executed, it is passed a pointer to a fragment
initialization block, a data structure that contains information about the fragment. In
particular, the initialization block contains information about the location of the
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fragment’s container. (For example, if an import library’s code fragment is contained in
some file’s data fork, you can use that information to find the file’s resource fork.)

It’s important to know when the initialization routine for a fragment is executed. If the
loading and preparation of a fragment cause a (currently unloaded) import library to be
loaded in order to resolve imports in the first fragment, the initialization routine of the
import library is executed before that of the first fragment. This is obviously what you
would expect to happen, because the initialization routine of the first fragment might
need to use code or data in the import library. In case there are two import libraries that
depend upon each other, their developer may specify which should be initialized first.

A fragment’s termination routine is executed as part of the process of unloading a
fragment. You can use the termination routine to undo the actions of the initialization
routine or, more generally, to release any resources or memory allocated by the fragment.

Note

See “Fragment-Defined Routines” beginning on page 3-26 in the chapter
“Code Fragment Manager” in this book for more information about a
fragment’s initialization and termination routines. u

The use of a fragment’s main symbol depends upon the type of fragment containing it.
For applications, the main symbol refers to the main routine, which is simply the usual
entry point. The main routine typically performs any necessary application initialization
not already performed by the initialization routine and then jumps into the application’s
main event loop. For import libraries, the main symbol (if it exists) is ignored. For
extensions having a single entry point, a main routine can be used instead of an exported
symbol to avoid having to standardize on a particular name.

IMPORTANT

In fact, the main symbol exported by a fragment does not have to refer
to a routine at all; it can refer instead to a block of data. You can use this
fact to good effect with application extensions, where the block of data
referenced by the main symbol can contain essential information about
the extension. For instance, a loadable tool contained in a fragment
might store its name, icon, and other information in that block. The
Code Fragment Manager returns the address of the main symbol when
you programmatically load and prepare a fragment. s

Fragment Storage

As you’ve learned, the physical storage for a fragment is a container. A container can be
any logically contiguous piece of storage, such as the data fork of a file (or some portion
thereof), the Macintosh ROM, or a resource. In the first version of the system software
for PowerPC processor-based Macintosh computers, the Code Fragment Loader can
recognize two kinds of container formats, the Extended Common Object File Format
(XCOFF) and the Preferred Executable Format (PEF).

XCOFF is a refinement of the Common Object File Format (COFF), the standard
executable file format on many UNIX®-based computers. XCOFF is supported on
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Macintosh computers primarily because the early development tools produce executable
code in the XCOFF format.

IMPORTANT
Not all object code in the XCOFF format will execute on Macintosh
computers. Any XCOFF code that uses UNIX-style memory services or
that otherwise depends on UNIX features will not execute correctly on
Macintosh computers. s

PEF is an object file format defined by Apple Computer. A container in the PEF format is
dramatically smaller than the corresponding container in the XCOFF format. This
smaller size reduces both the disk space occupied by the container and the time needed
to load the container’s code and data into memory. More importantly, PEF provides
support for a fragment’s optional initialization and termination routines and for the
version checking performed by the Code Fragment Manager when an import library is
connected to a fragment.

As you know, the mixed environment provided by the first version of the system
software for PowerPC processor-based Macintosh computers allows the user to run
both 680x0 and PowerPC applications. The Process Manager needs some method of
determining, at the time the user launches an application, what kind of application it is.
Because the mixed environment is intended to support existing 680x0 applications
unmodified, the Process Manager assumes that an application is a 680x0 application,
unless you specifically indicate otherwise. You do this by including, in the resource fork
of your PowerPC application, a code fragment resource. This resource (of type' cfrg'
and ID 0) indicates the instruction set architecture of your application’s executable code,
as well as the location of the code’s container. Typically, the code and data for a PowerPC
application are contained in your application’s data fork, as shown in Figure 1-4.

Figure 1-4 The structure of a PowerPC application
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If your application contains a code fragment resource, the Process Manager calls the
Code Fragment Manager to load and prepare your application’s code and data. If, on the
other hand, your application does not contain a code fragment resource, the Process
Manager assumes that your application is a 680x0 application; in this case, the Process
Manager calls the Segment Manager to load your application’s executable code from
resources of type' CODE' in your application’s resource fork, as illustrated in Figure 1-5.

Figure 1-5 The structure of a 680x0 application
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Listing 1-5 shows the Rez input for a sample code fragment resource.

Listing 1-5 The Rez input for a sample ' cfrg' resource

#i ncl ude " CodeFragnent Types.r"
resource 'cfrg' (0) {

{
kPower PC, /[*instruction set architecture*/
kFul I Li b, /*no update level for apps*/
kNoVer si onNum /*no inplenmentation version nunber*/
kNoVer si onNum /*no definition version nunber*/
kDef aul t St ackSi ze, /*use default stack size*/
kNoAppSubFol der, /*no library directory*/
kl sApp, [*fragnment is an application*/
kOnDi skFl at, [*fragnment is on disk*/
kZer oOf f set [*fragnent starts at fork start*/
kWhol eFor k, [ *fragnment occupies entire fork*/
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"SurfWiter” [ *name of the application*/

b

The ' cfrg' resource specification in Listing 1-5 indicates, among other things, that the
application consists of PowerPC code, that the code is contained in the application’s data
fork, and that the code container occupies the entire data fork. It’s possible to have the
container occupy only part of the data fork, if you need to put other information in

the data fork as well. (Some applications, for instance, put copyright or serial number
information in their data fork.) You do this by specifying a nonzero offset for the begin-
ning of the code fragment. Alternatively, you can move the information previously
contained in the data fork into one or more resources in your application’s resource fork,
thereby reserving the entire data fork for the PowerPC code fragment.

Note

For information about the other fields in a code fragment resource,
see the chapter “Code Fragment Manager” in this book. u

This recommended placement of an application’s PowerPC code in the data fork makes
it easy to create fat applications that contain both PowerPC and 680x0 executable code.
A fat application contains 680x0 code in ' CODE' resources in the resource fork and
PowerPC code in the data fork, as shown in Figure 1-6.

Figure 1-6 The structure of a fat application
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The advantage of a fat application is that it can be executed on either 680x0-based or
PowerPC processor-based Macintosh computers. The Process Manager on 680x0-based
Macintosh computers knows nothing about' cfr g' resources. As a result, it ignores the
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code contained in the data fork and uses the code contained in the application’s ' CODE'
resources. The Process Manager on PowerPC processor-based Macintosh computers,
however, reads the ' cfrg' resource and uses the code in the specified location (usually,
the data fork); the 680x0 ' CODE' resources in the resource fork are ignored.

Ideally, you should package your application as a fat application, to give your users
maximum flexibility in how they manage their working environment. For example, a
user might move a storage device (such as a hard disk) containing your application from
a 680x0-based Macintosh computer to a PowerPC processor-based Macintosh computer.
If your application is fat, it can be launched successfully in either environment.

For various reasons, however, you might decide not to package your application as a

fat application. If so, you should at the very least include an executable 680x0 ' CODE'
resource that displays an alert box informing the user that your application runs only on
PowerPC processor-based Macintosh computers.

Note

Import libraries also need a code fragment resource, to indicate the
location of the container and the appropriate version information.

See the chapter “Code Fragment Manager” in this book for information
about creatinga ' cfrg' resource for an import library. u

Executable Resources

The Code Fragment Manager is extremely flexible in where it allows fragments to be
stored. As you’ve seen, an application’s executable code and global data are typically
stored in a container in the application’s data fork. Import libraries supplied as part of
the Macintosh system software are often stored in ROM, while import libraries created
by third-party developers are usually stored in the data forks of files on disk. It’s also
possible to use resources as containers for executable PowerPC code. This section
describes how to work with executable resources in the PowerPC environment.

There are two kinds of executable resources you can create that contain PowerPC code:
resources whose behavior is defined by the system software (or by some other software)
and those whose behavior is defined by your application alone. For present purposes,
these two kinds of resources are called accelerated and private resources, respectively.

Note

The terms accelerated and private are used here simply to help distinguish
these two kinds of executable resources containing PowerPC code. They
are not used elsewhere in this book or in Inside Macintosh. u

First, you can put an executable PowerPC code fragment into a resource to obtain

a PowerPC version of a 680x0 stand-alone code module. For example, you might
recompile an existing menu definition procedure (which is stored in a resource of type
" MDEF' ) into PowerPC code. Because the Menu Manager code that calls your menu
definition procedure might be 680x0 code, a mode switch to the PowerPC environment
might be required before your definition procedure can be executed. As a result, you
need to prepend a routine descriptor onto the beginning of the resource, as shown in
Figure 1-7. These kinds of resources are called accelerated resources because they are
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faster implementations of existing kinds of resources. You can transparently replace
680x0 code resources by accelerated PowerPC code resources without having to change
the software (for example, the application) that uses them.

Figure 1-7 The structure of an accelerated resource
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Sometimes it’s useful to keep the executable code of a definition function in some
location other than a resource. To do this, you need to create a stub definition resource
that is of the type expected by the system software and that simply jumps to your code.
For example, Listing 1-6 shows the Rez input for a stub list definition resource.

Listing 1-6 Rez input for a list definition procedure stub

data ' LDEF' (128, "MyCustonlDEF", preload, |ocked) {

/*need to fill in destination address before using this stub*/

$"41FA 0006" [ *LEA PC+8, A0 ;A0 <- ptr to destination address*/
$" 2050" /*MOVEA. L (A0), A0 ; AO <- destination address*/

$" 4EDO" [*JIMP (AO) ;junp to destination address*/

$" 00000000" / *desti nati on address*/

Your application (or other software) is responsible for filling in the destination address
before the list definition procedure is called by the List Manager. For 680x0 code, the
destination address should be the address of the list definition procedure itself. For
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PowerPC code, the destination address should be a universal procedure pointer (that is,
the address of a routine descriptor for the list definition procedure).

By contrast, you can create a resource containing executable PowerPC code solely for the
purposes of your application (perhaps on analogy with the standard kinds of code-
bearing resources used by the system software). Because these kinds of executable
resources do not conform to a calling interface defined by the system software (or by some
other widely available software, such as HyperCard), they are called private resources.
The code in private resources is called only by your application, not by any other external
code. As a result, there is no need to put a routine descriptor onto the beginning of the
executable code. Figure 1-8 shows the general structure of a private resource.

Figure 1-8 The structure of a private resource
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It’s important to understand the distinction between accelerated and private resources,
so that you know when to create them and how to load and execute the code they
contain. An accelerated resource is any resource containing PowerPC code that has a
single entry point at the top (the routine descriptor) and that models the traditional
behavior of a 680x0 stand-alone code resource. There are many examples, including menu
definition procedures (stored in resources of type ' MDEF' ), control definition functions
(stored in resources of type ' CDEF' ), window definition functions (stored in resources of
type ' WDEF' ), list definition procedures (stored in resources of type ' LDEF' ), HyperCard
extensions (stored in resources of type ' XCMD' ), and so forth. A private resource is any
other kind of executable resource whose code is called directly by your application.
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IMPORTANT
For several reasons, it’s generally best to avoid using private resources
unless you absolutely must put some code into a resource. As you'll see
later (in “File Mapping” on page 1-53), the executable code of a private
resource is loaded into your application’s heap and is not eligible for
file mapping. Whenever possible, you should put executable PowerPC
code into your application’s data fork or create your own application-
specific files. s

In most cases, you don’t need to do anything special to get the system software to
recognize your accelerated resource and to call it at the appropriate time. For
example, the Menu Manager automatically loads a custom menu definition procedure
into memory when you call Get Menu for a menu whose ' MENU resource specifies
that menu definition procedure. Similarly, HyperCard calls code like that shown in
Listing 1-7 to load a resource of type ' XCMD'  into memory and execute the code

it contains.

Listing 1-7 Using an accelerated resource

Handl e myHandl e;
XCmdBl ock myPar anBl ock;

myHandl e = Get 1NanedResource(' XCMD' , '\ pMyXCVD );
HLock( myHandl e) ;

[*Fill in the fields of nyParanBl ock here.*/

Cal | XCVD( &y Par anBl ock, mnyHandl e) ;
HUnI ock( myHandl e) ;

The caller of an accelerated resource executes the code either by jumping to the code (if
the caller is 680x0 code) or by calling the Mixed Mode Manager Cal | Uni ver sal Pr oc
function (if the caller is PowerPC code). In either case, the Mixed Mode Manager calls
the Code Fragment Manager to prepare the fragment, which is already loaded into
memory. With accelerated resources, you don’t need to call the Code Fragment Manager
yourself. In fact, you don’t need to do anything special at all for the system software

to recognize and use your accelerated resource, if you’ve built it correctly. This is
because the system software is designed to look for, load, and execute those resources
in the appropriate circumstances. In many cases, your application passes to the system
software just a resource type and resource ID. The resource must begin with a routine
descriptor, so that the dereferenced handle to the resource is a universal procedure
pointer.
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IMPORTANT

The MPW interface file M xedMbde. r contains Rez templates that you
can use to create the routine descriptor that appears at the beginning

of an accelerated resource. If you want to build the routine descriptor
yourself or if you want to build a fat accelerated resource (which
contains both PowerPC and 680x0 code), see the section “Executing
Resource-Based Code” beginning on page 2-24 in the chapter “Mixed
Mode Manager” in this book. s

The code shown in Listing 1-7—or similar code for any other accelerated resource—can
be executed multiple times with no appreciable performance loss. If the code resource
remains in memory, the only overhead incurred by Listing 1-7 is to lock the code, fill in
the parameter block, jump to the code, and then unlock it. However, because of the way
in which the system software manages your accelerated resources, there are several key
restrictions on their operation:

n An accelerated resource cannot contain a termination routine, largely because the
Operating System doesn’t know when the resource is no longer needed and hence
when the resource can be unloaded. The Code Fragment Manager effectively forgets
about the connection to your resource as soon as it has prepared the resource for
execution.

n An accelerated resource must contain a main symbol, which must be a procedure. For
example, in an accelerated ' MDEF' resource, the main procedure should be the menu
definition procedure itself (which typically dispatches to other routines contained in
the resource).

n You cannot call the Code Fragment Manager routine Fi ndSynbol to get information
about the exported symbols in an accelerated resource. More generally, you cannot
call any Code Fragment Manager routine that requires a connection ID as a parameter.
The connection ID is maintained internally by the Operating System and is not
available to your application.

n The fragment’s data section is instantiated in place (that is, within the block of
memory into which the resource itself is loaded). For in-place instantiation, you
need to build an accelerated resource using an option that specifies that the data
section of the fragment not be compressed. See the documentation for your soft-
ware development system for instructions on doing this.

Note

If you use the MakePEF tool to help build an accelerated resource, you
should specify the - b option to suppress data section compression. u

You might have noticed that the code shown in Listing 1-7 unlocks the ' XCMD' resource
after executing it. By unlocking the resource, the caller is allowing it to be moved around
in memory or purged from memory altogether. This behavior—which is perfectly
acceptable in the 680x0 environment—contradicts the general rule that fragments are not
allowed to move in memory after they’ve been loaded and prepared (see page 1-23). To
allow accelerated PowerPC resources to be manipulated just like 680x0 code resources,
the Mixed Mode Manager and the Code Fragment Manager cooperate to make sure that
the code is ready to be executed when it is called. If the resource code hasn’t been moved
since it was prepared for execution, then no further action is necessary. If, however, the
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code resource has moved or been reloaded elsewhere in memory, some of the global data
in the resource might have become invalid. For example, a global pointer might become
dangling if the code or data it points to has moved. To help avoid dangling pointers, the
Code Fragment Manager updates any pointers in the fragment’s data section that are
initialized at compile time and not modified at run time. However, the Code Fragment
Manager cannot update all global data references in an accelerated resource that has
moved in memory. There is, therefore, an important restriction on using global data in
accelerated resources:

n An accelerated resource must not use global pointers (in C code, pointers declared as
ext ernorst ati c) that are either initialized at run time or contained in dynamically
allocated data structures to point to code or data contained in the resource itself. An
accelerated resource can use uninitialized global data to point to objects in the heap.
In addition, an accelerated resource can use global pointers that are initialized at
compile time to point to functions, other global data, and literal strings, but these
pointers cannot be modified at run time.

Listing 1-8 shows some declarations that can be used in an accelerated resource,
provided that the resource code does not change the values of the initialized variables.

Listing 1-8 Some acceptable global declarations in an accelerated resource
int a; /[*uninitialized; not nodified if resource noves*/
Ptr nyPtr; /*uninitialized; not nodified if resource noves; */

/* can be assigned at run tine to point to heap object*/
Handl e *h; [*uninitialized; not nodified if resource noves; */

/* can be assigned at run tinme to point to heap object*/
int *b = &a; [/ *updat ed each tinme resource noves*/
char *nyStr = "Hello, world!"; [ *updat ed each time resource noves*/
extern int myProcA(), nyProcB();

struct {
i nt (*one)();
int  (*two)();
char *str;
} nyRec = {nyProcA, nyProcB, "Hello again!"};
/*all three pointers are updated each tine resource nmoves*/

Listing 1-9 shows some data declarations and code that will not work in an accelerated
resource that is moved or purged.

Listing 1-9 Some unacceptable global declarations and code in an accelerated resource

int a;

int *b;

int *c = &a;

Ptr (*myPtr) (long) = NewPtr;
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static Ptr MyNewPtr();
struct myHeapStruct ({

i nt *b;

Ptr (myPtr) (long);
} *hs;
b = &a; /*b does not contain & after resource is noved*/
¢ = NULL; /*c does not contain NULL after resource is noved*/
c = (int *) Newktr(4); /*dangling pointer after resource is noved*/
myPtr = MyNewPtr; /*dangl ing pointer after resource is noved*/
hs = NewPtr (sizeof (nmyHeapStruct));

/*hs still points to nonrel ocatable heap bl ock after nove*/

hs->b = &a; /*hs->b will not point to global a after mnove*/

hs->nmyPtr = MyNewPtr;
[*hs->nyPtr will not point to MyNewPtr after nove*/

Note that a code fragment stored as an accelerated resource can import both code and
data from an import library. The code and data in the import library do not move in
memory. As a result, you can sidestep the restrictions on global data in an accelerated
resource by putting the global data used by the accelerated resource into an import
library. The import library is unloaded only when your application terminates, not when
the accelerated resource is purged.

To load and prepare a private resource, you need to call the Resource Manager, Memory
Manager, and Code Fragment Manager explicitly, as shown in Listing 1-10.

Listing 1-10 Using a private resource

Handl e myHandl e;
OSEr r nmyErr;
Connectionl D  nyConnl D
Ptr my Mai nAddr ;
Str255 my Er r Nane;

nmyHandl e = Get 1NanmedResour ce(' RULE , '\ pDeM);

HLock( myHandl e) ;

myErr = Get Menfragnent (*myHandl e, Get Handl eSi ze(nyHandl e) ,
"\ pDeM , kLoadNewCopy, &nyConnl D, (Ptr*)&nyMai nAddr,
myEr r Nane) ;

/*Call the code in here.*/

myErr = O oseConnecti on(nmyConnl D) ;
HUnl ock( myHandl e) ;
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None of the restrictions on accelerated resources listed above applies to your own
private code-bearing resources. For instance, you do have access to the connection ID
to the resource-based fragment (as you can see in Listing 1-10), so you can call Code
Fragment Manager routines like Cl oseConnect i on and Fi ndSynbol . However, the
overhead involved in loading the code fragment and later unloading it is nontrivial,

so you should avoid closing the connection to a private resource (that is, calling

Cl oseConnect i on) until you’re done using it.

Because a private resource is just a fragment stored in a resource, it’s preferable to

avoid using private resources, whenever possible, by putting that code and data into
some file. By doing this, you gain the benefits afforded by the system software to file-
based fragments (such as file mapping directly from the file’s data fork). You should use
private executable resources only in cases where your code absolutely must be packaged
in a resource.

Calling Conventions

The software development tools and the system software for PowerPC processor-based
Macintosh computers dictate a set of calling conventions that are significantly different
from those you might be used to in the 680x0 execution environment. The new calling
conventions are designed to reduce the amount of time required to call another piece of
code and to simplify the entire code-calling process. In the 680x0 environment, there are
many ways for one routine to call another, depending on whether the called routine
conforms to Pascal, C, Operating System, or other calling conventions. In the PowerPC
environment, there is only one standard calling convention, having these features:

n Most parameters are passed in registers dedicated for that purpose. The large number
of general-purpose and floating-point registers makes this goal quite easy to achieve.
Parameters are passed on the stack only when they cannot be put into registers.

n The size of a stack frame is determined at compile time, not dynamically at run time.

n Stack frames are subject to a strict set of rules governing their structure. The new
run-time architecture reserves specific areas of a stack frame for saved registers, local
variables, parameters, and stack frame linkage information (such as the return
address and the beginning of the previous stack frame).

The following sections describe these differences in greater detail. They begin by
reviewing the procedure calling conventions that exist on 680x0-based Macintosh
computers. Then they describe the calling conventions adopted for PowerPC
processor-based Macintosh computers and show how those conventions affect the
organization of the stack.

IMPORTANT
The information in the following sections is provided primarily for
debugging purposes or for compiler writers and assembly-language
programmers, who need to conform to the new calling conventions.
Because generating code conforming to these conventions is handled
automatically by your compiler, you might not need this information
for writing applications in a high-level language. s
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The 680x0 Calling Conventions

To appreciate how different the PowerPC calling conventions are from the 680x0 calling
conventions, it’s useful to review the model used on 680x0-based Macintosh computers.
On 680x0-based computers, there is a conventional grow-down stack whose parts are
delimited by two pointers: a stack pointer and a frame pointer. Figure 1-9 illustrates a
typical 680x0 stack frame.

Figure 1-9 A 680x0 stack frame
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By convention, the stack grows from high memory addresses toward
low memory addresses. The end of the stack that grows or shrinks is
usually referred to as the “top” of the stack, even though it’s actually at
the lower end of memory occupied by the stack. u

The stack pointer (SP) points to the top of the stack and defines its current downward
limit. All operations that push data onto the stack or pop data off it do so by reading and
then modifying the stack pointer. The Operating System uses the 680x0 register A7 as the
stack pointer.

The frame pointer (FP) points to the base in memory of the current stack frame, the area
of the stack used by a routine for its parameters, return address, local variables, and
temporary storage. Because the Operating System maintains the frame pointer, it can
easily find the beginning of the stack frame when it’s time to pop it off the stack. The
Operating System uses the 680x0 register A6 as the frame pointer.

A routine’s parameters are always placed on the stack above the frame pointer, and its
local variables are always placed below the frame pointer. The 680x0 hardware enforces
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16-bit alignment for parameters on the stack. So, for example, if you push a single byte
onto the stack, the stack pointer is decremented by 2 bytes rather than 1.

The order of the parameters on the stack differs according to the language type of the
called routine. When you call a C routine on a 680x0-based Macintosh computer, the
parameters are pushed onto the stack in order from right to left. This order is dictated by
the fact that the C language allows routines with a variable number of parameters. The
first parameter (which often indicates how many parameters are being passed) must
always be pushed onto the stack last, so that it resides at a fixed offset from the frame
pointer. Moreover, because only the caller knows how many parameters it pushed onto
the stack, it is always the caller’s responsibility to pop the parameters off the stack.
Finally, with C routines, a function result is returned in register DO (or, for floating-point
results, in register FPR0). However, structures and other large values are handled
differently: the caller allocates space for the result and passes a pointer to that storage as
the first (that is, leftmost) parameter.

The calling conventions for Pascal routines are different from those for C routines. For
Pascal routines, the caller pushes space for the return result onto the stack before
pushing the parameters. The caller pushes parameters onto the stack from left to right.
Because Pascal does not allow routines with a variable number of parameters, the size of
a stack frame can be determined at compile time. It is therefore the responsibility of the
called routine to remove the parameters from the stack before returning.

Note

These differences between C and Pascal are due entirely to
historical factors, not to any requirements of the 680x0
environment. It would have been possible for Pascal routines
to follow the C calling conventions. u

There are still other calling conventions followed on 680x0-based Macintosh computers.
Macintosh Toolbox managers generally follow Pascal conventions, although some of the
most recent additions to the Toolbox follow C conventions. More importantly, the
Macintosh Operating System typically ignores the stack altogether. Instead, Operating
System calls generally pass parameters and return results in registers.

The PowerPC Calling Conventions

The native run-time environment on PowerPC processor-based Macintosh computers
uses a set of uniform calling conventions:

n Parameters are processed from left to right and are placed into general-purpose
registers GPR3 through GPR10 and (when necessary) floating-point registers FPR1
through FPR13.

n Function results are returned in GPR3, FPRL1, or by passing a pointer to a structure as
the implicit leftmost parameter (as in the 680x0 C implementation).

n Any parameters that do not fit into the designated registers are passed on the stack. In
addition, enough space is allocated on the stack to hold all parameters, whether they
are passed in registers or not.
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Like the 680x0 run-time environment, the PowerPC run-time environment uses a grow-
down stack that contains areas for a routine’s parameters, for linkage information, and
for local variables. However, the organization of the stack in the PowerPC environment
is significantly different from that in the 680x0 environment. The PowerPC run-time
environment uses a single stack pointer and no frame pointer. To achieve this simplifica-
tion, the PowerPC stack has a much more rigidly defined structure than does the stack in
the 680x0 environment. Figure 1-10 illustrates the general structure of the stack in the
PowerPC environment.

Figure 1-10 The PowerPC stack
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The caller’s stack frame includes a parameter area and some linkage information. The
parameter area in each stack frame is used by the caller to hold the parameters of any
routines the caller calls (not the parameters of the caller itself). Of course, a given routine
might in turn call several other routines; if so, the parameter area in the caller’s stack
frame is made large enough to accommodate the largest parameter list of all routines the
caller calls. It is the caller’s responsibility to set up the parameter area before each call to
some other routine, and the callee’s responsibility to access its parameters from that
parameter area. See the following section, “Parameter Passing” on page 1-47, for details
on the structure of a routine’s parameter area.

Once the caller has set up the parameters for a call to some other routine, it then stores
its own RTOC value in its linkage area, an area of the caller’s stack frame that holds the
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saved stack pointer, Condition Register (CR), Link Register (LR), and RTOC values. It is
necessary to save the caller’s RTOC value because the callee might reside in another
fragment, a situation that would require that the callee’s RTOC value be installed in the
RTOC. The caller always restores its RTOC value immediately upon return from the
callee. The callee’s prolog writes the saved Condition Register and Link Register into the
caller’s linkage area. The structure of a linkage area is illustrated in Figure 1-11.

IMPORTANT

The RTOC value is saved and restored only for two kinds of subroutine
calls: cross-TOC calls and pointer-based calls. In all other cases, the
RTOC field of the caller’s linkage area is ignored. s

Figure 1-11 The structure of a stack frame’s linkage area
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Notice that the linkage area always appears at the “top” of the stack, adjacent to the
stack pointer. This positioning is necessary to allow the caller to find and restore the
values saved there, and to allow the callee to find the caller’s parameter area. One
consequence of this requirement, however, is that a routine cannot push and pop
arbitrary values on the stack after a stack frame is set up.

A PowerPC stack frame also includes space for the callee’s local variables. In general, the
general-purpose registers GPR13 through GPR31 and the floating-point registers FPR14
through FPR31 are reserved for a routine’s local variables. If a particular routine has
more local variables than fit entirely into the registers reserved for them, it uses addi-
tional space on the stack. The size of the area used for local variables is determined at
compile time; once a stack frame is allocated, the area for local variables cannot grow

or shrink.

The callee is responsible for allocating its own stack frame, making sure to preserve
8-byte alignment on the stack. The callee allocates its stack frame by decrementing the
stack pointer, then writes the previous stack pointer into its own linkage area and saves
all nonvolatile general-purpose and floating-point registers into the saved registers area
of its stack frame. All of these actions are performed by a standard piece of
compiler-generated code called the prolog.
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Note

The order in which the callee’s prolog performs these actions is
determined by convention, not by any requirements of the PowerPC
run-time architecture. Also, the callee saves only those nonvolatile
registers it uses; if the callee doesn’t change a particular nonvolatile
register, it doesn’t bother to save and restore it. u

When the callee exits, its epilog code restores the nonvolatile registers that its prolog
previously saved. The Link Register and Condition Register are restored from the
linkage area in the caller’s stack frame. The nonvolatile general-purpose registers
(namely, GPR13 through GPR31) and floating-point registers (namely, FPR14 through
FPR31) are restored from the saved register area in the callee’s stack frame. The RTOC
value of the caller is, however, restored by the caller immediately upon return from the
called routine.

There is one special case in which a callee’s stack usage does not conform to the structure
shown in Figure 1-10—namely, when the callee is a leaf procedure. A leaf procedure

is a procedure that calls no other procedures. Because it doesn’t call any procedures,

it doesn’t need to allocate a parameter area on the stack. If, in addition, a leaf procedure
doesn’t need to use the stack for any local variables, it needs to save and restore only
those nonvolatile registers that it uses for local parameters.

Leaf procedures, due to their limited stack requirements, can use a special area on the
stack called the Red Zone. The Red Zone is the area just below the stack pointer, in the
area where a new stack frame normally would be allocated (see Figure 1-12). Because by
definition only one leaf procedure can be active at any time, there is no possibility of
multiple leaf procedures competing for the same Red Zone space.

Figure 1-12 The Red Zone
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It’s important to realize that a leaf procedure doesn’t actually allocate a stack frame for
itself and that it doesn’t decrement the stack pointer. Instead, it stores its LR and CR
values in the linkage area of the routine that calls it (if necessary) and stores the values
of any nonvolatile registers it uses in the Red Zone. As a result, the epilog of a leaf
procedure doesn’t need to tear down a stack frame. Instead, the epilog needs at most to
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restore the calling routine’s LR and CR values. This allows leaf procedures to execute
faster than they would if they had to set up and later tear down a complete stack frame.

Note

A leaf procedure uses the Red Zone in place of a stack frame only when
your code is compiled with speed optimization enabled. u

Using the Red Zone in this way can, however, cause problems for native exception
handlers, because an exception handler cannot know in advance if a leaf procedure is
executing at the time the exception occurs (and hence cannot know if the Red Zone
contains information that should be preserved). A native exception handler must
therefore decrement the stack pointer by 224 bytes (the largest possible register save
area) before using the stack, to skip over any Red Zone that might currently be in use.

Note

The value 224 is the space occupied by nineteen 32-bit general-purpose
registers plus eighteen 64-bit floating-point registers, rounded up to the
nearest 8-byte boundary. If a leaf procedure’s Red Zone usage would
exceed 224 bytes, then the leaf procedure is forced to use a stack frame,
like any other procedure. u

In general, you should use the new Exception Manager to install any native exception
handlers your application or other software defines. The Exception Manager automati-
cally adjusts the stack pointer before calling your exception handler and then restores it
after your handler exits. See the chapter “Exception Manager” in this book for complete
details on writing and installing a native exception handler.

IMPORTANT

The calling conventions and stack usage described in this section are
those of the PPCC compiler and the Macintosh Operating System. Other
compilers may employ different calling conventions. s

Parameter Passing

In the PowerPC run-time environment, as you’ve already learned, parameters are
usually passed from a caller to a callee in registers. The fact that there are many general-
purpose and floating-point registers dedicated for parameter passing makes it extremely
likely that all of a subroutine’s parameters can be passed in registers. Passing parameters
in registers reduces the number of memory accesses required (namely, to read the stack
frame) and thereby increases the performance of your software.

Any parameters that cannot be passed in registers are instead passed in the parameter
area of the caller’s stack frame. This section describes the way in which a caller prepares
the registers and the parameter area for the callee.

IMPORTANT

You need the information in this section only for machine-level
debugging purposes, to understand the contents of the general-purpose
and floating-point registers and the structure of the parameter area in a
caller’s stack frame. s
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The compiler assigns parameters to registers and to the parameter area in the caller’s
stack frame according to this algorithm:

n The parameters are arranged in order as if they were fields of a record.
n The leftmost parameter is the first field.
n Each field is aligned on a 32-bit word boundary.
n Integer parameters occupying less than 32 bits are extended to 32 bits.

n Some parameter values are passed in registers.
n The first 8 words are passed in GPR3 through GPR10.
n However, the first 13 floating-point parameters are passed in FPR1 through FPR13.

n Simple function results are returned in GPR3 or FPR1.

n Composite data (that is, custom data structures such as Pascal records or C structures)
are passed intact, without expanding the fields to achieve word alignment. When
composite data is returned, the caller leaves enough room to hold the result on the
stack, puts the address of the result into GPR3, and starts the parameters in GPR4.

n Any parameters that do not fit into the available registers are passed in the parameter
area of the caller’s stack frame.

The compiler generates a parameter area in the caller’s stack frame that is large enough
to hold all parameters passed to the callee, regardless of how many of the parameters are
actually passed in registers. There are several reasons for this scheme. First of all, it
provides the callee with space to store a register-based parameter if it wants to use one of
the parameter registers for some other purpose (for instance, to pass parameters to a
subroutine). In addition, routines with variable-length parameter lists must access their
parameters from RAM, not from registers. Finally, code that is built to allow debugging
automatically writes parameters from the parameter registers into the parameter area in
the stack frame; this allows you to see all the parameters by looking only at that
parameter area.

Consider, for example, a function MyFunct i on with this declaration:

void MyFunction (int i1, float f1, double dl, short sl1, double d2,

1-48

unsi gned char cl1, unsigned short s2, float f2, int i2);

Note

On the PowerPC processor, integers and long integers are both 32 bits
long and short integers are 16 bits long. Variables of type f | oat are
32 bits long; variables of type doubl e are 64 bits long. u

To see how the parameters of MyFunct i on are arranged in the parameter area on the
stack, first convert the parameter list into a structure, as follows:

struct params {

i nt pi 1;
fl oat pf 1;
doubl e pdil;
short psi;
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doubl e pd2;
unsi gned char pcl;
unsi gned short ps2;
fl oat pf 2;
i nt pi 2;

b

This structure serves as a template for constructing the parameter area on the stack.
(Remember that, in actual practice, many of these variables are passed in registers;
nonetheless, the compiler still allocates space for all of them on the stack, for the reasons
just mentioned.)

The “top” position on the stack is for the field pi 1 (the structure field corresponding to
parameter i 1). The floating-point field pf 1 is assigned to the next word in the parameter
area. The 64-bit doubl e field pd1 is assigned to the next two words in the parameter
area. Next, the short integer field ps1 is placed into the following 32-bit word; the
original value of ps1 is in the lower half of the word, and the padding is in the upper
half. The remaining fields of the par amstructure are assigned space on the stack in
exactly the same way, with unsigned values being extended to fill each field to a 32-bit
word. The final arrangement of the stack is illustrated in Figure 1-13. (Because the stack
grows down, it looks as though the fields of the par ans structure are upside down.)

Figure 1-13 The organization of the parameter area on the stack
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To see which parameters are passed in registers and which are passed on the stack, you
need to map the stack, as illustrated in Figure 1-13, to the available general-purpose and
floating-point registers. Registers GPRO through GPR2, and register FPRO, are reserved
for other uses. Therefore, the parameter i 1 is passed in GPR3, the first available
general-purpose register. The floating-point parameter f 1 is passed in FPR1, the first
available floating-point register.

Placing a floating-point parameter into a floating-point register also reserves one or two
general-purpose registers, depending on whether the parameter is 32 or 64 bits long.
This behavior is dictated in order to support the ability of a C function to call another
function without knowing the number or types of the callee’s parameters—that is,
without knowing the callee’s prototype. When no function prototype for the callee is
available to the caller, the compiler cannot know whether to pass a given parameter

in the general-purpose (that is, fixed-point) registers or in the floating-point registers.

As a result, the compiler passes the parameter in both the floating-point and the general-
purpose registers.

Even when the caller knows the function prototype of the callee, it still reserves one or
two general-purpose registers for each floating-point register it fills. The only difference
between cases in which the prototype is available and cases in which the prototype isn’t
available is that the floating-point parameters are copied into the general-purpose
register(s) in the latter cases but not in the former.

The parameter d1 is placed into FPR2 and the corresponding general-purpose registers
GPR5 and GPR6 are masked out. The parameter s1 is placed into the next available
general-purpose register, GPR7. Parameter d2 is placed into FPR3, with GPR8 and GPR9
masked out. Parameter c1 is placed into GPR10, thereby exhausting all available general-
purpose registers. However, parameter f 2 is passed in FPR4, which is still available.
Notice that there are no general-purpose registers that can be masked out for FPR4; as a
result, the parameter f 2 is passed both in FPR4 and on the stack. Finally, parameters s2
andi 2 must be passed on the stack, because there are no more general-purpose registers
to hold them.

Note

It would have been possible to pass all the fixed-point values in registers
if the floating-point parameters had been grouped at the end of the
parameter list. u

There is a special case that applies to routines that take a variable number of parameters
(for example, the C language function pri nt f ). The callee doesn’t know how many
parameters are being passed to it on any given call. As a result, the callee saves registers
GPR3 through GPR10 into the parameter area and then walks through the parameter
area to access its parameters. This means that the parameter area must contain at least

8 words.

Import Libraries

You've already learned (in “Fragments” beginning on page 1-20) how a fragment can
import code and data from some other fragment, which is always an import library.
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Because the code or data that your application references from an import library is not
actually contained in your application—but is only linked to it dynamically at application
launch time—the executable code of your application is generally much smaller than it
otherwise would be. This is one of the main advantages of using import libraries.

Of course, there’s no particular advantage simply to moving code out of your application
and into an import library, because the code in the import library, unless contained in
ROM, must be loaded into RAM before it can be used. The real advantages accrue only
when two or more applications use the same import library. The library’s code is loaded
into RAM only once, and all those applications reference that single code base. If you are
developing several PowerPC applications that have parts of their source code in common,
you should consider packaging all the shared code into an import library.

Another important advantage of using import libraries is that it’s easy to update code
contained in an import library. You can issue an updated version of your import library
and have the changes propagate to all the applications that use that library. You don’t
need to update each individual application that uses the import library.

You can use shared libraries in other useful ways. You can, for instance, create a shared
library that holds optional or infrequently executed code. For example, if you’re writing
a word-processing application, you might package its spell-checking module as a
separate shared library. Because the Code Fragment Manager doesn’t load the library at
application launch time, your application uses less RAM and launches more quickly.
When the user wants to execute the spelling checker, your application must explicitly
load and prepare the shared library by calling Code Fragment Manager routines.

You can also use shared libraries as a way to allow other developers to add capabilities,
such as optional tools, to your application. If you document the format of the parameters
passed to an external routine and any other data that you expect to find in an optional
tool, other developers can create shared libraries that conform to those specifications.

As you know, the principal advantage of using import libraries is that the code in the
import library is loaded only once in memory, whence it is addressed by all applications
(or other fragments) that import that code. The handling of an import library’s data,
however, is more complicated. The Code Fragment Manager supports two methods of
allocating and using the static data (that is, global variables) in an import library:

n Global instantiation. The Code Fragment Manager allocates a single copy of the
library’s global data, no matter how many clients use that data.

n Per-context instantiation. The Code Fragment Manager allocates one copy of the
library’s global data for each separate application (and all other fragments in the
application’s context) that uses that data. Each application can access only its own
copy of the data. The Operating System automatically keeps track of which copy of
the library’s global data is in use by which context. If a given application attempts to
load the same import library more than once, it always accesses the same copy of the
library’s global data.

The method of allocating and handling a library’s global data is determined at link time.
The library developer can indicate either global or per-context data instantiation for each
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separate data section in a library. The method selected by the library developer for a
particular data section is recorded by the linker in the library itself. In general, it’s best to
use one copy of the global data per application.

It’s also possible to allocate one copy of an extension’s global data for each request to
load the extension, even if the same application issues multiple load requests. This type
of data instantiation, called per-load instantiation, is available only when you explicitly
load a shared library by calling a Code Fragment Manager routine (for example, the

Get Shar edLi br ar y function). For example, a communications application might use a
shared library to implement a tool for connecting to a serial port. By requesting per-load
data instantiation, you can ensure that your tool can connect to two or more serial ports
simultaneously by maintaining separate copies of the tool’s data. The tool itself can then
be ignorant of how many connections it’s handling.

The Code Fragment Manager honors the data allocation method recorded in the library
for all import libraries that it loads automatically. This method must be either global or
per context. To achieve a per-load instantiation of a library’s data or to override the
instantiation method recorded in the library, you must load and prepare the library
programmatically by calling Code Fragment Manager routines.

The Organization of Memory

The organization of memory in the PowerPC run-time environment is reasonably similar
to the organization of memory in the 680x0 run-time environment. The system partition
occupies the lowest memory addresses, with most of the remaining space allocated to
the Process Manager, which creates a partition for each opened application. Moreover,
the organization of an application partition in the PowerPC run-time environment is
reasonably similar to the organization of an application partition in the 680x0 run-time
environment. In each application partition, there are a stack and a heap, as well as space
for the application’s global variables.

There are, however, a number of important differences between the PowerPC and 630x0
environments in regard to how memory is organized, both globally and in each applica-
tion’s partition. This section describes these differences. It also describes the different
data alignment conventions used in each environment and the steps you might need to
take to align data so that it can be exchanged between the two environments.

IMPORTANT

In general, you need the information in this section only for debugging
purposes (for example, to understand where in memory your
application’s code section is loaded). You might also need this
information to help you determine how large to make your application
partition (as specified in your application’s ' SI ZE' resource). s

The two main differences between the 680x0 memory organization and the PowerPC
memory organization concern the location of an application’s code section and the
location of an application’s global variables. In addition, you need to pay attention to
the differing data alignment rules in each environment.
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File Mapping

As you know, a PowerPC application’s executable code and global data are typically
stored in a fragment container in the application’s data fork. When the application is
launched, the code and data sections of that fragment are loaded into memory. The data
section is loaded into the application’s heap, as described more fully in the following
section. The location of the application’s code section varies, depending on whether or
not virtual memory is enabled.

If virtual memory is enabled, the Virtual Memory Manager uses a scheme called file
mapping to map your application’s fragment into memory: the Virtual Memory
Manager uses the data fork of your application as the paging file for your application’s
code section. In the 680x0 environment, all unused pages of memory are written into a
single systemwide backing-store file and reread from there when needed. This often
results in a prolonged application launch, because an application’s code is loaded into
memory and then sometimes immediately written out to the backing-store file. In the
PowerPC environment, this “thrashing” at application launch time is avoided; although
the entire code fragment is mapped into the logical address space, only the needed
portions of code are actually loaded into physical memory.

File mapping has additional benefits as well. The Operating System assumes that your
application’s code section is always read-only. This means that, when it’s time to remove
some of your application’s code from memory (to page other code or data in), the Virtual
Memory Manager doesn’t need to write the pages back to the paging file. Instead, it
simply purges the code from the needed pages, because it can always read the file-
mapped code back from the paging file (your application’s data fork).

IMPORTANT

Because your application’s code section is marked read-only when
virtual memory is enabled, it’s not possible to write self-modifying code
that will work on all PowerPC processor-based Macintosh computers. s

The virtual addresses occupied by the file-mapped pages of an application’s (or an
import library’s) code are located outside both the system heap and the Process
Manager’s heap. As a result, an application’s file-mapped code is never located in
the application heap itself.

Figure 1-14 illustrates the general organization of memory when virtual memory is
enabled. Application partitions (including the application’s stack, heap, and global
variables) are loaded into the Process Manager heap, which is paged to and from the
systemwide backing-store file. Code sections of applications and import libraries are
paged directly from the data fork of the application or import library file. Data sections
of import libraries are put into an application’s heap for any per-context instantiations
and into the system heap for any global instantiations.
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Figure 1-14 Organization of memory when virtual memory is enabled
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Sometimes, however, parts of your application’s executable code are loaded into your
application partition, not into the file-mapped space. This happens, for example, when
you store an application extension (like a filter or a tool) as a resource in your applica-
tion’s resource fork. To make the code in that extension available, you need to call the
Resource Manager to load it into your application heap. Then you need to call the Code
Fragment Manager to prepare the extension for execution. (See the chapter “Code
Fragment Manager” in this book for a more detailed description of this way of executing
resource-based code.) Because that code is loaded into your application heap, it isn’t
eligible for file mapping (although it is still eligible for normal paging).

If virtual memory is not enabled, the code section of an application is loaded into the
application heap. The Finder and Process Manager automatically expand your applica-
tion partition as necessary to hold that code section. The code sections of other fragments
are put into part of the Process Manager’s heap known as temporary memory. If no
temporary memory is available, code sections are loaded into the system heap.

IMPORTANT

It’s possible for a fragment’s code section to be loaded into the Process
Manager’s heap even when virtual memory is enabled. This happens
whenever the fragment resides on a device that cannot be used as a
paging device. For example, applications that are located on floppy
disks, AppleShare servers, and compact discs cannot be file mapped. s

Figure 1-15 illustrates the general organization of memory when virtual memory is not
enabled. Application partitions (including the application’s stack, heap, and global
variables) are loaded into the Process Manager heap. Code sections of applications and
import libraries are loaded either into the Process Manager partition or (less commonly)
into the system heap. No paging occurs.
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Figure 1-15 Organization of memory when virtual memory is not enabled
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The System Partition

The system partition in PowerPC processor-based Macintosh computers is organized

in essentially the same way as that in system software version 7.1 for 680x0-based
computers. To support existing 680x0 applications and other software modules that
access documented system global variables, the structure of much of the system partition
remains unchanged. Both emulated 680x0 and native PowerPC system software compo-
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nents use and maintain the system global variables. However, some undocumented
system global variables have moved, and some have been eliminated altogether.

The universal header files contain declarations for routines that you can use to access
virtually all of the documented system global variables. For example, you can use the
routines LMGet Cur Di r St or e and LMSet Cur Di r St or e to get and set the value of the
system global variable Cur Di r St or e (which contains the directory ID of the current
directory). LMGet Cur Di r St or e is declared essentially as follows:

#i f USESCODEFRAGVENTS

extern | ong LMGet CurDir St ore(voi d);

#el se

#define LMztCurDirStore() (* (long *) 0x0398)
#endi f

In any environment that uses code fragments, the function LMGet Cur Di r St or e is
defined in the system software import library that is contained in ROM. In all other
environments, the function LMGet Cur Di r St or e is defined as a macro that reads the
value of the appropriate low-memory address.

By using the routines provided by the system software, you can insulate your application
or other software module from any future changes in the arrangement of low memory.

Note

See the MPW interface files for a complete listing of the routines you can
use to access the system global variables. You should not use the
compiler flag USESCODEFRAGVENTS in your source code; if you need to
know whether the Code Fragment Manager is available, you can call the
Gest al t function with the selector gest al t CFMAttr. u

The only other case in which your application might be affected by changes to the
system partition concerns the method you use to install exception handlers. In the 680x0
environment, there is no programmatic way to install an exception handler; instead,
you simply write the address of your exception handler into the appropriate location

in memory (as determined jointly by the kind of exception you want to handle and

the value in the microprocessor’s vector base register). A PowerPC application cannot
employ this method of installing exception handlers. Instead, the system software for
PowerPC processor-based Macintosh computers includes the new Exception Manager,
which you should use to install native PowerPC exception handlers. See the chapter
“Exception Manager” in this book for details.

Application Partitions

The organization of an application partition in the PowerPC environment is substantially
simpler than in the 680x0 environment. In particular, the application partition for a
PowerPC application consists only of a stack and a heap. The A5 world that occupies
part of a 680x0 application partition largely is absent from the PowerPC environment.
The information that is maintained in the A5 world for 680x0 applications is either no
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longer needed by PowerPC applications or is maintained elsewhere (usually in the
application heap).

IMPORTANT
Any software that makes assumptions about the organization of an
application’s A5 world will not work with PowerPC applications. For
example, any 680x0 system extensions that modify an application’s jump
table will need to be rewritten to work with PowerPC applications. s

This section describes the new locations for the information in a 680x0 A5 world.
Although in general the arrangement of your PowerPC application partition is trans-
parent to your application, there are some instances (for example, while debugging)
in which you might need to know where in your partition information is located. In
addition, if your application previously depended on some information being in its
A5 world (that is, accessed through the address in the A5 register), you will need to
revise it to remove that dependence if you want to recompile your source code into
a PowerPC application. More generally, you might need to rewrite any parts of your
source code that depend on information being in any of the 680x0 registers.

Note
For a more complete explanation of a 680x0 application’s A5 world,
see Inside Macintosh: Memory. u

The A5 world of a 680x0 application contains four kinds of data:
n application global variables

n application QuickDraw global variables

n application parameters

n the application’s jump table

Your 680x0 application’s jump table contains an entry for each of the application’s
routines that is called by code in another segment. Because the executable code of a
PowerPC application is not segmented, there is no need for a jump table in a PowerPC
application partition.

IMPORTANT
The available PowerPC compilers ignore any segmentation directives
in your source code. In addition, the Segment Manager treats the

Unl oadSeg procedure as nonoperative. s

In PowerPC applications, the application global variables are part of the fragment’s data
section, which the Code Fragment Manager loads into the application’s heap. The
application global variables are always allocated in a single nonrelocatable block and are
addressed through a pointer in the fragment’s table of contents.

The application parameters are 32 bytes of memory located above the application global
variables that are reserved for use by the Operating System. The first 4 bytes of those
parameters are a pointer to the application’s QuickDraw global variables, which
contain information about the application’s drawing environment. For PowerPC
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applications, the application parameters are maintained privately by the Operating
System. In addition, an application’s QuickDraw global variables are stored as part of
the application’s global variables (in a nonrelocatable block in the application’s heap).

Because the PowerPC run-time libraries don’t implicitly define the QuickDraw global
variable qd for native applications (as they do in the 680x0 environment), you’ll need to
reserve space for them globally in your application and then pass the address of that
memory to the | ni t G af routine. You can do this by using the code shown in Listing
1-11. The data type QDA obal s is defined in the QuickDraw header files.

Listing 1-11 Declaring an application’s QuickDraw global variables

#i f ndef MAC68K

# define MAC68BK 0O [/ *for PowerPC code*/
#el se
# define MAC6BK 1 [*for 680x0 code*/
#endi f
#if | MAC6BK
@d obal s qd;
#endi f
voi d Dol ni t Manager s() /*initialize Tool box managers*/
{

InitGaf(&qd. thePort);

InitFonts();

I ni t Wndows();

I nitMenus();

TEInit();

InitDial ogs(nil);

InitCursor();

}

QuickDraw is one of the system software services that has been ported to native
PowerPC code. It accesses the QuickDraw global variables of a 680x0 application by
reading the application’s A5 value that is stored in the 680x0 context block. That value
points to the boundary between the application’s global variables and the application
parameters. As you’ve seen, the address of the QuickDraw global variables is the first
4 bytes of the application parameters.

Even for applications that have themselves been ported to native PowerPC code, there
must be a minimal A5 world to support some nonported system software—as well as
some system software patches that exist as 680x0 code—that accesses the QuickDraw
global variables relative to the application’s A5 value. This mini-A5 world contains only
a pointer to the application’s QuickDraw global variables, which reside in the applica-
tion’s global data section (in the application heap). The Process Manager creates a
mini-A5 world for each native application at application launch time and installs its
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address in the 680x0 context block. As a result, the native QuickDraw can access the
QuickDraw global variables of a native application in precisely the same way that it
accesses the QuickDraw global variables of a 680x0 application (namely, by reading the
value of the A5 register in the 680x0 context block and then finding the address of the
QuickDraw global variables relative to the address of the A5 world).

The general structure of a PowerPC application partition is illustrated in Figure 1-16.

Figure 1-16 The structure of a PowerPC application partition
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IMPORTANT

There is no guarantee that future versions of the run-time environment
for PowerPC processor-based Macintosh computers will maintain

this arrangement of the application partition. To modify the size of

your application’s stack, for example, you should use the techniques
(described in the book Inside Macintosh: Memory) that use the

Get Appl Li mi t and Set Appl Li m t routines. You should not directly
modify system global variables (for instance, Appl Li mi t). Note,
however, that you can specify a minimum stack size in your PowerPC
application’s ' cfrg' resource.The Get Appl Li ni t and Set Appl Li mi t
techniques are still useful if you need to adjust that minimum size
dynamically. A reasonable minimum stack size for PowerPC applications
is48 KB. s

Because a PowerPC application has no A5 world (apart from the mini-A5 world main-
tained privately by the Process Manager), you don’t ever need to explicitly set up and
restore your application’s A5 world. In the 680x0 environment, there are two times when
you need to manage your A5 value explicitly: (1) to gain access to your application’s
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global variables or QuickDraw global variables from within some piece of “detached”
code installed by your application (such as a Time Manager task or a VBL task) and (2) to
create a 680x0 context for some other piece of code (such as a HyperCard XCMD).

In the first case, when you need to set up the A5 register for some piece of 680x0 code
whose address you passed to the system software, there is no need for ported PowerPC
code to set and restore the A5 register. The RTOC always points to the table of contents
for the currently executing code, through which the application’s global variables can be
addressed. As a result, your application’s global variables are transparently available to
any code compiled into your application. To maintain a single source code base for both
the 680x0 and the PowerPC environment, you can use conditional compilation. Consider
the simple 680x0 VBL task defined in Listing 1-12.

Note

See the chapter “Vertical Retrace Manager” in Inside Macintosh: Processes
for a complete explanation of the techniques used in Listing 1-12. u

Listing 1-12 A sample 680x0 VBL task definition

VBLRecPtr Get VBLRec (void)
= 0x2008; / * MOVE. L A0, DO*/

voi d DoVBL (VBLRecPtr recPtr)

{
gCount er ++; /*modi fy a gl obal variabl e*/
/ *Reset vbl Count so that this procedure executes again.*/
recPtr->myVBLTask. vbl Count = klnterval;

}

void StartVBL (void)

{
| ong cur A5; [ *stored val ue of A5*/
VBLRecPt r recPtr; [*pointer to task record*/
recPtr = GetVBLRec(); /[ *get address of task record*/
/*Set our application's A5 and store old A5 in curA5.*/
curA5 = Set A5(recPtr->vbl A5);
DoVBL(recPtr);
recPtr->myVBLTask. vbl Count = klnterval;
(voi d) Set A5(curA5); [*restore the old A5 val ue*/

}
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Theprocedure St ar t VBL defined in Listing 1-12 installs the A5 value of the application
by calling Set A5, passing in a value that it retrieves from an expanded VBL task record.
In addition, St ar t VBL restores the previous A5 value immediately before exiting. For
VBL tasks written as PowerPC code, both of these steps are unnecessary. You can rewrite
the procedure DoVBL to include those steps only conditionally, as shown in Listing 1-13.
Moreover, in the 680x0 environment, the address of the VBL task record is passed in
register AQ. If you need that address in a high-level language, you need to retrieve it
immediately upon entry to your VBL task (as is done using the Get VBLRec function in
Listing 1-12). In the PowerPC environment, however, the address of the VBL task record
is passed to the task as an explicit parameter. Listing 1-13 illustrates how to conditionally
select the appropriate task declaration.

Listing 1-13 A conditionalized VBL task definition

1-62

#i f MACG68K
VBLRecPtr Get VBLRec (void) = 0x2008; /*MOVE. L AO, DO*/
#endi f

void DoVBL (VBLRecPtr recPtr)

{
gCount er ++; /[*rmodi fy a gl obal variabl e*/
/ *Reset vbl Count so that this procedure executes again.*/
recPtr->myVBLTask. vbl Count = klnterval

}

#if MAC68K

void StartVBL (void)

#el se

void StartVBL (VBLTaskPtr recPtr)

#endi f

{

#if MAC68K
| ong cur A5; [ *stored val ue of A5*/
VBLRecPt r recPtr; [*pointer to task record*/
rechPtr = Get VBLRec(); / *get address of task record*/
/*Set our application's A5 and store old A5 in curA5. */
cur A5 = Set A5(recPtr->vbl A5);

#endi f
DoVBL(recPtr);

#i f MAC68K
(void) SetA5(curAb); /*restore the old A5 val ue*/

#endi f

}
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Listing 1-13 also removes the dependence on the inline assembly-language code that
retrieves a pointer to the VBL task record from register A0. In the PowerPC environment,
information is passed to interrupt tasks as explicit parameters.

The second main case in which you need to set up and restore the A5 register is to create
a 680x0 context for some existing 680x0 code (such as a stand-alone code module). To do
this, you can call the Set A5 and Set Cur r ent A5 routines.

Note

See the book Inside Macintosh: Memory for more information on calling
Set A5 and Set Current A5. u

Data Alignment

The PowerPC and 680x0 compilers follow different conventions concerning the alignment
of data in memory. Unless told to do otherwise, a compiler arranges a data structure

in memory so as to minimize the amount of time required to access the fields of the
structure. In general, this is what you’d like to have happen. In some cases, however, the
processor’s preferred method of aligning data might lead to problems. Suppose, for
example, that a PowerPC version of your application writes some data from memory into
afile. The data is arranged in the file in exactly the same order that it was arranged

in memory, including any pad bytes that were required to achieve the desired data
alignment in memory. It’s likely, however, that the resulting file will not be readable by

a 680x0 version of your application. That’s because the data will be read from the file
into a structure whose fields are very likely laid out slightly differently in memory. This
section describes how this can happen, and provides some easy remedies for this kind

of problem.

A 680x0 processor places very few restrictions on the alignment of data in memory. The
processor can read or write a byte, word, or long word value at any even address in
memory. In addition, the processor can read byte values at any address in memory. As a
result, the only padding required might be a single byte to align 2-byte or larger fields to
even boundaries or to make the size of an entire data structure an even number of bytes.

Note

Remember that a word on 680x0 processors is 2 bytes;
on PowerPC processors, a word is 4 bytes. u

By contrast, the PowerPC processor prefers to access data in memory according to its
natural alignment, which depends on the size of the data. A 1-byte value is always
aligned in memory. A 2-byte value is aligned on any even address. A 4-byte value is
aligned on any address that is divisible by 4, and so on. A PowerPC processor can access
data that is not aligned on its natural boundary, but it performs aligned memory accesses
more efficiently. As a result, PowerPC compilers usually insert pad bytes into data
structures to enforce the preferred data alignment.
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For example, consider the following data structure:

struct Sanpl eStruct ({

short ver si on;
| ong addr ess;
short count;

}

This structure occupies 8 bytes of memory in the 680x0 environment. To achieve the
desired alignment of the addr ess field in the PowerPC environment onto a 4-byte
boundary, however, 2 bytes of padding are inserted after the ver si on field. In addition,
the structure itself is padded to a word boundary. As a result, the structure occupies

12 bytes of memory in the PowerPC environment.

In general, the different data alignment conventions of the 680x0 and PowerPC
environments should be transparent to your application. You need to worry about the
differences only when you need to transfer data between the two environments. This can
happen in a number of ways:

n Your application creates files containing data structures and the user copies those files
from a PowerPC processor-based Macintosh computer to a 680x0-based Macintosh
computer (or vice versa).

n Your PowerPC application creates a data structure and passes it to some code running
under the 68LC040 Emulator.

n Your application—running in either environment—customizes a Toolbox or Operating
System data structure and passes it to the system software.

n Your PowerPC application sends data across a network connection to a 680x0-based
Macintosh computer.

To ensure that data can be transferred successfully in all of these cases, it’s sufficient

simply to instruct the PowerPC compiler to use the 680x0 data alignment conventions.

You can do this by using a compiler pr agnma statement, as follows:

#pragma option ali gn=mc68k
struct Sanpl eStruct {

short ver si on;
| ong addr ess;
short count;

}

#pragma option align=reset

You should make sure, however, that you use 680x0 alignment only when absolutely
necessary. The PowerPC processor is less efficient when accessing misaligned data than
when accessing aligned data.

Alternatively, instead of forcing the compiler to use 680x0 alignment in the PowerPC
environment, you can try to rearrange your data structures to promote natural
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alignment in both environments. For example, you can change the declaration of the
Sanpl eSt ruct structure to be as follows:

struct Sanpl eStruct ({

| ong addr ess;
short count ;
short ver si on;

}

A PowerPC compiler does not insert any pad bytes into the Sanpl eSt r uct structure
in this new arrangement, because the fields are already aligned along the desired
memory boundaries.

Note

Your PowerPC compiler may use slightly different alignment methods
than those described here. Consult your development system’s
documentation for complete information. For more details on specifying
alignment methods with the PPCC compiler, see the book Macintosh on
PowerPC C Compiler. u

You also need to be careful when passing floating-point data between the 680x0 and
PowerPC environments. The most efficient floating-point data type in the 680x0 environ-
ment is the 80-bit (or 96-bit) ext ended data type. The most efficient data types in the
PowerPC environment are si ngl e, doubl e, and | ong doubl e, which are 32, 64, and
128 bits, respectively. The PowerPC Numerics library includes routines you can use to
convert among these various data types. See Inside Macintosh: PowerPC Numerics for
complete details.

Compatibility and Performance

In general, it’s relatively easy to modify existing ANSI-compliant C or C++ source code
that successfully compiles and runs on 680x0-based Macintosh computers so that it can
be compiled and run on PowerPC processor-based Macintosh computers. Most of the
intricate work required to make your application compatible with the new PowerPC
run-time environment is performed automatically by your development system’s
compiler and linker and by the Code Fragment Manager. As you’ve seen, the changes
you need to make in your application’s source code are fairly straightforward. You need
to make these changes:

n Create routine descriptors for any routines whose addresses you pass to code of an
unknown type.

n Minimize any dependencies on system global variables by using the new set of
accessor routines defined in the MPW interface files.

n Isolate and conditionalize any dependencies on specific features of the 680x0 A5
world or the 680x0 run-time environment.

n Isolate and conditionalize any dependencies on information being passed in specific
680x0 registers.
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n Use 680x0 alignment for any data that is passed between environments, or declare
your data structures so that their fields are aligned identically in both the 680x0 and
PowerPC environments.

This section discusses several additional topics that relate more generally to the
compatibility and performance of your PowerPC application.

Patches

Some applications or other kinds of software patch the Operating System’s trap dispatch
tables to augment or replace the capabilities of certain system software routines. In
general, however, there is much less need to patch the system software now than there
previously was, and you should avoid doing so if at all possible. One very good reason
to avoid unnecessary patching is that you can incur a substantial performance reduction
if your patch causes a mode switch. For example, when a PowerPC application calls

a system software routine that is implemented as PowerPC code, the dispatching to

the PowerPC code occurs fairly quickly. However, if you patch the PowerPC code

with 680x0 code, the Mixed Mode Manager needs to intervene to switch the execution
environments both when entering and when exiting your patch code. This switching
results in a considerable overhead (approximately 15 microseconds on a 60 MHz
PowerPC processor per round-trip mode switch, the equivalent of about fifty 680x0
instructions).

Note

The precise number of instructions or microseconds of overhead
required to switch from one environment to the other and back is subject
to change in future system software versions and on different hardware
configurations. The important point to keep in mind is that switching
modes is a reasonably expensive activity and you should avoid it
whenever possible. u

The same situation occurs if you use PowerPC code to patch a system software routine
that is implemented as 680x0 code. Once again, a mode switch is required before
entering your patch code and after exiting it.

The ideal solution is simply to avoid patching the system software entirely. In the few
cases in which you absolutely cannot avoid patching some system software routine, you
can avoid the kind of mode switching just described by making sure to patch PowerPC
code with a PowerPC patch and 680x0 code with a 680x0 patch. Because you cannot in
general know what kind of code implements a particular system software routine, you
should install a fat patch, which addresses both PowerPC and 680x0 versions of your
code. To install a fat patch, you need to create a routine descriptor with two embedded
routine records, one record describing the PowerPC routine and one record describing
the 680x0 routine. Then you pass the address of that routine descriptor—that is, a
universal procedure pointer—to an appropriate Trap Manager routine, which installs
that universal procedure pointer into the trap dispatch table. When the patched routine
is called, the Mixed Mode Manager inspects the routine descriptor addressed by the
universal procedure pointer and selects the patch code that has the smallest impact on
performance.
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IMPORTANT
To install patches, you can use one of the Trap Manager routines

Set Tool Tr apAddr ess, Set OSTr apAddr ess, and

NSet Tr apAddr ess. You should not use the obsolete routine

Set Tr apAddr ess. See the chapter “Trap Manager” in Inside Macintosh:
Operating System Utilities for a more complete description of the
recommended way to patch system software routines. You should never
manipulate the trap dispatch tables directly. s

Your patch code should, of course, make sure to call through to the code originally
addressed by the entry in the trap dispatch table. You can retrieve that address by calling
Get Tool Tr apAddr ess, Get OSTr apAddr ess, or NGet Tr apAddr ess before you install
your patch. In the 680x0 patch code, you can simply jump to that address. In the
PowerPC patch code, you execute the original code by calling the Mixed Mode Manager
routine Cal | Uni ver sal Pr oc (for Toolbox traps) or Cal | OSTr apUni ver sal Pr oc (for
Operating System traps).

The Cal | OSTr apUni ver sal Pr oc function behaves just like the Cal | Uni ver sal Proc
function except that it preserves additional 680x0 registers around the execution of

the called procedure. In addition, you need to pass it a value specifying the trap word.
Operating System traps expect a 2-byte parameter in register D1; this parameter
represents the actual A-trap word used to call the routine. (Some traps use bits in the
trap word to dispatch to different code.) Any Operating System trap patches you install
should accept that parameter in register D1 and pass it through when calling the original
trap code. Listing 1-14 shows how to patch the NewPt r function using PowerPC code.

Listing 1-14 Patching an Operating System trap

enum { [*procedure information for NewPtr function*/
kNewPt r Procl nfo = kRegi st erBased |
RESULT_SI ZE( kFour Byt eCode) |
REG STER_RESULT_LOCATI ON( kRegi st er AO) |
REG STER_ROUTI NE_PARAMETER(1, kRegi sterDl, kTwoByteCode) |
REG STER_ROUTI NE_PARAMETER( 2, kRegi st er DO, kFour Byt eCode)

b

pascal Ptr MyNewpPtr Pat ch(unsi gned short trapWrd, Size byteCount)
{

[ *Your patch code goes here.*/

return (long) Call GSTrapUni versal Proc(gOri gi nal NewPtr,
kNewPt r Procl nfo, trapwWwrd, byteCount);

}

Because Cal | Uni ver sal Proc andCal | OSTr apUni ver sal Proc are called as
subroutines and return control to the calling code, all PowerPC patches are both
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head patches and tail patches (that is, your patch has control both before and after
the code originally pointed to by the trap dispatch table).

Notice that the address you call through to might be the address of someone else’s patch.
As aresult, it’s still possible for mode switches to occur, if at least one link in the patch
daisy chain is not a fat patch. These mode switches are unavoidable.

Note also that the system software includes a small number of split traps, system
software routines that are implemented with 680x0 code (usually in ROM) and as
PowerPC code in an import library. Because the PowerPC code is contained directly

in the import library, you cannot patch the PowerPC portion of a split trap. In general,
however, only those routines are implemented as split traps that are not likely candi-
dates for patching. For example, a number of very small utility routines like AddPt and
Set Rect are implemented as split traps.

The biggest restriction on patching is that you cannot patch any selector-based traps
(system software routines that are dispatched through a selector code) with either pure
PowerPC or fat patches. In the 680x0 environment, you can patch one or more selectors
belonging to a dispatched trap and pass all others through to the original code. In the
PowerPC environment, however, this is not possible. As a result, when patching with
PowerPC code, you must patch all the routines selected by a single trap if you patch any
of them. However, you cannot in general determine how many selectors are supported
by a given selector-based trap. You cannot therefore safely patch selector-based traps in a
way that is likely to remain compatible with future system software versions. For now,
you should use 680x0 code if you need to patch selector-based traps.

The Memory Manager

As you've already learned, the Memory Manager has been rewritten for PowerPC
processor-based Macintosh computers. The new Memory Manager, written in C and
compiled into native PowerPC code, offers much better performance than the previous
680x0 assembly-language version, both because it runs in the native PowerPC environ-
ment and because it uses substantially improved algorithms to manage heaps. In
general, however, the application programming interface has not changed. As a result,
you’ll benefit from the new version completely transparently, whether your application
runs under the 68LC040 Emulator or in the native PowerPC environment.

The Memory control panel (shown in Figure 1-17) includes controls that allow the user
to select whether applications and other software use the new Memory Manager or the
original Memory Manager. By default, the new (or “Modern”) Memory Manager is used.
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Figure 1-17 The Memory control panel for PowerPC processor-based Macintosh computers
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There are, however, several restrictions imposed by the new Memory Manager that
might cause compatibility problems for your application. If you’ve followed the advice
and warnings in the book Inside Macintosh: Memory, your application should run without
problems. However, the new Memory Manager is generally much less forgiving toward
code that fails to heed those warnings. Here are some areas to watch out for.

n Don’t dispose of blocks more than once. When you dispose of a block, whether
relocatable or nonrelocatable, the Memory Manager immediately takes control of that
block. Any future attempt to operate on the block (even simply to dispose of it) is
likely to cause problems. Note that it’s possible to dispose of a block twice in rather
subtle ways. For example, you might call Get Pi ct ur e to display a picture stored in a
resource and then inadvertently call Ki | | Pi ct ur e or Di sposeHandl| e to remove it.
This way of disposing of the block of memory leaves the' PI CT' resource in the
resource map. When your application quits, the resource is disposed of once again.
(The proper way to dispose of a picture loaded from a resource is to call
Rel easeResour ce.)

n Don’t manipulate the Memory Manager’s private data structures, including block
headers for both relocatable and nonrelocatable blocks, zone headers, and any unused
master pointers. The sizes and formats of some of these structures have changed.

n Don’t access any system global variables maintained by the Memory Manager.
Whenever possible, use the documented application programming interface (such
as the Set Appl Li mi t and Set G owZone procedures) to avoid manipulating
those variables.
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n Don’t modify free blocks of data or rely on the integrity of any data in free blocks. The
new Memory Manager assumes control of all unallocated memory in your heap and
may overwrite any information in free blocks.

n Don’t close a resource file without first detaching any resources in that file that you
want to continue using. To detach a resource, call the Det achResour ce procedure.

n Don’t use fake handles or pointers. You should call Memory Manager routines
only on blocks that were created by the Memory Manager itself. Remember that
the Memory Manager is fundamentally a heap managing tool. You should not,
for example, call Di sposePt r on data in your stack or in your application global
variable space.

n Don’t call Memory Manager routines at interrupt time. Except for the Bl ockMbve
procedure, all Memory Manager routines either move memory or manipulate system
global variables. These operations must not occur at interrupt time.

n Make sure to flush the instruction cache whenever necessary. Because it’'s much
harder to treat data as executable code in the PowerPC environment, the new Memory
Manager flushes the instruction cache only when it moves blocks around in memory.

n Don’t make assumptions about the relative positions of the stack and heap in your
application partition. You should adjust the size of the stack, if necessary, by calling
Get Appl Li mit and Set Appl Li mit.

To repeat, you shouldn’t encounter any of these problems if you’ve used the routines
and programming techniques documented in Inside Macintosh: Memory.

Performance Tuning

Once you've gotten your application or other software to execute correctly on a
PowerPC processor-based Macintosh computer, you’ll want to spend some time
tuning it for maximum performance. Many factors affect the speed at which code
executes, including

n how often you cause mode switches from one environment to another
n how you pass parameters to subroutines

n whether you use compiler-specific optimizations

The easiest way to increase the performance of your application is to use the compiler’s
optimization capabilities. I1t’s not uncommon for compiler speed optimizations to
improve your code’s execution by as much as 50 percent. See the book Macintosh on
PowerPC C Compiler for more information on compiler optimizations.

This section provides some preliminary discussion of the overhead associated with
mode switches and parameter passing. In general, you’ll need to combine the informa-
tion presented here with empirical observations you obtain when using a performance-
measurement tool, such as the Adaptive Sampling Profiler (ASP) built into the debugger.
See the book Macintosh Debugger Reference for complete information about using the ASP.

Compatibility and Performance



CHAPTER 1

Introduction to PowerPC System Software

Mode Switches

You've already learned (in “Patches” on page 1-66) that it’s important to avoid mode
switches whenever possible. The Mixed Mode Manager requires the equivalent of
approximately fifty 680x0 instructions to switch from one environment to another.
As a result, you might want to minimize the number of times your code invokes a
mode switch.

Some mode switches are entirely avoidable. For example, if you need to patch a system
software routine, you can avoid at least some mode switching by installing a fat patch
(a patch that includes both 680x0 and PowerPC versions of the patching code). Similarly,
if your application calls any resource-based code (for example, dynamically loadable
filters), you can create fat resources: code resources that include both 680x0 and
PowerPC versions of the executable code. Once again, the Mixed Mode Manager will
select the code that minimizes mode switching.

Some mode switches, however, are entirely unavoidable. Any time your PowerPC
application calls a system software routine that has not yet been ported to use the native
PowerPC instruction set, the Mixed Mode Manager must switch to the 680x0 environ-
ment to execute the routine and then switch back to the PowerPC environment to allow
your application to continue. This sometimes means that parts of your application might
execute more slowly on a PowerPC processor-based Macintosh computer than on a
680x0-based Macintosh computer.

A good example of this behavior concerns calling Event Manager routines, which remain
as 680x0 code in the first release of the system software for PowerPC processor-based
Macintosh computers. Suppose that during a lengthy calculation your application calls
Wi t Next Event or Event Avai | to scan the event queue for a Command-period event
(which typically indicates that the user wants to cancel the lengthy operation) and to
give time to other applications. Each time you call the Event Manager, two mode
switches occur (from your code to the emulated code and back). Moreover, because your
code is native PowerPC code, it executes more quickly between Event Manager calls
than it did in the 680x0 environment. The result is that your application is switching
modes more often than it absolutely has to.

Although you cannot avoid the mode switches entirely when calling the Event Manager,
you can lessen the overall impact of those switches on your application’s performance by
doing more work between successive Event Manager calls. One simple way to do this is
to perform more than one iteration of a loop between calls to Wi t Next Event . Another
simple way is to call Wai t Next Event only after a certain amount of time has elapsed.
Listing 1-15 shows how you can rewrite a part of your main event loop to incorporate
this feature.
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Listing 1-15 Waiting to call the Wi t Next Event function

sta

voi

{

1-72

tic unsigned | ong gWNEDel ay = 5; /*adj ust this value as needed*/
d Mai nEvent Loop(voi d)

Event Record myEvent ;
unsi gned | ong next Ti meToCheckFor Events = 0;

whil e (!gDone) {
if ((gWNEDelay == 0) || (TickCount() > nextTi meToCheckForEvents)) {
next Ti meToCheckFor Events = Ti ckCount () + gWNEDel ay;
i f (WaitNextEvent(everyEvent, &myEvent,
MyCet Sl eep(), (RgnHandle) nil))
Handl eEvent ( &ryEvent);

}
Dol dl e();

As you can see, this code continues in the event loop only when a certain amount of time
has elapsed. This method of adjusting the frequency of calls to Wai t Next Event works
on any available Macintosh computer and doesn’t require any conditional compilation.

Routine Parameters

You’ve already learned (in “Parameter Passing” beginning on page 1-47) that PowerPC
compilers attempt to pass as many parameters as possible in the processor’s registers,
thereby minimizing the number of memory accesses that are required for a routine call.
You can, however, help the compiler minimize memory accesses by following a few
simple guidelines:

n Use function prototypes. A compiler can generate more efficient code if you include
prototypes for any functions that accept floating-point parameters. The compiler then
knows to use the floating-point registers to store those parameters. If no function
prototype is available for a function taking floating-point parameters, the compiler
needs to pass the same information in both general-purpose and floating-point
parameters. (For more information, see the description of PowerPC calling conventions
beginning on page 1-47.)

n Put floating-point parameters at the end of the parameter list. A PowerPC compiler
reserves space for floating-point parameters not only in the floating-point registers
but also either in the general-purpose registers or in a stack frame. (This is necessary
to support passing floating-point parameters to a function for which no prototype
is available.) It’s best to let any non-floating-point parameters use the available
general-purpose register, so you should move floating-point parameters to the end of
the routine’s parameter list.
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n Minimize the use of variable parameter lists. For many reasons, it’s inefficient to
use variable parameter lists in the PowerPC environment. Use them only when
absolutely necessary.

IMPORTANT
These floating-point parameter-passing optimizations are highly
dependent on specific features of the PowerPC run-time environment.
You should implement these guidelines only in those parts of your code
where maximum efficiency is necessary. s
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Mixed Mode Manager

This chapter describes the Mixed Mode Manager, the part of the Macintosh system
software that manages the mixed-mode architecture of PowerPC processor-based
computers running 680x0-based code (including system software, applications, and
stand-alone code modules). The Mixed Mode Manager cooperates with the 68LC040
Emulator to provide a fast, efficient, and virtually transparent method for code in
one instruction set architecture to call code in another architecture. The Mixed Mode
Manager handles all the details of switching between architectures.

The Mixed Mode Manager is intended to operate transparently to most applications and
other software. You need the information in this chapter only if

n you want to recompile your application into PowerPC code and your application
passes the address of some routine to the system software using a reference of
type ProcPtr

n your application—written in either PowerPC or 680x0 code—supports installable
code modules that might be written in a different architecture

n you are writing stand-alone code (for example, a VBL task or a component) that could
be called from either the PowerPC native environment or the 680x0 emulated
environment

n Yyou are writing a debugger or other software that needs to know about the structure
of the stack at any time (for example, during a mode switch)

You do not need to read this chapter if you’re simply writing 680x0 code that doesn’t call
external code modules of unknown type, or if you are writing PowerPC code that calls
other PowerPC code using a procedure pointer. In these cases, any environment switching
that might occur is handled completely transparently by the Mixed Mode Manager.

IMPORTANT

This chapter describes the operation and features of the Mixed
Mode Manager and the 68LC040 Emulator as they exist in the
first version of the system software for PowerPC processor-based
Macintosh computers. s

To use this chapter, you should already be generally familiar with the Macintosh
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory
for information about the run-time architecture of the 680x0 environment. You also need
to be familiar with the run-time architecture of PowerPC processor-based Macintosh
computers, as explained in the chapter “Introduction to PowerPC System Software.”

This chapter begins by describing the mixed-mode architecture of PowerPC processor-
based Macintosh computers and the operations of the Mixed Mode Manager. Then it
shows how to use the Mixed Mode Manager to call external code.
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About the Mixed Mode Manager

2-4

The Mixed Mode Manager is the part of the Macintosh Operating System that allows
PowerPC processor-based Macintosh computers to cooperatively run 680x0 applications,
PowerPC applications, 680x0 system software, and PowerPC system software. It
provides a number of capabilities, including

n transparent access to 680x0-based system software from PowerPC applications

n transparent access to PowerPC processor-based system software from 680x0
applications

n a method—independent of the instruction set architecture—of calling an external
piece of code. This includes

n transparent access to PowerPC code by 680x0 applications
n system support for calling 680x0 code from PowerPC code
n system support for calling PowerPC code from 680x0 code
n support for patching PowerPC or 680x0 code with PowerPC or 680x0 code
n support for stand-alone code resources containing either 680x0 or PowerPC code

In short, the Mixed Mode Manager is intended to provide both PowerPC processor-
based and 680x0-based code transparent access to code written in another instruction set
(or in an instruction set whose type is unknown). It does this by keeping track of what
kind of code is currently executing and, when necessary, switching modes. For example,
if some PowerPC code calls a Macintosh Operating System routine that exists only in
680x0 form, the Mixed Mode Manager translates the routine’s parameters from their
PowerPC arrangement (for example, stored in registers GPR3 and GPR4) into the
appropriate 680x0 arrangement (for example, stored in registers DO and D1, with the
result placed into register AQ).

The Mixed Mode Manager is an integral part of the system software for PowerPC
processor-based Macintosh computers. It is designed to hide, as much as possible, the
dual nature of the operating environment supported on PowerPC processor-based
Macintosh computers running the 68LC040 Emulator. Except in specific cases described
later, your application or other software should not need to call the routines provided by
the Mixed Mode Manager.

External Code

To appreciate when and why you might need to use the routines provided by the Mixed
Mode Manager, you need to understand the circumstances in which you might directly
or indirectly call code in an instruction set architecture different from that of the calling
code. There are several ways to execute external code (code that is not directly contained
in your application or software), including

n calling atrap

n calling a device driver (for example, by calling the driver’s Open, Status, or
Control routines)
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n loading and then executing code contained in a resource
n using the address of a procedure or function obtained from an unknown source

In any of these four cases, the external code that you call might be in an instruction set
architecture that is different from the instruction set architecture of the calling code. (For
example, an application that uses the PowerPC instruction set might call a ROM-based
Toolbox trap that uses the 680x0 instruction set.) As a result, in all these cases, the Mixed
Mode Manager might have to switch environments to allow the called routine to execute
and then switch back to allow your application or other software to continue execution.

In the first two of the four cases, the Mixed Mode Manager is able to handle all required
mode switching virtually transparently to the calling software. In the two last cases,
however, you might need to intervene in the otherwise automatic operations of the
Mixed Mode Manager. This is because the Mixed Mode Manager cannot tell, from a
given pointer to some executable code, what kind of code the pointer references.

The following section describes in greater detail the extent of this problem and the way
you need to solve it, using universal procedure pointers in place of procedure pointers.
See “Using the Mixed Mode Manager” beginning on page 2-14 for code samples that
illustrate how to create and use universal procedure pointers.

Procedure Pointers

For present purposes, a procedure pointer is any reference generated by a compiler
when taking the address of a routine. On 680x0-based Macintosh computers, a procedure
pointer is simply the address of the routine’s executable code (and is defined by the

Pr ocPt r data type). On PowerPC processor-based Macintosh computers, a procedure
pointer is the address of the routine’s transition vector. Figure 2-1 illustrates the structure
of procedure pointers in each environment.

Figure 2-1 680x0 and PowerPC procedure pointers
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A transition vector is a set of two addresses: the address of the routine’s executable code
and the address of the fragment’s table of contents (TOC).
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The Macintosh programming interfaces allow you to use procedure pointers in several
ways. A procedure pointer can be

n passed as a parameter to a system software routine (for example, the gr owZone
parameter to the Set G- owZone routine)

n passed in a field of a parameter block or other data structure (for example, the
gzPr oc field of a Zone parameter block)

n stored in an application-specific global data structure (for example, the addresses
stored in agr af Pr ocs field of a graphics port)

n installed into a vector accessed through system global variables (for example, the
j GNEFi | t er global variable)

n installed into the trap dispatch table or into a patch daisy chain using the
Set Tool Tr apAddr ess or Set OSTr apAddr ess routine

As indicated previously, the Mixed Mode Manager cannot tell, from a given procedure
pointer, what kind of code the pointer references (either directly through a pointer of
type ProcPt r or indirectly through a transition vector). The Mixed Mode Manager
solves this problem by requiring you to use generalized procedure pointers, known as
universal procedure pointers, whenever you would previously have used a procedure
pointer. A universal procedure pointer is either a normal 680x0 procedure pointer
(that is, the address of a routine) or the address of a routine descriptor, a data structure
that the Mixed Mode Manager uses to encapsulate information about an externally
referenced routine. A routine descriptor describes the address of the routine, its
parameters, and its calling conventions.

typedef Routi neDescriptor *Universal ProcPtr;

Note

See “Routine Descriptors” on page 2-37 for a description

of the fields of a routine descriptor. u

The Macintosh application programming interfaces have been revised for the PowerPC
platform to change all references to procedure pointers to references to universal
procedure pointers. (The new interfaces are called the universal interface files.) For
example, the Set G- owZone function was previously declared in the interface file
Menory. h like this:

typedef ProcPtr G owZoneProcPtr;
pascal void Set G owZone (G owZoneProcPtr growZone);

In the updated interface file Menory. h, Set G owZone is declared like this:

typedef Universal ProcPtr G owZoneUPP;
extern pascal void Set GowZone (G owZoneUPP gr owZone);

This redefinition of all procedure pointers as universal procedure pointers ensures that at
the time a procedure is to be executed, the Operating System has enough information
to determine the routine’s instruction set architecture and hence to determine whether
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a mode switch is necessary. In addition, if a mode switch is necessary, the universal
procedure pointer (if it is a pointer to a routine descriptor) provides information about
the routine’s calling conventions, the number and sizes of its parameters, and so forth.

It’s important to understand exactly when you need to be concerned about routine
descriptors and when you need to use the new programming interfaces when writing
your application. The following cases cover most of the relevant possibilities:

n If your application uses the 680x0 instruction set (and therefore executes under the
68LC040 Emulator on PowerPC processor-based Macintosh computers) and does not
support external code modules, you do not need to use routine descriptors or the new
programming interfaces.

n If your application uses the PowerPC instruction set, you must use the new program-
ming interfaces.

n If your application uses either the 680x0 instruction set or the PowerPC instruction set
and makes calls only to code of the same type, you do not need to create routine
descriptors.

n If your code uses the PowerPC instruction set and passes a routine’s address to code
that might be in the 680x0 instruction set, then you need instead to pass the address of
a routine descriptor. This applies to all the methods of passing a routine address listed
earlier in this section (as a parameter to a system software routine, in a field of a
parameter block, and so forth).

n If you create a resource containing PowerPC code that might be called either by 680x0
code or by PowerPC code, that code must be preceded by a routine descriptor. It’s
possible that the calling code simply loads the resource and jumps to its beginning;
if the resource does not begin with a routine descriptor, the Mixed Mode Manager
will not be called to determine whether a mode switch is necessary. See “Executing
Resource-Based Code” on page 2-24 for more details.

IMPORTANT

In short, you need to convert procedure pointers to universal procedure
pointers only if you pass a routine’s address to code that is external to
your application. See “Using Universal Procedure Pointers” beginning
on page 2-21 for details on making the appropriate modifications to
your application. s

Mode Switches

This section describes the operations of the Mixed Mode Manager in switching modes
(from PowerPC native mode to 680x0 emulation mode, or vice versa). It describes the
circumstances under which mode switches are performed and the mechanism that the
Mixed Mode Manager uses to switch modes.

IMPORTANT

The information in this section is provided for debugging purposes only.
Your application (or other code) should not rely on the details of mode
switching presented here. s
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Every mode switch occurs as a result of either an explicit or an implicit cross-mode
call. An explicit cross-mode call occurs when the calling software itself calls the

Cal | Uni ver sal Pr oc function and passes a universal procedure pointer of a routine
that exists in an instruction set architecture other than that of the caller. An implicit
cross-mode call occurs when the calling software executes a routine descriptor for a
routine that exists in an instruction set architecture other than that of the caller.

The mixed-mode architecture of PowerPC processor-based computers running 680x0-
based code gives rise to four possible situations when a piece of code calls a system
software routine:

n  When 680x0 code calls a system software routine that exists as 680x0 code, the
routine is called directly, using the trap dispatch mechanism provided in the
68L.C040 Emulator.

n When 680x0 code calls a system software routine that exists as PowerPC code, the
routine is called indirectly, using the address—contained in the trap dispatch table—
of a routine descriptor, which invokes a mode switch to the PowerPC environment.
When the PowerPC code returns, the executing environment is switched back to the
68L.C040 Emulator. See the next section, “Calling PowerPC Code From 680x0 Code,”
for more details.

n When PowerPC code calls a system software routine that exists as PowerPC code, the
routine is called through glue in the system software import library. The glue code
calls Cal | Uni ver sal Pr oc, which determines that the routine is PowerPC code and
then calls it directly.

n When PowerPC code calls a system software routine that exists as 680x0 code, the
routine is called through glue code contained in the system software import library.
The glue code sets up a 680x0 universal procedure pointer (which is simply a 680x0
procedure pointer) and executes the 680x0 code by calling the Cal | Uni ver sal Proc
function. See “Calling 680x0 Code From PowerPC Code” on page 2-12 for more details.

IMPORTANT

Only 680x0 code can make implicit cross-mode calls. Native PowerPC
code must always make explicit cross-mode calls. The Mixed Mode
Manager determines whether a mode switch is necessary. s

Calling PowerPC Code From 680x0 Code

This section describes how the Mixed Mode Manager switches modes from the 680x0
emulated environment to the PowerPC native environment. This usually happens
when 680x0 code calls a system software routine that is implemented in the PowerPC
instruction set.

Suppose that a 680x0 application calls some system software routine. The application is
not aware that it is running under the 68LC040 Emulator, so it just pushes the routine’s
parameters onto the stack (or stores them into registers) and then jumps to the routine
or calls a trap that internally jumps to the routine. If the routine exists as 680x0 code,

no mode switch is required and the routine is called as usual. If, however, the routine
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exists as PowerPC code, the calling application must implicitly invoke the Mixed
Mode Manager.

If the calling application merely jumps to the PowerPC code, the code must begin with
a routine descriptor, as explained in “Executing Resource-Based Code” on page 2-24. If
the calling application calls a trap, the trap dispatch table must contain—instead of the
address of the routine’s executable code—the address of a routine descriptor for that
routine. This routine descriptor is created at system startup time.

Figure 2-2 shows the path followed when a 680x0 application calls a system software
routine implemented as PowerPC code. The trap dispatch table contains the address
of the native routine’s routine descriptor. The routine descriptor contains the address
of the routine’s transition vector, which in turn contains the routine’s entry point and
TOC value.

Figure 2-2 Calling PowerPC code from a 680x0 application
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For example, suppose that your application calls the Count Resour ces function,
as follows:

myResCount = Count Resources(' PROC );

Suppose further that Count Resour ces has been ported to the PowerPC instruction set.
When your application calls Count Resour ces, the stack looks like the one shown in
Figure 2-3.
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Figure 2-3 The stack before a mode switch
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The trap dispatcher executes the Count Resour ces routine descriptor, which begins
with an executable instruction that invokes the Mixed Mode Manager. The Mixed Mode
Manager retrieves the transition vector and creates a switch frame on the stack. A switch
frame is a stack frame that contains information about the routine to be executed, the
state of various registers, and the address of the previous frame. Figure 2-4 shows the
structure of a 680x0-to-PowerPC switch frame.

IMPORTANT

Notice in Figure 2-4 that the low-order bit in the back chain pointer to
the saved A6 value is set. The Mixed Mode Manager uses that bit
internally as a signal that a switch frame is on the stack. The Mixed
Mode Manager will fail if the stack pointer has an odd value. s
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Figure 2-4 A 680x0-to-PowerPC switch frame
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In addition to creating a switch frame, the Mixed Mode Manager also sets up several
CPU registers:

n The Table of Contents Register (RTOC) must be set to the TOC address of the
fragment containing the Count Resour ces routine. This value is obtained from
the transition vector whose address is extracted from the routine descriptor.

n The Link Register (LR) must be set to point to code that cleans up the stack and
restarts the emulator.

At this point, it’s safe to execute the native Count Resour ces code. When

Count Resour ces completes, the Mixed Mode Manager copies the return value from R3
into its proper location (in a register or on the stack). The RTOC, LR, and CR are restored
to their saved values, and the switch frame is popped off the stack. The Mixed Mode
Manager also pops the return address off the stack, as well as the parameters of routines
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of type pascal . Finally, the Mixed Mode Manager jumps back into the 68LC040
Emulator and the application continues execution.

Calling 680x0 Code From PowerPC Code

This section describes how the Mixed Mode Manager switches modes from the PowerPC
native environment to the 680x0 emulated environment. This usually happens when
PowerPC code calls a system software routine that is implemented in the 680x0
instruction set.

For example, suppose that a PowerPC application calls a system software routine that
exists only as 680x0 code. In the system software import library must exist a small piece
of glue code that

n allocates space on the stack for the routine’s result, if any

n determines the address of the 680x0 routine from the trap dispatch table

n provides the procedure information for the routine

n calls the Cal | Uni ver sal Pr oc function

Listing 2-1 illustrates a sample glue routine for the QuickDraw text-measuring routine
Text W dt h.

IMPORTANT

Glue routines like the one illustrated in Listing 2-1 are part of
the system software import library. You do not need to write
glue routines like this. s

Listing 2-1 Sample glue code for a 680x0 routine

enum {
uppText W dt hProcl nfo = kPascal St ackBased

| RESULT_SI ZE( kTwoByt eCode)

| STACK_ROUTI NE_PARAMETER( 1, kFour Byt eCode)
| STACK_ROUTI NE_PARAMETER(2, kTwoByteCode)
| STACK_ROUTI NE_PARAMETER( 3, kTwoByt eCode)

b
short TextWdth (Ptr textBuf, short firstByte, short byteCount)
{
ProcPtr text Wdt h_68K;
text Wdt h_68K = NGet TrapAddress(_Text Wdt h, Tool Trap);
return Call Universal Proc((Universal ProcPtr)textWdth_68K,
uppText W dt hProcl nfo, textBuf, firstByte, byteCount);
}
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See “Specifying Procedure Information” beginning on page 2-14 for a description of the
constants and macros used to define the procedure information (that is, the myPr ocl nf o
parameter).

Note

For Operating System traps (that is, traps of type OSTr ap), the
trap dispatcher copies the trap number into register D1. As a result,
the glue code illustrated in Listing 2-1 would need to call the
function Cal | OSTr apUni ver sal Proc. u

The call to Cal | Uni ver sal Pr oc invokes the Mixed Mode Manager, which verifies that
a mode switch is necessary. At that point, the Mixed Mode Manager saves all nonvolatile
registers and other necessary information on the stack in a switch frame. Figure 2-5
shows the structure of a PowerPC-to-680x0 switch frame.

Figure 2-5 A PowerPC-t0-680x0 switch frame
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Once the switch frame is set up, the Mixed Mode Manager sets up the 68LC040
Emulator’s context block and then jumps into the emulator. When the routine has
finished executing, it attempts to jump to the return address pushed onto the stack. That
return address points to a mode-switching structure contained in the Reserved area in
the switch frame. The emulator encounters the instruction in the goM xedMbdeTr ap
field of the routine descriptor and then saves the current 680x0 state in its context block.
Once this is done, the Mixed Mode Manager restores native registers that were
previously saved and deallocates the switch frame. Control then returns to the caller of
Cal | Uni ver sal Proc.

IMPORTANT

As currently implemented, the instruction that causes a return from the
68LC040 Emulator to the native PowerPC environment clears the
low-order 5 bits of the Condition Code Register (CCR). This prevents
680x0 callback procedures from returning information in the CCR. If you
want to port 680x0 code that calls an external routine that returns results
in the CCR, you must instead call a 680x0 stub that saves that
information in some other place. s

Using the Mixed Mode Manager

2-14

You can use the Mixed Mode Manager to specify the procedure information for a
routine, create routine descriptors, and execute the code referenced by a universal
procedure pointer. Typically, you’ll call NewRout i neDescr i pt or to create a routine
descriptor and Cal | Uni ver sal Pr oc to execute the code described by a routine
descriptor. You can dispose of routine descriptors you no longer need by calling the

Di sposeRout i neDescri pt or function.

Remember that if you are compiling code for the 680x0 environment, you don’t need to
worry about creating, calling, or disposing of routine descriptors. For 680x0 code, the
compiler variable USESROUTI NEDESCRI PTORS issettof al se (the default setting). Any
calls in your source code to the NewRout i neDescri pt or function are replaced by the
code address passed as a parameter to NewRout i neDescr i pt or. Similarly, any calls to
Di sposeRout i neDescri pt or are simply removed.

Note

Your development environment sets the USESROUTI NEDESCRI PTOR
variable to the value appropriate for the kind of code you are compiling,
You don’t need to set or reset this variable. u

Specifying Procedure Information

The primary task of the Mixed Mode Manager is to convert routine parameters between
the 680x0 and PowerPC environments. The parameter passing conventions in the
PowerPC environment are identical for all routines, so you’ll need to specify the calling
conventions only for 680x0 routines.
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In the Macintosh Operating System, there are five basic kinds of calling conventions:

n Pascal routines with the parameters passed on the stack
n C routines with the parameters passed on the stack

n routines with the parameters passed in registers

n dispatched Pascal or C routines with the selector in a register and the parameters on

the stack

n dispatched Pascal routines with the selector and the parameters on the stack

In addition to these five basic kinds of calling conventions, there exist a number of cases
that the Mixed Mode Manager treats specially. For example, an ADB service routine is

passed information in registers A0, Al, A2, and DO.

The Mixed Mode Manager uses a long word of type Pr ocl nf oType to encode a

routine’s procedure information, which contains essential information about the calling
conventions and other features of a routine. You need to specify procedure information

when you create a new routine descriptor by calling the NewRout i neDescr i pt or

function.

typedef unsigned | ong ProclnfoType;

IMPORTANT

In all likelihood, you do not need to read the remainder of this section,
which explains in detail the structure of the Pr ocl nf oType long word
and shows how to create custom procedure information. The universal
interface files define procedure information for each universal procedure
pointer used by the system. For example, the interfaces define the
constantuppG owZonePr ocl nf o for you to use when specifying

the procedure information for a grow-zone function. You need to create
procedure information only for routines not defined in the programming
interfaces. You can probably skip to the section “Using Universal
Procedure Pointers” on page 2-21. s

The lower-order 4 bits of the procedure information encode the routine’s calling
conventions. You specify calling conventions using these constants:

enum {

[*cal ling conventions*/

kPascal St ackBased = (Cal l'i ngConventi onType) O,

kCSt ackBased = (Calli ngConventi onType) 1,

kRegi st er Based = (Cal l'i ngConventi onType) 2,

kThi nkCSt ackBased = (Cal l'i ngConventi onType) 5,

kDODi spat chedPascal St ackBased = (Cal l'i ngConventi onType) 8,

kDODi spat chedCsSt ackBased = (Cal li ngConventi onType) 9,

kD1Di spat chedPascal St ackBased = (Cal l'i ngConventi onType) 12,
kSt ackDi spat chedPascal St ackBased = (Cal l'i ngConventi onType) 14,
kSpeci al Case = (Cal l'i ngConventi onType) 15
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For example, a routine that passes its parameters on the stack according to normal C
language conventions would have the rightmost 4 bits of the procedure information set
to 0001 (hexadecimal 0x00000001).

Except for routines having calling conventions of type kSpeci al Case, the 2 bits to the
left of the calling convention bits encode the size of the result returned by the routine.
You can access those bits using a constant:

#def i ne kResul t Si zePhase 4

The Mixed Mode Manager provides four constants and a macro that you can use to set a
routine’s result size in its procedure information.

enum {
kNoByt eCode =
kOneByt eCode =
kTwoByt eCode =
kFour Byt eCode =

W N PO

b

#def i ne RESULT_SI ZE(si zeCode) \
((Procl nfoType) (si zeCode) << kResult Si zePhase)

Except as already noted, every set of procedure information uses its rightmost 6 bits to
specify the calling conventions and result size information. The calling conventions,
which take up the rightmost 4 bits, determine how the remaining bits of a routine’s
procedure information are interpreted. For example, if the rightmost 4 bits contain

the value kCSt ackBased or the value kPascal St ackBased, then the remaining bits
encode the sizes and number of the parameters passed on the stack. Figure 2-6 shows
how the Mixed Mode Manager interprets the procedure information for a stack-

based routine.
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Figure 2-6 Procedure information for a stack-based routine
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Once again, the Mixed Mode Manager provides a set of constants and macros that you
can use to specify a stack-based routine’s procedure information.

#def i ne kSt ackPar anet er Phase 6
#defi ne kStackParanmeterWdth 2

#def i ne STACK ROUTI NE_PARAMETER( whi chParam si zeCode) \
((Procl nfoType) (si zeCode) << (kStackParamet er Phase + \
(((whichParanm) - 1) * kStackParanmeterWdth)))

As you can see, the maximum number of stack-based parameters whose sizes you can
specify using a variable of type Pr ocl nf oType is 13. The procedure information
encoding used by the Mixed Mode Manager places limits on the number of specifiable
register-based parameters as well. See Table 2-1 at the end of this section (page 2-20) for a
complete list of these limits.

The new application programming interface files described earlier (on page 2-6) include
constants that define procedure information for each type of routine to which you might
need to create a universal procedure pointer. For example, the interface file Menory. h
includes these definitions:

enum {
uppG owZonePr ocl nfo = kPascal St ackBased
| RESULT_SI ZE( SI ZE_CODE( si zeof (1 ong)))
| STACK_ROUTI NE_PARAMETER( 1, S| ZE_CODE(si zeof (Size))),
uppPur geProcProcl nfo = kPascal St ackBased
| STACK_ROUTI NE_PARAMETER(1, SIZE CODE(si zeof (Handl e)))
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A grow-zone function follows normal Pascal calling conventions, returns a value that is 4
bytes long, and takes a single 4-byte parameter on the stack. A purge-warning procedure
follows normal Pascal calling conventions, returns no value, and takes a single 4-byte
parameter on the stack.

The Mixed Mode Manager provides similar constants and macros for specifying
procedure information for register-based routines.

#def i ne kRegi st er Resul t Locat i onPhase \

(kCal I i ngConventi onWdth + kResultSi zeW dt h)
#def i ne kRegi sterResul t Locati onW dth 5
#def i ne kRegi st er Par anet er Phase \

(kCal I'i ngConventi onWdth + kResultSi zewWdth + \
kRegi st er Resul t Locat i onW dt h)

#def i ne kRegi st er Paranet er Wdt h 5
#def i ne kRegi st er Par anet er Whi chPhase 2
#def i ne kRegi st er Par anet er Si zePhase 0
#def i ne kDi spat chedSel ector Si zeW dth 2
#def i ne kDi spat chedSel ect or Si zePhase \
(kCal I i ngConventi onWdth + kResultSi zeW dt h)
#def i ne kDi spat chedPar anet er Phase \

(kCal I'i ngConventi onWdth + kResultSi zeWdth + \
kDi spat chedSel ect or Si zeW dt h)
#def i ne REG STER_RESULT_LOCATI ON( whi chReg) \
((Procl nfoType) (whi chReg) << kRegi st er Resul t Locat i onPhase)
#def i ne REG STER_ROUTI NE_PARAMETER( whi chPar am whi chReg, si zeCode) \
((((ProclnfoType) (si zeCode) << kRegi st er Par anet er Si zePhase) | \
((Procl nfoType) (whi chReg) << kRegi st er Par anet er Vhi chPhase)) <<\
(kRegi st er Par anet er Phase + (((whichParam- 1) * kRegi sterParaneterWdth)))

For example, Figure 2-7 shows the arrangement of the procedure information for a
register-based routine.
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Figure 2-7 Procedure information for a register-based routine
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The register fields use the following constants to encode 680x0 register information:

enum {

[ *680x0 registers*/

kRegi st er DO
kRegi st er D1
kRegi st er D2
kRegi st er D3
kRegi st er D4
kRegi st er D5
kRegi st er D6
kRegi st er D7
kRegi st er AO
kRegi ster Al
kRegi st er A2
kRegi st er A3
kRegi st er A4
kRegi st er A5
kRegi st er A6

kCCRegi ster CBi t
kCCRegi st er VBi t
kCCRegi ster ZBi t

Using the Mixed Mode Manager

2-19



2-20

CHAPTER 2

Mixed Mode Manager

kCCRegi st er NBi t = 19,
kCCRegi st er XBi t = 20
b
Note

The result size should be specified as 0 for results returned
in any of the CCR registers. u

The Mixed Mode Manager also provides constants and macros to specify the procedure
information for stack-based routines that take a register-based selector and for stack-
based routines that take a stack-based selector.

Note

See “Procedure Information” beginning on page 2-27 for a complete
description of the constants you can use to specify a routine’s procedure
information. See “C Language Macros for Defining Procedure
Information” on page 2-50 for a complete list of the Mixed Mode
Manager macros you can use to create procedure information. u

As noted earlier, there are limits on the number of parameters that a procedure
information can describe. Table 2-1 lists the available calling conventions and the
maximum number of specifiable parameters and selectors for each convention.

IMPORTANT

The input parameters can be passed in any of the registers D0-D3 and
AO0-A3; the output parameter can be returned in any register. s

Table 2-1 Limits on the number of specifiable parameters in a procedure information
Maximum number Number of
Calling convention of parameters selectors
kPascal St ackBased 13 0
kCSt ackBased 13 0
kRegi st er Based 4 input, 1 output 0
kThi nkCSt ackBased 13 0
kDODi spat chedPascal St ackBased 12 1
kDODi spat chedCSt ackBased 12 1
kD1Di spat chedPascal St ackBased 12 1
kSt ackDi spat chedPascal St ackBased 12 1

In general, these limitations should not affect you. There are, however, a very few cases
in which the documented behavior of a routine prevents it from being implemented in
native PowerPC code. For example, the low-level .ENET driver routines ReadRest
and ReadPacket return information in several registers. As a result, they cannot be
implemented natively. (Because these routines are typically called only in code where
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speed of execution is critical, it’s not likely that you would want to incur the overhead of
a mode switch by writing native callbacks to the .ENET driver.)

Using Universal Procedure Pointers

When you call the NewRout i neDescr i pt or or NewFat Rout i neDescri pt or
function to create a routine descriptor, the Mixed Mode Manager calls the Memory
Manager to allocate a nonrelocatable block in the current heap in which to store the new
routine descriptor. Eventually, you might want to dispose of the space occupied by the
routine descriptor; you can do this by calling the Di sposeRout i neDescri pt or
function.

In general, there are two ways you’ll probably handle this allocation and deallocation.
By far the easiest method is to allocate in your application’s heap, at application
initialization time, a routine descriptor for each routine whose address you’ll need to
pass elsewhere. For example, if your application calls Tr ackCont r ol with a custom
action procedure, you can create a routine descriptor in the application heap when your
application starts up, as shown in Listing 2-2.

Listing 2-2 Creating global routine descriptors

Uni versal ProcPtr myActi onProc;

myActi onProc = NewRouti neDescriptor((ProcPtr)M/Acti on,
uppCont rol Acti onProcl nf o,
GetCurrentl SA());

Later you would call Tr ackCont r ol like this:
TrackControl (nyControl, nyPoint, myActionProc);

The routine descriptor pointed to by the global variable nyAct i onPr oc remains
allocated until your application quits, at which time the Process Manager reclaims
all the memory in your application heap.

Note

If you don’t want Tr ackCont r ol to call an application-defined action
procedure, you must pass NULL in place of nyAct i onPr oc. In that case,
you don’t need to call NewRout i neDescri ptor. u

The other way to handle routine descriptors is to create them as you need them and then
dispose of them as soon as you’re finished with them. This practice would be useful for
routines you don’t call very often. Listing 2-3 shows a way to call the Mbdal Di al og
function to display a rarely used modal dialog box.
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Listing 2-3 Creating local routine descriptors
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voi d DoAbout Box (voi d)

{
short myltem = O;
Di al ogPt r nyDi al og;
Uni ver sal ProcPtr my Modal Pr oc;
myDi al og = Get NewDi al og( kAbout BoxI D, NULL, (W ndowPtr) -1L);
myModal Proc = NewRouti neDescriptor((ProcPtr) WEventFilter,
uppModal Fi | t er Procl nf o,
GetCurrent| SA());
while (nmyltem!= i K
Modal Di al og(myModal Proc, &nylteny;
Di sposeDi al og(nyDi al og) ;
Di sposeRout i neDescri pt or (myModal Proc);
}

If you decide to allocate and dispose of routine descriptors locally, make sure that you
don’t dispose of a routine descriptor before it’s actually used by the Operating System.
(This could happen, for instance, if you pass a universal procedure pointer for a comple-
tion routine and then exit the local procedure before the completion routine is called.)

Note

You should call Di sposeRout i neDescr i pt or only to dispose routine
descriptors that you created using either NewRout i neDescri pt or or
NewFat Rout i neDescri ptor. u

Using Static Routine Descriptors

Instead of allocating space for routine descriptors in your application heap (as described
in the previous section), you can also create routine descriptors on the stack or in your
global variable space by using macros supplied by the Mixed Mode Manager. Most
likely, you’'ll create a descriptor on the stack when you need to use a routine descriptor
for a very short time. For example, you could use the function defined in Listing 2-4
instead of the one defined in Listing 2-3.
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Listing 2-4 Creating static routine descriptors

voi d DoAbout Box (voi d)

{

short

nmyltem = O;

Di al ogPt r nyDi al og;
Rout i neDescr i pt or myRD =

BUI LD_ROUTI NE_DESCRI PTOR( uppMbdal Fi | t er Procl nf o,
(ProcPtr) MEventFilter);

Uni ver sal ProcPtr my Modal Pr oc;

myDi al og = Get NewDi al og( kAbout BoxI D, NULL, (W ndowPtr) -1L);
myModal Proc = @wRD;
while (nyltem!= i 0K
Modal Di al og(myModal Proc, &nylteny;
Di sposeDi al og(nyDi al og) ;

As you can see, the DoAbout Box function defined in Listing 2-4 uses the macro

BU LD_ROUTI NE_DESCRI PTORto create a routine descriptor on the stack and then
passes the address of that routine descriptor to the Modal Di al og procedure. Because
the routine descriptor is created on the stack, there is no need to dispose of it before
exiting the DoAbout Box function.

You can create a routine descriptor in your application’s global data area by using the
BUI LD_ROUTI NE_DESCRI PTCR macro as follows:

static RoutineDescriptor myRD =

BUI LD_ROUTI NE_DESCRI PTOR( uppMbdal Fi | t er Procl nf o,
(ProcPtr) MEventFilter);

This line of code creates a routine descriptor as part of the application global variables.
The advantage of this method is that you don’t have to call NewRout i neDescri pt or
to allocate a routine descriptor in your heap.

The C language macro BUI LD_ROUTI NE_DESCRI PTOR is defined in Listing 2-5.

{

[ *reserved2*/

Listing 2-5 Building a static routine descriptor

#defi ne BU LD_ROUTI NE_DESCRI PTOR( pr ocl nf o, procedure) \
\

_M xedModeMagi c, [ *m xed- node A-trap*/ \
kRout i neDescri pt or Ver si on, [ *version*/ \
kSel ect or sAreNot | ndexabl e, /*RD flags: not dispatched*/ \

0, [ *reservedl*/ \

\

01
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0, [ *sel ector info*/ \
0, / *number of routines*/ \
{ /[*it's an array*/ \
{ /[*it's a structure*/ \
(procl nfo), /*the procedure info*/ \

0, [ *reserved*/ \
kPower PCl SA, [ *1 SA*/ \
kProcDescri ptorl sAbsol ute | /*fl ags: absol ute address*/ \
kFragnent | sPrepared | [*it's prepared*/ \
kUseNat i vel SA, [ *al ways use native | SA*/ \
(ProcPtr) (procedure), /*t he procedure*/ \

0, [ *reserved*/ \

0, [ *not di spat ched*/ \

b \
H \

}
IMPORTANT

You should use the BUI LD_ROUTI NE_DESCRI PTOR macro only to
create a routine descriptor that describes a nondispatched routine
that exists as PowerPC code. s

The Mixed Mode Manager also defines a C language macro that you can use to
create static fat routine descriptors. See the Mixed Mode Manager interface file for
the definition of the BUl LD_FAT_ROUTI NE_DESCRI PTOR macro.

Executing Resource-Based Code

As you’ve seen earlier in this book (in the section “Executable Resources” on page 1-34),
you can create executable resources that contain PowerPC code to serve as accelerated
versions of 680x0 code resources. The accelerated resource is simply a PowerPC version
of the 680x0 code resource, prefixed with a routine descriptor for the code contained in
the resource. The routine descriptor is necessary for the Mixed Mode Manager to know
whether it needs to change modes in order to execute the code. The routine descriptor
also lets the Mixed Mode Manager know whether it needs to call the Code Fragment
Manager to prepare the fragment. Figure 2-8 shows the structure your code-containing
resources should have.
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Figure 2-8 General structure of an executable code resource
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The procDescri pt or field of the routine record—contained in the r out i neRecor ds
field of the routine descriptor—should contain the offset from the beginning of the
resource (that is, the beginning of the routine descriptor) to the beginning of the execut-
able code fragment. In addition, the routine flags for the specified code should have the
kProcDescri ptorl sRel ati ve bit set, indicating that the address is relative, not
absolute. If the code contained in the resource is PowerPC code, you should also set the

kFragnment NeedsPr epari ng bit.

It’s also possible to create “fat” code-bearing resources, that is, resources containing both
680x0 and PowerPC versions of some routine. Figure 2-9 shows the general structure of
such a resource.

Using the Mixed Mode Manager 2-25



CHAPTER 2

Mixed Mode Manager

Figure 2-9 General structure of a fat resource
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In this case, the routine descriptor contains two routine records in its r out i neRecor ds
field, one describing the 680x0 code and one describing the PowerPC code. As with any
code-bearing resource, the pr ocDescr i pt or field of each routine record should contain
the offset from the beginning of the resource to the beginning of the appropriate code.
The flags for both routine records should have the kPr ocDescri pt or | sRel ati ve flag
set, and the routine flags for the PowerPC routine record should have the

kFragnment NeedsPr epar i ng flag set.

The MPW interface file M xedMode. r provides Rez templates that you can use to create
the accelerated resource shown in Figure 2-8 or the fat resource shown in Figure 2-9.

WARNING

Do not call accelerated resources at interrupt time unless you are certain
that the resource has already been loaded into memory, locked, and
prepared for execution. If the resource containing the code hasn’t

been prepared, the Code Fragment Manager will attempt to do so,

and thereby allocate memory. (Memory allocation is not allowed at
interrupt time.) s
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This section describes the constants, data structures, and routines provided by the Mixed
Mode Manager. See “Using the Mixed Mode Manager” beginning on page 2-14 for
detailed instructions on using these routines.
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Constants

This section describes the constants provided by the Mixed Mode Manager. You use
these constants to specify routine descriptor flags and a routine’s procedure information.
Because the universal interface files define procedure information for the most common
callback routines, it’s likely that you won’t need to use the procedure information
constants listed here.

Routine Descriptor Flags

The rout i neDescri pt or Fl ags field of a routine descriptor contains a set of routine
descriptor flags that specify attributes of the described routine. You can use constants
to specify the routine descriptor flags. In general, you should use the constant

kSel ect or sAr eNot | ndexabl e when constructing your own routine descriptors; the
value kSel ect or sAr el ndexabl e is reserved for use by Apple.

enum {
kSel ect or sAr eNot | ndexabl e
kSel ect or sAr el ndexabl e

( RDFl agsType) 0x00,
( RDFl agsType) 0x01

b

Constant descriptions

kSel ect or sAreNot | ndexabl e
For dispatched routines, the recognized routine selectors are
not contiguous.

kSel ect or sAr el ndexabl e

For dispatched routines, the recognized routine selectors are
contiguous and therefore indexable.

Procedure Information

The Mixed Mode Manager uses a long word of type Pr ocl nf oType to encode a
routine’s procedure information, which contains essential information about the calling
conventions and other features of a routine. These values specify

n the routine’s calling conventions
n the sizes and locations of the routine’s parameters, if any
n the size and location of the routine’s result, if any

See “Specifying Procedure Information” beginning on page 2-14 for a description of the
general structure of a routine’s procedure information. The Mixed Mode Manager
provides a number of constants that you can use to specify the procedure information.

The following constants are used to specify the size (in bytes) of a value encoded in a
routine’s procedure information.
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enum {
/ *si ze codes*/
kNoByt eCode =
kOneByt eCode =
kTwoByt eCode =
kFour Byt eCode =

W NP o

Constant descriptions

kNoByt eCode The value occupies no bytes.
kOneByt eCode The value occupies 1 byte.
kTwoByt eCode The value occupies 2 bytes.
kFour Byt eCode The value occupies 4 bytes.

The offsets to fields and the widths of the fields within a value of type Pr ocl nf oType
are defined by constants:

/*of fsets to and wi dths of procedure information fields*/

#def i ne kCal | i ngConventi onPhase 0

#defi ne kCal | i ngConventi onW dth 4

#def i ne kResul t Si zePhase kCal | i ngConventi onW dt h
#define kResultSi zeWdth 2

#def i ne kResul t Si zeMask 0x30

#defi ne kSt ackParanet er Phase 6

#defi ne kStackParaneter Wdth 2

#def i ne kRegi st er Resul t Locat i onPhase \

(kCal I'i ngConventi onWdth + kResult Si zeW dt h)

#def i ne kRegi sterResul t Locati onWdth 5

#def i ne kRegi st er Par anet er Phase \

(kCal I'i ngConventi onWdth + kResultSi zeWdth + \
kRegi st er Resul t Locat i onW dt h)

#def i ne kRegi st er Par anet er Wdt h 5
#defi ne kRegi st er Par anet er Whi chPhase 2
#def i ne kRegi st er Par anet er Si zePhase 0
#def i ne kDi spat chedSel ect or Si zeW dt h 2
#def i ne kDi spat chedSel ect or Si zePhase \
(kCal I i ngConventi onWdth + kResultSi zeW dt h)
#def i ne kDi spat chedPar anet er Phase \

(kCal I'i ngConventi onWdth + kResultSi zeWdth + \
kDi spat chedSel ect or Si zeW dt h)

Constant descriptions

kCal I i ngConvent i onPhase
The offset from the least significant bit in the procedure information
to the calling convention information.
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kCal | i ngConventi onW dt h
The number of bits in the procedure information that encode the
calling convention information.

kResul t Si zePhase
The offset from the least significant bit in the procedure information
to the function result size information.

kResul t Si zeW dt h
The number of bits in the procedure information that encode the
function result size information.

kResul t Si zeMask
A mask for the bits in the procedure information that encode the
function result size information.

kSt ackPar anet er Phase
The offset from the least significant bit in the procedure information
to the stack parameter information.

kSt ackPar amet er Wdt h
The number of bits in the procedure information that encode the
size of a stack-based parameter.

kRegi st er Resul t Locat i onPhase
The offset from the least significant bit in the procedure information
to the result register information.

kRegi st er Resul t Locati onW dt h
The number of bits in the procedure information that encode which
register the result will be stored in.

kRegi st er Par anet er Phase
The offset from the least significant bit in the procedure information
to the register parameter information.

kRegi st er Par anmet er W dt h
The number of bits in the procedure information that encode the
information about a register-based parameter.

kRegi st er Par amet er Whi chPhase
The offset from the beginning of a register parameter information
field to the encoded register.

kRegi st er Par anet er Si zePhase
The offset from the beginning of a register parameter information
field to the encoded size of the parameter.

kDi spat chedSel ect or Si zeW dt h
The number of bits in the procedure information that encode the
size of a routine-dispatching selector.

kDi spat chedSel ect or Si zePhase
The offset from the least significant bit in the procedure information
to the selector size information of a routine that is dispatched
though a selector.

kDi spat chedPar anet er Phase
The offset from the least significant bit in the procedure information
to the parameter information of a routine that is dispatched though
a selector.
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The following constants are used to specify a routine’s calling conventions:

enum {
[*cal ling conventions*/
kPascal St ackBased = (Cal l'i ngConventi onType) 0,
kCSt ackBased = (Cal l'i ngConventi onType) 1,
kRegi st er Based = (Calli ngConventi onType) 2,
kThi nkCSt ackBased = (Cal l'i ngConventi onType) 5,

kDODi spat chedPascal St ackBased

(Calli ngConventi onType) 8,

kDODi spat chedCSt ackBased = (Cal l'i ngConventi onType) 9,

kD1Di spat chedPascal St ackBased
kSt ackDi spat chedPascal St ackBased

(Cal l'i ngConventionType) 12,
(Cal l'i ngConventi onType) 14,

kSpeci al Case = (Cal l'i ngConventi onType) 15

2-30

Constant descriptions

kPascal St ackBased
The routine follows normal Pascal calling conventions.

kCSt ackBased The routine follows the C calling conventions employed by the
MPW development environment.

kRegi st er Based
The parameters are passed in registers.

kThi nkCSt ackBased
The routine follows the C calling conventions employed by the
THINK C software development environment. Arguments are
passed on the stack from right to left, and a result is returned in
register DO. All arguments occupy an even number of bytes on
the stack. An argument having the size of a char is passed in the
high-order byte. You should always provide function prototypes;
failure to do so may cause THINK C to generate code that is
incompatible with this parameter-passing convention.

kDODi spat chedPascal St ackBased
The parameters are passed on the stack according to Pascal
conventions, and the routine selector is passed in register DO.
kDODi spat chedCSt ackBased
The parameters are passed on the stack according to C conventions,
and the routine selector is passed in register DO.
kD1Di spat chedPascal St ackBased
The parameters are passed on the stack according to Pascal
conventions, and the routine selector is passed in register D1.
kSt ackDi spat chedPascal St ackBased
The routine selector and the parameters are passed on the stack.
kSpeci al Case The routine is a special case. You can use the following constants to
specify a special case.
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enum {
[ *speci al cases*/
kSpeci al CaseH ghHook
kSpeci al CaseCar et Hook
kSpeci al CaseEO_Hook
kSpeci al CaseW dt hHook
kSpeci al CaseNW dt hHook
kSpeci al CaseText W dt hHook
kSpeci al CaseDr awHook
kSpeci al CaseHi t Test Hook
kSpeci al CaseTEFi ndWrd
kSpeci al CasePr ot ocol Handl er
kSpeci al CaseSocket Li st ener
kSpeci al CaseTERecal c
kSpeci al CaseTEDoText
kSpeci al CaseGNEFi | t er Proc
kSpeci al CaseMBar Hook

01
kSpeci al CaseH ghHook,

Constant descriptions

kSpeci al CaseH ghHook
The routine follows the calling conventions documented in Inside
Macintosh: Text; a rectangle is on the stack and a pointer is in register
A3; no result is returned.

kSpeci al CaseCar et Hook
The routine follows the calling conventions documented in Inside
Macintosh: Text; a rectangle is on the stack and a pointer is in register
A3; no result is returned.

kSpeci al CaseEQ_Hook
Parameters are passed to the routine in registers A3, A4, and DO,
and output is returned in the Z flag of the Status Register. An
ECQLHook routine has these calling conventions.

kSpeci al CaseW dt hHook
Parameters are passed to the routine in registers A0, A3, A4, DO, and
D1, and output is returned in register D1. A W DTHHook routine has
these calling conventions.

kSpeci al CaseNW dt hHook
Parameters are passed to the routine in registers A0, A2, A3, A4, DO,
and D1, and output is returned in register D1. An nW DTHHook
routine has these calling conventions.

kSpeci al CaseText W dt hHook
Parameters are passed to the routine in registers A0, A3, A4, DO, and
D1, and output is returned in register D1. A Text W dt hHook
routine has these calling conventions.

kSpeci al CaseDr awHook
Parameters are passed to the routine in registers A0, A3, A4, DO, and
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D1, and no result is returned. A DRAWHook routine has these calling
conventions.

kSpeci al CaseHi t Test Hook
Parameters are passed to the routine in registers A0, A3, A4, DO, D1,
and D2, and output is returned in registers D0, D1, and D2. A
Hl TTESTHook routine has these calling conventions.

kSpeci al CaseTEFi ndWrd
Parameters are passed to the routine in registers A3, A4, D0, and
D2, and output is returned in registers DO and D1. A TEFi ndWor d
hook has these calling conventions.

kSpeci al CasePr ot ocol Handl er
Parameters are passed to the routine in registers A0, Al, A2, A3, A4,
and in the low-order word of register D1; output is returned in the
Z flag of the Status Register. A protocol handler has these calling
conventions.

kSpeci al CaseSocket Li st ener
Parameters are passed to the routine in registers A0, Al, A2, A3, A4,
in the low-order byte of register DO, and in the low-order word of
register D1; output is returned in the Z flag of the Status Register. A
socket listener has these calling conventions.

kSpeci al CaseTERecal ¢
Parameters are passed to the routine in registers A3 and D7, and
output is returned in registers D2, D3, and D4. A TextEdit line-start
recalculation routine has these calling conventions.

kSpeci al CaseTEDoText
Parameters are passed to the routine in registers A3, D3, D4, and
D7, and output is returned in registers A0 and DO0. A TextEdit
text-display, hit-test, and caret-positioning routine has these calling
conventions.

kSpeci al CaseGNEFi | t er Proc
Parameters are passed to the routine in registers Al and DO and on
the stack, and output is returned on the stack. A Get Next Event
filter procedure has these calling conventions.

kSpeci al CaseMBar Hook
Parameters are passed to the routine on the stack, and output is
returned in register DO. A menu bar hook routine has these calling
conventions.

For register-based routines, the registers are encoded in the routine’s procedure
information using these constants:

enum {
[ *680x0 registers*/
kRegi st er DO =
kRegi st er D1 =
kRegi st er D2 =
kRegi st er D3 =
kRegi st er D4 =

®wWwN P O
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kRegi st er D5
kRegi st er D6
kRegi st er D7
kRegi st er AO
kRegi ster Al
kRegi st er A2
kRegi st er A3
kRegi ster A4
kRegi st er A5
kRegi st er A6

kCCRegi ster CBi t
kCCRegi ster VBi t
kCCRegi st er ZBi t
kCCRegi st er NBi t
kCCRegi st er XBi t

H

Constant descriptions

kRegi st er DO
kRegi st er D1
kRegi st er D2
kRegi st er D3
kRegi st er D4
kRegi st er D5
kRegi st er D6
kRegi st er D7
kRegi st er AO
kRegi ster Al
kRegi st er A2
kRegi st er A3
kRegi st er A4
kRegi st er A5
kRegi st er A6
kCCRegi sterCBi t

kCCRegi st er VBi t
kCCRegi ster ZBi t
kCCRegi st er NBi t

kCCRegi st er XBi t

Register DO.
Register D1.
Register D2.
Register D3.
Register D4.
Register D5.
Register D6.
Register D7.
Register AQ.
Register Al.
Register A2.
Register A3.
Register A4.
Register A5.
Register A6.

The C (carry) flag of the Status Register.
The V (overflow) flag of the Status Register.
The Z (zero) flag of the Status Register.

The N (negative) flag of the Status Register.

The X (extend) flag of the Status Register.
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Routine Flags

The rout i neFl ags field of a routine record contains a set of flags that specify informa-
tion about a routine. You can use constants to specify the desired routine flags. Currently,
only 5 of the 16 bits in a routine flags word are defined. You should set all the other

bits to 0.

enum {
kProcDescri ptorl sAbsol ute
kProcDescri ptorlsRel ative

(Rout i neFl agsType) 0x00,
(Rout i neFl agsType) 0x01

b
Constant descriptions
kProcDescri ptorl sAbsol ute
The address of the routine’s entry point specified in the
procDescri pt or field of a routine record is an absolute address.
kProcDescriptorlsRel ative
The address of the routine’s entry point specified in the
procDescri ptor field of a routine record is relative to the
beginning of the routine descriptor. If the code is contained in a
resource and its absolute location is not known until run time, you
should set this flag.
enum {
kFragment | sPr epar ed = (Routi neFl agsType) 0x00,
kFragnment NeedsPr epari ng = (Routi neFl agsType) 0x02
b
Constant descriptions
kFragment | sPrepar ed
The fragment containing the code to be executed is already loaded
into memory and prepared by the Code Fragment Manager.
kFragnment NeedsPr epari ng
The fragment containing the code to be executed needs to be loaded
into memory and prepared by the Code Fragment Manager. If this
flag is set, the kPower PCl SAand kPr ocDescri ptorl sRel ati ve
flags should also be set.
enum {
kUseCurrent| SA = (Routi neFl agsType) 0x00,
kUseNat i vel SA = (Routi neFl agsType) 0x04
b

Constant descriptions

kUseCurrent | SA If possible, use the current instruction set architecture when
executing a routine.

kUseNat i vel SA  Use the native instruction set architecture when executing a routine.
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enum {
kPassSel ect or
kDont PassSel ect or

(Rout i neFl agsType) 0x00,
(Rout i neFl agsType) 0x08

H

Constant descriptions
kPassSel ect or  Pass the routine selector to the target routine as a parameter.
kDont PassSel ect or

Do not pass the routine selector to the target routine as a parameter.
You should not use this flag for 680x0 routines.

enum {
kRout i nel sNot Di spat chedDef aul t Routi ne
= (Routi neFl agsType) 0x00,
kRout i nel sDi spat chedDef aul t Routi ne
= (Routi neFl agsType) 0x10

Constant descriptions

kRout i nel sNot Di spat chedDef aul t Routi ne
This routine is not the default routine for a set of routines that is
dispatched using a routine selector.

kRout i nel sDi spat chedDef aul t Routi ne
This routine is the default routine for a set of routines that is
dispatched using a routine selector. If a set of routines is dispatched
using a routine selector and the routine corresponding to a specified
selector cannot be found, this default routine is called. This routine
must be able to accept the same procedure information for all
routines. If possible, it is passed the procedure information passed
in a call to Cal | Uni ver sal Proc.

IMPORTANT

In general, you should use the constants kPassSel ect or and

kRout i nel sNot Di spat chedDef aul t Rout i ne. The constants

kDont PassSel ect or andkRout i nel sDi spat chedDef aul t Routi ne
are reserved for use with selector-based system software routines. s

Instruction Set Architectures

The | SAfield of a routine record contains a flag that specifies the instruction set
architecture of a routine. You can use constants to specify the instruction set architecture.
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enum {
kMB8KI SA = (I SAType) O, [ *MC680x0 architecture*/
kPower PCl SA = (1 SAType) 1 / * Power PC ar chi t ect ure*/
}
Constant descriptions
kM68kI SA The routine consists of 680x0 code.
kPower PCl SA The routine consists of PowerPC code.

Data Str uctures

This section describes the two data structures provided by the Mixed Mode Manager:

n the routine record, which contains information about a routine’s calling conventions,
the sizes and locations of its parameters, and its location in memory

n the routine descriptor, which provides a generalization of procedure pointers
(variables of type Pr ocPt r ) common in the 680x0 environment

Routine Records

A routine record is a data structure that contains information about a particular routine.
The routine descriptor specifies, among other things, the instruction set architecture

of the routine, the number and size of the routine’s parameters, the routine’s calling
conventions, and the routine’s location in memory. At least one routine record is
contained in the r out i neRecor ds field of a routine descriptor. A routine record is
defined by the Rout i neRecor d data type.

struct RoutineRecord {

Procl nf oType procl nf o; /*cal l'i ng conventions*/

unsi gned char reservedl; [ *reserved*/

| SAType | SA; /[*instruction set architecture*/
Rout i neFl agsType routi neFl ags; /*flags for each routine*/
ProcPtr procDescri ptor; /[*the thing we're calling*/

unsi gned | ong reserved2; [ *reserved*/

unsi gned | ong sel ector; /*sel ector for dispatched calls*/

b
typedef struct RoutineRecord RoutineRecord;
typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandl e;

Field descriptions

proclnfo A value of type Pr ocl nf oType that encodes essential information
about the routine’s calling conventions and parameters. See
“Procedure Information” beginning on page 2-27 for a complete list
of the constants you can use to set this field.

reservedl Reserved. This field must be 0.
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I SA

routi neFl ags

procDescri pt or

reserved2
sel ect or

Routine Descriptors

The instruction set architecture of the routine. See “Instruction Set
Architectures” beginning on page 2-35 for a complete listing of the
constants you can use to set this field.

A value of type Rout i neFl agsType that contains a set of flags
describing the routine. See “Routine Flags” beginning on page 2-34
for a complete listing of the constants you can use to set this field.

A pointer to the routine’s code. If the routine consists of 680x0

code and the kPr ocDescr i pt or I sAbsol ut e flag is set in the
rout i neFl ags field, then this field contains the address of the
routine’s entry point. If the routine consists of 680x0 code and the
kProcDescri ptorl sRel ati ve flag is set, then this field contains
the offset from the beginning of the routine descriptor to the
routine’s entry point. If the routine consists of PowerPC code,

the kFr agment | sPr epar ed flag is set, and the

kProcDescri pt or | sAbsol ut e flag is set, then this field contains
the address of the routine’s transition vector. If the routine consists
of PowerPC code, the kFr agment NeedsPr epar i ng flag is set,
and the kProcDescri ptorl sRel ati ve flag is set, then this field
contains the offset from the beginning of the routine descriptor to
the routine’s entry point.

Reserved. This field must be 0.

Reserved. This field must be 0. For routines that are dispatched, this
field contains the routine selector.

A routine descriptor is a data structure used by the Mixed Mode Manager to execute a
routine. The external interface to a routine descriptor is through a universal procedure
pointer, of type Uni ver sal ProcPt r, which is defined as a procedure pointer (if the
code is 680x0 code) or as a pointer to a routine descriptor (if the code is PowerPC code).
A routine descriptor is defined by the Rout i neDescr i pt or data type.

struct RoutineDescriptor {

unsi gned short goM xedModeTrap; /*nixed-node A-trap*/
char versi on; [*routine descriptor version*/
RDFI agsType routi neDescri pt or Fl ags;

[*routine descriptor flags*/
unsi gned | ong reservedl; / *reserved*/
unsi gned char reserved2; [ *reserved*/
unsi gned char sel ector | nf o; [ *sel ector information*/
short routi neCount; /*index of last RRin this RD*/
Rout i neRecor d routi neRecords[ 1];/*the individual routines*/

H

typedef struct RoutineDescriptor RoutineDescriptor;
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Field descriptions

goM xedModeTr ap

ver sion

An A-line instruction that is used privately by the Mixed Mode
Manager. When the emulator encounters this instruction, it
transfers control to the Mixed Mode Manager. This field contains
the value $AAFE.

The version number of the Rout i neDescri pt or data type. The
current version number is defined by the constant
kRout i neDescri pt or Ver si on:

enum { kRout i neDescri ptorVersion = 7};

routi neDescri ptor Fl ags

reservedl
reserved2
sel ectorlnfo
r out i neCount

routi neRecords

IMPORTANT

A set of routine descriptor flags. Currently, all the bits in this field
should be set to 0, unless you are specifying a routine descriptor for
a dispatched routine. See “Routine Descriptor Flags” on page 2-27
for a complete description of these flags.

Reserved. This field must initially be 0.
Reserved. This field must be 0.
Reserved. This field must be 0.

The index of the final routine record in the following array,

routi neRecor ds. Because the r out i neRecor ds array is zero-
based, this field does not contain an actual count of the routine
records contained in that array. Often, you’ll use a routine
descriptor to describe a single procedure, in which case this field
should contain the value 0. You can, however, construct a routine
descriptor that contains pointers to both 680x0 and PowerPC code
(known as a “fat” routine descriptor). In that case, this field should
contain the value 1.

An array of routine records for the routines described by this
routine descriptor. See “Routine Records” on page 2-36 for the
structure of a routine record. This array is zero-based.

Your application (or other software) should never attempt to guide its
execution by inspecting the value in the | SAfield of a routine record
and jumping to the address in the pr ocDescr i pt or field. s

Mixed Mode Manager Routines

2-38

This section describes the routines provided by the Mixed Mode Manager. You can use
these routines to

n create and dispose of routine descriptors

n execute routines described by routine descriptors
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In general, you need to call these routines only from PowerPC code. To maintain a single
source code base for your software, however, you can call Mixed Mode Manager
routines from 680x0 code, as long as you set the USESROUTI NEDESCRI PTORS compiler
flag to f al se (its default setting). To compile code for the PowerPC environment, you
should set the USESROUTI NEDESCRI PTORS flag to t r ue.

See “Using the Mixed Mode Manager” beginning on page 2-14 for detailed instructions
on using these routines.

Creating and Disposing of Routine Descriptors

The Mixed Mode Manager provides routines that you can use to create and dispose of
routine descriptors. In general, you need to create routine descriptors only for routines
whose addresses are exported to the system software (for example, a completion
procedure). You don’t need to create a routine descriptor for a routine that is called by
code of the same type.

NewRoutineDescriptor

You can call the NewRout i neDescr i pt or function to create a new routine descriptor.

pascal Universal ProcPtr NewRouti neDescri ptor
(ProcPtr theProc, ProclnfoType theProclnfo,
| SAType t hel SA);

t heProc The address of the routine.

t heProcl nfo
The procedure information to be associated with the routine.

t hel SA The instruction set architecture of the routine being described.

DESCRIPTION

The NewRout i neDescri pt or function creates a new routine descriptor and returns a
pointer (of type Uni ver sal ProcPt r) to it. If the value of the t hePr oc parameter is
NULL, NewRout i neDescri pt or returns the value NULL.

The memory occupied by the new routine descriptor is allocated in the current heap. If
you want the memory to be allocated in some other heap, you’ll need to set the current
heap to that heap and then restore the current heap before exiting.

SPECIAL CONSIDERATIONS

The NewRout i neDescri pt or function allocates memory; you should not call it at
interrupt time or from any code that might be executed when memory is low. In
addition, the block of memory allocated by NewRout i neDescr i pt or is nonrelocatable.
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To help minimize heap fragmentation, you should try to allocate any routine descriptors
you will need early in your application’s execution.

When the USESROUTI NEDESCRI PTORS compile flag is f al se, the
NewRout i neDescri pt or function simply returns the address passed in
the t hePr oc parameter and does not allocate memory for a routine descriptor.

SEE ALSO

See “Using Universal Procedure Pointers” beginning on page 2-21 for a more complete
description of when and how to create routine descriptors. See “Specifying Procedure
Information” beginning on page 2-14 for information on creating procedure information.

NewFatRoutineDescriptor

You can call the Newrat Rout i neDescr i pt or function to create a new fat routine
descriptor.

pascal Universal ProcPtr NewFat Routi neDescri ptor
(ProcPtr theMs8kProc, ProcPtr thePower PCProc,
Procl nf oType t heProcl nfo);

t heM68kPr oc
The address of a 680x0 routine.
t hePower PCPr oc
The address of a PowerPC routine.

t heProcl nfo
The procedure information to be associated with the routine.

DESCRIPTION

The NewFat Rout i neDescri pt or function creates a new fat routine descriptor and
returns a pointer (of type Uni ver sal ProcPt r) to it. The routine descriptor contains
routine records for both 680x0 and PowerPC versions of a routine. If the value of either
the t heMs8kPr oc parameter or the t hePower PCPr oc parameter is NULL,

NewFat Rout i neDescri pt or returns the value NULL.

The memory occupied by the new routine descriptor is allocated in the current heap. If
you want the memory to be allocated in some other heap, you’ll need to set the current
heap to that heap and then restore the original heap before exiting.

SPECIAL CONSIDERATIONS

The NewFat Rout i neDescr i pt or function allocates memory; you should not call it at
interrupt time or from any code that might be executed when memory is low. In addition,
the block of memory allocated by NewFat Rout i neDescr i pt or is nonrelocatable. To
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help minimize heap fragmentation, you should try to allocate any routine descriptors you
will need early in your application’s execution.

When the USESROUTI NEDESCRI PTORS compile flag is f al se, the
NewFat Rout i neDescri pt or function is undefined.

See “Using Universal Procedure Pointers” beginning on page 2-21 for a more complete
description of when and how to create routine descriptors. See “Specifying Procedure
Information” beginning on page 2-14 for information on creating procedure information.

DisposeRoutineDescriptor

DESCRIPTION

You can call the Di sposeRout i neDescr i pt or function to dispose of a routine
descriptor.

pascal void D sposeRouti neDescri ptor
(Uni versal ProcPtr theProcPtr);

t heProcPtr
A universal procedure pointer.

The Di sposeRout i neDescri pt or function disposes of the routine descriptor pointed
to by the t hePr ocPt r parameter. You should call this function to release any memory
allocated by a previous call to NewRout i neDescr i pt or.

The Operating System automatically disposes of any remaining routine descriptors held
by your application when Exi t ToShel | is executed on its behalf. As a result, you don’t
need to explicitly dispose of any routine descriptors that you have allocated in your
application heap.

SPECIAL CONSIDERATIONS

Be careful not to dispose of a routine descriptor that is still in use by the Operating
System. Code that installs completion routines or other routines called asynchronously
may complete before the completion routine is actually called.

When the USESROUTI NEDESCRI PTORS compile flag is f al se, the
Di sposeRout i neDescri pt or function does nothing.
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Calling Routines via Universal Procedure Pointers

The Mixed Mode Manager provides a function that allows you to execute the routine
associated with a universal procedure pointer. It also provides a function that allows you
to call the routine associated with a universal procedure pointer, following Operating
System register saving and restoring conventions.

CallUniversalProc

You can use the Cal | Uni ver sal Pr oc function to call the routine associated with a
universal procedure pointer.

I ong Cal | Uni versal Proc (Universal ProcPtr theProcPtr,
Procl nfoType theProclnfo, ...);

t heProcPtr
A universal procedure pointer.

t heProcl nfo

The procedure information associated with the routine specified by the
t hePr ocPt r parameter.

DESCRIPTION

The Cal | Uni ver sal Pr oc function executes the routine associated with the specified
universal procedure pointer. You pass Cal | Uni ver sal Pr oc a universal procedure
pointer (which may be either a 680x0 procedure pointer or the address of the routine
descriptor), a set of procedure information, and a variable number of parameters that are
passed to the routine. Cal | Uni ver sal Pr oc returns a result of typel ong that contains
the result (if any) returned by the called routine.

SPECIAL CONSIDERATIONS

If the universal procedure pointer passed to Cal | Uni ver sal Pr oc is the address
of the routine descriptor, that routine descriptor must already exist before you call
Cal | Uni ver sal Proc. If you pass the address of an invalid routine descriptor to
Cal | Uni ver sal Pr oc, a system error will occur.

CallOSTrapUniversalProc

You can call the Cal | OSTr apUni ver sal Pr oc function to call the routine associated
with a universal procedure pointer, following Operating System register saving and
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restoring conventions. You're likely to need to use this function only if you need to patch
an Operating System trap.

| ong Cal | OSTrapUni versal Proc (Universal ProcPtr theProcPtr,
Procl nfoType theProclnfo, ...);

t heProcPtr
A universal procedure pointer.

t heProcl nfo
The procedure information associated with the routine specified by the
t hePr ocPt r parameter.

DESCRIPTION

The Cal | OSTr apUni ver sal Pr oc function executes the routine associated with the
specified universal procedure pointer, following standard conventions for executing
Operating System traps. Registers Al, A2, D1, and D2 are saved before the routine is
executed and restored after its completion; in addition, register A0 is saved and restored,
depending on the setting of the appropriate flag bit in the trap word. The trap number
is put into register D1; you should make certain to record that fact in any procedure
information you build yourself.

You pass Cal | OSTr apUni ver sal Pr oc a universal procedure pointer (which may be
either a 680x0 procedure pointer or the address of a routine descriptor), a set of
procedure information, and a variable number of parameters that are passed to the
routine. Cal | OSTr apUni ver sal Pr oc returns a result of typel ong that contains the
result (if any) returned by the called routine.

SPECIAL CONSIDERATIONS

If the universal procedure pointer passed to Cal | OSTr apUni ver sal Pr oc is the address
of the routine descriptor, that routine descriptor must already exist before you call

Cal | OSTr apUni ver sal Proc. If you pass the address of an invalid routine descriptor
to Cal | GSTr apUni ver sal Pr oc, a system error will occur.

The Cal | OSTr apUni ver sal Pr oc function is defined only for register-based Operating
System traps. Make sure that the procedure information specified in the t hePr ocl nf o
parameter correctly specifies the calling conventions of the trap. In particular, do not
specify either C or Pascal calling conventions.
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Determining Instruction Set Architectures

The Mixed Mode Manager contains a function that you can use to determine the current
instruction set architecture.

GetCurrentISA

DESCRIPTION

You can use the Get Cur r ent | SAfunction to get the current instruction set architecture.

| SAType Get Current| SA (void);

The Get Cur r ent | SAfunction returns the current instruction set architecture. See
“Instruction Set Architectures” on page 2-35 for a list of the values Get Current | SA
can return.

SPECIAL CONSIDERATIONS

2-44

Currently, the Get Cur r ent | SAfunction is defined as a compiler macro.

#i f defined(powerc) || defined(__powerc)

#defi ne Get Currentl SA() ((1 SAType) kPower PCl SA)
#el se

#def i ne Get Current| SA() ((1 SAType) kM8KI SA)
#endi f

The implementation details are subject to change.
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Summary of the Mixed Mode Manager

C Summary

Constants

[ *Cestalt selector and response bits*/
"m xd'

#defi ne gestaltM xedModeAttr
enum {
gest al t Power PCAwar e

/*M xed Mbde Mgr attri butes*/

[*true if MVMgr supports Power PCr/

/[*current version of RoutineDescriptor data type*/

b
enum {

kRout i neDescri pt or Ver si on
b

Routine Flags

enum {
kProcDescri ptorl sAbsol ute
kProcDescri ptorlsRel ative

b
enum {
kFragment | sPrepar ed
kFragnment NeedsPr epari ng
}
enum {
kUseCurrent| SA
kUseNat i vel SA
b
enum {
kPassSel ect or
kDont PassSel ect or
b

7

(Routi
(Rout i

(Rout i
(Rout i

(Rout i
(Rout i

(Rout i
(Rout i

Summary of the Mixed Mode Manager

neFl agsType) 0x00,
neFl agsType) 0x01

neFl agsType) 0x00,
neFl agsType) 0x02

neFl agsType) 0x00,
neFl agsType) 0x04

neFl agsType) 0x00,
neFl agsType) 0x08
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enum {

kRout i nel sNot Di spat chedDef aul t Routi ne

= (Routi neFl agsType) 0x00,

kRout i nel sDi spat chedDef aul t Routi ne

b

Instruction Set Architectures

enum {
kM68kI SA
kPower PCl SA
b

Routine Descriptor Flags

enum {
kSel ect or sAr eNot | ndexabl e
kSel ect or sAr el ndexabl e

H

Procedure Information

= (Routi neFl agsType) 0x10

= (1 SAType) O, / *MC680x0 architecture*/
= (1 SAType) 1 [ * Power PC ar chi t ect ure*/

= (RDFI agsType) 0x00,
= (RDFl agsType) 0x01

enum {

/ *si ze codes*/

kNoByt eCode = 0,

kOneByt eCode =1,

kTwoByt eCode = 2,

kFour Byt eCode =3
b
/*of fsets to and wi dths of procedure information fields*/
#defi ne kCal |l i ngConventi onPhase 0
#defi ne kCal I i ngConventi onWdth 4
#def i ne kResul t Si zePhase kCal | i ngConventi onW dt h
#defi ne kResult Si zeWdth 2
#defi ne kResult Si zeMask 0x30
#def i ne kSt ackPar anmet er Phase 6
#defi ne kSt ackParaneter Wdth 2
#def i ne kRegi st er Resul t Locat i onPhase \

(kCal I i ngConventi onWdth + kResultSi zeW dt h)

#def i ne kRegi sterResul t Locati onWdth 5
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#def i ne kRegi st er Par anet er Phase \
(kCal l'i ngConventi onWdth + kResultSi zeWdth + \
kRegi st er Resul t Locat i onW dt h)

#def i ne kRegi st er Par anet er Wdt h 5
#defi ne kRegi st er Par anet er Whi chPhase 2
#def i ne kRegi st er Par anet er Si zePhase 0
#def i ne kDi spat chedSel ect or Si zeW dt h 2
#def i ne kDi spat chedSel ect or Si zePhase \
(kCal I i ngConventi onWdth + kResultSi zeW dt h)
#def i ne kDi spat chedPar anet er Phase \

(kCal l'i ngConventi onWdth + kResultSi zeWdth + \
kDi spat chedSel ect or Si zeW dt h)

enum {
[*cal ling conventions*/
kPascal St ackBased = (Cal l'i ngConventi onType) O,
kCSt ackBased = (Cal l'i ngConventi onType) 1,
kRegi st er Based = (Calli ngConventi onType) 2,
kThi nkCSt ackBased = (Cal l'i ngConventi onType) 5,
kDODi spat chedPascal St ackBased = (Cal l'i ngConventi onType) 8,
kDODi spat chedCSt ackBased = (Cal l'i ngConventi onType) 9,
kD1Di spat chedPascal St ackBased = (Cal l'i ngConventi onType) 12,
kSt ackDi spat chedPascal St ackBased = (Cal l'i ngConventi onType) 14,
kSpeci al Case = (Cal l'i ngConventi onType) 15
b
enum {
[ *speci al cases*/
kSpeci al CaseH ghHook = 0,
kSpeci al CaseCar et Hook = kSpeci al CaseHi ghHook,
kSpeci al CaseEQ_Hook =1,
kSpeci al CaseW dt hHook = 2,
kSpeci al CaseNW dt hHook = 3,
kSpeci al CaseText W dt hHook = kSpeci al CaseW dt hHook,
kSpeci al CaseDr awHook = 4,

kSpeci al CaseHi t Test Hook =5
kSpeci al CaseTEFi ndWrd =6
kSpeci al CasePr ot ocol Handl er =7,
kSpeci al CaseSocket Li st ener =8
kSpeci al CaseTERecal ¢ =9

kSpeci al CaseTEDoText = 10,
kSpeci al CaseGNEFi | t er Proc = 11,
kSpeci al CaseMBar Hook = 12
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enum {

[ *680x0 registers*/

kRegi st er DO = 0,

kRegi st er D1 =1,

kRegi st er D2 = 2,

kRegi st er D3 = 3,

kRegi st er D4 = 8,

kRegi st er D5 =9,

kRegi st er D6 = 10,

kRegi st er D7 = 11,

kRegi st er AO = 4,

kRegi ster Al = b5,

kRegi st er A2 = 6,

kRegi st er A3 =7,

kRegi st er A4 = 12,

kRegi st er A5 = 13,

kRegi st er A6 = 14,

kCCRegi ster CBi t = 16

kCCRegi st er VBi t = 17

kCCRegi st er ZBi t = 18,

kCCRegi st er NBi t = 19

kCCRegi st er XBi t = 20
s
Data Types
typedef unsi gned char | SAType; /[*instruction set architecture*/
typedef unsi gned short CallingConventionType; /[*calling convention*/
typedef unsigned | ong ProclnfoType; [ *procedure information*/

typedef unsi gned short Regi sterSel ectorType;
typedef unsi gned short Routi neFl agsType;

struct RoutineRecord {

Procl nf oType procl nf o; [*cal ling conventions*/

unsi gned char reservedl; [ *reserved*/

| SAType | SA; /*instruction set architecture*/
Rout i neFl agsType routi neFl ags; /[*flags for each routine*/
ProcPtr procDescri ptor; /*the thing we're calling*/

unsi gned | ong reserved2; [ *reserved*/

unsi gned | ong sel ect or; /*sel ector for dispatched calls*/
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b
typedef struct RoutineRecord RoutineRecord;
typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandl e;

typedef unsi gned char RDFI agsType; /[ *routine descriptor flags*/

struct RoutineDescriptor {

unsi gned short goM xedModeTrap; /*ni xed-node A-trap*/
char versi on; /[*routine descriptor version*/
RDFI agsType routi neDescri pt or Fl ags;

[*routine descriptor flags*/
unsi gned | ong reservedl; [ *reserved*/
unsi gned char reserved?; [ *reserved*/
unsi gned char sel ector | nf o; /*sel ector information*/
short routi neCount ; /*index of last RRin this RD*/
Rout i neRecor d routi neRecords[1];/*the individual routines*/

s

typedef struct RoutineDescriptor RoutineDescriptor;

typedef RoutineDescriptor *Universal ProcPtr, **Universal ProcHandl e;

typedef RoutineDescriptor *RoutineDescriptorPtr, **RoutineDescriptorHandl e

Mixed Mode Manager Routines

Creating and Disposing of Routine Descriptors

pascal Universal ProcPtr NewRouti neDescri ptor
(ProcPtr theProc, ProclnfoType theProclnfo,
| SAType thel SA);

pascal Universal ProcPtr NewFat Routi neDescri ptor
(ProcPtr theMs8kProc, ProcPtr thePower PCProc,
Procl nfoType t heProcl nfo);

pascal void D sposeRouti neDescri ptor
(Uni versal ProcPtr theProcPktr);

Calling Routines via Universal Procedure Pointers

I ong Cal | Uni versal Proc (Uni versal ProcPtr theProcPktr,
Procl nfoType theProclnfo, ...);

| ong Cal | OSTr apUni ver sal Proc
(Uni versal ProcPtr theProcPktr,
Procl nfoType theProclnfo, ...);

Determining Instruction Set Architectures
| SAType Get Current| SA (void);
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C Language Macros for Defining Procedure Information

#defi ne SI ZE CODE(size) (((size) == 4) ? kFourByteCode : \
(((size) == 2) ? kTwoByteCode : (((size) == 1) ? kOneByteCode : 0)))

#def i ne RESULT_SI ZE(si zeCode) ((ProclnfoType) (sizeCode) << kResultSi zePhase)

#def i ne STACK ROUTI NE_PARANMETER( whi chParam si zeCode) \
((Procl nfoType) (si zeCode) << (kStackParanet er Phase + \
(((whichParanm) - 1) * kStackParameterWdth)))

#def i ne DI SPATCHED STACK ROUTI NE_PARAMETER( whi chParam si zeCode) \
((Procl nfoType) (si zeCode) << (kD spat chedPar anet er Phase + \
(((whichParan) - 1) * kStackParameterWdth)))

#defi ne DI SPATCHED STACK_ROUTI NE_SELECTOR Sl ZE( si zeCode) \
((Procl nfoType) (si zeCode) << kDi spat chedSel ect or Si zePhase)

#defi ne REG STER_RESULT_LOCATI ON( whi chReg) \
((Procl nfoType) (whi chReg) << kRegi st er Resul t Locat i onPhase)

#defi ne REG STER_ROUTI NE_PARAMETER(whi chParam whi chReg, sizeCode) \
((((ProclnfoType) (sizeCode) << kRegi st er Paranet er Si zePhase) | \
((Procl nfoType) (whi chReg) << kRegi st er Par amet er Whi chPhase)) <<\
(kRegi st er Par anet er Phase + (((whichParam- 1) * kRegi sterParanmeterWdth)))

#def i ne SPECI AL_CASE PROCI NFQ( speci al CaseCode) \
(kSpeci al Case | ((ProclnfoType)(speci al CaseCode) << 4))
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CHAPTER 3

Code Fragment Manager

This chapter describes the Code Fragment Manager, the part of the Macintosh system
software that loads fragments into memory and prepares them for execution. A fragment
can be an application, an import library, a system extension, or any other block of
executable code and its associated data.

The Code Fragment Manager is intended to operate transparently to most applications
and other software. You need to use the Code Fragment Manager explicitly only if

n you need to load code modules dynamically during the execution of your application
or other software

n you want to unload code modules before the termination of your application
n you want to obtain information about the symbols exported by a fragment

For example, if your application supports dynamic loading of tools, filters, or other
software modules contained in fragments, you’ll need to use the Code Fragment
Manager to load and prepare them for execution.

This chapter also describes the format of the code fragment resource, which defines
information about a fragment. You need to create a code fragment resource (a resource
of type ' cfrg') for each application or import library you create. For information on
doing this, see “Creating a Code Fragment Resource” on page 3-12.

To use this chapter, you should already be generally familiar with the Macintosh
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory
for information about the run-time architecture of the 680x0 environment. You also need
to be familiar with the run-time architecture of PowerPC processor-based Macintosh
computers, as explained in the chapter “Introduction to PowerPC System Software.”
That chapter describes the general nature and structure of fragments.

This chapter begins by describing the capabilities of the Code Fragment Manager. Then
it describes how the Code Fragment Manager searches for the appropriate versions of
import libraries. In general, you need to know these details about searching and version
checking only if you are creating updated versions of an existing import library. The
section “Using the Code Fragment Manager” beginning on page 3-10 provides code
samples illustrating how to use some of the routines provided by the Code Fragment
Manager. The section “Code Fragment Manager Reference” beginning on page 3-15is a
complete reference to the Code Fragment Manager.

About the Code Fragment Manager

The Code Fragment Manager is the Operating System loader for executable code and
data that are contained in fragments. Its operations are loosely analogous to those of the
Segment Manager in previous versions of the Macintosh system software. The Code
Fragment Manager, however, provides a much richer set of services than the Segment
Manager, including

n loading and preparation of fragments for execution

n automatic resolution of imported symbols by locating and loading import libraries
used by a fragment
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n automatic execution of a fragment’s initialization and termination routines
n support for updated versions of import libraries

The following sections describe how fragments are structured, how the Code Fragment
Manager searches fragments for unresolved symbols, and how it manages different
versions of import libraries.

Fragments

The Code Fragment Manager operates primarily on fragments. Afragment is a block of
executable code and its associated data. Fragments can be loosely differentiated into
three categories, based on how they are used:

n applications
n import libraries
n extensions

Fragments contain symbols, some or all of which may be referenced by code or data in
other fragments; these kinds of symbols are called exported symbols (or, for brevity,
exports). An import library is a fragment that consists primarily of exported symbols
and their associated code and data. Other kinds of fragments can contain references to
the exported symbols of an import library; these references are called imported symbols
(or, for brevity, imports).

During the linking phase of building a fragment, the linker creates an import for each
external symbol that is resolved to an export from some import library. The code or data
referenced by that import is not copied into the fragment. Instead, as part of the process
of loading the fragment into memory and preparing it for execution, the Code Fragment
Manager replaces the imported symbol with the address of the exported code or data.

Note

Both code and data may be exported by name. However, routines are
usually exported indirectly, via a transition vector to the routine. A
routine’s transition vector is stored in the fragment’s data area. See
“The Table of Contents” on page 1-26 for more details. u

A fragment is stored in a container, which can be any logically contiguous object acces-
sible by the Operating System. For example, the executable code and global variables

of a PowerPC application are typically stored in a fragment in the application’s data
fork. The Macintosh ROM is itself a container for the import library that exports

the Macintosh system software and for several other import libraries. Application
extensions, such as dynamically loadable filters or other code modules, can be stored in
resources in the application’s resource fork. It’s better, however, to use the data fork of
some file as the container of an application extension fragment. The extension can be put
into the application’s data fork (either before or after the application’s code fragment) or
into the data fork of some other file.
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Note

A single data fork can contain multiple containers. The ' cfrg' resource
in the file’s resource fork allows the Operating System to find each
individual container in a data fork. u

The Code Fragment Manager is responsible for loading fragments (by calling the Code
Fragment Loader) and preparing them for execution. It resolves the imported symbols
in a fragment, loading and preparing any additional fragments whose exports are
referenced by that fragment. Loading a given fragment, such as an application, usually
involves loading and preparing additional fragments.

An import library can have its exported symbols imported by any number of other frag-
ments. When the Code Fragment Manager resolves the imports in a particular fragment,
it establishes a connection to each individual fragment whose code or data that fragment
references. In general, the connections are transparent to the importing fragment. 1f you
call the Code Fragment Manager directly, however, it returns a connection 1D to you
that uniquely identifies the connection. You can use the connection ID to perform
various actions on the exporting fragment (for example, to break the connection and
unload the fragment or to get information about its exported symbols).

Note
There is no practical limit on the size of a fragment. u

Import Library Searching

When searching for an import library to find code or data that is imported by some other
fragment, the Code Fragment Manager follows a standard search path. It looks in
various files and folders in a specific order until it finds an import library that exports
the code or data imported by the fragment being loaded. Once the Code Fragment
Manager finds a library that it deems compatible with the fragment it’s loading, it stops
searching and resolves imports in the fragment to code or data in that library. In general,
the exact order in which the Code Fragment Manager searches for import libraries is
transparent to your software. However, you might need the information in this section to
ensure that a particular import library is found before some other import library, which
might also be compatible with your fragment.

Note

See the next section, “Version Checking” beginning on page 3-7, for
information on how the Code Fragment Manager determines whether
some import library is compatible with a fragment. u

When loading and preparing an application that imports code or data from an import
library, the Code Fragment Manager searches first in the application file itself, by looking
for import libraries indicated in the application’s ' cfrg' resource. Typically, any import
libraries contained in your application are located in your application’s data fork, either
before or after the container that holds your application’s code and data. Less commonly,
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you can put an import library into a resource in your application’s resource fork. The
"cfrg' resource specifies the location of any import libraries that you’ve included with
your application, whether in the data or the resource fork.

If an import library used by your application is not found in the application file itself, the
Code Fragment Manager next searches in any directory designated as the application’s
library directory, a directory used by the application to store import libraries or aliases
to import libraries. You specify a library directory by including in the appropriate field of
your' cfrg' resource the ID of an alias resource that picks out the library directory. See
“The Code Fragment Resource” beginning on page 3-28 for details.

The Code Fragment Manager searches a directory by looking for files of type ' shl b’
that contain a resource of type ' cfrg' . The ' cfrg' resource identifies the logical name
of the import library, which is needed to match the library’s name generated at link time.
There can be more than one logical name listed in asingle' cfrg' resource. This might
happen if there are multiple import libraries contained in the data fork of a single

"shl b" file. This might also happen if a single import library or application is to be
identified by more than one name. Within a directory, the Code Fragment Manager also
looks for aliases to files of type ' shl b' and resolves them to their targets. The alias file
must itself be of type ' shl b' .

If no suitable import library has been found yet, the Code Fragment Manager searches
next in the directory that contains the application. If any import libraries—whether
located in the application’s directory or targeted by an alias in the application’s
directory—are determined to be compatible with the fragment whose imports are being
resolved, the Code Fragment Manager chooses the most compatible library and stops
searching.

IMPORTANT

The Code Fragment Manager looks only in the top level of the
application’s directory, not in any subdirectories contained in it. s

If no suitable import library has been found yet, the Code Fragment Manager searches
next in the Extensions folder in the System Folder and in all the subdirectories of the
Extensions folder, including any directories that are targets of directory aliases in

the Extensions folder. Once again, both files of type ' shl b' and targets of aliases of
type ' shl b' are candidates for compatibility checking. This scheme allows you to store
your import libraries in a vendor-specific location in the Extensions folder.

If the Code Fragment Manager still hasn’t found a compatible import library that exports
the imported symbols in the fragment it’s trying to prepare, it continues by looking in a
ROM registry, which keeps track of all import libraries that are stored in the ROM of a
Macintosh computer. The Code Fragment Manager registers all ROM-based import
libraries in this registry at system startup time.

The final stage of the search path is a file and directory registry that it maintains
internally. This registry is a list of files and directories that, for various reasons, cannot be
put into the normal search path followed by the Code Fragment Manager or would not
be recognized as import libraries even if they were in that path. For example, to be
registered automatically by the Component Manager, a component must be stored

in a file of type ' t hng' . To inform the Code Fragment Manager that the file also
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contains one or more import libraries in its data fork, it can be registered in the file and
directory registry.

Note

The Code Fragment Manager routine to register a file
or directory is currently private. u

If your application or other software loads a fragment explicitly from disk by calling the
Get Di skFragnent routine, the Code Fragment Manager first looks for any needed
import libraries in the load directory, the directory that contains the fragment being
loaded. (This directory is the one specified in the f i | eSpec parameter you pass to
Get Di skFragmnent .) If no suitable import library is found there, the search continues
along the path followed when loading and preparing an application. However, the Code
Fragment Manager looks in the load directory first only if it is different from the
application’s directory. Otherwise, the load directory is searched in its normal sequence,
after the application file itself and the library directory.

In summary, the Code Fragment Manager looks in the following places when searching
for an import library to resolve one or more imports in a fragment being loaded:

1. The load directory (the directory containing the fragment being loaded). The load
directory, however, is searched only when a fragment is loaded in response to a call
to Get Di skFragment or Get Shar edLi br ary, and only when it’s different from the
application’s directory.

2. The application file, if the application’s ' cfrg' resource indicates that the application
file contains import libraries. The application fragment is implicitly treated here as an
import library.

3. The application’s library directory (as specified in the application’s ' cfrg' resource).
4. The application’s directory. Only the top level of this directory is searched.

5. The Extensions folder in the System Folder. The Extensions folder and all directories
in the Extensions folder are searched.

6. The ROM registry maintained internally by the Code Fragment Manager.
7. The file and directory registry maintained internally by the Code Fragment Manager.

At any stage, the Code Fragment Manager selects the one import library of all those
available to it that best satisfies its compatibility version checking. If an import library
meets the relevant criteria, the library search stops. Otherwise, the search continues to
the next stage. If the final stage (the file and directory registry) is reached and no suitable
library can be found, the Code Fragment Manager gives up and does not load the
original fragment.

Version Checking

One of the principal benefits of import libraries, aside from their ability to reduce the
size of applications and other fragments, is the ease with which a library developer can
make improvements in portions of the import library without requiring developers to
modify or rebuild any applications that use the import library. The library developer
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needs only to ensure that the updated version is compatible with the version expected
by the applications using the library. In general, this means that the external program-
ming interface provided by the import library remains unchanged throughout changes
in the underlying implementation.

The Code Fragment Manager provides a simple but powerful version-checking scheme
intended to prevent incompatibilities between import libraries and the fragments that
use them. This checking is always performed automatically as part of the normal
fragment loading and preparation process. In general, your application does not need to
concern itself with checking the version of an import library whose code or data it uses.

To take a simple example, suppose that an application uses a single import library. When
the application is created, it is linked with some version of that library. Unresolved
external symbols in the application are resolved, by the linker, to exported code or data
in the import library. The version of the import library used at link time is called the
definition version of the library (because it supplies the definitions of exported symbols,
not the actual implementation of routines and initialization of variables).

When the application is loaded and prepared for execution, it must be connected to a
version of that import library. The version of the import library used at load time is
called the implementation version of the library (because it supplies the implementa-
tions of routines and initializations of variables exported by the library). The essential
requirement is that the implementation version of an import library used at run time be
compatible with the definition version used at link time. The two versions do not need to
be identical, but they must satisfy the same programming interface. (The implementation
can be a superset of the definition library.)

To allow the Code Fragment Manager to check the implementation version of an import
library against the definition version used when linking the application, the linker copies
version information from the definition library into the application. When the application
is launched, the version information in the application is compared with the version
information stored in the implementation library. If the version of the import library is
identical to that expected by the application, the library and the application are deemed
compatible. If, however, the two versions are not identical, the Code Fragment Manager
inspects additional information in whichever of the two fragments (the application and
the import library) is the newer fragment. The idea is to allow the newer fragment to
decide whether it is compatible with the older fragment.

Every import library contains three version numbers: the current version number, the
oldest supported definition version number, and the oldest supported implementation
version number. The two latter version numbers are included to provide a way for the
Code Fragment Manager to determine whether a given definition version is compatible
with a given implementation version, if the current versions of the library and the
definition version used to link the application are not identical.

IMPORTANT

The current version number must always be greater than or equal to
both the oldest supported definition version number and the oldest
supported implementation version number. s
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The linker copies into the application both the current version number of the definition
library and the oldest supported implementation version number. When the application
is launched, the Code Fragment Manager checks those numbers with the version
numbers in the implementation libraries according to the algorithm shown in Listing 3-1.

Listing 3-1 Pseudocode for the version-checking algorithm

if (Definition.Current == |nplenentation.Current)
return(kLi bANdAppAr eConpati bl e);
else if (Definition.Current > Inplenentation. Current)
/*definition version is newer than inplenentation version*/
if (Definition.ddestlnp <= Inplenmentation. Current)
r et ur n( kl npl AndDef Ar eConpati bl e);
el se
return(kl npllsTood d);
el se
/*definition version is ol der than inplenentation version*/
if (Inplementation.d destDef <= Definition.Current)
r et ur n( kl npl AndDef Ar eConpati bl e);
el se
return(kDefl sTood d);

If the current version number copied into the application from the definition library at
link time is the same as the current version number of the candidate version of the
implementation import library, then the Code Fragment Manager accepts that version of
the implementation import library and continues with the loading and preparation of
the application. Otherwise, the Code Fragment Manager determines which of the two
fragments is newer and then applies a further check.

If the current version number copied into the application from the definition library

at link time is greater than the current version number of the candidate version of

the implementation import library, the Code Fragment Manager compares the oldest
supported implementation version number in the application with the current version
number of the implementation library. If the definition library’s oldest supported
implementation version number is less than or equal to the library’s current version
number, the application and library are deemed compatible. Otherwise, the library is too
old for the application.

If the current version number copied into the application from the definition library at
link time is less than the current version number of the most recent version of the
implementation import library, the Code Fragment Manager compares the oldest
supported definition library version number (stored in the implementation library) with
the current definition library version number (stored in the application). If the oldest
supported definition library version number is less than or equal to the application’s
current version number, the application and library are deemed compatible. Otherwise,
the application is too old for the library.
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Note

In general, of course, the Code Fragment Manager checks the
compatibility of a fragment being loaded and all of the import
libraries from which it imports code and data. u

The version numbers in both the definition and implementation versions of an import
library should have the same format as the first 4 bytes of a version resource (that is,
aresource of type' ver s'). See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for complete information on version resources. When
comparing version numbers, however, the Code Fragment Manager treats those 4 bytes
simply as an unsigned long quantity. As a result, the value 0x00000000 is interpreted as
a valid version number.

Using the Code Fragment Manager

3-10

The Code Fragment Manager provides routines that you can use to explicitly load code
fragments and to get information about symbols exported by a particular fragment. This
section illustrates how to use those routines.

IMPORTANT

In general, the Code Fragment Manager automatically loads all import
libraries required by your application at the time your application is
launched. You need to use the routines described in this section only if
your application supports dynamically loaded application tools, filters,
or other code modules. s

This section also describes how to create a code fragment resource. Every application
and import library must have a code fragment resource to describe basic information
about the application or import library.

Loading Code Fragments

You can use the Code Fragment Manager to load fragments from the containers in which
they are stored. You need to do this only for code fragments that are dynamically added
to your application’s context during execution. This might happen, for instance, if your
application supports dynamically loadable filters or tools.

The executable code you want to bind to your application context can be stored in any
kind of container. If the container is an import library (a file of type ' shl b' ), you can
use the Code Fragment Manager’s Get Shar edLi br ar y function. If the container is a
disk file, you call the Get Di skFr agnent function. If the container is a resource, you
need to load the resource into memory (using normal Resource Manager routines)

and then call the Get MenfFr agnent function. See “Loading Fragments” beginning on
page 3-19 for complete details on each of these functions.
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Listing 3-2 and Listing 3-3 illustrate how to load application-specific tools into
memory using the Code Fragment Manager. Listing 3-2 shows how to load a
resource-based fragment.

Listing 3-2 Loading a resource-based fragment
Handl e myHandl e;

CSErr nmyErr;

Connectionl D  nyConnl D;

Ptr my Mai nAddr ;

Str 255 my Er r Nane;

myHandl e = Get Resource('tool', 128);
HLock( myHandl e) ;
myErr = Get Menfragnent (*nmyHandl e, Get Handl eSi ze( nmyHandl e) ,
myTool Name, kLoadNewCopy, &mryConnl D,
(Ptr*)&nyMai nAddr, nyErr Nane);
if (nyErr) {
Al ert User (nyErr);
got o nolLoad;

}

As you can see, Listing 3-2 loads the resource into memory by calling the Resource
Manager function Get Resour ce and locks it by calling the Memory Manager procedure
HLock. Then it calls Get Menfr agnent to prepare the fragment. The first parameter
passed to Get Mentr agnent specifies the address in memory of the fragment. Because
Get Resour ce returns a handle to the resource data, Listing 3-2 dereferences the handle
to obtain a pointer to the resource data. To avoid dangling pointers, you need to lock the
block of memory before calling Get Mentr agnent . The constant kLoadNewCopy passed
as the fourth parameter requests that the Code Fragment Manager allocate a new copy of
the fragment’s global data section.

Listing 3-3 shows how to load a disk-based fragment.

Listing 3-3 Loading a disk-based fragment

myErr = Get Di skFragnent (&yFSSpec, 0, kwWhol eFork, myTool Nane,
kLoadNewCopy, &nyConnl D, (Ptr*) &mryMai nAddr,
myEr r Nane) ;
if (nyErr) {
Al ertUser (nyErr);
got o nolLoad;
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All import libraries and other fragments that are loaded on behalf of your application
(either as part of its normal startup or programmatically by your application) are
unloaded by the Process Manager at application termination; therefore, a library can be
loaded and does not have to be unloaded by the application before it terminates.

Creating a Code Fragment Resource

You need to create a code fragment resource (a resource of type ' cf r g' ) for each native
application or import library you create. This resource identifies the instruction set
architecture, location, size, and logical name of the application or import library, as well
as version information for import libraries.

In PowerPC or fat applications, the code fragment resource is read by the Process
Manager at application launch time. The Process Manager needs to know whether the
application contains PowerPC code and, if so, where that code is located. If the Process
Manager cannot finda' cfrg' resource in the application’s resource fork, it assumes
that the application is a 680x0 application, where the executable code is contained within
" CODE' resources in the application’s resource fork.

IMPORTANT

A code fragment resource must have resource ID 0. s

For an application, the code fragment resource typically indicates that the application’s
executable code fragment begins at offset 0 within the application’s data fork and
extends for the entire length of the data fork. Listing 3-4 shows the Rez input for a
typical application’s code fragment resource.

Listing 3-4

#i ncl ude " CodeFragnent Types.r"

resource 'cfrg' (0) {
{

kPower PC,
kFul | Li b,
kNoVer si onNum
kNoVer si onNum
kDef aul t St ackSi ze,
kNoAppSubFol der,
kl sApp,
kOnDi skFl at,
kzZeroOf f set,
kWhol eFor k,
"SurfWiter"
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The Rez input for a typical application’s ' cfrg' resource

/*instruction set architecture*/
/*no update level for apps*/

/*no current version nunber*/
/*no ol dest def' n version nunber*/
/*use default stack size*/

/*no library directory*/
[*fragnment is an application*/
[*fragnment is on disk*/
/[*fragnent starts at fork start*/
[ *fragnent occupies entire fork*/
/[ *name of the application*/
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Note
See “The Code Fragment Resource” on page 3-28 for complete
information about the structure of a code fragment resource. u

For import libraries, the code fragment resource is read by the Code Fragment Manager
as part of the process of searching for symbols imported by some fragment that is
currently being loaded and prepared for execution. (See the section “Import Library
Searching” on page 3-5 for details on how the Code Fragment Manager searches for
import libraries.) The information in the ' cfrg' resource is also used to ensure that the
Code Fragment Manager finds an implementation version of an import library that is
compatible with the definition version used to link the fragment being loaded and
prepared for execution. Listing 3-5 shows the Rez input for a typical code fragment
resource for an import library.

Listing 3-5 The Rez input for a typical import library’s ' cfrg' resource
#defi ne kd dDef Vers 0x01008000 [*version 1.0*/
#define kCurrVers 0x02008000 [ *version 2.0%/

#i ncl ude " CodeFr agnent Types.r"
resource 'cfrg' (0) {

{
kPower PC, /[*instruction set architecture*/
kFul I Li b, [ *base library*/
kCurr Vers, [ *current version nunber*/
kd dDef Ver s, [ *ol dest definition version nunber*/
kDef aul t St ackSi ze, [*ignored for inport library*/
kNoAppSubFol der, [*ignored for inport l|ibrary*/
kl sLi b, [*fragnment is a |library*/
kOnDi skFl at, [*fragnment is on di sk*/
kZer oOf f set, [*fragnent starts at fork start*/
kWhol eFor k, /*fragment occupies entire fork*/
" Sur f Tool s" /*name of the library*/

}

H

An import library’s code fragment resource also specifies the logical name of the import
library. This is the name used by the Code Fragment Manager to resolve imports in some
other fragment. The logical name can be different from the name of the file containing
the import library.

Note that code fragment resources are required only for fragments that are either
applications or import libraries. If you need similar version-checking or name-binding
capabilities for fragments that are application extensions, you will need to provide your
own code to do this.
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Getting Information About Exported Symbols

In cases in which you load a fragment programmatically (that is, by calling Code
Fragment Manager routines), you can get information about the symbols exported

by that fragment by calling the Count Synbol s and Get | ndSynbol functions.

The Count Synbol s function returns the total number of symbols exported by a
fragment. Count Synbol s takes as one of its parameters a connection ID; accordingly,
you must already have established a connection to a fragment before you can determine
how many symbols it exports.

Given an index ranging from 1 to the total number of symbols in a fragment, the

Get | ndSynbol function returns the name, address, and class of a symbol in that
fragment. You can use Count Synbol s in combination with Get | ndSynbol to get
information about all the symbols in a fragment. For example, the code in Listing 3-6
prints the names of all the symbols in a particular fragment.

Listing 3-6 Finding symbol names

voi d MyGet Synbol Nanmes (Connecti onl D nmyConnl D) ;

{

3-14

| ong myl ndex;
| ong my Count ; [ *nunber of exported synmbols in fragment*/
CSErr nmyErr;
Str255 my Nane; [ *synbol nane*/
Ptr my Addr ; [ *synmbol address*/
SynC ass myC ass; [ *symbol cl ass*/
myErr = Count Synbol s(myConnl D, &mryCount);
if (!myErr)
for (nylndex = 1; nylndex <= nyCount; nylndex++)
{
nyErr = GetlndSynbol (myConnl D, nyl ndex, nyNane,
&y Addr, &myd ass);
if (1myErr)
printf("%", nyNane);
}

If you already know the name of a particular symbol whose address and class you want
to determine, you can use the Fi ndSynbol function. See page 3-24 for details on calling
Fi ndSynbol .

Using the Code Fragment Manager
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Code Fragment Manager Reference

This section describes the data structures and routines provided by the Code Fragment
Manager. See “Using the Code Fragment Manager” beginning on page 3-10 for detailed
instructions on using these routines. This section also describes the format of the
optional initialization and termination routines you can include in a fragment, as well
as the structure of the code fragment resource.

Data Structures

This section describes the data structures that define the format of the data passed to a
fragment’s initialization routine.

IMPORTANT

You need the information in this section only if your fragment
(application, import library, or extension) contains an initialization
routine. In addition, much of the information passed to an initialization
routine is intended for use by language implementors. Most other
developers are likely to need only the pointer to a file specification
record passed to disk-based fragments. (This information allows the
initialization routine to access its own resource fork.) s

Fragment Initialization Block

The Code Fragment Manager passes to your fragment’s initialization routine a pointer to
a fragment initialization block, which contains information about the fragment. A
fragment initialization block is defined by the | ni t Bl ock data type.

struct InitBlock {
| ong context | D; [*context |D*/
| ong cl osurel D; [ *cl osure | D*/
| ong connectionl D, /*connection | D~/
Fr agnment Locat or fraglLocator; [*fragment | ocation*/
Ptr I i bName; [*pointer to fragment nane*/
| ong reserved4a; [ *reserved*/
| ong reserved4b; [ *reserved*/
| ong reserved4c; [ *reserved*/
| ong reserved4d; [ *reserved*/
b

typedef struct InitBlock InitBlock, *InitBlockPtr;
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Field descriptions
contextl D

cl osurel D
connectionl D
fragLocat or

| i bName

reserved4a
reserved4b
reserved4c
reserved4d

IMPORTANT

A context ID.
A closure ID.
A connection ID.

A fragment location record that specifies the location of the
fragment. See the following section for details about the structure
of a fragment location record.

A pointer to the name of the fragment being initialized. The name is
a Pascal string (a length byte followed by the name itself).

Reserved for use by Apple Computer.
Reserved for use by Apple Computer.
Reserved for use by Apple Computer.
Reserved for use by Apple Computer.

The fields of a fragment initialization block are aligned in memory in
accordance with 680x0 alignment conventions. s

Fragment Location Record

The f ragLocat or field of an initialization block contains a fragment location record
that provides information about the location of a fragment. A fragment location record is
defined by the Fr agment Locat or data type.

struct Fragnent Locator {
| ong
uni on {
Menfr agnment
D skFragnent
Segnent edFr agnent
bou
b

wher e; /*l ocation sel ector*/

i nMem [*memory | ocation record*/
onDi sk; /*di sk | ocation record*/

i nSegs; [/ *segnment | ocation record*/

typedef struct FragnentlLocator FragnentlLocator, *FragnentlLocatorPtr;

Field descriptions
wher e

i nMem
onDi sk
i nSegs

A selector that determines which member of the following union is
relevant. This field can contain one of these constants:

enum {
kI nMem [*container in menory*/
kOnDi skFl at, /[*container in a data fork*/

kOnDi skSegnented /*container in a resource*/
s
A memory location record.
A disk location record.
A segment location record.
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IMPORTANT
The fields of a fragment location record are aligned in memory in
accordance with 680x0 alignment conventions. s

Memory Location Record

For fragments located in memory, the i nMemfield of a fragment location record contains
a memory location record, which specifies the location of the fragment in memory. A
memory location record is defined by the Menfr agnent data type.

struct Menfragnent {

Ptr addr ess; [*pointer to start of fragnment*/
| ong | engt h; /*I ength of fragment*/
Bool ean i nPl ace; /*is data section in place?*/

b
typedef struct MenfFragnent Mentragnent;

Field descriptions

addr ess A pointer to the beginning of the fragment in memory.
I ength The length, in bytes, of the fragment.
i nPl ace A Boolean value that specifies whether the container’s data section

is instantiated in place (t r ue) or elsewhere (f al se).

IMPORTANT

The fields of a memory location record are aligned in memory in
accordance with 680x0 alignment conventions. s

Disk Location Record

For fragments located in the data fork of a file on disk, the onDi sk field of a fragment
location record contains a disk location record, which specifies the location of the
fragment. A disk location record is defined by the Di skFr agment data type.

struct Di skFragment {

FSSpechktr fil eSpec; [ *pointer to FSSpec*/
| ong of fset; /[*of fset to start of fragnment*/
| ong | engt h; /*l ength of fragnent*/

b
typedef struct Di skFragnent Di skFragnent;

Field descriptions

fileSpec A pointer to a file specification record (a data structure of type
FSSpec) for the data fork of a file. This pointer is valid only while
the initialization routine is executing. If you need to access the
information in the file specification record at any later time, you
must make a copy of that record.
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of f set The offset, in bytes, from the beginning of the file’s data fork to the
beginning of the fragment.
| ength The length, in bytes, of the fragment. If this field contains the value

0, the fragment extends to the end-of-file.

IMPORTANT

The fields of a disk location record are aligned in memory in accordance
with 680x0 alignment conventions. s

Segment Location Record

For fragments located in the resource fork of a file on disk, the i nSegs field of a fragment
location record contains a segment location record, which specifies the location of the
fragment. A segment location record is defined by the Segnent edFr agment data type.

struct Segment edFragnent {

FSSpechtr fil eSpec; [ *pointer to FSSpec*/
OSType rsrcType; /*resource type*/
short rsrcl b /[ *resource | D*/

b

typedef struct SegnentedFragnent Segnent edFragnent;

Field descriptions

fileSpec A pointer to a file specification record (a data structure of type
FSSpec) for the resource fork of a file. This pointer is valid only
while the initialization routine is executing. If you need to access
the information in the file specification record at any later time, you
must make a copy of that record.

rsrcType The resource type of the resource containing the fragment.
rsrclD The resource ID of the resource containing the fragment.
IMPORTANT

The fields of a segment location record are aligned in memory in
accordance with 680x0 alignment conventions. s

Code Fragment Manager Routines

You can use the routines provided by the Code Fragment Manager to
n load a fragment by filename or library name

n identify an import library that is already loaded

n unload a fragment

n find a symbol by name in a fragment

n find all the symbols in a fragment
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Loading Fragments

The Code Fragment Manager provides three functions that you can use to load various
kinds of fragments: Get Di skFr agnent , Get Menfr agnent , and Get Shar edLi brary.
Loading involves finding the specified fragment, reading it into memory (if it isn’t
already in memory), and preparing it for execution. The Code Fragment Manager
attempts to resolve all symbols imported by the fragment; to do so may involve loading
import libraries.

If the fragment loading fails, the Code Fragment Manager returns an error code. Note,
however, that the error encountered is not always in the fragment you asked to load.
Rather, the error might have occurred while attempting to load an import library that the
fragment you want to load depends on. For this reason, the Code Fragment Manager
also returns, in the er r Name parameter, the name of the fragment that caused the load to
fail. Although fragment names are restricted to 63 characters, the er r Nane parameter is
declared as type St r 255; doing this allows future versions of the Code Fragment
Manager to return a more informative message in the er r Nane parameter.

GetDiskFragment

You can use the Get Di skFragnment function to locate and possibly also load a fragment
contained in a file’'s data fork into your application’s context.

OSErr Cet Di skFragnent (FSSpecPtr fil eSpec, |ong offset,
long length, Str63 fragNane,
LoadFl ags fi ndFl ags, Connectionl D *connl D,
Ptr *mai nAddr, Str255 errNane);

fileSpec A file system specification that identifies the disk-based fragment to load.

of f set The number of bytes from the beginning of the file’s data fork at which
the beginning of the fragment is located.

I ength The length (in bytes) of the fragment. Specify the constant k\Whol eFor k
for this parameter if the fragment extends to the end-of-file of the data
fork. Specify a nonzero value for the exact length of the fragment.

f ragNane An optional name of the fragment. (This information is used primarily to
allow you to identify the fragment during debugging.)

findFl ags A flag that specifies the operation to perform on the fragment. See the
description below for the values you can pass in this parameter.

connl D On exit, the connection ID that identifies the connection to the fragment.
You can pass this ID to other Code Fragment Manager routines.

mai nAddr On exit, the main address of the fragment. The value returned is specific
to the fragment itself. Your application can use this parameter for its
OwWn purposes.

err Nanme On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to Get Di skFr agnent fails.
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The Get Di skFragnent function locates and possibly also loads a disk-based fragment
into your application’s context. The actions of Get Di skFr agnment depend on the action
flag you pass in the f i ndFl ags parameter. The Code Fragment Manager recognizes
these constants:

enum {
kLoadLi b 1, /*load fragment*/
kFi ndLi b =2, [/*find fragnment*/
kLoadNewCopy 5 /*1 oad fragnent with new copy of data*/

H

The kFi ndLi b constant specifies that the Code Fragment Manager search for the
specified fragment. If the fragment is already prepared and connected to your application,
Get Di skFragnent returnsf r agNoEr r as its function result and the existing connection
ID in the connl D parameter. If the specified fragment is not found, Get Di skFr agment
returns the result code f r agLi bNot Found. If the specified fragment is found but could
not be connected to your application, Get Di skFr agnent returns the result code

fragLi bConnErr.

The kLoadLi b constant specifies that the Code Fragment Manager search for the
specified fragment and, if it finds it, load it into memory. If the fragment has already
been loaded, it’s not loaded again. The Code Fragment Manager uses the data-
instantiation method specified in the fragment’s container (which is either global or
per-connection instantiation).

The kLoadNewCopy constant specifies that the Code Fragment Manager load the
specified fragment, creating a new copy of any writable data maintained by the
fragment. You specify kLoadNewCopy to obtain one instance per load of the fragment’s
data and to override the data-instantiation method specified in the container itself. This
is most useful for application extensions (for example, drop-in tools).

fragNoErr 0 No error
par ankrr -50 Parameter error
fragLi bNot Found —-2804 Specified fragment not found
f ragHadUnr esol veds -2807 Loaded fragment has unacceptable
unresolved symbols
f ragNoMem —2809 Not enough memory for internal bookkeeping
f ragNoAddr Space —-2810 Not enough memory in user’s address
space for section
fragoj ectlnitSeqErr -2812 Order error during user initialization function
fragl nport Tood d -2813 Import library is too old
fragl nport TooNew -2814 Import library is too new
fragl ni t Loop —-2815 Circularity in required initialization order
fragLi bConnErr -2817 Error connecting to fragment
fragUserlnitProcErr -2821 Initialization procedure did not return noEr r
Code Fragment Manager Reference
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SEE ALSO
See “Loading Code Fragments” on page 3-10 for more details on the fragment-
loading process.
GetMemFragment
You can use the Get Mentr agnent function to prepare a memory-based fragment.
CSErr Get Menfragnent (Ptr menmAddr, long length, Str63 fragName,
LoadFl ags fi ndFl ags, Connecti onl D *connl D,
Ptr *mai nAddr, Str255 errNane);
memAddr The address of the fragment.
I ength The size, in bytes, of the fragment.
f ragNane The name of the fragment. (This information is used primarily to allow
you to identify the fragment during debugging.)
findFl ags A flag that specifies the operation to perform on the fragment. See the
description of the Get Di skFr agment function on page 3-19 for the
values you can pass in this parameter.
connl D On exit, the connection ID that identifies the connection to the fragment.
You can pass this ID to other Code Fragment Manager routines (for
example, Cl oseConnecti on).
mai nAddr On exit, the main address of the fragment. The value returned is specific
to the fragment itself.
er r Name On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to Get Mentr agment fails.
DESCRIPTION
The Get Mentr agnent function prepares for subsequent execution a fragment that
is already loaded into memory. This function is most useful for handling code that
is contained in a resource. You can read the resource data into memory using
normal Resource Manager routines (for example, Get 1Resour ce) and then call
Get Menfr agnent to complete the processing required to prepare it for use (for
example, to resolve any imports and execute the fragment’s initialization routine).
S WARNING

You must lock the resource-based fragment into memory (for example,
by calling HLock) before calling Get Menfr agnment . You must not
unlock the memory until you’ve closed the connection to the fragment
(by calling Gl oseConnecti on). s
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fragNoErr 0 No error

par ankrr -50 Parameter error

f ragLi bNot Found —-2804 Specified fragment not found

f ragHadUnr esol veds —-2807 Loaded fragment has unacceptable
unresolved symbols

fragNovem —-2809 Not enough memory for internal bookkeeping

f ragNoAddr Space -2810 Not enough memory in user’s address space
for section

fragoj ectlnitSeqErr -2812 Order error during user initialization function

fragl nport Tood d —2813 Import library is too old

fragl mport TooNew -2814 Import library is too new

fraglnitLoop -2815 Circularity in required initialization order

fragLi bConnErr -2817 Error connecting to fragment

fragUser | nitProcErr -2821 Initialization procedure did not return noEr r

See “Loading Code Fragments” on page 3-10 for more details on the fragment-
loading process.

GetSharedLibrary

3-22

You can use the Get Shar edLi br ary function to locate and possibly also load an

import library

OSErr Get Sh

I i bName
archType

fi ndFl ags

connl D

mai nAddr

err Nane

Code Fragment

into your application’s context.

aredLi brary (Str63 |ibNanme, OSType archType,
LoadFl ags fi ndFl ags,
Connectionl D *connl D, Ptr *mai nAddr,
Str255 errNane);

The name of an import library.

The instruction set architecture of the import library. For the PowerPC
architecture, use the constant kPower PCAr ch. For the 680x0 architecture,
use the constant k Mbt or ol a68KAr ch.

A flag that specifies the operation to perform on the import library. See
the description of the Get Di skFragnent function on page 3-19 for the
values you can pass in this parameter.

On exit, the connection ID that identifies the connection to the import
library. You can pass this ID to other Code Fragment Manager routines.

On exit, the main address of the import library. The value returned is
specific to the import library itself and is not used by the Code
Fragment Manager.

On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to Get Shar edLi brary fails.
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The Get Shar edLi br ary function locates the import library named by the | i bNane
parameter and possibly also loads that import library into your application’s context. The
actions of Get Shar edLi br ar y depend on the action flag you pass in the f i ndFl ags
parameter; pass kFi ndLi b to get the connection ID of an existing connection to the
specified fragment, kLoadLi b to load the specified fragment, or kLoadNewCopy to load
the fragment with a new copy of the fragment’s data section.

The Get Shar edLi br ar y function does not resolve any unresolved imports in your
application. In particular, you cannot use it to resolve any weak imports in your
code fragment.

fragNoErr 0 No error

par ankrr -50 Parameter error

f ragLi bNot Found —2804 Specified fragment not found

f ragHadUnr esol veds -2807 Loaded fragment has unacceptable
unresolved symbols

f ragNoMem —2809 Not enough memory for internal bookkeeping

f ragNoAddr Space -2810 Not enough memory in user’s address space
for section

fragoj ectlnitSeqErr —2812 Order error during user initialization function

fragl nport Tood d -2813 Import library is too old

fragl mport TooNew -2814 Import library is too new

fragl ni t Loop -2815 Circularity in required initialization order

fragLi bConnErr -2817 Error connecting to fragment

fragUserlInitProcErr -2821 Initialization procedure did not return noEr r

See “Loading Code Fragments” on page 3-10 for more details on the fragment-
loading process.

Unloading Fragments

The Code Fragment Manager provides one function that you can use to close an existing
connection to a fragment.

CloseConnection

You can use the Cl oseConnect i on function to close a connection to a fragment.
OSErr d oseConnection (Connectionl D *connl D);

connl D A connection ID.
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DESCRIPTION

The C oseConnect i on function closes the connection to a fragment indicated by the
connl Dparameter. Cl oseConnect i on decrements the count of existing connections to
the specified fragment and, if the resulting count is 0, calls the fragment’s termination
routine and releases the memory occupied by the code and data sections of the fragment.
If the resulting count is not 0, any per-connection data is released but the code section
remains in memory.

When a fragment is unloaded as a result of its final connection having been closed, all
libraries that depend on that fragment are also released, provided that their usage counts
are also 0.

The Code Fragment Manager automatically closes any connections that remain
open at the time Exi t ToShel | is called for your application, so you need to call
Cl oseConnect i on only for fragments you wish to unload before your application
terminates.

SPECIAL CONSIDERATIONS

You can close a connection only to the root of a loading sequence (that is, the fragment
whose loading triggered the entire load chain).

RESULT CODES

fragNoErr 0 No error
fragConnect i onl DNot Found —2801 Connection ID is not valid

Finding Symbols

The Code Fragment Manager provides three functions that you can use to find the
symbols exported by a fragment and get information about them: Fi ndSynbol ,
Count Synbol s, and Get | ndSynbol .

FindSymbol

You can use the Fi ndSynbol function to search for a specific exported symbol.

CSErr Fi ndSynbol (Connectionl D connl D, Str255 sym\ane,
Ptr *symAddr, SynC ass *syntTl ass);

connl D A connection ID.
symName A symbol name.
symAddr On exit, the address of the symbol whose name is syniNane.

synCl ass On exit, the class of the symbol whose name is synmNane. See the
description below for a list of the recognized symbol classes.
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The Fi ndSynbol function searches the code fragment identified by the connl D
parameter for the symbol whose name is specified by the synName parameter. If that
symbol is found, Fi ndSynbol returns the address of the symbol in the symAddr
parameter and the class of the symbol in the synTCl ass parameter. The currently
recognized symbol classes are defined by constants.

enum {
kCodeSynbol 0, [/*a code synbol */
kDat aSynbol = 1, /*a data synbol */
kTVect Synbol 2 /[*a transition vector synbol */

b

Because a fragment’s code is normally exported through transition vectors to that code,
the value kCodeSynbol is not returned in the PowerPC environment. You can use the
other two constants to distinguish exports that represent code (of class kTVect Synbol )
from those that represent general data (of class kDat aSynbol ).

fragNoErr 0 No error
fragConnect i onl DNot Found —2801 Connection ID is not valid
f ragSynbol Not Found —2802 Symbol was not found in connection

CountSymbols

DESCRIPTION

You can use the Count Synbol s function to determine how many symbols are exported
from a specified fragment.

OSErr Count Synbol s (Connectionl D connl D, | ong *syntCount);

connl D A connection ID.

symCount On exit, the number of exported symbols in the fragment whose
connection ID is connl D.

The Count Synbol s function returns, in the synCount parameter, the number of
symbols exported by the fragment whose connection ID is connl D. You can use the
value returned in synCount to index through all the exported symbols in a particular
fragment (using the Get | ndSynbol function).
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RESULT CODES

fragNoErr 0 No error
fragConnect i onl DNot Found —2801 Connection ID is not valid

GetlndSymbol

You can use the Get | ndSynbol function to get information about the exported symbols
in a fragment.

OSErr Cetl ndSynmbol (Connectionl D connl D, |ong synl ndex,
Str255 symNane, Ptr *symAddr,
SyntTl ass *syntl ass);

connl D A connection ID.

symnl ndex A symbol index. The value of this parameter should be greater than
or equal to 1 and less than or equal to the value returned by the
Count Synbol s function.

synmNane On exit, the name of the indicated symbol.
symAddr On exit, the address of the indicated symbol.
synCl ass On exit, the class of the indicated symbol.

DESCRIPTION

The Get | ndSynbol function returns information about a particular symbol exported by
the fragment whose connection ID isconnl D. If Get | ndSynbol executes successfully, it
returns the symbol’s name, starting address, and class in the symNane, symAddr, and
synCl ass parameters, respectively. See the description of the Fi ndSynbol function
(page 3-24) for a list of the values that can be returned in the synCl ass parameter.

A fragment’s exported symbols are retrieved in no predetermined order.

RESULT CODES
fragNoErr 0 No error
fragConnect i onl DNot Found —2801 Connection ID is not valid
f ragSynbol Not Found —2802 Symbol was not found in connection

Fragment-Defined Routines

This section describes the initialization and termination routines that you can define for
a fragment.

3-26 Code Fragment Manager Reference



CHAPTER 3

Code Fragment Manager

ConnectionlnitializationRoutine

DESCRIPTION

RESULT CODES

You can define a fragment initialization routine that is executed by the Code Fragment
Manager when the fragment is first loaded into memory and prepared for execution. An
initialization routine has the following type definition:

typedef OSErr Connectionlnitializati onRoutine
(I'nitBlockPtr initBl kPtr);

i nitBlkPtr
A pointer to a fragment initialization block specifying information about

the fragment.

Parameter block

® context!l D | ong A context ID.

® cl osurel D | ong A closure ID.

® connectionl D | ong A connection ID.

® fraglLocat or Fr agnment Locat or A fragment location block.

® I i bName Ptr A pointer to fragment’s name.
® r eserved4a | ong Reserved.

® reserved4b | ong Reserved.

® reserved4c | ong Reserved.

® reserved4d | ong Reserved.

A fragment’s initialization routine is executed immediately after the fragment has been
loaded into memory (if necessary) and prepared for execution, and immediately before
the fragment’s main routine (if it has one) is executed. The initialization routine is passed
a pointer to an initialization block, which contains information about the fragment, such
as its location and connection ID. See “Fragment Initialization Block™ on page 3-15 for a
description of the fields of the initialization block.

You can use the initialization routine to perform any tasks that need to be performed
before any of the code or data in the fragment is accessed. For example, you might want
to open the fragment’s resource fork (if it has one). You can determine the location of the
fragment’s container from the Fr agnent Locat or field of the fragment initialization
block whose address is passed to your initialization routine.

Your initialization routine should return noEr r if it executes successfully, and some
other result code if it does not. If your initialization routine returns any result code other
than nokEr r, the entire load fails and the error f ragUser | ni t ProcErr is returned to
the code that requested the root load.
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ConnectionTerminationRoutine

DESCRIPTION

Resources

You can define a fragment termination routine that is executed by the Code Fragment
Manager when a fragment is unloaded from memory. A termination routine has the
following type definition:

typedef void ConnectionTerm nati onRoutine (void);

A fragment’s termination routine is executed immediately before the fragment is
unloaded from memory. You can use the termination routine to perform any necessary

clean-up tasks, such as closing open resource files or disposing of any memory allocated
by the fragment.

Note that a termination routine is not passed any parameters and does not return any
result. You are expected to maintain any information about the fragment (such as file
reference numbers of any open files) in its static data area.

This section describes the code fragment resource, a resource of type' cfrg' thatis used
by the Code Fragment Manager when loading fragments such as applications and
import libraries.

This section describes the structure of this resource after it is compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
file for this resource, see “Creating a Code Fragment Resource” on page 3-12 for detailed
information.

The Code Fragment Resource

3-28

You use a code fragment resource to specify some characteristics of a code fragment. For
an application, the code fragment resource indicates to the Process Manager that the
application’s data fork contains an executable code fragment. For an import library, the
code fragment resource specifies the library’s name and version information.

IMPORTANT
A code fragment resource must have resource ID 0. s

Figure 3-1 shows the structure of a compiled code fragment resource.
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Figure 3-1 Structure of a compiled code fragment (* cfrg' ) resource
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The compiled version of a code fragment resource contains the following elements:
n Reserved. The first two long integers are reserved and should be set to 0.

n Version information. This field specifies the current version of the ' cfrg' resource.
The current version is 0x00000001.

n Reserved. The next four long integers are reserved and should be set to 0.

n Number of fragment descriptions. This field specifies the number of code fragment
information records that follow this field in the resource. (The value in this field
should be the actual number of information records that follow, beginning with 1.)

Following the array count is an array of code fragment information records. A single file
can include one or more containers. Similarly, it might occasionally be useful to assign
more than one name to a single import library or application. Typically, however, both
applications and import libraries include just a single code fragment information record
in their ' cfrg' resources. Each record has the format illustrated in Figure 3-2.
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Figure 3-2 The format of a code fragment information record
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A code fragment information record contains the following elements:

n

The instruction set architecture. You can use the Rez constantkPower PC (" pwpc' ) to
specify the PowerPC instruction set architecture.

The update level. For an import library, you can specify either the value kFul | Li b
(0), to indicate that the library is a base library (not an update of some other library),
or the value kUpdat eLi b (1), to indicate that the library updates only part of some
other library. Applications should specify the value kFul | Li b in this field.

The current version number. For an import library, this field specifies the implementa-
tion version. This field has the same format as the first 4 bytes of a resource of type
"vers' . See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for details on the structure ofa ' ver s’ resource.

The oldest definition version number. For an import library, this field specifies the
oldest version of the definition library with which the implementation import library
is compatible. This field has the same format as the first 4 bytes of a resource of

type ' vers'.

The application stack size. For an application, this field specifies the minimum size, in
bytes, of the application stack. You can use the Rez constant kDef aul t St ackSi ze
(0) to indicate that the stack should be given the default size for the current software
and hardware configuration. If you determine at run time that your application needs
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a larger or smaller stack, you can use the standard stack-adjusting techniques that call
Get Appl Li mit and Set Appl Limit.

n The application’s library directory. For an application, this field specifies the resource
ID of an alias resource (a resource of type ' al i s') in the application’s resource fork
that describes the application’s load directory. See “Import Library Searching” on
page 3-5 for more information about load directories. For information about alias
resources, see the chapter “Alias Manager” in Inside Macintosh: Files.

n A usage field. This field specifies the type of fragment that this record describes. The
value ki sLi b (0) indicates that the fragment is an import library. The value kl sApp
(1) indicates that the fragment is an application. The value kI sDr opl n (2) indicates
that the fragment is an extension. The Code Fragment Manager recognizes only the
values kI sLi b andkl sApp. The value kl sDr opl n is provided to allow you to put
private application extensions in a file and not have the Code Fragment Manager
recognize them as shared libraries.

n A location field. This field specifies the location of the fragment’s container. The value
kI nMem(0) indicates that the container is in memory (usually in ROM). This value is
intended for use by the Operating System; in general, you should not use it. The value
kOnDi skFl at (1) indicates that the container is in the data fork of some file. The
value kOnDi skSegnent ed (2) indicates that the container is in a resource in the
resource fork of some file.

n The offset to the beginning of the fragment. The interpretation of this field depends
on the value specified in the location field immediately preceding this field. If the
location field has the value kIl nMem this field is the address in memory of the begin-
ning of the fragment. If the location field has the value kOnDi skFl at , this field is the
number of bytes from the beginning of the data fork to the beginning of the fragment
itself. You can use the Rez constantkZer oOf f set (0) to specify an offset of 0 bytes. If
the location field has the value kOnDi skSegment ed, this field is the resource type (of
type OSType) of the resource that contains the fragment.

n The length of the fragment. The interpretation of this field depends on the value
specified in the location field immediately preceding the offset field. If the location field
has the value kI nMem this field is the address in memory of the end of the fragment. If
the location field has the value kOnDi skFl at , this field is the length, in bytes, of the
fragment. You can use the Rez constant kWhol eFor k (0) to indicate that the fragment
occupies the entire fork. If the location field has the value kOnDi skSegnent ed, this
field is the sign-extended resource ID of the resource that contains the fragment.

n Reserved. The next two long integers are reserved and should be set to 0.

n The total length of the code fragment information record. This field specifies
the length, in bytes, of this code fragment information record, including the
fragment name and any pad bytes added to the name field.

n The fragment’s name. This field is a Pascal string that indicates the name of the
application or import library. This is the default name used by the debugger for this
fragment. This field is padded with null bytes, if necessary, so that the information
record extends to a 4-byte boundary.
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Summary of the Code Fragment Manager

C Summary

Constants

[ *Cestalt selector and response bits*/

#defi ne gestal t CFMAttr "cfrg' [ *Code Fragnent Manager attributes*/
enum {

gestalt CFMPresent = 0 /[*set if Code Fragment Mgr is present*/
b
#def i ne kPower PCAr ch " pwpc' [/ *Power PC i nstruction set architecture*/

#defi ne kMbt or ol a68KAr ch ' 68k’ /*680x0 instruction set architecture*/

#def i ne kNoLi bNane ((unsi gned char *) 0)
#def i ne kNoConnectionl D ((Connectionl D) 0)
#def i ne kUnresol vedSynbol Addr ess ((Ptr) 0x0)

enum {
kLoadLi b =1, /*1 oad fragnent*/
kFi ndLi b = 2, [*find fragnent*/
kLoadNewCopy =5 /*1 oad fragnent with new copy of data*/
s
enum {
kCodeSynbol = 0, /*a code synbol */
kDat aSynbol =1, /*a data synbol */
kTVect Synbol =2 /[*a transition vector synbol */
b
enum {
/*selectors for fragnment |ocation record*/
kI nMem [*container in nmenory*/
kOnDi skFl at, [*container in a data fork*/
kOnDi skSegnent ed /*container in a resource*/
s
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Data Types

typedef | ong Connectionl D; [/*connection |ID nunber*/
typedef unsigned | ong LoadFl ags; /*a flag | ong word*/
typedef unsi gned char SynTl ass; [ *symbol cl ass*/

Fragment Initialization Block

struct InitBlock {

| ong cont ext | D;

| ong cl osurel D

| ong connecti onl D
Fragnent Locat or fraglLocat or
Ptr I i bName;

| ong reserved4a;

| ong reserved4b;

| ong reserved4c;

| ong reserved4d;

H

[*context |D*/

/[ *cl osure | D*/

[ *connection | D*/

[*fragnment |ocation*/
[*pointer to fragment nane*/
[ *reserved*/

[ *reserved*/

[ *reserved*/

[ *reserved*/

typedef struct InitBlock InitBlock, *InitBlockPtr

Fragment Location Record

struct Fragnent Locator {

| ong wher e;
uni on {
Mentr agnent i nMem
D skFragnent onDi sk
Segnent edFr agnent i nSegs;
Pou

b

/*l ocation selector*/

/*menmory | ocation record*/
/*di sk | ocation record*/
[/ *segment | ocation record*/

typedef struct FragnentlLocator FragnmentlLocator, *FragnentlLocatorPtr

Memory Location Record

struct MenFragnent {

Ptr addr ess;
| ong | engt h;
Bool ean i nPl ace;

b
typedef struct MenfFragnment Menfragnent;

Summary of the Code Fragment Manager

[*pointer to start of fragment*/
/*1ength of fragnent*/
/*is data section in place?*/
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Disk Location Record

struct Di skFragment {

FSSpechtr fil eSpec; [ *pointer to FSSpec*/
| ong of fset; /[*of fset to start of fragnment*/
| ong | engt h; /*l ength of fragnent*/

b
typedef struct Di skFragnent Di skFragnent;

Segment Location Record

struct Segnent edFragnment {

FSSpechPtr fil eSpec; [ *pointer to FSSpec*/
OSType rsrcType; /*resource type*/
short rsrcl b /*resource | D*/

H

typedef struct SegnmentedFragnent Segnent edFragnent;

Code Fragment Manager Routines

Loading Fragments

OSErr Cet Di skFragnent (FSSpecktr fil eSpec, |ong offset, |ong |ength,
Str63 fragNane, LoadFl ags findFl ags,
Connectionl D *connl D, Ptr *mai nAddr,
Str255 errNane);

OSErr CGet Menfr agnent (Ptr memAddr, long length, Str63 fragName,
LoadFl ags fi ndFl ags, Connectionl D *connl D,
Ptr *mai nAddr, Str255 errNane);

OSErr Cet SharedLi brary (Str63 i bNane, OSType archType,
LoadFl ags fi ndFl ags, Connectionl D *connl D,
Ptr *mai nAddr, Str255 errNane);

Unloading Fragments

CSErr d oseConnecti on (Connectionl D *connl D);

Finding Symbols

CSErr Fi ndSynbol (Connectionl D connl D, Str255 symNane,
Ptr *symAddr, SynCl ass *synCl ass);

CSErr Count Synbol s (Connectionl D connl D, | ong *synCount);

OSErr Cet | ndSynbol (Connectionl D connl D, |ong sym ndex,

Str255 symName, Ptr *symAddr,
SynCl ass *syn( ass);
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Fragment-Defined Routines

Initializing Fragments

typedef OSErr ConnectionlnitializationRoutine

Terminating Fragments

(I'nitBl ockPtr

initBlkPtr);

typedef void ConnectionTerm nati onRouti ne

(void);
Result Codes
fragNoErr 0 Noerror
parantrr -50  Parameter error
f ragCont ext Not Found —2800 Context ID is not valid
fragConnect i onl DNot Found —2801 Connection ID is not valid
f ragSynbol Not Found —2802  Symbol was not found in connection
fragSecti onNot Found —2803  Section was not found
f ragLi bNot Found —2804  Library name not found in fragment registry
f ragDupRegLi bName —2805 Registered name already in use
f ragFor mat Unknown —2806  Fragment container format unknown
f ragHadUnr esol veds —2807 Loaded fragment has unacceptable unresolved symbols
fragNoMem -2809  Not enough memory for internal bookkeeping
f ragNoAddr Space -2810 Not enough memory in user’s address space for section
f ragNoCont ext | Ds -2811 No more context IDs available
fragoj ectlnitSeqErr —-2812  Order error during user initialization function
fragl nport Tood d —2813  Import library is too old
fragl nport TooNew —-2814  Import library is too new
fragl ni t Loop —2815  Circularity in required initialization order
fraglnit Rt nUsageErr —2816  Boot library has initialization routine
fragLi bConnErr —2817  Error connecting to library
fragMgrinitErr —2818  Error during Code Fragment Manager initialization
fragConst Err —2819 Internal inconsistency discovered
fragCorruptErr —2820  Fragment container is corrupted
fragUserlnitProcErr -2821 Initialization procedure did not return noEr r
f r agAppNot Found -2822  No application found in' cfrg' resource
fragArchErr -2823  Fragment targeted for unacceptable architecture
fragl nval i dFragnment Usage -2824  Fragment is used invalidly
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This chapter describes the Exception Manager, the part of the Macintosh system software
that handles exceptions that occur during the execution of PowerPC applications or
other software. The Exception Manager provides a simple way for your application to
handle exceptions that occur in its context.

You need the information in this chapter if you need to handle exceptions that occur in
native PowerPC code. If your application or other software is written in 680x0 code and
therefore executes under the 68LC040 Emulator on PowerPC processor-based Macintosh
computers, you do not in general need to read this chapter, because the existing 680x0
mechanism for handling exceptions is fully supported by the emulator.

IMPORTANT

The Exception Manager is available only in the system software for
PowerPC processor-based Macintosh computers. In addition, not all
features described here are available in the first version. For example,
the Exception Manager in the first version does not return exceptions
that arise during floating-point calculations. If your application
performs floating-point operations and needs to handle any exceptions
that arise during those operations, you should use the exception-
handling mechanisms provided by the PowerPC Numerics library. See
Inside Macintosh: PowerPC Numerics for complete information. s

To use this chapter, you should already be generally familiar with the Macintosh
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory
for information about the run-time architecture of the 680x0 environment. You also need
to be familiar with the run-time architecture of PowerPC processor-based Macintosh
computers, as explained in the chapter “Introduction to PowerPC System Software.”

This chapter begins with a description of exceptions and their handling in the PowerPC
native environment. Then it shows how to use the Exception Manager to install your
own exception handler.

About the Exception Manager

An exception is an error or other special condition detected by the microprocessor in the
course of program execution. When an exception occurs, the Operating System transfers
control synchronously to the relevant exception handler, which attempts to recover
gracefully from the error or special condition. The kinds of errors or other conditions
that give rise to exceptions differ from one processor to another. On 680x0 processors, for
example, an exception is generated if the currently executing program attempts to divide
by zero. By contrast, the PowerPC processor does not generate an exception under

that condition.

In general, applications or other types of software (including much of the Macintosh
Operating System and the Macintosh Toolbox) cannot tolerate the occurrence of
exceptions. To provide some measure of protection from potentially fatal exceptions, the
Operating System installs its own set of exception handlers. You can, if necessary, use the
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Exception Manager to install application-specific exception handlers. Any exception
handlers that you install apply only to your current context and only to exceptions that
are not first intercepted and handled by the Operating System.

IMPORTANT

Not all exceptions that occur in your application’s context are passed to
your exception handler. Certain exceptions (for example, page faults) are
handled completely by the Operating System’s exception handlers. As a
result, those exceptions do not affect the normal execution of your
application or other software. s

When your exception handler is called, the Exception Manager passes it a parameter that
contains information about the state of the machine at the time the exception occurred.
On PowerPC processor-based Macintosh computers, this information includes

n the kind of exception that occurred
n the contents of the 32 general-purpose registers

n the contents of the special-purpose registers (such as the Link Register and the
Condition Register)

n the contents of the 32 floating-point registers

Your exception handler can handle the exception in various ways. For example, it might
modify the machine state and then resume execution. Similarly, your exception handler
might simply transfer control to some other code. In rare instances, however, your
exception handler might not be able to handle the exception; when this happens, the
exception is usually fatal to your application.

Exception Contexts

In the first version of the system software for PowerPC processor-based Macintosh
computers, each application can install its own exception handler, which remains the
active handler as long as that application is the current application. In other words, the
exception handler of the current application is called for all exceptions not intercepted
by the Operating System. In general, this mechanism results in the execution of the
appropriate exception handler. It's possible, however, for code you install to cause
exceptions that are handled by some other application’s exception handler. For instance,
exceptions that arise during the asynchronous execution of code (such as VBL tasks,
Time Manager tasks, and 1/0 completion routines) are handled by the exception handler
of whatever application happens to be the current application at the time the exception
occurs. If that application has not installed an exception handler, the exception might not
be handled.

All asynchronous code executed in the first version of the system software for PowerPC
processor-based Macintosh computers is executed under the 68LC040 Emulator, in
which case the exceptions are handled using the existing 680x0 mechanisms. If, however,
a routine executed asynchronously calls some code that is native PowerPC code, and if
that native code causes an exception to occur, then the current application’s exception
handler (if any) is called to handle the exception.
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Types of Exceptions

In the first version of the system software for PowerPC processor-based Macintosh
computers, the following conditions can cause exceptions while your application or
other software is executing in native mode:

n an attempt to write to write-protected memory

n an attempt to access (that is, read, write, or fetch) data at a logical address that is

not assigned

n an attempt to execute trap instructions or other instructions that are not part of the

supported application programming interface

n an attempt to execute invalid instructions or an invalid form of a valid instruction

n an attempt to execute privileged instructions when the system is not in

privileged mode

n in appropriate circumstances, reaching a breakpoint

n in appropriate circumstances, reaching a trace point

The Exception Manager defines a number of exception codes that indicate these and
other conditions. An exception code is a constant that indicates which kind of exception

has occurred.

enum {

[ *exception codes*/
unknownExcepti on

illegal lnstructionException
trapException
accessException
unmappedMenor yExcept i on
excl udedMenor yExcepti on
readOnl yMenor yExcepti on

unr esol vabl ePageFaul t Excepti on

privil egeViol ati onException
traceExcepti on

i nstructi onBreakpoi nt Exception

dat aBr eakpoi nt Excepti on
i nt eger Excepti on

f |1 oati ngPoi nt Excepti on
stackOverfl owExcepti on
term nati onException

About the Exception Manager
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/[ *kind of exception*/

/ *unknown exception type*/
/*illegal instruction*/

/[ *unknown trap type*/
[*failed menory access*/
[*menmory i s unmapped*/
/[*menory i s excluded*/
[*memory i s read-only*/

[ *unr esol vabl e page fault*/
[*privilege violation*/
[*trace*/

[*instruction breakpoint*/
[ *dat a breakpoi nt*/

[ *unused*/

[*floating point*/

[ *stack overfl ow/

[*task is being term nated*/
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Not all of these exception codes are used in the first version of the system software for
PowerPC processor-based Macintosh computers; see “Exception Kinds” on page 4-9 for
a complete explanation of these constants.

Using the Exception Manager

The Exception Manager provides a routine that you can use to install an exception
handler and remove an exception handler. This section describes how to use this routine
and how to write an exception handler.

Installing an Exception Handler

You can install an exception handler for your application’s context by calling the
I nstal | Excepti onHandl er routine. You pass | nst al | Except i onHandl er the
address of your exception handler:

prevHandl er = I nstal | Excepti onHandl er (( Excepti onHandl er) nyHandl er);

The | nst al | Except i onHandl er function replaces any existing exception handler
already installed for the current execution context (that is, for the current application)
and returns the address of that previously installed handler. Listing 4-1 shows a
routine that installs an exception handler as part of a wrapper around the

NewEnpt yHandl e function.

Listing 4-1 Installing an exception handler

static junp_buf *curJnpBuf;

Handl e __ NewkEnpt yHandl e (ushort trapWrd)

{

4-6

Handl e returnval ;

CSErr nmyErr;

j mp_buf | ocal Junp, *ol dJunp;

Excepti onHandl er pr evHandl er;

ol dJunp = cur JnpBuf; [*save current junp address*/
curJnpBuf = & ocal Junp; /[*install new junp address*/

prevHandl er = I nstal | Excepti onHandl er (( Excepti onHandl er) MyHandl er) ;

if (nyErr = setjnp(local Jump)) {
LMSet MenEr r (t heErr); /*set menory error*/

returnvVal = 0; /*no bytes allocated*/
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el se
nyErr = c_NewEnpt yHandl e( & et urnVal , trapWrd);

I nstal | Excepti onHandl er (prevHandl er); /*restore previous handl er*/
curJnpBuf = ol dJunp; /*restore original junp address*/
return (returnval);

You can remove the current exception handler from your application’s context by
passing the value ni | as the parameter to | nst al | Except i onHandl er, as follows:

prevHandl er = Install ExceptionHandl er(nil);

Writing an Exception Handler

An exception handler has the following prototype:
typedef OSStatus (*ExceptionHandl er) (Exceptionlnformation *theException);

When your handler is called, the Exception Manager passes it the address of an exception
information record, which contains information about the exception, such as its type and
the state of the machine at the time the exception occurred. The exception information
record is defined by the Except i onl nf or mat i on data type.

struct Exceptionlnformation {

Excepti onKi nd t heKi nd;
Machi nel nf or mati on *machi neSt at e;
Regi st er |l nfornmati on *regi sterl mage;
FPUI nf or mat i on *FPUI mage;
uni on {

Menor yExcepti onl nf or mati on *menor yl nf o;
} info;

b

typedef struct Exceptionlnformation Exceptionlnfornation;

The t heKi nd field contains an exception code. The fields machi neSt at e and

regi st er | mage contain information about the special-purpose and general-purpose
registers, respectively. The values in the special-purpose registers are contained in a
machine information record, defined by the Machi nel nf or mat i on data type.

struct Machi nel nformation {

Unsi gnedW de CTR;, /*Count Register*/

Unsi gnedW de LR; /*Link Register*/

Unsi gnedW de PC, [ *Program Count er Regi ster*/

unsi gned | ong CR; /*Condi tion Register*/

unsi gned | ong XER; /*Fi xed-Poi nt Exception Register*/
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unsi gned | ong MBR;, /*Machine State Register*/
H

typedef struct Machinel nfornmati on Machi nel nformati on;

As you can see, this record contains primarily the values in the special-purpose registers.
The values in the general-purpose registers are encoded using a structure of type
Regi st er | nf or mat i on, which is effectively an array of 32 register values.

Note

For a more detailed description of the exception information record
and its associated data types, see “Data Structures” beginning on
page 4-12. u

Your exception handler can perform any actions necessary or useful for handling the
exception. You might attempt to recover from the error or simply terminate your
application gracefully. The specific actions you perform depend, of course, on the type
of exception that has occurred. In general, however, you will probably want to use
one or the other of two basic techniques for recovering from the exception.

n Your exception handler might simply transfer control away from the point of
execution. For example, you might jump back into your main event loop or into
some error recovery code.

n Alternatively, your exception handler might attempt to repair the cause of the excep-
tion by suitably modifying the state of the machine (as reported to your exception
handler in an exception information record). You can alter any piece of that machine
state, including the PC register. After you have suitably modified the relevant data,
your handler should return, passing back a result code. The Exception Manager
inspects the result code you return and determines what further actions to take. If you
pass back noEr r, then the Exception Manager restores the machine state to the state
contained in the exception information record and resumes execution. If you pass
back any other result code, the Operating System proceeds as if the exception had
occurred but no exception handler was present.

Listing 4-2 shows a simple exception handler MyHandl er.

Listing 4-2 A native exception handler

0SSt at us MyHandl er (Exceptionl nformati on *t heExcepti on)

{
if ((theException->theKind >= accessExcepti on)
&& (theException ->theKi nd <= unresol vabl ePageFaul t Excepti on))
| ongj mp(*cur JnpBuf, nmemAZErr);
el se
return (-1);
}

As you can see, the MyHandl er exception handler looks for memory-related exceptions
and, if it finds any, transfers control by calling the | ongj np function.
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WARNING
Returning a value other than noEr r from your exception handler is
likely to cause the current application to be terminated. s

WARNING

Your exception handler must be reentrant if it might itself cause any
exceptions to be generated. For example, if your exception handler
calls the Debugger or DebugSt r routine, the trap exception (of type
t rapExcept i on) is generated. Normally, a debugger intercepts and
handles those kinds of exceptions. If, however, no debugger is installed
in the system, your exception handler might be called repeatedly.
Eventually, the stack will grow to the lowest memory address,
overwriting essential data and causing a system crash. s

Exception Manager Reference

Constants

This section describes the constants, data structures, and routine provided by the
Exception Manager. See “Using the Exception Manager” beginning on page 4-6
for detailed instructions on using that routine.

This section describes the constants provided by the Exception Manager.

Exception Kinds

enum {

The Exception Manager indicates to your exception handler the kind of exception
that has occurred by passing it an exception code. The exception kind is indicated by
a constant.

Note

Some kinds of exceptions occur only on specific types of
processors or only in specific system software versions. u

[ *exception codes*/

unknownExcepti on =
illegallnstructionException =
trapException =
accessException =
unmappedMenor yExcept i on =
excl udedMenor yExcepti on =
r eadOnl yMenor yExcepti on =
unr esol vabl ePageFaul t Excepti on =

/ *unknown exception type*/
/[*illegal instruction*/

[ *unknown trap type*/
[*failed menory access*/
[*menmory is unmapped*/
/[*menory i s excluded*/
[*menory is read-only*/

[ *unr esol vabl e page faul t*/

~No U WNPRPO

Exception Manager Reference



CHAPTER 4

Exception Manager

privil egeViol ati onException = 8, [*privilege violation*/

traceException =9, /*trace*/

i nstructi onBreakpoi nt Exception = 10, [*instruction breakpoint*/

dat aBr eakpoi nt Excepti on = 11, [ *dat a breakpoi nt*/

i nt eger Exception = 12, / *unused*/

fl oati ngPoi nt Excepti on = 13, [*fl oating point*/
stackOverfl owExcepti on = 14, [ *stack overfl ow/
term nati onException = 15 /*task is being termni nated*/

4-10

Constant descriptions

unknownExcepti on
Unknown kind of exception. This exception code is defined for
completeness only; it is never actually passed to an exception
handler.

illegallnstructionException
Illegal instruction exception. The processor attempted to decode an
instruction that is either illegal or unimplemented.

trapException Unknown trap type exception. The processor decoded a trap type
instruction that is not used by the system software.

accessException
Memory access exception. A memory reference resulted in a page
fault because the physical address is not accessible.

unnappedMenor yExcepti on
Unmapped memory exception. A memory reference was made to
an address that is unmapped.

excl udedMenor yExcepti on
Excluded memory exception. A memory reference was made to an
excluded address.

r eadOnl yMenor yExcepti on
Read-only memory exception. A memory reference was made to an
address that cannot be written to.

unr esol vabl ePageFaul t Excepti on
Unresolvable page fault exception. A memory reference resulted in
a page fault that could not be resolved. The t heEr r or field of the
memory exception record contains a status value indicating the
reason for this unresolved page fault.

privilegeViol ati onException
Privilege violation exception. The processor decoded a privileged
instruction but was not executing in the privileged mode.

traceExcepti on
Trace exception. This exception is used by debuggers to support
single-step operations.

i nstructi onBreakpoi nt Exception
Instruction breakpoint exception. This exception is used by
debuggers to support breakpoint operations.
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dat aBr eakpoi nt Excepti on
Data breakpoint exception. This exception is used by debuggers to
support breakpoint operations.

i nt eger Excepti on
Integer exception. This exception is not used by PowerPC
processors.

fl oati ngPoi nt Excepti on
Floating-point arithmetic exception. The floating-point processor
has exceptions enabled and an exception has occurred. (This
exception is not used in the first version of the system software
for PowerPC processor-based Macintosh computers.)

stackOverfl owExcepti on
Stack overflow exception. The stack limits have been exceeded and
the stack cannot be expanded. (This exception is not used in the first
version of the system software for PowerPC processor-based
Macintosh computers.)

term nati onException
Termination exception. The task is being terminated. (This exception
is not used in the first version of the system software for PowerPC
processor-based Macintosh computers.)

Memory Reference Kinds

For each memory-related exception, the Exception Manager returns a memory exception
record. Thet heRef er ence field of that record contains a memory reference code that
indicates the kind of memory operation that caused the exception.

enum {
/[ *menory reference codes*/

wr it eRef erence = 0, /*write operation*/
r eadRef er ence =1, / *read operation*/
f et chRef erence =2 /*fetch operation*/

H

Constant descriptions

wr it eRef erence
The operation was an attempt to write data to memory.

readRef erence  The operation was an attempt to read data from memory.

f et chRef er ence The operation was an attempt to fetch a processor instruction. (Not
all processors are able to distinguish read operations from fetch

operations. As a result, fetch operation failures might instead be
reported as failed read operations.)
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Data Structures

This section describes the data structures provided by the Exception Manager.

Machine Information Records

The Exception Manager uses a machine information record to encode the state of the
special-purpose registers at the time an exception occurs. A machine information record
is defined by the Machi nel nf or mat i on data type.

struct Machi nel nformation {

Unsi gnedW de CTR, /*Count Register*/

Unsi gnedW de LR; [ *Link Register*/

Unsi gnedW de PC,; [ *Program Count er Register*/

unsi gned | ong CR; /*Condition Register*/

unsi gned | ong XER; /*Fi xed-Poi nt Exception Register*/
unsi gned | ong MSR; /*Machine State Register*/

b

typedef struct Machi nel nformati on Machi nel nformati on;

Note

The fields CTR, LR, and PC are declared as the 64-bit type
Unsi gnedW de to allow compatibility with 64-bit processors.
On 32-bit processors, the register values are returned in the
low-order 32 bits. The high-order 32 bits are undefined. u

Field descriptions

CTR The contents of the Count Register (CTR).

LR The contents of the Link Register (LR).

PC The contents of the Program Counter Register (PC).

CR The contents of the Condition Register (CR).

XER The contents of the Fixed-Point Exception Register (XER).
MBR The contents of the Machine State Register (MSR).
IMPORTANT

The fields of a machine information record are aligned in memory in
accordance with 680x0 alignment conventions. s

Register Information Records

The Exception Manager uses a register information record to encode the state of the
general-purpose registers at the time an exception occurs. A register information record
is defined by the Regi st er | nf or mat i on data type.
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struct Regi sterlnformation {

Unsi gnedW de RO;
Unsi gnedW de R1;
Unsi gnedW de R2;
Unsi gnedW de R3;
Unsi gnedW de R4;
Unsi gnedW de R5;
Unsi gnedW de R6;
Unsi gnedW de R7;
Unsi gnedW de R8;
Unsi gnedW de R9;
Unsi gnedW de R10;
Unsi gnedW de R11;
Unsi gnedW de R12;
Unsi gnedW de R13;
Unsi gnedW de R14;
Unsi gnedW de R15;
Unsi gnedW de R16;
Unsi gnedW de R17;
Unsi gnedW de R18;
Unsi gnedW de R19;
Unsi gnedW de R20;
Unsi gnedW de R21;
Unsi gnedW de R22;
Unsi gnedW de R23;
Unsi gnedW de R24;
Unsi gnedW de R25;
Unsi gnedW de R26;
Unsi gnedW de R27;
Unsi gnedW de R28;
Unsi gnedW de R29;
Unsi gnedW de R30;
Unsi gnedW de R31;

H

typedef struct Registerlinformation Registerlnformation;

Field descriptions

RO The contents of general-purpose register GPRO.
R1 The contents of general-purpose register GPR1.
R2 The contents of general-purpose register GPR2.
R3 The contents of general-purpose register GPR3.
R4 The contents of general-purpose register GPR4.
R5 The contents of general-purpose register GPR5.
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R6 The contents of general-purpose register GPR6.

R7 The contents of general-purpose register GPR7.

R8 The contents of general-purpose register GPRS.

R9 The contents of general-purpose register GPR9.

R10 The contents of general-purpose register GPR10.
R11 The contents of general-purpose register GPR11.
R12 The contents of general-purpose register GPR12.
R13 The contents of general-purpose register GPR13.
R14 The contents of general-purpose register GPR14.
R15 The contents of general-purpose register GPR15.
R16 The contents of general-purpose register GPR16.
R17 The contents of general-purpose register GPR17.
R18 The contents of general-purpose register GPR18.
R19 The contents of general-purpose register GPR19.
R20 The contents of general-purpose register GPR20.
R21 The contents of general-purpose register GPR21.
R22 The contents of general-purpose register GPR22.
R23 The contents of general-purpose register GPR23.
R24 The contents of general-purpose register GPR24.
R25 The contents of general-purpose register GPR25.
R26 The contents of general-purpose register GPR26.
R27 The contents of general-purpose register GPR27.
R28 The contents of general-purpose register GPR28.
R29 The contents of general-purpose register GPR29.
R30 The contents of general-purpose register GPR30.
R31 The contents of general-purpose register GPR31.

IMPORTANT

The fields of a register information record are aligned in memory
in accordance with 680x0 alignment conventions. s

Floating-Point Information Records

The Exception Manager uses a floating-point information record to encode the state of
the floating-point unit at the time an exception occurs. A floating-point information
record is defined by the FPUI nf or mat i on data type.

struct FPU nformation {

Unsi gnedW de Regi sters[32]; /*FPU registers*/

unsi gned | ong FPSCR; [ *status/control reg*/
b

typedef struct FPU nformation FPU nformation;

4-14 Exception Manager Reference



CHAPTER 4

Exception Manager

Field descriptions
Regi sters

FPSCR

IMPORTANT

The contents of the 32 floating-point registers. This array is
zero-based; for example, the contents of FPRO are accessed
as Regi sters[0].

The contents of the Floating-Point Status and Control
Register (FPSCR).

The fields of a floating-point information record are aligned in memory
in accordance with 680x0 alignment conventions. s

Memory Exception Records

The Exception Manager uses a memory exception record to present additional informa-
tion about an exception that occurs as the result of a failed memory reference. A memory
exception record is defined by the Menor yExcept i onl nf or mat i on data type.

struct MenoryExceptionlnformation {

Areal D

Logi cal Addr ess

OSSt at us

Menor yRef er enceKi nd

H

t heAr ea;

t heAddr ess;
theError;

t heRef er ence;

typedef struct MenoryExceptionl nformati on MenoryExceptionl nformation;

Field descriptions
t heAr ea

t heAddr ess
t heError

t heRef er ence

The area containing the logical address of the exception. When the
memory reference that caused the exception is to an unmapped
range of the logical address space, this field contains the value
kNoAr eal D.

The logical address of the exception.

A status value. When the exception kind is
unr esol vabl ePageFaul t Except i on, this field contains a value
that indicates the reason the page fault could not be resolved.

The type of memory reference that caused the exception. This field
contains one of these constants:

enum {
writeReference
r eadRef er ence
f et chRef erence

0, /*wite operation*/
1, /*read operation*/
2 /*fetch operation*/

b

See “Memory Reference Kinds” on page 4-11 for a description of
these constants.
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IMPORTANT
The fields of a memory exception record are aligned in memory in
accordance with 680x0 alignment conventions. s

Exception Information Records

4-16

The Exception Manager passes an exception information record to your exception
handler whenever your handler is called as the result of some exception. The exception
information record indicates the nature of the exception and provides other information
that might be useful to your handler. An exception information record is defined by the
Excepti onl nf or mat i on data type.

struct Exceptionlnformation {

Excepti onKi nd t heKi nd;
Machi nel nf or mati on *machi neSt at e;
Regi st er |l nformati on *regi st erl mage;
FPUI nf or mat i on *FPUI mage;
uni on {

Menor yExcepti onl nf or mat i on *menor yl nf o;
} info;

H

typedef struct Exceptionlnformation Exceptionlnfornmation;

Field descriptions

t heKi nd An exception code indicating the kind of exception that occurred.
See “Exception Kinds” on page 4-9 for a list of the available
exception codes.

machi neSt at e The state of the machine at the time the exception occurred. See
“Machine Information Records” on page 4-12 for details on the
Machi nel nf or mat i on data type.

regi sterl mage The contents of the general-purpose registers at the time the
exception occurred. See “Register Information Records” on
page 4-12 for details on the Regi st er | nf or mat i on data type.

FPUI mage The state of the floating-point processor at the time the exception
occurred. See “Floating-Point Information Records” on page 4-14
for details on the FPUI nf or mat i on data type.

menoryl nf o The logical address of the location in memory that triggered
the exception.

IMPORTANT

The fields of an exception information record are aligned in memory in
accordance with 680x0 alignment conventions. s
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Exception Manager Routines

You can use the Exception Manager’s | nst al | Except i onHandl er routine to install
an exception handler or to remove an existing exception handler.

InstallExceptionHandler

You can use the | nst al | Except i onHandl er function to install an exception handler.

extern ExceptionHandl er |nstall Excepti onHandl er
(Excepti onHandl er t heHandl er);

t heHandl er
The address of the exception handler to be installed.

DESCRIPTION

The I nst al | Except i onHandl er function installs the exception handler specified by
the t heHandl er parameter. That handler replaces any existing exception handler
associated with the current execution context. The newly installed handler remains
active until you install some other handler or until you remove the current handler by
calling I nst al | Excepti onHandl er with t heHandl er settoni | .

IMPORTANT
The t heHandl er parameter must be the address of a transition vector
for the exception handler, not a universal procedure pointer. s

The I nst al | Except i onHandl er function returns the address of any existing

exception handler as its function result. If there is no exception handler in place
for the current execution context, | nst al | Except i onHandl er returnsni | .

SPECIAL CONSIDERATIONS
The I nst al | Except i onHandl er function is available to any code executing in the
PowerPC native environment. You do not need to call it if your application or other
software exists as 680x0 code and hence executes under the 68LC040 Emulator on
PowerPC processor-based Macintosh computers.

Application-Defined Routines

This section describes exception handlers, routines that you install using the
I nst al | Except i onHandl er routine to handle specific types of exceptions.
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MyExceptionHandler

DESCRIPTION

An exception handler should have this prototype:
0SSt at us MyExcepti onHandl er (Exceptionl nformation *t heException);

t heExcepti on
The address of an exception information block describing the exception
that triggered the exception handler.

You pass the address of your MyExcept i onHandl er routine to the Exception Manager’s
I nst al | Except i onHandl er function. The Exception Manager subsequently calls your
exception handler for all exceptions that arise in your application’s context that are not
intercepted by the Operating System.

Your exception handler can take whatever steps are necessary to handle the exception or
to correct the error or special condition that caused the exception. If your handler is
successful, it should return the noEr r result code. If you pass back noEr r, the Exception
Manager restores the machine state to the state contained in the exception information
record pointed to by thet heExcept i on parameter and resumes execution.

If your handler is not able to handle the exception, it should return some other result
code. However, if your handler returns a nonzero result code, the current application is
likely to be terminated by the Process Manager.

An exception handler uses the same stack that is active at the time an exception occurs.
To ensure that no stack data is destroyed, the Exception Manager advances the stack
pointer prior to calling the exception handler.

SPECIAL CONSIDERATIONS

SEE ALSO

4-18

An exception handler must follow the same general guidelines as other kinds of
asynchronous software. For instance, it cannot cause memory to be purged or
compacted, and it should not use any handles that are not locked. See Inside Macintosh:
Processes for a description of the restrictions applying to interrupt tasks and other
asynchronous software.

An exception handler must be reentrant if it can itself generate exceptions.

See “Writing an Exception Handler” on page 4-7 for more information about writing an
exception handler.
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Summary of the Exception Manager

C Summary

Constants

enum {
[ *exception codes*/

unknownExcepti on = 0, / *unknown exception type*/
illegallnstructionException =1, /*illegal instruction*/
trapException = 2, /[ *unknown trap type*/
accessException = 3, [*failed menory access*/
unmappedMenor yExcept i on = 4, [*menmory i s unmapped*/
excl udedMenor yExcepti on = 5, [*menory i s excluded*/
readOnl yMenor yExcepti on = 6, [*memory i s read-only*/
unr esol vabl ePageFaul t Excepti on =7, [ *unr esol vabl e page fault*/
privil egeViol ati onException = 8, [*privilege violation*/
traceExcepti on =9, [*trace*/
i nstructi onBreakpoi nt Excepti on = 10, /*instruction breakpoint*/
dat aBr eakpoi nt Excepti on = 11, [ *dat a breakpoi nt*/
i nt eger Excepti on = 12, [ *unused*/
f | oati ngPoi nt Excepti on = 13, /*floating point*/
stackOverfl owExcepti on = 14, [ *stack overfl ow/
term nati onException = 15 [*task is being term nated*/
b
enum {
/[ *menory reference codes*/
wr it eRef erence = 0, [*write operation*/
r eadRef er ence =1, / *read operation*/
f et chRef erence =2 /*fetch operation*/
b
Data Types
typedef unsigned |ong Excepti onKi nd; /*kind of exception*/
typedef unsigned | ong Menor yRef er enceKi nd
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typedef void

typedef Ref

typedef Ref

struct Unsi gnedW de {
unsi gned | ong
unsi gned | ong

H

* Ref ;

Areal D;

Logi cal Addr ess;

hi ;
| o;

typedef struct UnsignedW de Unsi gnedW de;

struct Regi sterlnformation {

4-20

Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
Unsi gnedW de
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Unsi gnedW de R31;
s
typedef struct Registerlinformation Registerlnformation;
typedef | ong OSSt at us;
typedef OSStatus (*ExceptionHandl er) (Exceptionlnformation *theException);

struct Machi nel nformation {

Unsi gnedW de CTR, /*Count Register*/

Unsi gnedW de LR; [ *Link Register*/

Unsi gnedW de PC, / *Program Count er Regi ster*/

unsi gned | ong CR; /*Condi tion Register*/

unsi gned | ong XER; /*Fi xed-Poi nt Exception Register*/
unsi gned | ong MSR; /*Machine State Register*/

H

typedef struct Machi nel nformati on Machi nel nformati on;

struct FPU nformation {

Unsi gnedW de Regi sters[32]; /*FPU registers*/

unsi gned | ong FPSCR; [ *status/control reg*/
b

typedef struct FPU nformation FPU nformation;

struct MenoryExceptionlnformation {

Areal D t heAr ea;

Logi cal Addr ess t heAddr ess;
CSst at us t heError;
Menor yRef er enceKi nd t heRef er ence;

b

typedef struct MenoryExceptionl nformati on MenoryExceptionl nformation;

struct Exceptionlnfornmation {

Excepti onKi nd t heKi nd;
Machi nel nf or mati on *machi neSt at e;
Regi st er |l nfornati on *regi st erl mage;
FPUI nf or mat i on *FPUI mage;
uni on {

Menor yExcepti onl nf or mati on *menor yl nf o;
} info;

b

typedef struct Exceptionlnformation Exceptionlnfornation;
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Exception Manager Routines

Installing Exception Handlers

ext ern ExceptionHandl er Install ExceptionHandl er
(Excepti onHandl er theHandl er);

Application-Defined Routines

Exception Handlers

OSSt at us MyExcepti onHandl er
(Exceptionl nformati on *t heException);
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32-bit clean Said of an application (or other
software) that is able to run in an environment
where all 32 bits of a memory address are used
for addressing.

680x0 See 680x0 microprocessor.

680x0 application An application that contains
code only for a 680x0 microprocessor. See also fat
application and PowerPC application.

680x0-based Macintosh computer Any
computer containing a 680x0 central processing
unit that runs Macintosh system software.

See also PowerPC processor-based

Macintosh computer.

680x0 compiler Any compiler that produces
code that can execute on a 680x0. See also
PowerPC compiler.

680x0 context block A block of data used by the
68L.C040 Emulator to maintain information
across mode switches. The structure of this block
of data is private.

680x0 microprocessor Any member of the
Motorola 68000 family of microprocessors.

680x0 software Any software (that is, applica-
tion, extension, driver, or other executable code)
that consists of code only for a 680x0 micro-
processor. See also 680x0 application.

68LC040 Emulator The part of the system
software that allows 680x0 applications and other
680x0 software to execute on PowerPC processor-
based Macintosh computers. See also Mixed
Mode Manager.

A5 world An area of memory in a 680x0
application’s partition that contains the
QuickDraw global variables, the application
global variables, the application parameters,
and the jump table—all of which are accessed
through the A5 register. See also mini-A5 world.

accelerated resource An executable resource
consisting of a routine descriptor and PowerPC
code that specifically models the behavior of a
680x0 stand-alone code resource. Compare
private resource.

accelerated system software routine Any
Toolbox or Operating System routine that has
been rewritten as PowerPC code.

A-line instruction An instruction that is not
recognized by a 680x0 microprocessor and that
the Trap Manager uses to execute Toolbox and
Operating System routines. The first word of an
A-line instruction is binary 1010 (hexadecimal A).

ANSI C language dialect The C programming
language dialect that adheres to the language
defined by the document American National
Standard for Information Systems—Programming
Language—C, ANSI X3.159-19809.

application A file of type ' APPL' that can be
launched by the Process Manager. See also 680x0
application and PowerPC application.

application extension A fragment containing
code and data (such as a data-conversion filter,
tool, and so forth) that extends the capabilities of
an application.

application global variables A set of variables
stored in the application partition that are global
to the application.

application heap An area of memory in the
application heap zone in which memory is
dynamically allocated and released on demand.

application parameters Thirty-two bytes of
memory in the A5 world of a 680x0 application
that are reserved for system use. The first long
word is the address of the first QuickDraw global
variable.
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application partition A partition of memory
reserved for use by an application. The applica-
tion partition consists of free space, along with
the application’s heap and stack. The application
partition for a 680x0 application also contains an
A5 world.

A-trap See A-line instruction.

backing-store file The file in which the Virtual
Memory Manager stores the contents of unneeded
pages of memory. See also file mapping and
paging file.

backing volume See paging device.

bind To find the referent of an import and place
its address in a fragment’s table of contents.

bus sizing See dynamic bus sizing.

byte smearing The ability of certain members
of the 680x0 family of microprocessors to
duplicate byte- and word-sized data across all
32 bits of the data bus.

cache See data cache or instruction cache.

callback routine A routine that is executed as
part of the operation of some other routine.

callee A routine that is called by some routine.
caller A routine that calls some routine.

calling conventions A set of conventions that
describe the manner in which a particular routine
is executed. A routine’s calling conventions
specify where parameters and function results
are passed. For a stack-based routine, the calling
conventions determine the structure of the
routine’s stack frame.

code fragment See fragment.

code fragment information record A part of a
code fragment resource that provides information
about a specific code fragment. There can be
more than one code fragment information record
in a code fragment resource.

Code Fragment Loader The part of the
Macintosh system software that reads containers
and loads the fragments they contain into
memory. Currently, the application programming
interface to the Code Fragment Loader is private.
See also Code Fragment Manager.

GL-2

Code Fragment Manager The part of the
Macintosh system software that loads fragments
into memory and prepares them for execution.
See also Code Fragment Loader and fragment.

code fragment resource A resource of type
"cfrg' thatidentifies the instruction set architec-
ture, location, size, and name of an application or
import library, as well as version information for
import libraries. See also code fragment informa-
tion record.

code patch  See patch.
code resource See executable resource.

code section A section of a fragment that
contains executable code. See also data section.

code type See instruction set architecture.
compile-time library See definition version.

Condition Register (CR) A register in the
PowerPC processor that holds the result of
certain integer and floating-point operations.

connection A link between two fragments.

connection ID A reference number that
uniquely identifies a connection. Defined by
the Connect i onl D data type.

container The storage for a fragment. A
container is a contiguous chunk of storage that
holds a fragment and information describing the
location of the parts of the fragment and the
format of the container.

context The block of static data (global
variables, static variables, and function pointers)
associated with one loading of an import library.
Each application is loaded into its own context.

context block See 680x0 context block.
CR See Condition Register.

cross-mode call A call to code thatisina
different instruction set architecture from the
caller’s. See also explicit cross-mode call and
implicit cross-mode call.

cross-TOC call A call to code thatisin a
different fragment from the caller’s. A cross-TOC
call requires that the Table of Contents Register
be changed to the callee’s TOC value.
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dangling pointer A pointer that no longer
points to the correct memory address.

data cache An area of memory internal to some
microprocessors (for example, the MC68030 and
MC68040 microprocessors) that holds recently
accessed data. See also instruction cache.

data section A section of a fragment that
contains its static data, including the fragment’s
table of contents. See also code section.

de facto C++ standard The current C++
language definition described in the working
paper American National Standard for Information
Systems—Programming Language—C++, ANSI
X3J16.

definition function A function that defines the
appearance and behavior of some user interface
element (for example, a control, list, or window).
See also stub definition function.

definition resource A resource that contains a
definition function. See also stub definition
resource.

definition version The version of an import
library used by the linker to resolve imports in
the application (or other fragment) being linked.
The definition version defines the external
programming interface and data format of the
library. Compare implementation version.

disk location record A data structure that
provides information about the location of a
fragment in the data fork of a file on disk.
Defined by the Di skFragment data type.

drop-in  See application extension.
dynamically linked library See import library.

dynamic bus sizing The ability of certain
members of the 680x0 family of microprocessors
to allow 170 devices with 8-bit and 16-bit data
paths to work with the processor’s 32-bit data bus.

emulated application An application whose
executable code is not in the instruction set
architecture of the CPU. An emulated application
relies on an emulator to translate its code into
that instruction set. See also 680x0 application.

emulation The process by which a micro-
processor is able to execute code in an instruction
set different from its native instruction set. See
also 68L.C040 Emulator.

emulation environment The 680x0-compatible
environment on PowerPC processor-based
Macintosh computers provided by the 68LC040
Emulator and the Mixed Mode Manager.

emulator See 68LC040 Emulator.

epilog A standard piece of code at the end of a
routine that restores any nonvolatile registers
saved by the routine’s prolog, tears down the
routine’s stack frame, and returns to the caller.
See also prolog.

exception An error or other special condition
detected by the microprocessor in the course of
program execution.

exception code A constant that indicates which
kind of exception has occurred.

exception handler
exceptions.

Any routine that handles

exception information record A data structure
that contains information about an exception,
such as the exception kind, the machine state at
the time of the exception, and so forth. Defined
by the Except i onl nf or mat i on data type.

Exception Manager The part of the Macintosh
system software that handles exceptions that
occur during the execution of PowerPC applica-
tions or other software.

exception stack frame A block of data placed
on the stack automatically by the processor when
an exception occurs.

executable resource  Any resource that contains
executable code. See also accelerated resource
and private resource.

explicit cross-mode call A call to code that is in
a different instruction set architecture from the
caller’s, caused by the caller explicitly calling the
Cal | Uni ver sal Pr oc function.

export To make a symbol externally visible.
Also, a synonym for exported symbol.
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exported symbol A symbol in a fragment that
is visible to some other fragments. See also
import library and imported symbol.

Extended Common Object File Format
(XCOFF) A format of executable file generated
by some PowerPC compilers. See also Preferred
Executable Format.

extension See application extension and
system extension.

external code Any block of executable code that
is not directly contained in an application or
other software.

fake definition resource See stub definition
resource.

fake handle A handle that was not created by
the Memory Manager but is passed to some
Memory Manager routine.

fake pointer A pointer that was not created by
the Memory Manager but is passed to some
Memory Manager routine.

fat Containing or describing code of multiple
instruction sets.

fat application An application that contains
code of two or more instruction sets. See also
680x0 application and PowerPC application.

fat binary Any piece of executable code
(application, code resource, trap, or trap patch)
that contains code of multiple instruction sets.
See also fat application, fat patch, fat resource,
and fat trap.

fat patch A trap patch that contains executable
code in two or more instruction sets.

fat resource A code-bearing resource that
contains executable code in two or more
instruction sets. A fat resource begins with a
fat routine descriptor.

fat routine descriptor A routine descriptor that
contains routine records for a routine’s code in
two or more instruction sets.

fattrap A system software routine that is
implemented in two or more instruction sets. In
general, the Operating System selects the trap
implementation that avoids mode switches. See
also split trap.
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file and directory registry A list of files and
directories that the Code Fragment Manager
should search when looking for import libraries.
See also ROM registry.

file mapping The process of using a file’s data
fork as the virtual memory paging file.

Floating-Point Status and Control Register
(FPSCR) A 32-bit PowerPC register used to
store the floating-point environment.

FP See frame pointer.

FPSCR See Floating-Point Status and Control
Register.

fragment Any block of executable PowerPC
code and its associated data.

fragment initialization block A parameter
block passed to a fragment’s initialization routine
that contains information about the fragment.
Defined by the | ni t Bl ock data type.

fragment location record A data structure that
provides information about the location of a
fragment. Defined by the Fr agrment Locat or
data type.

frame See stack frame or switch frame.

frame pointer (FP) A pointer to the beginning
of a stack frame. See also stack pointer.

function prototype A declaration of the types
of parameters expected by a function and of the
type of the result it returns. ANSI C requires

function prototypes for all functions you define.

global instantiation The method of allocating
an import library’s static data in which only one
copy of that data is created regardless of how
many connections to the library are made. See
also per-context instantiation and per-load
instantiation.

global variables See application global
variables, QuickDraw global variables, and
system global variables.

glue routine A run-time library routine, usually
provided by the development environment, that
provides the subroutine linkage between high-
level language code and a system routine with an
interface protocol different from that of the
high-level language.
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hard import An imported symbol that must be
defined at run time and whose corresponding
code or data must therefore be available in an
import library on the host machine. Compare
import and soft import.

head patch A patch that, upon completion,
jumps to the next patch in the patch daisy chain.
Compare tail patch.

heap An area of memory in which space

is dynamically allocated and released on
demand, using the Memory Manager. See also
application heap.

hybrid environment See mixed environment.

implementation version The version of an
import library that is connected at load time to
the application (or other fragment) being loaded.
The implementation version provides the actual
executable code and data exported by the library.
Compare definition version.

implicit cross-mode call A call to code that is
in a different instruction set architecture from
the caller’s, caused by the caller executing a
routine descriptor.

import To refer to a symbol located in some
other fragment. Also, a synonym for
imported symbol.

imported symbol A symbol in a fragment that
references code or data exported by some other
fragment. See also exported symbol and

import library.

import library A shared library that is auto-
matically loaded at run time by the Code
Fragment Manager.

initialization block See fragment initializa-
tion block.

initialization routine A function contained in a
fragment that is executed immediately after the
fragment has been loaded and prepared. See also
termination routine.

input/output (1/0) The parts of a computer
system that transfer data to or from
peripheral devices.

instantiation See global instantiation,
per-context instantiation, and per-load
instantiation.

instruction cache An area of memory internal
to some microprocessors (for example, the
MC68020, MC68030, and MC68040 micro-
processors) that holds recently used instructions.
See also data cache.

instruction set architecture The set of instruc-
tions meaningful to a particular microprocessor
or to a family of microprocessors.

interface files See universal interface files.
interrupt See exception.
I/O See input/output.

jump table An area of memory in a 680x0
application’s A5 world that contains one entry
for every externally referenced routine in every
code segment of the application. The jump table
is the means by which the loading and unloading
of segments are implemented.

KB Abbreviation for kilobyte. A kilobyte is
1024 bytes.

leaf procedure A routine that calls no other
routines.

library See import library.

library directory A directory used by an
application or other fragment to store import
libraries used by that application or fragment.
An application’s library directory is specified
in the application’s code fragment resource.

linkage area The area in a PowerPC stack
frame that holds the caller’s RTOC value and
saved values of the Count Register and Link
Register. See also parameter area.

Link Register (LR) A register in the PowerPC
processor that holds the return address of the
currently executing routine.

load directory The directory that contains a
fragment being loaded into memory and
prepared for execution.

local variable A variable allocated and used
only within the current procedure.

location record See fragment location record.
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lock (1) To prevent a relocatable block from
being moved during heap compaction. (2) To
temporarily prevent a range of physical memory
from being paged out or moved by the Virtual
Memory Manager.

low-memory global variables See system
global variables.

LR See Link Register.

machine information record A data structure
that contains information about the state of the
machine at the time an exception occurs. Defined
by the Machi nel nf or mat i on data type.

Macintosh Operating System The part of
Macintosh system software that manages basic
low-level operations such as file reading and
writing, memory allocation and deallocation,
process execution, and interrupt handling.

Macintosh Programmer’s Workshop (MPW)
A software development system for the
Macintosh family of computers provided

by Apple Computer.

Macintosh system software A collection of
routines that you can use to simplify your
development of Macintosh applications. See
also Macintosh Toolbox and Macintosh
Operating System.

Macintosh Toolbox The part of the Macintosh
system software that allows you to implement
the standard Macintosh user interface in your
application or other software.

Macintosh User Interface Toolbox See
Macintosh Toolbox.

main routine A function contained in a
fragment whose use depends on the kind of
fragment it is in. For applications, the main
routine is the usual entry point. See also
main symbol.

main symbol A symbol whose use depends on
the kind of fragment it is in. For applications, the
main symbol refers to the fragment’s main
routine. See also main routine.

MB Abbreviation for megabyte. A megabyte is
1024 kilobytes, or 1,048,576 bytes.
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memory location record A data structure
that provides information about the location
of a fragment in memory. Defined by the
Mentr agment data type.

memory management unit (MMU) Any
component that performs address mapping in a
Macintosh computer. In Macintosh Il computers,
it is either the Address Management Unit (AMU)
or the Paged Memory Management Unit
(PMMU). The MMU function is built into the
MC68030 and MC68040 microprocessors.

Memory Manager The part of the Operating
System that dynamically allocates and releases
memory space in the heap.

mini-A5 world An area of memory created and
maintained by the Process Manager for a native
PowerPC application. A native application’s
mini-A5 world contains a pointer to the applica-
tion’s QuickDraw global variables. See also

A5 world.

mixed environment A process execution
environment that supports applications and
other software written in more than one
instruction set.

Mixed Mode Manager The part of the
Macintosh system software that manages the
mixed-mode architecture of PowerPC processor-
based computers running 680x0-based code
(including system software, applications, and
stand-alone code modules).

MMU See memory management unit.

mode switch The process of switching the
execution context between the CPU’s native
context and an emulator (for example, the
68LC040 Emulator). See also switch frame.

MPW See Macintosh Programmer’s Workshop.

nanokernel The lowest-level part of the system
software for PowerPC processor-based
Macintosh computers.

native application An application whose
executable code is in the instruction set
architecture of the CPU. See also PowerPC
application.
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nonvolatile register A register whose contents
must be preserved across subroutine calls. If a
routine changes the value of a nonvolatile
register, it must save the old value on the stack
before changing the register and restore that
value before returning. See also saved registers
area and volatile register.

opcode See operation code.

Operating System See Macintosh Operating
System.

operation code The part of a machine
instruction that encodes the operation to be
performed. Often shortened to opcode.

page The basic unit of memory used in
virtual memory.

paged memory management unit (PMMU) The
Motorola MC68851 chip, used in the Macintosh Il
computer to perform logical-to-physical address
translation and paged memory management.

page fault A special kind of bus error caused
by an attempt to access data in a page of memory
that is not currently resident in RAM.

paging The process of moving data between
physical memory and a paging file.

paging device A volume that contains the
backing-store file or a paging file.

paging file A file used to store unneeded pages
of memory. See also backing-store file.

parameter area The area in a PowerPC stack
frame that holds the parameters for any routines
called by a given routine. See also linkage area.

partition A contiguous block of memory
reserved for use by the Operating System or by
an application. See also application partition and
system partition.

patch Any code used to repair or augment an
existing piece of code. In the context of
Macintosh system software, a patch repairs or
augments a trap. See also head patch and tail
patch.

PC See program counter.

PC-relative A form of instruction addressing
in which the destination instruction is some
number of instructions before or after the
current instruction.

PEF See Preferred Executable Format.

per-context instantiation The method of
allocating an import library’s static data in which
one copy of that data is created for each separate
application using the library. Using this method,
a single application may have only one copy of
the static data. See also global instantiation and
per-load instantiation.

per-load instantiation The method of allocating
an extension’s static data in which one copy of
that data is created for each separate connection
to the extension. Using this method, a single
client may have multiple copies of the static data.
See also global instantiation and per-context
instantiation.

PMMU See paged memory management unit.
PowerPC See PowerPC microprocessor.

PowerPC application An application that
contains code only for a PowerPC microprocessor.
See also 680x0 application and fat application.

PowerPC compiler Any compiler that produces
code that can execute on a PowerPC. See also
680x0 compiler.

PowerPC microprocessor Any member of the
family of PowerPC microprocessors. The
MPC601 processor is the first PowerPC CPU.

PowerPC Numerics The floating-point
environment on PowerPC processor-based
Macintosh computers. This environment
provides floating-point data types and arithmetic
operations, plus some advanced numerical
functions (such as logarithmic and trigonometric
functions). See also Standard Apple Numerics
Environment.

PowerPC processor-based Macintosh

computer Any computer containing a PowerPC
central processing unit that runs Macintosh
system software. See also 680x0-based Macintosh
computer.
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PowerPC software Any software (that is,
application, extension, driver, or other executable
code) that consists of code only for a PowerPC
microprocessor. See also PowerPC application.

Preferred Executable Format (PEF) The format
of executable files used for PowerPC applications
and other software running on Macintosh
computers. See also Extended Common Object
File Format.

prepare To resolve imports in a fragment to
exports in some import library.

private resource Any executable resource
whose behavior is defined by your application
(or other kind of software) alone. Compare
accelerated resource.

procedure information A long word that
encodes information about a routine’s calling
conventions, the sizes and locations of the
routine’s parameters, and the size and
location of the routine’s result. Defined by the
Pr ocl nf oType data type.

procedure pointer A reference generated by a
compiler when taking the address of a routine.
On 680x0-based Macintosh computers, a
procedure pointer is the address of the routine’s
executable code (and is defined by the ProcPt r
data type). On PowerPC processor-based
Macintosh computers, a procedure pointer is the
address of the routine’s transition vector.

Process Manager The part of the Macintosh
Operating System that provides a cooperative
multitasking environment by controlling access
to shared resources and managing the
scheduling, execution, and termination of
applications.

processor cache See data cache or
instruction cache.

Procl nfoType See procedure information.
ProcPtr

program counter (PC) A register in the CPU
that contains a pointer to the memory location of
the next instruction to be executed.

See procedure pointer.

prolog A standard piece of code at the begin-

ning of a routine that sets up the routine’s stack
frame and saves any nonvolatile registers used

by the routine. See also epilog.

prototype See function prototype.
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QuickDraw global variables A set of variables
stored in a 680x0 application’s A5 world that
contain information used by QuickDraw.

reduced instruction set computer (RISC) A
microprocessor in which all machine instructions
are uniformly formatted and are processed
through the same steps. See also PowerPC
MIiCroprocessor.

Red Zone The area of memory immediately
above the address pointed to by the stack pointer.
The Red Zone is reserved for temporary use by a
function’s prolog and as an area to store a leaf
routine’s nonvolatile registers.

reentrant exception handler An exception

handler that can be interrupted while servicing
an exception, then service a new exception, and
then complete servicing the original exception.

register-based routine A routine that receives
its parameters and returns its results, if any, in
registers. See also stack-based routine.

RISC See reduced instruction set computer.

ROM registry A list of the import libraries that
are stored in the ROM of a Macintosh computer.
See also file and directory registry.

routine descriptor A data structure used by the
Mixed Mode Manager to execute a routine. A
routine descriptor contains one or more routine
records. Defined by the Rout i neDescri pt or
data type.

routine record A data structure that contains
information about a particular routine. A routine
record specifies, among other things, a routine’s
instruction set architecture, the number and

size of its parameters, its calling conventions,
and its location in memory. Defined by the

Rout i neRecor d data type.

RTOC See Table of Contents Register.

run-time environment The execution
environment provided by the Process Manager
and other system software services. The run-time
environment dictates how executable code is
loaded into memory, where data is stored, and
how functions call other functions and system
software routines.

run-time library See implementation version.



GLOSSARY

SANE See Standard Apple Numerics
Environment.

saved registers area The area in a PowerPC
stack frame that holds the saved values of the
nonvolatile general-purpose and floating-
point registers.

section A region of memory occupied by part
of a loaded fragment. When a fragment is loaded,
it is divided into a code section and one or more
copies of the data section. See also code section
and data section.

segment  One of several logical divisions of the
code of a 680x0 application. Not all segments
need to be in memory at the same time.

segment location record A data structure that
provides information about the location of a
fragment in the resource fork of a file on disk.

Defined by the Segnent edFr agnment data type.

Segment Manager The part of the Macintosh
Operating System that loads and unloads the
code segments of a 680x0 application into and
out of memory.

selector-based trap A system software routine
that is called by passing a selector code to a
single trap macro.

shared library A fragment that exports
functions and global variables to other fragments.
A shared library is used to resolve imports
during linking and also during the loading and
preparation of some other fragment. A shared
library can be stored in a file of type ' shl b' . See
also import library.

smearing See byte smearing.

soft import An imported symbol whose corre-
sponding code or data might not be available in
any import library on the host machine and which
is therefore undefined at run time. Compare hard
import and import.

SP  See stack pointer.

splittrap A system software routine that is
implemented as 680x0 code in ROM and as
PowerPC code in an import library. Because the
PowerPC code is contained directly in the import
library, you cannot patch the PowerPC portion of
a split trap. Compare fat trap.

stack An area of memory in the application
partition that is used for temporary storage of
data during the operation of an application or
other software.

stack-based routine A routine that receives its
parameters and returns its results, if any, on the
stack. See also register-based routine.

stack frame The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

stack pointer (SP) A pointer to the top of the
stack. See also frame pointer.

stale instruction An instruction in the micro-
processor’s instruction cache whose corre-
sponding values in RAM have changed. You
might need to flush the instruction cache to avoid
using stale instructions.

Standard Apple Numerics Environment (SANE)
The floating-point environment on 680x0-based
Macintosh computers and on Apple 1l computers.
This environment provides floating-point data
types and arithmetic operations, plus some
advanced numerical functions (such as logarith-
mic and trigonometric functions). See also
PowerPC Numerics.

static data The variables and other data that
persist between calls to a particular function
or fragment.

stub definition function Code that dispatches
to a definition function contained elsewhere. See
also definition function.

stub definition resource An executable
resource that contains a stub definition function.
See also definition resource.

subroutine linkage The mechanism by which
one routine calls another, possibly passing
arguments and receiving a function result.

switch See mode switch.

switch frame A stack frame, created by the
Mixed Mode Manager during a mode switch,
that contains information about the routine to be
executed, the state of various registers, and the
address of the previous frame.

symbol A name for a discrete element of code
or data in a fragment.
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system extension Afileoftype' INIT' that
contains executable code. System extensions are
loaded into memory at system startup time.

system global variables A collection of global
variables stored in the system partition.

system heap An area of memory in the
system partition reserved for use by the
Operating System.

system partition A partition of memory
reserved for use by the Operating System.

table of contents (TOC) An area of static data
in a fragment that contains a pointer to each
routine or data item that is imported from some
other fragment, as well as pointers to the
fragment’s own static data.

Table of Contents Register (RTOC) A
processor register that points to the table of
contents of the fragment containing the code
currently being executed. On the PowerPC
processor, the general-purpose register 2 is
dedicated to serve as the RTOC.

tail patch A patch that invokes the next patch
in the patch daisy chain as a subroutine,
guaranteeing that the tail patch regains control
after the execution of all subsequent patches.
Compare head patch.

temporary memory Memory allocated outside
an application partition that may be available for
occasional short-term use.

termination routine A function contained in a
fragment that is executed just before the
fragment is unloaded. See also initialization
routine.

TOC See table of contents.
tool See application extension.

transition vector An area of static data in a
fragment that describes the entry point and TOC
address of a routine. See also procedure pointer.

trap Any of a large set of Macintosh system

software routines accessed via A-line instructions.

See also split trap.
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trap dispatcher The exception handler that
deals with the occurrence of A-line instructions,
providing the subroutine linkage between the
A-line instruction and Macintosh system code.

trap dispatch table A table of entry points to
Macintosh system routines that are invoked with
A-line instructions.

Trap Manager The part of the Macintosh
Operating System that provides the subroutine
linkage to most Macintosh system soft-

ware routines.

trap patch  See patch.

universal interface files A set of interface files
that you can use with both 680x0 compilers and
PowerPC compilers.

universal procedure pointer A 680x0
procedure pointer or the address of a
routine descriptor.

VBL See vertical retrace interrupt.

VBL task A task executed during a vertical
retrace interrupt.

vector See transition vector.

vertical blanking interrupt (VBL) See vertical
retrace interrupt.

vertical retrace interrupt An interrupt
generated by the video circuitry each time the
electron beam of a monitor’s display tube returns
from the lower-right corner of the screen to the
upper-left corner.

virtual memory Addressable memory beyond
the limits of the available physical RAM. The
Operating System extends the logical address
space by allowing unused code and data to be
stored on a secondary storage device instead of
in physical RAM.

Virtual Memory Manager The part of the
Operating System that provides virtual memory.

volatile register A register whose contents
need not be preserved across subroutine calls.
See also nonvolatile register.

weak import See soft import.

XCOFF See Extended Common Object File
Format.
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CAAR. See Cache Address Register
cache, emulator compatibility issues 1-10
Cache Address Register (CAAR), emulator
compatibility issues 1-10
Cache Control Register (CACR), emulator
compatibility issues 1-10
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calling conventions 1-41 to 1-47. See also procedure
information
C routines 1-43, 2-30
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connections 3-5
containers

defined 1-21, 3-4
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Count Synbol s function 3-14, 3-25 to 3-26
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cross-mode call. See explicit cross-mode calls; implicit

cross-mode calls
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data, exchanging between PowerPC and 680x0
environments 1-64 to 1-65
data, global. See global data
data alignment 1-63 to 1-65
data forks 1-21, 1-30, 1-31 to 1-34
data instantiation
global 1-51
per-context 1-51
per-load 1-52
data sections
and accelerated resources 1-38
defined 1-23
Debugger routine, calling within an exception
handler 4-9
DebugSt r routine, calling within an exception
handler 4-9
default stack size 1-60, 3-31
definition procedures. See control definition functions;
list definition procedures; menu definition
procedures; window definition functions
definition versions 3-8, 3-30
detaching resources 1-70
Det achResour ce procedure 1-70
device drivers, and the 68LC040 Emulator 1-11 to 1-12
D skFragment datatype 3-17
disk location records 3-17 to 3-18
DI SPATCHED STACK_ROUTI NE_PARAMETER macro 2-50
DI SPATCHED STACK _RQUTI NE_SELECTCR Sl ZE
macro 2-50
D sposeHand! e procedure 1-69
D sposePt r procedure 1-70
Di sposeRout i neDescri pt or function 1-19, 2-21, 2-41
disposing of memory blocks 1-69
disposing of pictures 1-69
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draw hook routines, specifying calling conventions
of 2-32
drop-ins. See application extensions
dynamically linked libraries. See import libraries
dynamic bus sizing, emulator compatibility issues 1-12

E

emulator. See 68LC040 Emulator
epilog code 1-46
event filter functions 1-18
exception codes. See exceptions, types of
exception contexts 4-4
exception frames, created by 68LC040 Emulator 1-11
exception handlers
defined 4-3
installing 1-57, 4-6 to 4-7
limitations on 4-9
and the Red Zone 1-47
removing 4-7
writing 4-7 to 4-9
Excepti onl nf or mat i on data type 4-7, 4-16
exception information records 4-7, 4-16
Exception Manager 1-47, 4-3 to 4-22
application-defined routines in 4-17 to 4-18
constants in 4-9 to 4-11
data structures in 4-12 to 4-16
routines in 4-17
exceptions
defined 4-3
680x0 bus error 1-11
types of 4-5to 4-6, 4-9 to 4-11
exchanging data between PowerPC and 680x0
environments 1-64 to 1-65
executable resources 1-34 to 1-41. See also accelerated
resources; private resources
Exi t ToShel | procedure 2-41
explicit cross-mode calls 2-8
exported symbols. See exports
exports 1-23, 3-4
getting information about 3-14
Extended Common Object File Format (XCOFF) 1-22,
1-30
Extensions folder 3-6, 3-7
extensions. See application extensions; system
extensions
external code 2-4to 2-5

F

fake definition resources. See stub definition resources

fake handles 1-70
fake pointers 1-70
fat applications 1-33 to 1-34
fat patches 1-66 to 1-68, 1-71
fat resources 1-38, 1-71, 2-25
fat routine descriptors 2-24, 2-25
file and directory registry 3-6 to 3-7
file forks. See data forks; resource forks
file mapping 1-53 to 1-55
file types
"APPL' 1-21
"shl b 1-21, 3-6, 3-10
finding symbols 1-38, 3-14, 3-24 to 3-26
Fi ndSynbol function 1-38, 1-41, 3-24 to 3-25
F-line instructions 1-8
floating-point data types 1-65
floating-point exceptions, handling 4-3
floating-point information records 4-14
floating-point instructions, emulator compatibility
issues 1-9
floating-point parameters 1-72
floating-point registers 1-43, 1-47 to 1-50, 1-72, 4-4, 4-15
Floating-Point Status and Control Register
(FPSCR) 4-14 to 4-15
floppy disks 1-55
flushing caches 1-10, 1-70
forks. See data forks; resource forks
FP. See frame pointer
FPSCR. See Floating-Point Status and Control Register
FPU nf or mat i on data type 4-14
fragment initialization blocks 3-15 to 3-16
fragment location records 3-16 to 3-17
Fr agnent Locat or data type 3-16
fragments 1-20 to 1-41, 3-4 to 3-5
defined 1-5, 1-21, 3-4
finding symbols in 3-24 to 3-26
kinds of 1-21
loading 3-10 to 3-12, 3-19 to 3-22
special routines in 1-29 to 1-30, 3-26 to 3-28
specifying names of 3-31
specifying size of 3-31
storing 1-30to 1-34
structure of 1-22 to 1-23
unloading 3-23 to 3-24
frame pointer 1-42
frames. See stack frames; switch frames
free blocks 1-70
function prototypes 1-72, 2-30

G

general-purpose registers 1-8, 1-26, 1-41, 1-43, 1-45,
1-47 to 1-50, 1-72, 4-4, 4-8, 4-12 to 4-14
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Cest al t function 1-25, 1-57

Get 1Resour ce function 3-21

Get Appl Li mi t function 1-60, 1-70, 3-31

Get Qur rent | SAfunction 2-44

Get D skFragment function 3-11, 3-19 to 3-21

Get | ndSynbol function 3-14, 3-26

Get Menr agrrent function 3-11, 3-21 to 3-22

Get Next Event filter procedures, specifying calling
conventions of 2-32

Get Pi ct ur e function 1-69

Get Shar edLi br ary function 3-10, 3-22 to 3-23

global data, in accelerated resources 1-39 to 1-40

global instantiation 1-51

global variables. See application global variables;
QuickDraw global variables; system global
variables

grow-zone functions 1-18

specifying procedure information for 2-17 to 2-18

H

handles, fake 1-70

header files. See universal interface files

head patches 1-68

hit test hook routines, specifying calling conventions
of 2-32

hybrid environment. See mixed environment

HyperCard extensions 1-36

implementation versions 3-8, 3-30
implicit cross-mode calls 2-8
imported symbols. See imports
import libraries 1-50 to 1-52. See also fragments
advantages of 1-51
checking versions 3-7 to 3-10
data instantiation 1-51 to 1-52
defined 1-21
definition version 3-8
file and directory registry 3-6 to 3-7
file type 1-21, 3-6, 3-10
implementation version 3-8
length of fragment 3-31
load directories 3-7
location of fragment 3-31
ROM registry 3-6
search order 3-5to 3-7
specifying definition version 3-30
specifying implementation version 3-30
specifying instruction set architecture 3-30
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specifying update levels 3-30
imports 1-21, 3-4. See also soft imports
I ni t Bl ock data type 3-15
I nit Q& af procedure 1-59
initialization blocks. See fragment initialization blocks
initialization routines 3-15 to 3-18, 3-27
defined 1-30
in-place data instantiation 1-38
input/output, accessing memory-mapped
locations 1-11to 1-12
Inside Macintosh
bit numbering conventions xii to xiii
chapter format xi
format conventions Xxii
format of parameter blocks xiv
I nstal | Except i onHandl er function 4-17
instantiation. See global instantiation; per-context
instantiation; per-load instantiation
instruction cache 1-10, 1-70
instruction set architectures
constants for 2-35 to 2-36
defined 1-13
determining 2-44
specifying for an application 3-30
specifying for an import library 3-30
instruction timings 1-9
interface files. See universal interface files
interrupts. See exceptions
interrupt time
calling accelerated resources 2-26
calling Memory Manager 1-70
170. See input/output

J

jump tables 1-58

K

Ki Il Pi cture procedure 1-69

L

' LDEF' resources 1-36

leaf procedures 1-46

libraries. See import libraries

library directories 3-6, 3-31

line-start recalculation routines, specifying calling
conventions of 2-32
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linkage area 1-44

Link Register 2-11

list definition procedures 1-35 to 1-36

LMzt Qur Di r St or e function 1-57

load directories 3-7

loading code fragments 3-10 to 3-12, 3-19 to 3-23

location records. See fragment location records

low-memory global variables. See system global
variables

LR. See Link Register

M

defined 1-13
overhead 1-66
in patches 1-66
MOVE instruction 1-12
MPW. See Macintosh Programmer’s Workshop

N

Machi nel nf or nat i on data type 4-7, 4-12
machine information records 4-7, 4-12
Macintosh Programmer’s Workshop xiv, 1-32, 1-38,
1-57, 1-65, 2-26, 2-30
main routines 3-27
and accelerated resources 1-38
defined 1-30
main symbols 3-19, 3-21, 3-22
and accelerated resources 1-38
defined 1-30
MakePEF tool 1-26, 1-38
' MDEF' resources 1-36
Menfr agmrent data type 3-17
memory, organization of 1-52 to 1-65
memory blocks, disposing of 1-69
Memory control panel 1-68
Merror yExcept i onl nf or nat i on data type 4-15
memory exception records 4-15
memory location records 3-17
Memory Manager 1-5, 1-68 to 1-70
disposing of blocks 1-69
at interrupt time 1-70
private data structures 1-69
memory operations, types of 4-11
memory reference codes 4-11
menu bar hook routines, specifying calling
conventions of 2-32
menu definition procedures 1-36
mini-A5 world 1-60
mixed environment 1-3, 1-4
Mixed Mode Manager 1-4, 1-13 to 1-19, 2-3 to 2-50. See
also mixed environment; mode switches; routine
descriptors; 68LC040 Emulator
constants in 2-27 to 2-36
data structures in 2-36 to 2-38
defined 1-13, 2-3
introduced 2-4
limitations of 2-21
routines in 2-38 to 2-44
mode switches 2-7 to 2-14

nanokernel 1-4

NewCont r ol Act i onProc function 1-18

NewFat Rout i neDescri pt or function 2-21, 2-40 to 2-41

NewPt r function 1-67

NewRout i neDescri pt or function 2-15, 2-21, 2-39 to
2-40

NCP instruction, emulator compatibility issues 1-12

NSet Tr apAddr ess procedure 1-67

null events 1-71 to 1-72

O

opcodes. See operation codes
operation codes 1-8

P

Paged Memory Management Unit, emulator
compatibility issues 1-9
paging devices 1-55
parameter area 1-44
parameter blocks, format of xiv
parameter lists, variable 1-72
parameter passing 1-47 to 1-50
patches 1-18, 1-66 to 1-68
fat 1-66 to 1-68
head 1-68
tail 1-68
patching, selector-based traps 1-68
PC. See program counter
PEF. See Preferred Executable Format
per-context instantiation 1-51
performance 1-70 to 1-73
avoiding mode switches 1-71to 1-72
passing parameters 1-72 to 1-73
using fat resources 1-71
per-load instantiation 1-52
pictures, disposing of 1-69
PMMU. See Paged Memory Management Unit
pointer-based function calls 1-29
pointers, fake 1-70
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porting 680x0 applications to PowerPC. See 680x0
applications, porting to PowerPC
PowerPC. See PowerPC microprocessor
PowerPC applications, structure of 1-31 to 1-32
PowerPC microprocessor ix, 1-4
floating-point registers 1-43, 1-47 to 1-50, 1-72, 4-4,
4-15
general-purpose registers 1-8, 1-26, 1-41, 1-43, 1-45,
1-47 to 1-50, 1-72, 4-4, 4-8, 4-12 to 4-14
special-purpose registers 1-41, 1-44 to 1-46, 4-4, 4-8,
4-12
PowerPC run-time environment 1-19 to 1-65
application partitions 1-57 to 1-63
data alignment 1-63 to 1-65
organization of memory in 1-52 to 1-65
system partition 1-56 to 1-57
pr agna statements 1-64
Preferred Executable Format (PEF) 1-22, 1-30
prepare 1-22
private resources 1-36, 1-40 to 1-41
procedure information
constants for 2-27 to 2-33
defined 1-16, 2-15
number of specifiable parameters 2-17, 2-20
specifying 2-14 to 2-21
procedure pointers 2-5 to 2-7
Process Manager, reading code fragment
resources 3-12
Pr ocl nf oType. See procedure information
Pr ocPt r. See procedure pointers
program counter 1-8, 1-11, 4-8, 4-12
prolog code 1-45
protocol handlers, specifying calling conventions
of 2-32
prototypes. See function prototypes

Q

@4 obal s data type 1-59
QuickDraw global variables 1-58 to 1-60

R

resource-based code. See also fat resources
executing 2-24 to 2-26
resource forks 1-31 to 1-34
closing 1-70
resources
accelerated. See accelerated resources
detaching 1-70
fat 1-71
private. See private resources
stub. See stub definition resources
resource types
"alis' 3-31
' CDEF' 1-36
"cfrg' 1-31to1-34,3-12to 3-13, 3-28 to 3-31
' LDEF 1-36
' MDEF' 1-36
' WDEF 1-36
'XOVMD  1-36
RESULT S| ZE macro 1-16, 2-16, 2-50
Rez 1-32, 1-38, 2-26, 3-12, 3-13, 3-28, 3-30, 3-31
ROM registry 3-6
Rout i neDescri pt or datatype 2-37 to 2-38
routine descriptor flags 2-27
routine descriptors 1-15 to 1-19, 2-6 to 2-7, 2-37 to 2-38.
See also universal procedure pointers
creating 2-39 to 2-41
defined 1-15, 2-6
disposing of 1-19, 2-41
executing code with 2-42 to 2-43
fat 2-24, 2-25
global 2-21
local 2-21 to 2-22
static 2-22 to 2-24
Rout i neRecor d data type 2-36
routine records 1-15 to 1-16, 2-36 to 2-37
RTE instruction 1-11
RTMinstruction 1-9
RTOC. See Table of Contents Register
run-time environment, defined 1-20. See also PowerPC
run-time environment; 680x0 run-time
environment
run-time libraries. See implementation versions

S

Red Zone 1-46 to 1-47

reentrancy, in exception handlers 4-9

REQ STER RESULT_LOCATI ONmacro 2-18, 2-50

REQ STER _ROUTI NE_PARAMETER macro 2-18, 2-50
Regi st er | nf or mat i on data type 4-8, 4-12 to 4-14
register information records 4-12 to 4-14

registers. See PowerPC microprocessor; 680x0 registers
Rel easeResour ce procedure 1-69
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SANE. See Standard Apple Numerics Environment
saved registers area 1-45

sections 1-22. See also code sections; data sections
Segnent edFr agnent data type 3-18

segment location records 3-18

Segment Manager 1-32

selector-based traps 1-68

self-modifying code 1-53
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Set A5 function 1-62 to 1-63
Set Appl Li m t procedure 1-60, 1-69, 1-70, 3-31
Set Qur r ent A5 function 1-63
Set & owZone procedure 1-69
Set OSTr apAddr ess procedure 1-67
Set Tool Tr apAddr ess procedure 1-67
Set Tr apAddr ess procedure 1-67
shared libraries. See import libraries
"shl b' file type 1-21, 3-6, 3-10
68881 floating-point unit 1-9
68882 floating-point unit 1-9
68851 Paged Memory Management Unit 1-9
680x0 registers. See also A0 register; A5 register;
A6 register; A7 register
unsupported results 1-10
SI ZE_CCDE macro 1-16, 2-50
smearing. See byte smearing
socket listeners, specifying calling conventions of 2-32
soft imports 1-25 to 1-26
SP. See stack pointer
SPEC AL_CASE PROO NFOmacro 2-50
special case routines 2-30 to 2-32
special-purpose registers 1-41, 1-44 to 1-46, 4-4, 4-8,
4-12
Special Status Word (SSW) 1-11
split traps 1-68
SSW. See Special Status Word
stack, specifying minimum size of 1-60, 3-31
stack frames 1-41, 1-42 to 1-47. See also switch frames
parameter area 1-44
stack pointer 1-8, 1-42, 2-10
STACK_RQUTI NE_PARAMETER macro 1-16, 2-50
stale instructions 1-10
Standard Apple Numerics Environment (SANE) 1-9
stub definition resources 1-35
switches. See mode switches
switch frames
PowerPC-t0-680x0 2-13 to 2-14
680x0-to-PowerPC 2-10 to 2-12
symbols 3-4
counting 3-14, 3-25 to 3-26
finding 1-38, 3-14, 3-24 to 3-26
System 7.1 1-4
system extensions, defined 1-21
system global variables 1-56 to 1-57, 1-69
system partition 1-56 to 1-57
system software
patching 1-66 to 1-68
for PowerPC processor-based Macintosh
computers 1-4to 1-6

T

table of contents 1-26 to 1-29
defined 1-26
maximum size of 1-29
Table of Contents Register (RTOC) 1-26, 1-27, 1-29,
1-45, 1-46, 2-11
tail patches 1-68
temporary memory 1-55
termination routines 3-28
and accelerated resources 1-38
defined 1-30
text display routines, specifying calling conventions
of 2-32
text width hook routines, specifying calling
conventions of 2-31
THINK C calling conventions 2-30
32-bit clean 1-4
Time Manager tasks 1-18, 1-60
TOC. See table of contents
tools. See application extensions
TrackControl procedure 1-17, 2-21
transition vectors 1-26 to 1-27
defined 1-26, 2-5
and exception handlers 4-17
trap patches. See patches
traps
selector-based 1-68
split 1-68

U

universal interface files 1-18 to 1-19, 1-57, 1-65, 2-6 to
2-7, 2-15, 2-17
universal procedure pointers 1-17 to 1-19, 2-6 to 2-7,
2-37. See also routine descriptors
and accelerated resources 1-37, 2-24 to 2-26
defined 2-6
executing code with 2-42 to 2-43
and fat patches 1-66
and universal interface files 2-15
used in stub definition functions 1-36
using 2-21 to 2-22
unloading code fragments 3-23 to 3-24
Unl oadSeg procedure 1-6
update levels, specifying for an import library 3-30
USESROUTI NEDESCR! PTCRS compiler variable 2-14,
2-39
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Vv

variable parameter lists 1-72
VBL tasks 1-18, 1-60 to 1-63
vectors. See transition vectors
versions
of import libraries 3-7 to 3-10
of routine descriptor 2-38
Vertical Retrace Manager 1-61 to 1-63
virtual memory 1-53 to 1-55
emulator support for 1-9
Virtual Memory Manager 1-4, 1-53

w

i t Next Event function 1-71

' WDEF' resources 1-36

weak imports. See soft imports

width hook routines, specifying calling conventions
of 2-31

window definition functions 1-36

word sizes Xxiii, 1-63

X

' XOMD resources 1-36
XCOFF. See Extended Common Obiject File Format

Z

zone headers 1-69
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