
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

QuickDraw GX Printing

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

APDA, Apple, the Apple logo,
LaserWriter, Macintosh, and StyleWriter
are trademarks of Apple Computer,
Inc., registered in the United States and
other countries.

ColorSync, Finder, and QuickDraw are
trademarks of Apple Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40677-2
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, June 1994

The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. QuickDraw GX printing / [by Apple Computer, Inc.].
p. cm.

Includes index.
ISBN 0-201-40677-2
1. Macintosh (Computer)—Programming. 2. Computer graphics.

3. QuickDraw GX. I. Apple Computer, Inc. II. Title: QuickDraw GX printing.
QA76.8.M3I562282 1994
005.7’1265—dc20 94-17336

CIP

iii

Contents

Figures, Tables, and Listings xi

Preface About This Book xv

What to Read xvi

Chapter Organization xvii

Conventions Used in This Book xviii

Special Fonts xviii

Types of Notes xviii

Numerical Formats xviii

Type Definitions for Enumerations xix

Illustrations xix

Development Environment xix

For More Information xx

Chapter 1 Introduction to Printing With QuickDraw GX 1-1

About QuickDraw GX Printing 1-3

Core Printing-Related Objects 1-6

Desktop Printers 1-7

Print Files 1-8

Printer Drivers 1-8

Printing Extensions 1-9

Dialog Boxes 1-10

Message Passing 1-13

About QuickDraw GX Printing-Related Objects 1-16

Job Objects 1-16

Format Objects 1-17

Paper-Type Objects 1-18

Collection Objects 1-18

Printer Objects 1-20

Print File Objects 1-20

Summary of QuickDraw GX Printing-Related Objects 1-20

Using Printing-Related Objects With Other QuickDraw GX Objects 1-23

Shape Objects 1-23

Tag Objects 1-24

View Port Objects 1-24

View Device Objects 1-25

iv

Implementing QuickDraw GX Printing Features 1-25

Core Printing Features 1-26

Customizing QuickDraw GX Printing Features 1-28

Advanced Printing Features 1-30

Compatibility With the Macintosh Printing Manager 1-30

Chapter 2 Core Printing Features 2-1

About Core Printing Features 2-3

Core Print Objects 2-5

Job Object Properties 2-5

Format Object Properties 2-7

Paper-Type Object Properties 2-8

Edit Menu Structure 2-9

Using Core Printing Features 2-10

Initializing QuickDraw GX Printing 2-11

Creating a Job Object for a Printable Document 2-12

Error Handling 2-14

Supporting QuickDraw GX Print Dialog Boxes 2-17

Printing Documents Using QuickDraw GX 2-20

Printing Pages as Single Picture Shapes 2-21

Printing Pages by Capturing Shapes 2-22

Saving a Job Object With a Document File 2-24

Saving a Job Object in a Single Handle 2-25

Saving a Job Object Using a Flattening Function 2-27

Disposing of a Job Object When Closing a Document 2-28

Retrieving a Job Object When Opening a Document 2-29

Retrieving a Job Object From a Handle 2-30

Retrieving a Job Object Using an Unflattening Function 2-32

Obtaining Object References 2-33

Obtaining Information From a Format Object 2-33

Displaying QuickDraw GX Print Dialog Boxes 2-35

Displaying the Page Setup Dialog Box 2-35

Displaying the Print Dialog Box 2-37

Supporting Printing From the Finder 2-39

Updating Job Object Information 2-42

Printing Macintosh Printing Manager Documents 2-44

Core Printing Features Reference 2-46

Constants and Data Types 2-46

Gestalt Selectors for Printing 2-47

QuickDraw GX Printing-Related Objects 2-47

Edit Menu Location 2-48

Dialog Box Results 2-48

v

Functions 2-49

Initializing and Terminating QuickDraw GX Printing Features 2-50

Handling Errors 2-52

Creating and Managing Job Objects 2-54

Printing With QuickDraw GX 2-61

Obtaining Information on Printing-Related Objects 2-68

Displaying the Page Setup and Print Dialog Boxes 2-71

Converting a Print Record 2-75

Application-Defined Functions 2-76

Message Override Functions 2-76

Flattening and Unflattening Functions for Job Objects 2-77

Summary of Core Printing Features 2-79

Chapter 3 Page Formatting and Dialog Box Customization 3-1

About Page Formatting and Dialog Box Customization 3-6

About Collection Objects 3-7

Collection Tag IDs and Item IDs 3-7

Item Structures 3-8

Categories of Collection Items 3-9

The Job Collection 3-10

The Format Collection 3-12

The Paper-Type Collection 3-14

About Page Formatting 3-15

Manipulating Format Objects 3-16

Mapping for Format Objects 3-18

Forms and Format Objects 3-20

Halftones and Format Collections 3-21

Dialog Box Customization 3-22

The Dialog Box Panel Resource 3-24

Responding to Panel Events 3-25

Automating Panel Events 3-25

Using Printing-Related Collection Objects 3-27

Accessing Data From a Collection Object 3-28

Using a Collection to Implement the Print One Copy Menu Item 3-29

Replacing Items in Collections 3-31

Specifying Page Ranges in the Job Collection 3-33

Using Format Objects and Collection Items to Format Pages 3-39

Creating a Format Object for a Page in a Document 3-40

Sharing Formats for Document Pages 3-44

Disposing of a Format Object for a Page in a Document 3-47

Using Forms With Format Objects 3-50

Storing Halftone Information in a Format Collection 3-52

Copying a Format Object for Use in Other Documents 3-54

Obtaining the Mapping From a Format Object 3-57

Obtaining a Paper-Type Object Associated With a Format 3-57

vi

Scanning Through a Job’s Format Objects 3-59

Associating Format Objects With Document Pages 3-61

Customizing QuickDraw GX Dialog Boxes 3-66

Adding Panels to Dialog Boxes 3-67

Setting Up Dialog Box Resources 3-70

Parsing Page Ranges 3-73

Page Formatting and Dialog Box Customization Reference 3-75

Constants for Loop Status Information 3-76

Constants for Collection Item Categories and Tag IDs 3-76

Collection Item Categories 3-76

Collection Tag ID 3-77

Constants and Data Types for Job Collection Items 3-78

Print-Job Information 3-78

Collation Information 3-80

Copies Information 3-81

Page-Range Information 3-81

Quality Information 3-83

File-Destination Information 3-83

File-Location Information 3-84

File-Format Information 3-84

File-Fonts Information 3-85

Paper-Feed Information 3-85

Manual-Feed Information 3-86

Standard Mapping Information 3-86

Special Mapping Information 3-87

Tray-Mapping Information 3-88

Print-Panel Information 3-88

Format-Panel Information 3-88

Paper-Mapping Information 3-89

Translated-Document Information 3-89

Constants and Data Types for Format Collection Items 3-89

Orientation Information 3-89

Scaling Information 3-91

Direct-Mode Information 3-91

Format-Halftone Information 3-92

Page-Inversion Information 3-92

Horizontal Page-Flip Information 3-93

Vertical Page-Flip Information 3-93

Precise-Bitmap Information 3-93

Paper-Type Lock Information 3-94

Constants and Data Types for Paper-Type Collection Items 3-94

Base Information 3-94

Creator Information 3-95

Units Information 3-96

Flags Information 3-97

Comment Information 3-97

vii

Panel-Related Constants and Data Types 3-98

The Panel Information Structure 3-98

Panel Events 3-99

Panel Responses 3-100

Panel Event Actions 3-101

The Panel Setup Structure 3-101

Printing Panel Kinds 3-102

Parse Range Results 3-102

Functions 3-103

Creating and Manipulating Format Objects 3-103

Manipulating Format Object Properties 3-109

Displaying the Custom Page Setup Dialog Box 3-113

Working With Panels 3-114

Accessing Printing-Related Collection Objects 3-117

Application-Defined Functions 3-119

Message Override Functions for Customizing QuickDraw GX Dialog

Boxes 3-119

Looping Through Format Objects 3-126

Dialog Box-Related Resources 3-127

The Panel Resource 3-127

The Extended Item List Resource 3-128

Summary of Page Formatting and Dialog Box Customization 3-133

Chapter 4 Advanced Printing Features 4-1

About Advanced Printing Features 4-5

Printer Objects 4-6

Printer Driver Types 4-7

Printer View Devices 4-8

Color Matching for Printers 4-9

Print File Objects 4-9

Synonyms 4-11

General-Purpose PostScript Operator Synonym 4-12

PostScript Control Information Synonym 4-13

Dash Synonym 4-14

Line Cap Synonym 4-14

Halftone Synonym 4-15

Pattern Synonym 4-17

Cubic Synonym 4-17

QuickDraw Picture Synonym 4-18

Printing Modes 4-19

Pen Tables for Vector Devices 4-20

viii

Using Advanced Printing Features 4-21

Using Advanced Job Object Functions 4-21

Obtaining Printer and Printer Driver Information for a Job 4-22

Getting and Setting the Reference Constant for a Job Object 4-23

Copying Job Object Information 4-25

Working With Printer Objects 4-25

Determining a Printer’s Resolution 4-26

Retrieving the Color Profile and Color Space for a Printer 4-27

Manipulating Print File Objects 4-29

Opening and Closing a Print File 4-29

Saving a Print File 4-30

Obtaining the Job Object for a Print File 4-30

Reading Print File Data 4-30

Counting the Pages in a Print File 4-31

Adding or Deleting Print File Pages 4-31

Defining Different Paper Sizes 4-31

Creating a Paper-Type Object 4-32

Obtaining the Name of a Paper Type 4-32

Obtaining the Dimensions of a Paper Type 4-33

Scanning the Paper Types Available to a Job 4-34

Implementing Direct-Mode Printing 4-35

Formatting for Text Job Format Mode Printing 4-36

Using Synonyms 4-38

Advanced Printing Features Reference 4-38

Constants and Data Types for Advanced Printing Features 4-39

Job Format Modes 4-39

Text Job Format (Direct) Mode 4-40

The Status Structure 4-42

Pen Tables for Vector Devices 4-43

Constants and Data Types for Synonyms 4-45

General-Purpose PostScript Operator Synonym 4-45

PostScript Control Information Synonym 4-45

Dash Synonym 4-46

Halftone Synonym 4-46

Line Cap Synonym 4-47

Pattern Synonym 4-47

Cubic Synonym 4-48

QuickDraw Picture Synonym 4-49

Functions 4-49

Advanced Job Object Functions 4-50

Manipulating Printer Objects 4-54

Working With QuickDraw GX Print Files 4-61

Working With Paper Types 4-71

Formatting for Specific Devices 4-79

Color Profile Functions 4-84

Idle Job Function 4-90

Application-Defined Functions 4-90

ix

Message Override Function for the Printing Status Dialog Box 4-90

Looping Through a Printer’s View Devices 4-92

Looping Through a Job’s Paper Types 4-92

The Status Resource 4-93

Summary of Advanced Printing Features 4-95

Glossary GL-1

Index IN-1

xi

Figures, Tables, and Listings

Preface About This Book xv

Figure P-1 Roadmap to the QuickDraw GX suite of books xvi

Chapter 1 Introduction to Printing With QuickDraw GX 1-1

Figure 1-1 QuickDraw GX printing phases 1-4
Figure 1-2 QuickDraw GX printing-related objects 1-7
Figure 1-3 Dragging a document to a desktop printer icon 1-8
Figure 1-4 Default QuickDraw GX desktop printer icons 1-9
Figure 1-5 The Print dialog box 1-11
Figure 1-6 The expanded Print dialog box 1-11
Figure 1-7 The Print Time panel 1-12
Figure 1-8 The Paper Match panel 1-12
Figure 1-9 Message handlers in a message chain 1-14
Figure 1-10 Overriding the gxPrintingEvent message 1-15
Figure 1-11 Effect of specifying a shape in the form property of a format

object 1-17
Figure 1-12 A paper type for printing on letterhead paper 1-18
Figure 1-13 QuickDraw GX printing-related objects 1-21
Figure 1-14 Printing-related items in the File menu 1-25
Figure 1-15 Manipulating the job object in response to user actions 1-27
Figure 1-16 Printing a document containing multiple formats 1-29

Table 1-1 QuickDraw GX printing-related objects 1-22

Chapter 2 Core Printing Features 2-1

Figure 2-1 Objects needed to implement core printing features 2-4
Figure 2-2 The job object 2-6
Figure 2-3 The format object 2-7
Figure 2-4 The paper-type object 2-8
Figure 2-5 The Page Setup dialog box 2-35
Figure 2-6 The expanded Page Setup dialog box 2-36
Figure 2-7 The Print dialog box 2-38
Figure 2-8 The expanded Print dialog box 2-38

Listing 2-1 Creating a job object for a printable document 2-12
Listing 2-2 Polling for errors after individual functions 2-15
Listing 2-3 Polling for errors after groups of functions 2-16
Listing 2-4 Override function for the gxPrintingEvent message 2-19
Listing 2-5 Using the GXPrintPage function to print a document 2-21
Listing 2-6 Using the GXStartPage, GXDrawShape, and GXFinishPage

functions to print a document 2-23

xii

Listing 2-7 Using the GXFlattenJobToHdl function to save a job
object 2-25

Listing 2-8 Using the GXFlattenJob function to save a job object 2-28
Listing 2-9 Disposing of a job object when you close a document 2-29
Listing 2-10 Using the GXUnflattenJobFromHdl function to retrieve a job

object 2-30
Listing 2-11 Using the GXUnflattenJob function to retrieve a job

object 2-32
Listing 2-12 Using the GXGetFormatJob function to obtain a job object 2-33
Listing 2-13 Using the GXGetFormatDimensions function 2-34
Listing 2-14 Displaying the Page Setup dialog box 2-36
Listing 2-15 Displaying the Print dialog box 2-39
Listing 2-16 Responding to the Print Documents Apple event and specifying an

output printer 2-40
Listing 2-17 Updating a job when receiving resume events 2-43
Listing 2-18 Converting a print record into a job object 2-45

Chapter 3 Page Formatting and Dialog Box Customization 3-1

Figure 3-1 The job collection 3-10
Figure 3-2 The format collection 3-12
Figure 3-3 The paper-type collection 3-14
Figure 3-4 A three page document and its corresponding job and format

objects 3-15
Figure 3-5 Manipulating the format object in response to user actions 3-17
Figure 3-6 Scaling a format object 3-19
Figure 3-7 Using a form to format a page 3-20
Figure 3-8 The expanded Custom Page Setup dialog box with two

panels 3-22
Figure 3-9 Print dialog box with default page range 3-35
Figure 3-10 Print dialog box with replacement page range 3-37
Figure 3-11 Print dialog box with customized page range 3-39
Figure 3-12 The Custom Page Setup dialog box 3-40
Figure 3-13 The expanded Custom Page Setup dialog box 3-40
Figure 3-14 A four-page document in which page two uses a unique format

object 3-41
Figure 3-15 A four-page document in which pages 2 and 3 use the same

format object 3-45
Figure 3-16 A four-page document in which pages 2 and 3 use unique formats

objects 3-48
Figure 3-17 Moving a format object from one document to another 3-55
Figure 3-18 A three-page document and its corresponding job object, format

objects, and paper-type objects 3-58
Figure 3-19 A panel added to the Custom Page Setup dialog box 3-70
Figure 3-20 Panel resource 3-127
Figure 3-21 Extended item list resource 3-128
Figure 3-22 Radio button items 3-129
Figure 3-23 Checkbox and pop-up menu items 3-130
Figure 3-24 Integer and real edit text items 3-131
Figure 3-25 String editable text items 3-132

Table 3-1 Functions that enable dialog box panels 3-23

xiii

Table 3-2 Functions that forward a dialog box message 3-24

Listing 3-1 A panel resource definition template 3-24
Listing 3-2 The extended item list resource definition template 3-26
Listing 3-3 Accessing copies information stored in a job collection 3-28
Listing 3-4 Modifying the job collection to implement the Print One Copy menu

item 3-29
Listing 3-5 Replacing collection items 3-31
Listing 3-6 Setting up a default page range 3-33
Listing 3-7 Setting up a replacement page range 3-35
Listing 3-8 Setting up a customized page range 3-37
Listing 3-9 Creating a format object for a page in a document 3-42
Listing 3-10 Cloning a format object for two pages in a document 3-46
Listing 3-11 Disposing of a format object for a page in a document and creating

a new one 3-49
Listing 3-12 Adding a form to a format object 3-51
Listing 3-13 Storing halftone information in a format collection 3-53
Listing 3-14 Moving a format object from one document to another 3-56
Listing 3-15 Obtaining a format object’s mapping 3-57
Listing 3-16 Obtaining the paper-type object associated with a format

object 3-59
Listing 3-17 Using the GXForEachJobFormatDo function 3-60
Listing 3-18 Obtaining scaling information on each format object 3-61
Listing 3-19 Saving the correspondence between format objects and document

pages in a format collection 3-62
Listing 3-20 Filling the handle 3-63
Listing 3-21 Retrieving the correspondence between document pages and

format objects from a format collection 3-65
Listing 3-22 Setting up a new panel 3-68
Listing 3-23 Sample panel resource 3-70
Listing 3-24 Sample item list resource 3-71
Listing 3-25 Sample 'CNTL' resource 3-72
Listing 3-26 Sample extended item list resource 3-72
Listing 3-27 Sample 'MENU' resource 3-73
Listing 3-28 Installing an override function for the gxParsePageRange

message 3-74
Listing 3-29 Override function for the gxParsePageRange message 3-75

Chapter 4 Advanced Printing Features 4-1

Figure 4-1 The printer object 4-6
Figure 4-2 The print file object 4-10
Figure 4-3 The status resource 4-93

Table 4-1 Printer driver types 4-7
Table 4-2 QuickDraw GX printing synonyms 4-12
Table 4-3 Print job format modes 4-20
Table 4-4 Text job format mode query options 4-36
Table 4-5 Status type IDs 4-43
Table 4-6 The actions of the GXSetPrinterProfile function 4-87
Table 4-7 The actions of the GXSetFormatProfile function 4-89

xiv

Table 4-8 Status types 4-94

Listing 4-1 Obtaining the names and types of a printer and printer
driver 4-22

Listing 4-2 Setting the job object’s reference constant property 4-23
Listing 4-3 Getting the job object’s reference constant property 4-24
Listing 4-4 Copying job object information 4-25
Listing 4-5 Determining a printer’s resolution 4-26
Listing 4-6 Retrieving the printer’s color profile and color space 4-27
Listing 4-7 Using the printer’s color profile to convert colors 4-28
Listing 4-8 Opening and closing a print file 4-29
Listing 4-9 Reading a page from a print file 4-31
Listing 4-10 Creating a new paper-type object 4-32
Listing 4-11 Obtaining a paper-type object’s name 4-32
Listing 4-12 Obtaining page and paper rectangles for a paper-type

object 4-33
Listing 4-13 Executing a function for each paper-type object 4-34
Listing 4-14 Executing a procedure for each paper-type object 4-35

xv

P R E F A C E

About This Book

QuickDraw GX is an integrated, object-based approach to graphics

programming on Macintosh computers. This book, Inside Macintosh:
QuickDraw GX Printing, describes how to design your application to use the

printing features of QuickDraw GX. It begins with an introduction to printing

with QuickDraw GX and discusses architectural aspects of QuickDraw GX

printing features—printing-related objects and the user interfaces. Then the

book separates QuickDraw GX printing features into core features, page

formatting and dialog box customization, and advanced features. You only

need to read as many chapters as apply to your application’s printing needs.

Before you begin this book, you should already be familiar with the

QuickDraw GX environment and QuickDraw GX objects. An overview of the

environment and objects is provided in the introductory chapter of Inside
Macintosh: QuickDraw GX Objects. Complete information can be found in

Inside Macintosh: QuickDraw GX Environment and Utilities and the other

chapters of Inside Macintosh: QuickDraw GX Objects.

For more information about programming with QuickDraw GX, you need to

refer to other books in the QuickDraw GX suite, including Inside Macintosh:
QuickDraw GX Objects, Inside Macintosh: QuickDraw GX Graphics, and Inside
Macintosh: QuickDraw GX Typography. If you need information on how to use

QuickDraw GX to write printer drivers or printing extensions, see Inside
Macintosh: QuickDraw GX Printing Extensions and Drivers.

xvi

P R E F A C E

Figure P-1 shows the suggested reading order for the QuickDraw GX suite of

books. A pictorial overview of Inside Macintosh, including the QuickDraw GX

suite of books, appears inside the back cover.

Figure P-1 Roadmap to the QuickDraw GX suite of books

What to Read

This book is intended for developers who are interested in providing a

QuickDraw GX printing capability in their applications. You can design your

application to use the QuickDraw GX application-programming interface

(API) for printing, even if the application doesn’t use the graphics and

typographic capabilities of QuickDraw GX.

xvii

P R E F A C E

In this book, each succeeding chapter builds on the previous chapter’s

information. So it’s important to begin by learning the QuickDraw GX

printing concepts and terms that are in Chapter 1, “Introduction to Printing

With QuickDraw GX.” This chapter presents an overview of printing with

QuickDraw GX and briefly describes the dialog boxes that QuickDraw GX

provides for user interaction with the printing process.

Most applications only need to support the set of printing features that are

described in Chapter 2, “Core Printing Features.” You use the core printing

features when printing documents using QuickDraw GX. You also use them

to display the standard printing-related dialog boxes and to print documents

that were originally created to print with previous versions of the Macintosh

printing architecture.

However, if you want to add panels to QuickDraw GX print dialog boxes to

provide special features that require additional user specification, or if you

want to manipulate the objects that QuickDraw GX uses to format the pages

of a document, you also need to read Chapter 3, “Page Formatting and

Dialog Box Customization.” For example, through QuickDraw GX, your

application can allow users to specify unique formats for the individual pages

of a printable document.

Features that go beyond the core set and beyond those that allow you to

handle page-by-page formatting and dialog box customization are described

in Chapter 4, “Advanced Printing Features.” You can use these features to

optimize output for the capabilities of a particular device, create a file that is

application-independent, define custom paper sizes, and more.

The first two pages of this book are color plates. Plate 1 shows and example of

the QuickDraw GX color separation capability. Plate 2 shows common

color-transfer modes used in printing.

Chapter Organization

Most chapters in this book follow a standard general structure. For example,

the chapter “Core Printing Features” contains these sections:

■ “About Core Printing Features.” This section provides an overview of the
core printing features provided by QuickDraw GX.

■ “Using Core Printing Features.” This section describes the tasks you can
accomplish using the core printing features of QuickDraw GX. It describes
how to use the most common functions, gives related user interface
information, provides code samples, and supplies additional information.

xviii

P R E F A C E

■ “Core Printing Features Reference.” This section provides a complete
reference for the core printing calls by describing the data structures and
functions you can use. Each function description follows a standard
format, which gives the function declaration; a description of every
parameter; the function result, if any; and a list of result codes. Most
function descriptions give additional information about using the function
and include cross-references to related information elsewhere.

■ “Summary of Core Printing Features.” This section shows the C interface
for the constants, data types, and functions associated with the core
printing features.

Conventions Used in This Book

This book uses various conventions to present certain types of information.

Special Fonts
All code listings, reserved words, and the names of data structures, constants,

fields, parameters, and functions are shown in Courier (this is Courier).

When new terms are introduced, they are in boldface. These terms are also

defined in the glossary.

Types of Notes
There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-10.) ◆

IMPORTANT

A note like this contains information that is especially important. (An
example appears on page 2-49.) ▲

Numerical Formats
Hexadecimal numbers are shown in this format: 0x0008.

The numerical values of constants are shown in decimal, unless the constants

are flag or mask elements that can be summed, in which case they are shown

in hexadecimal.

xix

P R E F A C E

Type Definitions for Enumerations
Enumeration declarations in this book are commonly followed by a type

definition that is not strictly part of the enumeration. You can use the type to

specify one of the enumerated values for a parameter or field. The type name

is usually the singular of the enumeration name, as in the following example:

enum gxDashAttributes {

gxBendDash = 0x0001,

gxBreakDash = 0x0002,

gxClipDash = 0x0004,

gxLevelDash = 0x0008,

gxAutoAdvanceDash = 0x0010

};

typedef long gxDashAttribute;

Illustrations
This book uses several conventions in its illustrations.

In illustrations that show object properties, properties that are object

references are in italics. For example, see Figure 1-13 on page 1-21.

Objects in diagrams, whether shown with their properties or without, are

represented by distinctive icons, such as these:

See, for example, Figure 1-2 on page 1-7.

Development Environment

The QuickDraw GX functions described in this book are available using C

interfaces. How you access these functions depends on the development

environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of

using various functions and illustrate techniques for accomplishing particular

tasks. Although most code listings have been compiled and tested, Apple

Computer, Inc., does not intend for you to use these code samples in your

applications.

xx

P R E F A C E

For More Information

APDA is Apple’s worldwide source for hundreds of development tools,

technical resources, training products, and information for anyone interested

in developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and

the most popular third-party development tools. APDA offers convenient

payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Introduction to Printing

Contents

With QuickDraw GX

About QuickDraw GX Printing 1-3

Core Printing-Related Objects 1-6

Desktop Printers 1-7

Print Files 1-8

Printer Drivers 1-8

Printing Extensions 1-9

Dialog Boxes 1-10

Message Passing 1-13

About QuickDraw GX Printing-Related Objects 1-16

Job Objects 1-16

Format Objects 1-17

Paper-Type Objects 1-18

Collection Objects 1-18

Printer Objects 1-20

Print File Objects 1-20

Summary of QuickDraw GX Printing-Related Objects 1-20

Using Printing-Related Objects With Other QuickDraw GX Objects 1-23

Shape Objects 1-23

Tag Objects 1-24

View Port Objects 1-24

View Device Objects 1-25

Implementing QuickDraw GX Printing Features 1-25

Core Printing Features 1-26

Customizing QuickDraw GX Printing Features 1-28

Advanced Printing Features 1-30

Compatibility With the Macintosh Printing Manager 1-30

C H A P T E R 1

About QuickDraw GX Printing 1-3

Introduction to Printing With QuickDraw GX

This chapter introduces the primary features of printing with QuickDraw GX and gives

you the overview you need to begin designing your application with printing in mind.

Before reading this chapter, you should be familiar with the general QuickDraw GX

capabilities, and especially, you should be familiar with the use of objects. For an

overview of QuickDraw GX and objects, see the introductory chapter of Inside Macintosh:
QuickDraw GX Objects.

This chapter begins by showing how QuickDraw GX printing works and which phases

of printing are of interest to the application developer. It also provides background

information to set the stage for the remaining sections. This chapter then

■ introduces QuickDraw GX objects that directly support printing

■ describes how these printing-related objects are used with other QuickDraw GX
objects

■ describes a strategy for implementing QuickDraw GX printing features

■ discusses compatibility between QuickDraw GX printing and the Macintosh Printing
Manager

About QuickDraw GX Printing

Printing with QuickDraw GX involves the interaction of your application program with

components that QuickDraw GX provides, or components that may be provided by a

printer manufacturer or other vendor. These components are

■ printer drivers that translate QuickDraw GX shapes into instructions for rendering the
shapes on a device

■ printing extensions that provide additional capabilities for the printing system

QuickDraw GX actually performs most of the translation work itself so that the

developer of a printer driver or printing extension can concentrate on the unique

features or characteristics of a printing device. As an application developer, your work

primarily consists of responding to printing-related menu selections and dialog boxes

within the application.

To understand the division of labor, consider the model of QuickDraw GX printing

phases in Figure 1-1.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-4 About QuickDraw GX Printing

Figure 1-1 QuickDraw GX printing phases

There are four phases of printing:

■ The application phase, in which the application calls QuickDraw GX functions in
response to the user choosing a menu item or changing an item in a dialog box. For
example, when the user selects Print from the menu, the application calls functions to

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing 1-5

display the Print dialog box and respond to the user’s choices. One of the
application’s responses is to print the requested pages of a document, which leads to
the spooling phase of printing.

■ The spooling phase, in which the requested pages are placed in a spool file. The
application calls QuickDraw GX functions to perform this task, which is carried out
collaboratively by QuickDraw GX, the printer driver, and any printing extensions that
are active. From the application developer’s point of view, it is seldom necessary to
know how the work is divided between QuickDraw GX, a printer driver, or a printing
extension. Thus, in this book, all collaborative efforts by these components are
considered as being performed by the printer driver.

■ The imaging phase, in which the requested pages are despooled by the printer driver
and the contents are translated into instructions for the printer.

■ The device communications phase, in which the instructions are actually sent to the
printer hardware.

As an application developer, you are primarily concerned with the application phase of

printing. You may be interested indirectly in events in other phases because some of

those events can be controlled by the application. For example, your application can

provide alternative instructions for rendering output, rather than use the instructions

generated by the printer driver. These alternative instructions are called synonyms. As

another example, the application can retrieve and modify the contents of a file after it has

been spooled.

This book provides all the information you need to implement QuickDraw GX printing

in an application. For information about implementing printer drivers or printing

extensions, see Inside Macintosh: QuickDraw GX Printing Extensions and Drivers. The

following sections introduce topics that provide conceptual background for

implementing QuickDraw GX printing features. The topics are

■ Core printing-related objects, which are objects that are used in every application and
work together to support QuickDraw GX printing.

■ Desktop printers, which represent printers to the user as icons on the desktop.

■ Print files, which are the output of the spooling phase. A special kind of print file that
can be opened and displayed without needing the fonts or application with which it
was created is called a portable digital document, or PDD.

■ Printer drivers, which are responsible for defining the characteristics of the printing
environment in addition to providing translation between the QuickDraw GX
graphics representation of a page and the instructions that render it on a printer.

■ Printing extensions, which are add-on software that provide an additional level of
customization to QuickDraw GX printing.

■ Dialog boxes, which are extensible in QuickDraw GX and, if extended, use additional
resource types. Dialog boxes also require additional support because they are
movable, requiring the screen behind them to be redrawn when they are moved.

■ Message passing, which is the basic technique used by the QuickDraw GX printing
system to communicate between the application, printer driver, and printing
extensions. It is also the technique used to notify the application when dialog boxes
are moved.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-6 About QuickDraw GX Printing

Core Printing-Related Objects
QuickDraw GX uses objects to represent printing-related data in the same way it uses

objects in its other major components, graphics and typography. The core QuickDraw

GX printing-related objects are job objects, format objects, and paper-type objects. There

are other printing-related objects that provide additional information in support of the

core objects or represent printers and files.

Because printing-related objects are interrelated, this section briefly describes how these

objects work together to provide a complete specification for printing a document. For a

more detailed description of each object, including those that support the core

printing-related objects, see “About QuickDraw GX Printing-Related Objects” on

page 1-16. The other chapters in this book provide a complete description of the

printing-related objects and show how to use them.

In QuickDraw GX printing, a job object specifies everything QuickDraw GX needs to

render a document. The most important specifications include the following ones;

however, there are many others:

■ which pages to print

■ which printer is to receive the output

■ how to format the document; for example, for a particular page size and orientation,
such as 8.5-by-11 inches and landscape

The pages to print and the printer on which to print them are typically straightforward

specifications. The formatting specification can be more involved, however, because

QuickDraw GX provides these formatting features:

■ You can print to a printer other than the one the document is formatted for; in other
words, you can print without automatically reformatting the document.

■ You can specify a different format for each page of a document.

To support the first feature, the job object retains the formatting information for the

formatting printer separately from the formatting information for the output printer.

This allows a print job to be associated with two printers at the same time. The

formatting printer specifies the document’s format. The output printer is the printer to

which the document is sent to be printed. The document retains the format specified by

the formatting printer even though the output printer may affect the appearance of the

printed document. This feature is useful, for example, if you have formatted a long

document for a typesetter but want to make a final check of a page or two on a

StyleWriter printer.

To support the second feature, QuickDraw GX provides a format object. A format object

can be specified for each page as it is printed. All pages can use the same format object,

or selected pages can use different format objects. If desired, each page could use a

different format object. You might also print the same page several times, each time

specifying a different format object.

Associated with a format is a paper-type object. A paper-type object specifies the

characteristics of the paper on which a page is printed. A paper-type object is separate

from a format object because several format objects can share the same paper-type object.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing 1-7

Collection objects contain additional but less frequently used information about the job,

formats, and paper types. The printer object represents a printer, and the print file object

represents the spooled document or a portable digital document. Figure 1-2 shows the

relationship between the core printing-related objects, the collection objects that support

them, and the printer and print file objects.

Figure 1-2 QuickDraw GX printing-related objects

For more information about each object, see “About QuickDraw GX Printing-Related

Objects” on page 1-16.

Desktop Printers
In QuickDraw GX, a printer is represented by an icon on the desktop, which is similar to

the way a hard disk or a shared volume is represented on the desktop. Thus, in

QuickDraw GX, printers are often called desktop printers. A desktop printer is more

than just an icon, however, because a desktop printer is associated with a queue to which

print jobs are sent. A desktop printer also provides the ability to control the queue and to

control the hardware itself with software.

A user can print from the Finder by dragging the document to the desktop printer icon.

Figure 1-3 shows the user dragging the document “My file” to the desktop printer icon

named “Gutenberg.” When the user releases the mouse, QuickDraw GX puts the print

file representation of the document into the printer’s queue.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-8 About QuickDraw GX Printing

Figure 1-3 Dragging a document to a desktop printer icon

Your application must implement the Print Document Apple event that allows Finder

printing. For more information about Finder printing, see the chapter “Core Printing

Features” in this book.

Print Files
A print file is a document that has been spooled to a file through the printing process.

The only way to create a print file is to print from the application, which causes the

document’s contents to be spooled in a print file. If you wish, your application can

retrieve a print file and insert, delete, or replace pages.

One kind of file an application might retrieve is a portable digital document, which is the

kind of file that is created by selecting the PDD Maker GX desktop printer icon and then

printing the document or by dragging the document to the icon. For an example of this

icon, see Figure 1-4 on page 1-9.

Printer Drivers
A QuickDraw GX printer driver defines the characteristics of a printer and the services

the printer provides. The printer driver also translates QuickDraw GX shapes into

instructions or operators that the printer understands, such as PostScript™. In reality,

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing 1-9

much of a printer driver’s standard functionality, such as PostScript conversion, is

performed by QuickDraw GX for the printer driver.

From the application developer’s point of view, it is useful to group printer

driver-supplied features, printing extension-supplied features, and QuickDraw GX

rendering features together because they are represented by the printer object. You can

query the printer object for the characteristics of a printer, whether set by the printer

driver, printing extension, or QuickDraw GX.

For example, your application can query the printer object to determine how best to

print to the device that the printer object represents. Many of the default settings, such as

page size and landscape or portrait orientation, are specified by the printer driver.

The printer driver is responsible for providing the printer icon to display on the desktop.

Figure 1-4 shows examples of desktop printer icons for various devices.

Figure 1-4 Default QuickDraw GX desktop printer icons

These devices need not represent actual physical devices on the system. In particular, the

portable digital document printer driver, represented by the PDD Maker GX icon, is

used only to create a document that is packaged ready-to-view on another computer.

Printing Extensions
A QuickDraw GX printing extension defines add-on functionality that may be useful for

several applications and whose usefulness is not restricted to a particular printer driver.

For example, you may want a light-gray “Confidential” banner to appear as the

backdrop on each printed page. Because several applications may need this kind of

feature and these applications may print to a variety of printers, this kind of feature

typically is implemented in a printing extension rather than as part of the application or

printer driver.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-10 About QuickDraw GX Printing

Note
If you wish to provide functionality similar to a printing extension, such
as a backdrop banner specific to your application, you can create a form
shape and attach it to your format object. For an example of a form
shape, see Figure 1-11 on page 1-17. For information about the form
property of the format object, see the chapter “Page Formatting and
Dialog Box Customization” in this book. ◆

Dialog Boxes
QuickDraw GX print dialog boxes provide several key features:

■ They are extensible, which allows you to collect or display information that is not in
the default dialog boxes.

■ They are movable in addition to being modal. The ability to drag a dialog box around
the screen overcomes some of the inconvenience of modality in that the user can move
the dialog box if needed information in an underlying window is obscured. The user
is allowed to switch to a different application while the dialog box is active, as well.

■ They can be set up to provide cut, copy, and paste editing operations.

■ The application’s response to user choices in a dialog box can be automated by
specifying actions in resources associated with the dialog box; less procedural code is
required in the application.

QuickDraw GX provides three kinds of print dialog boxes that you can access in your

application:

■ The Print dialog box appears in response to a request to print a document.

■ The Page Setup dialog box appears in response to a request to change the default
formatting for the document.

■ The Custom Page Setup dialog box appears in response to a request to change the
formatting of individual pages within a document.

In addition to these dialog boxes, the Printing Status dialog box appears when the

application is spooling a document to a print file.

Most dialog boxes display in both a normal view and an expanded view. You use the

normal view to display and accept the minimum amount of information that allows the

user to conveniently proceed with the task. Figure 1-5 shows the default Print dialog box

in its normal view.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing 1-11

Figure 1-5 The Print dialog box

The expanded view displays the complete range of options. Figure 1-6 shows the

expanded view of the Print dialog box.

Figure 1-6 The expanded Print dialog box

Expanded views are divided into panels, which are subsets of the dialog box used to

display and collect related pieces of information. You can add panels to a dialog box in

the same way that a printer driver or printing extension may add panels. In Figure 1-6,

the expanded view is currently displaying information in the General panel. Each panel

is associated with an icon that displays in a scrolling list to the left of the panel. The

name of the panel appears underneath its icon.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-12 About QuickDraw GX Printing

Figure 1-7 shows the Print Time panel. This panel allows a user to specify information

related to a particular print job, such as the print job’s priority and designated time to

print.

Figure 1-7 The Print Time panel

Figure 1-8 shows the Paper Match panel. This panel allows a user to specify information

related to a print job’s paper type, such as standard or special paper mapping.

Figure 1-8 The Paper Match panel

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing 1-13

You can use the following resources to add panels to dialog boxes:

Additional resources may be needed. For example, many items in a dialog box are

themselves defined as control or menu resources.

As mentioned previously, QuickDraw GX print dialog boxes are movable as well as

being modal. When a user moves a dialog box, you are responsible for redrawing the

screen that was behind it. QuickDraw GX notifies you that an update event occurred

when this happens. The notification is provided by QuickDraw GX passing a message to

the application, as described in the next section.

Message Passing
QuickDraw GX printing features are based on a message-passing architecture. The

messaging technology used with QuickDraw GX is described in the Message Manager

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. This section

provides you with a brief overview so that you can respond to messages passed to your

application.

QuickDraw GX sends printing messages when certain printing-related tasks need to be

accomplished or when certain printing-related conditions arise, such as when a print

dialog box is displayed or the user moves the dialog box. A printing message is a value

that QuickDraw GX passes down a chain of message handlers. A message handler is the

recipient of a message and can include the application, the printer driver, and any

printing extensions. The message chain consists of eligible message handlers.

The application can install itself as a message handler for particular messages. Typically,

these messages relate to dialog boxes. The message handler specifies the code to execute

when the message is received. This code is called an override function because it

overrides the actions of the other message handlers by changing the behavior associated

with the message.

The override function can forward the message so that other message handlers can act

on it. This situation is described as a partial override. If the function does not forward

the message, the situation is described as a total override because other message

handlers do not have a chance to act on the message.

Resource Type Description

Item list resource 'DITL' Specifies a list of items in a dialog box, as
described in the Dialog Manager chapter of Inside
Macintosh: Macintosh Toolbox Essentials.

Panel resource 'ppnl' Names a panel and associates it with an item list
resource and an icon resource. For more
information, see the chapter “Page Formatting and
Dialog Box Customization” in this book.

Extended item list
resource

'xdtl' Specifies the actions to take when an item is
manipulated; for example, when the user clicks a
radio button. For more information, see the
chapter “Page Formatting and Dialog Box
Customization” in this book.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-14 About QuickDraw GX Printing

If you are in doubt about whether to create a total override or not, try a partial override

first because a total override may prevent an overlooked piece of code from being

executed. For example, someone could provide a printing extension after your

application has been distributed. The printing extension may rely on intercepting a

message that was not previously required to be forwarded by your application and, thus,

create an incompatibility between your application and the printing extension.

Two examples follow that show the typical cases in which an application needs to

override QuickDraw GX messages. The first example shows how messages are involved

in displaying a dialog box. The second example shows how a message is involved in

handling movable dialog boxes.

When the user chooses the Print menu item, your application may wish to add a panel to

the Print dialog box before it is displayed. Because you want the printer driver to

provide the default dialog box, you install a message handler so you can override the

Print dialog box message, gxJobPrintDialog. Figure 1-9 shows how this override

happens with several message handlers in a message chain: the application, a printing

extension, a printer driver, and QuickDraw GX.

Figure 1-9 Message handlers in a message chain

The application calls the GXJobPrintDialog function to display the dialog box. This

function also causes QuickDraw GX to pass the gxJobPrintDialog message down the

message chain, starting with the application. Because the application installed a function

to respond to this message, the application’s override function is called. (The override

function is not shown in Figure 1-9.)

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing 1-15

The override function is an application-defined function that is executed when

QuickDraw GX sends the application the gxJobPrintDialog message. The override

function adds a panel to the dialog box and forwards the message. By forwarding a

message, each handler in the message chain—the application, printer driver, and

printing extensions—participates in building the dialog box. The chapter “Page

Formatting and Dialog Box Customization” in this book discusses the messages your

application must override to add panels to QuickDraw GX movable modal dialog boxes.

Figure 1-10 shows an application that installs a function to be called when

QuickDraw GX sends the gxPrintingEvent message. QuickDraw GX sends this

message in response to an event, which allows the application to redraw a portion of the

screen if the event is an update event caused by the user moving the dialog box.

Figure 1-10 Overriding the gxPrintingEvent message

The override function that responds to the message has the responsibility to determine

the kind of event that occurred and to redraw the invalid part of its windows if the event

is an update event. This override function does not need to forward the message in this

case because once the task is done, no other handler needs to take action. Thus, the

function provides a total override of the gxPrintingEvent message in this case. For an

example of an override function for this message, see the chapter “Core Printing

Features” in this book.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-16 About QuickDraw GX Printing-Related Objects

About QuickDraw GX Printing-Related Objects

The section “Core Printing-Related Objects” on page 1-6 describes how the job, format,

and paper-type objects interrelate to define the printing environment for a document.

The following sections describe each of the QuickDraw GX printing-related objects in

more detail. At the end of these sections is a summary.

Job Objects
The job object represents a print job that controls the way a document is printed. It

contains properties to reference a formatting printer and an output printer. The

formatting printer controls how the document is formatted. The output printer is the

printer on which pages are printed. These specifications allow a document to be printed

on the output printer yet retain the format specified by the formatting printer.

The job object also specifies additional properties, which include the following:

■ Reference constant. This property can be used for any application-specific purpose.
For example, it can point to the contents of a document. It is discussed in the chapter
“Advanced Printing Features” in this book.

■ Error. This property contains the last error associated with the print job. For
information about accessing the error code, see the chapter “Core Printing Features”
in this book.

■ Format list. This property specifies all of the formats that may be used with this print
job. The first format in the list is the default format. For information about accessing
the format list, see the chapter “Core Printing Features” in this book.

■ Paper-type list. This property specifies all of the paper types that may be used with
this print job. The printer driver specifies the paper types in this list, although you can
create new ones and add them to the list.

■ Format mode. This property specifies the preferred mode of printing the document
associated with the print job; for example, using QuickDraw GX shape rendering,
using raw PostScript, or using built-in fonts in the printer. For more information about
the job format mode, see the chapter “Advanced Printing Features” in this book.

■ Page range. This property specifies the pages to print. For information about
determining the page range, see the chapter “Core Printing Features” in this book.

■ Panel dimensions. This property specifies the size of panels in print dialog boxes,
such as the Print and Page Setup dialog boxes. It is useful if you do not use the
extended dialog item list resource to process events in dialog boxes and need to know
where an event, such as a mouse-down event, occurred.

A job object also refers to a collection of items that can be specified for a print job. For

more information about the job collection, see “Collection Objects” on page 1-18.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing-Related Objects 1-17

Most other objects refer to the job object. The reference allows the other objects to obtain

information about the print job with which they are associated, and it especially allows

them access to the reference constant property that points to application-specific

information.

Format Objects
A format object specifies how a document or page of a document is to be formatted. The

format object includes the following properties:

■ Dimensions. This property specifies size of the printable area. For more information
about the dimensions property, see the chapter “Core Printing Features” in this book.

■ Mapping. This property determines the scale and orientation of the page. The
mapping also determines the translation, skewing, and perspective as well; however,
these are seldom changed. For more information about the mapping property, see the
chapter “Page Formatting and Dialog Box Customization” in this book.

■ Form. This property specifies a shape object to print as a backdrop on each page of
output and a mask shape that defines erasable areas within the form. For example, a
form shape may provide a template so that each page of the document appears as if it
is positioned within the template, or the form shape may appear as a logo or banner
behind the contents of a page. For more information about form shapes, see the
chapter “Page Formatting and Dialog Box Customization” in this book.

■ Paper-type. This property contains a reference to the paper-type object associated
with this format. Because the paper-type object can restrict the printable area, you can
use a paper-type object to change the printable area. For more information about the
paper-type property, see the chapter “Advanced Printing Features” in this book.

A format object also refers to a collection of items that can be specified for a format. For

more information about the format collection, see “Collection Objects” on page 1-18.

In the format object itself, you may change only the form property and the paper types.

Figure 1-11 shows a form shape and how it can be used to format a document.

Figure 1-11 Effect of specifying a shape in the form property of a format object

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-18 About QuickDraw GX Printing-Related Objects

Paper-Type Objects
A paper-type object defines a paper type for a format. The paper-type object includes

the following properties:

■ Name. This property specifies the name of the paper type. This name can be used to
allow the user to select a paper type in a dialog box and is also used for paper
matching.

■ Dimensions. This property specifies the size of the paper and the size of the printable
area within the paper. This property allows you to specify a printable area that is
different from the area specified by the dimensions property of the format object.

A paper-type object also refers to a collection of items that can be specified for a paper

type. For more information about the paper-type collection, see the next section,

“Collection Objects.”

Figure 1-12 shows an example of a paper type that restricts the printable area for

printing on letterhead paper.

Figure 1-12 A paper type for printing on letterhead paper

Paper-type objects are introduced in the chapter “Core Printing Features” in this book.

Their use in defining different paper sizes is described in the chapter “Advanced

Printing Features” in this book.

Collection Objects
Collection objects are repositories for additional information associated with the core

printing-related objects. Each piece of information is called an item. The print collection

objects are

■ The job collection, which contains items of information that are relevant to a print
job. These items include information about how to print the document; for example,
how many copies, how to collate them, paper feed options, whether the document is
to be printed to disk, and file information.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing-Related Objects 1-19

■ The format collection, which contains items of information related to printing a page
from the document. It specifies the orientation of a page, whether a halftone should be
applied, the scale, and other items related to formatting a page.

■ The paper-type collection, which contains items of information related to the kind of
paper to which the format applies. For example, it specifies the base paper type, such
as US letter or legal, and the units in which the paper is measured, such as inches or
millimeters.

Figure 1-13 on page 1-21 shows the items that QuickDraw GX defines for these collection

objects. They are discussed completely in the chapter “Page Formatting and Dialog Box

Customization” in this book.

Typically, an item in a collection object is set by the printer driver. The user can change

the item by setting values or controls in a dialog box. For example, the value in the

copies information item of the job collection is set by the printer driver. The default Print

dialog box allows the user to change the value. The value in the item is then used by the

printer driver to determine how many times to print the pages associated with the job

object.

You only need to be concerned about the information in collection objects in the

following situations:

■ when you are printing without dialog boxes and need to set an item in a collection
object

■ when you want to allow the user access to an item that is not provided by a printer
driver in a dialog box

For an example of the first situation, to implement the Print One Copy menu item, you

need to set the copies item in the job collection to 1 before printing and reset it to its

previous value afterwards.

Consider the following example that applies to the second situation. The job object

specifies the pages to print, which the printer driver uses, by default, in its Print dialog

box. The job collection object provides a page-range information item that allows a

complex range of pages to be specified. To support the complex page range, you must

customize the Print dialog box to display the range from the collection item and store the

new values back in the collection object when the user changes them. Of course, the

printer driver must be set up to use the collection item too.

A printer driver can define additional items and store them in the appropriate collection.

Your application can do likewise. You should consider whether these collections are

appropriate for the kind of information you wish to manage. You can also create your

own special-purpose collections. For more information about collections, see the

Collection Manager chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-20 About QuickDraw GX Printing-Related Objects

Printer Objects
A printer object represents the characteristics of a printer. They are set by the printer

driver. You can determine these characteristics by referring to the output or formatting

printer in a job object. You cannot change these characteristics.

The printer object includes the following properties:

■ Printer name. This property contains the printer’s name; for example “All Mine.”

■ Printer type. This property contains the kind of printer; for example, 'lwsc' for the
LaserWriter II SC.

■ Printer driver name. This property contains the printer driver’s name; for example,
“LaserWriter II SC.”

■ Printer driver type. This property contains the kind of printer driver; for example,
'post' for a Postscript printer.

■ View device list. This property refers to view devices that define a printer’s
resolution (dots-per-inch) and color space.

For information about each of these properties, see the chapter “Advanced Printing

Features” in this book.

Print File Objects
A print file object represents a file that is created by QuickDraw GX as the data is

spooled to disk for printing. A special kind of print file is the portable digital document,

which is created by the PDD Maker GX printer driver.

A print file is self-contained. When you open it, you specify a job object that QuickDraw

GX sets up to match the characteristics of the job that printed the file. Thus, a print file

retains information about the output and formatting printers, its format, paper types,

and so on.

The print file object contains the following properties:

■ Page count. This property specifies the number of pages in the file.

■ Format list. This property specifies the format object for each page.

■ Shape list. This property specifies the picture shape object associated with each page.

For information about each of these properties, see the chapter “Advanced Printing

Features” in this book.

Summary of QuickDraw GX Printing-Related Objects
Figure 1-13 shows all the QuickDraw GX printing-related objects and collection objects.

In this figure, references are represented by arrows. References to job objects, however,

are not shown. Note that these are objects, not structures. The order of the contents is

arbitrary. You access the contents procedurally by calling functions, not by accessing

fields in a data structure.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing-Related Objects 1-21

Figure 1-13 QuickDraw GX printing-related objects

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-22 About QuickDraw GX Printing-Related Objects

Table 1-1 describes the printing-related objects.

Table 1-1 QuickDraw GX printing-related objects

Printing-related object Description

Job Holds the primary printing information for a document.
Every printable document has a job object associated with it.
The job object specifies the number of copies and a page
range and includes references to one or more format objects
and two printer objects.

Format Specifies page-formatting characteristics such as scaling and
page dimensions and includes a reference to a paper-type
object.

Paper type Specifies a paper-type name (such as “US Letter”), the
physical dimensions of the paper, and the printable area
within it.

Printer Represents the capabilities of a physical printer and includes
a name and type, a printer driver name and type, and a
reference to one or more view device objects from which you
can retrieve information about the printer’s characteristics.

Print file Represents the file that results from printing, such as a spool
file or a portable digital document.

Job collection Contains items of information that are relevant to a print job.
These items include information about how to print the
document; for example, how many copies, how to collate
them, paper feed options, whether the file is to be printed to
disk, and file information.

Format collection Contains items of information related to printing a page from
the document. It specifies the dimensions for the page, the
orientation, whether a halftone should be applied, the scale,
and other items related to formatting a page.

Paper-type collection Contains items of information related to the kind of paper to
which the format applies. For example, it specifies the base
paper type, such as US letter or legal, and the units in which
the paper is measured, such as inches or millimeters.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

Using Printing-Related Objects With Other QuickDraw GX Objects 1-23

Using Printing-Related Objects With Other QuickDraw GX
Objects

QuickDraw GX printing-related objects serve only one purpose—to support printing.

The parts of your application unrelated to printing do not require the use of or access to

printing-related objects. The parts of your application that do support printing, however,

require the use of other QuickDraw GX objects. These objects include

■ shapes

■ tags

■ view ports

■ view devices

The use of these objects to support QuickDraw GX printing is well structured. The

following sections discuss how these objects are used in QuickDraw GX printing.

Shape Objects
Shape objects specify the content of what you want to render on a page of output. The

format object, for example, allows you to specify a shape to be printed as a backdrop to

the document’s contents.

The document’s contents are also represented as shapes. For example, text is typically

represented as glyph or layout shapes. Graphics are specified by graphics shapes, such

as lines, rectangles, polygons, paths, and so on. QuickDraw GX represents each page of

output as a picture shape that contains these other shapes.

Either you can create a picture shape that represents the contents of the entire page, or

you can allow QuickDraw GX to collect into a page the shapes you specify. For example,

if you choose to create a picture shape and print it as a page, you pass the picture shape

to the GXPrintPage function, which spools the page to the printer.

If you choose to specify individual shapes to be included in the page, you call the

GXStartPage function to start building a picture shape and call the GXDrawShape

function for each shape you want to render. When you call the GXFinishPage function,

QuickDraw GX spools the picture shape for the page.

For an example of each way of printing using shape objects, see the chapter “Core

Printing Features” in this book.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-24 Using Printing-Related Objects With Other QuickDraw GX Objects

Tag Objects
QuickDraw GX allows you to directly control the way that printing is performed

through the use of synonyms stored in tag objects. You specify the action to take in a tag

object and attach it to another object, such as a shape, ink, or transform. Here are two of

the uses of tag objects:

■ Halftone specifications can be placed in a tag that is referred to by a shape’s ink object.
When the shape is drawn, QuickDraw GX draws it with the specified ink using the
halftone in the ink’s tag object.

■ PostScript operators can be placed in a tag that is referred to by the shape itself or by
its style, ink, or transform objects. When the shape is drawn, the PostScript operators
are used directly, in place of QuickDraw GX data.

For information about how to set up and attach tag objects to shapes, see the tag objects

chapter of Inside Macintosh: QuickDraw GX Objects.

View Port Objects
View ports are used to restrict the parts of shapes that are spooled during printing. They

also specify how to associate a shape with a view port when reading the shapes from a

print file. For example, when you call the GXStartPage function to build your picture

shape of the page, you specify a view port list. This view port list controls which shapes

are printed. When you call the GXDrawShape function for a shape in order to add the

shape to the picture shape, only the part of the shape that shows through a view port in

this list is added to the picture shape. When a print file is read, the picture shape is

associated with the view ports in the list you specify.

Note

The GXDrawShape function may also cause the shape to be drawn
onscreen. If you draw a shape with view ports that are in the onscreen
view group but not specified in the view port list when calling the
GXStartPage function, the shape is displayed on the screen. ◆

For more information about using view ports with the GXStartPage function, see the

chapter “Core Printing Features” in this book. For more information about using view

ports when reading print files, see the chapter “Advanced Printing Features” in this

book.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

Implementing QuickDraw GX Printing Features 1-25

View Device Objects
Printer objects refer to view devices that are created by the printer driver. You can

examine a printer’s view devices to determine its characteristics, such as resolution,

color set, and color profile. You cannot change these characteristics. For more

information about accessing a printer object’s view devices, see the chapter “Advanced

Printing Features” in this book.

Implementing QuickDraw GX Printing Features

As you prepare to implement QuickDraw GX printing, you need to consider which

printing-related services your application will provide and what features QuickDraw GX

provides to implement your services. Typically, the user expects to control printing

through menus and dialog boxes in the application or by printing from the Finder. These

are the core printing features that every application needs to implement. Figure 1-14

shows the File menu of a typical application that contains the printing-related menu

items.

Figure 1-14 Printing-related items in the File menu

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-26 Implementing QuickDraw GX Printing Features

As a core feature, of course, you allow the user to print the document. You also allow the

user to format all the pages in a document the same way. The user chooses the Page

Setup menu item to specify document formatting.

You may allow the user to customize the format of individual pages using the Custom

Page Setup menu item. You may also wish to change the content of the dialog boxes

from the defaults provided by the printer driver, printing extensions, and QuickDraw

GX. You are implementing customization features when you provide page-by-page

formatting and dialog box customization.

Other features that you may provide, but are probably not necessary to implement in

most applications, are considered advanced printing features. Advanced printing

features are not necessarily harder to implement than other features; it just is less likely

that your application needs to provide them.

The following sections describe three classes of printing features:

■ core printing features

■ customization features

■ advanced printing features

Core Printing Features
Generally, you work with printing-related objects when a user creates, saves, closes, or

opens a printable document. A job object represents the primary association between a

document, which is application-defined, and QuickDraw GX printing features. The job

object represents a print job in the sense that it specifies the parameters for printing a

document. Thus, core printing features require you to manipulate the job object. Figure

1-15 shows how you manipulate the job object in response to user actions.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

Implementing QuickDraw GX Printing Features 1-27

Figure 1-15 Manipulating the job object in response to user actions

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-28 Implementing QuickDraw GX Printing Features

When you create a job object, QuickDraw GX automatically provides you with default

format and paper-type objects. The initial values of these objects are determined by the

output printer that is currently selected when the job is created. These values can change

if the user later changes the output printer.

You associate your document’s data with the job object. QuickDraw GX maintains the

relationship between the job, format, paper-type objects, and their collections. This is

useful when you save or open a document because these objects must be flattened or

unflattened, respectively.

Flattening and unflattening QuickDraw GX printing-related objects is very similar to

flattening and unflattening a shape object. When you flatten a shape object, the style, ink,

and transform objects are flattened with it. For printing-related objects, QuickDraw GX

flattens all related objects with the job object, including multiple format, paper-type, and

collection objects. They may be flattened in the form of a handle, which is convenient for

writing the objects to the resource fork, or you can use your own procedure to store the

job object and related objects wherever you wish.

You are responsible for displaying the Print and Page Setup dialog boxes. Because these

dialog boxes are movable, your application must install a handler for the

gxPrintingEvent message to update the screen if a dialog box moves.

Actual printing, which from the application’s perspective means spooling the document

to the printer driver, involves looping through the pages to be printed, and perhaps

looping through the shapes to be included on each page. The work of applying

formatting instructions and such is the responsibility of the printer driver.

There are several other things you must do to implement core printing features:

■ Identify the location of the Edit menu and its items to allow QuickDraw GX to
support the Cut, Copy, and Paste menu items when a print dialog box is active.

■ Support printing from the Finder, which requires that your application support the
Print Documents ('pdoc') Apple event and support this Apple event’s optional
attribute to allow the user to drag a copy of the document to a desktop printer for
printing.

■ Allow users to print documents originally created to print with the Macintosh
Printing Manager.

None of these tasks are conceptually difficult. The chapter “Core Printing Features” in

this book shows you how to perform each of these tasks.

Customizing QuickDraw GX Printing Features
QuickDraw GX allows you to customize some of its features to address the needs of your

particular application. If you want to manipulate the objects that QuickDraw GX uses to

format the pages of a document or if you want to add panels to QuickDraw GX print

dialog boxes, you need to read the chapter “Page Formatting and Dialog Box

Customization” in this book.

Through QuickDraw GX, your application can allow users to specify unique formats for

the individual pages of a printable document. For example, using QuickDraw GX, your

C H A P T E R 1

Introduction to Printing With QuickDraw GX

Implementing QuickDraw GX Printing Features 1-29

application can allow a user to create and print a single document that consists of an

address page on an envelope, a business letter on a sheet of paper in portrait orientation,

and a spreadsheet on a sheet of paper in landscape orientation. Figure 1-16 shows an

example.

Figure 1-16 Printing a document containing multiple formats

In addition, QuickDraw GX allows you to add panels to its dialog boxes to provide

special features that require additional user specification. A panel is a portion of a dialog

box in which an application can provide additional options for users. These

specifications are stored as items in collection objects. For example, your application may

add a panel that provides special color features, such as color separation and color

choices or halftone information, which need to be stored with a job or format.

QuickDraw GX dialog boxes are introduced in “Dialog Boxes,” which begins on

page 1-10. For information about collections, see “Collection Objects” on page 1-18.

C H A P T E R 1

Introduction to Printing With QuickDraw GX

1-30 Compatibility With the Macintosh Printing Manager

Advanced Printing Features
QuickDraw GX provides several features that allow your application to provide

additional control for users and allows the application to take advantage of features in

particular printers. These features allow you to

■ provide access to and perhaps modify the contents of a portable digital document or
other print file

■ use different paper-type objects, including those created with the PaperType Editor

■ take advantage of a printer’s built in features, such as fast text-streaming using built-
in fonts by way of a direct job-formatting mode

■ directly specify methods of rendering data with alternative representations of
QuickDraw GX graphics objects, such as with raw PostScript (These alternative
representations are called synonyms, which are stored in tag objects. For a brief
introduction of how you implement synonyms, see “Tag Objects” on page 1-24.)

■ set up halftones on a shape-by-shape basis by specifying halftones for the inks they
use

■ provide users with feedback about vector device capabilities

■ examine the characteristics of a printer, such as its resolution and color-rendering
capabilities

■ change the job properties if the user switched printers

■ change or prevent the display of the Status dialog box

The chapter “Advanced Printing Features” in this book describes each of these features.

Compatibility With the Macintosh Printing Manager

Non-QuickDraw GX versions of Macintosh system software use the Printing Manager,

which QuickDraw GX replaces. The Printing Manager encompasses several concepts

for which QuickDraw GX printing introduces parallel vocabulary. Old and new printing

architecture terms include the following:

To enable the printing of QuickDraw documents on QuickDraw GX printers, you must

convert the document with the QuickDraw GX Translator, which is described in the

environment chapter of Inside Macintosh: QuickDraw GX Environment and Utilities, and

convert the print record by calling the GXConvertPrintRecord function, which is

described in the chapter “Core Printing Features” in this book.

Printing Manager term QuickDraw GX term

Printer driver Printer driver and printing extensions

System printer Default desktop printer

Print record Job object

Spool file Print file

C H A P T E R 1

Introduction to Printing With QuickDraw GX

Compatibility With the Macintosh Printing Manager 1-31

Note
Printer drivers created with different versions of the Macintosh printing
architecture can be present in a computer along with QuickDraw GX
printer drivers. If QuickDraw GX is installed, the QuickDraw GX printer
drivers are active; otherwise, the QuickDraw GX printer drivers are not
active. ◆

Contents 2-1

C H A P T E R 2

Contents

Core Printing Features

About Core Printing Features 2-3

Core Print Objects 2-5

Job Object Properties 2-5

Format Object Properties 2-7

Paper-Type Object Properties 2-8

Edit Menu Structure 2-9

Using Core Printing Features 2-10

Initializing QuickDraw GX Printing 2-11

Creating a Job Object for a Printable Document 2-12

Error Handling 2-14

Supporting QuickDraw GX Print Dialog Boxes 2-17

Printing Documents Using QuickDraw GX 2-20

Printing Pages as Single Picture Shapes 2-21

Printing Pages by Capturing Shapes 2-22

Saving a Job Object With a Document File 2-24

Saving a Job Object in a Single Handle 2-25

Saving a Job Object Using a Flattening Function 2-27

Disposing of a Job Object When Closing a Document 2-28

Retrieving a Job Object When Opening a Document 2-29

Retrieving a Job Object From a Handle 2-30

Retrieving a Job Object Using an Unflattening Function 2-32

Obtaining Object References 2-33

Obtaining Information From a Format Object 2-33

Displaying QuickDraw GX Print Dialog Boxes 2-35

Displaying the Page Setup Dialog Box 2-35

Displaying the Print Dialog Box 2-37

Supporting Printing From the Finder 2-39

Updating Job Object Information 2-42

Printing Macintosh Printing Manager Documents 2-44

C H A P T E R 2

2-2 Contents

Core Printing Features Reference 2-46

Constants and Data Types 2-46

Gestalt Selectors for Printing 2-47

QuickDraw GX Printing-Related Objects 2-47

Edit Menu Location 2-48

Dialog Box Results 2-48

Functions 2-49

Initializing and Terminating QuickDraw GX Printing Features 2-50

GXInitPrinting 2-50

GXExitPrinting 2-51

Handling Errors 2-52

GXGetJobError 2-52

GXSetJobError 2-53

Creating and Managing Job Objects 2-54

GXNewJob 2-54

GXDisposeJob 2-55

GXFlattenJobToHdl 2-56

GXFlattenJob 2-57

GXUnflattenJobFromHdl 2-58

GXUnflattenJob 2-59

GXUpdateJob 2-60

Printing With QuickDraw GX 2-61

GXSelectJobOutputPrinter 2-61

GXGetJobPageRange 2-62

GXStartJob 2-63

GXPrintPage 2-64

GXFinishJob 2-65

GXStartPage 2-66

GXFinishPage 2-67

Obtaining Information on Printing-Related Objects 2-68

GXGetJobFormat 2-69

GXGetFormatJob 2-69

GXGetFormatDimensions 2-70

Displaying the Page Setup and Print Dialog Boxes 2-71

GXInstallApplicationOverride 2-71

GXJobDefaultFormatDialog 2-72

GXJobPrintDialog 2-73

Converting a Print Record 2-75

GXConvertPrintRecord 2-75

Application-Defined Functions 2-76

Message Override Functions 2-76

GXPrintingEvent 2-76

Flattening and Unflattening Functions for Job Objects 2-77

MyFlattenFunction 2-77

MyUnflattenFunction 2-78

Summary of Core Printing Features 2-79

C H A P T E R 2

About Core Printing Features 2-3

Core Printing Features

This chapter describes how your application can use the core set of QuickDraw GX

printing features to print documents created with QuickDraw GX. Read the information

in this chapter if you want to print your application’s documents to an output device.

For example, you might use QuickDraw GX to print to a LaserWriter a document that

contains some text and a few illustrations.

Before reading this chapter, you should be familiar with the basic concepts and user

interface for printing with QuickDraw GX, as described in the chapter “Introduction to

Printing With QuickDraw GX” in this book.

This chapter describes the basic QuickDraw GX print objects: a job, a format, and a paper

type. This chapter also shows you how to

■ set up the QuickDraw GX printing environment

■ create a job object that contains the information needed to print a document

■ detect error conditions

■ print your application’s documents

■ save job object information when a user saves a document

■ dispose of a job object when a user closes a document

■ retrieve job object information when a user opens a document

■ obtain information on a format object

■ display QuickDraw GX print dialog boxes

■ support printing from the Finder

■ convert a print record into a job object to print existing documents designed for
printing with the Macintosh Printing Manager

About Core Printing Features

Core printing features are features that must be implemented to allow printing

documents that contain QuickDraw GX graphics or typographical shapes. These features

include the ability to print to desktop printers, format a document for a particular

printer (a formatting printer), yet allow printing to another printer (the output printer)

without reformatting the document. Core features also include the ability to print from

the Finder and to print existing documents designed for printing with the Macintosh

Printing Manager.

C H A P T E R 2

Core Printing Features

2-4 About Core Printing Features

To enable these core features, your application must manipulate three kinds of objects:

■ the job object, which contains information about the print job used to print a
document

■ the format object, which contains information about how to format one or more
pages of a document for printing

■ the paper-type object, which contains information about the paper on which a
document is to be printed

Figure 2-1 shows the relationship between these objects.

Figure 2-1 Objects needed to implement core printing features

All aspects of printing with QuickDraw GX relate to a particular job object. The job

object defines the parameters with which to print the document, which a user typically

specifies in the Print dialog box.

Your application sets up the correspondence between a document and a job object. The

job object is tied to the format and paper-type objects through references. A job object

refers to at least one format object. The format object specifies how to format the pages in

a document. To implement core printing features, in which each page of a document is

formatted the same way, you are only concerned about the first reference to a format

object because this format object represents the default format.

Each format object refers to a paper-type object. Thus, it is actually this pair of objects

that specifies how the pages of a document are formatted. The user typically specifies the

format options, which translate into format object properties and specifies paper-type

options, which translate into paper-type object properties, in the Page Setup Dialog box.

These three objects—the job, format, and paper-type—can refer to other objects, some of

which are collections of additional specifications. These other objects and specifications

are not required, however, to implement the core printing features.

The references themselves are properties of the job, format, or paper-type objects. The

references are mentioned in the following section, which describes each object’s

properties. The other objects themselves, however, are described as they are used in the

chapters “Page Formatting and Dialog Box Customization” and “Advanced Printing

Features” in this book.

C H A P T E R 2

Core Printing Features

About Core Printing Features 2-5

In addition to manipulating job, format, and paper-type objects, your application must

also initialize the printing environment, handle printing-related errors, and handle two

situations that can arise when the user invokes a print dialog box:

■ Your application must let QuickDraw GX know which Edit menu items are to be
enabled when a QuickDraw GX dialog box is active. Although QuickDraw GX
implements the Cut, Copy, Paste, and Clear menu items for you, you must specify
which of these items are enabled. If other menu items are enabled, such as Undo, you
must also handle the item as well as enable it.

■ Your application must respond to printing event messages, which allows updating the
screen when the user moves a dialog box. Printing event messages and movable
dialog boxes are described in the chapter “Introduction to Printing With QuickDraw
GX” in this book.

Your application should also handle printing from the Finder, which occurs when the

user chooses Print from the Finder’s File menu or drags a document onto a desktop

printer icon. Finally, your application can also handle printing of existing documents

designed for printing with the Macintosh Printing Manager.

The following section, “Core Print Objects,” describes the QuickDraw GX objects needed

to implement core printing features. The section “Using Core Printing Features”

beginning on page 2-10 provides examples of code that implements these core features.

Core Print Objects
QuickDraw GX printing information is contained in a set of print objects that you

associate with a printable document. When you create a job object, QuickDraw GX sets

up references to a format object and paper-type object. The initial values for the

properties in each of these objects is defined by the printer driver for the default output

printer.

The following sections describe specific properties of the job object, the format object,

and the paper-type object.

Job Object Properties

A job object has ten accessible properties, as shown in Figure 2-2. Note that, because the

data structure of a job object is private, the order of the properties as shown in Figure 2-2

is completely arbitrary. Properties in italics indicate references to other objects.

C H A P T E R 2

Core Printing Features

2-6 About Core Printing Features

Figure 2-2 The job object

The properties of a job object are as follows:

■ Output printer. A reference to the output printer to which documents are sent for
printing. A user specifies an output printer in the Print dialog box. The initial value
contained in this property is the default output printer, which is the printer to which
documents are sent if the user does not select a different printer.

■ Formatting printer. A reference to the printer for which documents are formatted. A
user specifies a formatting printer in the Page Setup dialog box. The initial value
contained in this property is the default formatting printer, which is used to format
documents if the user does not specify a different printer.

■ Reference constant. This property contains a reference constant for your application’s
use. In the reference constant you can associate your own data with a particular job
object. For example, you may wish to store a pointer to the document data. Specifying
a reference constant for a job object is discussed in the chapter “Advanced Printing
Features” in this book.

■ Error. This property specifies the most recent error encountered for a particular job
object. QuickDraw GX associates printing-related errors with individual job objects. It
is necessary for you to check for errors after calling certain functions. Job object errors
are discussed in “Error Handling” beginning on page 2-14.

■ Format mode. This property specifies the mode associated with a particular job object.
QuickDraw GX supports text, PostScript, and graphics direct modes. By default, your
application uses the graphics direct mode to print text and graphics. Direct modes
allow your application to take advantage of a printer’s built-in features, such as fonts
and text-streaming capabilities, to provide faster output for users. Using direct mode,
however, does not take full advantage of QuickDraw GX features; therefore, the
appearance of the document may change when printed in direct mode. The user can

C H A P T E R 2

Core Printing Features

About Core Printing Features 2-7

specify a direct mode in the Print dialog box. Direct modes are discussed in the
chapter “Advanced Printing Features” in this book.

■ Format list. A list of references to format objects. The first reference is to format object
that represents the default format. The default format is defined by the printer driver
of the default output printer. The user can change the value of the default format in
the Page Setup dialog box. Using multiple format objects in a document is discussed
in the chapter “Page Formatting and Dialog Box Customization” in this book. Format
object properties are discussed in the next section.

■ Paper-type list. A list of references to the paper-type objects that are associated with
the job’s format objects. The user can change the default paper type in the Page Setup
dialog box. Using different paper-type objects in a document is discussed in the
chapter “Advanced Printing Features” in this book.

■ Page range. This property contains the user-specified page range. A user specifies a
page range in the Print dialog box. How you determine the page range is discussed in
“Printing Documents Using QuickDraw GX” beginning on page 2-20.

■ Panel dimensions. This property defines the dimensions of QuickDraw GX dialog
box panels. You use this information when you want to locate the position of the
cursor within a panel. Panel dimensions are discussed in the chapter “Page
Formatting and Dialog Box Customization” in this book.

■ Collection. A reference to a job collection object, which stores additional information
about the print job. The job collection object is discussed in the chapter “Page
Formatting and Dialog Box Customization” in this book.

Format Object Properties

A format object contains six accessible properties, as shown in Figure 2-3. Note that,

because the data structure of a format object is private, the order of the properties as

shown in Figure 2-3 is completely arbitrary. Properties in italics indicate references to

other objects.

Figure 2-3 The format object

C H A P T E R 2

Core Printing Features

2-8 About Core Printing Features

The properties of a format object are as follows:

■ Dimensions. This property defines the physical dimensions of the paper (the paper
size) and the printable area within these dimensions (the page size) after scaling and
orientation have been applied. Scaling is the percentage that objects are shrunk or
grown when printed. The orientation is either portrait or landscape.

■ Mapping. This property defines the mathematical representation of the format
object’s settings, such as scaling. The mapping property of a format object is discussed
in the chapter “Page Formatting and Dialog Box Customization” in this book.

■ Form. This property defines a backdrop that can be applied to a set of pages. A form
is made up of two shape objects—a shape that defines the form and another shape
that defines a mask, which represents the erasable area within the form. Forms are
discussed in the chapter “Page Formatting and Dialog Box Customization” in this
book.

■ Paper type. A reference to a paper-type object associated with this format object.
Paper-type object properties are discussed in the next section.

■ Collection. A reference to a format collection. Through this reference, you can access
additional information related to the format collection. This information includes data
such as the user-specified orientation (either portrait, landscape, or rotated landscape)
from the Page Setup dialog box. The format collection is discussed in the chapter
“Page Formatting and Dialog Box Customization” in this book.

■ Job. A reference to a job object. Through this reference, you can access the job object
associated with a particular format object.

Paper-Type Object Properties

A paper-type object contains four accessible properties, as show in Figure 2-4. Note that,

because the data structure of a paper-type object is private, the order of the properties as

shown in Figure 2-4 is completely arbitrary. Properties in italics indicate references to

other objects.

Figure 2-4 The paper-type object

C H A P T E R 2

Core Printing Features

About Core Printing Features 2-9

The properties of a paper-type object are as follows:

■ Name. This property contains the name of a paper type, such as US Letter. A user
specifies a paper-type name in the Page Setup or Custom Page Setup dialog box.
Paper-type object names are discussed in the chapter “Advanced Printing Features” in
this book.

■ Dimensions. This property defines the physical dimensions of the paper (the paper
size) and the printable area within these dimensions (the page size) before scaling and
orientation have been applied. Paper-type object dimensions are discussed in the
chapter “Advanced Printing Features” in this book.

■ Collection. A reference to a paper-type collection. Through this reference, you can
access additional information related to the paper-type object. This information
includes such data as paper-type units. The paper-type collection is discussed in the
chapter “Page Formatting and Dialog Box Customization” in this book.

■ Job. A reference to a job object. Through this reference, you can access the job object
associated with a particular paper-type object.

Edit Menu Structure
QuickDraw GX supports basic editing commands when a print dialog box is active. The

user can Cut, Copy, Paste, and Clear edit text. To handle this task, QuickDraw GX must

know the ID of the Edit menu, and the location within the edit menu of the items that

correspond to Cut, Copy, Paste, and Clear.

Your application specifies this information in an Edit menu structure, named

gxEditMenuRecord:

struct gxEditMenuRecord{

short editMenuID;

short cutItem;

short copyItem;

short pasteItem;

short clearItem;

short undoItem;

} ;

The editMenuID field specifies the ID of the Edit menu. The other fields identify the

location of items in the Edit menu. For an example of how to set up an Edit menu

structure, see “Displaying QuickDraw GX Print Dialog Boxes” beginning on page 2-35.

Note

QuickDraw GX does not support the Undo item. ◆

Because QuickDraw GX handles all menu items while a print dialog box is displayed,

your application should disable all of its menus, except the Edit menu. It should also

disable the About box under the Apple menu. Adjusting menus for movable modal

dialog boxes such as print dialog boxes is described in Inside Macintosh: Macintosh Toolbox
Essentials.

C H A P T E R 2

Core Printing Features

2-10 Using Core Printing Features

Using Core Printing Features

This section shows how to implement the core printing features in your application First,

you must determine if QuickDraw GX is installed and, if so, set up its environment.

Next, when the user creates a document, your application needs to create a job object for

the document and maintain other information about the document. The sample code

throughout this book uses a structure, MyDocumentRec, to keep the needed information

in one place:

typedef struct MyDocumentRec {

gxJob documentJob; /* the job object bound to the

document */

long numPages; /* the number of pages in the

document */

long curPage; /* the current page */

FSSpec documentFSSpec; /* the file system specification

for the document */

Str31 documentTitle /* the title of the document

(such as “Untitled”) */

WindowPtr documentWindow; /* the window for the document */

gxViewPort documentViewPort; /* the view port used for

drawing within the document

window */

gxShape documentPage[kMaxPages];

/* the shape data for each

page */

gxFormat pageFormat[kMaxPages];

/* the format object for each

page, if nil use the default

format */

} MyDocumentRec, *MyDocumentPtr;

This structure is set up to handle one shape per page. Each page may have its own

format, although in this chapter only one format is used. The individual fields in the

structure are described as they are used in the following sections.

Your application could define a similar structure, or you could maintain the needed

information in variables of your choosing. The variable used in this book is

myDocument, which is defined as follows:

MyDocumentRec myDocument;

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-11

The following sections show how to

■ initialize QuickDraw GX printing

■ create a job object and initialize the myDocument variable

■ handle errors

■ print a document

■ save a job object by flattening it

■ retrieve a job object by unflattening it

■ dispose of a job object and the objects it references

■ obtain format information

■ support print dialog boxes

■ perform printing from the Finder

■ update job object information after resume events

■ print existing documents designed for printing with the Macintosh Printing Manager

Initializing QuickDraw GX Printing
For your application to use QuickDraw GX, the user must be running system software

version 7.1 or later. To test for the existence of QuickDraw GX printing features, use the

Gestalt function. The Gestalt selector is gestaltPrintingMgrVersion ('pmgr').

The Gestalt function is discussed in Inside Macintosh: QuickDraw GX Environment and
Utilities.

Note

The Gestalt selector for the entire QuickDraw GX feature set is
gestaltGXVersion. This selector is discussed in Inside Macintosh:
QuickDraw GX Environment and Utilities. ◆

After you call the GXEnterGraphics function to initialize QuickDraw GX, you call the

GXInitPrinting function to initialize QuickDraw GX printing features. The

GXEnterGraphics function is discussed in Inside Macintosh: QuickDraw GX
Environment and Utilities.

C H A P T E R 2

Core Printing Features

2-12 Using Core Printing Features

To terminate printing with QuickDraw GX, you must call the GXExitPrinting

function. You can only use this function after you have successfully called the

GXInitPrinting function and before you call the GXExitGraphics function to shut

down QuickDraw GX:

OSErr err;

...

GXEnterGraphics();

err = GXInitPrinting(); /* Set up print facility */

if (!err)

{

/* The event loop and more initialization goes here */

...

}

GXExitPrinting(); /* Close QuickDraw GX printing. */

GXExitGraphics();

Creating a Job Object for a Printable Document
For each printable document that a user creates, your application needs to create a

corresponding job object. Generally, you should manage job objects on a one-to-one basis

with documents. An introduction to manipulating the job object in response to user

actions is discussed in the chapter “Introduction to Printing With QuickDraw GX” in this

book. Properties of the job object are described in “Job Object Properties” on page 2-5.

Listing 2-1 shows the MyNewDocument1 function that creates a job object for a printable

document and initializes a MyDocumentRec structure. The docName parameter of the

MyNewDocument1 function is a Pascal string containing the name of the document, and

the myDocument parameter is a pointer to a MyDocumentRec structure. In this example,

the document is simplified to handle a maximum of 20 pages.

Listing 2-1 Creating a job object for a printable document

#define kMaxPages 20

OSErr MyNewDocument1(Str31 docName, MyDocumentPtr myDocument)

{

OSErr err;

Rect bounds;

myDocument->numPages = 0; /* there are no pages yet */

myDocument->curPage = 0;

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-13

/* Create a new job */

err = GXNewJob(&myDocument->documentJob);

if (err == noErr)

{

/*

Install your application override for the

gxPrintingEvent message to display QuickDraw GX movable

modal dialog boxes.

*/

GXInstallApplicationOverride(myDocument->documentJob,

gxPrintingEvent,

 MyPrintingEventOverride);

/*

Store the document’s name. Limit is 31 characters (plus

a length byte).

*/

if (docName[0] > 31)

docName[0] = 31;

BlockMove(&docName[0], &myDocument->documentTitle[0],

(long) docName[0] +1);

/*

Additional application-specific document initialization

can go here, such as the following:

Create a window and a view port for the document. Store

the pointer to the MyDocumentRec structure in the

window's refCon field.

*/

SetRect(&bounds, 30, 60, 300, 400);

myDocument->documentWindow = NewCWindow(nil, &bounds,

docName, false, noGrowDocProc, (WindowPtr) -1,

true, (long) myDocument);

err = MemError();

if (err == noErr)

{

SetPort(myDocument->documentWindow);

myDocument->documentViewPort =

GXNewWindowViewPort(myDocument->documentWindow);

C H A P T E R 2

Core Printing Features

2-14 Using Core Printing Features

err = GXGetGraphicsError(nil);

if (err != noErr)

DisposeWindow(myDocument->documentWindow);

}

if (err != noErr) GXDisposeJob(myDocument->documentJob);

}

return err;

}

The MyNewDocument1 function sets the number of pages in the document and the

current page number. Note that pages begin at 1 (not from 0 as in an array). The initial

value of 0 indicates that there are none.

The GXNewJob function creates a job object for the document. If an error does not occur,

the MyNewDocument1 function performs the following tasks:

■ Calls the GXInstallApplicationOverride function to install a function that
overrides the gxPrintingEvent message. This override is needed to handle
movable print dialog boxes. The GXInstallApplicationOverride function and
the gxPrintingEvent message are discussed in “Supporting QuickDraw GX Print
Dialog Boxes” beginning on page 2-17.

■ Stores the document’s name by calling the BlockMove function. The name is passed
into the MyNewDocument1 function.

■ Creates the document’s window by calling the NewWindow function and makes it the
focus by calling the SetPort function.

■ Creates a view port for the window by calling the GXNewWindowViewPort function.
This view port is used to draw individual shapes on a page and is discussed in the
section “Printing Pages by Capturing Shapes” beginning on page 2-22. For
information about the GXNewWindowViewPort function, see the environment
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

In the event of an error, the job and window are disposed of, if necessary.

Error Handling
QuickDraw GX provides you with an error-handling method to poll for printing-related

errors. In previous versions of the Macintosh printing architecture, errors were handled

using the PrError function. This function returned the error status. Printing errors were

global to an application. In QuickDraw GX, an error is local to a job object.

You can poll for errors in two different ways: immediately after you call a function or

after you call groups of functions. QuickDraw GX provides the GXGetJobError

function to allow you to poll for errors in both ways.

When an error occurs, the error is stored in the error property of the job object. The error

is not cleared until you call the GXGetJobError function. Thus, GXGetJobError

returns the first error since the last call to the GXGetJobError function.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-15

IMPORTANT

If an error condition exists for a job object, QuickDraw GX will not
execute other functions associated with the job object until the error
condition is cleared. ▲

You should note that it is necessary for you to check for errors after certain functions. For

example, you should always check for errors after calling functions that begin with the

word Start or functions related to collection objects. Functions related to collection

objects are discussed in the chapter “Page Formatting and Dialog Box Customization” in

this book.

Polling for errors is a standard Macintosh method used by the Resource Manager and

the Macintosh Printing Manager. For information on the Resource Manager, see Inside
Macintosh: More Macintosh Toolbox. For information on QuickDraw, see Inside Macintosh:
Imaging.

Listing 2-2 shows an example of polling for errors by calling GXGetJobError after

individual functions. The error conditions being checked for in the example can arise

while executing the print loop. For a discussion of the print loop, see “Printing

Documents Using QuickDraw GX” beginning on page 2-20.

Listing 2-2 Polling for errors after individual functions

GXGetJobPageRange(myDocument->documentJob, &firstPage, &lastPage);

err = GXGetJobError(myDocument->documentJob);

if (err == noErr)

{

if (lastPage > myDocument->numPages)

lastPage = myDocument->numPages;

numPages = lastPage - firstPage + 1;

GXStartJob(myDocument->documentJob,

myDocument->documentTitle, numPages);

err = GXGetJobError(myDocument->documentJob);

if (err == noErr)

{

for (pg = firstPage; (err == noErr) && (pg <=

lastPage); pg++)

{

GXPrintPage(myDocument->documentJob, pg,

GXGetJobFormat(myDocument->documentJob, 1),

myDocument->documentPage[pg -1]);

err = GXGetJobError(myDocument->documentJob);

}

C H A P T E R 2

Core Printing Features

2-16 Using Core Printing Features

GXFinishJob(myDocument->documentJob);

err = GXGetJobError(myDocument->documentJob);

}

}

Listing 2-3 shows an example of polling for errors after groups of functions. This

example shows how to obtain the dimensions of the paper and page associated with a

format object, which is explained on page 2-33. If the GXGetJobFormat function returns

an error, the GXGetFormatDimensions function returns immediately without

executing.

Listing 2-3 Polling for errors after groups of functions

OSErr MyGetFormatDimensions(MyDocumentPtr myDocument,

gxRectangle *pageBounds,

gxRectangle *paperBounds)

{

long curPage;

gxFormat pgFormat;

/*

Get the format object for the current page. If it is nil, use

the default format.

*/

curPage = myDocument->curPage;

pgFormat = myDocument->pageFormat[curPage -1];

if (pgFormat == nil)

pgFormat = GXGetJobFormat(myDocument->documentJob, 1);

/* Get the bounds of the format object.*/

GXGetFormatDimensions(pgFormat, pageBounds, paperBounds);

return GXGetJobError(myDocument->documentJob);

}

Unless otherwise indicated, errors are generally checked after groups of functions

throughout the code samples in this book.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-17

In addition, QuickDraw GX allows you to store an error with a particular job object

using the GXSetJobError function. This function is useful when you want to abort or

cancel spooling, which is how data is sent to the printer driver. Spooling is discussed in

the chapter “Introduction to Printing With QuickDraw GX” in this book.

The following statement sets the error condition associated with the job object to the

contents of err:

GXSetJobError(myDocument->documentJob, err);

When the error status is tested using GXGetJobError, it will return the status set by the

GXSetJobError function, assuming that another error did not occur between the time

the value was set and then retrieved.

Supporting QuickDraw GX Print Dialog Boxes
Dialog boxes for QuickDraw GX printing features are movable modal. A movable

modal dialog box is a modal dialog box that contains a title bar by which users can drag

the dialog box. This type of dialog box allows users to view windows that would

otherwise be obscured by the dialog box. Movable modal dialog boxes are described in

Inside Macintosh: Macintosh Toolbox Essentials.

To support QuickDraw GX print dialog boxes, your application needs to identify the

Edit menu and its menu items, adjust the menu bar to enable or disable appropriate

menu items, and respond to the gxPrintingEvent message that QuickDraw GX sends

to your application.

You make menu adjustments just before you display the dialog box. Examples of setting

up the menu bar are shown in the sections “Displaying the Page Setup Dialog Box”

beginning on page 2-35 and “Displaying the Print Dialog Box” beginning on page 2-37.

This section shows how to set up the override for the gxPrintingEvent message.

QuickDraw GX sends this message to your application each time it receives an event,

such as a mouse click or a keystroke. Because you want the application to respond to

update events so that the window can be redrawn, you must install the application as a

handler for the gxPrintingEvent message.

You create a function that has the same prototype (the same format of parameters and

return value) as the GXPrintingEvent function and install it in the message chain. To

override the gxPrintingEvent message, you specify a pointer to an override function

in the GXInstallApplicationOverride function. Because dialog boxes are

associated with individual job objects, you must call

GXInstallApplicationOverride after you create each job object.

C H A P T E R 2

Core Printing Features

2-18 Using Core Printing Features

The override persists until you dispose of the job object or install another override for

the gxPrintingEvent message. Listing 2-1 on page 2-12 shows the following call in

the context of creating a new job object:

GXInstallApplicationOverride(myDocument->documentJob,

 gxPrintingEvent,

 MyPrintingEventOverride);

The GXInstallApplicationOverride function has three parameters:

■ A reference to the job object. In Listing 2-1 on page 2-12, it is the job object that was
stored when the document was created.

■ The ID of the message to override. In this case, it is gxPrintingEvent.

■ The function that responds to the message. In this case, it is
MyPrintingEventOverride.

The parameters to the override function named MyPrintingEventOverride must

match those of the GXPrintingEvent message override function, which has the

following declaration:

OSErr GXPrintingEvent (EventRecord *anEventRecord,

Boolean filterEvent);

The anEventRecord parameter is a pointer to the event record, which contains

information about what type of event occurred while the print dialog box was being

displayed; for example, a mouse click or key-down. The event record also contains

additional information associated with the event, such as which key was pressed for a

key-down event.

The filterEvent parameter specifies whether the event can be filtered. QuickDraw

GX sends two gxPrintingEvent messages for each event. The first event can be

filtered, for example, by calling the DialogSelect function to filter non-update events.

Note

The Window Manager generates update events to control the
appearance of windows on the screen. The EventRecord data type, the
Window Manager, the DialogSelect function, and update events are
discussed in Inside Macintosh: Macintosh Toolbox Essentials. ◆

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-19

Listing 2-4 shows an override function for the gxPrintingEvent message.

Listing 2-4 Override function for the gxPrintingEvent message

OSErr MyPrintingEventOverride(EventRecord *anEvent,

Boolean filterEvent)

{

OSErr err = noErr;

/* Handle events in whatever way is appropriate. MyDoEvent

is a generic event handler. Don't pass it events that

it shouldn't handle while print dialogs are displayed.

*/

if (!filterEvent)

switch (anEvent->what)

{

case mouseDown:

case keyDown:

case autoKey:

break;

default:

err = MyDoEvent(anEvent);

}

return err;

}

Note

You do not need to forward the gxPrintingEvent message. ◆

In Listing 2-4, if the event is not a filter event, MyDoEvent is called because the event is

probably an update event. The MyDoEvent function is the general-purpose,

application-specific function that handles all events and is typically called after each

WaitNextEvent. The MyDoEvent function is called from this override to dispatch

redrawing of the document’s window in response to an update event.

C H A P T E R 2

Core Printing Features

2-20 Using Core Printing Features

Printing Documents Using QuickDraw GX
There are two approaches you can take to printing a document depending on how you

store data. You can either print each page as a single picture shape or print each page by

allowing QuickDraw GX to capture multiple shapes. In the later case, you specify when

to start and stop capturing shapes that appear on the page.

If your application stores each page as a single picture shape, you should use the

GXPrintPage function to print each page in a document. In the GXPrintPage

function, you need to provide QuickDraw GX with the picture shape for each page. A

picture shape is a container for other shapes—including other picture shapes, allowing

you to create hierarchies of shapes. Picture shapes are discussed in Inside Macintosh:
QuickDraw GX Graphics.

You may also choose to use the GXStartPage, GXDrawShape, and GXFinishPage

functions to draw and print data. You should use these functions if your application

does not store each page as a single picture shape. QuickDraw GX allows you to print in

a way similar to how you draw to the screen except that QuickDraw GX captures shapes

to send to a print file, such as a spool file or a portable digital document, instead of to a

monitor. The GXDrawShape function is described in Inside Macintosh: QuickDraw GX
Objects.

IMPORTANT

Some QuickDraw GX functions begin with the word Start or Finish.
You must call the corresponding “finish” call only if the “start” call
succeeds. For example, after you call the GXStartPage function, you
should immediately check for errors. You should call the
GXFinishPage function only if GXStartPage did not return an
error. ▲

Regardless of whether you print pages as single picture shapes or print pages by

capturing shapes, the basic flow of control is as follows:

■ After the user requests printing, you call the GXGetJobPageRange function to obtain
the user-specified page range.

■ You use the GXStartJob function to begin printing a document with parameters that
specify the job object and the name of the user’s document. You may also specify the
total number of pages the user chose to print or pass 0 if the page count is unknown.
In response to the GXStartJob call, QuickDraw GX displays the Status dialog box,
which contains the current page number and the total page count, if it is not 0.

■ After you finish printing, by either method, you call the GXFinishJob function to tell
QuickDraw GX that the document is ready to be queued for printing in the
background. Note that you should only call the GXFinishJob function if the
GXStartJob function doesn’t return an error.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-21

Printing Pages as Single Picture Shapes

This section describes how to use the GXPrintPage function to print a user’s document.

To use this function, you specify the page to print in the pageNumber parameter.

QuickDraw GX compares the specified page number with the page range chosen by the

user and spools the page if it is within the page range. If it is not within range, the page

is ignored.

You should loop through each page of a document, calling the GXPrintPage function

for each page’s picture shape. You should check for errors after you print each page and

exit the loop if an error arises.

Listing 2-5 gives an example of how to use the GXPrintPage function to print a

document. In the example, only the default format is used to format each page. To obtain

this format, you call the GXGetJobFormat function with an index of 1.

Listing 2-5 Using the GXPrintPage function to print a document

OSErr MyPrintDocument2(MyDocumentPtr myDocument)

{

OSErr err;

long firstPage, lastPage, numPages, pg;

/* Determine which pages the user selected to print. */

GXGetJobPageRange(myDocument->documentJob,

&firstPage,&lastPage);

if (lastPage > myDocument->numPages)

lastPage = myDocument->numPages;

/*

Calculate the total number of pages to print. If there are

no errors, begin printing.

*/

numPages = lastPage - firstPage + 1;

err = GXGetJobError(myDocument->documentJob);

if (err == noErr)

{

GXStartJob(myDocument->documentJob,

myDocument->documentTitle, numPages);

err = GXGetJobError(myDocument->documentJob);

C H A P T E R 2

Core Printing Features

2-22 Using Core Printing Features

/*

Loop through each page. Call the GXPrintPage function for

each page's picture shape. In this example, we use the

job's default format to print each page.

*/

if (err == noErr)

{

for (pg = firstPage; (err == noErr) && (pg <= lastPage);

pg++)

{

GXPrintPage(myDocument->documentJob, pg,

GXGetJobFormat(myDocument->documentJob, 1),

myDocument->documentPage[pg -1]);

err = GXGetJobError(myDocument->documentJob);

}

/* Finish printing. */

if (err == noErr)

{

GXFinishJob(myDocument->documentJob);

err = GXGetJobError(myDocument->documentJob);

}

}

}

return err;

}

Printing Pages by Capturing Shapes

This section describes how to use the GXStartPage, GXDrawShape, and

GXFinishPage functions to print pages in your application’s documents. You use the

GXStartPage function to tell QuickDraw GX to capture shapes that you draw using the

GXDrawShape function. You call GXFinishPage when you are finished creating the

page of output.

In the GXStartPage function, you set the page to print in the pageNumber parameter.

QuickDraw GX compares the specified page number with the page range chosen by the

user and spools the page if it is within the page range. If it is not within range, the page

is ignored.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-23

In the GXStartPage function, you also specify a viewPortList parameter, which is

the list of view ports to use to capture shapes. The part of the shape that can be drawn

through the view port is spooled. In the numViewPorts parameter, you specify the

number of view ports to use (as specified in the viewPortList parameter). QuickDraw

GX drawing functions and view port objects are described in Inside Macintosh:
QuickDraw GX Objects.

Note

QuickDraw GX does not use the information in a view port, such as its
mapping or clipping properties. It uses a view port only to capture the
shape information, such as the geometry and color, as shapes are drawn.
For example, you can print as you draw by specifying view ports in the
onscreen view group in the call to GXStartPage, or you can draw to
offscreen view ports to capture shapes without displaying them. In
either case, only the information about the shape is spooled. ◆

Listing 2-6 gives an example of how to print a document using the GXStartPage,

GXDrawShape, and GXFinishPage functions.

Listing 2-6 Using the GXStartPage, GXDrawShape, and GXFinishPage functions to print a
document

OSErr MyPrintDocument2(MyDocumentPtr myDocument)

{

OSErr err;

long firstPage, lastPage, numPages, pg;

/* Determine which pages the user selected to print. */

GXGetJobPageRange(myDocument->documentJob, &firstPage,

&lastPage);

if (lastPage > myDocument->numPages)

lastPage = myDocument->numPages;

/* Calculate the total number of pages to print.*/

numPages = lastPage - firstPage + 1;

err = GXGetJobError(myDocument->documentJob);

/* Begin printing if there are no errors. */

if (err == noErr)

{

GXStartJob(myDocument->documentJob,

myDocument->documentTitle, numPages);

C H A P T E R 2

Core Printing Features

2-24 Using Core Printing Features

/*

For each page, call the GXStartPage function, draw the

page, and then call the GXFinishPage function. In this

example, the default format and the document's view

port are used, drawing only a single shape on each page.

*/

for (pg = firstPage; (err == noErr) && (pg <= lastPage);

pg++)

{

/* Start the page. */

GXStartPage(myDocument->documentJob, pg,

GXGetJobFormat(myDocument->documentJob, 1),

1, &myDocument->documentViewPort);

err = GXGetJobError(myDocument->documentJob);

/* If there are no errors, draw the data for the page. */

if (err == noErr)

{

GXDrawShape(myDocument->documentPage[pg -1]);

err = (OSErr) GXGetGraphicsError(nil);

}

if (err == noErr)

GXFinishPage(myDocument->documentJob);

}

/* Finish printing. */

GXFinishJob(myDocument->documentJob);

err = GXGetJobError(myDocument->documentJob);

}

return err;

}

Saving a Job Object With a Document File
There are two approaches you can take to saving a job object with its corresponding

document. Either you can create a handle in which to store the job object and then flatten

the job object into this handle, or you can specify a pointer to a flattening function to

flatten the job object and save its data to disk.

When the user chooses the Save or Save As menu command from the File menu, you

should save the document and its corresponding job object to disk. To save a job object,

you flatten it. To retrieve a job object, you unflatten it. For an introduction to flattening

and unflattening QuickDraw GX print objects, see the chapter “Introduction to Printing

With QuickDraw GX” in this book.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-25

When a user saves a document, you may prefer to save a job object in a single handle

using the GXFlattenJobToHdl function. You may also choose to use the

GXFlattenJob function to save a job object. You specify a pointer to a flattening

function in this function because it requires less memory to save portions of job object

data to disk than it does to save the data in a single handle.

Saving a Job Object in a Single Handle

This section describes how to use the GXFlattenJobToHdl function to save a job object

and its related data.

You should create a handle in which to store the job object and then flatten the job object

into this handle. You specify a handle in the aHandle parameter to the

GXFlattenJobToHdl function. QuickDraw GX grows or shrinks the size of the handle

you provide to accommodate the size of the job object. You then save the contents of the

handle, typically in the document’s resource fork.

Listing 2-7 shows how to save a job object in a document using the

GXFlattenJobToHdl function.

Listing 2-7 Using the GXFlattenJobToHdl function to save a job object

OSErr MySaveDocument(MyDocumentPtr myDocument)

{

OSErr err;

Handle theJobData, oldJobData;

short dataRefNum = -1;

short oldResFile, resRefNum = -1;

FSSpec *docFSSpec;

/*

Create a handle in which to store the job object and then

flatten the job object into this handle.

*/

oldResFile = CurResFile();

theJobData = NewHandle(0);

err = MemError();

if (err == noErr)

{

GXFlattenJobToHdl(myDocument->documentJob, theJobData);

err = GXGetJobError(myDocument->documentJob);

if (err == noErr)

{

C H A P T E R 2

Core Printing Features

2-26 Using Core Printing Features

/* Open the file's data fork and resource fork. */

docFSSpec = &myDocument->documentFSSpec;

err = FSpOpenDF(docFSSpec, fsRdWrPerm, &dataRefNum);

if (err == noErr)

{

resRefNum = HOpenResFile(docFSSpec->vRefNum,

docFSSpec->parID,

docFSSpec->name, fsRdWrPerm);

err = ResError();

}

/* Delete any existing job object resources. */

if (err == noErr)

{

UseResFile(resRefNum);

oldJobData = Get1Resource(kMyJobType, kMyJobID);

if (oldJobData != nil)

{

RmveResource(oldJobData);

UpdateResFile(resRefNum);

DisposHandle(oldJobData);

}

/* Add the new job object resource. */

AddResource(theJobData, kMyJobType, kMyJobID, "\p");

err = ResError();

if (err == noErr)

{

WriteResource(theJobData);

UpdateResFile(resRefNum);

ReleaseResource(theJobData);

}

/*

Write the data for a document’s pages to the data

fork. Place your application-specific code here to

save page data associated with the document.

*/

...

}

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-27

/* Close the data and resource forks of this document. */

if (dataRefNum != -1) FSClose(dataRefNum);

if (resRefNum != -1) CloseResFile(resRefNum);

}

else

DisposHandle(theJobData);

}

UseResFile(oldResFile);

return err;

}

Saving a Job Object Using a Flattening Function

This section describes how to use the GXFlattenJob function to save a job object. You

specify a pointer to a flattening function in the aPrintingFlattenProc parameter of

this function.

An example of a flattening function named MyFlattenFunction that you could write

is as follows:

OSErr MyFlattenJobFunc(long dataSize, void *data,

void *dataRefNum)

{

long count = dataSize;

return FSWrite((short) dataRefNum, &count, data);

}

QuickDraw GX calls your flattening function multiple times as it saves job object data to

disk. The dataSize parameter specifies the number of bytes for this segment of the job

object data. The data parameter specifies a pointer to the segments of job object data to

write out. The dataRefNum parameter specifies the file reference number of the open

file to which you want to write.

C H A P T E R 2

Core Printing Features

2-28 Using Core Printing Features

Listing 2-8 shows how to save a job object using the GXFlattenJob function.

Listing 2-8 Using the GXFlattenJob function to save a job object

OSErr MySaveJobInDataFork(MyDocumentPtr myDocument,

short dataRefNum)

{

OSErr err;

/*

Reset the file's position to the beginning of the data fork

and write the flattened job object there.

*/

err = SetFPos(dataRefNum, fsFromStart, 0);

if (err == noErr)

{

GXFlattenJob(myDocument->documentJob,

 (gxPrintingFlattenProc) MyFlattenJobFunc,

 dataRefNum);

err = GXGetJobError(myDocument->documentJob);

}

return err;

}

Disposing of a Job Object When Closing a Document
When the user chooses the Close menu command from the File menu to close a

document, you need to dispose of its job object. You should not dispose of a job object

while its document is open.

For each page in a document, you should dispose of the page’s shape. You can then call

the GXDisposeJob function to dispose of a document’s job object and associated format

objects. Listing 2-9 shows how to dispose of a job object when a user closes a document.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-29

Listing 2-9 Disposing of a job object when you close a document

OSErr MyCloseDocument(MyDocumentPtr myDocument)

{

OSErr err = noErr, jobErr;

long pg;

/* Dispose of each page's shape */

for (pg = 1; pg <= myDocument->numPages; pg++)

GXDisposeShape(myDocument->documentPage[pg-1]);

/* Dispose of the document's corresponding job object. */

err = GXDisposeJob(myDocument->documentJob);

/*

Place any application-specific code here to close a

document.

*/

...

DisposeWindow(myDocument->documentWindow);

return err;

}

Note

The GXDisposeJob function returns an error because errors are
job-oriented. You cannot query a job object for errors once you have
disposed of it. ◆

Retrieving a Job Object When Opening a Document
When the user chooses the Open menu command from the File menu to open a

document, you need to retrieve its job object. To retrieve a job object, you unflatten it

using one of the QuickDraw GX unflattening functions. For an introduction to flattening

and unflattening QuickDraw GX print objects, see the chapter “Introduction to Printing

With QuickDraw GX” in this book.

There are two methods to retrieving a job object depending on how you have previously

saved it. If you saved the job object using the GXFlattenJobToHdl function, you

should retrieve it using the GXUnflattenJobFromHdl function. If you saved the job

object using the GXFlattenJob function, you should retrieve it using the

GXUnflattenJob function. For details on the GXFlattenJobToHdl and

GXFlattenJob functions, see “Saving a Job Object With a Document File,” which

begins on page 2-24.

C H A P T E R 2

Core Printing Features

2-30 Using Core Printing Features

Retrieving a Job Object From a Handle

This section describes how to use the GXUnflattenJobFromHdl function to retrieve a

job object and its related data.

When a user chooses the Open menu command from the File menu, you should open

the document and retrieve its previously saved job object. To do so, you open the

document’s data fork and resource fork. The MyOpenDocument function in Listing 2-10

accomplishes this.

If there are no errors, you should specify the document’s file system specification

information, its title, and its window’s title. If there is a job object resource saved in the

resource file, you should load it and unflatten it using the GXUnflattenJobFromHdl

function.

After the job object is unflattened, you can load the data for the document’s pages.

Finally, you should close the document’s data fork and resource fork. Listing 2-10 shows

how to open a document and retrieve its job object using the

GXUnflattenJobFromHdl function.

Listing 2-10 Using the GXUnflattenJobFromHdl function to retrieve a job object

OSErr MyOpenDocument(MyDocumentPtr myDocument)

{

OSErr err;

Handle theJobData;

short oldResFile;

short dataRefNum = -1, resRefNum = -1;

StandardFileReply sfReply;

SFTypeList myTypeList;

/* Let the user select a document to open. */

oldResFile = CurResFile();

myTypeList[0] = kMyDocType;

StandardGetFile(nil, 1, &myTypeList, &sfReply);

if (!sfReply.sfGood)

return noErr;

/* Open the selected file's data fork and resource fork. */

err = FSpOpenDF(&sfReply.sfFile, fsRdWrPerm, &dataRefNum);

if (err == noErr)

{

resRefNum = HOpenResFile(sfReply.sfFile.vRefNum,

sfReply.sfFile.parID,

sfReply.sfFile.name, fsRdPerm);

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-31

err = ResError();

}

if (err) return err;

/*

If no error, set the document's file system specification

information, its title, and its window's title.

*/

BlockMove(&sfReply.sfFile, &myDocument->documentFSSpec,

sizeof(FSSpec));

BlockMove(&sfReply.sfFile.name, myDocument->documentTitle,

(long) sfReply.sfFile.name[0] +1);

SetWTitle(myDocument->documentWindow,

myDocument->documentTitle);

/*

If there's a job object resource saved,

load and unflatten it.

*/

UseResFile(resRefNum);

theJobData = Get1Resource(kMyJobType, kMyJobID);

if (theJobData != nil)

{

GXUnflattenJobFromHdl(myDocument->documentJob, theJobData);

err = GXGetJobError(myDocument->documentJob);

ReleaseResource(theJobData);

}

/*

Place your application-specific code here to load

other data associated with the document’s pages.

*/

...

/* Close the data fork and resource fork of this document. */

if (dataRefNum != -1) FSClose(dataRefNum);

if (resRefNum != -1) CloseResFile(resRefNum);

UseResFile(oldResFile);

return err;

}

C H A P T E R 2

Core Printing Features

2-32 Using Core Printing Features

Retrieving a Job Object Using an Unflattening Function

This section describes how to use the GXUnflattenJob function to retrieve a job object.

You specify a pointer to an unflattening function in the aPrintingFlattenProc

parameter of the GXUnflattenJob function.

An example of an unflattening function named MyUnflattenFunction that you could

write is as follows:

OSErr MyUnflattenJobFunc(long dataSize, void *data,

void *dataRefNum)

{

long count = dataSize;

return FSRead((short) dataRefNum, &count, data);

}

QuickDraw GX calls your unflattening function multiple times as it retrieves job

object-related data from disk. The dataSize parameter specifies the number of bytes for

this segment of the job object data. The data parameter specifies a pointer to the

segments of job object data to read. The dataRefNum parameter specifies the file

reference number of the open file from which you want to read.

Listing 2-11 shows how to retrieve a job object using the GXUnflattenJob function.

Listing 2-11 Using the GXUnflattenJob function to retrieve a job object

OSErr MyLoadJobFromDataFork(MyDocumentPtr myDocument,

short dataRefNum)

{

OSErr err;

/*

Reset the file's position to the beginning of the data fork,

read and then unflatten the job object from there.

*/

err = SetFPos(dataRefNum, fsFromStart, 0);

if (err == noErr)

{

GXUnflattenJob(myDocument->documentJob,

 (gxPrintingFlattenProc) MyUnflattenJobFunc,

 (void *) dataRefNum);

err = GXGetJobError(myDocument->documentJob);

}

return err;

}

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-33

Obtaining Object References
A job object can reference several format objects. Once you know which format object

you want, you can access its properties. QuickDraw GX provides the GXGetFormatJob

function to determine which job object is associated with a particular format object. Even

if you know the format’s job, you may still want to examine all references to the job’s

format objects. You can obtain these references with the GXGetJobFormat function.

Listing 2-12 shows an example that uses the GXGetFormatJob function to obtain the job

object that references a format object and then loops through all the job’s format objects

using the GXGetJobFormat function. The example’s function, MyGetFormatIndex,

returns the format’s position, or index value, of the specified format object in the job’s

list of format objects.

Listing 2-12 Using the GXGetFormatJob function to obtain a job object

long MyGetFormatIndex(gxFormat myFormat)

{

gxJob formatsJob;

long idx, numFormats;

/*

Obtain the job object and count of the number of format objects

it references.

*/

formatsJob = GXGetFormatJob(myFormat);

numFormats = GXCountJobFormats(formatsJob);

/*

Compare each of the references to locate the specified format

object and return the current format object index.

*/

for (idx = 1; idx <= numFormats; ++idx)

if (myFormat == GXGetJobFormat(formatsJob, idx))

return idx;

}

Obtaining Information From a Format Object
This section provides an example of how to obtain information from a format object.

QuickDraw GX provides functions that allow you to get, and in some cases set, the

values of printing-related object properties.

This example uses the GXGetFormatDimensions function, which returns the

dimensions property of a format object. The dimensions property includes the

physical dimensions of the paper (the paper size) and the printable area within these

C H A P T E R 2

Core Printing Features

2-34 Using Core Printing Features

dimensions (the page size) after scaling and orientation have been applied. For a

discussion of how the dimensions can be scaled or otherwise changed, see the chapter

“Page Formatting and Dialog Box Customization” in this book.

Listing 2-13 shows how to use the GXGetFormatDimensions function to obtain a

format object’s dimensions property.

Listing 2-13 Using the GXGetFormatDimensions function

OSErr MyGetFormatDimensions(MyDocumentPtr myDocument,

gxRectangle *pageBounds,

gxRectangle *paperBounds)

{

long curPage;

gxFormat pgFormat;

/*

Get the format object for the current page. If it is nil, use

the default format.

*/

curPage = myDocument->curPage;

pgFormat = myDocument->pageFormat[curPage -1];

if (pgFormat == nil)

pgFormat = GXGetJobFormat(myDocument->documentJob, 1);

/* Get the bounds of the format object.*/

GXGetFormatDimensions(pgFormat, pageBounds, paperBounds);

return GXGetJobError(myDocument->documentJob);

}

Note

The GXGetFormatDimensions function returns both the page size and
the paper size of a particular document. Most applications are generally
interested in only the page size, so QuickDraw GX allows you to pass
nil for the pointer to the paper size. ◆

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-35

Displaying QuickDraw GX Print Dialog Boxes
You call functions to display most QuickDraw GX print dialog boxes.You use the

GXJobDefaultFormatDialog function to display the Page Setup dialog box, and you

use the GXJobPrintDialog function to display the Print dialog box. You use the

GXFormatDialog function to display the Custom Page Setup dialog box, which is

discussed in the chapter “Page Formatting and Dialog Box Customization” in this book.

Displaying the Page Setup Dialog Box

When the user chooses the Page Setup menu command from the File menu, you call the

GXJobDefaultFormatDialog function to display the Page Setup dialog box. In this

dialog box, the user can specify formatting information for the default format. For

example, the user can specify the paper type, orientation, and scaling.

QuickDraw GX stores a user’s responses to some dialog items in the Page Setup dialog

box in a format collection. QuickDraw GX stores default items, such as these, for you

automatically. The format collection is discussed in the chapter “Page Formatting and

Dialog Box Customization” in this book.

Figure 2-5 shows the Page Setup dialog box the user sees when you call the

GXJobDefaultFormatDialog function.

Figure 2-5 The Page Setup dialog box

If the user chooses More Choices in the Page Setup dialog box, QuickDraw GX expands

the dialog box. Figure 2-6 shows the expanded Page Setup dialog box. The expanded

dialog box in this figure only contains one panel, the General panel. A printer driver,

printing extension, or application can customize the dialog box to add additional panels.

For more information about adding panels, see the chapter “Page Formatting and Dialog

Box Customization” in this book.

C H A P T E R 2

Core Printing Features

2-36 Using Core Printing Features

Figure 2-6 The expanded Page Setup dialog box

Listing 2-14 shows the MyFormatDialog function, which calls the

GXJobDefaultFormatDialog function to display the Page Setup dialog box. The Edit

menu structure, gxEditMenuRecord, is set up before the dialog box is displayed. For

information about the Edit menu structure, see “Edit Menu Structure” beginning on

page 2-9. If the user chooses the Format button and there are no errors, document

formatting can proceed.

Listing 2-14 Displaying the Page Setup dialog box

#define mEdit 128

#define kUndo 1

#define kCut 3

#define kCopy 4

#define kPaste 5

#define kClear 6

...

OSErr MyFormatDialog(MyDocumentPtr myDocument)

{

OSErr err;

gxDialogResult result;

gxEditMenuRecord editMenuRec;

/* Fill in the location of your application’s Edit menu items. */

editMenuRec.editMenuID = mEdit;

editMenuRec.cutItem = kCut;

editMenuRec.copyItem = kCopy;

editMenuRec.pasteItem = kPaste;

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-37

editMenuRec.clearItem = kClear;

editMenuRec.undoItem = kUndo;

/* Display the Page Setup dialog box. */

result = GXJobDefaultFormatDialog(myDocument->documentJob,

&editMenuRec);

err = GXGetJobError(myDocument->documentJob);

/*

If the user chooses the Format button and there are no

errors, perform document formatting.

*/

if ((err == noErr) && (result == gxOKSelected))

{

/*

Place your application-specific code here if you need

to repaginate the document.

*/

...

}

return err;

}

Displaying the Print Dialog Box

When the user chooses the Print menu command from the File menu, you call the

GXJobPrintDialog function to display the Print dialog box. In this dialog box, the

user can specify information related to actual printing of the document. For example, in

the panels of the Print dialog box the user can specify the printer, print quality, number

of copies to print, page range, automatic or manual paper feed, and whether a document

should be sent to a printer or a file.

QuickDraw GX stores a user’s responses to some dialog items in the Print dialog box in a

job collection. The job collection is discussed in the chapter “Page Formatting and

Dialog Box Customization” in this book.

C H A P T E R 2

Core Printing Features

2-38 Using Core Printing Features

Figure 2-7 shows the Print dialog box the user sees when you call the

GXJobPrintDialog function.

Figure 2-7 The Print dialog box

If the user chooses More Choices in the Print dialog box, QuickDraw GX expands the

dialog box. Figure 2-8 shows the expanded Print dialog box. The expanded dialog box

includes the standard panels (General, Print Time, and Paper Match), and any panels

added by the application, printing extensions, or a printer driver.

Figure 2-8 The expanded Print dialog box

Listing 2-15 shows the MyPrintDialog function, which calls the GXJobPrintDialog

function to display the Print dialog box. The Edit menu structure, gxEditMenuRecord,

is set up before the dialog box is displayed. For information about the Edit menu

structure, see “Edit Menu Structure” beginning on page 2-9. If the user chooses the Print

button and there are no errors, printing can proceed.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-39

Listing 2-15 Displaying the Print dialog box

OSErr MyPrintDialog(MyDocumentPtr myDocument)

{

OSErr err;

gxDialogResult result;

gxEditMenuRecord editMenuRec;

/* Fill in the location of your application’s Edit menu items. */

editMenuRec.editMenuID = mEdit;

editMenuRec.cutItem = kCut;

editMenuRec.copyItem = kCopy;

editMenuRec.pasteItem = kPaste;

editMenuRec.clearItem = kClear

editMenuRec.undoItem = kUndo;

/* Display the Print dialog box. */

result = GXJobPrintDialog(myDocument->documentJob,

 &editMenuRec);

err = GXGetJobError(myDocument->documentJob);

/*

If the user chooses the Print button and there are no errors,

call your printing function to print the pages.

*/

if ((err == noErr) && (result == gxOKSelected))

err = MyPrintDocument(myDocument);

return err;

}

Supporting Printing From the Finder
A user can print from the Finder in two ways. A user can select a document and then

choose the Print menu command from the File menu, or the user can drag a document to

a desktop printer icon. To support printing from the Finder, your application must

respond to the Print Documents ('pdoc') Apple event. Apple events provide your

application with a standard mechanism for communicating with other applications.

To handle the Print Documents event, your application should print the documents

specified in the Apple event. You can determine whether a document was dragged to a

desktop printer icon by checking the keyOptionalKeywordAttr attribute of the Print

Documents Apple event. Your application extracts this information and then prints the

specified documents. Your application should not open any windows for the documents.

C H A P T E R 2

Core Printing Features

2-40 Using Core Printing Features

The Print Documents Apple event is discussed in the Apple events chapter of Inside
Macintosh: Interapplication Communication.

Your application is responsible for determining the output printer on which to print the

document. When a user drags a document to a desktop printer icon, your application

must call the GXSelectJobOutputPrinter function to specify the output printer on

which to print the selected document. This call is necessary because the document may

have been printed previously and that job information may have been saved with the

document. The GXSelectJobOutputPrinter function allows you to reselect the

printer.

Listing 2-16 shows how to respond to the Print Documents Apple event and specify an

output printer.

Listing 2-16 Responding to the Print Documents Apple event and specifying an output printer

pascal OSErr MyHandlePDOC(AppleEvent *theAppleEvent,

AppleEvent *reply, long myRefCon)

{

OSErr err;

AEDescList docList, dtpList;

FSSpec myFSS, dtpFSS;

long itemsInList, i;

AEKeyword theKeyword;

DescType typeCode;

Boolean draggedToDTP = false;

Size actualSize;

MyDocumentRec myDocument;

/* Get the document list. */

err = AEGetParamDesc(theAppleEvent, keyDirectObject,

typeAEList, &docList);

if (err) return err;

/*

Check to see if the user dragged the document to a desktop

printer.

*/

err = AEGetParamDesc(theAppleEvent, keyOptionalKeywordAttr,

typeAEList, &dtpList);

if (err == noErr) draggedToDTP = true;

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-41

/*

Make sure you’ve accounted for all of the parameters passed

and count the number of documents specified.

*/

err = MyCheckAEParams(theAppleEvent);

if (err) return err;

err = AECountItems(&docList, &itemsInList);

if (err) return err;

/*

If the user dragged the document to a desktop printer, get the

name of the desktop printer and throw away its description

list.

*/

if (draggedToDTP)

{

err = AEGetNthPtr(&dtpList, 1, typeFSS, &theKeyword,

&typeCode, (Ptr) &dtpFSS,

sizeof(FSSpec), &actualSize);

AEDisposeDesc(&dtpList);

}

/*

For each entry in the document list, load it, print it, and

close it.

*/

for (i = 1; i<= itemsInList, err == noErr; i++)

{

err = AEGetNthPtr(&docList, i, typeFSS, &theKeyword,

&typeCode, (Ptr) &myFSS, sizeof(FSSpec),

&actualSize);

if (err == noErr)

{

/* Load the document. */

err = MyNewDocument("\p", &myDocument);

if (err == noErr)

{

err = MyFSOpenDocument(&myDocument, &myFSS);

if (err == noErr)

C H A P T E R 2

Core Printing Features

2-42 Using Core Printing Features

/*

If the user dragged the document to a desktop

printer, select this printer as the output printer

for each job object.

*/

{

if (draggedToDTP)

GXSelectJobOutputPrinter(myDocument.documentJob,

dtpFSS.name);

err = MyPrintDocument(&myDocument);

}

/* Close the document once it's printed. */

MyCloseDocument(&myDocument);

}

}

}

/* When you're done, throw away the document list. */

AEDisposeDesc(&docList);

return err;

}

Updating Job Object Information
When you receive a resume event, you should use the GXUpdateJob function to update

the job object because the printing environment may have changed while the user was

switched out of your application. For example, the user may have changed the desktop

printer’s settings, such as paper-tray information, while using another application.

Listing 2-17 shows an example of how to update the job object for a document. The

GXUpdateJob function is called from the MyDoEvent function in response to a resume

event.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-43

Listing 2-17 Updating a job when receiving resume events

OSErr MyDoEvent(EventRecord *event)

{

OSErr err = noErr;

WindowPtr curWindow;

MyDocumentPtr windowDoc;

switch (event->what)

{

/*

Application-specific code to handle mouse-down events,

update events, and so on.

*/

case osEvt:

switch ((event->message >> 24) & 0x0FF)

{

case suspendResumeMessage:

SetCursor(&qd.arrow);

/* On a suspend event, coerce the scrap. */

if ((event->message & resumeFlag) == 0)

{

ZeroScrap();

TEToScrap();

}

else

{

/*

On a resume event, call GXUpdateJob on all of the documents'

job objects. The user may have just changed something which

affects the job objects, such as the size of the paper in the

printer.

C H A P T E R 2

Core Printing Features

2-44 Using Core Printing Features

Since your application stores the document pointers in the

reference constant fields of the documents' windows, loop

through each window, extract the document pointers, and update

the associated job objects.

*/

if (event->message & convertClipboardFlag)

TEFromScrap();

curWindow = FrontWindow();

while (curWindow != nil)

{

if (((WindowPeek) curWindow)->windowKind ==

userKind)

{

windowDoc = (MyDocumentPtr)

GetWRefCon(curWindow);

GXUpdateJob(windowDoc->documentJob);

}

curWindow = (WindowPtr) ((WindowPeek)

curWindow)->nextWindow;

}

}

break;

}

break;

/*

Application-specific code to handle high-level events.

*/

}

return err;

}

Printing Macintosh Printing Manager Documents
Documents printed with applications that use the Macintosh Printing Manager can be

printed on a system with QuickDraw GX installed without the application being aware

that QuickDraw GX is installed. Printing in this way, however, does not allow the

application to take advantage of QuickDraw GX printing features, such as additional

options provided in QuickDraw GX print dialog boxes, formatting, customization, and

so on.

C H A P T E R 2

Core Printing Features

Using Core Printing Features 2-45

You can modify an existing application to allow it to print a document designed for

printing with the Macintosh Printing Manager by determining whether QuickDraw GX

is installed and, if it is, performing these steps:

1. Convert the print record associated with a Macintosh Printing Manager document
into a job object.

2. Install the QuickDraw GX Translator to convert the results of QuickDraw functions
into special QuickDraw GX shape objects that are used to spool QuickDraw output.

3. Execute your print loop. See the section “Printing Documents Using QuickDraw GX”
beginning on page 2-20 for an example.

4. Remove the QuickDraw GX Translator.

To convert the print record associated with a Macintosh Printing Manager document into

a job object, use the GXConvertPrintRecord function. Listing 2-18 shows how to use

the GXConvertPrintRecord function.

Listing 2-18 Converting a print record into a job object

OSErr MyPrintRecordToJob(MyDocumentPtr myDocument, THPrint hPrint)

{

/*

Convert the print record and store its settings in

the specified job object. Dispose of its handle.

*/

GXConvertPrintRecord(myDocument->documentJob, hPrint);

DisposHandle((Handle) hPrint);

return GXGetJobError(myDocument->documentJob);

}

In addition to converting the print record, you must also translate QuickDraw data using

the QuickDraw GX Translator. You call the GXInstallQDTranslator function to

install the translator, and you call the GXRemoveQDTranslator function when you are

finished with the translation. The QuickDraw GX Translator and these functions are

described in the QuickDraw GX environment chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities.

After you call GXInstallQDTranslator, you proceed to print using the normal print

loop; for example, by calling GXStartPage to start a new page and GXFinishPage to

finish it. The results of any QuickDraw function is translated and the output is spooled.

When you are finished printing, call GXRemoveQDTranslator to end translation.

C H A P T E R 2

Core Printing Features

2-46 Core Printing Features Reference

Core Printing Features Reference

This section describes the data types, constants, and functions that are specific to

QuickDraw GX core printing features.

The “Constants and Data Types” section shows the Gestalt selector enumeration for

QuickDraw GX printing features, the data types for QuickDraw GX printing-related

objects, the Edit menu structure, and the dialog box result enumeration.

The “Functions” section describes functions for initializing and terminating printing

features, handling errors, creating and managing job objects, printing using QuickDraw

GX, obtaining information on printing-related objects, displaying the Page Setup and

Print dialog boxes, and converting a print record into a job object.

The “Application-Defined Functions” section shows sample functions for flattening and

unflattening job objects.

Constants and Data Types

This section describes the data types and constants that you use to initialize QuickDraw

GX printing features, reference QuickDraw GX printing-related objects, and support

QuickDraw GX print dialog boxes.

You can use the Gestalt selector enumeration to test for the existence of QuickDraw GX

printing features.

The QuickDraw GX printing-related object structures are private. You can access print

objects through references.

You can use the Edit menu structure to specify the location of the Edit menu and its

menu items when displaying print dialog boxes.

You can use the dialog box result enumeration to store the user’s response to QuickDraw

GX print dialog boxes.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-47

Gestalt Selectors for Printing

To test for the existence of QuickDraw GX printing features, use the Gestalt function.

The Gestalt selectors for the QuickDraw GX printing manager version and QuickDraw

GX are defined as follows:

#define gestaltGXPrintingMgrVersion 'pmgr'

#define gestaltGXVersion 'qdgx'

The Gestalt function is discussed in Inside Macintosh: Operating System Utilities.

QuickDraw GX Printing-Related Objects

QuickDraw GX provides you with access to printing-related objects through references.

The contents of the structures are private.

You access a job object through a job object reference:

typedef struct gxPrivateJobRecord *gxJob;

You access printer objects through a printer object reference:

typedef struct gxPrivatePrinterRecord *gxPrinter;

You access a format object through a format object reference:

typedef struct gxPrivateFormatRecord *gxFormat;

You access a paper-type object through a paper-type object reference:

typedef struct gxPrivatePaperTypeRecord *gxPaperType;

You access a print file object through a print file object reference:

typedef struct gxPrivatePrintFileRecord *gxPrintFile;

QuickDraw GX also provides the job, format, and paper-type collection objects. You

access collection objects through a collection object reference:

typedef struct PrivateCollectionRecord *Collection;

C H A P T E R 2

Core Printing Features

2-48 Core Printing Features Reference

Edit Menu Location

When displaying QuickDraw GX print dialog boxes, your application needs to specify

the location of the Edit menu and its menu items. Your application specifies the location

of the Edit menu and its menu items in the Edit menu structure. The Edit menu structure

is defined as follows:

struct gxEditMenuRecord {

short editMenuID;

short cutItem;

short copyItem;

short pasteItem;

short clearItem;

short undoItem;

} gxEditMenuRecord;

Field descriptions

editMenuID Your application’s resource ID for the Edit menu.

cutItem The position of the cut menu item under the Edit menu.

copyItem The position of the copy menu item under the Edit menu.

pasteItem The position of the paste menu item under the Edit menu.

clearItem The position of the clear menu item under the Edit menu.

undoItem The position of the undo menu item under the Edit menu.

Dialog Box Results

QuickDraw GX print dialog boxes support dialog box results. Results are defined in the

dialog box result enumeration.

enum {

gxCancelSelected = (gxDialogResult) 0,

gxOKSelected = (gxDialogResult) 1,

gxRevertSelected = (gxDialogResult) 2

};

typedef long gxDialogResult;

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-49

Constant descriptions

gxCancelSelected
Represents a cancelation of the dialog box without action being
taken, such as when the user chooses Cancel or presses Escape
while in a dialog box.

gxOKSelected Represents a confirmation, such as when the user chooses Format in
the Page Setup dialog box.

gxRevertSelected
Represents a request to undo one or more actions, such as when the
user chooses Remove to remove a page format while in the Custom
Page Setup dialog box.

Functions

This section describes the functions for initializing and terminating printing features,

handling errors, creating and managing job objects, printing using QuickDraw GX,

obtaining information on print objects, displaying print dialog boxes, and converting a

print record into a job object.

Included with each function description is a list of specific result codes returned by

QuickDraw GX. In addition to these result codes, you may also receive file-system,

memory, and resource errors. For a complete listing of specific file-system, memory, and

resource errors, see Inside Macintosh: C Summary or Inside Macintosh: Pascal Summary.

You should note that not all possible result codes for a particular function are included in

function descriptions within this section. For example, the Message Manager, described

in Inside Macintosh: QuickDraw GX Environment and Utilities, allows QuickDraw GX

functions to send specific messages to your application. These messages can also

generate errors.

IMPORTANT

All printing functions in QuickDraw GX, with the exception of
the GXGetJobError function, may move Macintosh memory. The
GXGetJobError function, however, relies on data that may also move.
Therefore, your application should never call a QuickDraw GX
printing-related function at interrupt time. ▲

C H A P T E R 2

Core Printing Features

2-50 Core Printing Features Reference

Initializing and Terminating QuickDraw GX Printing Features

After you call the GXEnterGraphics function to initialize QuickDraw GX, you can call

the GXInitPrinting function to initialize printing features within QuickDraw GX.

When you have successfully called the GXInitPrinting function and you need to

terminate printing features within QuickDraw GX, you must call the GXExitPrinting

function.

GXInitPrinting

You can use the GXInitPrinting function to initialize printing features within

QuickDraw GX.

OSErr GXInitPrinting (void);

function result An error code of type OSErr.

DESCRIPTION

Before you call the GXInitPrinting function, you must call the GXEnterGraphics

function to initialize QuickDraw GX. You should also use the Gestalt function to

determine whether QuickDraw GX printing features are available on the user’s system.

The Gestalt selector is 'pmgr'.

SPECIAL CONSIDERATIONS

If the GXInitPrinting function returns an error, you should not attempt to call other

QuickDraw GX printing-related functions.

RESULT CODES

SEE ALSO

The GXEnterGraphics function that initializes QuickDraw GX is described in Inside
Macintosh: QuickDraw GX Environment and Utilities.

To terminate printing features in QuickDraw GX, use the GXExitPrinting function,

which is described in the next section.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-51

GXExitPrinting

You can use the GXExitPrinting function to terminate printing features within

QuickDraw GX.

OSErr GXExitPrinting (void);

function result An error code of type OSErr.

DESCRIPTION

The GXExitPrinting function terminates printing features within QuickDraw GX only

after you have successfully called the GXInitPrinting function. You cannot call

QuickDraw GX printing functions after you call the GXExitPrinting function.

You must call the GXExitPrinting function before you call the GXExitGraphics

function to shut down QuickDraw GX.

Before you call the GXExitPrinting function, you should dispose of all QuickDraw

GX printing-related objects. If you want to use these objects again, you should save them.

RESULT CODES

SEE ALSO

For information about saving printing-related objects, see “Saving a Job Object With a

Document File” beginning on page 2-24.

The GXExitGraphics function is described in the environment chapter of Inside
Macintosh: QuickDraw GX Environment and Utilities.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-52 Core Printing Features Reference

Handling Errors

QuickDraw GX printing features allow you to poll for errors in two ways: immediately

after you call a function or after you call groups of functions. QuickDraw GX provides

the GXGetJobError function to allow you to poll for errors in both ways.

To allow your application to manage separate documents, errors are local to a job object.

To store an error with a particular job object, you use the GXSetJobError function.

GXGetJobError

You can use the GXGetJobError function to obtain the first error encountered for a

particular job object since the last call to GXGetJobError.

OSErr GXGetJobError (gxJob aJob);

aJob A reference to the job object whose most recent error you want to obtain.

function result An error code of type OSErr.

DESCRIPTION

The GXGetJobError function returns printing-related errors associated with a job

object. Initially, you can call this function to obtain the current error code. If you

immediately call this function a second time, it returns noErr.

You can use the GXSetJobError function to store an error in a specific job object.

SPECIAL CONSIDERATIONS

After an error occurs, calls to QuickDraw GX printing-related functions associated with

the specified job object return immediately without executing, until the

GXGetJobError function is called.

The GXGetJobError function does not move Macintosh memory; however, your

application should not call this function at interrupt time, because it relies on data

structures that may move.

SEE ALSO

Error-handling methods using the GXGetJobError function are described in “Error

Handling,” which begins on page 2-14.

The GXSetJobError function is described in the next section.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-53

GXSetJobError

You can use the GXSetJobError function to store an error in the provided job object.

void GXSetJobError (gxJob aJob, OSErr anError);

aJob A reference to the job object in which to store the error.

anError The error to store.

DESCRIPTION

The GXSetJobError function stores an error with a particular job object. This function

is useful when you want to abort or cancel spooling.

Most applications do not need to use this function because QuickDraw GX sets the error

for you. You might want to use it, however, to artificially raise an error condition.

SPECIAL CONSIDERATIONS

An existing error is replaced when you call the GXSetJobError function. If you wish to

save a previous error, you must call the GXGetJobError function to obtain an error

prior to calling the GXSetJobError function.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-54 Core Printing Features Reference

Creating and Managing Job Objects

When a user creates a new document, you need to create a corresponding job object

using the GXNewJob function. When a user closes a printable document, you need to

dispose of its corresponding job object using the GXDisposeJob function.

When a user saves a printable document, you need to flatten its job object using either

the GXFlattenJobToHdl function or the GXFlattenJob function. When a user opens

a printable document, you need to retrieve its job object using either the

GXUnflattenJobFromHdl function or the GXUnflattenJob function.

When you receive a resume event, you should use the GXUpdateJob function to update

the job object because the printing environment may have changed.

GXNewJob

You can use the GXNewJob function to create a job object to associate with a printable

document.

OSErr GXNewJob (gxJob *aJob);

aJob On return, a reference to the newly created job object.

function result An error code of type OSErr.

DESCRIPTION

The GXNewJob function allocates space for a job object and returns a reference to the job

object. You need to call this function each time a user creates a new printable document.

When QuickDraw GX creates a new job object, it contains default values. Specifically, it

contains a default format and a default paper type. The default format and default paper

type are defined by the default output printer’s printer driver. If there is no default

output printer’s printer driver, the job object uses the format and paper type associated

with “Any Printer.”

You should call the GXInstallApplicationOverride function after you call the

GXNewJob function to support QuickDraw GX print dialog boxes.

When a user closes a document, you need to dispose of a job object using the

GXDisposeJob function.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-55

RESULT CODES

SEE ALSO

Listing 2-1 on page 2-12 shows how to use the GXNewJob function to create a job object

for a printable document.

The GXInstallApplicationOverride function for supporting QuickDraw GX print

dialog boxes is described on page 2-71.

To dispose of a job object, see the description of the GXDisposeJob function in the next

section.

GXDisposeJob

You can use the GXDisposeJob function to dispose of a job object associated with a

printable document.

OSErr GXDisposeJob (gxJob aJob);

aJob A reference to the job object to be disposed of.

function result An error code of type OSErr.

DESCRIPTION

You should call the GXDisposeJob function when a user closes a printable document

and deallocates space for an existing job object. This function returns an error if the

specified job object is nil.

Before you dispose of a job object, you should call the GXFlattenJobToHdl function or

the GXFlattenJob function to save a job object when a user saves a document.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaperTypeNotFound The default paper-type object cannot be located.

C H A P T E R 2

Core Printing Features

2-56 Core Printing Features Reference

RESULT CODES

SEE ALSO

Listing 2-9 on page 2-29 shows how to use the GXDisposeJob function to dispose of a

job object when a user closes a document.

The GXFlattenJobToHdl function for saving job objects in a handle is described in the

next section. The GXFlattenJob function for saving job objects by calling a function is

described on page 2-57.

GXFlattenJobToHdl

You can use the GXFlattenJobToHdl function to flatten a job object into a handle.

Handle GXFlattenJobToHdl (gxJob aJob, Handle aHandle);

aJob A reference to the job object to be flattened.

aHandle The handle into which the flattened data is placed.

function result The handle into which the flattened data is placed.

DESCRIPTION

The GXFlattenJobToHdl function provides your application with a mechanism for

saving all information associated with a job object in a handle. You should call this

function when a user saves a printable document.

You specify a handle in the aHandle parameter. QuickDraw GX grows or shrinks the

size of the handle you provide to accommodate the size of the job object. You can specify

nil in this parameter to allow QuickDraw GX to create and return a handle for you.

When you save a printable document, you can write the handle to the file’s resource or

data fork. You cannot directly modify the contents of this handle.

When a user opens a printable document, you need to unflatten all information

associated with a job object using the UnflattenJobToHdl function.

If you do not wish to save data in a handle, you can also use the GXFlattenJob and

GXUnflattenJob functions to specify a function to save and restore a job object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-57

RESULT CODES

SEE ALSO

Listing 2-7 on page 2-25 shows how to use the GXFlattenJobToHdl function to save a

job object.

To unflatten all information associated with a job object, see the

GXUnflattenJobFromHdl function, which is described on page 2-58.

You can also specify a function to save information associated with a job object by using

the GXFlattenJob function, which is described in the next section.

GXFlattenJob

You can use the GXFlattenJob function when you want to call a function to flatten a

job object.

void GXFlattenJob (gxJob aJob,

gxPrintingFlattenProc aPrintingFlattenProc,

void *aVoid);

aJob A reference to the job object to be flattened.

aPrintingFlattenProc
A pointer to a flattening function.

aVoid A reference variable passed to the flattening function.

DESCRIPTION

The GXFlattenJob function provides your application with a mechanism for saving all

information associated with a job object by specifying a pointer to a flattening function.

QuickDraw GX calls your flattening function multiple times as it saves job object-related

data to disk.

You specify a pointer to a flattening function in the aPrintingFlattenProc

parameter of the GXFlattenJob function.You may prefer to use the GXFlattenJob

function (instead of the GXFlattenJobToHdl function) because it requires less memory

to save portions of job object data to disk than it does to save all the data in a single

handle.

When a user opens a printable document, you need to unflatten all information

associated with a job object using the GXUnflattenJob function.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-58 Core Printing Features Reference

RESULT CODES

SEE ALSO

Listing 2-8 on page 2-28 shows how to use the GXFlattenJob function to save a job

object.

An example of a flattening function is described on page 2-76.

To unflatten all information flattened using GXFlattenJob, see the GXUnflattenJob

function, which is described on page 2-59.

To flatten a job to a handle, see the GXFlattenJobToHdl function, which is described

on page 2-56.

GXUnflattenJobFromHdl

You can use the GXUnflattenJobFromHdl function to unflatten a job object that you

previously flattened using the GXFlattenJobToHdl function.

gxJob GXUnflattenJobFromHdl (gxJob aJob, Handle aHandle);

aJob A reference to the job object into which unflattened data is placed.

aHandle A handle from which the job object is to be read.

function result The unflattened job object.

DESCRIPTION

The GXUnflattenJobFromHdl function provides your application with a mechanism

for retrieving all information associated with a job object from a handle. You should call

this function when a user opens a printable document containing a job object that was

previously flattened using the GXFlattenJobToHdl function.

In the aJob parameter, you specify a job object in which to place the unflattened job

object data. You can specify nil in this parameter to allow QuickDraw GX to create and

return a job object for you.

The aHandle parameter specifies the handle from which the job object information is

read. You previously specified this handle using the GXFlattenJobToHdl function.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-59

RESULT CODES

SEE ALSO

Listing 2-10 on page 2-30 shows how to use the GXUnflattenJobFromHdl function to

retrieve a job object from a handle.

You specify a handle in which to save a job object using the GXFlattenJobToHdl

function, which is described on page 2-56.

GXUnflattenJob

You can use the GXUnflattenJob function to unflatten a job object that you previously

flattened using the GXFlattenJob function.

gxJob GXUnflattenJob (gxJob aJob,

gxPrintingFlattenProc aPrintingFlattenProc,

void *aVoid);

aJob A reference to the job object to be unflattened.

aPrintingFlattenProc
A pointer to a flattening function.

aVoid A reference variable passed to the flattening function.

function result The unflattened job object.

DESCRIPTION

The GXUnflattenJob function provides your application with a mechanism for

retrieving all information associated with a job object by executing an

application-supplied function. In the aPrintingFlattenProc parameter, you specify

a pointer to an unflattening function. QuickDraw GX calls your unflattening function

multiple times as it retrieves job object-related data from disk.

In the aJob parameter, you specify a job object in which to place the unflattened job

object data. You can specify nil in this parameter to allow QuickDraw GX to create and

return a job object for you.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxFlattenVersionTooNew An attempt to unflatten a job object that was
flattened using a later version of QuickDraw GX.

gxPaperTypeNotFound The paper-type object cannot be located.
collectionVersionErr Version of the collection object is not compatible with

the current version of the Collection Manager.

C H A P T E R 2

Core Printing Features

2-60 Core Printing Features Reference

RESULT CODES

SEE ALSO

Listing 2-10 on page 2-30 shows an example of how to use the GXUnflattenJob

function.

You specify a function to save a job object by using the GXFlattenJob function, which

is described on page 2-57.

GXUpdateJob

You can use the GXUpdateJob function to update the contents of a job object.

Boolean GXUpdateJob (gxJob aJob);

aJob A reference to the job object whose contents may need to change.

function result A Boolean, which returns true if anything actually changed.

DESCRIPTION

The GXUpdateJob function updates the job object to reflect the current QuickDraw GX

environment. You must call this function when your application receives a resume event,

indicating that it had been switched out because the user may have changed the

characteristics of a printer. For example, the user may have added an extension while the

application was switched out.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxFlattenVersionTooNew An attempt to unflatten a job object that was
flattened using a later version of QuickDraw GX.

gxPaperTypeNotFound The paper-type object cannot be located.
collectionVersionErr Version of the collection object is not compatible with

the current version of the Collection Manager.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-61

RESULT CODES

SEE ALSO

For an example that uses the GXUpdateJob function, see “Updating Job Object

Information” on page 2-42.

Printing With QuickDraw GX

To support printing from the Finder, your application needs to call the

GXSelectJobOutputPrinter function to specify an output printer.

When the user requests printing, you should call the GXGetJobPageRange function to

obtain the user-specified page range.

You call the GXStartJob function to begin printing a document. If your application

stores each page as a single picture shape, you should use the GXPrintPage function to

print each page in a document.

You may also choose to use the GXStartPage, GXDrawShape, and GXFinishPage

functions to draw and print data. You should use these functions if your application

does not store each page as a single picture shape.

After you have finished calling the GXPrintPage or the GXFinishPage function

(depending on the approach you choose), you call the GXFinishJob function to tell

QuickDraw GX that the document is ready to be spooled for printing in the background.

The GXDrawShape function is described in the shape objects chapter of Inside Macintosh:
QuickDraw GX Objects.

GXSelectJobOutputPrinter

You can use the GXSelectJobOutputPrinter function to specify an output printer

for a printable document.

void GXSelectJobOutputPrinter (gxJob aJob, Str31 printerName);

aJob A reference to the job object for which you are specifying an output
printer.

printerName
The name of the desktop printer.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-62 Core Printing Features Reference

DESCRIPTION

Your application is responsible for determining the output printer on which to print the

document.

For example, when the user selects and prints a document from the Finder, your

application needs to respond to the Print Documents ('pdoc') Apple event and then

call the GXSelectJobOutputPrinter function to specify an output printer on which

to print the selected document. The printer name can be obtained by using the Apple

event’s optional attribute, keyOptionalKeywordAttr.

RESULT CODES

SEE ALSO

Listing 2-16 on page 2-40 shows how to respond to the Print Documents Apple event

and use the GXSelectJobOutputPrinter function to specify an output printer.

GXGetJobPageRange

You can use the GXGetJobPageRange function to obtain a user-specified page range.

void GXGetJobPageRange (gxJob aJob, long *firstPage,

long *lastPage);

aJob A reference to the job object for which to retrieve the page range.

firstPage On return, the first page the user wants to print.

lastPage On return, the last page the user wants to print.

DESCRIPTION

When the user requests printing, you should call the GXGetJobPageRange function to

obtain the user-specified page range. The user specifies a page range in the Print dialog

box.

You can set the firstPage parameter or the lastPage parameter to nil to ignore the

result.

fnfErr Printer driver cannot be located.
gxSegmentLoadFailedErr A required code segment could not be found, or

there was not enough memory to load it.
gxPaperTypeNotFound The paper-type object cannot be located.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-63

RESULT CODES

SEE ALSO

Listing 2-5 on page 2-21 and Listing 2-6 on page 2-23 show how to use the

GXGetJobPageRange function to obtain the user-specified page range.

GXStartJob

You can use the GXStartJob function to initiate printing when a user wants to print a

document.

void GXStartJob (gxJob aJob, StringPtr docName, long pageCount);

aJob A reference to the job object of the print job to print.

docName The name of the document to print.

pageCount The number of pages to print.

DESCRIPTION

You use the GXStartJob function to begin printing a document. In the aJob parameter,

you specify the job object associated with the document to print. In the docName

parameter, you specify the name of the user’s document. You can set this parameter to

nil to use the default document name.

In the pageCount parameter, you specify the total number of pages the user chose to

print or pass 0 if the page count is unknown. You can call the GXGetJobPageRange

function to obtain the page range. In response to the GXStartJob call, QuickDraw GX

displays the current page and the print job’s page count, if it is known, in the Status

dialog box.

SPECIAL CONSIDERATIONS

Immediately after you call the GXStartJob function, you should check for errors by

calling the GXGetJobError function. Only if no errors are returned should you call the

GXFinishJob function.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

collectionItemNotFoundErr The collection object item cannot be located.

C H A P T E R 2

Core Printing Features

2-64 Core Printing Features Reference

RESULT CODES

SEE ALSO

Listing 2-5 on page 2-21 and Listing 2-6 on page 2-23 show how to use the GXStartJob

function to begin printing a document.

For information about the GXGetJobPageRange function, see the previous section.

The GXGetJobError function is described on page 2-52. The GXFinishJob function is

described on page 2-65.

GXPrintPage

You can use the GXPrintPage function to print a page in a document if your

application stores each page as a single picture shape.

void GXPrintPage (gxJob aJob, long pageNumber, gxFormat aFormat,

gxShape aPage);

aJob A reference to the job object whose page you want to print.

pageNumber
The page number for the page.

aFormat A reference to the format object for the page.

aPage A reference to the picture shape that specifies the output for the page.

DESCRIPTION

The GXPrintPage function prints a page of a document. In the aPage parameter, you

specify the picture shape for each page. In the pageNumber parameter, you set the page

to print. QuickDraw GX compares the specified page number with the page range

chosen by the user and spools the page if it is within the page range. If it is not within

the range, QuickDraw GX ignores the data.

In the aFormat parameter, you specify the format object for the page. You need to

provide your own mechanism for associating individual document pages with format

objects.

You should loop through each page of a document, calling the GXPrintPage function

for each page’s picture shape. You should check for errors after you print each page and

exit the loop if necessary.

If your application does not store each page as a single picture shape, you should use the

GXStartPage, GXDrawShape, and GXFinishPage functions to print the page.

gxPrUserAbortErr The user has canceled printing.
gxSegmentLoadFailedErr A required code segment could not be found, or

there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-65

RESULT CODES

SEE ALSO

Listing 2-5 on page 2-21 shows how to use the GXPrintPage function to print each page

of a document.

Picture shapes are discussed in Inside Macintosh: QuickDraw GX Graphics.

The GXStartPage function is described on page 2-66. The GXFinishPage function is

described on page 2-67. The GXDrawShape function is described in the shape objects

chapter of Inside Macintosh: QuickDraw GX Objects.

In addition to the result codes listed above, you may also receive errors that can occur

while flattening graphics objects during spooling. For more information about the

spooling phase of printing, see the chapter “Introduction to Printing With QuickDraw

GX” in this book. Flattening graphics objects is described in the shape objects chapter of

Inside Macintosh: QuickDraw GX Objects.

GXFinishJob

You can use the GXFinishJob function to notify QuickDraw GX that printing is

complete.

void GXFinishJob (gxJob aJob);

aJob A reference to the job object being printed.

DESCRIPTION

The GXFinishJob function completes the application phase of printing. You should call

this function after you have called the GXPrintPage function to print each page in a

document.

SPECIAL CONSIDERATIONS

You should only call the GXFinishJob function if the GXStartJob function doesn’t

return errors.

gxPrUserAbortErr The user has canceled printing.
gxSegmentLoadFailedErr A required code segment could not be found, or

there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-66 Core Printing Features Reference

RESULT CODES

In addition to the result codes listed above, you may also receive errors that can occur

while flattening graphics objects during spooling. Flattening graphics objects is

described in the shape objects chapter of Inside Macintosh: QuickDraw GX Objects.

SEE ALSO

Listing 2-5 on page 2-21 and Listing 2-6 on page 2-23 show how to use the

GXFinishJob function to tell QuickDraw GX that the document is ready to be queued

for printing in the background.

The GXStartJob function is described on page 2-63.

Phases of printing are described in the chapter “Introduction to Printing With

QuickDraw GX” in this book.

GXStartPage

You can use the GXStartPage function to print each page in a document if your

application does not store each page as a single picture shape.

Boolean GXStartPage (gxJob aJob, long pageNumber,

gxFormat aFormat, long numViewPorts,

gxViewPort *viewPortList);

aJob A reference to the job object being printed.

pageNumber
The page number of the page being printed.

aFormat A reference to the format object for the page.

numViewPorts
The number of view ports contained in the viewPortList parameter.

viewPortList
A pointer to the list of references to view ports to use to capture shapes.

function result Returns true if the page you specify in the pageNumber parameter is
within the user-specified page range, false if the page you specify is not.

DESCRIPTION

You use the GXStartPage function to start printing the shapes drawn with

GXDrawShape. You call the GXStartPage function after you call the GXStartJob

function.

gxPrUserAbortErr The user has canceled printing.
gxSegmentLoadFailedErr A required code segment could not be found, or

there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-67

In the GXStartPage function, you specify in the pageNumber parameter the page

number of the page to print. QuickDraw GX compares the specified page number with

the page range. The GXStartPage function returns true if the page you specify is

within the user-specified page range, and returns false if it is not. You can call the

GXGetJobPageRange function to determine the range of pages.

In the viewPortList parameter, you specify the view ports to use to capture shapes.

The part of the shape that is drawn through a view port is printed. In the

numViewPorts parameter, you specify the number of view ports in the viewPortList

parameter.

SPECIAL CONSIDERATIONS

After you finish calling the GXStartPage function, you should immediately check for

errors using the GXGetJobError function. Only if no errors are returned should you

draw the page’s shapes and call the GXFinishPage function.

RESULT CODES

SEE ALSO

Listing 2-6 on page 2-23 shows how to use the GXStartPage function to print each page

of a document.

The GXDrawShape function is discussed in the shape objects chapter of Inside Macintosh:
QuickDraw GX Objects.

View port objects are discussed in the view-related objects chapter of Inside Macintosh:
QuickDraw GX Objects.

The GXFinishPage function is described in the next section. The GXGetJobError

function is described on page 2-52. The GXGetJobPageRange function is described on

page 2-62.

GXFinishPage

You can use the GXFinishPage function to notify QuickDraw GX that you have

finished capturing shapes for the page.

void GXFinishPage (gxJob aJob);

aJob A reference to the job object being printed.

gxPrUserAbortErr The user has canceled printing.
gxSegmentLoadFailedErr A required code segment could not be found, or

there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-68 Core Printing Features Reference

DESCRIPTION

You should call the GXFinishPage function after you have finished drawing the data

for a page using the GXDrawShape function. In the aJob parameter, you specify the job

object being printed.

After you call the GXFinishPage function for the final page to be printed, call the

GXFinishJob function to notify QuickDraw GX that printing is complete.

SPECIAL CONSIDERATIONS

You should only call the GXFinishPage function if the GXStartPage function doesn’t

return errors.

RESULT CODES

In addition to the following result codes, you may also receive errors that can occur

while flattening graphics objects during spooling. Flattening graphics objects is

described in the shape objects chapter of Inside Macintosh: QuickDraw GX Objects.

SEE ALSO

Listing 2-6 on page 2-23 shows how to use the GXFinishPage function to tell

QuickDraw GX that you have finished capturing shapes.

The GXStartPage function is described in the previous section.

The GXDrawShape function is discussed in the shape objects chapter of Inside Macintosh:
QuickDraw GX Objects.

Obtaining Information on Printing-Related Objects

QuickDraw GX functions allow you to obtain basic information about the job object and

format objects associated with a printable document. Although a document can contain

multiple format objects, all documents contain at least one format object, called the

default format.

When a user wants to print a document, you should call the GXGetJobFormat function

to access the format objects associated with a particular job object.

You can specify a format object in the GXGetFormatJob function to obtain the job object

that references this format object.

You use the GXGetFormatDimensions function to obtain the dimensions information

from a format object. The information includes the physical dimensions of the paper (the

paper size) and the printable area within these dimensions (the page size) after scaling

and orientation have been applied.

gxPrUserAbortErr The user has canceled printing.
gxSegmentLoadFailedErr A required code segment could not be found, or

there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-69

GXGetJobFormat

You can use the GXGetJobFormat function to obtain the format objects associated with

a job object.

gxFormat GXGetJobFormat (gxJob aJob, long whichFormat);

aJob A reference to the job object whose format object you wish to obtain.

whichFormat
The index of the format object to retrieve.

function result A reference to a format object.

DESCRIPTION

The GXGetJobFormat function allows you to obtain a format object from the job object

specified in the aJob parameter. The whichFormat parameter specifies the format

object to return. You can set this parameter to 1 to obtain the default format. The default

format is defined by the formatting printer.

RESULT CODES

SEE ALSO

Listing 2-5 on page 2-21 and Listing 2-6 on page 2-23 show how to use the

GXGetJobFormat function to obtain the default format when a user wants to print a

document.

Manipulating format objects is described in the chapter “Page Formatting and

Dialog Box Customization” in this book.

GXGetFormatJob

You can use the GXGetFormatJob function to obtain the job object associated with a

format object.

gxJob GXGetFormatJob (gxFormat aFormat);

aFormat A reference to the format object whose job object you wish to obtain.

function result A reference to a job object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-70 Core Printing Features Reference

DESCRIPTION

In the GXGetFormatJob function, you specify a format object whose job object you

want to obtain. You specify the format object in the aFormat parameter. You should call

this function when you have a format object reference and you want to obtain the

reference of the job object associated with it.

RESULT CODES

GXGetFormatDimensions

You can use the GXGetFormatDimensions function to obtain the page size and paper

size associated with a format object.

void GXGetFormatDimensions (gxFormat aFormat,

gxRectangle *pageSize,

gxRectangle *paperSize);

aFormat A reference to the format object whose dimensions you wish to obtain.

pageSize On return, the imageable area—the area inside the margins where shapes
may be drawn.

paperSize On return, the physical dimensions of the paper.

DESCRIPTION

The GXGetFormatDimensions function returns a page size and paper size associated

with a format object, after scaling and orientation have been applied. This function

provides your application with boundary information that is useful for setting up

margins for the drawing areas in your application. It is also useful for setting up rulers in

your application to display to users.

You can specify nil in either the pageSize or paperSize parameters if you are

interested in only one of the values.

The page size is anchored at location (0.0, 0.0), regardless of orientation or scaling. The

paper size is outset from the page size, and the coordinates for the top-left corner of the

paper are negative. Because the page coordinates are zero-based, you can start drawing

at (0.0, 0.0) without regard for the paper size.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-71

RESULT CODES

SEE ALSO

For a description of format object mapping and how it affects the dimensions property,

see the chapter “Page Formatting and Dialog Box Customization” in this book.

Displaying the Page Setup and Print Dialog Boxes

To support QuickDraw GX print dialog boxes, your application must override the

gxPrintingEvent message by installing an override function with the

GXInstallApplicationOverride function.

When the user chooses the Page Setup menu command from the File menu, you call the

GXJobDefaultFormatDialog function to display the Page Setup dialog box.

When the user chooses the Print menu command from the File menu, you call the

GXJobPrintDialog function to display the Print dialog box.

GXInstallApplicationOverride

You can use the GXInstallApplicationOverride function to override messages

QuickDraw GX sends to your application.

void GXInstallApplicationOverride (gxJob aJob, short messageID,

void *override);

aJob A reference to the job object into which to install the override.

messageID The ID of the message to override.

override A pointer to a function with which to override a message.

DESCRIPTION

You can use the GXInstallApplicationOverride function to specify a function that

is called in response to the message specified in the messageID parameter. For example,

you can override the gxPrintingEvent message that QuickDraw GX sends to your

application each time it receives an event by specifying a function to call in the

override parameter.

You specify a pointer to an override function in the override parameter. Set this

parameter to nil to remove your application’s override of a message.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-72 Core Printing Features Reference

RESULT CODES

SEE ALSO

Listing 2-1 on page 2-12 shows how to override the gxPrintingEvent message using

the GXInstallApplicationOverride function.

Supporting QuickDraw GX dialog boxes is discussed in “Supporting QuickDraw GX

Print Dialog Boxes,” which begins on page 2-17.

GXJobDefaultFormatDialog

You can use the GXJobDefaultFormatDialog function to display the Page Setup

dialog box.

gxDialogResult GXJobDefaultFormatDialog (gxJob aJob,

gxEditMenuRecord *anEditMenuRecord);

aJob A reference to the job object whose default format you are allowing the
user to modify.

anEditMenuRecord
A pointer to the Edit menu structure.

function result The user’s response to the dialog box.

DESCRIPTION

After you use the GXJobDefaultFormatDialog function to display the Page Setup

dialog box, the user can specify formatting information for the default format. For

example, the user can specify the paper size, orientation, and the default formatting

printer.

In the anEditMenuRecord parameter you specify an Edit menu structure to support

the standard editing operations of cut, copy, paste, and clear in dialog boxes.

The function returns gxOKSelected if Format is chosen or gxCancelSelected if

Cancel is chosen.

If an error occurs, the function returns gxCancelSelected. Call the GXGetJobError

function to determine which error occurred.

This function causes QuickDraw GX to send the gxJobDefaultFormatDialog

message, which you can override to customize the Page Setup dialog box.

Note that QuickDraw GX stores a user’s responses to some dialog items in the Page

Setup dialog box in a format collection.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-73

RESULT CODES

SEE ALSO

Listing 2-14 on page 2-36 shows how to use the GXJobDefaultFormatDialog

function to display the Page Setup dialog box.

The Edit menu structure is described on page 2-48.

The dialog box result enumeration is described on page 2-48.

The format collection is discussed in the chapter “Page Formatting and Dialog Box

Customization” in this book.

GXJobPrintDialog

You can use the GXJobPrintDialog function to display the Print dialog box when the

user chooses the Print menu command from the File menu.

gxDialogResult GXJobPrintDialog (gxJob aJob,

gxEditMenuRecord *anEditMenuRecord);

aJob A reference to the job object whose print settings you are allowing the
user to modify.

anEditMenuRecord
A pointer to the Edit menu structure.

function result The user’s response to the dialog box.

DESCRIPTION

After you use the GXJobPrintDialog function to display the Print dialog box, the user

can specify information related to actual printing of the document. For example, the user

can specify the printer, print quality, number of copies to print, page range, automatic or

manual paper feed, and whether a document should be output to a printer or a file.

A user must select an output printer in the Print dialog box regardless of the formatting

printer specified in the Page Setup dialog box. The output printer does not need to be in

the same device class as the printer for which the document is formatted.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-74 Core Printing Features Reference

In the anEditMenuRecord parameter you specify an Edit menu structure. Your

application specifies the location of the Edit menu and its menu items in the Edit menu

structure.

The function returns gxOKSelected if Print is chosen or gxCancelSelected if Cancel

is chosen.

If an error occurs, the function returns gxCancelSelected. Call the GXGetJobError

function to determine which error occurred.

This function causes QuickDraw GX to send the gxJobPrintDialog message, which

you can override to customize the Print dialog box.

QuickDraw GX stores a user’s responses to some items in the Print dialog box in the job

collection.

RESULT CODES

SEE ALSO

Listing 2-15 on page 2-39 shows how to use the GXJobPrintDialog function to display

the Print dialog box.

The Edit menu structure is described on page 2-48.

The dialog box result enumeration is described on page 2-48.

The job collection is discussed in the chapter “Page Formatting and Dialog Box

Customization” in this book.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-75

Converting a Print Record

QuickDraw GX allows documents originally created to print with the Macintosh

Printing Manager to be printed by applications that support QuickDraw GX. Before a

user can print these documents, you must convert the document’s print record

information into a job object using the GXConvertPrintRecord function.

GXConvertPrintRecord

You can use the GXConvertPrintRecord function to translate a print record into a job

object.

void GXConvertPrintRecord (gxJob aJob, THPrint aPrint);

aJob A reference to the job object to receive the converted data.

aPrint The print record to be converted.

DESCRIPTION

QuickDraw GX copies contents of the specified print record into the specified job object.

Before you call the GXConvertPrintRecord function, you must first allocate space for

the job object using the GXNewJob function. QuickDraw GX attempts to preserve as

much print record information as possible.

In addition to converting the print record, you must also translate QuickDraw data by

calling the QuickDraw GX Translator functions, GXInstallQDTranslator and

GXRemoveQDTranslator, or by calling the GXConvertPICTToShape function.

RESULT CODES

SEE ALSO

Listing 2-18 on page 2-45 shows how to use the GXConvertPrintRecord function to

convert a print record into a job object.

The GXNewJob function is described on page 2-54.

The QuickDraw GX Translator functions, GXInstallQDTranslator and

GXRemoveQDTranslator, are discussed in the environment chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities.

For information about the GXConvertPICTToShape function, see the environment

chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 2

Core Printing Features

2-76 Core Printing Features Reference

Application-Defined Functions

The following sections describe application-defined functions that implement message

overrides and application-defined functions that flatten or unflatten job objects.

Message Override Functions

The GXPrintingEvent function specifies the declaration for a function that you must

provide in order to respond to gxPrintingEvent messages.

GXPrintingEvent

You must install an override function that QuickDraw GX invokes in response to the

gxPrintingEvent message. Your override must match the following formal

declaration:

OSErr MyPrintingEvent (EventRecord *anEventRecord,

Boolean filterEvent);

anEventRecord
A pointer to an event that occurred in a print dialog box.

filterEvent
A Boolean value that is true if the event needs to be filtered, and false
if not.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxPrintingEvent message whenever a specific event occurs

in one of the print dialog boxes that is displayed for printing. You can override the

gxPrintingEvent message to handle events, such as window update events, that

occur during display of print dialog boxes. You cannot name your function

GXPrintingEvent.

The default implementation of this message does nothing. You must override this

message to correctly support print dialog boxes.

The anEventRecord parameter is a pointer to the event record. The event record

contains information about what type of event occurred (a mouse-down, update, or

key-down event, for example) and contains additional information associated with the

event (for example, for a key-down event, the Event Manager also reports which key

was pressed).

C H A P T E R 2

Core Printing Features

Core Printing Features Reference 2-77

SPECIAL CONSIDERATIONS

You never send the gxPrintingEvent message yourself.

You typically create a total override of the gxPrintingEvent message.

RESULT CODES

SEE ALSO

Overriding the gxPrintingEvent message is described in “Supporting QuickDraw GX

Print Dialog Boxes,” which begins on page 2-17.

The GXInstallApplicationOverride function is described on page 2-71.

 The Event Manager, the EventRecord data type, and the DialogSelect function are

discussed in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

Flattening and Unflattening Functions for Job Objects

When a user saves or opens a printable document, you need to save or retrieve its

corresponding job object. To save a job object, you can flatten it using the

GXFlattenJob function. To retrieve a job object, you can unflatten it using the

GXUnflattenJob function. In each of these functions you must provide a pointer to an

application-supplied flattening or unflattening function, as appropriate. The following

sections describe these flattening and unflattening functions.

MyFlattenFunction

To save a job object when a user saves a printable document, provide a pointer to an

application-supplied flattening function in the GXFlattenJob function. The

application-supplied function must match the following declaration. For example, this is

how you should declare the function if you were to name it MyFlattenFunction:

OSErr MyFlattenFunction (long size, void *data, void *refCon);

size The size of the segment (in bytes) to write.

data A pointer to job object data to flatten.

refCon A pointer to a reference constant for application-specific information.

function result An error code of type OSErr.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

C H A P T E R 2

Core Printing Features

2-78 Core Printing Features Reference

DESCRIPTION

When you use the GXFlattenJob function, QuickDraw GX calls your flattening

function multiple times as it flattens job object data to disk. Each time it calls your

function, the function should write the next segment of the job object until the entire job

object is saved. You can use the refCon parameter to hold the file reference number of

the file containing the data to flatten. You can return any OSErr value.

SEE ALSO

Listing 2-8 on page 2-28 shows how to use a flattening function.

The GXFlattenJob function is described on page 2-57.

To retrieve a job object that has been flattened, see the next section.

MyUnflattenFunction

To retrieve a job object when a document is opened, you can call the GXUnflattenJob

function and provide a pointer to the application-supplied unflattening function you

want to use. The application-supplied function must match the following declaration.

For example, this is how you should declare the function if you were to name it

MyUnflattenFunction:

OSErr MyUnflattenFunction (long size, void *data, void *refCon);

size The size of the segment (in bytes) to read.

data A pointer to job object data to unflatten.

refCon A pointer to a reference constant for application-specific information.

function result An error code of type OSErr.

DESCRIPTION

When you use the GXUnflattenJob function, QuickDraw GX calls your unflattening

function multiple times as the unflattening function retrieves the job object data from

disk. It continues to call your function until the entire job object is retrieved. You can use

the refCon parameter to hold the file reference number of the file containing the data to

unflatten. You can return any OSErr value.

SEE ALSO

Listing 2-11 on page 2-32 shows how to use an unflattening function.

The GXUnflattenJob function is described on page 2-59.

C H A P T E R 2

Core Printing Features

Summary of Core Printing Features 2-79

Summary of Core Printing Features

Constants and Data Types

Gestalt Selectors for Printing

#define gestaltGXPrintingMgrVersion 'pmgr'

#define gestaltGXVersion 'qdgx'

QuickDraw GX Printing-Related Objects

/* printing-related object structures */

typedef struct gxPrivateJobRecord *gxJob; /* job object structure */

typedef struct gxPrivatePrinterRecord *gxPrinter; /* printer object */

/* structure */

typedef struct gxPrivateFormatRecord *gxFormat; /* format object */

/* structure */

typedef struct gxPrivatePaperTypeRecord *gxPaperType;/* paper-type object */

/* structure */

typedef struct gxPrivatePrintFileRecord *gxPrintFile;/* print file object */

/* structure */

typedef struct PrivateCollectionRecord *Collection;/* collection object */

/* structure */

Edit Menu Record Structure

typedef struct { /* location of Edit menu and its menu items */

short editMenuID; /* resource ID of the Edit menu */

short cutItem; /* location of the cut menu item */

short copyItem; /* location of the copy menu item */

short pasteItem; /* location of the paste menu item */

short clearItem; /* location of the clear menu item */

short undoItem; /* location of the undo menu item */

} gxEditMenuRecord;

Dialog Box Results

typedef long gxDialogResult; /* dialog result data type */

/* dialog box result enumeration */

C H A P T E R 2

Core Printing Features

2-80 Summary of Core Printing Features

enum {

gxCancelSelected = (gxDialogResult) 0,/* user canceled dialog box */

gxOKSelected = (gxDialogResult) 1,/* user confirmed dialog box */

gxRevertSelected = (gxDialogResult) 2 /* user chose Remove from

the Custom Page Setup

dialog box */

};

Functions

Initializing and Terminating QuickDraw GX Printing Features

OSErr GXInitPrinting (void);

OSErr GXExitPrinting (void);

Handling Errors

OSErr GXGetJobError (gxJob aJob);

void GXSetJobError (gxJob aJob, OSErr anError);

Creating and Managing Job Objects

OSErr GXNewJob (gxJob *aJob);

OSErr GXDisposeJob (gxJob aJob);

Handle GXFlattenJobToHdl (gxJob aJob, Handle aHandle);

void GXFlattenJob (gxJob aJob,
gxPrintingFlattenProc aPrintingFlattenProc,
void *aVoid);

gxJob GXUnflattenJobFromHdl (gxJob aJob, Handle aHandle);

gxJob GXUnflattenJob (gxJob aJob,
gxPrintingFlattenProc aPrintingFlattenProc,
void *aVoid);

Boolean GXUpdateJob (gxJob aJob);

Printing With QuickDraw GX

void GXSelectJobOutputPrinter
(gxJob aJob, Str31 printerName);

void GXGetJobPageRange (gxJob aJob, long *firstPage, long *lastPage);

void GXStartJob (gxJob aJob, StringPtr docName, long pageCount);

void GXPrintPage (gxJob aJob, long pageNumber, gxFormat aFormat,
gxShape aPage);

C H A P T E R 2

Core Printing Features

Summary of Core Printing Features 2-81

void GXFinishJob (gxJob aJob);

Boolean GXStartPage (gxJob aJob, long pageNumber, gxFormat aFormat,
long numViewPorts, gxViewPort *viewPortList);

void GXFinishPage (gxJob aJob);

Obtaining Information on Printing-Related Objects

gxFormat GXGetJobFormat (gxJob aJob, long whichFormat);

gxJob GXGetFormatJob (gxFormat aFormat);

void GXGetFormatDimensions (gxFormat aFormat, gxRectangle *pageSize,
gxRectangle *paperSize);

Displaying the Page Setup and Print Dialog Boxes

void GXInstallApplicationOverride
(gxJob, aJob, short messageID,
void *override);

gxDialogResult GXJobDefaultFormatDialog
(gxJob aJob,
gxEditMenuRecord *anEditMenuRecord);

gxDialogResult GXJobPrintDialog
(gxJob aJob,
gxEditMenuRecord *anEditMenuRecord);

Converting a Print Record

void GXConvertPrintRecord (gxJob aJob, THPrint aPrint);

Application-Defined Functions

Message Override Functions
OSErr GXPrintingEvent (EventRecord *anEventRecord,

Boolean filterEvent);

Flattening and Unflattening Functions for Job Objects

OSErr MyFlattenFunction (long size, void *data, void *refCon);

OSErr MyUnflattenFunction (long size, void *data, void *refCon);

Contents 3-1

C H A P T E R 3

Page Formatting and

Contents

Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-6

About Collection Objects 3-7

Collection Tag IDs and Item IDs 3-7

Item Structures 3-8

Categories of Collection Items 3-9

The Job Collection 3-10

The Format Collection 3-12

The Paper-Type Collection 3-14

About Page Formatting 3-15

Manipulating Format Objects 3-16

Mapping for Format Objects 3-18

Forms and Format Objects 3-20

Halftones and Format Collections 3-21

Dialog Box Customization 3-22

The Dialog Box Panel Resource 3-24

Responding to Panel Events 3-25

Automating Panel Events 3-25

Using Printing-Related Collection Objects 3-27

Accessing Data From a Collection Object 3-28

Using a Collection to Implement the Print One Copy Menu Item 3-29

Replacing Items in Collections 3-31

Specifying Page Ranges in the Job Collection 3-33

Using Format Objects and Collection Items to Format Pages 3-39

Creating a Format Object for a Page in a Document 3-40

Sharing Formats for Document Pages 3-44

Disposing of a Format Object for a Page in a Document 3-47

Using Forms With Format Objects 3-50

C H A P T E R 3

3-2 Contents

Storing Halftone Information in a Format Collection 3-52

Copying a Format Object for Use in Other Documents 3-54

Obtaining the Mapping From a Format Object 3-57

Obtaining a Paper-Type Object Associated With a Format 3-57

Scanning Through a Job’s Format Objects 3-59

Associating Format Objects With Document Pages 3-61

Customizing QuickDraw GX Dialog Boxes 3-66

Adding Panels to Dialog Boxes 3-67

Setting Up Dialog Box Resources 3-70

Parsing Page Ranges 3-73

Page Formatting and Dialog Box Customization Reference 3-75

Constants for Loop Status Information 3-76

Constants for Collection Item Categories and Tag IDs 3-76

Collection Item Categories 3-76

Collection Tag ID 3-77

Constants and Data Types for Job Collection Items 3-78

Print-Job Information 3-78

Collation Information 3-80

Copies Information 3-81

Page-Range Information 3-81

Quality Information 3-83

File-Destination Information 3-83

File-Location Information 3-84

File-Format Information 3-84

File-Fonts Information 3-85

Paper-Feed Information 3-85

Manual-Feed Information 3-86

Standard Mapping Information 3-86

Special Mapping Information 3-87

Tray-Mapping Information 3-88

Print-Panel Information 3-88

Format-Panel Information 3-88

Paper-Mapping Information 3-89

Translated-Document Information 3-89

Constants and Data Types for Format Collection Items 3-89

Orientation Information 3-89

Scaling Information 3-91

Direct-Mode Information 3-91

Format-Halftone Information 3-92

Page-Inversion Information 3-92

Horizontal Page-Flip Information 3-93

Vertical Page-Flip Information 3-93

Precise-Bitmap Information 3-93

Paper-Type Lock Information 3-94

Constants and Data Types for Paper-Type Collection Items 3-94

Base Information 3-94

Creator Information 3-95

C H A P T E R 3

Contents 3-3

Units Information 3-96

Flags Information 3-97

Comment Information 3-97

Panel-Related Constants and Data Types 3-98

The Panel Information Structure 3-98

Panel Events 3-99

Panel Responses 3-100

Panel Event Actions 3-101

The Panel Setup Structure 3-101

Printing Panel Kinds 3-102

Parse Range Results 3-102

Functions 3-103

Creating and Manipulating Format Objects 3-103

GXNewFormat 3-104

GXDisposeFormat 3-104

GXCopyFormat 3-105

GXCloneFormat 3-106

GXCountJobFormats 3-107

GXCountFormatOwners 3-107

GXForEachJobFormatDo 3-108

Manipulating Format Object Properties 3-109

GXGetFormatMapping 3-109

GXGetFormatPaperType 3-110

GXGetFormatForm 3-111

GXSetFormatForm 3-111

GXChangedFormat 3-112

Displaying the Custom Page Setup Dialog Box 3-113

GXFormatDialog 3-113

Working With Panels 3-114

GXSetupDialogPanel 3-114

GXGetJobPanelDimensions 3-115

GXEnableJobScalingPanel 3-116

GXGetMessageHandlerResFile 3-116

Accessing Printing-Related Collection Objects 3-117

GXGetJobCollection 3-117

GXGetFormatCollection 3-118

GXGetPaperTypeCollection 3-118

Application-Defined Functions 3-119

Message Override Functions for Customizing QuickDraw GX Dialog
Boxes 3-119

GXJobPrintDialog 3-120

GXJobDefaultFormatDialog 3-121

GXFormatDialog 3-122

GXHandlePanelEvent 3-123

GXFilterPanelEvent 3-124

GXParsePageRange 3-125

C H A P T E R 3

3-4 Contents

Looping Through Format Objects 3-126

Dialog Box-Related Resources 3-127

The Panel Resource 3-127

The Extended Item List Resource 3-128

Summary of Page Formatting and Dialog Box Customization 3-133

C H A P T E R 3

3-5

Page Formatting and Dialog Box Customization

This chapter describes how your application can manipulate the objects that QuickDraw

GX uses to format the pages of a document or add panels to QuickDraw GX dialog boxes.

Read the information in this chapter if you want your application to allow users to

specify unique formats for the individual pages of a printable document. For example,

using QuickDraw GX, your application can allow a user to create and print a single

document that consists of an address page on an envelope, a business letter on a sheet of

paper in portrait orientation, and a spreadsheet on a sheet of paper in landscape

orientation.

You should also read this chapter if you want to add panels to QuickDraw GX print

dialog boxes. For example, your application may add a panel that allows the user to

specify additional information, such as color-separation for color printing.

Before you begin using QuickDraw GX page formatting and dialog box customization

features, you should be familiar with the basic concepts for printing with QuickDraw

GX, as described in the chapter, “Introduction to Printing With QuickDraw GX.” You

should also be familiar with creating and manipulating a job object, as described in the

chapter “Core Printing Features” in this book.

This chapter begins by summarizing what you need to know to support the page

formatting and dialog box customization features of QuickDraw GX. Because

page formatting and dialog box customization can use collection objects, this topic is

introduced first. Page formatting is discussed next because you can use collection items

as parameters to specify formatting criteria. Dialog box customization is discussed after

the other two topics because you may need to use nondefault dialog boxes to allow the

user to set the values of items in a collection object. Keep in mind that any QuickDraw

GX print dialog box can be customized, not just the Custom Page Setup dialog box

associated with page formatting.

After introducing the basic concepts associated with printing-related collection objects,

page formatting, and dialog box customization, this chapter shows you how to

■ access an item in a collection object for use with a dialog box

■ keep track of format objects that are shared by multiple pages of a document

■ create a format object for a page in a document

■ clone a format object for multiple pages in a document

■ dispose of a format object for a page in a document

■ access information associated with a format object

■ display the Custom Page Setup dialog box

■ support special formatting features

■ associate format objects with document pages

■ add panels to QuickDraw GX dialog boxes

■ automate panel information

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-6 About Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization

Page formatting is the ability to format individual pages of a document differently from

the default format for the document. The available formats are specified by the printer

driver. You specify a format object when you print each page of a document. If you

specify the first format in the job object’s format list, the default format for the document

is used. If you specify another format, it is used to format the page. For more

information about printing pages and specifying formats, see the chapter “Core Printing

Features” in this book.

Typically, you associate the default format object with each page in the document and let

the user choose the pages to format differently from the default. The user can choose the

format with the Custom Page Setup menu item of the File menu, which displays the

Custom Page Setup dialog box on the user’s screen. You are responsible for associating

the chosen format with the page. Thus, you need to determine which format objects are

in use and save them with the job object when the document is saved. You also need to

retrieve them along with the job object when the document is opened. For more

information about saving and retrieving these job objects, see “Associating Format

Objects With Document Pages” on page 3-61.

The Custom Page Setup dialog box provided by QuickDraw GX allows the user to

format a page, remove the format and revert to the default format, change the paper type

for the page, and change the page’s scale and orientation. You can allow more choices by

customizing this dialog box. For example, you can allow the user to specify a halftone to

be applied to the page. Because the Custom Page Setup dialog box provided by

QuickDraw GX does not provide an option for specifying a page halftone, the printer

driver or a printing extension must customize the dialog box, or you must customize the

dialog box in the application.

If you customize a dialog box, you typically gather additional information from the user,

although you can also customize a dialog box to restrict the user’s choices. The

additional information is stored in a collection object. In the halftone example, the

printer driver stores the possible halftone options in the format collection. You can

customize the Page Setup dialog box to allow a halftone to be chosen for the default

format, or you can customize the Custom Page Setup dialog box to allow a halftone to be

chosen for a particular page.

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-7

QuickDraw GX allows you to customize any of the print dialog boxes:

■ The Print dialog box, in which the user specifies parameters for printing the job.

■ The Page Setup dialog box, in which the user specifies default formatting by selecting
the formatting printer. This dialog box is also used to specify the default paper type.

■ The Custom Page Setup dialog box, in which the user specifies formatting for a
particular page, including the paper type.

■ The Printing Status dialog box, in which the status of the spooling operation is
displayed. This dialog box is not usually customized. You may choose, however, to
suppress the display of the dialog box under certain conditions.

About Collection Objects
QuickDraw GX supports collection objects to store and to allow your application to store

printing-related, formatting, and paper-type information associated with a printable

document. Essentially, these collections specify additional information that are not

absolutely required to print a job, format a document, or specify the kind of paper. In

QuickDraw GX printing, collection objects typically store information you can use to

customize dialog boxes. You can access information required by your application from

these collection objects, however, whether or not you allow the user a choice in a dialog

box. You can also use collection objects to store information that is of use only to your

application.

You can use collection objects without customizing dialog boxes. For example, a user

may print by dragging the document’s icon onto a desktop printer or by choosing the

Print One Copy menu item from the File menu. In these cases, your application may

need to change the settings in a collection object directly, without user intervention.

You can also store information that is not already provided by QuickDraw GX. For

example, as part of using QuickDraw GX page formatting features, your application is

responsible for managing the correspondence between format objects and individual

pages in a document. Your application can use a format collection item to store this

correspondence. Storing correspondence information in a format collection is discussed

in “Associating Format Objects With Document Pages,” which begins on page 3-61.

Collection Tag IDs and Item IDs

When you add data (referred to as a collection item) to a collection object, the Collection

Manager associates the data with a collection tag ID and a collection item tag. Together,

the 4-byte collection tag ID and the 4-byte collection item tag ID uniquely identify a

collection item within a particular collection object.

Note

To avoid the confusion between tag objects (which are not related to
collection objects at all), collection tags, and collection item tags, this
book refers to collection tags as tag IDs and to collection item tags as
item IDs. Tags, when used in this book, refer to tag objects. ◆

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-8 About Page Formatting and Dialog Box Customization

QuickDraw GX assigns the gxPrintingTagID tag ID to each of its predefined

collection items:

enum { gxPrintingTagID = -28672 };

For each of its collection items, QuickDraw GX defines an item ID, such as

gxCopiesTag for the collection item that defines the number of copies to print:

enum {gxCopiesTag = 'copy'};

QuickDraw GX reserves all tag IDs that are negative or less than 127. It also reserves all

collection items defined by lowercase characters. For example, you can use your

application’s registered creator type for the tag ID.

In addition to the collection tag and collection item ID, the Collection Manager allows

items to be accessed by index. You can use an index to provide faster access to specific

items in a collection or to perform operations on all collection items in a collection object.

This index does not uniquely identify an item, however, because adding or removing

items can change an item’s index number. For information about collection indexes and

collection objects in general, see the Collection Manager chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities.

Item Structures

A structure defines the form of most collection items. A type definition is associated with

each of these structures:

struct gxCopiesInfo{

long copies;

};

typedef struct gxCopiesInfo gxCopiesInfo;

For example, you can use gxCopiesInfo as both a structure name and a data type

definition:

gxCopiesInfo myCopies;

struct gxCopiesInfo myCopies;

In this book, only the structure definition is presented. Type definitions are only

presented when they are not associated with a structure, as in

gxCollectionCategory, defined in the next section.

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-9

Categories of Collection Items

If you add an item to a collection, you need to decide whether the contents will be valid

if the output printer or formatting printer changes. You also must decide if the item

should persist when the collection is flattened.

QuickDraw GX purges the items that are not valid after the printer driver changes, based

on the contents of the collection item’s user attribute bits. It also decides which items to

flatten based on these bits. For general information about user attribute bits, see the

Collection Manager chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

A printer-driver switch occurs whenever a user changes the device class (type of printer)

of the output printer or formatting printer associated with a particular document. For

example, if the user switches output printers, QuickDraw GX discards the tray-feed

information, which specifies the current paper tray, because it may have changed.

 QuickDraw GX assigns collection object items into categories based on the contents of

the gxCollectionCategory user attribute bits, as shown in the following

enumeration:

typedef short gxCollectionCategory;

enum {

gxNoCollectionCategory = (gxCollectionCategory) 0x0000,

gxOutputDriverCategory = (gxCollectionCategory) 0x0001,

gxFormattingDriverCategory = (gxCollectionCategory) 0x0002,

gxDriverVolatileCategory = (gxCollectionCategory) 0x0004,

gxVolatileOutputDriverCategory =

gxOutputDriverCategory + gxDriverVolatileCategory,

gxVolatileFormattingDriverCategory =

gxFormattingDriverCategory + gxDriverVolatileCategory

};

Items in the gxNoCollectionCategory category are not purged. Data that is specific

to an output printer driver should be grouped in the

gxVolatileOutputDriverCategory collection item category. Data that is specific to

a formatting printer driver should be grouped in the

gxVolatileFormattingDriverCategory collection item category.

Data that need not be saved when a job is flattened should be grouped in the

gxDriverVolatileCategory collection item category. You must also clear the

collectionPersistenceBit attribute bit if you would like to keep the information

but do not require it to be saved with the collection.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-10 About Page Formatting and Dialog Box Customization

The Job Collection

QuickDraw GX primarily stores in a job collection the information contained in the Print

dialog box and its General panel, Paper Match panel, and Print Time panel. Panels for

the Print dialog box are discussed in the chapter “Introduction to Printing With

QuickDraw GX” in this book. QuickDraw GX stores 18 items in a job collection, as

shown in Figure 3-1.

Figure 3-1 The job collection

A brief description of each collection item follows. To see how the pieces of data are

structured in the collection item, see “Constants and Data Types for Job Collection

Items” beginning on page 3-78. Job collection items include the following:

■ Print-job information. This collection item describes the job information for the print
job. It contains information such as the total number of pages to print, the print job’s
priority, designated time to print, and the amount of time in which to keep a print job

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-11

in an alert state before cancelling the job. It also contains the first page from which
to begin printing and indicates whether the user chose to be alerted before printing
begins or after printing is finished. In addition, this property contains the name of the
application used to create the printable document, the name of the user’s document,
and the name of the user associated with the printable document.

■ Collation information. This collection item specifies whether document pages should
be collated when printed. The user typically specifies whether collation is desired in
the Collate Copies checkbox in the Print dialog box.

■ Copies information. This collection item contains the number of copies of the
document to print. The user specifies the number of copies to print in the Copies field
in the Print dialog box.

■ Page-range information. This collection item contains the page-range information in
the job object as well as data that allows customized or replacement page ranges. It
contains the user-specified custom, default, or replacement page-range information
from the Print dialog box.

■ Quality information. This collection item contains information about the quality
mode, such as the default quality mode and the current mode. It also includes the
number of quality menu items and an array of quality names (such as “Best”) to
display in the Quality pop-up menu in the Print dialog box.

■ File-destination information. This collection item contains the file-destination
information for the job object. It specifies whether the user chose File in the
Destination pop-up menu in the Print dialog box.

■ File-location information. This collection item contains the file-location information
as a FSSpec structure. It typically contains the result of a call to StandardGetFile,
which is used to determine the filename when the user prints to a file.

■ File-format information. This collection item contains the name of the file format if
the destination of the print job is a file.

■ File-fonts information. This collection item specifies whether fonts should be stored
as part of the file. If fonts are stored, it specifies whether all fonts are stored or only
nonstandard fonts.

■ Paper-feed information. This collection item contains the paper-feed information for
the job object. It specifies whether the user chose the Automatic or Manual radio
button for Paper Feed in the Print dialog box.

■ Manual-feed information. This property contains the manual-feed information for
the job object. It specifies the number of paper types to manually feed and an array of
paper-type names to display.

■ Standard mapping information. This collection item specifies whether to use
standard mapping information for the print job. The item contains a Boolean value
that is true if input tray paper matching is to be used.

■ Special mapping information. This collection item contains the special mapping
information for the job object. It specifies mapping options, such as whether to
redirect the pages in a document to a particular paper tray or whether to scale pages
or tile pages in a document.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-12 About Page Formatting and Dialog Box Customization

■ Tray-mapping information. This collection specifies the tray-mapping information for
the job object. It contains the index for a paper tray, which the user typically specifies
by selecting a tray from the Paper Match panel of the Print dialog box.

■ Print-panel information. This collection item contains the print-panel information for
the job object. It specifies the name of the first panel to appear when your application
displays the Print dialog box.

■ Format-panel information. This collection item contains the format-panel information
for the job object. It specifies the name of the first panel to appear when your
application displays the Page Setup dialog box.

■ Paper-mapping information. This collection item contains the paper-mapping
information for the job object. If it is used, it contains a flattened paper-type resource.

■ Translated-document information. This collection item contains the
translated-document information for the job object. QuickDraw GX provides this
information only for documents designed for printing with the Macintosh Printing
Manager.

The Format Collection

QuickDraw GX primarily stores information from the Page Setup and Custom Page

Setup dialog boxes in a format collection. You need to call the GXChangedFormat

function each time you change the format collection.

QuickDraw GX stores nine items in a format collection, as shown in Figure 3-2.

Figure 3-2 The format collection

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-13

A brief description of each collection item follows. To see how the pieces of data are

structured in the collection item, see “Constants and Data Types for Format Collection

Items” beginning on page 3-89. Format collection items include the following:

■ Orientation information. This collection item contains the orientation information for
the format object. It specifies whether to print a document (or a specific page) in
portrait, landscape, or rotated landscape orientation. A user typically specifies
orientation for an entire document in the Page Setup dialog box and specifies
orientation for an individual page in the Custom Page Setup dialog box.

■ Scaling information. This collection item contains the scaling information for the
format object. It specifies a document’s horizontal and vertical scaling factors. It also
stores the minimum and maximum scaling factors allowed. A user typically specifies
scaling for an entire document in the Page Setup dialog box and specifies scaling for
an individual page in the Custom Page Setup dialog box.

■ Direct-mode information. This collection item contains the direct-mode information
for the format object. It specifies whether the user chose the Direct checkbox in the
Page Setup dialog box. (This checkbox appears only if the printer driver supports text
job format mode printing.) The text job format mode is discussed in the chapter
“Advanced Printing Features” in this book.

■ Format-halftone information. This collection item contains the format-halftone
information for the format object. It specifies the total number of halftone structures
that can be used for a specific page and an array of halftone structures. You can use
halftones to render continuous tone images on noncontinuous tone printers if the
printer driver or a printing extension supports halftones. For an introduction to
halftones, see the view-related objects chapter of Inside Macintosh: QuickDraw GX
Objects. For more information about this collection item, see “Halftones and Format
Collections” beginning on page 3-21.

■ Page-inversion information. This collection item contains the page-inversion
information for the format object. It specifies whether to invert a page before printing.

■ Horizontal page-flip information. This collection item contains the horizontal
page-flip information for the format object. It specifies whether to horizontally flip the
page left to right before printing.

■ Vertical page-flip information. This collection item contains the vertical page-flip
information for the format object. It specifies whether to vertically flip the page top to
bottom before printing.

■ Precise-bitmap information. This collection item contains the precise-bitmap
information for the format object. It specifies whether to scale a page by 96% on
300-dpi printers.

■ Paper-type lock information. This collection item contains the paper-type object lock
information for the format object. It indicates whether the format’s paper-type object
is locked.

Note

The page-inversion information, page-flip information (horizontal and
vertical), and precise-bitmap information are used, by default, only by
PostScript printer drivers. ◆

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-14 About Page Formatting and Dialog Box Customization

The Paper-Type Collection

The paper-type collection contains additional information about the paper-type object.

QuickDraw GX stores in a paper-type collection five collection items, as shown in

Figure 3-3.

Figure 3-3 The paper-type collection

A brief description of each collection item follows. To see how the pieces of data are

structured in the collection item, see “Constants and Data Types for Paper-Type

Collection Items” beginning on page 3-94. Paper-type collection items include the

following:

■ Base information. This collection item contains the base paper type information for
the paper-type object, which indicates the source from which the paper type was
created. Base types include: unknown, US Letter, US Legal, A4, B5, and tabloid.

■ Creator information. This collection item contains the creator information structure
for the paper-type object. It specifies the creator type of a paper-type object; for
example, 'sypt' for a system paper-type object creator and 'uspt' for a user
paper-type object creator.

■ Units information. This collection item contains the units information for the
paper-type object. Units can be specified in picas, millimeters, and inches.

■ Flags information. This collection item contains the flags information for the
paper-type object. The flags are bits used to set or clear specific attributes of
a paper-type object, such as whether the paper type is the default paper type for this
format. For information about paper-type object flags, see “Flags Information”
beginning on page 3-97.

■ Comment information. This collection item contains the comment information for the
paper-type object. It allows a comment to be associated with a paper-type object. You
can specify application-specific information in this comment. For example, you may
want to store a textual description of the paper-type and its purpose.

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-15

About Page Formatting
Page formatting allows the user to format specific pages of a document differently from

the default formatting for the rest of the document. Using QuickDraw GX page

formatting features, your application can

■ allow users to specify unique formats for the individual pages of a document

■ retrieve a format object’s mapping

■ attach a form to a format object as a backdrop to each page

■ create documents that contain page-specific halftone information

■ copy a format object for use in other documents

For example, using page-formatting features, a mail-merge application may

automatically generate a document in which the first page consists of a template in

which a user can enter addresses and the rest of the document consists of blank sheets

in which a user can add text.

Figure 3-4 shows a document that is composed of a two-page letter and many address

labels. The job object references two format objects, one for either page of the letter and

the other for the address label.

Figure 3-4 A three page document and its corresponding job and format objects

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-16 About Page Formatting and Dialog Box Customization

Manipulating format objects is described in the next section. Information on accessing a

format object’s mapping is discussed in “Mapping for Format Objects” beginning on

page 3-18. Information on attaching a form to a format object is discussed in “Forms and

Format Objects” beginning on page 3-20. Information on halftones is discussed in

“Halftones and Format Collections” beginning on page 3-21.

Manipulating Format Objects

A format object contains the basic information that your application needs to display a

single page or a set of pages. Generally, you work with format objects when a user

■ creates a new format using the Custom Page Setup dialog box

■ wants to use a format in several pages of a document

■ modifies a format that is shared by other pages in the same document

■ saves or opens a document

Figure 3-5 shows how you manipulate format objects in response to the first three

actions.

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-17

Figure 3-5 Manipulating the format object in response to user actions

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-18 About Page Formatting and Dialog Box Customization

When a user creates a new format through the Custom Page Setup dialog box, you need

to create a new format object. Creating a new format object is discussed in “Creating a

Format Object for a Page in a Document,” which begins on page 3-40.

Each format object you create has an associated owner count. The owner count indicates

the number of times that a format object is shared. When a user creates a new format

through the Custom Page Setup dialog box, you need to create a new format object with

the GXNewFormat function. This function sets the owner count of a format object to 1.

When a user wants to use the new format to format another page the same way, you

need to increment the format object’s owner count. You use the GXCloneFormat

function to increment the owner count of a format object by 1. Cloning a format object is

discussed in “Sharing Formats for Document Pages,” which begins on page 3-44.

When a user modifies a format object that is also shared by other pages, you need to

dispose of its corresponding format object and create a new one. The

GXDisposeFormat function decrements the owner count of a format object by 1.

Disposing of a format object is discussed in “Disposing of a Format Object for a Page in a

Document,” which begins on page 3-47.

To obtain the current owner count of a format object, you use the

GXCountFormatOwners function. For more information about this function, see the

description of GXCountFormatOwners on page 3-107.

You also must create a correspondence between the format and the page. Typically, you

keep the correspondence in the format collection. You must save the correspondences

when the job is flattened and retrieve them when the job is unflattened. For an example,

see “Associating Format Objects With Document Pages” beginning on page 3-61.

Mapping for Format Objects

A format object’s mapping is a mathematical representation of the format object’s

settings. These settings include the paper size, page size, orientation, and scaling. The

paper size and page size are set when you create the format object.

QuickDraw GX uses this mapping to scale page information into device pixels. A device

pixel is the smallest physical area that a printer is capable of rendering. Typically, the

mapping consists of the high-resolution scaling information needed to print a page at the

highest quality.

QuickDraw GX and the printer driver set up the mapping. Your application can retrieve

the mapping but cannot set it directly. You might want to retrieve it, for example, to

set the mapping property of a view port to represent the printer on screen. For more

information about view port objects, see the view-related objects chapter of Inside
Macintosh: QuickDraw GX Objects.

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-19

Figure 3-6 shows how the scaling item affects the mapping.

Figure 3-6 Scaling a format object

When 50% scaling is applied, the scaling variables in the mapping are actually doubled,

which causes the shape to appear the same size on a page of paper that is twice its

original size. When the printer driver maps the page to dots-per-inch, it reduces the

format dimension and everything within them, including the shape object. The result is

that the shape is scaled to 50% when it is printed.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-20 About Page Formatting and Dialog Box Customization

Forms and Format Objects

QuickDraw GX provides the form property, which allows your application to format

pages of a document with a template. A form is made up of two shape objects—one

shape defines the form itself, and the other shape, the mask shape, defines erasable areas

within the form. The mask shape is optional; your application can erase the contents

within a form, but this technique is not recommended.

Your application can specify a form for any format object associated with the formatting

printer. Your application uses this form as a backdrop that is applied to a set of pages.

For example, you can use a form to define erasable areas within pages created using a

database application.

To associate a form shape and a mask shape with a format object associated with a page,

you use the GXSetFormatForm function. To retrieve the form and mask shapes for a

particular format object, you use the GXGetFormatForm function. The shape type that

you associate with a format object must be a picture shape.

Figure 3-7 shows a page from a document created by a database application. The figure

also shows the job object corresponding to the document, the job’s format object, and a

form.

Figure 3-7 Using a form to format a page

Forms save time during spooling, rendering, and I/O. During spooling, QuickDraw GX

spools a form shape only once. QuickDraw GX renders a form shape once for each

distinct format object it is attached to. During I/O, if the printer can cache the

representation of the form, QuickDraw GX saves data transmission time by sending the

form to the printer only when it has to.

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-21

Halftones and Format Collections

You can use a halftone to represent more colors than can be represented on a printer by

alternating available colors of a fixed cell size so that a noncontinuous tone device

appears to produce continuous-tone grayscale or full-color images.

You can use the format collection to specify halftone information on a page-by-page

basis. Initially, the printer driver specifies the halftone information for the default format

by storing the information in this format’s format collection object. You can add

halftones to this collection, in which case you are changing the halftone for the entire

document. You can also change the halftone information in a format collection associated

with the format object for specific pages, in which case only the pages associated with

the format object receive the halftone. Storing halftone information in a format collection

is discussed in “Storing Halftone Information in a Format Collection,” which begins on

page 3-52.

Note

To specify halftone information on a shape-by-shape basis, you use a
synonym attached to the shape’s ink object. For more information about
the halftone synonym, see the chapter “Advanced Printing Features” in
this book. ◆

The format-halftone item in the format collection specifies the halftones to use. The

collection item specifies a gxFormatHalftoneInfo structure that defines the number

of allowable halftones and their characteristics. For the definition of the

gxFormatHalftoneInfo structure, see “Format-Halftone Information” on page 3-92.

The definition of each halftone is specified in a gxHalftone structure, which is

described completely in the view-related objects chapter of Inside Macintosh: QuickDraw
GX Objects:

struct gxHalftone{

fixed angle; /* direction of halftone */

fixed frequency; /* cells per inch */

gxDotType method; /* kind of pattern */

gxTintType tinting; /* tint calculation method */

gxColor dotColor; /* color of foreground */

gxColor backgroundColor; /* color of background */

gxColorSpace tintSpace; /* color space for tint */

};

You can specify any number of these gxHalftone structures in the format-halftone

information item. QuickDraw GX selects appropriate halftones from the list of available

halftones in the item. Its selection is based upon the tinting field in the halftone

structure:

■ When you print to a black-and-white PostScript device, QuickDraw GX looks for a
halftone structure that specifies gxLuminanceTint in the tinting field. If no
halftone specifies this value, it looks for a halftone that specifies gxComponent4Tint
as its tinting method. Component 4 is the black component in the CMYK (cyan,

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-22 About Page Formatting and Dialog Box Customization

magenta, yellow, and black) space. If no halftone specifies this tinting method either,
the first halftone in the list is used.

■ When you print to a color PostScript device, a maximum of four halftones are used.
QuickDraw GX attempts to locate halftones for the following tint calculation methods:
gxComponent1Tint for the cyan halftone, gxComponent2Tint for the magenta
halftone, gxComponent3Tint field for the yellow halftone, and
gxComponent4Tint for the black halftone. If a tinting method is in the list more than
once, the first one in the list is used.

If a halftone for the gxComponent4Tint method is not in the list, QuickDraw GX
uses the gxLuminanceTint tinting method for the black halftone. If the
gxLuminanceTint tinting method cannot be found either, QuickDraw GX uses the
first halftone in the list for the black halftone.

If QuickDraw GX cannot find a halftone for the gxComponent1Tint,
gxComponent2Tint, or gxComponent3Tint tinting methods, it uses the black
halftone for the missing tinting method.

It is only possible to use halftones to the extent that a particular PostScript device

supports them. The dot color and background color of a halftone are ignored because

QuickDraw GX assumes that the dot color for a black-and-white device is black and the

dot color for a color device with the gxComponent2Tint tinting method is magenta.

Dialog Box Customization
QuickDraw GX allows your application to customize print dialog boxes, typically, by

adding panels. A panel is a portion of an expanded dialog box that presents additional

printing options for users. For example, you may allow the user to specify custom

margins in a panel you add to the Page Setup dialog box or the Custom Page Setup

dialog box. Figure 3-8 shows the expanded Custom Page Setup dialog box with

two panels, the General panel and the “My override” panel. The contents of the General

panel are shown in Figure 3-8.

Figure 3-8 The expanded Custom Page Setup dialog box with two panels

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-23

QuickDraw GX stores a user’s responses to most default dialog items in collection

objects. Your application can use collection objects to store information from panels you

have added to dialog boxes. For information about storing items in collection objects and

retrieving them, see “Using Printing-Related Collection Objects” beginning on page 3-27.

Note

If several applications want to provide the same option in the same
panel, it may be better to implement the panel in a printing extension.
For more information about printing extensions, see the printing
extensions chapter of Inside Macintosh: QuickDraw GX Printing Extensions
and Drivers. ◆

To create a panel, you must define a panel resource (gxPrintPanelType), as described

in the next section. You may also define an extended item list resource

(gxExtendedDITLType) that defines how to respond to user actions, such as clicking a

button, while the panel is on the screen. This resource is described in the section

“Automating Panel Events” beginning on page 3-25.

Messages are used to notify the application when a print dialog box is about to be

displayed. This allows you to load the panel from the resource before the dialog box

is displayed. The functions that invoke these messages are shown in Table 3-1.

Your application typically takes these steps to enable a panel when the user chooses a

menu item that brings up a dialog box:

1. Call the appropriate function, such as GXJobPrintDialog if the user chose the Print
menu item from the File menu.

2. Respond to the message, such as gxJobPrintDialog, by invoking your override
function; for example, MyJobPrintDialog. This response was set up by the call to
GXInstallApplicationOverride to set up the application as a message handler.

3. Set up the panel and call GXSetupDialogPanel to display it. These actions are
performed by the override function.

4. Forward the message. This action is also performed by the override function.

For an overview of how messages allow you to display a panel in a print dialog box, see

the chapter “Introduction to Printing With QuickDraw GX” in this book.

Table 3-1 Functions that enable dialog box panels

Function Description

GXJobPrintDialog Displays the Print dialog box

GXJobDefaultFormatDialog Displays the Page Setup dialog box

GXFormatDialog Displays the Custom Page Setup dialog box

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-24 About Page Formatting and Dialog Box Customization

To forward a message, you call one of the functions in Table 3-2.

You pass exactly the same arguments to the forwarding function as those with which

your override function was called. For an example of setting up a custom dialog box

with an added panel and forwarding a message, see the section “Adding Panels to

Dialog Boxes” beginning on page 3-67. For information about how to forward other

messages, see the Message Manager chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities.

The Dialog Box Panel Resource

A panel resource defines a panel. It specifies the following information:

■ The panel’s name, such as My override. The name appears in the list of panels for an
extended dialog box, under the panel’s icon.

■ The script used to display the panel, such as smRoman.

■ The resource of the 'DITL' resource that defines the items in the panel.

■ The resource ID of the icon to display in the extended dialog box.

Listing 3-1 shows the structure of a panel resource.

Listing 3-1 A panel resource definition template

type gxPrintPanelType {

pstring[31]; /* name */

integer Script;/* international script */

fill word; /* long word reserved for future use */

fill word; /* long word reserved for future use */

integer; /* the icon id */

integer; /* the ditl id */

};

Table 3-2 Functions that forward a dialog box message

Function Description

Forward_GXJobPrintDialog Forwards the gxJobPrintDialog
message

Forward_GXJobDefaultFormatDialog Forwards the
gxJobDefaultFormatDialog
message

Forward_GXFormatDialog Forwards the gxFormatDialog
message

C H A P T E R 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization 3-25

Responding to Panel Events

QuickDraw GX handles events for its default panels automatically. If you change a

default panel or you add another one, you may need to override the messages that

QuickDraw GX sends in order to process the items that you added.

If an event occurs while a panel is displayed, QuickDraw GX sends a

gxFilterPanelEvent message. If you want to filter the event, you can override this

message by installing a handler for it and by specifying a function that matches the

prototype defined for GXFilterPanelEvent on page 3-124.

If you do not need to filter the event, you may choose to handle the event in your code,

you may automate the handling of the event, or you may do both. Events that you need

to handle in some way include mouse clicks on radio buttons or checkboxes, choosing an

item from a pop-up menu, and keystrokes in editable text fields.

To handle the event in your application code, you install an override for the

gxHandlePanelEvent message. You can override this message by installing a handler

for it and specifying a function that matches the prototype defined for

GXHandlePanelEvent on page 3-123.

For information about messages and how to override them, see the chapter

“Introduction to Printing With QuickDraw GX” in this book. For an example of

installing an override function, see the chapter “Core Printing Features” in this book. For

information about automatically handling panel events, see the next section.

Automating Panel Events

You can allow QuickDraw GX to automatically respond to selections in dialog box

panels without you writing additional application code. QuickDraw GX provides an

extended item list (gxExtendedDITLType) resource that loads values or settings of

items and responds to changes to items in an item list ('DITL') resource. The item types

for which QuickDraw GX can load values or settings and respond to changes in them

include

■ radio buttons

■ checkboxes

■ pop-up menus

■ editable text in strings; the strings may represent characters, integers, and real
numbers

QuickDraw GX obtains the values or settings from items in the job and format

collections and responds to changes, by updating the information in these items, when

the changes are confirmed. If the panel is part of the Print dialog box, the collection item

must be in the job collection. If the panel is part of the Page Setup or Custom Page Setup

dialog box, the collection item must be in the format collection.

For example, as a panel is displayed, an extended item resource specifies the collection

item to use to set a group of radio buttons. If a user clicks on an unselected radio button,

QuickDraw GX deselects the previously highlighted button and highlights the chosen

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-26 About Page Formatting and Dialog Box Customization

one. When the user closes the panel and confirms the settings (for example, by clicking

the OK button), the items specified by the extended item resource are placed back in

their collections. If the user cancels the panel, the collection items are not changed.

The processing for checkboxes is similar. If the checkbox is not checked, QuickDraw GX

checks it; if it is checked, QuickDraw GX unchecks it. Editable text is checked when the

panel is closed and confirmed.

QuickDraw GX uses the resource IDs of the extended item list resource and 'DITL'

resources to determine which extended item list to associate with the item list. If both

kinds of resources have the same ID, they are used together. Specifically, when an

open-panel (gxPanelOpenEvt) message is sent in response to the user choosing a panel

in a dialog box, QuickDraw GX uses the extended item list resource that corresponds to

the panel’s 'DITL' resource to load and set the items. (Recall from the previous section

that the panel resource specifies a 'DITL' resource.)

Listing 3-2 shows the extended item resource definition for editable text that represents a

real number.

Listing 3-2 The extended item list resource definition template

#define xdtlRadioButtons 0

#define xdtlCheckBox 1

#define xdtlEditTextInteger 2

#define xdtlEditTextReal 3

#define xdtlEditTextString 4

#define xdtlPopUp 5

type gxExtendedDITLType {

...

case EditTextReal:

key integer = xdtlEditTextReal;

literal longint; /* 4 byte id for storage in job

object or format object */

longint; /* numerical id for storage in

job object or format object */

integer; /* offset in bytes into the item

byte; /* corresponding ditl item */

byte; /* 0 = dont select, 1 = select

pstring[15];/* low bound - nil means 'I

don't care' */

pstring[15];/* high bound - nil means 'I

don't care' */

...

};

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Printing-Related Collection Objects 3-27

There are common fields for each item type supported by an extended item list resource:

■ The tag ID, such as gxPrintingTagID for QuickDraw GX defined tags.

■ The ID of the collection item, such as gxFormatHalftoneTag.

■ The offset into the collection item. The offset allows you to specify several values,
such as the settings for checkboxes, in the same item.

■ The corresponding item in the 'DITL' resource, starting with 1.

The remaining fields depend on the kind of data. For real number editable text, the fields

specify the following:

■ Whether or not to highlight the field’s contents when the panel is displayed; 0
specifies do not highlight, 1 specifies to highlight.

■ The lowest possible value for range checking. A nil string specifies no lower bound.

■ The highest possible value for range checking. A nil string specifies no upper bound.

If a user enters data that does not conform to the specified format or specifies a number

that is out of range, the text item inverts, and a system beep alerts the user to the

problem when the user attempts to leave the field.

For the definitions of other kinds of fields, see “The Extended Item List Resource” on

page 3-128. For an example of specifying an extended item list resource, see “Setting Up

Dialog Box Resources” on page 3-70.

Using Printing-Related Collection Objects

Your application can use collection objects to store information associated with a

particular document. To access collection objects used by QuickDraw GX printing

features, you use functions provided by QuickDraw GX. You manipulate the pieces of

information in collection objects using Collection Manager functions. The Collection

Manager is described in Inside Macintosh: QuickDraw GX Environment and Utilities.

QuickDraw GX allows you to access a collection object associated with a job object,

format object, or paper-type object. If you want to store or access printing-related

information associated with a document in the job collection, you use the

GXGetJobCollection function to access this collection object. If you want to store or

access formatting information in the format collection, you use the

GXGetFormatCollection function. If you want to store or access paper-type

information in the paper-type collection, you use the GXGetPaperTypeCollection

function.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-28 Using Printing-Related Collection Objects

You then specify the collection item in a call to GetCollectionItem to retrieve the

specific data from a collection. The collection item corresponds to the data you wish to

retrieve. For example, the gxCopiesTag collection item specifies access to data in the

gxCopiesInfo data structure:

enum {gxCopiesTag = 'copy'};

struct gxCopiesInfo{

long copies;

};

Note

The collection tags, collection item tags, and structures for collection
objects are defined in the section “Constants and Data Types” beginning
on page 3-133. For complete information about using collections, see the
Collection Manager chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities. ◆

Accessing Data From a Collection Object

The following example shows you how to access an item from a collection object. For an

example of adding an item to a collection object, see “Associating Format Objects With

Document Pages” on page 3-61. For an example of replacing a collection item, see “Using

a Collection to Implement the Print One Copy Menu Item” on page 3-29.

Listing 3-3 shows how to use the GXGetJobCollection function to access the number

of copies, which is stored in a job collection.

Listing 3-3 Accessing copies information stored in a job collection

OSErr MyGetJobCopies(MyDocumentPtr myDocument, long *numCopies)

{

OSErr err;

Collection jobCollection;

gxCopiesInfo theCopiesInfo;

long dataSize = sizeof(theCopiesInfo);

/*

Get the job collection and look for a gxCopiesTag collection

object item.

*/

jobCollection = GXGetJobCollection(myDocument->documentJob);

err = GetCollectionItem(jobCollection,

gxCopiesTag,

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Printing-Related Collection Objects 3-29

gxPrintingTagID,

dataSize,

&theCopiesInfo);

/* Extract the number of copies and return it. */

if (err == noErr)

*numCopies = theCopiesInfo.copies;

return err;

}

Using a Collection to Implement the Print One Copy Menu Item
To implement the Print One Copy menu item, you must change items in the job

collection. You must ensure that only one copy will be printed, that all pages will be

printed, and that the output will actually go to a printer and not to a print file. After the

copy has been printed, you must set the contents of the collection items back to their

original values so that the user‘s settings are preserved.

Listing 3-4 shows how to set the values of the gxCopiesTag, gxPageRangeInfo, and

gxFileDestinationTag items so that only one copy of all pages is printed and it is

sent to the printer. It also shows how to restore the original values for these collection

items after the print operation has been completed.

Listing 3-4 Modifying the job collection to implement the Print One Copy menu item

OSErr MyPrintOneCopy(MyDocumentPtr whichDocument)

{

OSErr err;

Collection jobCollection;

gxCopiesInfo copiesInfo;

gxFileDestinationInfo destInfo;

gxPageRangeInfo pageRangeInfo;

Ptr oldCopiesInfo = nil;

Ptr oldPageRangeInfo = nil;

Ptr oldDestInfo = nil;

long oldCopiesSize;

long oldPageRangeInfoSize;

long oldDestInfoSize;

/* Get the job collection and set it up to print one copy */

jobCollection = GXGetJobCollection(whichDocument->documentJob);

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-30 Using Printing-Related Collection Objects

/* Set number of copies to 1 */

copiesInfo.copies = 1;

err = MyReplaceCollectionItem(&copiesInfo,

sizeof(gxCopiesInfo),

gxCopiesTag, gxPrintingTagID,

jobCollection, &oldCopiesInfo,

&oldCopiesSize);

nrequire(err, ReplaceCopies_error);

/* Set page range to "all". */

pageRangeInfo.simpleRange.optionChosen = gxDefaultPageRange;

pageRangeInfo.minFromPage = 1;

pageRangeInfo.simpleRange.fromPage = 1;

pageRangeInfo.maxToPage = whichDocument->numPages;

pageRangeInfo.simpleRange.toPage = whichDocument->numPages;

pageRangeInfo.simpleRange.printAll = true;

err = MyReplaceCollectionItem(&pageRangeInfo,

sizeof(gxPageRangeInfo),

gxPageRangeTag, gxPrintingTagID,

jobCollection, &oldPageRangeInfo,

&oldPageRangeInfoSize);

nrequire(err, ReplacePageRange_error);

/* Set destination to "printer". */

destInfo.toFile = false;

err = MyReplaceCollectionItem(&destInfo,

sizeof(gxFileDestinationInfo),

gxFileDestinationTag, gxPrintingTagID,

jobCollection, &oldDestInfo,

&oldDestInfoSize);

nrequire(err, ReplaceDestination_error);

/* Print one copy of the document. (not shown here) */

err = MyPrintDocument(whichDocument);

/*

Restore original number of copies, page range, and output

destination in case it needs to be reused.

*/

ReplaceCopies_error:

MyReplaceCollectionItem(oldCopiesInfo, oldCopiesSize,

 gxCopiesTag, gxPrintingTagID,

jobCollection, nil, nil);

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Printing-Related Collection Objects 3-31

ReplacePageRange_error:

MyReplaceCollectionItem(oldPageRangeInfo, oldPageRangeInfoSize,

gxPageRangeTag, gxPrintingTagID,

jobCollection, nil, nil);

ReplaceDestination_error:

MyReplaceCollectionItem(oldDestInfo, oldDestInfoSize,

gxFileDestinationTag, gxPrintingTagID,

jobCollection, nil, nil);

/* Dispose of pointers created by MyReplaceCollectionItem */

if (oldCopiesInfo)

DisposePtr(oldCopiesInfo);

if (oldPageRangeInfo)

DisposePtr(oldPageRangeInfo);

if (oldDestInfo)

DisposePtr(oldDestInfo);

return err;

}

Replacing Items in Collections
The MyReplaceCollectionItem function is a generic routine that you could write to

replace collection items. In the implementation in Listing 3-5, the data being replaced is

returned in a variable pointed to by oldData, unless the pointer is nil. If the item does

not exist, the new data is returned via the pointer instead.

Listing 3-5 Replacing collection items

OSErr MyReplaceCollectionItem(void *newData, long collectSize,

 OSType collectType, long collectID,

 Collection whichCollection,

 Ptr *oldData, long *oldDataSize)

{

OSErr err;

long index;

/*

If returning the old data, get it.

If there is no old data, return a copy of the new data.

*/

if (oldData)

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-32 Using Printing-Related Collection Objects

{

err = GetCollectionItemInfo(whichCollection,

collectType,

collectID,

dontWantIndex,

oldDataSize,

dontWantAttributes);

if (err)

{

*oldDataSize = collectSize;

*oldData = NewPtrSys(*oldDataSize);

if (!(err = MemError()))

BlockMove(newData, *oldData, collectSize);

}

else

{

*oldData = NewPtrSys(*oldDataSize);

if (!(err = MemError()))

err = GetCollectionItem(whichCollection,

collectType,

collectID,

dontWantSize,

*oldData);

}

nrequire(err, CouldNotSetOldData);

}

/*

Add a new collection item; otherwise, get the existing

item's index and replace the old collection item.

*/

err = AddCollectionItem(whichCollection,

collectType,

collectID,

collectSize,

newData);

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Printing-Related Collection Objects 3-33

if (err == collectionItemLockedErr)

{

err = GetCollectionItemInfo(whichCollection,

collectType,

collectID,

&index,

dontWantSize,

dontWantAttributes);

if (!err)

err = ReplaceIndexedCollectionItem(whichCollection,

 index,

 collectSize,

 newData);

}

CouldNotSetOldData:

return err;

}

Specifying Page Ranges in the Job Collection
You can specify the page range and page range constraints in the page-range information

job collection item. QuickDraw GX provides three kinds of representations for page

ranges: simple numeric From and To values called the default page range, a single

editable text field that specifies a replacement page range, and alphanumeric From and

To values called a customized page range.

Listing 3-4 on page 3-29 shows how to set up a default page range for all pages to

support the Print One Copy menu item of the File menu. The examples that follow show

how to set up default, replacement, and customized page information for specific pages.

Listing 3-6 on page 3-33 shows how to set up the default page range for pages 1

through 4. The user may change these values to any within 1 and 9999.

Listing 3-6 Setting up a default page range

OSErr MyConfigurePageRange1(MyDocumentPtr myDocument)

{

OSErr err;

gxPageRangeInfo **pageRangeHdl;

/*

Create a handle to store the page range collection item in,

and then retrieve the collection item.

*/

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-34 Using Printing-Related Collection Objects

pageRangeHdl

 = (gxPageRangeInfo **)NewHandleClear(sizeof(gxPageRangeInfo));

nrequire_action(err, NewHandleClear_Failed, err = MemError(););

err = GetCollectionItemHdl

(GXGetJobCollection(myDocument->documentJob),

gxPageRangeTag,

gxPrintingTagID,

(Handle) pageRangeHdl);

nrequire(err, GetCollectionItemHdl_Failed);

/*

Use the standard "From-To" editable text field containing

default numeric values.

Specify that the "all pages" radio button is not to be

selected and that the "From" field contains 1 and the

"To" field contains 4.

*/

(*pageRangeHdl)->simpleRange.optionChosen = gxDefaultPageRange;

(*pageRangeHdl)->simpleRange.printAll = false;

(*pageRangeHdl)->simpleRange.fromPage = 1;

(*pageRangeHdl)->simpleRange.toPage = 4;

(*pageRangeHdl)->minFromPage = 1;

(*pageRangeHdl)->maxToPage = 9999;

/* Add (or replace) the collection item, and dispose of its

handle. */

err = AddCollectionItemHdl(

GXGetJobCollection(myDocument->documentJob),

gxPageRangeTag,

gxPrintingTagID,

(Handle) pageRangeHdl);

GetCollectionItemHdl_Failed:

DisposHandle((Handle) pageRangeHdl);

NewHandleClear_Failed:

return err;

}

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Printing-Related Collection Objects 3-35

Figure 3-9 shows the Print dialog box after executing the code to set the page range.

QuickDraw GX obtains the page range to display from the collection item.

Figure 3-9 Print dialog box with default page range

Listing 3-7 shows how to set up a replacement page range, in which the From and To

fields are replaced by a single editable text field. Note that the default editable text field

is only one character, therefore, you almost always increase the size of the handle to

accommodate the page range. The page range is a Pascal-style string.

Listing 3-7 Setting up a replacement page range

OSErr MyConfigurePageRange2(MyDocumentPtr myDocument)

{

OSErr err;

gxPageRangeInfo **pageRangeHdl;

/*

Create a handle to store the page range collection item in,

and then retrieve the collection item.

*/

pageRangeHdl

 = (gxPageRangeInfo **)NewHandleClear(sizeof(gxPageRangeInfo));

nrequire_action(err, NewHandleClear_Failed, err = MemError(););

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-36 Using Printing-Related Collection Objects

err = GetCollectionItemHdl

(GXGetJobCollection(myDocument->documentJob),

gxPageRangeTag,

gxPrintingTagID,

(Handle) pageRangeHdl);

nrequire(err, GetCollectionItemHdl_Failed);

/*

Replace the standard "From-To" editable text fields, with a

single editable text field that contains “Chapter 5.”

Specify that the "all pages" radio button is not to be

selected.

*/

(*pageRangeHdl)->simpleRange.optionChosen = gxReplacePageRange;

(*pageRangeHdl)->simpleRange.printAll = false;

SetHandleSize((Handle) pageRangeHdl,

sizeof(gxPageRangeInfo) +titleSize-1);

nrequire_action(err, SetHandleSize_Failed, err = MemError(););

BlockMove(FromToTitle, (*pageRangeHdl)->replaceString,

titleSize);

/* Add (or replace) the collection item, and dispose of its

handle. */

err = AddCollectionItemHdl(

GXGetJobCollection(myDocument->documentJob),

gxPageRangeTag,

gxPrintingTagID,

(Handle) pageRangeHdl);

SetHandleSize_Failed:

GetCollectionItemHdl_Failed:

DisposHandle((Handle) pageRangeHdl);

NewHandleClear_Failed:

return err;

}

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Printing-Related Collection Objects 3-37

Figure 3-10 shows the Print dialog box after executing the replacement page range code.

The contents of the title, “Chapter 5,” are displayed in a single editable text field. You

must check for the validity of this field if the user changes it. For more information about

parsing a page range to test its validity, see “Parsing Page Ranges” on page 3-73.

Figure 3-10 Print dialog box with replacement page range

Listing 3-8 shows how to set up a customized page range, in which the From and To

fields allow editable text.

Listing 3-8 Setting up a customized page range

OSErr MyConfigurePageRange3(MyDocumentPtr myDocument)

{

OSErr err;

gxPageRangeInfo **pageRangeHdl;

/*

Create a handle to store the page range collection item in,

and then retrieve the collection item.

*/

pageRangeHdl

 = (gxPageRangeInfo **)NewHandleClear(sizeof(gxPageRangeInfo));

nrequire_action(err, NewHandleClear_Failed, err = MemError(););

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-38 Using Printing-Related Collection Objects

err = GetCollectionItemHdl

(GXGetJobCollection(myDocument->documentJob),

gxPageRangeTag,

gxPrintingTagID,

(Handle) pageRangeHdl);

nrequire(err, GetCollectionItemHdl_Failed);

/*

Use the standard "From-To" editable text fields, but they

now contain a custom format for the page range values.

Specify that the "all pages" radio button is not to be

selected and that the "From" field contains "iii" and the

"To" field contains "VI".

*/

(*pageRangeHdl)->simpleRange.optionChosen =

gxCustomizePageRange;

(*pageRangeHdl)->simpleRange.printAll = false;

BlockMove("iii", &(*pageRangeHdl)->fromString[1], 3);

(*pageRangeHdl)->fromString[0] = 3;

BlockMove("VI", &(*pageRangeHdl)->toString[1], 2);

(*pageRangeHdl)->toString[0] = 2;

/* Add (or replace) the collection item, and dispose of its

handle. */

err = AddCollectionItemHdl(

GXGetJobCollection(myDocument->documentJob),

gxPageRangeTag,

gxPrintingTagID,

(Handle) pageRangeHdl);

GetCollectionItemHdl_Failed:

DisposHandle((Handle) pageRangeHdl);

NewHandleClear_Failed:

return err;

}

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-39

Figure 3-11 shows the Print dialog box after executing the customized page range code.

The contents of the From and To fields are now editable text. You must check for the

validity of these fields if the user changes them. For more information about parsing a

page range to test its validity, see “Parsing Page Ranges” on page 3-73.

Figure 3-11 Print dialog box with customized page range

Using Format Objects and Collection Items to Format Pages

To support page-formatting features, your application needs to manipulate format

objects and keep track of the number of times a format object is shared. Generally, you

work with format objects when a user creates a new format, wants to share a format with

additional pages in a single document, disposes of a page, or modifies a format that is

shared by other pages in the same document. Because your application is responsible for

associating format objects with the individual pages of a document, you need to save

this association when a user saves a document.

Your application can also manipulate format objects to support special formatting

features. These features include associating form shapes with format objects, supporting

page-specific halftone information in your application’s documents, and copying format

objects for use in multiple documents. QuickDraw GX also allows you to access

information associated with a specific format object, such as its mapping and associated

paper-type objects.

The following sections describe how to use page-formatting features.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-40 Using Format Objects and Collection Items to Format Pages

Creating a Format Object for a Page in a Document
When a user wants to create a unique format or change its settings, the user chooses the

Custom Page Setup menu item from the File menu. In response, you need to call the

GXFormatDialog function to display the Custom Page Setup dialog box on the user’s

screen. Figure 3-12 shows the Custom Page Setup dialog box.

Figure 3-12 The Custom Page Setup dialog box

If the user clicks the More Choices button in the Custom Page Setup dialog box,

QuickDraw GX expands the dialog box. Figure 3-13 shows the expanded Custom Page

Setup dialog box.

Figure 3-13 The expanded Custom Page Setup dialog box

You need to create a new format object when a user chooses the Format button in the

Custom Page Setup dialog box. For example, a user may create a four-page document,

move to page 2, and then choose landscape orientation in the Custom Page Setup dialog

box. The change to the page occurs when the user chooses the Format button.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-41

Figure 3-14 shows a four-page document in which the second page uses a new format.

Pages 1, 3, and 4 use the default format.

Figure 3-14 A four-page document in which page two uses a unique format object

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-42 Using Format Objects and Collection Items to Format Pages

Listing 3-9 shows how to create a new format object for a single page in a document. You

should note that the GXNewFormat function sets the owner count for the new format

object to 1.

Listing 3-9 Creating a format object for a page in a document

OSErr MyPageFormatDialog(MyDocumentPtr myDocument)

{

OSErr err = noErr;

gxDialogResult result;

gxEditMenuRecord editMenuRec;

gxFormat pageFormat;

Boolean newPgFormat = false;

/* Fill in the location of your application’s Edit menu items. */

editMenuRec.editMenuID = mEdit;

editMenuRec.cutItem = kCut;

editMenuRec.copyItem = kCopy;

editMenuRec.pasteItem = kPaste;

editMenuRec.clearItem = kClear;

editMenuRec.undoItem = kUndo;

/* Modify existing format object, else create a new one. */

if (myDocument->pageFormat[myDocument->curPage -1] != nil)

pageFormat = myDocument->pageFormat[myDocument->curPage -1];

else

{

pageFormat = GXNewFormat(myDocument->documentJob);

newPgFormat = true;

err = GXGetJobError(myDocument->documentJob);

}

/* If no errors, display the Page Setup dialog box. */

if (err == noErr)

{

result = GXFormatDialog(pageFormat, &editMenuRec, nil);

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-43

/*

If the user chooses Remove, use the default format for

this page. If the user chooses Format, store the new

format with this page. If the user chooses Cancel,

dispose of the cloned copy of the default format.

*/

switch (result)

{

case gxRevertSelected:

GXDisposeFormat(pageFormat);

pageFormat = nil;

case gxOKSelected:

myDocument->pageFormat[myDocument->curPage -1] =

pageFormat;

/*

Place code here if your application needs to

adjust the document based on the new format object.

*/

...

break;

case gxCancelSelected:

/*

If the user selects Cancel, dispose of the cloned

copy of the default format object.

*/

if (newPgFormat) GXDisposeFormat(pageFormat);

break;

}

}

return err;

}

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-44 Using Format Objects and Collection Items to Format Pages

Within the Custom Page Setup dialog box used to create unique formats, the user has the

option to return to the default format by choosing the Remove button or to not save the

format by choosing the Cancel button. These options are handled by the

gxRevertSelected and gxCancelSelected cases, respectively, of the switch

statement in Listing 3-9.

For example, if the user decides that the second page in a document should not have a

unique format, the user may choose the Remove button in the Custom Page Setup dialog

box. When the user chooses this button, your application needs to dispose of the format

object for this page and reassociate it with the default format.

Although a user may choose to create a new format for a page using the Custom Page

Setup dialog box, the user may also decide not to save this format.

For example, a user may click on page 4 of a document, choose the Custom Page Setup

dialog box, and modify the scaling of this page. The user may then decide not to save the

new scaling information and choose the Cancel button in the dialog box. When the user

chooses the Cancel button, your application needs to dispose of the newly created

format object and reassociate this page with its previously saved format object.

Saving a job object and the format objects it references is discussed in the chapter “Core

Printing Features” in this book.

Sharing Formats for Document Pages
You need to clone a format object when a user wants to share a format, created using the

Custom Page Setup dialog box, with an additional page in the same document. For

example, a user may have a four-page document that consists of one page in landscape

orientation and three pages that use the default format. A user may decide that page 3 of

this document should also use landscape orientation.

When the user clicks on page 3 and chooses the Format button in the Custom Page Setup

dialog box, you need to clone the format object currently used for page 2 in this

document.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-45

Figure 3-15 shows a four-page document in which the second and third pages use the

same format. Pages 1 and 4 use the default format.

Figure 3-15 A four-page document in which pages 2 and 3 use the same format object

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-46 Using Format Objects and Collection Items to Format Pages

Listing 3-10 shows how to clone a format object when it becomes shared. You should

note that the GXCloneFormat function increments the owner count of this format object

by 1. In this example, the format object is shared by two pages in a single document, so

its owner count is also 2.

Listing 3-10 Cloning a format object for two pages in a document

OSErr MyApplyPageFormat(MyDocumentPtr myDocument,

gxFormat aNewFormat)

{

OSErr err = noErr;

gxFormat pageFormat;

/*

If the specified format object is not the same as the

default format, clone it so it can be shared by different

pages. If it is the default format, set the reference to

nil, which specifies using the default format.

*/

if ((aNewFormat != nil) &&

(aNewFormat != GXGetJobFormat(myDocument->documentJob, 1)))

{

pageFormat = GXCloneFormat(aNewFormat);

err = GXGetJobError(myDocument->documentJob);

}

else

pageFormat = nil;

/*

If there are no errors, dispose of the old format object and

store the new one. Reformat the page, if necessary.

*/

if (err == noErr)

{

if (myDocument->pageFormat[myDocument->curPage -1] != nil)

GXDisposeFormat

(myDocument->pageFormat[myDocument->curPage-1]);

myDocument->pageFormat[myDocument->curPage -1] = pageFormat;

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-47

/*

Place code here if your application needs to adjust the

document based on the new format object.

*/

...

}

return err;

}

Disposing of a Format Object for a Page in a Document
You need to dispose of a format object when a user wants to modify a format for a single

page that is also shared by other pages in the same document, the user wants to return to

the default format, or the user decides not to save a format.

For example, a user may have a four-page document that consists of two pages in

landscape orientation (pages 2 and 3) and two pages that use the default format (pages 1

and 4). A user may decide to modify the scaling of page 3 of this document. A user

specifies scaling for a page in the Custom Page Setup dialog box. Note that a user also

can modify scaling for the default format in the Page Setup dialog box.

When the user clicks on page 3, specifies a scaling factor, and chooses the Format button

in the Custom Page Setup dialog box, you need to dispose of the format object for this

page and create a new one. This user is not modifying page 2, and therefore, you should

not modify or dispose of its format object.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-48 Using Format Objects and Collection Items to Format Pages

Figure 3-16 shows a four-page document in which the second and third pages use

landscape orientation, but page 3 uses a modified scaling factor. Pages 1 and 4 use the

default format.

Figure 3-16 A four-page document in which pages 2 and 3 use unique formats objects

Listing 3-11 shows how to dispose of a format object for a page in a document. In this

example, you need to dispose of the format object because it is shared by another page in

the document (its owner count is greater than 1).

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-49

The GXDisposeFormat function decrements the owner count of this format object by 1.

In this example, the format object is now used by only one page in the document, so its

owner count becomes 1. Storage for a format object is removed only when its owner

count becomes 0. After you call the GXDisposeFormat function, you need to call the

GXNewFormat function to create a new format object for this page.

Listing 3-11 Disposing of a format object for a page in a document and creating a new one

OSErr MyDeletePage(MyDocumentPtr myDocument)

{

OSErr err;

long curPage, pg;

/*

Dispose of the current page's shape object and format

object.

*/

curPage = myDocument->curPage;

GXDisposeShape(myDocument->documentPage[curPage -1]);

if (myDocument->pageFormat[curPage -1] != nil)

GXDisposeFormat(myDocument->pageFormat[curPage -1]);

/* Place application-specific code to delete a page here. */

...

/*

Shift all pages coming after this one to fill the gap

created by this deletion. When finished, decrement the

number of pages in the document.

*/

if (myDocument->numPages != 0)

for (pg = curPage; pg < myDocument->numPages; pg++)

{

myDocument->documentPage[pg -1] =

myDocument->documentPage[pg];

myDocument->pageFormat[pg -1] =

myDocument->pageFormat[pg];

}

--myDocument->numPages;

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-50 Using Format Objects and Collection Items to Format Pages

/* If the current page is beyond the last page, reset it. */

if (curPage > myDocument->numPages)

--myDocument->curPage;

/*

Invalidate the window so that the page is updated on screen.

Check for errors and return.

*/

InvalRect(&(myDocument->documentWindow)->portRect);

err = GXGetJobError(myDocument->documentJob);

if (err == noErr) err = (OSErr)GXGetGraphicsError(nil);

return err;

}

Using Forms With Format Objects
Your application may choose to support a form that can be applied to each page in a

document. This may save printing time because the form can be stored in the printer’s

memory and need not be sent with each page of the document. For an introduction to

forms, see “Forms and Format Objects,” which begins on page 3-20.

To associate a form shape and its mask shape with a format object, you use the

GXSetFormatForm function. To retrieve the form and mask shapes for a particular

format object, you use the GXGetFormatForm function. The shape type that you

associate with a format object must be a picture shape.

The GXSetFormatForm function replaces any form previously associated with a

particular format object. It increments the owner counts of the new picture shapes (by

calling the GXCloneShape function) and decrements the owner count of the old picture

shapes (by calling the GXDisposeShape function).

Listing 3-12 shows how to associate a form with a format object. The

MyAddFormatForm function in the listing adds a form consisting of a rectangle to the

format object of the current page.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-51

Listing 3-12 Adding a form to a format object

OSErr MyAddFormatForm(MyDocumentPtr myDocument)

{

OSErr err;

long curPage;

gxFormat theFormat;

gxShape rectShape;

gxRectangle pageRect;

/*

Get the current format object. If it’s nil, use the job’s

default format object.

*/

curPage = myDocument->curPage;

theFormat = myDocument->pageFormat[curPage -1];

if (theFormat == nil)

theFormat = GXGetJobFormat(myDocument->documentJob, 1);

/*

Create a rectangle shape to use as the format object's form.

Make the rectangle's frame the imageable area of the page.

*/

GXGetFormatDimensions(theFormat, &pageRect, nil);

rectShape = GXNewRectangle(&pageRect);

GXSetShapeBounds(rectShape, &pageRect);

GXSetShapePen(rectShape, ff(3));

GXSetShapeFill(rectShape, gxClosedFrameFill);

err = (OSErr) GXGetGraphicsError(nil);

/*

Set the format object's form to a new picture shape, check

for errors, and then dispose of the shape.

*/

if (err == noErr)

{

GXSetShapeType(rectShape, gxPictureType);

GXSetFormatForm(theFormat, rectShape, nil);

err = GXGetJobError(myDocument->documentJob);

}

GXDisposeShape(rectShape);

return err;

}

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-52 Using Format Objects and Collection Items to Format Pages

Storing Halftone Information in a Format Collection
Your application can store halftone information for each page in a document in a format

collection. QuickDraw GX stores the halftone structure for a format object as a collection

item in the format collection. For an introduction to printing with halftones, see

“Halftones and Format Collections,” which begins on page 3-21.

Halftones are described by the gxHalftone structure definition:

struct gxHalftone{

fixed angle;

fixed frequency;

gxDotType method;

gxTintType tinting;

gxColor dotColor;

gxColor backgroundColor;

gxColorSpace tintSpace;

};

The angle parameter describes the direction of the halftone. The frequency parameter

describes the size of the dot, in cells per inch. The method parameter describes the way

in which the halftone cell is filled. The tinting parameter describes how the desired

color is converted into a ratio of color dots and background dots. The dotColor and

backgroundColor parameters are the colors of the dots used to form the halftone. And

the tintSpace parameter describes the color space that the original color is converted

to before the tint value is determined. For detailed information on the gxHalftone

structure, see the view-related objects chapter of Inside Macintosh: QuickDraw GX Objects.

The gxFormatHalftoneTag enumerator is used to identify the

gxFormatHalftoneInfo structure in the format collection:

enum { gxFormatHalftoneTag = 'half' };

struct gxFormatHalftoneInfo{

long numHalftones;

gxHalftone halftones[1];

};

The numHalftones field specifies how many gxHalftone entries are in the

gxFormatHalftoneInfo structure. The halftones field specifies each of them.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-53

Listing 3-13 shows how to store halftone information for a page in a format collection.

Listing 3-13 Storing halftone information in a format collection

OSErr MySetFormatHalftones(gxFormat theFormat,

gxFormatHalftoneInfo *theFormatHalftones)

{

OSErr err;

Collection fmtCollection;

/*

Get the format collection, and attempt to delete a

gxFormatHalftoneTag collection item, in case one exists.

Then, add a new one.

*/

fmtCollection = GXGetFormatCollection(theFormat);

RemoveCollectionItem(fmtCollection,

 gxFormatHalftoneTag,

 gxPrintingTagID);

err = AddCollectionItem(fmtCollection,

gxFormatHalftoneTag,

gxPrintingTagID,

sizeof(gxFormatHalftoneInfo),

theFormatHalftones);

/*

Since we changed the format object's collection items, we

must call GXChangedFormat.

*/

if (err == noErr)

GXChangedFormat(theFormat);

return err;

}

To provide halftone information for shape objects drawn with the same ink, you use a

halftone synonym. For detailed information on how to use halftone synonyms, see the

chapter “Advanced Printing Features” in this book.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-54 Using Format Objects and Collection Items to Format Pages

Copying a Format Object for Use in Other Documents
When a user wants to disassociate a format from a particular document and associate it

with another document, you use the GXNewFormat, GXCopyFormat, and

GXDisposeFormat functions. For example, a user may have a three-page document

that contains a format object for a single page in landscape orientation. This user may

want to use the landscape page in another document and delete it from the original

document.

Figure 3-17 shows two documents. Document A consists of two pages—one page uses

the default format, the other uses a unique format object. Document B also consists of

two pages—each page uses the default format. A user may decide to use the format of

page 2 in Document A for page 1 of Document B.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-55

Figure 3-17 Moving a format object from one document to another

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-56 Using Format Objects and Collection Items to Format Pages

Listing 3-14 shows how to move a format object from one document to another. The

srcPage and srcDocument parameters to the MyMoveFormatToJob function in the

listing represent the page’s location in the original document. The destPage and

destDocument parameters refer to the new location and document. Initially, a format

object for the destination page does not exist.

Listing 3-14 Moving a format object from one document to another

OSErr MyMoveFormatToJob(long srcPage, MyDocumentPtr srcDocument,

long destPage, MyDocumentPtr destDocument)

{

OSErr err;

gxFormat srcPgFormat, destPgFormat;

/*

Get the source format object. If it is nil, create a

destination format object from the source job object.

*/

srcPgFormat = srcDocument->pageFormat[srcPage-1];

if (srcPgFormat == nil)

srcPgFormat = GXNewFormat(srcDocument->documentJob);

/*

Create a new destination format object and copy the source

format object to it. Then dispose of the source format

object and clear out the source page's reference.

*/

destPgFormat = GXNewFormat(destDocument->documentJob);

GXCopyFormat(srcPgFormat, destPgFormat);

GXDisposeFormat(srcPgFormat);

srcDocument->pageFormat[srcPage-1] = nil;

/*

If there were no errors, store the destination page's format

object reference.

*/

err = GXGetJobError(srcDocument->documentJob);

if (err == noErr)

err = GXGetJobError(destDocument->documentJob);

if (err == noErr)

destDocument->pageFormat[destPage-1] = destPgFormat;

return err;

}

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-57

Obtaining the Mapping From a Format Object
To access a format object’s mapping, your application uses the GXGetFormatMapping

function. Listing 3-15 shows how to obtain the mapping for the format object associated

with the whichPage page.

Listing 3-15 Obtaining a format object’s mapping

OSErr MyGetFormatMapping(MyDocumentPtr myDocument, long whichPage,

gxMapping *theMapping)

{

gxFormat pgFormat;

/*

Get the current page's format. A nil reference specifies

using the job’s format object.

*/

pgFormat = myDocument->pageFormat[whichPage -1];

if (pgFormat == nil)

pgFormat = GXGetJobFormat(myDocument->documentJob, 1);

/* Get the format's mapping. */

GXGetFormatMapping(pgFormat, theMapping);

return GXGetJobError(myDocument->documentJob);

}

For an introduction to mapping, see “Mapping for Format Objects” beginning on

page 3-18.

Obtaining a Paper-Type Object Associated With a Format
QuickDraw GX allows a user to specify a paper-type name for each page of a document.

Pages with different imageable areas require different format objects. Imageable areas

differ both because of physical characteristics (paper size and page size) and because of

rendering characteristics (such as scaling and orientation).

Pages require different paper-type objects only when the physical characteristics differ. A

change in the paper-type object requires a change in the format object. The job object in

Figure 3-18 references three format objects and three paper-type objects. This allows a

user to print the address page on an envelope, a letter that contains graphics on an

8.5-by-11 inch sheet of paper in portrait orientation, and a page of graphics on a sheet of

paper in landscape orientation.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-58 Using Format Objects and Collection Items to Format Pages

Figure 3-18 A three-page document and its corresponding job object, format objects, and
paper-type objects

You can use the GXGetFormatPaperType function to obtain a format object’s

associated paper-type object. For detailed information on working with paper-type

objects, see the chapter “Advanced Printing Features” in this book.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-59

Listing 3-16 shows how to obtain the paper-type object that a format object references.

The MyGetPaperTypeName function in the listing returns the name stored in the

paper-type object.

Listing 3-16 Obtaining the paper-type object associated with a format object

OSErr MyGetPaperTypeName(MyDocumentPtr myDocument, Str255

paperTypeName)

{

gxPaperType thePaperType;

long curPage;

gxFormat pgFormat;

/*

Get the current page's format. A nil reference specifies

using the job’s format object.

*/

curPage = myDocument->curPage;

pgFormat = myDocument->pageFormat[curPage -1];

if (pgFormat == nil)

pgFormat = GXGetJobFormat(myDocument->documentJob, 1);

/* Get the format's object paper-type object and name. */

thePaperType = GXGetFormatPaperType(pgFormat);

GXGetPaperTypeName(thePaperType, paperTypeName);

return GXGetJobError(myDocument->documentJob);

}

Scanning Through a Job’s Format Objects
QuickDraw GX allows you to scan through the format objects associated with a

particular job. You can use the GXCountJobFormats function to obtain the number of

format objects in a particular job object. If you want to examine or manipulate each

format object for a job, you can use the GXForEachJobFormatDo function.

Note

You cannot use the GXForEachJobFormatDo function to modify the
default format. ◆

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-60 Using Format Objects and Collection Items to Format Pages

Listing 3-17 shows the GXForEachJobFormatDo function being called to execute the

MyCheckMappingProc function on each format object.

Listing 3-17 Using the GXForEachJobFormatDo function

OSErr MyCheckAllFormatMappings(MyDocumentPtr myDocument)

{

gxMapping theMapping;

/* Loop through each format, and check its mapping. */

GXForEachJobFormatDo(myDocument->documentJob,

MyCheckMappingProc, (void *) &theMapping);

return GXGetJobError(myDocument->documentJob);

}

The GXForEachJobFormatDo function passes a pointer to the application-supplied

function to execute and a pointer to the information that the application-supplied

function returns. The prototype for the application-supplied function is as follows:

gxLoopStatus MyFormatFunction (gxFormat aFormat, void *refCon);

The first parameter, aFormat, is a reference to a format object. QuickDraw GX sets this

parameter as it calls the function for each format object referenced by a job object. The

second parameter, refCon, is a pointer to a reference constant through which data can

be passed. The return value, gxLoopStatus, specifies whether the application-supplied

function should be called again, allowing you to terminate the

GXForEachJobFormatDo function early.

Listing 3-18 shows the application-supplied function, MyCheckMappingProc, that

obtains scaling and orientation information for each format object associated with a

particular job. For example, you can use this function to obtain scaling information when

you need to adjust a ruler.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-61

Listing 3-18 Obtaining scaling information on each format object

pascal gxLoopStatus MyCheckMappingProc(gxFormat aFormat, void

*theMapping)

{

/*

Get the mapping for the current format object, check it out,

and keep looping until all formats objects are accessed.

*/

GXGetFormatMapping(aFormat, (gxMapping *) theMapping);

/*

Your application could adjust rulers here, or do some

other useful thing based on each format object's mapping.

*/

...

return gxKeepLooping;

}

Note

For information about the gxMapping structure that contains scaling
and rotation (orientation) information, see the mathematical functions
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. ◆

Associating Format Objects With Document Pages
Your application is responsible for managing the correspondence between format objects

and individual pages in a document. For example, a user may create a document that

consists of three pages. Through the Custom Page Setup dialog box, you can allow a user

to specify that pages 1 and 2 use portrait orientation and page 3 uses landscape

orientation. In this example, you need to store information that pages 1 and 2 use the

default format, while page 3 uses a unique format object.

When a user saves a document containing multiple format objects, you need to save

format collection information and then flatten the document’s job object. In addition,

when a user opens a document containing multiple format objects, you need to unflatten

its corresponding job object and retrieve the format collection information. Flattening

and unflattening a document’s corresponding job object is discussed in the chapter

“Core Printing Features” in this book.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-62 Using Format Objects and Collection Items to Format Pages

There are several methods you can use to store formatting information. A common

method, shown in this section, is to save the correspondence between format objects and

pages in the format collection. Listing 3-19 shows a function that performs this task.

Listing 3-19 Saving the correspondence between format objects and document pages in a
format collection

OSErr MySaveFormatRefs(MyDocumentPtr myDocument)

{

OSErr err = noErr;

Handle theFormatIdxList;

Collection fmtCollection;

gxFormat defaultFmt;

/* Create a handle containing all of the format object indices. */

if (myDocument->numPages > 0)

{

/*

Obtain the format collection. If you have already have a

document page-to-format object correspondence item stored,

remove it.

*/

defaultFmt = GXGetJobFormat(myDocument->documentJob, 1);

fmtCollection = GXGetFormatCollection(defaultFmt);

if (fmtCollection != nil)

RemoveCollectionItem(fmtCollection, kMyFormatInfoType,

 printingTagID);

/*

Create a list of document page-to-format object

correspondences for the current document. If there are no

errors, add the item to the format collection for later

retrieval.

*/

err = MyCreateFormatIndexList(myDocument,

&theFormatIdxList);

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-63

if (err == noErr)

{

HLock(theFormatIdxList);

err = AddCollectionItem(fmtCollection, kMyFormatInfoType,

printingTagID,

GetHandleSize(theFormatIdxList),

*theFormatIdxList);

DisposHandle(theFormatIdxList);

}

}

return err;

}

The MyCreateFormatIndexList function stores the index of each page’s format

object in a handle. The index of the format object for page 1 goes in the first long word of

theFormatIdxList handle. The index of the next page’s format object goes in the next

long word, and so on. The handle is created and returned to the caller. Listing 3-20

shows the MyCreateFormatIndexList function.

Listing 3-20 Filling the handle

OSErr MyCreateFormatIndexList(MyDocumentPtr myDocument, Handle

*theFormatIdxList)

{

OSErr err;

long fmtIdx, pg, *idxList;

gxFormat curFormat;

/*

Create a handle large enough to hold all of our entries. This

example uses NewHandleClear so that all of our indices are

initialized to 0 (an invalid format index). This application

stores a nil format reference for each page which uses the

default format. This allows us to indicate these "nil

references" by an index of 0 in our resource.

*/

*theFormatIdxList = NewHandleClear(sizeof(long) *

(myDocument->numPages));

err = MemError();

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-64 Using Format Objects and Collection Items to Format Pages

/*

If there aren't any errors, go through each format object. If

the format object is used by any pages of the document, store

the format object's index in those page entries of

theFormatIdxList. Skip format object #1, because that's the

default format.

*/

if (err == noErr)

{

HLock(*theFormatIdxList);

idxList = (long *) **theFormatIdxList;

for (fmtIdx = 2; fmtIdx <=

GXCountJobFormats(myDocument->documentJob); fmtIdx++)

{

curFormat = GXGetJobFormat(myDocument->documentJob,

fmtIdx);

for (pg = 1; pg <= myDocument->numPages; pg++)

if (myDocument->pageFormat[pg -1] == curFormat)

idxList[pg -1] = fmtIdx;

}

HUnlock(*theFormatIdxList);

}

return err;

}

Listing 3-21 shows how to retrieve format object correspondence from a format

collection when a user opens a document containing multiple format objects. This

function associates new format object references with a document, based upon the

format object indices that are saved with the document. The function is called when a

document is opened. The format object references are stored in the passed

MyDocumentRec structure.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Using Format Objects and Collection Items to Format Pages 3-65

Listing 3-21 Retrieving the correspondence between document pages and format objects from
a format collection

OSErr MyAdjustFormats(MyDocumentPtr myDocument)

{

OSErr err = noErr;

Handle theFormatIdxList = nil;

gxFormat theFormat, defaultFmt;

long pg, numPages, fmtIdx, *idxList, idx, listSize,

attribs;

Collection fmtCollection;

/*

Get the format collection, and search for one of the

document page-to-format object correspondence items.

*/

defaultFmt = GXGetJobFormat(myDocument->documentJob, 1);

fmtCollection = GXGetFormatCollection(defaultFmt);

/*

Load the item containing the correspondences. First,

determine if the item exists. Next, create a handle to

hold the item, and retrieve it. Because there is one

long-word entry for each page of the document, determine

the number of pages in the document.

*/

err = GetCollectionItemInfo(fmtCollection, kMyFormatInfoType,

gxPrintingTagID, &idx, &listSize, &attribs);

if (err == noErr)

theFormatIdxList = NewHandle(listSize);

if (theFormatIdxList != nil)

{

HLock(theFormatIdxList);

err = GetCollectionItem(fmtCollection, kMyFormatInfoType,

 gxPrintingTagID, nil, *theFormatIdxList);

numPages = listSize / sizeof(long);

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-66 Customizing QuickDraw GX Dialog Boxes

/*

Loop through each saved index. In this example, the first

index is for page 1, the second is for page 2, and so on.

Call the GXGetJobFormat function for each saved

index. Store the format references as they are

processed. When finished, throw away the handle.

*/

idxList = (long *) *theFormatIdxList;

for (pg = 1; pg <= numPages; pg++)

{

fmtIdx = idxList[pg -1];

if (fmtIdx != nil)

theFormat = GXGetJobFormat(myDocument->documentJob,

fmtIdx);

else

theFormat = nil;

myDocument->pageFormat[pg -1] = theFormat;

}

DisposHandle(theFormatIdxList);

}

return err;

}

Customizing QuickDraw GX Dialog Boxes

Your application can customize QuickDraw GX dialog boxes. To customize a QuickDraw

GX dialog box, you need to take the following general steps:

1. Install a message handler to override the message that causes a QuickDraw GX print
dialog box to be displayed. Your override function loads your panel.

2. Create an item list ('DITL') resource that defines the items, such as radio buttons,
editable text fields, checkboxes, and pop-up menus, that you want to include in your
panel. You may have to create additional resources, such as a control ('CNTL')
resource for pop-up menus.

3. Create an icon resource that is displayed in the extended dialog box.

4. Create a panel (gxPrintPanelType) resource that provides a name for your panel
and associates the panel with the item list resource and the icon resource.

5. Install a handler to respond to events while the panel is active. This handler can be an
extended item list (gxExtendedDITLType) resource or may be an override of the
gxHandlePanelEvent message.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Customizing QuickDraw GX Dialog Boxes 3-67

These steps need not be done in order; however, all must be completed. The following

sections describe how your application adds a panel to a QuickDraw GX dialog box and

how to automate the response to user actions using the extended item list

(gxExtendedDITLType) resource.

Adding Panels to Dialog Boxes
To add a panel to a dialog box, you call the GXInstallApplicationOverride

function to override the messages that QuickDraw GX sends to display its dialog boxes.

The following call to GXInstallApplicationOverride sets up the

MyFormatDialogOverride function to be called when the application receives the

gxFormatDialog message:

GXInstallApplicationOverride(myDocument->documentJob,

gxFormatDialog, MyFormatDialogOverride);

The MyFormatDialogOverride function that is called in response to the message is as

follows:

OSErr MyFormatDialogOverride(gxFormat aFormat, StringPtr title,

gxDialogResult *result)

{

OSErr err = noErr;

err = MySetUpByPagePanel(aFormat,GXGetMessageHandlerResFile());

if (!err) err = Forward_FormatDialog(aFormat, title, result);

return err;

}

Note

To remove the application override when a change to the default
behavior associated with the message is no longer desired, use the
GXInstallApplicationOverride function with the function pointer
set to nil to take the override out of the message chain. ◆

Because you have specified a function pointer in the

GXInstallApplicationOverride function to override the message that displays the

dialog box, QuickDraw GX calls the MyFormatDialogOverride function just before it

displays the Custom Page Setup dialog box. The MyFormatDialogOverride function

calls the GXSetupDialogPanel function for each panel that you want to add. The

MyFormatDialogOverride function must forward the message to the next handler in

the message chain.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-68 Customizing QuickDraw GX Dialog Boxes

Listing 3-22 shows the MySetUpByPagePanel function, which obtains information

from the collection to set up a new panel, calls GXSetupDialogPanel, and forwards

the message.

Listing 3-22 Setting up a new panel

#define kCreator 'Ex#9' /* registered

application

creator */

#define kMyKindaCollectionType kCreator /* collection

tag type */

#define r_MyFormatPanelResID 6000 /* ID of the panel

and panel icon

resources */

typedef struct MyKindaCollectionRec {

unsigned char isEnabled; /* Enabled? */

char fillByte; /* C adds this (if

you don’t) for

alignment */

} MyKindaCollectionRec, *MyKindaCollectionPtr,

**MyKindaCollectionHdl;

...

OSErr MySetUpByPagePanel(gxFormat aFormat, short ourResFile)

{

OSErr err;

Collection fmtCollection;

gxPanelSetupRecord panelInfo;

MyKindaCollectionRec mySettings;

/*

Access the format collection and search for the collection

object item in which the default settings are stored.

*/

fmtCollection = GXGetFormatCollection(aFormat);

err = GetCollectionItem(fmtCollection, kMyKindaCollectionType,

 gxPrintingTagID, nil, &mySettings);

C H A P T E R 3

Page Formatting and Dialog Box Customization

Customizing QuickDraw GX Dialog Boxes 3-69

/*

If the collection object item does not exist, create one and

add it to the format collection to support default settings

for the dialog panel.

*/

if (err == collectionItemNotFoundErr)

{

mySettings.isEnabled = false;

err = AddCollectionItem(fmtCollection,

kMyKindaCollectionType,

gxPrintingTagID,

sizeof(MyKindaCollectionRec),

&mySettings);

}

/*

Install the panel. Specify its type, resource ID, and the

resource file in which it is located.

*/

if (!err)

{

panelInfo.panelKind = gxApplicationPanel;

panelInfo.panelResId = r_MyFormatPanelResID;

panelInfo.resourceRefNum = ourResFile;

panelInfo.refCon = 0; /* not being used here */

err = GXSetupDialogPanel(&panelInfo);

}

return err;

}

Once the user confirms or cancels the dialog box, QuickDraw GX disposes of all panel

information. Note that while QuickDraw GX uses a resource file number supplied by the

panel owner to look for panel resources, it does not leave the resource chain set to this

file. The resource chain’s current file is restored once the resources are retrieved.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-70 Customizing QuickDraw GX Dialog Boxes

Setting Up Dialog Box Resources
Figure 3-19 shows the panel that is loaded in Listing 3-22. Listing 3-23 through Listing

3-27 show the resources required to add this panel.

Figure 3-19 A panel added to the Custom Page Setup dialog box

Listing 3-23 shows the panel resource, which is added to the dialog box by the

MySetUpByPagePanel function shown in Listing 3-22.

Listing 3-23 Sample panel resource

#define r_dayPopUpCtl 150 /* ID of the panel's pop-up CNTL */

#define r_dayPopUpMenu 160 /* ID of the panel's pop-up menu */

/* Description of panel added to dialog box. */

resource gxPrintPanelType (r_MyFormatPanelResID, sysheap,

 purgeable)

{

"My override", smRoman, r_MyFormatPanelResID,/* Icon ResID */

 r_MyFormatPanelResID /* Panel ResID */

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Customizing QuickDraw GX Dialog Boxes 3-71

Listing 3-24 shows the item list resource, 'DITL', that defines the contents of the panel.

Listing 3-24 Sample item list resource

resource 'DITL' (r_MyFormatPanelResID, sysheap, purgeable) {

{

{42, 120, 60, 166},

RadioButton {

enabled,

"Off"

},

{42, 175, 60, 220},

RadioButton {

enabled,

"On"

},

{14, 27, 35, 323}, /* represents the days of the week

pop-up menu */

Control {

enabled,

r_dayPopUpCtl

}

}

};

Note

When you design your 'DITL' resources, note that (0.0, 0.0) for a panel
is at the top-left corner of the panel and not at the top-left corner of the
dialog box. When you want to locate the position of the cursor within a
panel, you use the GXGetJobPanelDimensions function to obtain the
dimensions of a panel. ◆

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-72 Customizing QuickDraw GX Dialog Boxes

Listing 3-25 shows the control resource, 'CNTL', that defines the pop-up menu control.

Listing 3-25 Sample 'CNTL' resource

resource 'CNTL' (r_dayPopUpCtl, sysheap, purgeable)

{

{72, 4, 93, 300},

popupTitleLeftJust, /* menu's title is left justified */

visible, /* show it */

140, /* width of the menu title */

r_dayPopUpMenu, /* resource ID of the associated

menu */

popupMenuCDEFproc + popupFixedWidth, /* type of pop-up

menu */

0, /* reference constant */

"Best Day of the Week:" /* control's title */

};

Listing 3-26 shows the extended item list resource that specifies how to process the items

in the panel. For more information about extended item list resources, see “Automating

Panel Events” beginning on page 3-25.

Listing 3-26 Sample extended item list resource

#define kCreator 'Ex#9'

...

#define kMyKindaCollectionType kCreator

#define kMyKindaCollectionTagID gxPrintingTagID +1

...

resource gxExtendedDITLType (r_MyFormatPanelResID,

 sysheap, purgeable)

{

{

RadioButtons {kMyKindaCollectionType,

 kMyKindaCollectionTagID, 0, {1,2}},

PopUp {kMyKindaCollectionType,

kMyKindaCollectionTagID, 2, 3}

};

};

This extended item list resource handles two items, a pair of radio buttons,

corresponding to the first two items in the 'DITL' resource, and a pop-up menu. All of

these items are stored in one collection item, which is identified by the

C H A P T E R 3

Page Formatting and Dialog Box Customization

Customizing QuickDraw GX Dialog Boxes 3-73

kMyKindaCollectionType collection tag and the kMyKindaCollectionTagID item

ID. The application creator is used for the collection type to distinguish it from collection

items provided by QuickDraw GX. The collection item ID is simply derived from a base;

in this case, gxPrintingTagID.

The status of the radio buttons occupy the first 2 bytes of the collection item (from offset

0). These bytes specify the status of items 1 and 2. The status of the pop-up menu is at

offset 2. It specifies the status of item 3.

Listing 3-27 shows the 'MENU' resource, which specifies the entries in the pop-up menu.

Note that the default entry is specified in the collection item.

Listing 3-27 Sample 'MENU' resource

resource 'MENU' (r_dayPopUpMenu, sysheap, purgeable) {

r_dayPopUpMenu,

textMenuProc,

allEnabled,

enabled,

"",

{

"Sunday", noIcon, noKey, noMark, plain,

"Monday", noIcon, noKey, noMark, plain,

"Tuesday", noIcon, noKey, noMark, plain,

"Wednesday", noIcon, noKey, noMark, plain,

"Thursday", noIcon, noKey, noMark, plain,

"Friday", noIcon, noKey, noMark, plain,

"Saturday", noIcon, noKey, noMark, plain

}

};

Parsing Page Ranges
You can install an override function for the gxParsePageRange message, which allows

you to check the validity of page numbers that the user selects in the Print dialog box.

You must override this message if you allow the user to specify application-specific page

ranges, such as “Chapter 5.”

Listing 3-28 shows a function, MyPrintDialog, which is called in response to the user

choosing the Print menu item from the File menu. The MyPrintDialog function installs

an override for the gxParsePageRange message, sets up a default page range, and

calls the GXPrintDialog function to display the dialog box with the default page

range. After the pages have been printed, or if an error occurred while setting up the

default page range, the override function for the gxParsePageRange message is

removed.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-74 Customizing QuickDraw GX Dialog Boxes

Listing 3-28 Installing an override function for the gxParsePageRange message

OSErr MyPrintDialog(MyDocumentPtr myDocument)

{

OSErr err;

gxDialogResult result;

gxEditMenuRecord editMenuRec;

/* Install an override function to parse page ranges. */

GXInstallApplicationOverride(myDocument->documentJob,

gxParsePageRange,

MyParsePageRangeOverride);

.

.

.

err = MySetupDefaultPageRange(myDocument); /* not shown */

nrequire(err, CouldNotConfigurePageRange);

/*

Display the Print dialog box. If there are no errors and

the user selects the “OK” button, call a printing routine

to output the pages.

*/

result = GXJobPrintDialog(myDocument->documentJob,

 &editMenuRec);

err = GXGetJobError(myDocument->documentJob);

if ((err == noErr) && (result == gxOKSelected))

err = MyPrintDocument(myDocument); /* not shown */

.

.

.

/* Remove the parse page range override function. */

CouldNotConfigurePageRange:

GXInstallApplicationOverride(myDocument->documentJob,

 gxParsePageRange, nil);

return err;

}

The MySetupDefaultPageRange function that sets up a page range is not shown. For

examples of setting up page ranges, see “Specifying Page Ranges in the Job Collection”

on page 3-33. The MyPrintDocument function that prints pages is not shown. For

information about printing pages, see the chapter “Core Printing Features” in this book.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-75

Listing 3-29 shows the override function, MyParsePageRangeOverride, which calls

another function, MyPageRangeValidityCheck, to validate the page range.

Listing 3-29 Override function for the gxParsePageRange message

OSErr MyParsePageRangeOverride(StringPtr fromString,

StringPtr toString, gxParsePageRangeResult *result)

{

/*

Determine if the "To page" and "From page" strings are

valid. If not, the MyPageRangeValidityCheck routine

returns gxRangeBadFromValue or gxRangeBadToValue.

Otherwise it will return gxRangeParsed.

*/

if (*result == gxRangeNotParsed)

*result = MyPageRangeValidityCheck(fromString, toString);

return noErr;

}

The MyPageRangeValidityCheck function is not shown. It returns gxRangeParsed

if the page range is valid, otherwise it returns gxRangeBadFromValue if the From

value is invalid or gxRangeBadToValue if the To value is invalid. For information

about parse page range constants, see “The Panel Setup Structure” on page 3-101.

Page Formatting and Dialog Box Customization Reference

This section describes the constants, data types, functions, and resources that are specific

to the page formatting and dialog box customization features of QuickDraw GX.

There are several sections that describe constants and data types. The following section,

“Constants for Loop Status Information,” describes the constants that can be used when

looping over printing-related objects. The section “Constants for Collection Item

Categories and Tag IDs” on page 3-76 describes constants for manipulating

printing-related collection objects. The section “Constants and Data Types for Job

Collection Items” on page 3-78 describes constants and data types for job collections. The

section “Constants and Data Types for Format Collection Items” on page 3-89 describes

constants and data types for format collections. The section “Constants and Data Types

for Paper-Type Collection Items” on page 3-94 describes constants and data types for

paper-type collections.

The “Functions” section describes functions for creating and manipulating format

objects, manipulating format object properties, displaying the Custom Page Setup dialog

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-76 Page Formatting and Dialog Box Customization Reference

box, obtaining information on a document’s format objects, customizing QuickDraw GX

dialog boxes, and accessing printing-related collection objects.

The “Application-Defined Functions” section describes message override functions for

customizing QuickDraw GX dialog boxes and a function for looping through

QuickDraw GX format objects associated with a particular job object.

The “Resources” section describes the panel and extended item list resources used to

implement QuickDraw GX dialog boxes.

Constants for Loop Status Information

QuickDraw GX allows you to loop through the printing-related objects associated with

another object. For example, QuickDraw GX allows you to loop through the format

objects associated with a job object.

To allow you to loop through printing-related objects, QuickDraw GX defines loop status

values in the loop status enumeration:

enum {

gxStopLooping = false,

gxKeepLooping = true

};

typedef Boolean gxLoopStatus;

Constant descriptions

gxStopLooping If returned, QuickDraw GX stops looping through the specified
printing-related objects.

gxKeepLooping If returned, QuickDraw GX keeps looping through the specified
printing-related objects.

Constants for Collection Item Categories and Tag IDs

This section describes the constants provided by QuickDraw GX to manipulate

printing-related collections. You can use the collection tag category enumeration to

determine collection item data to discard when a printer-driver switch occurs. You can

use the collection tag ID enumeration to define collection objects for use with

QuickDraw GX printing features.

Collection Item Categories

QuickDraw GX assigns collection object items to several collection item

categories. QuickDraw GX tag categories are defined in the collection tag category

enumeration, represented by gxCollectionCategory:

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-77

typedef short gxCollectionCategory;

enum {

gxNoCollectionCategory = (gxCollectionCategory) 0x0000,

gxOutputDriverCategory = (gxCollectionCategory) 0x0001,

gxFormattingDriverCategory = (gxCollectionCategory) 0x0002,

gxDriverVolatileCategory = (gxCollectionCategory) 0x0004,

gxVolatileOutputDriverCategory =

gxOutputDriverCategory + gxDriverVolatileCategory,

gxVolatileFormattingDriverCategory =

gxFormattingDriverCategory + gxDriverVolatileCategory

};

Constant descriptions

gxNoCollectionCategory
The item persists whether or not a printer-driver switch occurs or
the collection is flattened.

gxOutputDriverCategory
The item is affected by a change in the output printer driver.

gxFormattingDriverCategory
The item is affected by a change in the formatting printer driver.

gxDriverVolatileCategory
The item is affected by a change in either the output printer driver
or formatting printer driver. The item is purged when the collection
is flattened if the collectionPersistenceBit is also set.

gxVolatileOutputDriverCategory
The item is purged if the output printer driver changes.

gxVolatileFormattingDriverCategory
The item is purged if the formatting printer driver changes.

Collection Tag ID

QuickDraw GX assigns its collection objects with the same 4-byte collection tag ID.

The QuickDraw GX collection tag ID is defined in the collection tag ID enumeration:

enum { gxPrintingTagID = -28672 };

Collection tag IDs for QuickDraw GX collection objects are discussed in

“About Collection Objects,” which begins on page 3-7.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-78 Page Formatting and Dialog Box Customization Reference

Constants and Data Types for Job Collection Items

The sections that follow identify all of the collection items that QuickDraw GX provides

for the job collection object.

Print-Job Information

The collection item ID for print-job information is defined in the following enumeration:

enum { gxJobTag = 'job ' };

QuickDraw GX stores print-job information in the gxJobInfo structure:

struct gxJobInfo {

long numPages;

long priority;

long timeToPrint;

long jobTimeout;

long firstPageToPrint

short jobAlert;

Str31 appName;

Str31 documentName;

Str31 userName;

};

Field descriptions

numPages The total number of pages to print. The user specifies the page
range to print in the Print dialog box.

priority The print job’s priority. Priorities for print jobs are defined in the
print-job priorities enumeration. The user specifies the priority for a
print job in the Print Time panel.

timeToPrint The designated time to print a print job. The user specifies a
designated printing time in the Print Time panel.

jobTimeout The time to cancel the print job, in ticks. QuickDraw GX defines two
print-job cancelation times in the print-job cancelation enumeration.

firstPageToPrint
The first page to begin printing.

jobAlert When to alert the user about printing. QuickDraw GX defines print
job alerts in the print-job alert enumeration.

appName A string containing the name of the application used to create the
printable document.

documentName A string containing the name of the user’s document.

userName A string containing the name of the user associated with the
printable document.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-79

QuickDraw GX defines priorities for print jobs in the print-job priorities enumeration:

enum {

gxPrintJobUrgent = 0x00000001,

gxPrintJobAtTime = 0x00000002,

gxPrintJobASAP = 0x00000003

};

Constant descriptions

gxPrintJobUrgent
If set, QuickDraw GX designates a print job as “urgent.”

gxPrintJobAtTime
If set, QuickDraw GX designates the time to print a print job.

gxPrintJobASAP
If set, QuickDraw GX designates a print job as “as soon as possible.”

A holding bit for print-job priorities is defined in the following enumeration:

enum { gxPrintJobHoldingBit = 0x00001000 };

QuickDraw GX defines holding status for print jobs in the holding status enumeration:

enum {

gxPrintJobHolding = (gxPrintJobHoldingBit +

gxPrintJobASAP),

gxPrintJobHoldingAtTime = (gxPrintJobHoldingBit +

gxPrintJobAtTime),

gxPrintJobHoldingUrgent = (gxPrintJobHoldingBit +

gxPrintJobUrgent)

};

Constant descriptions

gxPrintJobHolding
If set, QuickDraw GX assigns a print job designated as “as soon as
possible” to a holding status.

gxPrintJobHoldingAtTime
If set, QuickDraw GX assigns a print job designated to print at a
specific time to a holding status.

gxPrintJobHoldingUrgent
If set, QuickDraw GX assigns a print job designated as “urgent” to a
holding status.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-80 Page Formatting and Dialog Box Customization Reference

QuickDraw GX defines print job alerts in the print-job alert enumeration:

enum {

gxNoPrintTimeAlert= 0,

gxAlertBefore = 1,

gxAlertAfter = 2,

gxAlertBothTimes = 3

};

Constant descriptions

gxNoPrintTimeAlert
If set, QuickDraw GX doesn’t alert the user about printing.

gxAlertBefore If set, QuickDraw GX alerts the user that printing is about to begin.

gxAlertAfter If set, QuickDraw GX alerts the user that printing has finished.

gxAlertBothTimes
If set, QuickDraw GX alerts the user when printing begins and
finishes.

QuickDraw GX defines two print-job cancelation times in the print-job cancelation

enumeration, which you could use if the user failed to respond to a condition, such as

out of paper:

enum {

gxThirtySeconds = 1800,

gxTwoMinutes = 7200

};

Constant descriptions

gxThirtySeconds
If set, QuickDraw GX cancels a print job in 30 seconds, or 1800 ticks.

gxTwoMinutes If set, QuickDraw GX cancels a print job in 2 minutes, or 7200 ticks.

Collation Information

The collection item ID for collation information is defined in the following enumeration:

enum { gxCollationTag = 'sort' };

QuickDraw GX stores collation information in the collation information structure:

struct gxCollationInfo {

Boolean collation;

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-81

Field descriptions

collation A Boolean value indicating whether the user wants to collate
document pages when printed. When the user chooses the Collate
Copies checkbox in the Print dialog box, the collation field
contains true; otherwise, the field contains false.

Copies Information

The collection item ID for copies information is defined in the following enumeration:

enum { gxCopiesTag = 'copy' };

QuickDraw GX stores copies information in the copies information structure:

struct gxCopiesInfo {

long copies;

};

Field descriptions

copies The number of copies of a document to print. A user specifies the
number of copies to print in the Print dialog box.

The Print dialog box is discussed in the chapter “Core Printing Features” in this book.

Page-Range Information

The collection item ID for page-range information is defined in the following

enumeration:

enum { gxPageRangeTag = 'rang' };

QuickDraw GX stores page-range information in the gxPageRangeInfo structure:

struct gxPageRangeInfo {

gxSimplePageRangeInfo simpleRange;

Str31 fromString;

Str31 toString;

long minFromPage;

long maxToPage;

char replaceString[1];

};

Field descriptions

simpleRange A string containing the page-range information structure.

fromString A string containing the beginning of a user-specified custom page
range.

toString A string containing the end of a user-specified custom page range.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-82 Page Formatting and Dialog Box Customization Reference

minFromPage The minimum default page range.

maxToPage The maximum default page range.

replaceString A string containing the user-specified page range from the Print
dialog box. Initially, the string is one character long.

QuickDraw GX stores simple page-range information in the gxSimplePageRangeInfo

structure:

struct gxSimplePageRangeInfo {

char optionChosen;

Boolean printAll;

long fromPage;

long toPage;

};

Field descriptions

optionChosen A character that contains the specific page-range option (either the
default page range, replacement page range, or customized page
range).

printAll A Boolean value indicating whether the user wants to print all of
the pages in a single document. When the user chooses the All radio
button in the Print dialog box, the printAll field contains true;
otherwise, the field contains false.

fromPage The first page in the page range to print. The user specifies a page
range to print in the Print dialog box.

toPage The last page in the page range to print. The user specifies a page
range to print in the Print dialog box.

QuickDraw GX defines page-range options in the following enumeration:

enum {

gxDefaultPageRange = (char) 0,

gxReplacePageRange = (char) 1,

gxCustomizePageRange = (char) 2

};

Constant descriptions

gxDefaultPageRange
If set, QuickDraw GX uses a standard numeric page range; for
example, the From field of the Print dialog box contains 1 and the
To field contains 4.

gxReplacePageRange
If set, QuickDraw GX uses a single editable text field that specifies a
page range; for example, a field with “Chapter 5” as the contents.

gxCustomizePageRange
If set, QuickDraw GX allows alphanumeric values for the From and
To fields in the Print dialog box. You are responsible for validation
of these values.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-83

Quality Information

The collection item ID for quality information is defined in the following enumeration:

enum { gxQualityTag = 'qual' };

QuickDraw GX stores quality information in the gxQualityInfo structure:

struct gxQualityInfo {

Boolean disableQuality;

short defaultQuality;

short currentQuality;

short qualityCount;

char qualityNames[1];

};

Field descriptions

disableQuality
A Boolean value indicating whether to disable standard quality
controls.

defaultQuality
The index of the string that represents the default quality.

currentQuality
The index of the string that represents the current quality.

qualityCount The number of quality menu items displayed in the Quality pop-up
menu in the Print dialog box.

qualityNames A list of packed strings (1-byte string length preceding the actual
string) that contain the menu item names (such as “Best”) displayed
in the Quality pop-up menu in the Print dialog box.

File-Destination Information

The collection item ID for file-destination information is defined in the following

enumeration:

enum { gxFileDestinationTag = 'dest' };

QuickDraw GX stores file-destination information in the file-destination information

structure:

struct gxFileDestinationInfo {

Boolean toFile;

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-84 Page Formatting and Dialog Box Customization Reference

Field descriptions

toFile A Boolean value indicating whether the user wants to print a
document to a file. When the user chooses File in the Destination
pop-up menu in the Print dialog box, the toFile field contains
true. When the user chooses Printer, the toFile field contains
false.

File-Location Information

The collection item ID for file-location information is defined in the following

enumeration:

enum { gxFileLocationTag = 'floc' }

QuickDraw GX stores file-location information in the gxFileLocationInfo structure:

struct gxFileLocationInfo {

FSSpec fileSpec;

};

Field descriptions

fileSpec A file system specification containing the location of the file in
which to print the user’s document.

File-Format Information

The collection item ID for file-format information is defined in the following

enumeration:

enum { gxFileFormatTag = 'ffmt' };

QuickDraw GX stores file-format information in the gxFileFormatInfo structure:

struct gxFileFormatInfo {

Str31 fileFormatName;

};

Field descriptions

fileFormatName
A string containing the name of the format in which to print the
user’s document.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-85

File-Fonts Information

The collection item ID for file-fonts information is defined in the following enumeration:

enum { gxFileFontsTag = 'incf' };

QuickDraw GX stores file-fonts information in the gxFileFontsInfo structure:

struct gxFileFontsInfo {

char includeFonts;

};

Field descriptions

includeFonts A character that specifies the level of fonts to include when a user
prints to a file.

The level of fonts to include are defined by the following enummeration:

enum {

gxIncludeNoFonts = (char) 1,

gxIncludeAllFonts = (char) 2,

gxIncludeNonStandardFonts = (char) 3

};

Constant descriptions

gxIncludeNoFonts
Do not include any fonts.

gxIncludeAllFonts
Include all fonts.

gxIncludeNonStandardFonts
Do not include standard fonts.

Paper-Feed Information

The collection item ID for paper-feed information is defined in the following

enumeration:

enum { gxPaperFeedTag = 'feed' };

QuickDraw GX stores paper-feed information in the gxPaperFeedInfo structure:

struct gxPaperFeedInfo {

Boolean autoFeed;

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-86 Page Formatting and Dialog Box Customization Reference

Field descriptions

autoFeed A Boolean value indicating whether the user wants to use
automatic or manual paper feed. When the user chooses the
Automatic radio button in the Print dialog box, the autoFeed field
contains true. When the user chooses the Manual radio button in
the Print dialog box, the autoFeed field contains false.

Manual-Feed Information

The collection item ID for manual-feed information is defined in the following

enumeration:

enum { gxManualFeedTag = 'manf' };

QuickDraw GX stores manual-feed information in the gxManualFeedInfo structure:

struct gxManualFeedInfo {

long numPaperTypeNames;

Str31 paperTypeNames[1];

};

Field descriptions

numPaperTypeName
The number of paper-type objects to manually feed.

paperTypeNames
A string containing the names of paper-type objects to manually
feed.

Standard Mapping Information

The collection item ID for standard mapping information is defined in the following

enumeration:

enum { gxNormalMappingTag = 'nmap' };

QuickDraw GX stores standard mapping information in the gxNormalMappingInfo

information structure:

struct gxNormalMappingInfo {

Boolean normalPaperMapping;

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-87

Field descriptions

normalPaperMapping
A Boolean value indicating whether the user wants standard or
special paper mapping to print a document. When the user chooses
to print by specifying input-tray paper matching in the Paper Match
panel, the normalPaperMapping field is true. When the user
chooses to ignore paper matching and redirect the document, the
normalPaperMapping field is false.

Special Mapping Information

The collection item ID for special mapping information is defined in the following

enumeration:

enum { gxSpecialMappingTag = 'smap' };

QuickDraw GX stores special mapping information in the gxSpecialMappingInfo

structure:

struct gxSpecialMappingInfo {

char specialMapping;

};

Field descriptions

specialMapping
A character which specifies how to handle paper matching if the
user chooses to ignore paper matching and redirect the document.

The following enummeration specifies the possible paper-mapping options:

enum {

gxRedirectPages = (char) 1,

gxScalePages = (char) 2,

gxTilePages = (char) 3

};

Constant descriptions

gxRedirectPages
If set, QuickDraw GX crops the pages of a redirected document.

gxScalePages If set, QuickDraw GX scales the pages of a document to fit the
physical page size.

gxTilePages If set, QuickDraw GX tiles the pages of a document.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-88 Page Formatting and Dialog Box Customization Reference

Tray-Mapping Information

The collection item ID for tray-mapping information is defined in the following

enumeration:

enum { gxTrayMappingTag = 'tmap' };

The tray-mapping information is defined in a gxTrayMappingInfo structure:

struct gxTrayMappingInfo {

gxTrayIndex mapPaperToTray;

};

The tray index type is used to designate a specific paper tray on a printer:

typedef long gxTrayIndex;

Print-Panel Information

The collection item ID for print-panel information is defined in the following

enumeration:

enum { gxPrintPanelTag = 'ppan' };

QuickDraw GX stores print-panel information in the gxPrintPanelInfo structure:

struct gxPrintPanelInfo {

Str31 startPanelName;

};

Field descriptions

startPanelName
A string containing the name of the first panel to display in the
Print dialog box.

Format-Panel Information

The collection item ID for format-panel information is defined in the following

enumeration:

enum { gxFormatPanelTag = 'fpan' };

QuickDraw GX stores format-panel information in the gxFormatPanelInfo structure:

struct gxFormatPanelInfo {

Str31 startPanelName;

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-89

Field descriptions

startPanelName
A string containing the name of the first panel to display in the Page
Setup dialog box.

Paper-Mapping Information

The collection item ID for paper-mapping information is defined in the following

enumeration:

enum { gxPaperMappingTag = 'pmap' };

This collection item contains the flattened paper type that was selected for redirection.

Translated-Document Information

The collection item ID for translated-document information is defined in the following

enumeration:

enum { gxTranslatedDocumentTag = 'trns' };

QuickDraw GX stores translated-document information in the

gxTranslatedDocumentInfo structure:

struct gxTranslatedDocumentInfo {

long translatorInfo;

};

Field descriptions

translatorInfo A value that specifies translation information for the document.

Constants and Data Types for Format Collection Items

The sections that follow identify all of the collection items that QuickDraw GX provides

for the format collection object.

Orientation Information

The collection item ID for orientation information is defined in the following

enumeration:

enum { gxOrientationTag = 'layo' };

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-90 Page Formatting and Dialog Box Customization Reference

QuickDraw GX stores orientation information in the gxOrientationInfo structure:

struct gxOrientationInfo {

char orientation;

} ;

Field descriptions

orientation A character that contains the orientation information. For example,
a user may choose to print a document in portrait, landscape, or
rotated landscape orientation.

QuickDraw GX defines orientation options in the following enumeration:

enum {

gxPortraitLayout = (char) 0,

gxLandscapeLayout = (char) 1,

gxRotatedPortraitLayout = (char) 2,

gxRotatedLandscapeLayout = (char) 3

};

Constant descriptions

gxPortraitLayout
If set, QuickDraw GX uses portrait orientation for the user-specified
page.

gxLandscapeLayout
If set, QuickDraw GX uses landscape orientation for the
user-specified page.

gxRotatedPortraitLayout
If set, QuickDraw GX uses rotated portrait orientation for the page.

gxRotatedLandscapeLayout
If set, QuickDraw GX uses rotated landscape orientation for the
user-specified page.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-91

Scaling Information

The collection item ID for scaling information is defined in the scaling information

enumeration:

enum { gxScalingTag = 'scal' };

QuickDraw GX stores scaling information in the gxScalingInfo structure:

struct gxScalingInfo{

Fixed horizontalScaleFactor;

Fixed verticalScaleFactor;

short minScaling;

short maxScaling;

};

Field descriptions

horizontalScaleFactor
The current horizontal scaling factor.

verticalScaleFactor
The current vertical scaling factor.

minScaling The minimum current scaling factor.

maxScaling The maximum current scaling factor.

Direct-Mode Information

The collection item ID for direct-mode information is defined in the following

enumeration:

enum { gxDirectModeTag = 'dirm' };

QuickDraw GX stores direct-mode information in the gxDirectModeInfo structure:

struct gxDirectModeInfo {

Boolean directModeOn;

};

Field descriptions

directModeOn A Boolean value indicating whether the user wants to print using
direct mode. When the user chooses the Direct checkbox in the Page
Setup dialog box, the directModeOn field contains true;
otherwise, this field contains false.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-92 Page Formatting and Dialog Box Customization Reference

Format-Halftone Information

The collection item ID for halftone information is defined in the halftone information

enumeration:

enum { gxFormatHalftoneTag = 'half' };

QuickDraw GX stores halftone information in the gxFormatHalftoneInfo structure:

struct gxFormatHalftoneInfo {

long numHalftones;

gxHalftone halftones[1];

};

Field descriptions

numHalftones The number of halftones in the structure.

halftones The halftones to use when rendering a page with this format.

Page-Inversion Information

The collection item ID for page-inversion information is defined in the following

enumeration:

enum { gxInvertPageTag = 'invp' };

QuickDraw GX stores page-inversion information in the gxInvertPageInfo structure:

struct gxInvertPageInfo {

Boolean invert;

};

Field descriptions

invert The user-specified page-inversion information, which indicates
whether a user chooses to invert a page before printing. If true, the
page is inverted; otherwise, it is not inverted.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-93

Horizontal Page-Flip Information

The collection item ID for horizontal page-flip information is defined in the following

enumeration:

enum { gxFlipPageHorizontalTag = 'flph' };

QuickDraw GX stores horizontal page-flip information in the

gxFlipPageHorizontalInfo structure:

struct gxFlipPageHorizontalInfo {

Boolean flipHorizontal;

};

Field descriptions

flipHorizontal
The user-specified horizontal page-flip information. If true, a user
chooses to horizontally flip the x coordinate on a page before
printing.

Vertical Page-Flip Information

The collection item ID for vertical page-flip information is defined in the following

enumeration:

enum { gxFlipPageVerticalTag = 'flpv' };

QuickDraw GX stores vertical page-flip information in the gxFlipPageVerticalInfo

structure:

struct gxFlipPageVerticalInfo {

Boolean flipVertical;

};

Field descriptions

flipVertical The user-specified vertical page-flip information. If true, a user
chooses to vertically flip the y coordinate on a page before printing.

Precise-Bitmap Information

The collection item ID for precise-bitmap information is defined in the following

enumeration:

enum { gxPreciseBitmapsTag = 'pbmp' };

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-94 Page Formatting and Dialog Box Customization Reference

QuickDraw GX stores page bitmap information in the gxPreciseBitmapInfo

structure:

struct gxPreciseBitmapInfo {

Boolean preciseBitmaps;

};

Field descriptions

preciseBitmaps
The user-specified precise-bitmap information. If true, a user
chooses to scale a page by 96%.

Paper-Type Lock Information

The collection item ID for lock information is defined in the following enumeration:

enum { gxPaperTypeLockTag = 'ptlk' };

QuickDraw GX stores paper-type object lock information in the

gxPaperTypeLockInfo structure:

struct gxPaperTypeLockInfo {

Boolean paperTypeLocked;

};

Field descriptions

paperTypeLocked
A Boolean value indicating whether a paper-type object is locked.

Constants and Data Types for Paper-Type Collection Items

The sections that follow identify all of the collection items QuickDraw GX provides for

the paper-type collection object.

Base Information

The collection item ID for base information is defined in the following enumeration:

enum { gxBaseTag = 'base' };

QuickDraw GX stores base information in the gxBaseInfo structure:

struct gxBaseInfo {

long baseType;

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-95

Field descriptions

baseType The user-specified base information, which indicates whether the
source of the paper is unknown, US Letter, US Legal, A4, B5, or
tabloid.

QuickDraw GX defines paper-type object base types in the following enumeration:

enum {

gxUnknownBase = 0,

gxUsLetterBase = 1,

gxUsLegalBase = 2,

gxA4LetterBase = 3,

gxB5LetterBase = 4,

gxTabloidBase = 5

};

Constant descriptions

gxUnknownBase If set, the base type is unknown.

gxUsLetterBase
If set, QuickDraw GX uses a US Letter base type.

gxUsLegalBase If set, QuickDraw GX uses a US Legal base type.

gxA4LetterBase
If set, QuickDraw GX uses an A4 base type.

gxB5LetterBase
If set, QuickDraw GX uses a B5 base type.

gxTabloidBase If set, QuickDraw GX uses a tabloid base type.

Creator Information

The collection item ID for creator information is defined in the following enumeration:

enum { gxCreatorTag = 'crea' };

QuickDraw GX stores paper-type object creator information in the gxCreatorInfo

structure:

struct gxCreatorInfo {

OSType creator;

} ;

Field descriptions

creator An operating-system type that contains the creator type of a
paper-type object. You specify a system paper-type object creator as
'sypt', and you specify a user paper-type object creator as
'uspt'.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-96 Page Formatting and Dialog Box Customization Reference

Applications do not need to set this collection item. Printer drivers that create paper-type

objects should use the creator type that identifies the printer driver. For example, a

printer driver for the LaserWriter SC should specify a paper-type object creator as

'lwsc'.

QuickDraw GX defines paper-type object creator types in the following enumeration:

enum {

gxSysPaperType = 'sypt',

gxUserPaperType = 'uspt'

};

Constant descriptions

gxSysPaperType If set, QuickDraw GX uses a system-defined paper-type object.

gxUserPaperType
If set, QuickDraw GX uses a user-defined paper-type object.

Units Information

The collection item ID for units information is defined in the following enumeration:

enum { gxUnitsTag = 'unit' };

QuickDraw GX stores units information in the gxUnitsInfo structure:

struct gxUnitsInfo {

char units;

} ;

Field descriptions

units A character that contains the units for a paper-type object. Units can
be specified in picas, millimeters, and inches.

QuickDraw GX defines paper-type object units in the following enumeration:

enum {

gxPicas = (char) 0,

gxMms = (char) 1,

gxInches = (char) 2

};

Constant descriptions

gxPicas If set, QuickDraw GX uses picas to define paper-type object units.

gxMms If set, QuickDraw GX uses millimeters to define paper-type object
units.

gxInches If set, QuickDraw GX uses inches to define paper-type object units.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-97

Flags Information

The collection item ID for flags information is defined in the following enumeration:

enum { gxFlagsTag = 'flag' };

QuickDraw GX stores flags information in the following structure:

struct gxFlagsInfo{

long flags;

};

Field descriptions

flags The flags information for a paper-type object. A flag is a bit position
that indicates the system software version used to create a
paper-type object.

QuickDraw GX defines paper-type object flags in the following enumeration:

enum {

gxOldPaperTypeFlag = 0x00800000,

gxNewPaperTypeFlag = 0x00400000,

gxOldAndNewPaperTypeFlag= 0x00C00000,

gxDefaultPaperTypeFlag = 0x00100000,

};

Constant descriptions

gxOldPaperTypeFlag
A paper type used only with applications that do not support
QuickDraw GX printing.

gxNewPaperTypeFlag
A paper type used only with applications that do support
QuickDraw GX printing.

gxOldAndNewPaperTypeFlag
A paper type used with applications that support QuickDraw GX
printing and with those that do not.

gxDefaultPaperTypeFlag
The default paper type.

Comment Information

The collection item ID for comment information is defined in the following enumeration:

enum { gxCommentTag = 'cmnt' };

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-98 Page Formatting and Dialog Box Customization Reference

QuickDraw GX stores comment information in the gxCommentInfo structure:

struct gxCommentInfo {

Str255 comment;

};

Field descriptions

comment A string containing an application-specified comment to associate
with a paper-type object.

Panel-Related Constants and Data Types

The following sections describe the constants and data types related to panels.

The Panel Information Structure

The panel information structure, of data type gxPanelInfoRecord, provides

information to the panel about the current dialog box and panel event. This structure is

used with the GXHandlePanelEvent and GXFilterPanelEvent override functions,

whose descriptions begin on page 3-123.

struct gxPanelInfoRecord {

gxPanelEvent panelEvt;

short panelResId;

DialogPtr pDlg;

EventRecord *theEvent;

short itemHit;

short itemCount;

short evtAction;

short errorStringId;

gxFormat theFormat;

void *refCon;

};

Field descriptions

panelEvt The event to filter or handle.

panelResId The resource ID of the current panel (gxPrintPanelType)
resource.

pDlg A pointer to the dialog box structure.

theEvent A pointer to the event that occurred.

itemHit The actual item number where the event occurred, using the
item-numbering scheme of the Dialog Manager.

itemCount The item count before your panel’s items in the dialog box.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-99

evtAction The action that results once this event is processed. This value is one
of the constants defined in the panel event actions enumeration,
which is described on page 3-101. This field is only meaningful for
filtering, and is used for parsing.

errorStringId The ID of the 'STR ' resource to put in the error alert. A value of 0
in this field indicates that there is no error string to display.

theFormat The current format. This is only meaningful in a Custom Page Setup
dialog box.

refCon A reference constant for use by the generator of the panel.

Panel Events

The panel event enumeration defines the possible event types that can occur in a panel.

This data type is used with the panel information structure, which is described in the

previous section.

enum {

gxPanelNoEvt = (gxPanelEvent) 0,

gxPanelOpenEvt = (gxPanelEvent) 1,

gxPanelCloseEvt = (gxPanelEvent) 2,

gxPanelHitEvt = (gxPanelEvent) 3,

gxPanelActivateEvt = (gxPanelEvent) 4,

gxPanelDeactivateEvt = (gxPanelEvent) 5,

gxPanelIconFocusEvt = (gxPanelEvent) 6,

gxPanelPanelFocusEvt = (gxPanelEvent) 7,

gxPanelFilterEvt = (gxPanelEvent) 8,

gxPanelCancelEvt = (gxPanelEvent) 9,

gxPanelConfirmEvt = (gxPanelEvent) 10,

gxPanelDialogEvt = (gxPanelEvent) 11,

gxPanelOtherEvt = (gxPanelEvent) 12,

gxUserWillConfirmEvt = (gxPanelEvent) 13

};

typedef long gxPanelEvent;

Constant descriptions

gxPanelNoEvt No event has occurred.

gxPanelOpenEvt
The panel is about to open. It needs to be initialized and drawn.

gxPanelCloseEvt
The panel is about to close.

gxPanelHitEvt The user has selected an item in the panel.

gxPanelActivateEvt
The dialog box in which the panel resides has just been activated.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-100 Page Formatting and Dialog Box Customization Reference

gxPanelDeactivateEvt
The dialog box in which the panel resides is about to be deactivated.

gxPanelIconFocusEvt
The focus has changed from the panel to the icon list.

gxPanelPanelFocusEvt
The focus has changed from the icon list to the panel.

gxPanelFilterEvt
The panel event needs to be filtered.

gxPanelCancelEvt
The user has selected the Cancel button in the dialog box.

gxPanelConfirmEvt
The user has selected the OK button in the dialog box.

gxPanelDialogEvt
An event has occurred in the panel that is going to be handled by a
dialog box handler such as the application, a printing extension, a
printer driver, or the Macintosh system software.

gxPanelOtherEvt
A different kind of event, such as an operating-system event, has
occurred in the panel.

gxPanelUserWillConfirmEvt
The user has selected the confirm button, which means that it is
time to parse panel interdependencies.

Panel Responses

A handler of a panel in a dialog box (including applications, printing extensions, printer

drivers, and Macintosh system software) can return any value of type OSErr as the

result of handling the panel. In addition, a panel handler can return an event of type

gxPanelResult, as shown here. This data type is used with the

GXHandlePanelEvent override function, which is described on page 3-123.

enum {

gxPanelNoResult = 0,

gxPanelCancelConfirmation = 1

};

typedef long gxPanelResult;

Constant descriptions

gxPanelNoResult
The result field does not currently have any meaning.

gxPanelCancelConfirmation
This result is only valid if the panel event (as described in the
previous section) was of type gxPanelUserWillConfirmEvt.
After the user confirms the panel, if the panel handler discovers that
the user entered an inappropriate value, the panel handler alerts the
user to the problem and generates this response, which tells

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-101

QuickDraw GX to not confirm the dialog box. This allows the user
the opportunity to fix the problem.

Panel Event Actions

The panel event actions enumeration defines the constants used in the evtAction field

of the panel information structure, which is described on page 3-98. Each value defines

what action takes place after an event is processed.

enum {

gxOtherAction = 0,

gxClosePanelAction = 1,

gxCancelDialogAction = 2,

gxConfirmDialogAction= 3

};

Constant descriptions

gxOtherAction The current item does not change after processing this event.

gxClosePanelAction
The panel is closed after this event is processed.

gxCancelDialogAction
The dialog box is canceled after this event is processed.

gxConfirmDialogAction
The dialog box is confirmed after this event is processed.

The Panel Setup Structure

The panel setup structure, of data type gxPanelSetupRecord, is passed to the

GXSetupDialogPanel function when the user displays a dialog box.

struct gxPanelSetupRecord {

 gxPrintingPanelKind panelKind;

 short panelResId;

 short resourceRefNum;

 void *refCon;

};

Field descriptions

panelKind The kind of program that is using this panel. This value is one of the
constants defined in the printing panel kinds enumeration, which is
described in the next section.

panelResId The resource ID of the panel ('ppnl') resource for the dialog box
panel.

resourceRefNum
The resource file reference number for the panel.

refCon A reference constant for use by the creator of the panel.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-102 Page Formatting and Dialog Box Customization Reference

Printing Panel Kinds

The printing panel kinds enumeration provides constants for use in the panelKind field

of the panel setup structure, which is described in the previous section.

enum {

 gxApplicationPanel= (gxPrintingPanelKind) 0,

 gxExtensionPanel = (gxPrintingPanelKind) 1,

 gxDriverPanel = (gxPrintingPanelKind) 2

};

typedef long gxPrintingPanelKind;

Constant descriptions

gxApplicationPanel
A panel created for an application.

gxExtensionPanel
A panel created for a printing extension.

gxDriverPanel A panel created for a printer driver.

Parse Range Results

The parse range results enumeration provides the constants that are used to parse dialog

box item responses.

enum {

gxRangeNotParsed = (gxParsePageRangeResult) 0,

gxRangeParsed = (gxParsePageRangeResult) 1,

gxRangeBadFromValue = (gxParsePageRangeResult) 2,

gxRangeBadToValue = (gxParsePageRangeResult) 3

};

typedef long gxParsePageRangeResult;

Constant descriptions

gxRangeNotParsed
QuickDraw GX has not yet parsed a page range in the string.

gxRangeParsed QuickDraw GX has successfully parsed a page range in the string.

gxRangeBadFromValue
QuickDraw GX has encountered an invalid value in the “from
page” string during the parse.

gxRangeBadToValue
QuickDraw GX has encountered an invalid value in the “to page”
string during the parse.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-103

Functions

This section describes the functions for creating and manipulating format objects,

manipulating format object properties, displaying the Custom Page Setup dialog box,

obtaining information on a document’s format objects, customizing QuickDraw GX

dialog boxes, and accessing printing-related collection objects.

Included with each function description is a list of specific result codes returned by

QuickDraw GX. In addition to these result codes, you may also receive file-system,

memory, and resource errors. For a complete listing of specific file-system, memory, and

resource errors, see Inside Macintosh: C Summary or Inside Macintosh: Pascal Summary.

You should note that not all possible result codes for a particular function are included in

function descriptions within this section. For example, the Message Manager, described

in Inside Macintosh: QuickDraw GX Environment and Utilities, allows QuickDraw GX

functions to send specific messages to your application. These messages can also

generate errors.

IMPORTANT

All printing functions in QuickDraw GX, with the exception of
the GXGetJobError function, may move Macintosh memory. The
GXGetJobError function, however, relies on data that may also move.
Therefore, your application should never call a QuickDraw GX
printing-related function at interrupt time. ▲

Creating and Manipulating Format Objects

When a user creates a new document, clicks on a page, and chooses the Format button in

the Custom Page Setup dialog box, you use the GXNewFormat function to create a new

format object.

When a user wants to modify a format for a single page that is also shared by other

pages in the same document, the user wants to return to the default format, or the user

decides not to save a format, you use the GXDisposeFormat function to dispose of the

format object, which decrements its owner count.

When a user wants to disassociate a format from a particular document and associate it

with another document, you use the GXCopyFormat function to copy a format object.

When a user wants to share a format, created using the Custom Page Setup dialog box,

with an additional page in the same document, you use the GXCloneFormat function to

clone a format object. This function increments the owner count.

You can use the GXCountJobFormats function to obtain the number of format objects

in a particular document, and you can use the GXForEachJobFormatDo function to

make changes to each format object associated with a printable document. You can use

the GXCountFormatOwners function to determine the number of references to a format

object.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-104 Page Formatting and Dialog Box Customization Reference

GXNewFormat

You can use the GXNewFormat function to create a format object.

gxFormat GXNewFormat (gxJob aJob);

aJob A reference to the job object to be associated with the new format object.

function result A reference to a format object.

DESCRIPTION

The GXNewFormat function creates a new format object and copies the default format

for the specified job object. The GXNewFormat function sets the owner count to 1. You

need to call this function each time a user creates a new format for a page in a document.

RESULT CODES

SEE ALSO

Listing 3-9 on page 3-42 shows how to use the GXNewFormat function to create a format

object.

To dispose of a format object, see the description of the GXDisposeFormat function in

the next section.

GXDisposeFormat

You can use the GXDisposeFormat function to dispose of a format object.

void GXDisposeFormat (gxFormat aFormat);

aFormat A reference to the format object whose owner count you want to
decrement.

DESCRIPTION

You use the GXDisposeFormat function when you no longer need the format object.

The function decrements the format’s owner count. When the owner count reaches 0, the

format object is deleted.

gxSegmentLoadFailedErr A required code segment for QuickDraw GX
printing features failed to load due to low memory
or disk errors.

gxPaperTypeNotFound The default paper-type object cannot be located.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-105

SPECIAL CONSIDERATIONS

You should not call this function for the default format object unless you have cloned it.

RESULT CODES

SEE ALSO

Listing 3-9 on page 3-42 shows how to use the GXDisposeFormat function to dispose

of a format object.

GXCopyFormat

You can use the GXCopyFormat function to create a copy of a format object.

gxFormat GXCopyFormat (gxFormat srcFormat, gxFormat dstFormat);

srcFormat A reference to the source format object to copy.

dstFormat A reference to the destination format object.

function result A reference to a format object.

DESCRIPTION

The GXCopyFormat function copies the properties from the source format object into

the destination object and returns a reference to the destination format object. If you

specify nil for the dstFormat parameter, QuickDraw GX creates a format object to

receive the properties.

RESULT CODES

SEE ALSO

Listing 3-14 on page 3-56 shows how to use the GXCopyFormat function to copy a

format object’s storage.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaperTypeNotFound The paper-type object cannot be located.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-106 Page Formatting and Dialog Box Customization Reference

GXCloneFormat

You can use the GXCloneFormat function to increment the owner count of a format

object by 1.

gxFormat GXCloneFormat (gxFormat aFormat);

aFormat A reference to the format object you wish to clone.

function result A reference to a format object.

DESCRIPTION

When a user wants to share a format with another page in the same document, you use

the GXCloneFormat function to increment the owner count of a format object by 1,

which prevents it from being deleted if it is disposed of when the other page no longer

needs the format.

You can use the GXCountFormatOwners function to obtain the current owner count of

a format object.

RESULT CODES

SEE ALSO

Listing 3-10 on page 3-46 shows how to use the GXCloneFormat function to increment

the owner count of a format object by 1.

The GXNewFormat function, which creates a new format object with an owner count

of 1, is described on page 3-104.

The GXDisposeFormat function for decrementing the owner count of a format object

by 1 is described on page 3-104.

The GXCountFormatOwners function for obtaining the current owner count of a format

object is described on page 3-107.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-107

GXCountJobFormats

You can use the GXCountJobFormats function to obtain the number of format objects

in a job object.

long GXCountJobFormats (gxJob aJob);

aJob A reference to the job object in which to count the format objects.

function result The number of format objects for the job object.

DESCRIPTION

The GXCountJobFormats function determines the number of format objects associated

with a particular job object and returns 1 if the default format is the only format object

associated with a job object. A job object may contain any number of format objects.

RESULT CODES

GXCountFormatOwners

You can use the GXCountFormatOwners function to determine the owner count of a

format object.

long GXCountFormatOwners (gxFormat aFormat);

aFormat A reference to the format object in which to obtain the owner count.

function result The owner count.

DESCRIPTION

The GXCountFormatOwners function returns the current number of references to the

format object specified by the aFormat parameter. The GXNewFormat function sets the

owner count to 1. The GXCloneFormat function increments the owner count of a format

object by 1, and the GXDisposeFormat function decrements the owner count by 1.

When the owner count reaches 0, QuickDraw GX disposes of the format object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-108 Page Formatting and Dialog Box Customization Reference

RESULT CODES

SEE ALSO

The GXNewFormat function, which creates a new format object with an owner count

of 1, is described on page 3-104.

The GXCloneFormat function, which increments the owner count of a format object

by 1, is described on page 3-106.

The GXDisposeFormat function for decrementing the owner count of a format object

by 1 is described on page 3-104.

GXForEachJobFormatDo

You can use the GXForEachJobFormatDo function to manipulate each format object in

a particular job object.

void GXForEachJobFormatDo (gxJob aJob, gxFormatProc aFormatProc,

void *refCon);

aJob A reference to the job object associated with a particular format object.

aFormatProc
A pointer to the function to call for each format object in a job object.

refCon The reference constant passed to the function.

DESCRIPTION

The GXForEachJobFormatDo function calls the application-defined function specified

in the aFormatProc parameter for each format object associated with the job object

specified in the aJob parameter. The GXForEachJobFormatDo function terminates

when the application-defined function returns gxStopLooping or all format objects

associated with the job object have been processed. The first format object to be

processed is the default format.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-109

RESULT CODES

SEE ALSO

Listing 3-17 on page 3-60 shows how to use the GXForEachJobFormatDo function to

access a format object function for each format object in a particular job object.

For information about setting up the function that is called each time through the loop,

see “Looping Through Format Objects” on page 3-126.

Manipulating Format Object Properties

You use the GXGetFormatMapping function to obtain a format object’s mapping.

You use the GXGetFormatPaperType function to obtain a format object’s paper-type

object.

To retrieve the form and mask shapes for a particular format object, you use the

GXGetFormatForm function. To associate a form and its mask shape with a format

object, you use the GXSetFormatForm function.

You call the GXChangedFormat function each time you change a format collection

associated with a format object.

GXGetFormatMapping

You can use the GXGetFormatMapping function to obtain the mapping for a format

object.

void GXGetFormatMapping (gxFormat aFormat, gxMapping *aMapping);

aFormat A reference to the format object for which to obtain the mapping.

aMapping On return, the mapping for a format object.

function result None.

DESCRIPTION

The GXGetFormatMapping function returns a mapping for a format object that is a

mathematical representation of the format object’s scaling and orientation settings.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-110 Page Formatting and Dialog Box Customization Reference

RESULT CODES

SEE ALSO

Listing 3-15 on page 3-57 shows how to use the GXGetFormatMapping function.

GXGetFormatPaperType

You can use the GXGetFormatPaperType function to obtain the paper-type object

referenced by a format object.

gxPaperType GXGetFormatPaperType (gxFormat aFormat);

aFormat A reference to the format object for which to obtain the paper-type object.

function result A reference to a paper-type object.

DESCRIPTION

The GXGetFormatPaperType function returns a reference to a paper-type object as its

function result.

RESULT CODES

SEE ALSO

Listing 3-16 on page 3-59 shows an example that uses the GXGetFormatPaperType

function.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaperTypeNotFound The paper-type object cannot be located.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-111

GXGetFormatForm

You can use the GXGetFormatForm function to retrieve the form and mask shapes for a

particular format object.

gxShape GXGetFormatForm (gxFormat aFormat, gxShape *mask);

aFormat A reference to the format object associated with the form and mask
shapes.

mask On return, the mask assigned to a format object.

function result A shape that represents the form.

DESCRIPTION

To retrieve the form and mask shapes for a particular format object, you use the

GXGetFormatForm function. To replace any form previously associated with a

particular format object, you use the GXSetFormatForm function. Picture shapes used

by the form are flattened to disk with the format object during spooling.

RESULT CODES

SEE ALSO

To associate a form with a format object, see the description of the GXSetFormatForm

function in the next section.

GXSetFormatForm

You can use the GXSetFormatForm function to associate the form and mask shapes

with a specific format object.

void GXSetFormatForm (gxFormat aFormat, gxShape form,

gxShape mask);

aFormat A reference to the format object in which to associate the form and mask
shapes.

form A reference to a picture shape that specifies the form to assign to a format
object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-112 Page Formatting and Dialog Box Customization Reference

mask A reference to a picture shape that specifies the mask to assign to a format
object.

DESCRIPTION

The GXSetFormatForm function replaces any form previously associated with a

particular format object. It increments the owner counts of the new picture shapes (by

calling the GXCloneShape function) and decrements the owner counts of the old picture

shapes (by calling the GXDisposeShape function).

You may set either the form parameter or the mask parameter to nil.

Picture shapes are flattened to disk with the format object during spooling. To retrieve

the form and mask shapes for a particular format object, you use the

GXGetFormatForm function.

RESULT CODES

SEE ALSO

Listing 3-12 on page 3-51 shows how to use the GXSetFormatForm function to associate

the form and mask shapes with a specific format object.

To obtain the form shape associated with a format object, see the description of the

GXGetFormatForm function in the previous section.

GXChangedFormat

You can use the GXChangedFormat function each time you change a format without

directly calling QuickDraw GX.

void GXChangedFormat (gxFormat aFormat);

aFormat A reference to the format object which you are changing.

DESCRIPTION

You need to call the GXChangedFormat function each time you change a format object

indirectly. For example, you should call this function when you modify a format

collection.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-113

RESULT CODES

Displaying the Custom Page Setup Dialog Box

To allow a user to change a format object’s settings, you need to display the Custom

Page Setup dialog box. You use the GXFormatDialog function to display the

Custom Page Setup dialog box on the user’s screen.

GXFormatDialog

You can use the GXFormatDialog function to display the Custom Page Setup dialog

box when the user chooses the Custom Page Setup menu item from the File menu.

gxDialogResult GXFormatDialog (gxFormat aFormat,

gxEditMenuRecord *anEditMenuRecord,

StringPtr title);

aFormat A reference to the format object that specifies the values to display in the
dialog box.

title The title of the dialog box.

anEditMenuRecord
A structure for your application’s Edit menu and its menu items.

function result The user’s response to the dialog box.

DESCRIPTION

After you use the GXFormatDialog function to display the Custom Page Setup dialog

box, the user can specify formatting information for a format (which is not the default

format). For example, the user can specify the paper size, orientation, and the default

formatting printer.

In the anEditMenuRecord parameter you to specify an Edit menu structure to support

the standard editing operations of cut, copy, paste, and clear in dialog boxes.

The GXFormatDialog function returns a response that is defined in a dialog box result

enumeration. If the user chooses the Format button, the GXFormatDialog function

returns gxOKSelected. If the user chooses the Cancel button, the function returns

gxCancelSelected. If the user chooses the Remove button, the function returns

gxRevertSelected.

If an error occurs, the function returns gxCancelSelected. Call the GXGetJobError

function to determine which error occurred.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-114 Page Formatting and Dialog Box Customization Reference

This function causes QuickDraw GX to send the gxFormatDialog message, which you

can override to customize the Custom Page Setup dialog box.

Note that QuickDraw GX stores a user’s responses to some dialog box items in the

Custom Page Setup dialog box in a format collection.

SEE ALSO

Listing 3-9 on page 3-42 shows how to use the GXFormatDialog function to display the

Custom Page Setup dialog box.

The Edit menu structure and the dialog box result enumeration are described in the

chapter “Core Printing Features” in this book.

For information about customizing the Custom Page Setup dialog box, see “Adding

Panels to Dialog Boxes” beginning on page 3-67.

Working With Panels

The following functions allow you to add panels to a dialog box. The

GXSetupDialogPanel function adds a panel to a dialog box.

You use the GXGetJobPanelDimensions function to obtain the dimensions of a panel.

This function allows you to locate the position of the cursor within a dialog panel.

You use the GXEnableJobScalingPanel function to prevent the display of the default

scaling field in the Page Setup and Custom Page Setup dialog boxes. For example, if you

implement your own scaling panel, you would disable the default scaling field provided

by QuickDraw GX.

You typically call these methods from within an override function for the message that

displays the panel. See the section “Message Override Functions for Customizing

QuickDraw GX Dialog Boxes” beginning on page 3-119 for information about these

message override functions.

GXSetupDialogPanel

You can use the GXSetupDialogPanel function to add a panel to a print dialog box.

OSErr GXSetupDialogPanel (gxPanelSetupRecord *panelRec);

panelRec A pointer to a panel setup structure.

function result An error code. The value noErr indicates that the operation was
successful.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-115

DESCRIPTION

The GXSetupDialogPanel function adds a panel, as defined by the information in the

panel setup structure, to a print dialog box. You call this function from within your

override of the gxJobPrintDialog, gxFormatDialog, and

gxJobDefaultFormatDialog messages, before forwarding the message.

RESULT CODES

SEE ALSO

Listing 3-22 on page 3-68 shows how to use the GXSetupDialogPanel function to add

a panel to the Custom Page Setup dialog box.

GXGetJobPanelDimensions

You can use the GXGetJobPanelDimensions function to obtain the dimensions of the

area for the panel within a dialog box.

void GXGetJobPanelDimensions (gxJob aJob, Rect *aRect);

aJob A reference to the job object associated with the panel.

aRect On return, the rectangle whose geometry specifies the panel’s size.

DESCRIPTION

When you want to locate the position of the cursor within a panel, you use the

GXGetJobPanelDimensions function to obtain the dimensions of a panel.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.
gxCantAddPanelsNowErr Panels can only be added to a dialog box when the

current driver is switched. This error is generated if
a panel addition request is made at any other time.

gxBadxdtlKeyErr An unknown key value was specified for an item in
an extended dialog control resource.

gxXdtlItemOutOfRangeErr An item referenced by the panel does not belong to
the panel.

gxNoActionButtonErr The action button for the panel is nil.
gxTitlesTooLongErr The length of the button titles exceeds the

maximum width allowed for a printing alert.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-116 Page Formatting and Dialog Box Customization Reference

RESULT CODES

GXEnableJobScalingPanel

You can use the GXEnableJobScalingPanel function to prevent display of the

default QuickDraw GX scaling field in the Page Setup and Custom Page Setup dialog

boxes.

void GXEnableJobScalingPanel (gxJob aJob, Boolean enabled);

aJob A reference to the job object associated with the scaling field.

enabled A Boolean value that specifies whether or not to enable the scaling field.

DESCRIPTION

The GXEnableJobScalingPanel function enables or disables the scaling field. You set

the enabled parameter to true to enable the scaling field and false to disable it. For

example, you might disable this field if you want to provide your own scaling panel

instead of the default field. The scaling field is enabled by default.

RESULT CODES

GXGetMessageHandlerResFile

You can use the GXGetMessageHandlerResFile function to retrieve the resource file

reference number of the printing extension or printer driver.

short GXGetMessageHandlerResFile (void);

function result The resource file reference number of the printing extension or printer
driver.

DESCRIPTION

The GXGetMessageHandlerResFile function returns the resource file reference

number for the printing extension or printer driver. You can use this function if you need

to access data from these resources.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-117

RESULT CODES

Accessing Printing-Related Collection Objects

When you want to obtain a collection object associated with a particular job object,

format object, or paper-type object, you use the GXGetJobCollection,

GXGetFormatCollection, and GXGetPaperTypeCollection functions. For more

information about collections, see the Collection Manager chapter of Inside Macintosh:
Environment and Utilities.

GXGetJobCollection

You can use the GXGetJobCollection function to obtain the job collection object

associated with a particular job object.

Collection GXGetJobCollection (gxJob aJob);

aJob A reference to the job object whose collection object you want to obtain.

function result A reference to a collection object.

DESCRIPTION

After you call the GXGetJobCollection function to obtain a job collection object, you

must call the GXGetJobError function to obtain errors. It is important that you resolve

errors immediately because the Collection Manager cannot work with a nil collection

object.

RESULT CODES

SEE ALSO

Listing 3-3 on page 3-28 shows how to use the GXGetJobCollection function to

obtain the collection object associated with a particular job object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-118 Page Formatting and Dialog Box Customization Reference

GXGetFormatCollection

You can use the GXGetFormatCollection function to obtain the format collection

object associated with a particular format object.

Collection GXGetFormatCollection (gxFormat aFormat);

aFormat A reference to the format object whose collection object you want to
obtain.

function result A reference to a collection object.

DESCRIPTION

After you call the GXGetFormatCollection function to obtain a format collection

object, you must call the GXGetJobError function to obtain errors. It is important that

you resolve errors immediately because the Collection Manager cannot work with a nil

collection object.

RESULT CODES

GXGetPaperTypeCollection

You can use the GXGetPaperTypeCollection function to obtain the paper-type

collection object associated with a particular paper-type object.

Collection GXGetPaperTypeCollection (gxPaperType aPaperType);

aPaperType
A reference to the paper-type object whose collection object you want to
obtain.

function result A reference to a collection object.

DESCRIPTION

After you call the GXGetPaperTypeCollection function to obtain a paper-type

collection object, you must call the GXGetJobError function to obtain errors. It is

important that you resolve errors immediately because the Collection Manager cannot

work with a nil collection object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-119

RESULT CODES

Application-Defined Functions

The following sections describe the functions that you must provide if you want to

override QuickDraw GX print dialog messages or manipulate the format objects

associated with a job object.

Message Override Functions for Customizing QuickDraw GX Dialog Boxes

To install an override function for a message, you need to call the

GXInstallApplicationOverride function. Within the

GXInstallApplicationOverride function, you specify a pointer to a function that

you use to override a particular message for a specific dialog box. These messages

include

■ gxJobPrintDialog

■ gxJobDefaultFormatDialog

■ gxFormatDialog

■ gxHandlePanelEvent

■ gxFilterPanelEvent

■ gxParsePageRange

You can use dialog box messages to invoke your actions. QuickDraw GX sends the

gxJobDefaultFormatDialog message when your application calls

GXJobDefaultFormatDialog to display the Page Setup dialog box. QuickDraw GX

sends the gxFormatDialog message when your application calls GXFormatDialog to

display the Custom Page Setup dialog box and it sends the gxJobPrintDialog

message when your application calls GXJobPrintDialog to display the Print dialog

box.

QuickDraw GX also sends the gxHandlePanelEvent message and the

gxFilterPanelEvent message when an event occurs in a panel.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-120 Page Formatting and Dialog Box Customization Reference

GXJobPrintDialog

QuickDraw GX sends the gxJobPrintDialog message when the application calls

gxJobPrintDialog to display the Print dialog box. You can install an override

function for the gxJobPrintDialog message to modify the behavior or appearance of

the Print dialog box. Your override function must match the following formal declaration:

OSErr GXJobPrintDialog (gxDialogResult *aDialogResult);

aDialogResult
On return, a pointer to the selection made by the user in the dialog box.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxJobPrintDialog message when the user selects Print

from the File menu and the application subsequently calls the GXJobPrintDialog

function to display the Print dialog box on the user’s screen.

The default implementation of this message adds the standard printing panels and

interface and then displays the dialog box.

You usually override this message to customize the dialog box by adding panels using

the GXSetupDialogPanel function.

SPECIAL CONSIDERATIONS

You never send the gxJobPrintDialog message yourself.

You must forward the gxJobPrintDialog message to other message handlers.

Add your panels and then forward the message.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaperTypeNotFound The user has canceled printing.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-121

GXJobDefaultFormatDialog

QuickDraw GX sends the gxJobDefaultFormatDialog message when the

application calls the GXJobDefaultFormatDialog function to display the Page Setup

dialog box. You can install an override function for the gxJobDefaultFormatDialog

message to modify the behavior or appearance of the dialog box. Your override function

must match the following formal declaration:

OSErr GXJobDefaultFormatDialog (gxDialogResult *aDialogResult);

aDialogResult
On return, a pointer to a value that specifies the selection made by the
user in the dialog box.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxJobDefaultFormatDialog message when the user clicks

the More Choices button in the Page Setup dialog box. The application calls the

GXJobDefaultFormatDialog function to display the extended Page Setup dialog box.

The default implementation of this message adds the standard printing panels and

interface and then displays the dialog box.

You usually override this message to customize the dialog box by adding panels using

the GXSetupDialogPanel function. You can add your own panels to the dialog box

through the normal QuickDraw GX printing calls.

SPECIAL CONSIDERATIONS

You never send the gxJobDefaultFormatDialog message yourself.

You must forward the gxJobDefaultFormatDialog message to other message

handlers. Add your panels and then forward the message.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-122 Page Formatting and Dialog Box Customization Reference

GXFormatDialog

QuickDraw GX sends the gxFormatDialog message when the application calls the

GXFormatDialog function to display the Custom Page Setup dialog box. You can

install an override function for the gxFormatDialog message to modify the behavior

or appearance of the dialog box. Your override function must match the following formal

declaration:

OSErr GXFormatDialog (gxFormat aFormat, StringPtr title,

 gxDialogResult *aDialogResult);

aFormat A reference to the format object.

title The title of the dialog box. If you specify nil as the value of this
parameter, the title “Custom Page Setup” is used.

aDialogResult
On return, a pointer to the selection made by the user in the dialog box.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxFormatDialog message when the user selects the Custom

Page Setup menu item and an application subsequently calls the GXFormatDialog

function to display the Custom Page Setup dialog box.

The default implementation of this message adds the standard printing panels and

interface and then displays the dialog box.

You usually override this message to customize the dialog box by adding panels using

the GXSetupDialogPanel function.

SPECIAL CONSIDERATIONS

You never send the gxFormatDialog message yourself.

You must forward the gxFormatDialog message to other message handlers. Add your

panels and then forward the message.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-123

GXHandlePanelEvent

QuickDraw GX sends the gxHandlePanelEvent message when an event happens in a

panel. You can install an override function for the gxHandlePanelEvent message to

handle panel events that cannot be handled using extended item list resources. Your

override function must match the following formal declaration:

OSErr GXHandlePanelEvent (gxPanelInfoRecord *aPanelInfoRecord,

gxPanelResult *panelResult);

aPanelInfoRecord
A pointer to the panel information structure that supplies information to
the panel about the current dialog box and panel event.

panelResult
On return, the result of handling the panel event.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxHandlePanelEvent message to allow a panel to handle

events associated with the dialog box. The result code returned by the panelResult

parameter is either a value of type OSErr, or one of the following values:

gxPanelNoResult
The returned value does not currently have any meaning.

gxPanelCancelConfirmation
The user confirmed the panel, however, the panel handler discovers
that the user entered an inappropriate value in the dialog box.

The default implementation of this message does nothing. You need to override this

message if you add panels that cannot be handled using extended item list resources.

SPECIAL CONSIDERATIONS

You never send the gxHandlePanelEvent message yourself.

You always perform a total override of the gxHandlePanelEvent message, in which

you handle any events of interest that occur in your panel.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-124 Page Formatting and Dialog Box Customization Reference

GXFilterPanelEvent

QuickDraw GX sends the gxFilterPanelEvent message when an event happens in a

panel. You can install an override function for the gxFilterPanelEvent message to

add panels that need a filter procedure. Your override function must match the following

formal declaration:

OSErr GXFilterPanelEvent (gxPanelInfoRecord *aPanelInfoRecord;

Boolean *returnImmed);

aPanelInfoRecord
A pointer to the panel information structure that supplies information to
the panel about the current dialog box and panel event.

returnImmed
On return, a Boolean value that is true if there should be no further
processing on this event and false if not.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxFilterPanelEvent message to filter panel events in a

dialog box.

The default implementation of this message does nothing. You need to override this

message if you add panels that require a filtering process.

SPECIAL CONSIDERATIONS

You never send the gxFilterPanelEvent message yourself.

You always perform a total override of the gxFilterPanelEvent message, in which

you filter any events that occur in your panel.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-125

GXParsePageRange

QuickDraw GX sends the gxParsePageRange message when the user selects a range

of pages for printing. You can install an override function for the gxParsePageRange

message to modify or validate the page range. Your override function must match the

following formal declaration:

OSErr GXParsePageRange (StringPtr fromString, StringPtr toString,

gxParsePageRangeResult *result);

fromString A pointer to the string representation of the From page.

toString A pointer to the string representation of the To page.

result On return, a value that specifies the result code for the range parsing. The
constants for this value are given in the section “The Panel Setup
Structure” on page 3-101.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxParsePageRange message to validate that a page range

entered by the user is appropriate for the print job.

The default implementation of this message adds the standard printing panels and

interface and then displays the dialog box.

You usually override this message to customize the dialog box by adding panels using

the GXSetupDialogPanel function.

SPECIAL CONSIDERATIONS

You rarely need to send the gxParsePageRange message yourself.

You must forward the gxParsePageRange message to other message handlers.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-126 Page Formatting and Dialog Box Customization Reference

Looping Through Format Objects

When you want to make changes to each format object associated with a document, you

can use the GXForEachJobFormatDo function to access format objects. In this function

you must provide a pointer to a format function.

To access each format object associated with a printable document, provide a pointer to a

format function in the GXForEachJobFormatDo function that takes two parameters:

the format object associated with a particular job object, and a pointer to a reference

constant in which you specify unique format object references. For example, this is how

you should declare the function if you were to name it MyFormatFunction:

gxLoopStatus MyFormatFunction (gxFormat aFormat, void *refCon);

aFormat The current format. This is provided by QuickDraw GX when the
function is called.

refCon A pointer to a reference constant for each format object.

function result A Boolean value to indicate whether looping should stop.

DESCRIPTION

When you use the GXForEachJobFormatDo function, QuickDraw GX calls your format

function multiple times as it retrieves each format object referenced by a job object.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-127

Dialog Box-Related Resources

This section describes the resources that you use when you add panels to QuickDraw GX

dialog boxes.

The Panel Resource

Figure 3-20 shows the format of the compiled panel resource, gxPrintPanelType.

Figure 3-20 Panel resource

The compiled version of a panel resource contains the following elements:

■ Panel name. This is a Pascal string that contains the name of the panel.

■ Script ID. This is the name of the script in which the panel is written; for example,
smRoman.

■ Reserved. These words are reserved for future use.

■ Icon ID. This is the resource ID for the icon resource that displays in the expanded
dialog box.

■ Item ID. This is the resource ID of the items that are displayed in the panel.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-128 Page Formatting and Dialog Box Customization Reference

The Extended Item List Resource

Figure 3-21 shows the format of the compiled extended item resource,

gxExtendedDITLType.

Figure 3-21 Extended item list resource

The compiled version of this resource contains the following elements:

■ Item count - 1. This is the number of items in the resource, less 1.

■ A variable number of items.

The format of each item depends on its type, as defined below.

xdtlRadioButtons Radio buttons

xdtlCheckBox Checkbox

xdtlEditTextInteger Integer-format editable text

xdtlEditTextReal Real-format editable text

xdtlEditTextString String-format editable text

xdtlPopup Pop-up menu

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-129

The compiled version of an item for a group of radio buttons is shown in Figure 3-22.

Figure 3-22 Radio button items

It contains the following elements:

■ Key. The key specifies the kind of item. It is always xdtlRadioButtons.

■ Collection tag ID. The collection tag specifies the creator of the collection item, such as
gxPrintingTagID for items provided by QuickDraw GX in the job, format, and
paper-type collections.

■ Collection item ID. The item ID specifies the collection item ID, such as 'incf' for
the level of fonts to include.

■ Offset. The offset specifies the start of storage for the data. It is the number of bytes
into the collection item.

■ Count. The count specifies the number of radio buttons in this list. Because there is 1
byte per button in the collection item, the count also specifies the size for the group of
buttons in the collection item.

■ Item number. The item number specifies the item list’s item that corresponds to this
radio button. There is one item per button.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-130 Page Formatting and Dialog Box Customization Reference

The compiled version of an item for both a checkbox or pop-up menu is shown in

Figure 3-23.

Figure 3-23 Checkbox and pop-up menu items

It contains the following elements:

■ Key. The key specifies the kind of item. It is always xdtlCheckBox for checkboxes
and xdtlPopup for pop-up menus.

■ Collection tag ID. The collection tag specifies the creator of the collection item, such as
gxPrintingTagID for items provided by QuickDraw GX in the job, format, and
paper-type collections.

■ Collection item ID. The item ID specifies the collection item ID, such as 'dest' for
whether to print to a file.

■ Offset. The offset specifies the start of storage for the data. It is the number of bytes
into the collection item.

■ Item number. The item number specifies the item list’s item that corresponds to this
checkbox or pop-up menu.

■ Fill. The fill is 1 byte.

The compiled version of an item for both integer or real editable text is shown in

Figure 3-24.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Page Formatting and Dialog Box Customization Reference 3-131

Figure 3-24 Integer and real edit text items

It contains the following elements:

■ Key. The key specifies the kind of item. It is always xdtlEditTextInteger for
integers and xdtlEditTextReal for real numbers.

■ Collection tag ID. The collection tag specifies the creator of the collection item, such as
gxPrintingTagID for items provided by QuickDraw GX in the job, format, and
paper-type collections.

■ Collection item ID. The item ID specifies the collection item ID, such as 'copy' for
the number of copies.

■ Offset. The offset specifies the start of storage for the data. It is the number of bytes
into the collection item.

■ Item number. The item number specifies the item list’s item that corresponds to the
editable text item.

■ Select. This element specifies whether or not to highlight the text. If its value is 0, the
text is not highlighted. If its value is 1, the text is highlighted.

■ Lower bounds. This is a Pascal string that contains an optional sign (plus or minus),
digits, and for real numbers, an optional decimal point before the fractional part of the
number. If the string is nil, no lower bounds is specified.

■ Upper bounds. This is a Pascal string that contains an optional sign (plus or minus),
digits, and for real numbers, an optional decimal point before the fractional part of the
number. If the string is nil, no upper bounds is specified.

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-132 Page Formatting and Dialog Box Customization Reference

The compiled version of an item for string editable text is shown in Figure 3-25.

Figure 3-25 String editable text items

It contains the following elements:

■ Key. The key specifies the kind of item. It is always xdtlEditTextString.

■ Collection tag ID. The collection tag specifies the creator of the collection item, such as
gxPrintingTagID for items provided by QuickDraw GX in the job, format, and
paper-type collections.

■ Item ID. The item ID specifies the collection item ID, such as 'incf' for the level of
fonts to include.

■ Offset. The offset specifies the start of storage for the data. It is the number of bytes
into the collection item.

■ Item number. The item number specifies the item list’s item that corresponds to the
editable text item.

■ Select. This element specifies whether or not to highlight the text. If its value is 0, the
text is not highlighted. If its value is 1, the text is highlighted.

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-133

Summary of Page Formatting and Dialog Box Customization

Constants and Data Types

Constants for Loop Status Information

enum {

gxStopLooping = false, /* stop looping */

gxKeepLooping = true /* keep looping */

};

typedef Boolean gxLoopStatus;

/* function for each format object associated with a job object */

typedef gxLoopStatus (*gxFormatProc) (gxFormat aFormat, void *refCon);

Constants for Collection Item Categories and Tag IDs

Collection Item Categories

typedef short gxCollectionCategory; /* stored in collection object items’ */

/* user attribute bits */

enum {

gxNoCollectionCategory= (gxCollectionCategory) 0x0000,/* not volatile */

gxOutputDriverCategory= (gxCollectionCategory) 0x0001,/* affected by out-

put printer */

gxFormattingDriverCategory= (gxCollectionCategory) 0x0002,/* affected by

 formatting

 printer */

gxDriverVolatileCategory= (gxCollectionCategory) 0x0004,/* volatile */

gxVolatileOutputDriverCategory =

/* purge when output printer driver changes */

gxOutputDriverCategory + gxDriverVolatileCategory,

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-134 Summary of Page Formatting and Dialog Box Customization

gxVolatileFormattingDriverCategory =

/* purge when formatting printer driver changes */

gxFormattingDriverCategory + gxDriverVolatileCategory

};

Collection Tag ID

enum { gxPrintingTagID = -28672);/* QuickDraw GX assigns its collection

 objects with the same 4-byte ID */

Constants and Data Types for Job Collection Items

Print-Job Information

enum { gxJobTag = 'job ' }; /* item ID for the print-job item */

/* job object information structure */

struct gxJobInfo {

long numPages; /* total number of pages to print */

long priority; /* print job’s priority */

long timeToPrint; /* designated time to print a print job */

long jobTimeout; /* time to cancel print job, in ticks */

long firstPageToPrint /* first page to begin printing */

short jobAlert; /* when to alert the user about printing */

Str31 appName; /* name of application used to create the */

/* printable document */

Str31 documentName; /* name of the user’s document */

Str31 userName; /* name of the user associated with the */

/* printable document */

} ;

enum {

/* print-job priorities */

gxPrintJobUrgent = 0x00000001, /* priority of print job is */

/* “urgent” */

gxPrintJobAtTime = 0x00000002, /* designated time to print the */

/* print job */

gxPrintJobASAP = 0x00000003 /* designated time to print the */

/* print job is “as soon as */

/* possible” */

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-135

enum { gxPrintJobHoldingBit = 0x00001000 }; /* reserved bit in the

 priority field indicates a

 print job on hold */

enum {

/* print-job holding status */

gxPrintJobHolding = (gxPrintJobHoldingBit + gxPrintJobASAP),

gxPrintJobHoldingAtTime = (gxPrintJobHoldingBit + gxPrintJobAtTime),

gxPrintJobHoldingUrgent = (gxPrintJobHoldingBit + gxPrintJobUrgent)

};

enum {

/* print-job alert constants */

gxNoPrintTimeAlert= 0, /* don't alert user when printing */

gxAlertBefore = 1, /* alert user before printing */

gxAlertAfter = 2, /* alert user after printing */

gxAlertBothTimes = 3 /* alert user before and after printing */

};

enum {

/* time to cancel print job */

gxThirtySeconds = 1800, /* cancel print job in 30 seconds (in ticks) */

gxTwoMinutes = 7200 /* cancel print job in 2 minutes (in ticks) */

};

Collation Information

enum { gxCollationTag = 'sort' };/* item ID for the collation item*/

/* collation information stucture */

struct gxCollationInfo {

Boolean collation; /* indicates whether or not to collate */

/* copies */

};

Copies Information

enum { gxCopiesTag = 'copy' };/* item ID for the copies item*/

/* copies information structure */

struct gxCopiesInfo {

long copies; /* number of copies of a document to print */

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-136 Summary of Page Formatting and Dialog Box Customization

Page-Range Information

enum { gxPageRangeTag = 'rang' };/* item ID for the page-range item */

/* page-range information structure */

struct gxPageRangeInfo {

gxSimplePageRangeInfo simpleRange; /* simple page range */

/* information */

Str31 fromString; /* beginning of customized */

/* page range */

Str31 toString; /* end of customized page */

/* range */

long minFromPage; /* minimum of default page */

/* range */

long maxToPage; /* maximum of default page */

/* range */

char replaceString[1]; /* page-range replacement */

/* string */

} ;

/* simple page-range information structure */

struct gxSimplePageRangeInfo {

char optionChosen; /* specific page-range option */

Boolean printAll; /* true if user wants to print all pages of a */

/* document */

long fromPage; /* first page in page range */

long toPage; /* last page in page range */

};

enum {

/* page-range options */

gxDefaultPageRange = (char) 0, /* use default numeric page range */

gxReplacePageRange = (char) 1, /* use editable text field */

gxCustomizePageRange = (char) 2 /* use alphanumeric page range */

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-137

Quality Information

enum { gxQualityTag = 'qual' }; /* item ID for the quality item*/

/* quality information structure */

struct gxQualityInfo {

Boolean disableQuality; /* true to disable standard quality */

/* controls */

short defaultQuality; /* default quality */

short currentQuality; /* current quality */

short qualityCount; /* number of quality menu items in */

/* Quality pop-up menu */

char qualityNames[1]; /* Quality pop-up menu names, such as */

/* “Best” */

};

File-Destination Information

enum { gxFileDestinationTag = 'dest' };/* item ID for the file- */

/* destination item*/

/* file-destination information structure */

struct gxFileDestinationInfo {

Boolean toFile; /* true if destination is a file */

};

File-Location Information

enum { gxFileLocationTag = 'floc' } /* item ID for the file- */

/* location item*/

/* file-location information structure */

struct gxFileLocationInfo {

FSSpec fileSpec; /* location of file */

};

File-Format Information

enum { gxFileFormatTag = 'ffmt' }; /* item ID for the file- */

/* format item*/

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-138 Summary of Page Formatting and Dialog Box Customization

/* file-format information structure */

struct gxFileFormatInfo {

Str31 fileFormatName; /* name of file format */

};

File-Fonts Information

enum { gxFileFontsTag = 'incf' }; /* item ID for the file-fonts item */

/* file-fonts information structure */

struct gxFileFontsInfo {

char includeFonts; /* font include level; if destination is

file */

};

enum { /* font include levels */

gxIncludeNoFonts = (char) 1,

gxIncludeAllFonts = (char) 2,

gxIncludeNonStandardFonts = (char) 3

};

Paper-Feed Information

enum { gxPaperFeedTag = 'feed' };/* item ID for paper-feed item */

/* paper-feed information structure */

struct gxPaperFeedInfo {

Boolean autoFeed; /* true if automatic feed, false if */

/* manual feed */

};

Manual-Feed Information

enum { gxManualFeedTag = 'manf' };/* item ID for manual-feed item */

/* manual-feed information structure */

struct gxManualFeedInfo {

long numPaperTypeNames; /* number of paper-type objects to

/* manually feed */

Str31 paperTypeNames[1]; /* names of paper-type objects to */

/* manually feed */

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-139

Standard Mapping Information

enum { gxNormalMappingTag = 'nmap' }; /* item ID for the standard */

/* mapping item */

/* standard mapping information structure */

struct gxNormalMappingInfo {

Boolean normalPaperMapping; /* true if not overriding standard */

/* paper matching */

};

Special Mapping Information

enum { gxSpecialMappingTag = 'smap' }; /* item ID for special mapping */

/* special mapping information structure */

struct gxSpecialMappingInfo {

char specialMapping; /* specific paper-mapping option */

} ;

enum {

/* paper-mapping options */

gxRedirectPages = (char) 1, /* user wants to crop redirected pages */

gxScalePages = (char) 2, /* user wants to scale pages */

gxTilePages = (char) 3 /* user wants to tile pages */

};

Tray-Mapping Information

enum { gxTrayMappingTag = 'tmap' };

struct gxTrayMappingInfo{

gxTrayIndex mapPaperToTray; /* tray to map all paper to */

};

typedef long gxTrayIndex; /* specifies the paper tray setting */

Print-Panel Information

enum { gxPrintPanelTag = 'ppan' }; /* item ID for the Print */

/* panel item */

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-140 Summary of Page Formatting and Dialog Box Customization

/* print-panel information structure */

struct gxPrintPanelInfo {

Str31 startPanelName; /* name of starting panel in

/* Print dialog box */

};

Format-Panel Information

enum { gxFormatPanelTag = 'fpan' }; /* item ID for the format */

/* panel item */

/* format-panel information structure */

struct gxFormatPanelInfo { /* name of starting panel in */

Str31 startPanelName; /* Page Setup dialog box */

};

Paper-Mapping Information

enum { gxPaperMappingTag = 'pmap' };/* item ID for print- */

/* panel item */

/* This collection item contains a flattened paper-type object resource. */

Translated-Document Information

enum { gxTranslatedDocumentTag = 'trns' };

struct gxTranslatedDocumentInfo {

long translatorInfo; /* information from the translation process */

};

Constants and Data Types for Format Collection Items

Orientation Information

enum { gxOrientationTag = 'layo' }; /* item ID for the */

/* orientation item */

/* orientation information structure */

struct gxOrientationInfo {

char orientation; /* an enumerated orientation value */

} ;

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-141

enum {

/* orientation options */

gxPortraitLayout = (char) 0, /* user wants portrait orientation */

gxLandscapeLayout = (char) 1, /* user wants landscape orientation */

gxRotatedPortraitLayout = (char) 2, /* rotated portrait orientation,

not user specifiable*/

gxRotatedLandscapeLayout =(char) 3 /* user wants rotated landscape */

/* orientation */

};

Scaling Information

enum { gxScalingTag = 'scal' }; /* item ID for the scaling item */

/* scaling information structure */

struct gxScalingInfo {

Fixed horizontalScaleFactor; /* current horizontal scaling */

/* factor */

Fixed verticalScaleFactor; /* current vertical scaling factor */

short minScaling; /* minimum current scaling factor */

short maxScaling; /* maximum current scaling factor*/

};

Direct-Mode Information

enum { gxDirectModeTag = 'dirm' }; /* item ID for the direct- */

/* mode item */

/* direct-mode information structure */

struct gxDirectModeInfo {

Boolean directModeOn; /* true if direct mode is enabled */

};

Format-Halftone Information

enum { gxFormatHalftoneTag = 'half' }; /* item ID for the special */

/* mapping item */

/* format-halftone information structure */

struct gxFormatHalftoneInfo {

long numHalftones; /* number of halftones */

gxHalftone halftones[1]; /* any number of halftones */

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-142 Summary of Page Formatting and Dialog Box Customization

Page-Inversion Information

enum { gxInvertPageTag = 'invp' }; /* item ID for the page- */

/* inversion item */

/* page-inversion information structure */

struct gxInvertPageInfo {

Boolean invert; /* if true, invert the page */

}; /* if missing or false, don’t invert */

/* the page */

Horizontal Page-Flip Information

enum { gxFlipPageHorizontalTag = 'flph' }; /* item ID for the */

*/ horizontal page-flip item */

/* horizontal flip-page information structure */

struct gxFlipPageHorizontalInfo{

Boolean flipHorizontal; /* if true, flip x coordinates on the */

}; /* page; if missing or false, don’t flip */

Vertical Page-Flip Information

enum { gxFlipPageVerticalTag = 'flpv' }; /* item ID for the */

/* vertical page-flip item */

/* vertical page-flip information structure */

struct gxFlipPageVerticalInfo {

Boolean flipVertical; /* if true, flip y coordinates on the */

}; /* page; if missing or false, don’t flip */

Precise-Bitmap Information

enum { gxPreciseBitmapsTag = 'pbmp' }; /* item ID for the precise- */

/* bitmap item */

/* precise-bitmap information structure */

struct gxPreciseBitmapInfo {

Boolean preciseBitmaps; /* if true, scale the page by 96% */

}; /* if missing or false, don’t scale */

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-143

Paper-Type Lock Information

enum { gxPaperTypeLockTag = 'ptlk' }; /* item ID for the paper- */

/* type lock item*/

/* paper-type object lock information structure */

struct gxPaperTypeLockInfo {

Boolean paperTypeLocked; /* true if paper-type object */

}; /* is locked */

Constants and Data Types for Paper-Type Collection Items

Base Information

enum { gxBaseTag = 'base' }; /* item ID for the base item */

/* base type information structure */

struct gxBaseInfo {

long baseType; /* base type chosen */

} ;

enum {

/* paper-type object base types */

gxUnknownBase = 0, /* unknown base type */

gxUsLetterBase = 1, /* US letter base type */

gxUsLegalBase = 2, /* US legal base type */

gxA4LetterBase = 3, /* A4 letter base type */

gxB5LetterBase = 4, /* B5 letter base type */

gxTabloidBase = 5 /* tabloid base type */

};

Creator Information

enum { gxCreatorTag = 'crea' }; /* item ID for the creator item */

/* creator information structure */

struct gxCreatorInfo {

OSType creator; /* creator of the paper-type object */

};

enum {

/* paper-type object creator type */

gxSysPaperType = 'sypt', /* system paper-type object creator */

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-144 Summary of Page Formatting and Dialog Box Customization

gxUserPaperType = 'uspt' /* user paper-type object creator */

/* if printer driver creates a paper-type object, use printer

/* driver’s creator type */

};

Units Information

enum { gxUnitsTag = 'unit' }; /* item ID for the units item */

/* unit information structure */

struct gxUnitsInfo {

char units; /* specific paper-type object */

/* measurement */

};

enum {

/* paper-type object units */

gxPicas = (char) 0, /* pica measurement */

gxMms = (char) 1, /* millimeter measurement */

gxInches = (char) 2 /* inches measurement */

};

Flags Information

enum { gxFlagsTag = 'flag' }; /* item ID for the flags item */

/* flags information structure */

typedef struct {

long flags; /* paper-type object flags */

}gxFlagsInfo;

enum {

/* paper-type object flags (bit positions) */

gxOldPaperTypeFlag = 0x00800000, /* indicates a paper-type object */

/* with 7.0 settings */

gxNewPaperTypeFlag = 0x00400000, /* indicates a paper-type object */

/* with post 7.0 settings */

gxOldAndNewPaperTypeFlag= 0x00C00000, /* indicates a paper-type object */

/* that is both old and new */

gxDefaultPaperTypeFlag = 0x00100000, /* indicates the default paper */

/* type */

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-145

Comment Information

enum { gxCommentTag = 'cmnt' }; /* item ID for the comment item */

/* comment information structure */

struct gxCommentInfo {

Str255 comment; /* paper-type object comment */

} ;

Panel-Related Constants and Data Types

QuickDraw GX Dialog Box Panel Information

/* constants for overriding messages when adding dialog box panels */

#define gxJobStatus 3

#define gxPrintingEvent 4

#define gxJobDefaultFormatDialog 5

#define gxFormatDialog 6

#define gxJobPrintDialog 7

#define gxFilterPanelEvent 8

#define gxHandlePanelEvent 9

#define gxParsePageRange 10

/* dialog box related resources */

#define gxXdtlRadioButtons 0

#define gxXdtlCheckBox 1

#define gxXdtlEditTextInteger 2

#define gxXdtlEditTextReal 3

#define gxXdtlEditTextString 4

#define gxXdtlPopUp 5

The Panel Information Structure

struct gxPanelInfoRecord {
gxPanelEvent panelEvt; /* the event */

short panelResId; /* resource ID of current panel resource */

DialogPtr pDlg; /* pointer to dialog */

EventRecord *theEvent; /* pointer to event */

short itemHit; /* actual item number of event */

short itemCount; /* number of items before your items */

short evtAction; /* the action that will occur after

 this event is processed */

short errorStringId; /* 'STR ' ID of error string */

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-146 Summary of Page Formatting and Dialog Box Customization

gxFormat theFormat; /* the current format */

void *refCon; /* refCon from gxPanelSetupRecord */

};

Panel Events

enum {

gxPanelNoEvt = (gxPanelEvent) 0, /* no event */

gxPanelOpenEvt = (gxPanelEvent) 1, /* panel is about to open */

gxPanelCloseEvt = (gxPanelEvent) 2, /* panel is about to close */

gxPanelHitEvt = (gxPanelEvent) 3, /* user has selected item */

gxPanelActivateEvt= (gxPanelEvent) 4, /* panel has been activated */

gxPanelDeactivateEvt= (gxPanelEvent) 5, /* panel has been deactivated */

gxPanelIconFocusEvt= (gxPanelEvent) 6, /* focus has changed to icons */

gxPanelPanelFocusEvt= (gxPanelEvent) 7, /* focus has changed to panel */

gxPanelFilterEvt = (gxPanelEvent) 8, /* panel event needs to be

 filtered */

gxPanelCancelEvt = (gxPanelEvent) 9, /* panel has been canceled */

gxPanelConfirmEvt = (gxPanelEvent) 10, /* panel has been confirmed */

gxPanelDialogEvt = (gxPanelEvent) 11, /* panel event to be handled

 by the dialog box handler */

gxPanelOtherEvt = (gxPanelEvent) 12, /* an OS event has occurred

 in the panel */

gxPanelUserWillConfirmEvt

= (gxPanelEvent) 13 /* user has selected OK */

};

typedef long gxPanelEvent;

Panel Responses

enum {

gxPanelNoResult = 0, /* no result from panel */

gxPanelCancelConfirmation = 1, /* user confirmed panel, but panel

 handler discovered an error */

};

typedef long gxPanelResult;

Panel Event Actions

enum {

gxOtherAction = 0, /* current item doesn’t change after event */

gxClosePanelAction = 1, /* panel is closed after event */

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-147

gxCancelDialogAction = 2, /* dialog box is canceled after event */

gxConfirmDialogAction= 3 /* dialog box is confirmed after event */

};

The Panel Setup Structure

struct gxPanelSetupRecord {

 gxPrintingPanelKind panelKind; /* kind of program using panel */

 short panelResId; /* resource ID of panel */

 short resourceRefNum; /* resource file refnum of panel */

 void *refCon; /* pointer to panel setup

 structure used to build panel */

};

Printing Panel Kinds

enum {

 gxApplicationPanel= (gxPrintingPanelKind) 0, /* an application panel */

 gxExtensionPanel = (gxPrintingPanelKind) 1, /* printing extension panel */

 gxDriverPanel = (gxPrintingPanelKind) 2 /* printer driver panel */

};

typedef long gxPrintingPanelKind;

Parse Range Results

enum {

gxRangeNotParsed = (gxParsePageRangeResult) 0, /* not parsed yet */

gxRangeParsed = (gxParsePageRangeResult) 1, /* successful parse */

gxRangeBadFromValue= (gxParsePageRangeResult) 2, /* the “from page” */

/* value is invalid */

gxRangeBadToValue = (gxParsePageRangeResult) 3 /* the “to page” */

/* value is invalid */

};

typedef long gxParsePageRangeResult;

Functions

Creating and Manipulating Format Objects

gxFormat GXNewFormat (gxJob aJob);

void GXDisposeFormat (gxFormat aFormat);

gxFormat GXCopyFormat (gxFormat srcFormat, gxFormat dstFormat);

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-148 Summary of Page Formatting and Dialog Box Customization

gxFormat GXCloneFormat (gxFormat aFormat);

long GXCountJobFormats (gxJob aJob);

long GXCountFormatOwners (gxFormat aFormat);

void GXForEachJobFormatDo (gxJob aJob, gxFormatProc aFormatProc, void
*refCon);

Manipulating Format Object Properties

void GXGetFormatMapping (gxFormat aFormat, gxMapping *aMapping);

gxPaperType GXGetFormatPaperType
(gxFormat aFormat);

gxShape GXGetFormatForm (gxFormat aFormat, gxShape *mask);

void GXSetFormatForm (gxFormat aFormat, gxShape form, gxShape mask);

void GXChangedFormat (gxFormat aFormat);

Displaying the Custom Page Setup Dialog Box

gxDialogResult GXFormatDialog
(gxFormat aFormat,
gxEditMenuRecord *anEditMenuRecord,
StringPtr title);

Working With Panels
void GXSetupDialogPanel (gxPanelSetupRecord *aPanelSetupRecord);

void GXGetJobPanelDimensions
(gxJob aJob, Rect *aRect);

void GXEnableJobScalingPanel
(gxJob aJob, Boolean enabled);

short GXGetMessageHandlerResFile
(void);

Accessing Printing-Related Collection Objects

Collection GXGetJobCollection
(gxJob aJob);

Collection GXGetFormatCollection
(gxFormat aFormat);

Collection GXGetPaperTypeCollection
(gxPaperType aPaperType);

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-149

Application-Defined Functions

Message Override Functions for Customizing Dialog Boxes

OSErr GXJobPrintDialog (gxDialogResult *aDialogResult);

OSErr GXJobDefaultFormatDialog
(gxDialogResult *aDialogResult);

OSErr GXFormatDialog (gxFormat aFormat, StringPtr title,
gxDialogResult *aDialogResult);

OSErr GXHandlePanelEvent (gxPanelInfoRecord *aPanelInfoRecord,
gxPanelResult *aPanelResult);

OSErr GXFilterPanelEvent (gxPanelInfoRecord *aPanelInfoRecord,
Boolean *returnImmed);

OSErr GXParsePageRange (StringPtr fromString, StringPtr toString,
gxParsePageRangeResult *result);

Looping Through Format Objects

gxLoopStatus MyFormatFunction (gxFormat aFormat, void *refCon);

Dialog Box-Related Resources

The Panel Resource

type gxPrintPanelType {

pstring[31]; /* the panel name */

integer Script;/* script ID */

fill word; /* reserve a long word for future use of

international */

fill word; /* reserve a long word for future use of

international */

integer; /* the icon ID */

integer; /* the item list ID */

};

C H A P T E R 3

Page Formatting and Dialog Box Customization

3-150 Summary of Page Formatting and Dialog Box Customization

The Extended Item List Resource

type gxExtendedDITLType {

integer = $$CountOf(xdtlarray) -1;

wide array xdtlarray {

switch {

case RadioButtons:

key integer = xdtlRadioButtons;

literal longint; /* 4 byte id for storage in job

object or format object */

longint; /* numerical id for storage in

job object or format object */

integer; /* offset in bytes into item */

integer = $$CountOf(RadioButtonsArray) - 1;

wide array RadioButtonsArray

{

byte; /* array of corresponding items*/

};

case CheckBox:

key integer = xdtlCheckBox;

literal longint; /* 4-byte ID for storage in job

object or format object */

longint; /* numerical ID for storage in

job object or format object */

integer; /* offset in bytes into item */

byte; /* corresponding ditl item */

fill byte;

case EditTextInteger:

key integer = xdtlEditTextInteger;

literal longint; /* 4-byte ID for storage in

job object or format object */

longint; /* numerical ID for storage in

job object or format object */

integer; /* offset in bytes into item */

byte; /* corresponding item list’s item */

byte; /* 0 = dont select, 1 = select */

pstring[15];/* low bound - nil means 'I

don't care' */

pstring[15];/* high bound - nil means 'I

don't care' */

C H A P T E R 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization 3-151

case EditTextReal:

key integer = xdtlEditTextReal;

literal longint; /* 4-byte ID for storage in job

object or format object */

longint; /* numerical ID for storage in

job object or format object */

integer; /* offset in bytes into item */

byte; /* corresponding item list’s item */

byte; /* 0 = don’t select, 1 = select

pstring[15];/* low bound - nil means 'I

don't care' */

pstring[15];/* high bound - nil means 'I

don't care' */

case EditTextString:

key integer = xdtlEditTextString;

literal longint; /* 4-byte ID for storage in job

object */

/* or format object */

longint; /* numerical ID for storage in

job object or format object */

integer; /* offset in bytes into item */

byte; /* corresponding item list’s item */

byte; /* 0 = don’t select, 1 = select */

case PopUp:

key integer = xdtlPopUp;

literal longint; /* 4-byte ID for storage in job

object or format object */

longint; /* numerical ID for storage in

job object or format object */

integer; /* offset in bytes into item */

byte; /* corresponding item list’s item */

fill byte;

};

align word;

};

};

Contents 4-1

C H A P T E R 4

Contents

Advanced Printing Features

About Advanced Printing Features 4-5

Printer Objects 4-6

Printer Driver Types 4-7

Printer View Devices 4-8

Color Matching for Printers 4-9

Print File Objects 4-9

Synonyms 4-11

General-Purpose PostScript Operator Synonym 4-12

PostScript Control Information Synonym 4-13

Dash Synonym 4-14

Line Cap Synonym 4-14

Halftone Synonym 4-15

Pattern Synonym 4-17

Cubic Synonym 4-17

QuickDraw Picture Synonym 4-18

Printing Modes 4-19

Pen Tables for Vector Devices 4-20

Using Advanced Printing Features 4-21

Using Advanced Job Object Functions 4-21

Obtaining Printer and Printer Driver Information for a Job 4-22

Getting and Setting the Reference Constant for a Job Object 4-23

Copying Job Object Information 4-25

Working With Printer Objects 4-25

Determining a Printer’s Resolution 4-26

Retrieving the Color Profile and Color Space for a Printer 4-27

Manipulating Print File Objects 4-29

Opening and Closing a Print File 4-29

Saving a Print File 4-30

Obtaining the Job Object for a Print File 4-30

Reading Print File Data 4-30

C H A P T E R 4

4-2 Contents

Counting the Pages in a Print File 4-31

Adding or Deleting Print File Pages 4-31

Defining Different Paper Sizes 4-31

Creating a Paper-Type Object 4-32

Obtaining the Name of a Paper Type 4-32

Obtaining the Dimensions of a Paper Type 4-33

Scanning the Paper Types Available to a Job 4-34

Implementing Direct-Mode Printing 4-35

Formatting for Text Job Format Mode Printing 4-36

Using Synonyms 4-38

Advanced Printing Features Reference 4-38

Constants and Data Types for Advanced Printing Features 4-39

Job Format Modes 4-39

Text Job Format (Direct) Mode 4-40

The Status Structure 4-42

Pen Tables for Vector Devices 4-43

Constants and Data Types for Synonyms 4-45

General-Purpose PostScript Operator Synonym 4-45

PostScript Control Information Synonym 4-45

Dash Synonym 4-46

Halftone Synonym 4-46

Line Cap Synonym 4-47

Pattern Synonym 4-47

Cubic Synonym 4-48

QuickDraw Picture Synonym 4-49

Functions 4-49

Advanced Job Object Functions 4-50

GXSelectJobFormattingPrinter 4-50

GXGetJobFormattingPrinter 4-51

GXGetJobOutputPrinter 4-51

GXGetJobRefCon 4-52

GXSetJobRefCon 4-53

GXCopyJob 4-53

Manipulating Printer Objects 4-54

GXGetJobPrinter 4-55

GXGetPrinterJob 4-55

GXForEachPrinterViewDeviceDo 4-56

GXCountPrinterViewDevices 4-57

GXGetPrinterViewDevice 4-57

GXSelectPrinterViewDevice 4-58

GXGetPrinterDriverName 4-59

GXGetPrinterName 4-59

GXGetPrinterDriverType 4-60

GXGetPrinterType 4-61

Working With QuickDraw GX Print Files 4-61

GXOpenPrintFile 4-62

GXClosePrintFile 4-63

C H A P T E R 4

Contents 4-3

GXGetPrintFileJob 4-64

GXCountPrintFilePages 4-65

GXReadPrintFilePage 4-65

GXReplacePrintFilePage 4-66

GXInsertPrintFilePage 4-68

GXDeletePrintFilePageRange 4-69

GXSavePrintFile 4-70

Working With Paper Types 4-71

GXNewPaperType 4-71

GXDisposePaperType 4-72

GXGetNewPaperType 4-73

GXGetJobPaperType 4-74

GXCountJobPaperTypes 4-75

GXCopyPaperType 4-76

GXGetPaperTypeName 4-76

GXGetPaperTypeDimensions 4-77

GXGetPaperTypeJob 4-78

GXForEachJobPaperTypeDo 4-78

Formatting for Specific Devices 4-79

GXSetAvailableJobFormatModes 4-80

GXGetPreferredJobFormatMode 4-80

GXGetJobFormatMode 4-81

GXSetJobFormatMode 4-82

GXJobFormatModeQuery 4-83

Color Profile Functions 4-84

GXFindPrinterProfile 4-84

GXFindFormatProfile 4-85

GXSetPrinterProfile 4-87

GXSetFormatProfile 4-88

Idle Job Function 4-90

GXIdleJob 4-90

Application-Defined Functions 4-90

Message Override Function for the Printing Status Dialog Box 4-90

GXJobStatus 4-91

Looping Through a Printer’s View Devices 4-92

Looping Through a Job’s Paper Types 4-92

The Status Resource 4-93

Summary of Advanced Printing Features 4-95

C H A P T E R 4

About Advanced Printing Features 4-5

Advanced Printing Features

This chapter describes how your application can use printing-related objects in ways that

may not be required for most applications. Read the information in this chapter if you

want your application to read or modify print files after they have been printed, create

and use custom paper types, or explicitly control the way that QuickDraw GX performs

certain printing operations.

To use this chapter, you should also be familiar with the printing-related objects,

including collection objects that QuickDraw GX uses to store job and format information,

as introduced in the chapter “Introduction to Printing With QuickDraw GX” in this

book. Because the objects and techniques discussed in this chapter build on applications

that already provide core printing features, you should be familiar with these features, as

introduced in the chapter “Introduction to Printing With QuickDraw GX” and discussed

in detail in the “Core Printing Features” chapter of this book.

This chapter describes the concepts required to use advanced QuickDraw GX printing

features and terms and then explains how to

■ manipulate a job object; for example, using its reference constant property

■ work with a printer object to obtain information about the device it represents, such as
information about the driver, its resolution, and color printing capabilities

■ manipulate a print file object that represents a spooled file or a portable digital
document

■ manipulate a paper-type object to define paper sizes for different requirements

■ optimize printing for specific devices

This chapter also describes the resource for Printing Status dialog boxes, as well as status

constants. Although you can customize Printing Status dialog boxes in your application,

they are used primarily by printer drivers and printing extensions. For information

about the use of Printing Status dialog boxes by printer drivers and printing extensions,

see the resource chapter of Inside Macintosh: QuickDraw GX Printing Extensions and
Drivers.

About Advanced Printing Features

Advanced printing features make use of objects described in the chapters “Core Printing

Features” and “Page Formatting and Dialog Box Customization” in this book. This

chapter shows how these objects can be used in additional ways to implement features

not typically required by every application that implements QuickDraw GX printing.

For example, the paper-type object is always associated with a format object. A paper

type that matches the format is provided by QuickDraw GX as a core feature. Ordinarily,

your application need not modify it. If, for example, your application needs to restrict

the printable area of a page to reserve room for a letterhead, it can create a paper-type

object that defines a new paper size. Although the technique is straightforward, the

feature is considered advanced because applications are not required to create

C H A P T E R 4

Advanced Printing Features

4-6 About Advanced Printing Features

paper-type objects. Typically, the default paper-type object is sufficient for most

applications.

To implement other advanced printing features, you use the printer and print file objects.

■ You can use a printer object to determine the device characteristics of a desktop
printer, such as its resolution

■ You can use a print file object to determine the contents of a file that has been printed
and change them, if you wish.

 The following sections describe the printer and print file objects.

Printer Objects
Each job object references two printer objects. One printer object specifies the output

printer on which the document is printed. The other printer object defines the

formatting printer that specifies how the document is formatted. A user chooses an

output printer in the Print dialog box and a formatting printer in the Page Setup dialog

box. When a job object is created, its output printer is the currently selected desktop

printer, and the formatting printer is specified by the output printer’s printer driver.

Each printer object has six accessible properties, as shown in Figure 4-1. Note that,

because a printer object is a private data structure, the order of the properties as shown

in Figure 4-1 is completely arbitrary. Properties in italics indicate references to other

objects.

Figure 4-1 The printer object

C H A P T E R 4

Advanced Printing Features

About Advanced Printing Features 4-7

The properties of a printer object are:

■ Printer name. This property contains the name of the printer. A user specifies a
printer by name in the Print dialog box. For example, a user could choose the printer
“My Printer” from the list of available printers.

■ Printer type. This property specifies the creator type of a printer. It is a 4-character
signature that uniquely identifies a kind of printer. You are responsible for registering
the printer type with Developer Technical Support at Apple Computer. An example of
a printer type is 'LWRW' for a LaserWriter.

■ Printer driver name. This property specifies the name of the printer driver to which
the job is printed. A user specifies a printer driver from the Chooser if the desired
printer is not already on the desktop.

■ Printer driver type. This property specifies the kind of printer driver. Table 4-1 shows
some printer driver types provided by QuickDraw GX.

■ View device list. This property contains a list of references to the view devices
associated with a printer. Each view device specifies a print resolution (dots-per-inch)
and color space (for example, CMYK or a grayscale space) that is supported by the
printer. For more information about the relationship between printer objects and view
devices, see the section “Printer View Devices” beginning on page 4-8.

■ Job. This property contains a reference to a job object. Through this reference, you can
access a job object associated with a printer object. The job object is discussed in the
chapter “Core Printing Features” in this book.

Printer Driver Types

Table 4-1 shows the printer driver types defined by QuickDraw GX. Do not make

assumptions about the kinds of service provided by a printer driver based on its type

alone. For example, two PostScript drivers may be subtly different.

Note

You are responsible for registering your printer driver type with
Developer Technical Support. ◆

Table 4-1 Printer driver types

Constant Value Explanation

gxAnyPrinterType 'univ' Universal type of printer

gxRasterPrinterType 'rast' Raster printer

gxPostscriptPrinterType 'post' Postscript printer

gxVectorPrinterType 'vect' Vector printer

gxPortableDocPrinterType 'gxpd' Portable digital document maker

'????' Unknown driver type

C H A P T E R 4

Advanced Printing Features

4-8 About Advanced Printing Features

Printer View Devices

A printer object’s view device list specifies the resolutions and color spaces that can be

used with a printer. These view devices are created by the printer driver. Your

application can access, but not change, these characteristics. The printer’s resolution is

stored in the view device’s mapping property as the scaling factor. The printer’s color

space is stored in the bitmap shape that represents the imageable area of the device. A

view device object contains other properties as well; however, these properties are not

used in printing. For more information about view device objects, see the view-related

objects chapter of Inside Macintosh: QuickDraw GX Objects.

For example, the LaserWriter IISC GX driver creates a view device list with only one

view device, because the printer supports only one color space, black-and-white, and

one resolution, 300 dots-per-inch. The view device’s mapping property specifies a

scaling factor of 4.17, both horizontally and vertically, to achieve the 300 dots-per-inch

resolution. The scaling factor is determined by dividing the printer’s resolution, 300

dots-per-inch, by 72, which represents the resolution when the scaling factor is 1.

As another example, the ImageWriter II GX printer driver supports printing at two

resolutions in each of two color spaces:

■ 144 dpi, with a 4-bit indexed CMYK (cyan, magenta, yellow, black) color space

■ 144 dpi, 1-bit indexed color space

■ 72 dpi, with a 4-bit indexed CMYK color space

■ 72 dpi, 1-bit indexed color space

The driver creates a view device list with four view device references. The printer driver

sets up the mapping property in each view device to specify the correct scaling factor.

For an example of how to obtain the scaling factor, see the section“Determining a

Printer’s Resolution” on page 4-26.

Note

A printer driver inherits a view device for a 72 dpi, 24-bit RGB color
space from QuickDraw GX and modifies the list as necessary to include
the view devices that the driver actually supports. For more information
about writing a printer driver, see the printer driver chapter of Inside
Macintosh: QuickDraw GX Printing Extensions and Drivers. ◆

C H A P T E R 4

Advanced Printing Features

About Advanced Printing Features 4-9

Color Matching for Printers

QuickDraw GX provides a color profile object that is used to specify color-matching

information for a printer. The color profile object is discussed in the color and

color-related objects chapter of Inside Macintosh: QuickDraw GX Objects. Your application

can access the color profile object associated with a printer driver or a particular page of

output or set these color profile objects using the following functions:

For more information about these functions, see “Color Profile Functions” beginning on

page 4-84. For an example of retrieving the color profile and color space from a view

device, see “Retrieving the Color Profile and Color Space for a Printer” on page 4-27.

Print File Objects
A print file object represents the file that QuickDraw GX creates when your application

prints a document. If the document is printed to a printer, the print file contains the

spooled input to the printer driver. If the document is printed as a portable digital

document, the print file’s contents are kept in an application-independent form along

with data, such as font information, that allows the document to be viewed without the

application that created it.

You can use print file objects to

■ open, save, and close print files

■ retrieve the contents of a print file or the formats associated with it

■ count the pages in a print file, and insert, replace, and delete pages

■ retrieve the job object stored with the print file

Function Purpose

GXFindPrinterProfile Determine the color profile for a printer

GXFindFormatProfile Determine the color profile for a format object

GXSetPrinterProfile Set the color profile for a printer

GXSetFormatProfile Set the color profile for a format object

C H A P T E R 4

Advanced Printing Features

4-10 About Advanced Printing Features

Print file objects have four accessible properties, as shown in Figure 4-2. Note, that

because a print file object is a private data structure, the order of the properties as shown

in Figure 4-2 is completely arbitrary. Properties in italics indicate references to other

objects.

Figure 4-2 The print file object

The properties of a print file object are:

■ Page count. This property contains the number of pages in the print file.

■ Format list. This property contains a list of references to format objects, one reference
for each page in the file. The first reference is the default format for the print job.

■ Shape list. This property contains a list of references to shape objects, one reference
for each page in the file. Each page is stored as a picture shape in the file, whether the
file was created page-by-page or shape-by-shape for each page. Thus, the first
reference in the list is the picture shape for the first page, the second reference is the
shape for the second page, and so on.

■ Job. This property is a reference to the job object associated with the file when it is
open. The properties of this job object match those of the job object used to create the
print file.

C H A P T E R 4

Advanced Printing Features

About Advanced Printing Features 4-11

Synonyms
You can use synonyms to provide alternative printing directives instead of those

generated by QuickDraw GX. You are never required to use a synonym. They are

available for you to use if you want to explicitly control the way that QuickDraw GX

renders output.

For example, if you have special-purpose PostScript code for printing a shape and wish

to use it instead of the PostScript code that QuickDraw GX produces, you can create a

synonym for your code and attach it to the shape object. When the shape is printed, the

instructions associated with the synonym can be used to render the output.

If you use a synonym, the printer driver also must support its use; otherwise, the

synonym is ignored. The synonym is interpreted by the printer driver; thus one printer

driver may choose to implement a synonym using PostScript and another printer driver

might use a proprietary language to implement the same synonym.

You use a synonym by creating a tag object and setting up a reference to that tag in the

shape object or another kind of object. A tag object is a QuickDraw GX object that

provides you with the ability to associate data with objects, such as shapes, styles, inks,

colors, and transforms. For more information about tag objects, see the tag objects

chapter of Inside Macintosh: QuickDraw GX Objects.

QuickDraw GX provides five kinds of synonyms:

■ Direct PostScript synonyms, which allow you to explicitly specify PostScript operators
for rendering images. You can use these synonyms with shape, style, ink, and
transform objects to control the behavior of these objects when printing.

■ Style synonyms, such as dashes, line caps, or patterns that can be associated with style
objects.

■ Halftone synonyms, which specify the halftone to be applied when a shape or page is
printed. For general information about halftones, see the view-related objects chapter
of Inside Macintosh: QuickDraw GX Objects.

■ Cubic synonyms, which provide alternative directives for rendering path shapes. For
information about path shapes, see the geometric shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

■ Picture synonyms, which specify QuickDraw picture data for rendering pages. For
example, QuickDraw GX uses picture synonyms to spool the output of documents
designed for printing with the Macintosh Printing Manager.

Note

Synonyms remain with the shape or a related object, such as the shape’s
ink, style, or transform. If you cut or copy a shape and then paste it, the
synonyms in the tag objects associated with the shape move with the
shape. Synonyms also stay with the shape if the print file that contains
the shape is redirected. ◆

C H A P T E R 4

Advanced Printing Features

4-12 About Advanced Printing Features

Table 4-2 identifies the synonyms that QuickDraw GX provides.

The following sections describe the contents of the tag objects that you create for each of

these synonyms. For an example of how to use a synonym, see “Using Synonyms,”

which begins on page 4-38.

General-Purpose PostScript Operator Synonym

If you want QuickDraw GX to use your own PostScript operators for rendering an

object, you may create a gxPostScriptTag synonym and attach it to the object. If you

only need to specify specific operators or set up the halftone graphics state, you may be

able to use one of the special-purpose synonyms listed in Table 4-2.

You can reference a tag object that contains the gxPostScriptTag synonym from a

shape object, style object, ink object, or transform object. The kind of object that

references the tag object controls the kind of PostScript operators you can use.

■ With a shape object, you can use PostScript printing operators to render the shape.

■ With a style object, you can use PostScript operators to define all stylistic
characteristics for the shapes that refer to the style object.

Table 4-2 QuickDraw GX printing synonyms

Constant Value Explanation

gxPostScriptTag 'post' Specifies PostScript operators

gxPostControlTag 'psct' Specifies control information for a PostScript
printer

gxDashSynonymTag 'sdsh' Specifies dashes, for example, with the
PostScript setdash operator

gxLineCapSynonymTag 'lcap' Specifies line caps, for example, with the
PostScript setlinecap operator

gxPatternSynonymTag 'ptrn' Specifies a pattern, for example, on vector
devices

gxFormatHalftoneTag 'half' Specifies halftones, for example, the
PostScript halftone graphics state

gxCubicSynonymTag 'cubx' Specifies a cubic representation for a path

gxQuickDrawPictTag 'pict' Specifies a shape in QuickDraw picture
format

C H A P T E R 4

Advanced Printing Features

About Advanced Printing Features 4-13

■ With an ink object, you can use PostScript operators to define the color and transfer
mode for the shapes that refer to the ink object.

■ With a transform object, you can use PostScript operators to define the clip and
mapping of the shapes that refer to the transform object. The gxPostScriptTag
synonym may be ignored under certain conditions, such as when a transform object’s
mapping changes the perspective.

The data in the gxPostScriptTag synonym is pure PostScript code that is generated

as one continuous PostScript data stream. There is no data type that defines the structure

of this synonym. You can attach multiple tag objects to an object. This allows you to

distribute data into smaller, more manageable pieces that require less memory to load.

For best results, you should limit the data in a gxPostScriptTag synonym to 8 KB.

If you choose to write your own PostScript code, it is extremely important to make your

PostScript code portable, especially if users create portable digital documents. To create

portable PostScript code, try to follow these guidelines:

■ Write PostScript code so that it runs on output devices that support Level 1 and
devices that support Level 2.

■ Do not make assumptions about the current “PostScript state” of the output device.

■ Do not make assumptions about the fonts that are installed in the output device.

Note

The y-axis of the QuickDraw GX coordinate system is the reverse of the
y-axis of the PostScript coordinate system. ◆

PostScript Control Information Synonym

A shape object can refer to a tag object that contains the gxPostControlTag synonym.

The synonym includes flags that indicate how to modify the PostScript graphics state.

The gxPostControlTag synonym provides data specific to PostScript devices that may

be necessary for these devices to properly render the data contained within the

gxPostScriptTag synonym. You are not required, however, to have a

gxPostControlTag synonym when you use gxPostScriptTag synonyms.

A shape object can refer to, at most, only one gxPostControlTag synonym.

Information in this synonym affects all gxPostScriptTag synonyms attached to a

shape object.

C H A P T E R 4

Advanced Printing Features

4-14 About Advanced Printing Features

The gxPostControl structure defines the contents of a gxPostControlTag synonym:

struct gxPostControl {

long flags;

};

Field descriptions

flags A flag that specifies how a shape is embedded in the PostScript data
stream. If it is gxNoSave, the PostScript data should be
encapsulated between a save and restore combination. If gxNoSave
is not specified or the gxPostControlTag synonym is not present,
the save and restore combination is used.

Dash Synonym

A style object can refer to a tag that contains the gxDashSynonymTag synonym. This

tag causes QuickDraw GX to print simple dashes. For example, this synonym may cause

the printer driver to use the PostScript setdash operator instead of the specification in

the dash property of the style. The phase for the setdash operator might still be taken

from the phase value stored in the dash property of the style object.

The gxDashSynonym structure defines the contents of a gxDashSynonymTag synonym:

struct gxDashSynonym {

long size;

fixed dashLength[gxAnyNumber];

};

Field descriptions

size The number of elements in a dash array.

dashLength An array of lengths for the dashes.

Line Cap Synonym

A style object can refer to a tag that contains the gxLineCapSynonym synonym. For

example, this synonym may cause the printer driver to print with the PostScript linecap

operator instead of the specification in the cap property of the style.

The gxLineCapSynonym structure defines the gxLineCapSynonymTag synonym:

typedef long gxLineCapSynonym;

The structure is a long word that specifies one of the values in the gxLineCaps

enumeration:

enum gxLineCaps{

gxButtCap = 0,

gxRoundCap = 1,

C H A P T E R 4

Advanced Printing Features

About Advanced Printing Features 4-15

gxSquareCap = 2,

gxTriangleCap = 3

};

Constant descriptions

gxButtCap Use a square cap, such as the PostScript butt cap, for the line cap.

gxRoundCap Use a round cap, such as the PostScript round cap, for the line cap.

gxSquareCap Use a square cap, such as the PostScript projecting square cap, for
the line cap.

gxTriangleCap Use a triangle cap.

Halftone Synonym

QuickDraw GX supports halftones to represent more colors than can be represented on a

printer by alternating available colors in a fixed cell size to represent more colors.

QuickDraw GX, by default, chooses the appropriate halftone for you; however, you can

choose to specify halftone information on a shape-by-shape or page-by-page basis

yourself.

To provide halftone information for a particular shape object, the shape’s ink object must

refer to a tag object that contains the gxFormatHalftoneTag synonym. This allows

halftones to be specified for individual inks. Shapes that are drawn with the same ink

use the same halftone. An ink that does not refer to the gxFormatHalftoneTag

synonym uses the page’s halftone.

Note

If you specify halftone information on a page-by-page basis, you use the
format-halftone property in the format collection associated with the
page’s format. For more information about this property, see the chapter
“Page Formatting and Dialog Box Customization” in this book. ◆

The gxFormatHalftoneInfo structure defines the contents of a

gxFormatHalftoneTag synonym:

struct gxFormatHalftoneInfo {

long numHalftones;

gxHalftone halftones[1];

};

Field descriptions

numHalftones The number of halftones available for use.

halftones The array of halftone specifications.

C H A P T E R 4

Advanced Printing Features

4-16 About Advanced Printing Features

Halftones are specified in the gxHalftone structures, which are described completely

in the view-related objects chapter of Inside Macintosh: QuickDraw GX Objects:

struct gxHalftone{

fixed angle; /* direction of halftone */

fixed frequency; /* cells per inch */

gxDotType method; /* kind of pattern */

gxTintType tinting; /* tint calculation method */

gxColor dotColor; /* color of foreground */

gxColor backgroundColor; /* color of background */

gxColorSpace tintSpace; /* color space for tint */

};

You can specify any number of halftones. QuickDraw GX selects appropriate halftones

from the list of available halftones. Its selection is based upon the tinting field in the

halftone structures:

■ When you print to a black-and-white PostScript device, QuickDraw GX looks for a
halftone structure that specifies gxLuminanceTint in the tinting field. If no
halftone specifies this value, it looks for a halftone specifies gxComponent4Tint as
its tinting method. Component 4 is the black component in the CMYK (cyan,
magenta, yellow, and black) space. If no halftone specifies this tinting method either,
the first halftone in the list is used.

■ When you print to a color PostScript device, a maximum of four halftones are used.
QuickDraw GX attempts to locate halftones for the following tint calculation methods:
gxComponent1Tint for the cyan halftone, gxComponent2Tint for the magenta
halftone, gxComponent3Tint field for the yellow halftone, and
gxComponent4Tint for the black halftone. If a tinting method is in the list more than
once, the first one in the list is used.

If a halftone for the gxComponent4Tint method is not in the list, QuickDraw GX
uses the gxLuminanceTint tinting method for the black halftone. If the
gxLuminanceTint tinting method cannot be found either, QuickDraw GX uses the
first halftone in the list for the black halftone.

If QuickDraw GX cannot find a halftone for the gxComponent1Tint,
gxComponent2Tint, or gxComponent3Tint tinting methods, it uses the black
halftone for the missing tinting method.

It is only possible to use halftones to the extent that a particular PostScript device

supports them. The dot color and background color of a halftone are ignored because

QuickDraw GX assumes that the dot color for a black-and-white device is black and the

dot color for a color device with the gxComponent2Tint tinting method is magenta.

Note

Continuous tone output devices, such as a 32-bit color printer, may
choose to ignore the halftone synonym because halftones are not needed
on these output devices. ◆

C H A P T E R 4

Advanced Printing Features

About Advanced Printing Features 4-17

Pattern Synonym

A style object can refer to a tag object that contains the gxPatternSynonymTag

synonym. This synonym causes QuickDraw GX to print with the pattern specified in the

tag instead of the specification in the pattern property of the style. For example, vector

devices typically support crosshatch patterns.

The gxPatternSynonymTag structure defines the contents of a

gxPatternSynonymTag synonym:

struct gxPatternSynonym {

long patternType;

fixed angle;

fixed spacing;

fixed thickness;

gxPoint anchorPoint;

};

Field descriptions

patternType The pattern type, either gxHatch or gxCrossHatch.

angle The angle of the lines in the pattern.

spacing The distance between the lines in the pattern.

thickness The thickness of the lines in the pattern.

anchorPoint A point that specifies the upper-left corner at which the pattern
begins.

Cubic Synonym

A path shape object can refer to a tag object that contains the gxCubicSynonymTag

synonym. This synonym causes QuickDraw GX to print with a representation of the

shape using cubics, such as Bezier curves, instead of the quadratic Bezier curves

specified in the shape’s geometry.

The data in this synonym is ignored, however, when

■ it is attached to any shape object other than a path

■ the shape object’s transform hierarchy changes the perspective

■ the shape object exceeds the PostScript point limit for the destination device

■ the shape object is used as a pattern, dash, clip, cap, or join

C H A P T E R 4

Advanced Printing Features

4-18 About Advanced Printing Features

The gxCubicSynonymTag synonym contains a stream of flags and points. The flags are

specified in the gxCubicSynonym enumeration:

enum gxCubicSynonym{

gxIgnoreFlag = 0x0000,

gxLineToFlag = 0x0001,

gxCurveToFlag = 0x0002,

gxMoveToFlag = 0x0003,

gxClosePathFlag = 0x0004

};

Constant descriptions

gxIgnoreFlag Ignore this flag; get the next one.

gxLineToFlag Draw a line from the current point to the point specified after this
flag.

gxCurveToFlag Draw a curve from the current point through the three points
specified after this flag.

gxMoveToFlag Move the start of a new contour, which becomes the current point,
to the point specified after this flag.

gxClosePathFlag
Close the contour.

The point, line, or curve specified after a line follow the conventions for a point, line, or

curve, (gxPoint, gxLine, or gxCurve), respectively. The rendering of the shape still

depends on the fill of the shape object and the shape object’s style, ink, and transform.

Each flag is a short integer; however, QuickDraw GX only considers the low 8 bits. Your

application can store application-specific flags in the other 8 bits of the word. Set bits that

are not used to 0.

QuickDraw Picture Synonym

When QuickDraw GX spools a document containing QuickDraw imaging commands, it

creates and flattens, for each page, a QuickDraw GX rectangle shape with an attached

tag object of tag type 'pict' (the QuickDraw GX constant for that tag type is

gxQuickDrawPictTag). The tag object contains information that specifies the

characteristics and location of a file containing QuickDraw picture data for that page.

When QuickDraw GX subsequently despools the file, it (or the printer driver) uses the

QuickDraw GX Translator to convert the QuickDraw picture data into a QuickDraw GX

picture shape before printing it. The tag object contains a gxQuickDrawPict structure:

struct gxQuickDrawPict {

gxTranslationOptions options;

Rect srcRect;

Point styleStretch;

C H A P T E R 4

Advanced Printing Features

About Advanced Printing Features 4-19

unsigned long dataLength;

struct gxBitmapDataSourceAlias alias;

};

Field descriptions

options The translation options to be used by the QuickDraw GX Translator
when converting the QuickDraw data.

srcRect The source rectangle for the translation, in QuickDraw coordinates.
It controls scaling of the image. This rectangle is the QuickDraw
picture frame that bounds the QuickDraw data.

styleStretch The scale factor (both horizontal and vertical) to apply to certain
items, such as dashes, in QuickDraw picture comments.

dataLength The length of the QuickDraw picture data, in bytes.

alias A structure that defines the location of the file containing the
QuickDraw data, and the offset within the file to that data.

The QuickDraw GX rectangle shape that the tag object is attached to specifies the

destination bounding rectangle for drawing the QuickDraw data (in QuickDraw

coordinates). The relative sizes of the source rectangle and destination rectangle control

the scaling of the image when it is translated.

The QuickDraw GX Translator is described in the environment chapter of Inside
Macintosh: QuickDraw GX Environment and Utilities. Tag objects are described in the tag

objects chapter of Inside Macintosh: QuickDraw GX Objects. The

gxBitmapDataSourceAlias structure is described in the bitmap shapes chapter of

Inside Macintosh: QuickDraw GX Graphics. QuickDraw picture data is described in Inside
Macintosh: Imaging With QuickDraw.

Printing Modes
When you print, QuickDraw GX and the printer driver set up your document for

printing based on the specifications in the printer driver. For example, if you print to a

PostScript printer, QuickDraw GX converts the picture shapes to the appropriate

PostScript directives for you—your application does not need to get involved.

There can be cases, however, in which your application may wish to allow the user to

specify an alternative way of printing. Thus, the user may choose to print in a direct
mode, which is a mode that bypasses QuickDraw GX imaging. For example, direct mode

may be used in the following cases:

■ to send text to an ImageWriter with built-in fonts

■ to send PostScript-only output; for example, by attaching tag objects to empty shape
objects, in which the tag object contains PostScript code

The most common reason that a direct mode may be used is to speed up printing. The

major drawback to direct-mode printing is that the user cannot redirect the print file that

was created during printing to another printer.

C H A P T E R 4

Advanced Printing Features

4-20 About Advanced Printing Features

Direct mode is a kind of job format mode. QuickDraw GX supports three job format

modes, which are shown in Table 4-3. Variables of type gxJobFormatMode are used to

store the print job format mode.

A printer driver may not support all of these modes, or it may support additional modes

that the application and printer driver agree to support. To support a job format mode

other than gxGraphicsJobFormatMode, the application must specify the available

modes. The printer driver uses this list of modes to choose its preferred mode. When the

user chooses to use direct mode, the user is selecting the printer driver’s preferred mode

of printing.

For information about how a printer driver sets the preferred mode, see the printer

driver chapter of Inside Macintosh: QuickDraw GX Printing Extensions and Drivers. For an

example of how to set the available modes and set the preferred mode in response to the

user choosing direct mode, see “Implementing Direct-Mode Printing” on page 4-35.

IMPORTANT

Only use gxTextJobFormatMode printing when the user requests
direct-mode printing. ▲

Pen Tables for Vector Devices
If a device driver for a vector device sets up a pen table, your application can access it to

determine the colors and sizes of the pens in the device’s carousel. The driver sets up a

pen table in a tag object and creates a reference to the tag object in the view device object

associated with the vector device. For more information about how a driver sets up a

pen table, see the printing messages chapter of Inside Macintosh: QuickDraw GX Printing
Extensions and Drivers.

Your application can reference this pen table by retrieving the contents of the

gxPenTableTag tag, which is defined as 'pent', from the view device object

associated with the vector device. For example, if the user creates a line with a thickness

that is smaller than a pen’s thickness, your application could detect this situation and

warn the user that the screen display will not match the printed output.

Table 4-3 Print job format modes

Constant Value Explanation

gxGraphicsJobFormatMode 'grph' Graphics output, which is used as
the default for QuickDraw GX
printing

gxTextJobFormatMode 'text' Text-only output

gxPostScriptJobFormatMode 'post' PostScript-only output

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-21

The gxPenTableEntry structure defines the data available for each pen in the carousel:

struct gxPenTableEntry {

Str31 penName;

gxColor penColor;

fixed penThickness;

short penUnits;

short penPosition;

};

The contents of the gxPenTableTag tag object contain one or more of these pen table

entries. The contents of the gxPenTableTag tag object are defined by a gxPenTable

structure:

struct gxPenTable{

short numPens;

gxPenTableEntry pens[1];

};

Several constants are available for comparison with the contents of the penUnits field:

■ Use gxDeviceUnits to specify device-specific units.

■ Use gxMmUnits to specify millimeters.

■ Use gxInchesUnits to specify inches.

Using Advanced Printing Features

This section shows you how to implement advanced QuickDraw GX printing features in

your application. This section shows you several ways to manipulate job, printer, print

file, and paper-type objects. It also shows you how to set up direct-mode printing and

use synonyms.

Using Advanced Job Object Functions
QuickDraw GX advanced job object functions allow you to obtain specific information

about a particular job object. You can use these functions to

■ retrieve printer driver and device information

■ set or retrieve a job object’s reference constant

■ copy job objects

C H A P T E R 4

Advanced Printing Features

4-22 Using Advanced Printing Features

Obtaining Printer and Printer Driver Information for a Job

The job object contains information about the output and formatting printers. You can

obtain references to these printer objects with the GXGetJobOutputPrinter and

GXGetJobFormattingPrinter functions, respectively. Listing 4-1 shows how to

obtain the reference to the output printer with the GXGetJobOutputPrinter function.

You can use these references to call functions to obtain additional information about the

printer and its driver from the printer object’s properties. Listing 4-1 also shows how to

obtain the printer’s name using the GXGetPrinterName function, the printer driver’s

name using the GXGetPrinterDriverName function, the printer’s type using the

GXGetPrinterType function, and the printer driver’s type using the

GXGetPrinterDriverType function.

For example, you could obtain this information and display it to the user in a dialog box.

In this case, you need to convert the printer type and printer driver type to strings. One

way you can do this is with the BlockMove function, as shown in Listing 4-1.

Listing 4-1 Obtaining the names and types of a printer and printer driver

OSErr MyShowJobPrinterInfo(MyDocumentPtr myDocument)

{

OSErr err;

gxPrinter jobPrinter;

OSType deviceOSType, driverOSType;

Str255 deviceName, deviceType, driverName, driverType;

...

/*

Get the current printer for this job. From that, get the

current device name, driver name, device type, and driver

type.

*/

if (err == noErr)

{

jobPrinter = GXGetJobOutputPrinter(myDocument->documentJob);

GXGetPrinterName(jobPrinter, deviceName);

GXGetPrinterDriverName(jobPrinter, driverName);

deviceOSType = GXGetPrinterType(jobPrinter);

driverOSType = GXGetPrinterDriverType(jobPrinter);

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-23

err = GXGetJobError(myDocument->documentJob);

if (err == noErr)

/*

Since the device and driver type are OSTypes, convert

them to the Pascal strings to display.

*/

{

BlockMove(&deviceOSType, &deviceType[1], (long)

(deviceType[0] = 4));

BlockMove(&driverOSType, &driverType[1], (long)

(driverType[0] = 4));

}

...

return err;

};

Getting and Setting the Reference Constant for a Job Object

QuickDraw GX maintains a reference constant in each job object for your application’s

use. You can use the GXGetJobRefCon function to obtain the reference constant and use

the GXSetJobRefCon function to set it. These functions allow you to associate your

own data with a particular job object.

For example, Listing 4-2 shows how you can store a pointer to the document data in the

reference constant of a job object for use by an override function that is called by

QuickDraw GX.

Listing 4-2 Setting the job object’s reference constant property

OSErr MyDoFormatDialog(MyDocumentPtr myDocument)

{

OSErr err;

gxFormat pageFormat;

gxDialogResult result;

gxEditMenuRecord editMenuRec;

...

/*

Store the pointer to the document in the job object's

reference constant to access it within the GXFormatDialog

override.

*/

GXSetJobRefCon(myDocument->documentJob, myDocument);

C H A P T E R 4

Advanced Printing Features

4-24 Using Advanced Printing Features

/* Display and handle the Custom Page Setup dialog box. */

result = GXFormatDialog(pageFormat, nil, &editMenuRec);

...

return err;

}

Listing 4-3 shows the override of the GXFormatDialog function, in which the format’s

job object is retrieved. From the job object, the reference constant property is retrieved,

allowing access to the document associated with the job object from the override

function.

Listing 4-3 Getting the job object’s reference constant property

OSErr MyFormatDialogOverride(gxFormat aFormat, StringPtr title,

gxDialogResult *result)

{

MyDocumentPtr myDocument;

gxJob formatJob;

/*

Get the current job object by calling GXGetJob. Retrieve the

pointer to the document, and use it to set up the dialog box

panel.

*/

formatJob = GXGetJob();

myDocument = GXGetJobRefCon(formatJob);

MySetUpPanel(aFormat, myDocument,

GXGetMessageHandlerResFile());

/* Finally, forward this message to other handlers.*/

return Forward_GXFormatDialog(aFormat, title, result);

}

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-25

Copying Job Object Information

You can duplicate a job object using the GXCopyJob function. This function allows you

to take an existing job object that references the output and formatting printers, format

object, and other job-specific information, and duplicate it for use with another

document. Listing 4-4 shows how to copy the job object from the source document to the

destination document. References to formats are no longer valid after you change job

objects because the formats are based on another job object. You must set these references

to nil.

Listing 4-4 Copying job object information

OSErr MyCopyJobToDoc(MyDocumentPtr srcDocument, MyDocumentPtr

destDocument)

{

long pg;

/*

Copy the job object information. Note that this changes any

formats that the destination job originally had (and the

old references become invalid).

*/

GXCopyJob(srcDocument->documentJob, destDocument->documentJob);

/* Invalidate any old format object references */

for (pg = 1; pg <= destDocument->numPages; pg++)

destDocument->pageFormat[pg -1] = nil;

return GXGetJobError(srcDocument->documentJob);

}

Working With Printer Objects
Each job object references two printer objects, a formatting printer and an output printer.

A printer object is implicitly created by the GXNewJob function. There is no external

application interface to create or dispose of printer objects.

Examples of how to retrieve a printer object’s properties, such as the printer name,

printer type, driver name, and driver type are shown in Listing 4-1 on page 4-22. The

following sections show you how to obtain the view devices associated with a printer

and use them to determine a printer’s resolution, color space, and color profile.

C H A P T E R 4

Advanced Printing Features

4-26 Using Advanced Printing Features

Determining a Printer’s Resolution

You can determine a printer’s resolution from the view devices to which the printer

refers. The mapping property of the view device object contains a matrix in which the

scaling information is stored. Listing 4-5 shows how to obtain the highest resolution that

a printer supports.

Listing 4-5 Determining a printer’s resolution

void MyGetFormatDeviceResolution(gxJob whichJob,

fixed *hRes, fixed *vRes)

{

gxPrinter formatPrinter;

long numViewDevices, idx;

gxViewDevice printerVDev;

gxMapping vDevMapping;

*hRes = 0;

*vRes = 0;

/*

Get the formatting printer and the number of

view devices for that printer.

*/

formatPrinter = GXGetJobFormattingPrinter(whichJob);

numViewDevices = GXCountPrinterViewDevices (formatPrinter);

/* Loop through the view devices that this printer supports. */

for (idx = 1; idx <= numViewDevices; idx++)

{

printerVDev = GXGetPrinterViewDevice(formatPrinter, idx);

GXGetViewDeviceMapping(printerVDev, &vDevMapping);

if ((vDevMapping.map[0][0] > *hRes) &&

(vDevMapping.map[1][1] > *vRes))

{

*hRes = vDevMapping.map[0][0];

*vRes = vDevMapping.map[1][1];

}

}

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-27

/*

Convert scaling factors (multiples of 72 dpi) into

resolutions.

*/

*hRes = FixedMultiply(*hRes, ff(72));

*vRes = FixedMultiply(*vRes, ff(72));

}

Retrieving the Color Profile and Color Space for a Printer

If you wish to retrieve the color profile for a printer, you can call the

GXFindPrinterProfile function to obtain the reference to a printer’s color profile

object, or you can call the GXFindFormatProfile function to obtain the reference to a

format’s color profile object. You can set these color profiles with the

GXSetPrinterProfile and GXSetFormatProfile functions, respectively. These

functions are described in the reference section of this chapter, starting on page 4-84.

If you want to obtain the color profile of a printer associated with a job object, you can

obtain the printer object and, with this reference, you can obtain a reference to the

printer’s view device. The view device’s bitmap shape points to both the color set and

the color profile for the printer. Listing 4-6 shows how to retrieve the color profile and

color space for the formatting printer.

Listing 4-6 Retrieving the printer’s color profile and color space

gxColorProfile MyGetFormattingPrinterProfile

(MyDocumentPtr myDocument, gxColorSpace *theSpace)

{

gxShape deviceBitMap;

gxBitmap deviceBits;

gxPrinter formattingPrinter;

gxColorProfile theProfile;

gxViewDevice printerDevice;

/* Get the first profile for the formatting printer. */

formattingPrinter =

GXGetJobFormattingPrinter(myDocument->documentJob);

GXFindPrinterProfile(formattingPrinter, nil, 1, &theProfile);

C H A P T E R 4

Advanced Printing Features

4-28 Using Advanced Printing Features

/*

Look at the characteristics of the formatting printer’s

view device and retrieve the printer’s color space.

*/

printerDevice = GXGetPrinterViewDevice(formattingPrinter, 0);

deviceBitMap = GXGetViewDeviceBitmap(printerDevice);

GXGetBitmap(deviceBitMap, &deviceBits, nil);

*theSpace = deviceBits.space;

GXDisposeShape(deviceBitMap);

return theProfile;

}

Listing 4-7 shows how the printer’s color profile and color space may be used to

determine if a color to be printed is in gamut and to convert the color into the printer’s

color space.

Listing 4-7 Using the printer’s color profile to convert colors

Boolean MyMakePrinterColor(gxJob theJob, gxColor *sourceColor,

gxColor *printedColor)

{

gxColorProfile printerProfile;

gxColorSpace printerSpace;

Boolean inGamut;

/* Get the printer’s profile. */

printerProfile = MyGetFormattingPrinterProfile(theJob,

 &printerSpace);

/*

Copy the source color, see if it is in gamut, and convert it

into the device’s color space.

*/

*printedColor = *sourceColor;

inGamut = GXCheckColor(printedColor, printerSpace, nil,

 printerProfile);

GXConvertColor(printedColor, printerSpace, nil,

printerProfile);

return inGamut;

}

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-29

Note
For more information about colors, color profiles, and color spaces, see
the color and color-related objects chapter of Inside Macintosh: QuickDraw
GX Objects. ◆

Manipulating Print File Objects
Print files can only be created by printing, which causes the document to be spooled to

the file. A portable digital document is a print file created by the user printing to a PDD

Maker GX desktop printer.

After you create a print file, your application or another application can manipulate it.

QuickDraw GX allows your application to

■ open and close a print file

■ save a print file

■ retrieve a job object associated with a print file

■ retrieve page or page format data from a print file

■ count the pages in a print file

■ delete, replace, or insert pages

Opening and Closing a Print File

You use the GXOpenPrintFile function to open a print file and use the

GXClosePrintFile function to close one. You must provide a job object when you

open the print file. You can dispose of the job object after the file is closed.

Listing 4-8 shows how to open and close a print file. It also shows how to determine the

number of pages in a print file with the GXCountPrintFilePages function.

Listing 4-8 Opening and closing a print file

OSErr MyGetPrintFilePages(FSSpec *printFSSpec, long *numCopies)

{

OSErr err;

gxPrintFile thePrintFile;

gxJob fileJob;

/*

Create a new job object for GXOpenPrintFile, open the print

file object, get the number of pages in it, close it, and

check for errors. Finally, dispose of the temporary job

object and return.

*/

err = GXNewJob(&fileJob);

C H A P T E R 4

Advanced Printing Features

4-30 Using Advanced Printing Features

if (err == noErr)

{

thePrintFile = GXOpenPrintFile(fileJob, printFSSpec,

fsCurPerm);

*numCopies = GXCountPrintFilePages(thePrintFile);

GXClosePrintFile(thePrintFile);

err = GXGetJobError(fileJob);

GXDisposeJob(fileJob);

}

return err;

}

Saving a Print File

You use the GXSavePrintFile function to save a print file. You should save a print file

after you have added, deleted, or modified its pages, formats, or job object information.

Obtaining the Job Object for a Print File

You use the GXGetPrintFileJob function to obtain the job object associated with a

particular print file object. This function is useful for determining which job object was

associated with the print file when the file was opened by the GXOpenPrintFile

function, if the reference to the job object was not saved.

Reading Print File Data

You use the GXReadPrintFilePage function to retrieve a page from a print file along

with its page format. The page is returned as a single picture shape, which is how it is

stored in the file, even if the page was created with several calls to GXDrawShape.

When you call GXReadPrintFilePage, you must specify the page number for the

page, starting from 1. You must also specify which view ports you want the picture

shape to refer to, so that the shape can be drawn through them when it is displayed

onscreen. Listing 4-9 shows how to read a page from a print file.

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-31

Listing 4-9 Reading a page from a print file

OSErr MyReadPrintFilePage(MyDocumentPtr myDocument, FSSpec

*printFSSpec, long whichPg,

gxFormat *pgFormat, gxShape *pgShape)

{

gxPrintFile thePrintFile;

/*

Open the print file object, read the page, close the file,

and check for errors.

*/

thePrintFile = GXOpenPrintFile(myDocument->documentJob,

printFSSpec, fsCurPerm);

GXReadPrintFilePage(thePrintFile, whichPg, 1,

&myDocument->documentViewPort, pgFormat, pgShape);

GXClosePrintFile(thePrintFile);

return GXGetJobError(myDocument->documentJob);

}

Counting the Pages in a Print File

You use the GXCountPrintFilePages function to count the number of pages in the

print file object that you specify. See Listing 4-8 on page 4-29 for an example.

Adding or Deleting Print File Pages

After the user prints a file, you can replace, delete, or insert pages. You use the

GXReplacePrintFilePage function to replace a single page from a print file. You can

use the GXDeletePrintFilePageRange function to delete a range of pages within a

specified print file. You can use the GXInsertPrintFilePage function to insert a page

in a print file. For changes to the print file to take effect permanently, you must call

GXSavePrintFile before you call GXClosePrintFile.

Defining Different Paper Sizes
QuickDraw GX allows you to define unique paper types for the individual pages of a

printable document. You can use the GXNewPaperType function to create a new

paper-type object for the specified job object, or you can use the GXGetNewPaperType

function to load a paper-type object from a resource. You use the GXGetJobPaperType

function to obtain a specific paper-type object by its index into the total set of paper-type

object definitions that are accessible from a specific job object. You can use the

GXCountJobPaperTypes to obtain the total number of paper-type object definitions

that are accessible to a particular job object.

C H A P T E R 4

Advanced Printing Features

4-32 Using Advanced Printing Features

Creating a Paper-Type Object

Listing 4-10 shows how to create a new paper-type object. When you create a paper-type

object, you specify its name and rectangles that define the paper type’s page size and

paper size.

Listing 4-10 Creating a new paper-type object

OSErr MyCreatePaperType(MyDocumentPtr myDocument, Str31 paperName,

gxRectangle *pageSize,gxRectangle *paperSize,

gxPaperType *newPaperType)

{

*newPaperType = GXNewPaperType(myDocument->documentJob,

paperName, pageSize, paperSize);

return GXGetJobError(myDocument->documentJob);

}

You use the GXDisposePaperType function to dispose of a paper-type object when it is

no longer needed.

Obtaining the Name of a Paper Type

You use the GXGetPaperTypeName function to obtain a paper-type object’s name.

Listing 4-11 shows how to use this function to obtain the name of a paper-type object

associated with a format object.

Listing 4-11 Obtaining a paper-type object’s name

OSErr MyGetPaperTypeName(MyDocumentPtr myDocument, Str255

paperTypeName)

{

gxPaperType thePaperType;

long curPage;

gxFormat pgFormat;

/*

Get the format object for the current page. If it is nil,

you should use the default format.

*/

curPage = myDocument->curPage;

pgFormat = myDocument->pageFormat[curPage -1];

if (pgFormat == nil)

pgFormat = GXGetJobFormat(myDocument->documentJob, 1);

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-33

/* Get the format object's paper-type and name. */

thePaperType = GXGetFormatPaperType(pgFormat);

GXGetPaperTypeName(thePaperType, paperTypeName);

return GXGetJobError(myDocument->documentJob);

}

Obtaining the Dimensions of a Paper Type

You use the GXGetPaperTypeDimensions function to obtain the page rectangle and

the paper rectangle associated with a paper-type object. The page rectangle is the

imageable portion of a page. The paper rectangle defines the size of a page. The rectangle

size is specified in fixed 72 dpi units. Listing 4-12 shows how to use this function.

Listing 4-12 Obtaining page and paper rectangles for a paper-type object

OSErr MyGetPaperTypeDimensions(MyDocumentPtr myDocument,

gxRectangle *pageBounds,

gxRectangle *paperBounds)

{

gxPaperType thePaperType;

long curPage;

gxFormat pgFormat;

/*

Get the format object for the current page. If it is nil, use

the job object’s default format.

*/

curPage = myDocument->curPage;

pgFormat = myDocument->pageFormat[curPage -1];

if (pgFormat == nil)

pgFormat = GXGetJobFormat(myDocument->documentJob, 1);

/*

Get the format’s paper type and the paper type’s bounds.

Note that you can also use GXGetFormatDimensions to do this.

*/

thePaperType = GXGetFormatPaperType(pgFormat);

GXGetPaperTypeDimensions(thePaperType, pageBounds,

paperBounds);

return GXGetJobError(myDocument->documentJob);

}

C H A P T E R 4

Advanced Printing Features

4-34 Using Advanced Printing Features

Scanning the Paper Types Available to a Job

You use the GXForEachJobPaperTypeDo function to call an application-defined

function for each paper-type object that is accessible to a particular job. The parameters

for the GXForEachJobPaperTypeDo function, in order, are:

■ the job object whose paper-type objects you wish to examine or change

■ a pointer to the application-defined function you want to execute on these paper-type
objects

■ a pointer to a reference constant that refers to additional data you want to make
available to the application-defined function

■ a Boolean value that specifies whether you wish to include paper-type objects
associated with the formatting printer (true) or those associated with the output
printer (false)

Listing 4-13 shows you how to call an application-defined function,

MyPaperTypeFunction, for each paper-type object associated with the print job’s

output printer. The pointer to the reference constant is nil.

Listing 4-13 Executing a function for each paper-type object

OSErr MyListAllPaperTypes(MyDocumentPtr myDocument)

{

GXForEachJobPaperTypeDo(myDocument->documentJob,

(gxPaperTypeProc) MyPaperTypeFunction, nil,

false);

return GXGetJobError(myDocument->documentJob);

}

An application-defined function executed by the GXForEachJobPaperTypeDo

function is defined as follows:

typedef gxLoopStatus (*gxPaperTypeProc) (gxPaperType aPaperType,

void *refCon);

The first parameter to the application-defined function is the paper-type object that is to

be processed. It is set by the GXForEachJobPaperTypeDo function to the next

paper-type object automatically. The second parameter is the reference constant passed

in by the call to GXForEachJobPaperTypeDo. The application-defined function returns

a loop status, which it may set to terminate the GXForEachJobPaperTypeDo function

before every paper-type object has been processed.

Listing 4-14 shows an example of an application-defined function that retrieves the

paper type’s name and dimensions and can be used to display them. It always returns

gxKeepLooping, which prevents the GXForEachJobPaperTypeDo function from

terminating until each paper-type object has been processed.

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-35

Listing 4-14 Executing a procedure for each paper-type object

pascal gxLoopStatus MyPaperTypeFunction(gxPaperType thePaperType,

void *refCon)

{

gxRectangle pageBounds, paperBounds;

Str255 paperTypeName;

/* Get the paper-type object's name. */

GXGetPaperTypeName(thePaperType, paperTypeName);

/* Add code here to display the paper-type object's name. */

...

/* Get the paper-type object's dimensions. */

GXGetPaperTypeDimensions(thePaperType, &pageBounds,

&paperBounds);

/* Add code here to display the dimensions. */

...

/* Keep looping until all paper types are accessed. */

return gxKeepLooping;

}

Implementing Direct-Mode Printing
Some printer drivers support direct-mode printing, also known as text job format mode

printing, in which the generality of QuickDraw GX printing is traded off for faster

output using unique features built into the printer hardware. For example, an

ImageWriter II printer contains built-in fonts, and its printer driver can make use of

them to provide faster printing of text. The printer driver typically allows the user to

choose direct-mode printing in these cases.

To allow printing in a nongraphics mode, you must call the

GXSetAvailableJobFormatModes function to inform the printer driver of all the

modes that the application supports, such as gxGraphicsJobFormatMode for

QuickDraw GX printing, gxTextJobFormatMode for direct-mode printing, and

gxPostScriptJobFormatMode for PostScript-only printing.

All applications should support QuickDraw GX printing. Your application might

support direct-mode printing by reformatting the document to match the way it will

look when printed, or support PostScript-only output by warning the user that the

output cannot be retrieved from a print file when printed in this mode.

C H A P T E R 4

Advanced Printing Features

4-36 Using Advanced Printing Features

Note
If you are reformatting the document to match the fonts built into the
printer, you must query the printer for the fonts, line lengths, and other
information using the GXJobFormatModeQuery function. For more
information about the information that can be obtained, see the
following section, “Formatting for Text Job Format Mode Printing.” ◆

If you want to know the mode in effect after the user dismisses the Page Setup dialog

box, you can call GXGetJobFormatMode. To change it, you can call

GXSetJobFormatMode.

Formatting for Text Job Format Mode Printing
If the user chooses to print in a direct mode and the driver’s preferred mode is

gxTextJobFormatMode, you may choose to reformat the document based on

the characteristics of the printer. You must query the printer driver to obtain these

characteristics by calling the GXJobFormatModeQuery function, which is described on

page 4-83.

QuickDraw GX provides an enumerated data type whose values specify the

characteristics that you may determine. You use one of these values in the

GXGetJobFormatModeQuery function to specify the characteristic of interest. Table 4-4

identifies these characteristics. Variables of type gxQueryType are used to store the kind

of request.

A query returns a pointer to a data structure that contains the requested information.

The kind of data structure depends on the kind of query.

Table 4-4 Text job format mode query options

Constant Explanation

gxGetJobFormatLineConstraintQuery Used to determine line constraint
characteristics

gxGetJobFormatFontConstraintQuery Used to determine font positioning
constraints

gxGetJobFormatFontCommonStylesQuery Used to determine the style name,
such as “normal” or “bold”

gxSetStyleJobFormatCommonStyleQuery Used to set style contents

gxGetJobFormatFontsQuery Used to determine font information

C H A P T E R 4

Advanced Printing Features

Using Advanced Printing Features 4-37

The following structures are used to interpret the source and destination data:

■ For the gxGetJobFormatLineConstraintQuery query, the source data is nil,
and the destination data is returned in a gxPositionConstraintTable structure:

struct gxPositionConstraintTable {

gxPoint phase;

gxPoint offset;

long numSizes;

Fixed sizes[1];

};

■ For the gxGetJobFormatFontConstraintQuery query, the source data is a
gxFont reference and the destination data is also returned in a
gxPositionConstraintTable structure.

Note

A numSizes value of gxConstraintRange indicates a range of sizes,
in which size[0] specifies the minimum size and size[1] specifies
the maximum size. ◆

■ For the gxGetJobFormatFontCommonStylesQuery query, the source data is a
gxFont reference, and the destination data is returned in a gxStyleNameTable
structure:

struct gxStyleNameTable {

long numStyleNames; /* number of style names */

Str255 styleNames[1]; /* any number of style names */

};

■ For the gxSetStyleJobFormatCommonStyleQuery query, the source data is a
style name from a gxStyleNameTable structure, and the destination data is
returned in a gxStyle reference.

■ For the gxGetJobFormatFontsQuery query, the source data is nil, and the
destination data is returned in a gxFontTable structure:

struct gxFontTable {

long numFonts; /* number of font references */

gxFont fonts[1]; /* any number of font references */

};

C H A P T E R 4

Advanced Printing Features

4-38 Advanced Printing Features Reference

Using Synonyms

Synonyms allow you to specify how QuickDraw GX objects are to be printed. Normally,

you do not need to use synonyms because QuickDraw GX and the printer driver

determine how output is to be rendered and handle it for you. There may be occasions,

however, when you want to explicitly specify how an object is to be printed. For

example, you might want to specify how to render a path in cubics or explicitly specify

the PostScript operators to use when printing an object.

A synonym is stored as a tag object that is referred to by the shapes, inks, transforms, or

other objects that use it. There are several ways you can set up your tag object, which are

described in the tag objects chapter of Inside Macintosh: QuickDraw GX Objects. Whenever

you set up your tag, you must specify the tag type and the data itself. For example, the

tag type for PostScript is gxPostScriptTag. Its data is a stream of PostScript, such as

the following:

0 0 moveto 10 10 lineto stroke

For more information about the synonyms provided by QuickDraw GX, see the section

“Synonyms” on page 4-11.

Advanced Printing Features Reference

This section describes the constants, data types, and functions that are specific to

advanced printing features of QuickDraw GX.

The Constants and Data Types sections show the enumerations and data types for loop

status information for paper-type objects and printer objects, job object direct modes,

status dialog box information, paper-type object mapping information, paper-type object

view device tag objects, and synonym information.

The “Functions” section describes functions for working with advanced job object

functions, manipulating printer objects, working with QuickDraw GX print file objects,

working with paper types, and formatting for specific devices.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-39

Constants and Data Types for Advanced Printing Features

This section describes the data types and constants that you use for job format modes,

status dialog box information, and pen tables for vector devices.

Job Format Modes

QuickDraw GX provides job format modes that allow a printer driver and an application

to negotiate the best mode for printing. The gxJobFormatMode data type specifies

modes, which are enumerated as follows:

enum {

/* direct modes for job objects */

gxGraphicsJobFormatMode = (gxJobFormatMode) 'grph',

gxTextJobFormatMode = (gxJobFormatMode) 'text',

gxPostscriptJobFormatMode = (gxJobFormatMode) 'post'

};

typedef OSType gxJobFormatMode;

Constant descriptions

gxGraphicsJobFormatMode
If set, QuickDraw GX uses graphics mode.

gxTextJobFormatMode
If set, QuickDraw GX uses text mode.

gxPostScriptJobFormatMode
If set, QuickDraw GX uses PostScript mode.

The application calls the GXSetAvailableJobFormatModes function to inform the

printer driver of the modes that the application supports, using a

gxJobFormatModeTable structure to identify the supported modes.

struct gxJobFormatModeTable{

long numModes; /* number of direct modes */

gxJobFormatMode modes[1]; /* any number direct modes */

};

Field descriptions

numModes The number of modes that the application supports.

modes[1] An array that contains the modes.

C H A P T E R 4

Advanced Printing Features

4-40 Advanced Printing Features Reference

Text Job Format (Direct) Mode

QuickDraw GX provides a text job format mode, sometimes called a direct mode, to

format a document to optimize for particular features and capabilities of a device. For

example, text mode provides a fast way to print text using the built-in fonts on a device.

This feature provides a replacement for draft printing, which was available in previous

versions of the printing architecture.

QuickDraw GX defines query types in the query type enumeration to be used with the

gxQueryType data type:

enum {

/* query types */

gxGetJobFormatLineConstraintQuery = (gxQueryType) 0,

gxGetJobFormatFontsQuery = (gxQueryType) 1,

gxGetJobFormatFontCommonStylesQuery = (gxQueryType) 2,

gxGetJobFormatFontConstraintQuery = (gxQueryType) 3,

gxSetStyleJobFormatCommonStyleQuery = (gxQueryType) 4

};

typedef long gxQueryType;

Constant descriptions

gxGetJobFormatLineConstraintQuery
Used to determine line constraint characteristics.

gxGetJobFormatFontsQuery
Used to determine font information.

gxGetJobFormatFontCommonStylesQuery
Used to determine the style name, such as “normal” or “bold.”

gxGetJobFormatFontConstraintQuery
Used to determine font positioning constraints.

gxSetStyleJobFormatCommonStyleQuery
Used to set style contents.

QuickDraw GX defines constraint ranges for the constraint table in the constraint range

enumeration:

enum { gxConstraintRange = -1 };

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-41

QuickDraw GX stores constraint information in the position constraint table information

structure:

struct gxPositionConstraintTable {

gxPoint phase;

gxPoint offset;

long numSizes;

Fixed sizes[1];

};

Field descriptions

phase Where to start from the upper-left corner of the page.

offset The distance between legal character positions.

numSizes The number of sizes.

sizes[1] An array of sizes.

QuickDraw GX stores style information in the style name table information structure:

struct gxStyleNameTable{

long numStyleNames;

Str255 styleNames[1];

};

Field descriptions

numStyleNames The number of style names.

styleNames[1] An array of strings containing any number of style names.

QuickDraw GX stores font information in the font table information structure:

struct gxFontTable {

long numFonts;

gxFont fonts[1];

};

Field descriptions

numFonts The number of fonts.

fonts An array of fonts.

C H A P T E R 4

Advanced Printing Features

4-42 Advanced Printing Features Reference

The Status Structure

QuickDraw GX defines status type IDs to report various conditions. Not all of these

conditions can be reported from the application. For example, although QuickDraw GX

defines a status ID for the percentage completion of a print job, it is not available to the

application because printing takes place in the background. Status type IDs are specified

in the following enumeration:

struct gxStatusRecord {

unsigned short statusType;

unsigned short statusId;

unsigned short statusAlertId;

Signature statusOwner;

short statResId;

short statResIndex;

short dialogResult;

unsigned short bufferLen;

char statusBuffer[1];

};

typedef struct gxStatusRecord gxStatusRecord;

Field descriptions

statusType The type of status that this structure represents. This is one of the
values shown in Table 4-5.

statusId The ID of the status that this structure represents. If the value of this
field is 0, there is no associated printing alert ('plrt') resource.

statusAlertId The ID of the printing alert for this status.

statusOwner The creator type of the owner of this status structure.

statResId The resource ID for the status ('stat') resource used to process
this status.

statResIndex The index value for indexing into the status resource for this status.

dialogResult The ID of the button string that was selected to dismiss the printing
alert box associated with this status.

bufferLen The number of bytes in the status buffer.

statusBuffer This field is a buffer for the caller to store any additional
information for use by the status-handling function.

Note

The triplet of values that includes the statusOwner, statResId, and
statResIndex fields must be unique for each status structure. ◆

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-43

Table 4-5 shows the status types that you can specify in a status structure.

Pen Tables for Vector Devices

QuickDraw GX defines a tag object for a paper-type object’s view device in the pen table

tag enumeration:

enum { gxPenTableTag = 'pent' };

QuickDraw GX defines paper-type object units in the paper-type units enumeration:

enum {

gxDeviceUnits = 0,

gxMmUnits = 1,

gxInchesUnits = 2

};

Table 4-5 Status type IDs

Constant Value Explanation

gxNonFatalError 1 Affects the icon in the status dialog box

gxFatalError 2 Sends a printing alert to the status dialog
box

gxPrinterReady 3 Signals QuickDraw GX to leave alert mode

gxUserAttention 4 Signals initiation of a modal dialog box

gxUserAlert 5 Signals initiation of a printing alert box

gxPageTransmission 6 Signals that a page was sent to the printer
and decrements the page counts in strings
that are displayed to the user

gxOpenConnectionStatus 7 Signals QuickDraw GX to begin animation
on printer icon

gxInformationalStatus 8 Specifies the default status type and has no
side effects

gxSpoolingPageStatus 9 Signals that a page was spooled and
increments the page count in the status
dialog box

gxEndStatus 10 Signals that spooling has ended

gxPercentageStatus 11 Signals QuickDraw GX as to the amount of
the job that is currently complete

C H A P T E R 4

Advanced Printing Features

4-44 Advanced Printing Features Reference

Constant descriptions

gxDeviceUnits If set, QuickDraw GX uses specific printer units.

gxMmUnits If set, QuickDraw GX uses millimeters.

gxInchesUnits If set, QuickDraw GX uses inches.

QuickDraw GX defines pen information in the pen not loaded enumeration:

enum { gxPenNotLoaded = -1};

QuickDraw GX stores pen table information in the pen table information structure:

struct gxPenTableEntry {

Str31 penName;

gxColor penColor;

fixed penThickness;

short penUnits;

short penPosition;

};

Field descriptions

penName A string containing the name of the pen.

penColor The color that is part of the color set.

penThickness The size of the pen.

penUnits The units in which the pen thickness is defined.

penPosition The pen position in the carousel.

QuickDraw GX stores pen information in the pen table information structure:

struct gxPenTable {

short numPens;

gxPenTableEntry pens[1];

};

Field descriptions

numPens The number of pen entries.

pens[1] An array of pen entries.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-45

Constants and Data Types for Synonyms

This section describes the data types and constants that you use for synonyms.

General-Purpose PostScript Operator Synonym

The gxPostScriptTag synonym ('post') for the general-purpose PostScript operator

is defined:

#define gxPostScriptTag 0x706f7374

PostScript Control Information Synonym

The gxPostControlTag synonym ('psct') for the PostScript control information is

defined:

#define gxPostControlTag 0x70736374

The gxPostControl structure defines the contents of a gxPostControlTag synonym:

struct gxPostControl {

long flags;

};

Field descriptions

flags A flag that specifies how a shape is embedded in the PostScript data
stream. If it is gxNoSave, the PostScript data should be
encapsulated between a save and restore combination. If gxNoSave
is not specified or the gxPostControlTag synonym is not present,
the save and restore combination is used.

QuickDraw GX defines PostScript state flag information in the gxPsStateFlags

enumeration:

enum gxPsStateFlags{

gxNoSave = 1 /* don’t do save-restore around PostScript */

/* data */

};

C H A P T E R 4

Advanced Printing Features

4-46 Advanced Printing Features Reference

Dash Synonym

The gxDashSynonymTag synonym ('sdsh') for dashes is defined:

#define gxDashSynonymTag 0x73647368

The gxDashSynonym structure defines the contents of a gxDashSynonymTag synonym:

struct gxDashSynonym {

long size;

fixed dashLength[gxAnyNumber]

};

Field descriptions

size The number of elements in a dash array.

dashLength The array of lengths for the dashes.

Halftone Synonym

The gxFormatHalftoneInfo structure defines the contents of a

gxFormatHalftoneTag synonym:

struct gxFormatHalftoneInfo {

long numHalftones;

gxHalftone halftones[1];

};

Field descriptions

numHalftones The number of halftones available for use.

halftones The array of halftone specifications.

Halftones are specified in the gxHalftone structures, which are described completely

in the view-related objects chapter of Inside Macintosh: QuickDraw GX Objects:

struct gxHalftone{

fixed angle; /* direction of halftone */

fixed frequency; /* cells per inch */

gxDotType method; /* kind of pattern */

gxTintType tinting; /* tint calculation method */

gxColor dotColor; /* color of foreground */

gxColor backgroundColor; /* color of background */

gxColorSpace tintSpace; /* color space for tint */

};

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-47

Line Cap Synonym

The gxLineCapSynonymTag synonym ('lcap') for dashes is defined:

#define gxLineCapSynonymTag 0x6C636170

QuickDraw GX defines line cap information in the line cap synonym enumeration:

enum gxLineCaps{

gxButtCap = 0,

gxRoundCap = 1,

gxSquareCap = 2,

gxTriangleCap = 3

};

typedef long gxLineCapSynonym;

Constant descriptions

gxButtCap Use a cap that does not look like a cap, such as the PostScript butt
cap.

gxRoundCap Use a round cap, such as the PostScript round cap.

gxSquareCap Use a square cap, such as the PostScript projecting square cap.

gxTriangleCap Use a triangle cap.

Pattern Synonym

The gxPatternSynonymTag synonym ('ptrn') for patterns is defined:

#define gxPatternSynonymTag 0x7074726E

The gxPatternSynonym structure defines the contents of a gxPatternSynonymTag

synonym:

struct gxPatternSynonym {

long patternType;

fixed angle;

fixed spacing;

fixed thickness;

gxPoint anchorPoint;

};

C H A P T E R 4

Advanced Printing Features

4-48 Advanced Printing Features Reference

Field descriptions

patternType The pattern type, either gxHatch or gxCrossHatch.

angle The angle of the lines in the pattern.

spacing The distance of the lines in the pattern.

thickness A point that specifies the upper-left corner at which the pattern
begins.

Patterns can be either hatch or crosshatch:

enum gxPatterns {

gxHatch = 0,

gxCrossHatch = 1

};

Constant descriptions

gxHatch Use a hatch pattern.

gxCrossHatch Use a crosshatch pattern.

Cubic Synonym

The gxCubicSynonymTag synonym ('cubx') for cubics is defined:

#define gxCubicSynonymTag 0x63756278

QuickDraw GX defines cubic synonym information in the cubic synonym enumeration:

enum gxCubicSynonym{

gxIgnoreFlag = 0

gxLineToFlag = 1

gxCurveToFlag = 2

gxMoveToFlag = 3

gxClosePathFlag = 4

};

typedef short gxCubicSynonymFlags;

Constant descriptions

gxIgnoreFlag Ignore this flag; get the next one.

gxLineToFlag Draw a line from the current point to the point specified after this
flag.

gxCurveToFlag Draw a curve from the current point through the three points
specified after this flag.

gxMoveToFlag Move the start of a new contour, which becomes the current point,
to the point specified after this flag.

gxClosePathFlag
Close the contour.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-49

QuickDraw Picture Synonym

The gxQuickDrawPictTag tag object contains a gxQuickDrawPict structure:

struct gxQuickDrawPict {

gxTranslationOptions options;

Rect srcRect;

Point styleStretch;

unsigned long dataLength;

struct gxBitmapDataSourceAlias alias;

};

Field descriptions

options The translation options to be used by the QuickDraw GX Translator
when converting the QuickDraw data.

srcRect The source rectangle for the translation, in QuickDraw coordinates.
It controls scaling of the image. This rectangle is the QuickDraw
picture frame that bounds the QuickDraw data.

styleStretch The scale factor (both horizontal and vertical) to apply to certain
items, such as dashes, in QuickDraw picture comments.

dataLength The length of the QuickDraw picture data, in bytes.

alias A structure that defines the location of the file containing the
QuickDraw data, and the offset within the file to that data.

Functions

This section describes functions that allow you to implement advanced features of

QuickDraw GX printing. Many of these features are implemented by functions that

manipulate

■ job objects

■ printer objects and associated view-device objects and color profiles

■ print file objects

■ paper-types objects

Included with each function description is a list of specific result codes returned by

QuickDraw GX. In addition to these result codes, you may also receive file-system,

memory, and resource errors. For a complete listing of specific file-system, memory, and

resource errors, see Inside Macintosh: C Summary or Inside Macintosh: Pascal Summary.

C H A P T E R 4

Advanced Printing Features

4-50 Advanced Printing Features Reference

You should note that not all possible result codes for a particular function are included in

function descriptions within this section. For example, the Message Manager, described

in Inside Macintosh: QuickDraw GX Environment and Utilities, allows QuickDraw GX

functions to send specific messages to your application. These messages can also

generate errors.

IMPORTANT

All printing functions in QuickDraw GX, with the exception of
the GXGetJobError function, may move Macintosh memory. The
GXGetJobError function, however, relies on data that may also move.
Therefore, your application should never call a QuickDraw GX
printing-related function at interrupt time. ▲

Advanced Job Object Functions

You use the GXGetJobOutputPrinter function to determine the output printer for a

print job and use the GXGetJobFormattingPrinter function to determine the

formatting printer for the print job. You use the GXSelectJobFormattingPrinter

function to specify a formatting printer for a particular print job.

QuickDraw GX provides a place to store a reference constant in each job object for your

application’s use. A reference constant is accessible through the GXGetJobRefCon

function. You use the GXSetJobRefCon function to set a reference constant.

You can duplicate a job object using the GXCopyJob function. This function allows you

to take an existing job object and duplicate it for use with another document, causing the

associated printer driver, formatting information, and other settings to be used by the

other document.

GXSelectJobFormattingPrinter

You can use the GXSelectJobFormattingPrinter function to specify a formatting

printer for a particular print job.

void GXSelectJobFormattingPrinter (gxJob aJob, Str31 printerName);

aJob A reference to the job object for which you are specifying a formatting
printer.

printerName
The name of the formatting printer.

DESCRIPTION

You call GXSelectJobFormattingPrinter when the user selects a formatting

printer. You can obtain the name of the formatting printer from the Page Setup dialog

box and place it in the printerName parameter before calling this function.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-51

RESULT CODES

GXGetJobFormattingPrinter

You can use the GXGetJobFormattingPrinter function to obtain the formatting

printer for a particular print job.

gxPrinter GXGetJobFormattingPrinter (gxJob aJob);

aJob A reference to the job object whose formatting printer you wish to obtain.

function result A reference to a printer object.

DESCRIPTION

The GXGetJobFormattingPrinter function returns a reference to the formatting

printer associated with the job specified in the aJob parameter.

RESULT CODES

GXGetJobOutputPrinter

You can use the GXGetJobOutputPrinter function to obtain the output printer for a

particular job.

gxPrinter GXGetJobOutputPrinter (gxJob aJob);

aJob A reference to the job object whose output printer you wish to obtain.

function result A reference to a printer object.

DESCRIPTION

The GXGetJobOutputPrinter function returns a reference to the output printer

associated with the job object specified in the aJob parameter.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

fnfErr The printer driver cannot be located.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-52 Advanced Printing Features Reference

RESULT CODES

SEE ALSO

For an example that uses the GXGetJobOutputPrinter function, see “Obtaining

Printer and Printer Driver Information for a Job” on page 4-22.

GXGetJobRefCon

You can use the GXGetJobRefCon function to obtain a reference constant associated

with a particular job object.

void* GXGetJobRefcon (gxJob aJob);

aJob A reference to the job object from which you wish to obtain a reference
constant.

DESCRIPTION

You can use the GXGetJobRefCon function to obtain application-defined data

associated with a job object.

RESULT CODES

SEE ALSO

To associate a reference constant with a job object, see the description of the

GXSetJobRefCon function in the next section.

For an example that uses the GXGetJobRefCon function, see “Getting and Setting the

Reference Constant for a Job Object” on page 4-23.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-53

GXSetJobRefCon

You can use the GXSetJobRefCon function to associate a reference constant with a

particular job object.

void GXSetJobRefcon (gxJob aJob, void *refCon);

aJob The job object in which to assign a reference constant.

refCon A pointer to the reference constant to assign.

DESCRIPTION

The GXSetJobRefCon function sets the reference constant for a job object. For example,

the reference constant may point to the document data associated with the print job.

RESULT CODES

SEE ALSO

To get the reference constant associated with a job object, see the description of the

GXGetJobRefCon function in the previous section.

For an example that uses the GXSetJobRefCon function, see “Getting and Setting the

Reference Constant for a Job Object” on page 4-23.

GXCopyJob

You can use the GXCopyJob function to copy job object data from one job object to

another.

gxJob GXCopyJob (gxJob srcJob, gxJob dstJob);

srcJob A reference to the job object to copy.

dstJob A reference to the job object in which to receive the copied data.

function result A reference to a job object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-54 Advanced Printing Features Reference

DESCRIPTION

The GXCopyJob function makes a copy of the job object specified by the srcJob

parameter and stores a reference to it in the dstJob parameter. If you set the dstJob

parameter to nil, QuickDraw GX allocates and returns a new job object with the

properties of the srcJob parameter.

For example, you can use this function to copy a job object for use with another

document. All information from the source job object is copied into the destination job

object, including references to the output and formatting printers, formats, and paper

types.

QuickDraw GX allocates appropriate space if the job object that you are copying (the

source job object) contains more objects, such as formats, than the job object that you are

copying into (the destination job object).

RESULT CODES

SEE ALSO

For an example that uses the GXCopyJob function, see “Copying Job Object

Information” on page 4-25.

Manipulating Printer Objects

You use the GXGetJobPrinter to obtain the printer used by a specific print job. You

use the GXGetPrinterJob function to obtain the job object associated with a specific

printer object.

You use the GXForEachPrinterViewDeviceDo function to loop through the view

devices associated with a printer object.

You can use the GXCountPrinterViewDevices function to obtain the number of view

devices associated with a particular printer object.

You use the GXGetPrinterViewDevice function to obtain a particular view device

associated with a printer object. You use the GXSelectPrinterViewDevice function

to select the view device to represent a printer’s resolution and color space.

You use the GXGetPrinterDriverName and GXGetPrinterName functions to obtain

the names of a printer and driver, respectively, from a printer object.

You use the GXGetPrinterDriverType function to obtain the printer driver type

(such as raster, vector, or PostScript) associated with a particular printer object. You use

the GXGetPrinterType function to obtain the printer’s type.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-55

GXGetJobPrinter

You can use the GXGetJobPrinter function to determine the printer object used by a

specific job object.

gxPrinter GXGetJobPrinter (gxJob aJob);

aJob A reference to the job object from which you wish to obtain a printer
object.

function result A reference to a printer object.

DESCRIPTION

Your application can use the printer object to determine information specific to a device

and printer driver for use in formatting and optimizing the user’s data.

RESULT CODES

GXGetPrinterJob

You can use the GXGetPrinterJob function to obtain the job object associated with a

particular printer object.

gxJob GXGetPrinterJob (gxPrinter aPrinter);

aPrinter A reference to the printer object from which you wish to obtain the job
object.

function result A reference to the job object associated with the printer object.

DESCRIPTION

The GXGetPrinterJob function returns a reference to the job object that refers to the

printer object specified in the aPrinter parameter.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-56 Advanced Printing Features Reference

RESULT CODES

GXForEachPrinterViewDeviceDo

You can use the GXForEachPrinterViewDeviceDo function to execute an

application-defined function on each view device associated with a particular printer

object.

void GXForEachPrinterViewDeviceDo (gxPrinter aPrinter,

gxViewDeviceProc aViewDeviceProc,

void *refCon);

aPrinter A reference to the printer object whose view devices you want to
manipulate.

aViewDeviceProc
The function you want to execute for each view device.

refCon A pointer to the reference constant that is passed to the
application-defined function.

DESCRIPTION

You can use the GXForEachPrinterViewDeviceDo function to perform the actions

specified in an application-defined function, aViewDeviceProc, on all the view devices

associated with a particular printer object.

The GXForEachPrinterViewDeviceDo function calls your application-defined

function and terminates when the application-defined function returns gxStopLooping

or when GXForEachPrinterViewDeviceDo has been called for each view device.

RESULT CODES

SEE ALSO

For information about declaring the application-defined function, see “Message

Override Function for the Printing Status Dialog Box” on page 4-90.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-57

GXCountPrinterViewDevices

You can use the GXCountPrinterViewDevices function to obtain the number of view

devices associated with a particular printer object.

long GXCountPrinterViewDevices (gxPrinter aPrinter);

aPrinter A reference to the printer object whose view devices you want to count.

function result The number of view devices associated with the printer object specified
by the aPrinter parameter.

DESCRIPTION

The GXCountPrinterViewDevices function returns the number of view devices

associated with the specified printer object. A printer object can have multiple view

devices, one for each possible combination of printer resolution and color space.

RESULT CODES

SEE ALSO

For an example that uses the GXCountPrinterViewDevices function, see

“Determining a Printer’s Resolution” on page 4-26.

GXGetPrinterViewDevice

You can use the GXGetPrinterViewDevice function to obtain a printer object’s view

device, using an index value.

gxViewDevice GXGetPrinterViewDevice (gxPrinter aPrinter,

long whichViewDevice);

aPrinter A reference to the printer object whose view device you wish to obtain.

whichViewDevice
An index value that specifies the position of the view device reference in
the printer object’s view device list.

function result A reference to the specified view device.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-58 Advanced Printing Features Reference

DESCRIPTION

You specify an index value, starting with 1, in the whichViewDevice parameter. The

parameter specifies a particular view device. You can specify 0 in the

whichViewDevice parameter to obtain the view device that represents the current

view device, which allows you to obtain the current resolution and color space for the

printer.

RESULT CODES

SEE ALSO

For examples that use the GXGetPrinterViewDevice function, see “Determining a

Printer’s Resolution” on page 4-26 and “Retrieving the Color Profile and Color Space for

a Printer” on page 4-27.

GXSelectPrinterViewDevice

You can use the GXSelectPrinterViewDevice function to specify a view device for a

printer object.

void GXSelectPrinterViewDevice (gxPrinter aPrinter,

long whichViewDevice);

aPrinter A reference to the printer object associated with a particular view device.

whichViewDevice
The index value of the view device you want to select.

DESCRIPTION

The GXSelectPrinterViewDevice function determines the printer resolution and

color space of the printer referenced by the aPrinter parameter. A printer object refers

to one or more view devices, each of which contains a combination of printer resolution

and color space available for the specified printer. You specify an index value, starting

with 1, in the whichViewDevice parameter. The parameter specifies a particular view

device.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-59

RESULT CODES

GXGetPrinterDriverName

You can use the GXGetPrinterDriverName function to obtain the name of the printer

driver associated with a particular printer object.

void GXGetPrinterDriverName (gxPrinter aPrinter, Str31 name);

aPrinter A reference to the printer object associated with a particular formatting
printer driver.

name On return, the formatting printer driver’s name.

DESCRIPTION

The GXGetPrinterDriverName function retrieves the name of the printer driver to

which the aPrinter parameter refers and places it in the name parameter.

RESULT CODES

SEE ALSO

For an example that uses the GXGetPrinterDriverName function, see “Obtaining

Printer and Printer Driver Information for a Job” on page 4-22.

GXGetPrinterName

You can use the GXGetPrinterName function to obtain the name of the printer

associated with a particular printer object.

void GXGetPrinterName (gxPrinter aPrinter, Str31 name);

aPrinter A reference to the printer object associated with a printer.

name On return, the printer’s name.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-60 Advanced Printing Features Reference

DESCRIPTION

The GXGetPrinterName function retrieves the name of the printer to which the

aPrinter parameter refers and places it in the name parameter.

RESULT CODES

SEE ALSO

For an example that uses the GXGetPrinterName function, see “Obtaining Printer and

Printer Driver Information for a Job” on page 4-22.

GXGetPrinterDriverType

You can use the GXGetPrinterDriverType function to obtain the printer driver type

associated with a particular printer object.

OSType GXGetPrinterDriverType (gxPrinter aPrinter);

aPrinter A reference to the printer object associated with a particular printer driver
type.

function result The printer driver type associated with the printer object.

DESCRIPTION

The GXGetPrinterDriverType function returns a printer type in the format of an

OSType. Do not make assumptions about the services provided by driver based on its

type.

RESULT CODES

SEE ALSO

For an example that uses the GXGetPrinterDriverType function, see “Obtaining

Printer and Printer Driver Information for a Job” on page 4-22.

For possible values of printer driver types, see “Printer Driver Types” on page 4-7.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-61

GXGetPrinterType

You can use the GXGetPrinterType function to obtain the printer type of the printer

associated with a particular printer object.

OSType GXGetPrinterType (gxPrinter aPrinter);

aPrinter A reference to the printer object associated with a particular printer.

function result The printer type.

DESCRIPTION

The GXGetPrinterType function returns a printer type in the format of an OSType; for

example, 'LWRW' for LaserWriter GX.

RESULT CODES

SEE ALSO

For an example that uses the GXGetPrinterType function, see “Obtaining Printer and

Printer Driver Information for a Job” on page 4-22.

Working With QuickDraw GX Print Files

You use the GXOpenPrintFile and GXClosePrintFile functions to open and close

print files.

You use the GXGetPrintFileJob function to obtain the job object associated with a

particular print file. This function is useful when you need to access or modify

information of the job object associated with a print file.

You use the GXCountPrintFilePages function to count the number of pages in a

print file.

You use the GXReadPrintFilePage function to retrieve a page or page format for a

print file.

You use the GXReplacePrintFilePage function to replace a page or page format

from a print file. To insert a new page in a print file, you use the

GXInsertPrintFilePage function.

You use the GXDeletePrintFilePageRange function to delete a range of pages

within a specified print file.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-62 Advanced Printing Features Reference

You use the GXSavePrintFile function to save a print file. You should save a print file

object if you add, delete, or modify its pages, formats, or job object information.

GXOpenPrintFile

You can use the GXOpenPrintFile function to open a print file.

gxPrintFile GXOpenPrintFile (gxJob aPrintFileJob,

FSSpecPtr pFileSpec,

char permission);

aPrintFileJob
A reference to the job object to associate with a particular printer file.

pFileSpec A pointer to a file system specification.

permission
The access privileges to use when opening the print file object.

function result A reference to a print file object.

DESCRIPTION

The GXOpenPrintFile function attempts to open the print file specified by a pointer to

a file system specification record, pFileSpec. If successful, the function returns a print

file object that represents the file. The permission parameter specifies the access

privileges, which can be read-only or read-and-write access.

The information for the print file’s job object is unflattened into the job object you specify

in the aPrintFileJob parameter. This job object specified in the parameter remains

associated with the print file until you close the file by calling the GXClosePrintFile

function.

To check for errors, you should call the GXGetJobError function with the specified job

object following calls that operate on the print file.

SPECIAL CONSIDERATIONS

The GXOpenPrintFile function sets up a warning handler, which chains to the

application’s warning handler, if it exists. For more information about warning handlers,

see the errors, warnings, and notices chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-63

RESULT CODES

SEE ALSO

For an example that uses the GXOpenPrintFile function, see “Opening and Closing a

Print File” on page 4-29.

To close a print file object, you use the GXClosePrintFile function, which is described

in the next section.

GXClosePrintFile

You can use the GXClosePrintFile function to close a print file and invalidate the

reference to the print file object.

void GXClosePrintFile (gxPrintFile aPrintFile);

aPrintFile
A reference to the print file object for the file to close.

DESCRIPTION

The GXClosePrintFile function closes the specified file and invalidates the print file

object’s association with a job object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxIncompletePrintFileErr Contents of file are incomplete.
gxCrashedPrintFileErr File is currently printing or crashed while

printing.
gxInvalidPrintFileVersion Cannot read file due to incompatible file version.
gxFlattenVersionTooNew An attempt was made to unflatten a job object

that was flattened using a later version of
QuickDraw GX.

collectionVersionErr The version of the collection object is not
compatible with the current version of the
Collection Manager.

C H A P T E R 4

Advanced Printing Features

4-64 Advanced Printing Features Reference

RESULT CODES

SEE ALSO

For an example that uses the GXClosePrintFile function, see “Opening and Closing a

Print File” on page 4-29.

GXGetPrintFileJob

You can use the GXGetPrintFileJob function to obtain the job object associated with a

particular print file object.

gxJob GXGetPrintFileJob (gxPrintFile aPrintFile);

aPrintFile
A reference to the print file object whose job object you wish to obtain.

function result A reference to a job object.

DESCRIPTION

The GXGetPrintFileJob function returns a reference to the job object that was

associated with the print file object when you called the GXOpenPrintFile function. If

you save the reference when you call the GXOpenPrintFile function, you do not need

to call this function.

This function is useful when you need to access or modify information in the job object

associated with a print file object. For example, you can use this function to obtain the

job object and then call GXGetJobError for the job object to test for an error condition

associated with the print file.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-65

GXCountPrintFilePages

You can use the GXCountPrintFilePages function to count the number of pages in a

print file.

long GXCountPrintFilePages (gxPrintFile aPrintFile);

aPrintFile
A reference to the print file object that represents the print file.

function result The number of pages in the file.

DESCRIPTION

The GXCountPrintFilePages function returns the number of pages in the file.

RESULT CODES

GXReadPrintFilePage

You can use the GXReadPrintFilePage function to retrieve a page or page format for

a print file object.

void GXReadPrintFilePage (gxPrintFile aPrintFile, long pageNumber,

long numViewPorts, gxViewPort *viewPortList,

gxFormat *pageFormat, gxShape *pageShape);

aPrintFile
A reference to the print file object whose file you want to access.

pageNumber
The page you want to access.

numViewPorts
The number of view ports in the view port list.

viewPortList
A pointer to a list of references to view ports through which you want the
page’s picture shape to draw.

pageFormat
On return, a reference to the format object associated with the page.

pageShape On return, a reference to the picture shape that contains the page’s data.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-66 Advanced Printing Features Reference

DESCRIPTION

The GXReadPrintFilePage function retrieves the print file object’s page that you

specify in the pageNumber parameter. It returns the page format and a picture shape

representing the contents of the page in the pageFormat and pageShape parameters,

respectively. You can set one or both of these parameters to nil if you do not want them

returned.

The page shape is associated with the view ports in the viewPortList list parameter,

which is the list of view ports you want the shape to be drawn through when you call

GXDrawShape for the shape in the pageShape parameter. The numViewPorts

parameter specifies how many view ports are in the list.

SPECIAL CONSIDERATIONS

Do not change the page format or page shape, pointed to by the pageFormat and

pageShape parameters, directly. If you want to change the format or shape, make a

copy of the format or shape and modify the copy. After you make a change to the copy,

you can replace the format or page in the print file with your copy or insert your copy

into the print file.

For speed and memory efficiency, dispose of the references to the format and page shape

objects as soon as they are no longer needed. For example, dispose of them as soon as

you make a copy of them or draw a page with them.

The page number specified in the pageNumber parameter must be valid. Call the

GXCountPrintFilePages function to ensure that the page number is valid.

RESULT CODES

SEE ALSO

For an example that uses the GXReadPrintFilePage function, see “Reading Print File

Data” on page 4-30.

GXReplacePrintFilePage

You can use the GXReplacePrintFilePage function to replace a page in a print file

object.

void GXReplacePrintFilePage (gxPrintFile aPrintFile,

long pageNumber, gxFormat pageFormat,

gxShape pageShape);

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-67

aPrintFile
A reference to the print file object in which you want to replace a page.

pageNumber
The page you want to replace.

pageFormat
A reference to the page’s format object.

pageShape A reference to the page’s picture shape object.

DESCRIPTION

The GXReplacePrintFilePage function replaces in the page specified in the

pageNumber parameter.

You specify a replacement page format and page shape in the pageFormat and

pageShape parameters, respectively. You can specify nil for either of these parameters

to ensure that the page format or the page shape remains unchanged.

Any changes you make to a print file are not permanent until you save the print file

object with the GXSavePrintFile function.

SPECIAL CONSIDERATIONS

After you call the GXReplacePrintFilePage function, do not change the page format

or page shape referenced by the pageFormat and pageShape parameters. For

example, if you want to change the format or shape later, make a copy, and modify the

copy. Dispose of the original page or format after you make the copy.

For speed and memory efficiency, dispose of the references to the format and page

parameters immediately after you call GXReplacePrintFilePage.

If a format or page is to be duplicated, passing a clone of the object to the function is

more efficient than passing a copy. For example, you can pass a clone of a page or format

to replicate a page or format already in the file. The cloned object may be one that you

have previously read from a print file or one that you created.

RESULT CODES

SEE ALSO

To save a print file object, see the description of the GXSavePrintFile function on

page 4-70.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-68 Advanced Printing Features Reference

GXInsertPrintFilePage

You can use the GXInsertPrintFilePage function to insert a new page in a print file.

void GXInsertPrintFilePage (gxPrintFile aPrintFile,

long atPageNumber, gxFormat pageFormat, gxShape pageShape);

aPrintFile
A reference to the print file object in whose file you want to insert a page.

atPageNumber
The page to insert.

pageFormat
A reference to a format object for the inserted page.

pageShape A reference to a picture shape object for the inserted page.

DESCRIPTION

The GXInsertPrintFilePage function inserts a page in a print file before the page

number that you specify in the atPageNumber parameter. You can pass a value of 1 in

this parameter to insert the new page before all other pages in the print file. When you

pass a value that is higher than the current page count, QuickDraw GX appends the

page to the end of the print file.

Any changes you make to a print file are not permanent until you save the print file

object by calling the GXSavePrintFile function.

SPECIAL CONSIDERATIONS

After you call the GXInsertPrintFilePage function, do not change the page format

or page shape referenced by the pageFormat and pageShape parameters. For

example, if you want to change the format or shape later, make a copy, and modify the

copy. Dispose of the original page or format after you make the copy.

For speed and memory efficiency, dispose of the references to the format and page

parameters immediately after you call GXInsertPrintFilePage.

If a format or page can be reused, passing a clone of the object to the function is more

efficient than passing a copy. For example, you can pass a clone of a page or format to

replicate a page or format already in the file. The cloned object may be one that you have

previously read from a print file or one that you created.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-69

RESULT CODES

SEE ALSO

To save a print file object, see the description of the GXSavePrintFile function on

page 4-70.

GXDeletePrintFilePageRange

You can use the GXDeletePrintFilePageRange function to delete a range of pages

within a particular print file object.

void GXDeletePrintFilePageRange (gxPrintFile aPrintFile,

long fromPageNumber,

long toPageNumber);

aPrintFile
A reference to the print file object from whose file you want to delete
pages.

fromPageNumber
The first page that you want to delete.

toPageNumber
The last page that you want to delete.

DESCRIPTION

The GXDeletePrintFilePageRange function deletes a page or pages in a print file

object within the range that you specify in the fromPageNumber and toPageNumber

parameters. The range of page numbers is inclusive. For example, deleting from page 2

to page 3 deletes both pages 2 and 3.

Any changes you make to a print file are not permanent until you save the print file

object with the GXSavePrintFile function.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-70 Advanced Printing Features Reference

RESULT CODES

SEE ALSO

To save a print file object, see the description of the GXSavePrintFile function in the

next section.

GXSavePrintFile

You can use the GXSavePrintFile function to save a print file object.

void GXSavePrintFile (gxPrintFile aPrintFile, FSSpec *pFileSpec);

aPrintFile
A reference to the print file object whose file you want to save.

pFileSpec A pointer to a file system specification record.

DESCRIPTION

The GXSavePrintFile function writes an entire print file to disk. This file must

previously have been opened with the GXOpenPrintFile function. To replace or

update the print file, you can pass nil in the pFileSpec parameter. Otherwise, you can

specify a name and location in the pFileSpec parameter to save the updated print file

and leave the original print file intact.

This function compacts a print file by recovering any space no longer needed. Space

becomes available when pages are removed or when a format no longer references any

pages. This function also permanently saves any changes that you have made to the

print file.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-71

Working With Paper Types

You use the GXNewPaperType function to create a new paper-type object, and you use

the GXDisposePaperType function to dispose of a paper-type object.

You can use the GXGetNewPaperType function to retrieve a paper-type object from a

resource or use the GXGetJobPaperType function to access a specific paper-type object.

You use the GXGetJobPaperType function to obtain the indexed paper-type object

from the total set of paper-type objects that are accessible to a particular job object.

You can use the GXCountJobPaperTypes function to obtain the total number of

paper-type definitions that are accessible to a particular job object.

You use the GXCopyPaperType function to replace the contents of the destination

paper-type object with that of the source paper-type object.

You use the GXGetPaperTypeName function to obtain the name of a paper-type object.

You use the GXGetPaperTypeDimensions function to obtain the page rectangle and

the paper rectangle associated with a paper-type object.

You use the GXGetPaperTypeJob function to obtain the reference to the job object that

owns the paper-type object.

You use the GXForEachJobPaperTypeDo function to call an application-defined

function for each paper-type definition that is accessible to a particular job object.

GXNewPaperType

You can use the GXNewPaperType function to create a new paper-type object.

gxPaperType GXNewPaperType (gxJob aJob, Str31 name,

gxRectangle *pageSize, gxRectangle *paperSize);

aJob A reference to the job object with which to associate the new paper-type
object.

name The name of the new paper type.

pageSize A pointer to a rectangle that defines the page size, or imageable area of
the paper.

paperSize A pointer to a rectangle that defines the paper size.

function result A reference to the newly created paper-type object.

DESCRIPTION

The GXNewPaperType function creates a paper-type object with the title name, the

imageable area defined by the pageSize rectangle, and the paper size defined by the

paperSize rectangle. This function associates a paper type of these specifications with

the specified job object.

C H A P T E R 4

Advanced Printing Features

4-72 Advanced Printing Features Reference

RESULT CODES

SEE ALSO

For an example that uses the GXNewPaperType function, see “Creating a Paper-Type

Object” on page 4-32.

GXDisposePaperType

You can use the GXDisposePaperType function to dispose of a paper-type object.

void GXDisposePaperType (gxPaperType aPaperType);

aPaperType
A reference to the paper-type object that you want to dispose of.

DESCRIPTION

The GXDisposePaperType function disposes of the paper-type object specified by the

aPaperType parameter by decrementing its owner count. If the owner count falls to 0,

QuickDraw GX may delete the paper-type object.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

collectionVersionErr The version of the collection object is not compatible
with the current version of the Collection Manager.

gxPaperTypeNotFound The paper-type object cannot be located.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-73

GXGetNewPaperType

You can use the GXGetNewPaperType function to create a new paper-type object from a

resource template.

gxPaperType GXGetNewPaperType (gxJob aJob,short resID);

aJob A reference to the job object associated with the new paper-type object.

resID The ID of the resource template.

function result A reference to a paper-type object.

DESCRIPTION

The GXGetNewPaperType function creates a paper-type object in the same way that the

GXNewPaperType function does, except that the title, the imageable area, and the paper

size are defined in the resource identified by resID. The GXGetNewPaperType

function associates the returned paper-type object reference with the aJob job object.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

collectionVersionErr The version of the collection object is not compatible
with the current version of the Collection Manager.

gxPaperTypeNotFound The paper-type object cannot be located.

C H A P T E R 4

Advanced Printing Features

4-74 Advanced Printing Features Reference

GXGetJobPaperType

You can use the GXGetJobPaperType function to access the specified paper-type object

associated with a particular job object.

gxPaperType GXGetJobPaperType (gxJob aJob, long whichPaperType,

Boolean forFormatDevice,

gxPaperType aPaperType);

aJob A reference to the job object from which to obtain the paper-type object.

whichPaperType
The index that specifies which paper-type object to obtain.

forFormatDevice
A Boolean value that specifies whether the paper-type objects are
associated with the formatting printer (true) or with the output printer
(false).

aPaperType
A valid paper-type object reference.

function result A reference to a paper-type object.

DESCRIPTION

The GXGetJobPaperType function retrieves the specified paper type from the job

object based on the index value in the whichPaperType parameter. Index values begin

at 1.

Set the forFormatDevice parameter to true to retrieve only the paper types

associated with the formatting printer or to false to retrieve only paper

types associated with the output printer.

If the desired paper-type object is found, based on its index value, this function replaces

the contents of the aPaperType parameter with that of the retrieved paper-type object.

If the paper-type object is not located, the job object’s error is set to

gxPaperTypeNotFound. Any error generated by this function can be retrieved using

the GXGetJobError function.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaperTypeNotFound The paper-type object cannot be located.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-75

GXCountJobPaperTypes

You can use the GXCountJobPaperTypes function to obtain the total number of

paper-type definitions that are accessible to a particular job object.

long GXCountJobPaperTypes (gxJob aJob, Boolean forFormatDevice);

aJob A reference to the job object from which to obtain the number of
paper-type definitions.

forFormatDevice
A Boolean value that specifies whether the paper-type objects are
associated with the formatting printer (true) or with the output printer
(false).

function result The number of paper-type objects that are associated with the print job.

DESCRIPTION

The GXCountJobPaperTypes function returns the number of paper types associated

with either the print job’s formatting printer or output printer.

Set the forFormatDevice parameter to true to count only the paper types associated

with the formatting printer or to false to count only paper types associated with the

output printer.

Depending on the format specification of the job object, the total number of paper types

returned may include the total number of system paper types, user paper types, printer

driver paper types, and printer-configuration-file paper types.

Use the GXGetJobError function to retrieve errors for this function.

RESULT CODES

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-76 Advanced Printing Features Reference

GXCopyPaperType

You can use the GXCopyPaperType function to copy paper-type object data from one

paper-type object to another paper-type object.

gxPaperType GXCopyPaperType (gxPaperType srcPaperType,

gxPaperType dstPaperType);

srcPaperType
A reference to the paper-type object whose data you want to copy.

dstPaperType
A reference to the paper-type object in which to copy the data.

function result Reference to a paper-type object.

DESCRIPTION

The GXCopyPaperType function copies the contents of the paper-type object referred to

in the srcPaperType parameter to the paper-type object referred to in the

dstPaperType parameter. Each component of the paper-type object is copied. You

must specify valid paper types in both the srcPaperType and dstPaperType

parameters.

RESULT CODES

GXGetPaperTypeName

You can use the GXGetPaperTypeName function to obtain the name of a paper-type

object.

void GXGetPaperTypeName (gxPaperType aPaperType,

Str31 name);

aPaperType
A reference to the paper-type object from which to obtain the name.

name On return, the name of the paper type.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaperTypeNotFound The paper-type object cannot be located.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-77

DESCRIPTION

The GXGetPaperTypeName function returns the name of the paper-type object specified

by the aPaperType parameter. The aPaperType parameter must refer to a valid

paper-type object. The name of the paper-type object is returned in the name parameter.

RESULT CODES

SEE ALSO

For an example that uses the GXGetPaperTypeName function, see “Obtaining the Name

of a Paper Type” on page 4-32.

GXGetPaperTypeDimensions

You can use the GXGetPaperTypeDimensions function to obtain the page rectangle

and the paper rectangle associated with a paper-type object.

void GXGetPaperTypeDimensions (gxPaperType aPaperType,

gxRectangle *aPageSize,

gxRectangle *aPaperSize);

aPaperType
A reference to the paper-type object from which to obtain page and paper
sizes.

aPageSize A pointer to a rectangle that receives the page size of the paper type.

aPaperSize
A pointer to a rectangle that receives the paper size of the paper type.

DESCRIPTION

The GXGetPaperTypeDimensions function returns the page and paper size for the

specified paper type in the geometry of rectangles. The page rectangle is the imageable

portion of a page. The paper rectangle is the size of the paper. The geometry for each

rectangle specifies the size in 72 dots-per-inch units. Passing a nil pointer for either the

aPageSize or the aPaperSize parameters causes QuickDraw GX to ignore the

parameter.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaperTypeNotFound The paper-type object cannot be located.

C H A P T E R 4

Advanced Printing Features

4-78 Advanced Printing Features Reference

RESULT CODES

SEE ALSO

For an example that uses the GXGetPaperTypeDimensions function, see “Obtaining

the Dimensions of a Paper Type” on page 4-33.

GXGetPaperTypeJob

You can use the GXGetPaperTypeJob function to obtain a reference to the job object

that owns a paper-type object.

gxJob GXGetPaperTypeJob (gxPaperType aPaperType);

aPaperType
A reference to the paper-type object for which you want to obtain the job
object.

function result A reference to the job object that owns the paper type.

RESULT CODES

GXForEachJobPaperTypeDo

You can use the GXForEachJobPaperTypeDo function to call an application-defined

function for each paper-type definition that is accessible to a particular job object.

void GXForEachJobPaperTypeDo (gxJob aJob,

gxPaperTypeProc aPaperTypeProc,

void *refCon,

Boolean forFormattingPrinter);

aJob A reference to the job object from which to obtain the paper-type object.

aPaperTypeProc
An application-defined function to be called for each paper-type
definition accessible to a job object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaperTypeNotFound The paper-type object cannot be located.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-79

refCon A pointer to a reference constant.

forFormattingPrinter
A Boolean value that specifies whether the paper-type objects are
associated with the formatting printer (true) or with the output printer
(false).

DESCRIPTION

The GXForEachJobPaperTypeDo function loops over each of the paper-type objects

for the specified print job, executing the application-supplied function on each one.

The application-defined function is called until either all the paper types have been

processed or the function returns the gxStopLooping constant.

Set the forFormattingPrinter parameter to true to execute the application-defined

function only on the paper types associated with the formatting printer or to false to

execute the application-defined function only on paper types associated with the output

printer.

RESULT CODES

SEE ALSO

For an example that uses the GXForEachJobPaperTypeDo function, see “Scanning the

Paper Types Available to a Job” on page 4-34.

For information about declaring the application-defined function, see “Looping Through

a Job’s Paper Types” on page 4-92.

Formatting for Specific Devices

You use the GXSetAvailableJobFormatModes function to set your list of job format

modes for a particular job object, and you use the GXGetPreferredJobFormatMode

function to obtain the printer driver’s preferred mode.

You use the GXGetJobFormatMode function to obtain the current job format mode and

the GXSetJobFormatMode function to set it.

You use the GXJobFormatModeQuery function to get or set additional information for

the text job format mode.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-80 Advanced Printing Features Reference

GXSetAvailableJobFormatModes

You can use the GXSetAvailableJobFormatModes function to set the list of job

format modes that your application supports.

void GXSetAvailableJobFormatModes (gxJob aJob,

gxJobFormatModeTableHdl aJobFormatModeTableHdl);

aJob A reference to the job object to which the list of format modes applies.

aJobFormatModeTableHdl
A handle that contains the list of supported modes.

DESCRIPTION

The GXSetAvailableJobFormatModes function provides the printer driver with the

list of modes that the printer driver could return as its preferred mode.

RESULT CODES

SEE ALSO

For more information about how to use this function, see “Implementing Direct-Mode

Printing” on page 4-35.

GXGetPreferredJobFormatMode

You can use the GXGetPreferredJobFormatMode function to obtain the preferred

mode of printing to the printer associated with a print job.

gxJobFormatMode GXGetPreferredJobFormatMode (gxJob aJob,

Boolean *directOnly);

aJob A reference to the job whose format mode you wish to determine.

directOnly
A pointer to a Boolean value returned by this function that specifies
whether the preferred mode is the only mode.

function result The preferred mode.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-81

DESCRIPTION

The GXGetPreferredJobFormatMode function returns the preferred mode of printing

to the job’s output printer. The preferred mode is one of the modes proposed by the

application in a call to GXSetAvailableJobFormatModes. From that information, the

printer driver can respond with its preferred mode.

The preferred mode is typically a mode supported directly by the driver’s hardware. In

the case of an ImageWriter II, the GXGetPreferredJobFormatMode function returns

gxTextJobFormatMode because it can use fonts built into the printer itself for faster

text printing. The preferred mode typically represents the job format mode with the

fastest throughput; however, it may limit the quality or even the kind of output that may

be printed.

RESULT CODES

SEE ALSO

For more information about how to use this function, see “Implementing Direct-Mode

Printing” on page 4-35.

GXGetJobFormatMode

You can use the GXGetJobFormatMode function to obtain the current job format mode

for a particular job object.

gxJobFormatMode GXGetJobFormatMode (gxJob aJob);

aJob A reference to the job object whose current format mode you wish to
obtain.

function result The current job format mode.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-82 Advanced Printing Features Reference

DESCRIPTION

The GXGetJobFormatMode function returns the current job format mode specified in

the GXSetJobFormatMode function. The modes defined by QuickDraw GX are:

A printer driver may define additional modes.

RESULT CODES

GXSetJobFormatMode

You can use the GXSetJobFormatMode to set the job format mode.

void GXSetJobFormatMode (gxJob aJob, gxJobFormatMode aMode);

aJob A reference to the job object associated with the direct mode.

aMode The direct mode to set.

DESCRIPTION

The GXSetJobFormatMode function activates the specified job format mode for a job

object whether or not the mode is supported by the printer driver or the application. You

might want to call GXSetJobFormatMode to set the mode when printing without

dialog boxes, such as when the user prints from the Finder.

RESULT CODES

Constant Value Explanation

gxGraphicsJobFormatMode 'grph' QuickDraw GX default printing

gxTextJobFormatMode 'text' Text-only output

gxPostScriptJobFormatMode 'post' PostScript-only output

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-83

GXJobFormatModeQuery

You can use the GXJobFormatModeQuery function to get or set additional information

related to a job format mode.

void GXJobFormatModeQuery (gxJob aJob, gxQueryType aQueryType,

void *srcData, void *dstData);

aJob A reference to the job object for which information relating to the
printer’s format mode is being requested.

aQueryType
The kind of query requested.

srcData A pointer to the source data.

dstData A pointer to the destination data.

DESCRIPTION

The GXJobFormatModeQuery function obtains information from a printer driver that

relates to the printer driver’s preferred mode. The kinds of queries that can be specified

in the aQueryType parameter depend on the printer driver. The format and direction of

the data transfer depends on the kind of query.

QuickDraw GX defines query types for use with printer drivers whose preferred mode is

gxTextJobFormatMode:

Constant Value Explanation

gxGetJobFormatLineConstraintQuery 0 Used to determine line
constraint characteristics

gxGetJobFormatFontsQuery 1 Used to determine font
information

gxGetJobFormatFontCommonStylesQuery 2 Used to determine style
names

gxGetJobFormatFontConstraintQuery 3 Used to determine font
positioning constraints

gxSetStyleJobFormatCommonStyleQuery 4 Used to set style names

C H A P T E R 4

Advanced Printing Features

4-84 Advanced Printing Features Reference

RESULT CODES

SEE ALSO

For more information the kinds of queries and the format of data returned, see

“Formatting for Text Job Format Mode Printing” on page 4-36.

Color Profile Functions

QuickDraw GX allows you to find and set the color profiles that are used for color

matching. Color matching and the ColorSync Manager are described in Inside Macintosh:
Advanced Color Imaging.

GXFindPrinterProfile

You can use the GXFindPrinterProfile function to determine the color profile used

by an output printer.

OSErr GXFindPrinterProfile (gxPrinter thePrinter,

void *searchData, long index,

gxColorProfile *returnedProfile, long *numProfiles);

thePrinter
A reference to the printer object.

searchData
A pointer to a block of data that is assumed to be a ColorSync searching
block of type CMProfileSearchRecord. If this value is not nil, then
the value of the index parameter must not be 0 if you want the search to
take place.

If this value is nil, the value of the index parameter defines which
profile is returned.

index The index of the profile to return. If the value is 0, then the current profile
is returned in the returnedProfile parameter.

If the value of this parameter is not 0, then the behavior this function
depends on the value of the searchData parameter. If index is not 0
and searchData is nil, the indexed profile is returned in the
returnedProfile parameter. If index is not 0 and searchData is not
nil, then the printer profiles are searched.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-85

returnedProfile
On return, a list of references to color profiles matching the criteria
specified by the searchData and index parameters. If no color profiles
are found, this parameter is nil upon return.

numProfiles
On return, the number of profiles that were found.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

The GXFindPrinterProfile function searches for a color profile that matches the

specifications in the searchData and index parameters.

RESULT CODES

SEE ALSO

The gxFindPrinterProfile message that determines which profiles are returned is

described in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

Color matching, color profiles, the CMProfileSearchRecord structure, and color

profile resources are described in Inside Macintosh: Advanced Color Imaging.

GXFindFormatProfile

You can use the GXFindFormatProfile function to determine color-matching

information for a specific format object. This function is similar to the

GXFindPrinterProfile function (described in the previous section), except that it

finds a color profile that is associated with a format object rather than a printer object.

OSErr GXFindFormatProfile (gxFormat theFormat,

void *searchData, long index,

gxColorProfile *returnedProfile, long *numProfiles);

theFormat A reference to the format object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-86 Advanced Printing Features Reference

searchData
A pointer to a block of data that is assumed to be a ColorSync searching
block of type CMProfileSearchRecord. If this value is not nil, then
the value of the index parameter must not be 0 if you want the search to
take place.

If this value is nil, the value of the index parameter defines which
profile is returned.

index The index of the profile to return. If the value is 0, then the current profile
is returned in the returnedProfile parameter.

 If the value of this parameter is not 0, then the behavior this function
depends on the value of the searchData parameter. If index is not 0
and searchData is nil, the indexed profile is returned in the
returnedProfile parameter. If index is not 0 and searchData is not
nil, then the printer profiles are searched.

returnedProfile
On return, a list of references to color profiles matching the criteria
specified by the searchData and index parameters. If no color profiles
are found, this parameter returns nil.

numProfiles
On return, the number of profiles that were found.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

The GXFindFormatProfile function searches for a color profile that matches the

specifications in the searchData and index parameters.

RESULT CODES

SEE ALSO

The gxFindFormatProfile message that determines which profiles are returned is

described in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

Color matching, color profiles, the CMProfileSearchRecord structure, and color

profile resources are described in Inside Macintosh: Advanced Color Imaging.

gxSegmentLoadFailedErr A required code segment could not be found, or there
was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-87

GXSetPrinterProfile

You can call the GXSetPrinterProfile function to change the current color profile for

a printer.

OSErr GXSetPrinterProfile (gxPrinter thePrinter,

gxColorProfile oldProfile, gxColorProfile newProfile);

thePrinter
A reference to the printer object.

oldProfile
A reference to the profile that has been associated with the printer object.

newProfile
A reference to the profile to add to the list of profiles for a printer object.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

You can call GXSetPrinterProfile to change the current profile for a printer, to

replace an existing profile that is associated with the printer object, or to remove a profile

from the list of color profiles that are associated with the printer object.

A printer driver or printing extension defines the values of the oldProfile and

newProfile parameters that determine what happens in response to this message.

Table 4-6 shows an example.

Table 4-6 The actions of the GXSetPrinterProfile function

Value of
oldProfile

Value of
newProfile Action taken

nil nil None

Valid nil oldProfile is deleted from the list of profiles
associated with the printer object.

nil Valid newProfile is added to the list of profiles for the
printer object and becomes the current profile.

Valid Valid oldProfile is deleted from the list of profiles,
newProfile is added, and newProfile becomes
the current profile for the printer object.

C H A P T E R 4

Advanced Printing Features

4-88 Advanced Printing Features Reference

RESULT CODES

SEE ALSO

The gxSetPrinterProfile message is described in Inside Macintosh: QuickDraw GX
Printing Extensions and Drivers.

Color matching, color profiles, and color profile resources are described in Inside
Macintosh: Advanced Color Imaging.

GXSetFormatProfile

You can use the GXSetFormatProfile function to change the current color profile for

a format object.

OSErr GXSetFormatProfile (gxFormat theFormat,

gxColorProfile oldProfile, gxColorProfile newProfile);

theFormat A reference to the format object.

oldProfile
A reference to the profile that has been associated with the format object.

newProfile
A reference to the profile to add to the list of profiles for a format object.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

You can call the GXSetFormatProfile function to change the current profile for a

format object, to replace an existing profile that is associated with the format object, or to

remove a profile from the list of color profiles that are associated with the format object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-89

A printer driver or printing extension defines the values of the oldProfile and

newProfile parameters that determine what happens in response to this message.

Table 4-7 shows an example.

RESULT CODES

SEE ALSO

The gxSetFormatProfile message is described in Inside Macintosh: QuickDraw GX
Printing Extensions and Drivers.

Color matching, color profiles, and color profile resources are described in Inside
Macintosh: Advanced Color Imaging.

Table 4-7 The actions of the GXSetFormatProfile function

Value of
oldProfile

Value of
newProfile Action taken

nil nil None

Valid nil oldProfile is deleted from the list of profiles
associated with the format object.

nil Valid newProfile is added to the list of profiles for the
format object and becomes the current profile.

Valid Valid oldProfile is deleted from the list of profiles,
newProfile is added, and newProfile becomes
the current profile for the format object.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

C H A P T E R 4

Advanced Printing Features

4-90 Advanced Printing Features Reference

Idle Job Function

You can call the GXIdleJob function to allow other applications time to execute while

your application is spooling.

GXIdleJob

You can use the GXIdleJob function to release time to other processes while your

application is performing a computationally intensive task.

void GXIdleJob (gxJob aJob);

aJob A reference to a job object.

DESCRIPTION

The GXIdleJob function tells QuickDraw GX to release time to other processes that are

currently active. If your application is performing a computationally intensive process

that can potentially lock other processes out for an extended period of time, you need to

periodically call this function.

RESULT CODES

Application-Defined Functions

The following sections describe the application-defined functions for preventing the

display of the Printing Status dialog box, for manipulating the view devices associated

with a printer object, and for manipulating the paper types associated with a job object.

Message Override Function for the Printing Status Dialog Box

You can call the GXInstallApplicationOverride function to install an override

function for the gxJobStatus message to prevent the Printing Status dialog box from

being displayed while spooling.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-91

GXJobStatus

QuickDraw GX sends the gxJobStatus message to display the current status of a print

job during spooling and despooling. You can install an override function for the

gxJobStatus message to prevent the display of status information during spooling.

Your override function must match the following formal declaration:

OSErr GXJobStatus (gxStatusRecord *aStatusRecord);

aStatusRecord
A pointer to a status structure.

function result An error code. The value noErr indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxJobStatus message when a printing extension or printer

driver calls the GXReportStatus function. This is not under the application’s control.

The default implementation of this message displays the status in the desktop printer

window. To prevent the display of the Printing Status dialog box, your override function

should return noErr as its only action.

SPECIAL CONSIDERATIONS

You never send the gxJobStatus message yourself.

You must forward the gxJobStatus message to other message handlers.

RESULT CODES

SEE ALSO

The status structure is described in the section “The Status Structure” on page 4-42.

For more information about status information, see the printing functions chapter of

Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

gxSegmentLoadFailedErr A required code segment could not be found, or
there was not enough memory to load it.

gxPrUserAbortErr The user has canceled printing.

C H A P T E R 4

Advanced Printing Features

4-92 Advanced Printing Features Reference

Looping Through a Printer’s View Devices

The application-defined function called by the GXForEachPrinterViewDeviceDo

function takes two parameters: the view device object associated with a particular

printer object, and a pointer to a reference constant in which you specify data passed into

the application-defined function. For example, this is how you should declare the

application-function if you were to name it MyViewDeviceFunction:

gxLoopStatus MyViewDeviceFunction(gxViewDevice aViewDevice,

void *refCon);

aViewDevice
A reference to the current view device. This is provided by QuickDraw
GX when the MyViewDeviceFunction function is called.

refCon A pointer to a reference constant.

function result A Boolean to indicate whether looping should stop.

DESCRIPTION

When you use the GXForEachPrinterViewDeviceDo function, QuickDraw GX calls

the application-defined function for each view device object referenced by the specified

printer object until the application-defined function returns gxStopLooping or there

are no more view devices in the list. If you want the

GXForEachPrinterViewDeviceDo function to continue with the next view device,

return gxKeepLooping from the application-defined function.

Looping Through a Job’s Paper Types

The application-defined function called by the GXForEachJobPaperTypeDo function

takes two parameters: the view device object associated with a particular printer object,

and a pointer to a reference constant in which you specify data passed into the

application-defined function. For example, this is how you should declare the

application-function if you were to name it MyPaperTypeFunction:

gxLoopStatus MyPaperTypeFunction(gxPaperType aPaperType,

void *refCon);

aPaperType
A reference to the current paper type. This is provided by QuickDraw GX
when the MyPaperTypeFunction function is called.

refCon A pointer to a reference constant.

function result A Boolean to indicate whether looping should stop.

C H A P T E R 4

Advanced Printing Features

Advanced Printing Features Reference 4-93

DESCRIPTION

When you use the GXForEachJobPaperTypeDo function, QuickDraw GX calls the

application-defined function for each paper-type object referenced by the specified job

object until the application-defined function returns gxStopLooping or there are no

more paper types in the list. If you want the GXForEachJobPaperTypeDo function to

continue with the next paper type, return gxKeepLooping from the application-defined

function.

The Status Resource

You need to include a status resource, of type gxStatusType, to define the status

messages that are displayed during the printing process. Figure 4-3 shows the structure

of the status resource.

Figure 4-3 The status resource

The status resource contains a count of the status entries and an array of status

definitions.

■ Status owner. The signature of the printing extension or printer driver to which this
status resource belongs.

Each status definition contains four values:

■ Status type. The kind of status message that this is. The status type constants are
shown in Table 4-8.

■ Status ID. The ID of this status message within the status resource. You typically
assign sequential numbers to the status messages within each status resource, as
shown in the example at the end of this section.

C H A P T E R 4

Advanced Printing Features

4-94 Advanced Printing Features Reference

■ Status alert ID. The ID of the printing alert associated with this status message. Use
the ID 0 to indicate that this status message does not require a printing alert.

■ Status string. The status message string to display to the user.

Most of the status types produce side effects. For example, if you send a status message

with status type gxSpoolingPageStatus, the page count is incremented in the

spooling status that is displayed on the user’s screen. Table 4-8 shows the status type

constants and the side effects associated with each.

Table 4-8 Status types

Constant Value Explanation of side effects

gxNonFatalError 1 Affects the icon that is displayed during
spooling

gxFatalError 2 Displays a printing alert during spooling

gxPrinterReady 3 Signals that alert mode is done

gxUserAttention 4 Signals initiation of a modal alert

gxUserAlert 5 Signals initiation of a printing alert

gxPageTransmission 6 Signals that a page has been sent to the
printer and increments the printed page
count

gxOpenConnectionStatus 7 Signals that animation of the printer icon is
to begin

gxInformationalStatus 8 Displays an informational status message
and continues

gxSpoolingPageStatus 9 Signals that a page has been spooled and
increments the spooled page count

gxEndStatus 10 Signals the end of spooling

gxPercentageStatus 11 Signals the percentage of the current print
job that is currently complete

C H A P T E R 4

Advanced Printing Features

Summary of Advanced Printing Features 4-95

Summary of Advanced Printing Features

Constants and Data Types for Advanced Printing Features

Job Format Modes

typedef OSType gxJobFormatMode;

enum {

/* job format modes */

gxGraphicsJobFormatMode = (gxJobFormatMode) 'grph', /* graphics mode */

gxTextJobFormatMode = (gxJobFormatMode) 'text', /* text mode */

gxPostscriptJobFormatMode = (gxJobFormatMode) 'post' /* format mode */

};

struct gxJobFormatModeTable {

long numModes; /* number of modes */

gxJobFormatMode modes[1]; /* any number of modes */

};

Text Job Format (Direct) Mode

typedef long gxQueryType; /* a query type */

enum {

/* query types */

gxGetJobFormatLineConstraintQuery = (gxQueryType) 0, /* line */

/* constraint */

gxGetJobFormatFontsQuery = (gxQueryType) 1, /* fonts */

gxGetJobFormatFontCommonStylesQuery = (gxQueryType) 2, /* font common */

/* style */

gxGetJobFormatFontConstraintQuery = (gxQueryType) 3, /* font */

/* constraint */

gxSetStyleJobFormatCommonStyleQuery = (gxQueryType) 4 /* common */

/* style */

};

enum { gxConstraintRange = -1 };

C H A P T E R 4

Advanced Printing Features

4-96 Summary of Advanced Printing Features

struct gxPositionConstraintTable {

gxPoint phase; /* the phase */

gxPoint offset; /* the offset */

long numSizes; /* the number of constraint sizes */

Fixed sizes[1]; /* any number of constraint sizes */

};

struct gxStyleNameTable {

long numStyleNames; /* number of style names */

Str255 styleNames[1]; /* any number of style names */

};

struct gxFontTable {

long numFonts; /* number of font references */

gxFont fonts[1]; /* any number of font references */

};

The Status Structure

enum {

/*status type IDs*/

gxNonFatalError = 1, /* affects icon on spooling dialog box */

gxFatalError = 2, /* sends up user alert on spooling */

/* dialog box */

gxPrinterReady = 3, /* signals QuickDraw GX to leave alert */

/* mode */

gxUserAttention = 4, /* signals initiation of a modal alert */

gxUserAlert = 5, /* signals initiation of a movable */

/* modal alert */

gxPageTransmission = 6, /* signals page sent to printer, */

/* increments page count in strings to */

/* user */

gxOpenConnectionStatus = 7, /* signals QuickDraw GX to begin */

/* animation of printer icon */

gxInformationalStatus = 8, /* default status type, no effects */

gxSpoolingPageStatus = 9, /* signals page spooled, increments */

/* page count in spooling dialog box */

gxEndStatus = 10, /* signals end of spooling */

gxPercentageStatus = 11 /* signals to QuickDraw GX the amount */

/* of the print job which is currently */

/* complete */

};

C H A P T E R 4

Advanced Printing Features

Summary of Advanced Printing Features 4-97

/* status structure */

struct gxStatusRecord {

unsigned short statusType; /* the type of status */

unsigned short statusId; /* specific status ID */

unsigned short statusAlertId; /* printing alert ID for status */

Signature statusOwner; /* status owner signature */

short statResId; /* resource ID for 'stat' resource */

short statResIndex; /* index into 'stat' resource */

short dialogResult; /* ID of button selected to

 dismiss the printing alert box */

unsigned short bufferLen; /* # of bytes in status buffer */

char statusBuffer[1]; /* user response from alert */

};

Pen Tables for Vector Devices

enum { gxPenTableTag = 'pent' };

enum {

/* pen widths */

gxDeviceUnits = 0, /* device-specific units */

gxMmUnits = 1, /* millimeters */

gxInchesUnits = 2 /* inches */

};

/* pen constants */

enum { gxPenNotLoaded = -1};

/* pen table entry structure */

struct gxPenTableEntry {

Str31 penName; /* name of the pen */

gxColor penColor; /* color that is part of the */

/* color set */

fixed penThickness; /* size of the pen */

short penUnits; /* specifies units in which pen */

/* thickness is defined */

short penPosition; /* pen position in the carousel */

};

C H A P T E R 4

Advanced Printing Features

4-98 Summary of Advanced Printing Features

struct gxPenTable {

short numPens; /* number of pen entries in */

/* the following array */

gxPenTableEntry pens[1]; /* array of pen entries */

};

Constants and Data Types for Synonyms

General-Purpose PostScript Operator Synonym

#define gxPostScriptTag 0x706f7374 /* 'post' synonym */

PostScript Control Information Synonym

#define gxPostControlTag 0x70736374 /* 'psct' synonym */

enum gxPsStateFlags {

gxNoSave = 1 /* don’t do save-restore around PostScript data */

};

struct gxPostControl {

long flags; /* PostScript state flags */

};

Dash Synonym

#define gxDashSynonymTag 0x73647368 /* 'sdsh' synonym */

struct gxDashSynonym {

long size; /* number of elements in array */

fixed dashLength[gxAnyNumber]; /* array of dash lengths */

};

Halftone Synonym

enum { gxFormatHalftoneTag = 'half' };

struct gxFormatHalftoneInfo{

long numHalftones; /* how many halftones */

gxHalftone halftones[1]; /* any number of halftones */

};

C H A P T E R 4

Advanced Printing Features

Summary of Advanced Printing Features 4-99

struct gxHalftone{

fixed angle; /* direction of halftone */

fixed frequency; /* cells per inch */

gxDotType method; /* kind of pattern */

gxTintType tinting; /* tint calculation method */

gxColor dotColor; /* color of foreground */

gxColor backgroundColor; /* color of background */

gxColorSpace tintSpace; /* color space for tint */

};

Line Cap Synonym

#define gxLineCapSynonymTag 0x6c636170 /* 'lcap' synonym */

enum gxLineCaps { /* possible line caps */

gxButtCap = 0, /* square butt cap */

gxRoundCap = 1, /* round cap */

gxSquareCap = 2, /* square cap */

gxTriangleCap = 3 /* triangle cap */

};

typedef long gxLineCapSynonym; /* line cap type */

Pattern Synonym

#define gxPatternSynonymTag 0x7074726E /* 'ptrn' synonym */

enum gxPatterns {

gxHatch = 0, /* hatch pattern */

gxCrossHatch = 1 /* crosshatch pattern */

;

struct gxPatternSynonym {

long patternType; /* one of the patterns: hatch or crosshatch */

fixed angle; /* angle at which pattern is drawn */

fixed spacing; /* distance between two parallel pattern lines */

fixed thickness; /* thickness of the pattern */

gxPoint anchorPoint; /* point with respect to the pattern position */

/* calculated */

};

C H A P T E R 4

Advanced Printing Features

4-100 Summary of Advanced Printing Features

Cubic Synonym

#define gxCubicSynonymTag 0x63756278 /* 'cubx' synonym */

enum gxCubicSynonym {

gxIgnoreFlag = 0x0000, /* ignore this word, get next one */

gxLineToFlag = 0x0001, /* draw a line to point following this */

/* flag */

gxCurveToFlag = 0x0002, /* draw a curve through the 3 points */

/* following this flag */

gxMoveToFlag = 0x0003, /* start a new contour at the point */

/* following this flag */

gxClosePathFlag = 0x0004 /* close the contour */

};

#define gxCubicInstructionMask 0x000F /* low 4 bits are point */

/* instructions */

typedef short gxCubicSynonymFlags;

/* low 8 bits are instruction (moveto, lineto, curveto, closepath) */

QuickDraw Picture Synonym

struct gxQuickDrawPict {

gxTranslationOptions options; /* translator options */

Rect srcRect; /* QuickDraw source Rect */

Point styleStretch;/* the scale factor */

unsigned long dataLength; /* length of picture data */

struct gxBitmapDataSourceAlias alias; /* alias to QuickDraw data */

};

Functions

Working With Advanced Job Object Functions

void GXSelectJobFormattingPrinter
(gxJob aJob, Str31 printerName);

gxPrinter GXGetJobFormattingPrinter
(gxJob aJob);

gxPrinter GXGetJobOutputPrinter
(gxJob aJob);

void* GXGetJobRefcon (gxJob aJob);

C H A P T E R 4

Advanced Printing Features

Summary of Advanced Printing Features 4-101

void GXSetJobRefcon (gxJob aJob, void *refCon);

gxJob GXCopyJob (gxJob srcJob, gxJob dstJob);

Manipulating Printer Objects

gxPrinter GXGetJobPrinter (gxJob aJob);

gxJob GXGetPrinterJob (gxPrinter aPrinter);

void GXForEachPrinterViewDeviceDo
(gxPrinter aPrinter,
gxViewDeviceProc aViewDeviceProc,
void *refCon);

long GXCountPrinterViewDevices
(gxPrinter aPrinter);

gxViewDevice GXGetPrinterViewDevice
(gxPrinter aPrinter,long whichViewDevice);

void GXSelectPrinterViewDevice
(gxPrinter aPrinter, long whichViewDevice);

void GXGetPrinterDriverName (gxPrinter aPrinter, Str31 name);

void GXGetPrinterName (gxPrinter aPrinter, Str31 name);

OSType GXGetPrinterDriverType
(gxPrinter aPrinter);

OSType GXGetPrinterType (gxPrinter aPrinter);

Working With QuickDraw GX Print Files

gxPrintFile GXOpenPrintFile (gxJob aPrintFileJob, FSSpecPtr pFileSpec,
char permission);

void GXClosePrintFile (gxPrintFile aPrintFile);

gxJob GXGetPrintFileJob (gxPrintFile aPrintFile);

long GXCountPrintFilePages (gxPrintFile aPrintFile);

void GXReadPrintFilePage (gxPrintFile aPrintFile, long pageNumber,
long numViewPorts, gxViewPort *viewPortList,
gxFormat *pageFormat, gxShape *pageShape);

void GXReplacePrintFilePage (gxPrintFile aPrintFile,
long pageNumber, gxFormat pageFormat,
gxShape pageShape);

void GXInsertPrintFilePage (gxPrintFile aPrintFile, long atPageNumber,
gxFormat pageFormat, gxShape pageShape);

void GXDeletePrintFilePageRange
(gxPrintFile aPrintFile,
long fromPageNumber,
long toPageNumber);

void GXSavePrintFile (gxPrintFile aPrintFile, FSSpec *pFileSpec);

C H A P T E R 4

Advanced Printing Features

4-102 Summary of Advanced Printing Features

Working With Paper Types

gxPaperType GXNewPaperType (gxJob aJob, Str31 name,
gxRectangle *pageSize, gxRectangle *paperSize);

void GXDisposePaperType (gxPaperType aPaperType);

gxPaperType GXGetNewPaperType
(gxJob aJob,short resID);

gxPaperType GXGetJobPaperType
(gxJob aJob, long whichPaperType,
Boolean forFormatDevice,
gxPaperType aPaperType);

long GXCountJobPaperTypes (gxJob aJob, Boolean forFormatDevice);

gxPaperType GXCopyPaperType (gxPaperType srcPaperType,
gxPaperType dstPaperType);

void GXGetPaperTypeName (gxPaperType aPaperType,
Str31 name);

void GXGetPaperTypeDimensions
(gxPaperType aPaperType,
gxRectangle *aPageSize,
gxRectangle *aPaperSize);

gxJob GXGetPaperTypeJob (gxPaperType aPaperType);

void GXForEachJobPaperTypeDo
(gxJob aJob, gxPaperTypeProc aPaperTypeProc,
void *refCon, Boolean forFormattingPrinter);

Formatting for Specific Devices

void GXSetAvailableJobFormatModes
(gxJob aJob,
JobFormatModeTableHdl
aJobFormatModeTableHdl);

gxJobFormatMode GXGetPreferredJobFormatMode
(gxJob aJob,
Boolean *directOnly);

gxJobFormatMode GXGetJobFormatMode
(gxJob aJob);

void GXSetJobFormatMode (gxJob aJob, gxJobFormatMode aMode);

void GXJobFormatModeQuery (gxJob aJob, gxQueryType aQueryType,
void *srcData, void *dstData);

C H A P T E R 4

Advanced Printing Features

Summary of Advanced Printing Features 4-103

Color Profile Functions

OSErr GXFindPrinterProfile (gxPrinter thePrinter, void *searchData,
long index, gxColorProfile *returnedProfile,
long *numProfiles);

OSErr GXFindFormatProfile (gxFormat theFormat, void *searchData,
long index, gxColorProfile *returnedProfile,
long *numProfiles);

OSErr GXSetPrinterProfile (gxPrinter thePrinter,
gxColorProfile oldProfile,
gxColorProfile newProfile);

OSErr GXSetFormatProfile (gxFormat theFormat,
gxColorProfile oldProfile,
gxColorProfile newProfile);

Idle Job Function

void GXIdleJob (gxJob aJob);

Application-Defined Functions

OSErr GXJobStatus (gxStatusRecord *aStatusRecord);

gxLoopStatus MyViewDeviceFunction
(gxViewDevice aViewDevice,
void *refCon);

gxLoopStatus MyPaperTypeFunction
(gxPaperType aPaperType,
void *refCon);

GL-1

application phase In QuickDraw GX printing,
the phase when the application calls QuickDraw
GX and interacts with the user by displaying
dialog boxes to establish printing parameters,
such as page orientation and paper type.

CMYK color space A color space whose four
components measure the cyan, magenta, yellow,
and black elements of a color. Used mostly for
printing.

collection object An extensible object, managed
by the Collection Manager, that is used to hold
any kind of information. See job collection,
format collection, paper-type collection.

color matching A method of accurately
converting colors in one color space to another
color space, or from display on one device to
display on another device.

color profile A QuickDraw GX object
associated with a transfer mode, color, or bitmap
data structure and used for color matching. A
color profile usually describes the color response
curve of a display device in terms of an objective
standard.

color space A specification of a particular
method for color representation, such as RGB,
CMYK, or gray space.

ColorSync Utilities A part of Macintosh
system software that manages color matching,
color profiles, and the drawing of matched
colors. QuickDraw GX color profile objects
contain ColorSync color profiles, and QuickDraw
GX uses the ColorSync Utilities to perform its
color matching.

despool To open a print file and send its data to
a device for printing. See spooling phase.

direct mode See job format mode.

desktop printer The representation of a
QuickDraw GX printer as an icon on the user’s
desktop.

device communications phase In QuickDraw
GX printing, the phase when the data that
represents the rendered form of each page is sent
to the output device.

extended item list A resource that extends an
item list ('DITL') resource by responding
automatically to items when they are
manipulated by the user.

flatten To convert the private, object-based
description of an object or set of objects into a
public-format data stream suitable for file or
clipboard storage. Used when saving a print job.
Compare unflatten.

formatting printer The printer for which a
document’s format is retained. See also output
printer.

format collection A collection of items that are
relevant to a format but are not required to define
a format. See also collection object.

format object An object that represents how
pages of a document are to be formatted,
including scaling, orientation, and paper type. It
allows a form to be associated with a format. See
also paper-type object, form.

form A property of a format object that allows a
picture shape to be printed as a backdrop to the
contents of the page. A form can optionally
include a mask shape that defines areas that are
not printed.

forward To pass a message on to the next
message handler in a message chain. See also
message chain, message handler, override.

gamut The limits of the colors that a device can
produce. Different devices have different gamuts,
so color matching is necessary when converting
colors from one device to another.

grayscale Consisting entirely of shades of gray.

Glossary

G L O S S A R Y

GL-2

gray space A color space whose single
component is the lightness or brightness of a
color.

halftone A QuickDraw GX data structure that
specifies a pattern and a set of colors. A halftone
is used to achieve a greater range of colors that
may be otherwise available.

imaging phase In QuickDraw GX printing, the
phase when each previously spooled page is
rendered into a form that can be printed on the
output device.

job collection A collection of items that are
relevant for a print job but not required to define
a print job. See also collection object.

job format mode A mode of printing, either
graphics (the QuickDraw GX default), text-only,
or PostScript-only. The text and PostScript modes
are sometimes called direct-mode printing; used
to trade off the ability to redirect output to
another printer for faster output on a specific
printer.

job object An object that represents the
parameters associated with printing, such as the
printer and page range. These parameters specify
a “print job.”

mapping A 3 × 3 matrix—a property of a
format object that specifies scaling and
orientation.

message A notice sent by one message handler
to another that a certain condition has arisen or
that a certain task needs to be accomplished. See
also printing message.

message chain A hierarchy of message
handlers eligible to receive and respond to
messages.

message handler A recipient of messages. In
QuickDraw GX printing, applications, printing
extensions, printer drivers, and QuickDraw GX
are all message handlers, which are part of a
message chain.

message override The response, by a message
handler, of intercepting a message and taking
some action. The response to a message is
performed by an override function. See also
override function.

message-passing architecture A software
system driven by messages that are sent in
response to certain conditions or events. The
messages activate message handlers, which take
action in response to the messages. QuickDraw
GX printing uses a message-passing architecture.

output printer The printer to which a
document is sent to be printed. If the document’s
formatting printer is different than the output
printer, the print file reflects the output printer’s
formatting; however, the document itself retains
its original format. See also formatting printer.

override (n.) See message override and
override function. (v.) To intercept a message
and take action on it.

object A private QuickDraw GX data structure.
An object has specific properties and is accessed
through a reference.

override function The code, defined in a
message handler, that responds to a message. See
also message override.

owner A variable, structure, or QuickDraw GX
object that references an object. Many objects can
be referenced by more than one variable and can
thus have multiple owners.

panel A subset of a dialog box used to display
and collect related pieces of information. An
expanded dialog box may contain one or more
panels, each of which is named and associated
with an icon. A panel is defined by a panel
resource.

paper-type collection A collection of items that
are relevant to a kind of paper but are not
required to define a paper type. See also
collection object.

paper-type object A paper-type object
represents the paper for which a page is
formatted. It specifies the name of the paper, the
size, and the printable area. See also format
object.

partial override An implementation of a
printing message override that forwards the
message to other message handlers. You typically
forward the message at the beginning or end of
your override function.

G L O S S A R Y

GL-3

picture shape A shape type that represents a
collection of other shapes.

portable digital document (PDD) A print file
that can be viewed without the application or
fonts that created it. It is created by printing with
the PDD Maker GX printer driver. See also print
file.

printer See desktop printer, formatting printer,
output printer.

printer driver A program that converts data
that is sent by an application program into data
and control sequences intended for a specific
output device.

printer object An object that represents the
characteristics of a printer, such as its color space
and resolution. The output printer and
formatting printer are represented by printer
objects.

print dialog box A dialog box provided by
QuickDraw GX that is both movable and modal.
Most print dialog boxes have both a normal and
an expanded version. The application can
customize print dialog boxes by adding panels.
See also panel.

print file A document or data that has been
spooled by actually printing the file. See also
portable digital document.

print file object A representation of a print file,
which allows an application to access the
contents of the file.

print job See job object.

printing extension An add-on software module
that allows you to extend printing functionality
provided by applications and printer drivers.

printing message A notice that QuickDraw GX
sends to the message handlers in a message chain
that a certain printing-related condition has
arisen or that a certain printing-related task
needs to be accomplished. See also message
chain, message handler.

printing message override See message
override.

property An item or set of data in a QuickDraw
GX object. A property of an object is analogous to
a field (or member) of a data structure; however,
a field is accessed though its name, whereas a
property is accessed through a function.

reference A long-word value, neither a pointer
nor a handle, through which an application
accesses a QuickDraw GX object. References are
created by QuickDraw GX and passed to
applications.

scale To proportionally enlarge or shrink.

shape (1) A graphic or typographic item (such
as a geometric shape, a bitmap, or a line of text)
created and drawn with QuickDraw GX. (2) A set
of QuickDraw GX objects that, taken together,
describe the type and characteristics of such a
graphic or typographic item. A shape consists of
a shape object, a style object, an ink object, and a
transform object.

shape object A QuickDraw GX object that,
along with several other objects, describes a
QuickDraw GX shape. A shape object specifies
the fundamental type and contents of a shape.

spooling phase In QuickDraw GX printing, the
phase when the application sends the document
pages to disk, in preparation for printing. The
printer driver stores printable output in a file
from which it is subsequently despooled,
rendered, and sent to the output device. See also
despool.

synonym A particular kind of tag object, used
by QuickDraw GX to provide an alternate
representation of an object for printing. The
synonym specifies data, such as alternative
PostScript operators, for the printer driver to use
instead of the instructions that QuickDraw GX
generates.

tag list A property of many QuickDraw GX
objects. It is an array of references to tag objects
associated with the object.

tag object A QuickDraw GX object whose
purpose, structure, and content are entirely
controlled by the application creating it. Tag
objects exist to allow custom information and
behavior to be attached to standard QuickDraw

G L O S S A R Y

GL-4

GX objects. Tag objects are classified by tag type;
objects reference their tag objects through a tag
list.

tag type A longword data type (equivalent to
OSType) that can be represented by four 1-byte
characters, such as 'appl'. Tag types specify the
formats of tag objects, such as synonyms.

total override An implementation of a printing
message override that does not forward the
message to other message handlers.

unflatten To convert the public, stream-based
description of an object or set of objects into the
private, native QuickDraw GX object-based
format. Used when retrieving a print job.
Compare flatten.

IN-1

Index

A

advanced printing features 1-30, 4-5 to 4-102
application phase of printing 1-4
attribute bit masks, for printing-related collections 3-9,

3-76

B

base information
as paper-type collection item 3-14
defined 3-94

C

caps, synonym 4-14 to 4-15, 4-47
collation information

as job collection item 3-11
defined 3-80

collection items, printing-related 3-7 to 3-8
collection objects. See also printing-related collections

printing tag 3-8, 3-77
Collection type 2-47
color matching, for printers 4-9
color profile objects, for printers 4-9, 4-27 to 4-29, 4-84

to 4-89
color spaces, printer specification 4-8, 4-27 to 4-29
comment information

as paper-type collection item 3-14
defined 3-97

compatibility of QuickDraw GX printing with
Macintosh Printing Manager 1-30

copies information
as job collection item 3-11
defined 3-81

core printing features 1-26 to 1-28, 2-3 to 2-81
creator information

as paper-type collection item 3-14
defined 3-95

customizing printing features 1-28 to 1-29, 3-22 to
3-27, 3-33 to 3-39, 3-66 to 3-75, 3-98 to 3-102,
3-113 to 3-125

Custom Page Setup dialog box 3-113

D

dashes, synonym 4-14, 4-46
desktop printers 1-7 to 1-8

application support for 2-39 to 2-42
icons for 1-9

device communications phase of printing 1-5
dialog boxes 1-10 to 1-13, 2-17 to 2-19

customization 3-6 to 3-7, 3-22 to 3-27, 3-66 to 3-73,
3-119 to 3-125

Custom Page Setup dialog box 3-113
displaying 2-37 to 2-39, 2-71 to 2-74, 3-23, 3-113 to

3-121
Edit menu structure 2-9
extended item list resources 3-72 to 3-73, 3-128 to

3-132
Page Setup dialog box 2-35 to 2-37, 2-72, 3-121
panel resources 3-24, 3-70, 3-127
parsing responses in 3-102
Print dialog box 1-10 to 1-12, 2-37 to 2-39, 2-73, 3-120
Printing Status dialog box 4-91
results defined 2-48
setting up panels 3-67 to 3-69, 3-114

dimensions
as format object property 2-8
as paper-type object property 2-9
from format objects 2-33 to 2-34, 2-70
from paper-type objects 4-33, 4-77
of panels 2-7, 3-115

direct mode 4-19 to 4-20, 4-35 to 4-36. See also job
format modes

direct-mode information
as format collection item 3-13
defined 3-91

direct mode. See job format modes
'DITL' resource type 3-71

E

Edit menu structure 2-9
defined 2-48

error. See also printing errors
as job object property 2-6

extended item list resources 3-72 to 3-73, 3-128 to 3-132

I N D E X

IN-2

F

file-destination information
as job collection item 3-11
defined 3-83

file-fonts information
as job collection item 3-11
defined 3-85

file-format information
as job collection item 3-11
defined 3-84

file-location information
as job collection item 3-11
defined 3-84

Finder printing support 2-39 to 2-42
flags information

as paper-type collection item 3-14
defined 3-97

flattening
job objects 2-25 to 2-28, 2-56 to 2-58, 2-77
print-job flattening function 2-27 to 2-28
print-job to handle 2-25 to 2-27

font table 4-37, 4-41
format collection items

changing 3-112
direct-mode information 3-13, 3-91
format-halftone information 3-13, 3-92
horizontal page-flip information 3-13, 3-93
orientation information 3-13, 3-89
page-inversion information 3-13, 3-92
paper-type lock information 3-13, 3-94
precise-bitmap information 3-13, 3-93
scaling information 3-13, 3-91
vertical page-flip information 3-13, 3-93

format collections 3-12 to 3-13
accessing 3-118
accessing page correspondences 3-61 to 3-66
as format object property 2-8
constants and data types for 3-89 to 3-94
halftone information 3-21 to 3-22, 3-52 to 3-53
items in. See format collection items
mapping items 3-18 to 3-19

format-halftone information. See also halftones
as format collection item 3-13
defined 3-92

format list, as print file object property 4-10
format mode. See also job format modes

as job object property 2-6
format object properties 2-7 to 2-8

collection 2-8
dimensions 2-8

form 2-8
job object 2-8
mapping 2-8
paper type 2-8

format objects 1-17, 2-3 to 2-5, 2-7 to 2-8
accessing format collections 3-118
as job object property 2-7
changing collection items 3-112
cloning 3-44 to 3-47, 3-106
copying 3-54 to 3-56, 3-105
counting owners 3-107
creating 3-40 to 3-44, 3-104
current format mode 4-81, 4-82
defined 2-47
disposing of 3-47 to 3-50, 3-104
forms 3-20, 3-50 to 3-51, 3-111
manipulating 3-16 to 3-22
manipulating properties of 2-33 to 2-34, 3-103 to

3-112
manipulation by job objects 3-108, 3-126
mapping 3-18 to 3-19
obtaining job object from 2-33, 2-69
properties of. See format object properties
retrieving dimensions 2-33 to 2-34, 2-70
retrieving forms 3-111
retrieving from job object 2-69
retrieving mapping 3-57, 3-109
retrieving the paper type 3-57 to 3-59, 3-110
sharing 3-44 to 3-47

format-panel information
as job collection item 3-12
defined 3-88

formatting
associating pages and formats 3-61 to 3-66
for specific devices 4-79 to 4-84
page formatting 3-6 to 3-7, 3-15 to 3-22, 3-39 to 3-66
text mode queries 4-36 to 4-37, 4-83

formatting printers
as job object property 2-6
changing color profiles 4-88
determining for job objects 4-51
retrieving color profiles 4-85
selecting 4-50

forms 1-17
as format object property 2-8
printing 3-20
retrieving 3-111
specifying 3-111
using 3-50 to 3-51

forwarding messages 3-23

I N D E X

IN-3

GA–GXB

Gestalt selectors, for QuickDraw GX printing 2-11, 2-47
gxBaseInfo structure 3-94

GXC

GXChangedFormat function 3-112
GXCloneFormat function 3-46, 3-106
GXClosePrintFile function 4-29, 4-63
gxCollationInfo structure 3-80
gxCollectionCategory type 3-9, 3-77
gxCommentInfo structure 3-98
GXConvertPrintRecord function 2-45, 2-75
gxCopiesInfo structure 3-81
GXCopyFormat function 3-54, 3-105
GXCopyJob function 4-25, 4-53
GXCopyPaperType function 4-76
GXCountFormatOwners function 3-107
GXCountJobFormats function 3-107
GXCountJobPaperTypes function 4-75
GXCountPrinterViewDevices function 4-26, 4-57
GXCountPrintFilePages function 4-29, 4-30, 4-65
gxCreatorInfo structure 3-95
gxCubicSynonym enumeration 4-48
gxCubicSynonymFlags type 4-48

GXD

gxDashSynonym structure 4-14, 4-46
GXDeletePrintFilePageRange function 4-69
gxDialogResult type 2-48
gxDirectModeInfo structure 3-91
GXDisposeFormat function 3-49, 3-54, 3-104
GXDisposeJob function 2-28, 2-29, 2-55
GXDisposePaperType function 4-72
GXDrawShape function 2-20, 2-22, 2-64

GXE

gxEditMenuRecord structure 2-9, 2-48
GXEnableJobScalingPanel function 3-116
GXEnterGraphics function 2-11, 2-50
GXExitGraphics function 2-12, 2-51
GXExitPrinting function 2-12, 2-51
gxExtendedDITLType resource type 3-72 to 3-73,

3-128 to 3-132

GXF

gxFileDestinationInfo structure 3-83
gxFileFontsInfo structure 3-85
gxFileFormatInfo structure 3-84
gxFileLocationInfo structure 3-84
GXFilterPanelEvent message 3-124
GXFindFormatProfile function 4-85
GXFindPrinterProfile function 4-84
GXFinishJob function 2-20, 2-65
GXFinishPage function 2-20, 2-22, 2-64, 2-67
gxFlagsInfo structure 3-97
GXFlattenJob function 2-25, 2-27, 2-28, 2-29, 2-57
GXFlattenJobToHdl function 2-25, 2-29, 2-56
gxFlipPageHorizontalInfo structure 3-93
gxFlipPageVerticalInfo structure 3-93
gxFontTable structure 4-37, 4-41
GXForEachFormatDo function 3-108
GXForEachJobFormatDo function 3-60
GXForEachJobPaperTypeDo function 4-34, 4-78
GXForEachPrinterViewDeviceDo function 4-56
GXFormatDialog function 3-113, 4-24
GXFormatDialog message 3-122
gxFormatHalftoneInfo structure 3-92, 4-15, 4-46
gxFormatPanelInfo structure 3-88
gxFormat type 2-47

GXG

GXGetFormatCollection function 3-53, 3-118
GXGetFormatDimensions function 2-12, 2-70
GXGetFormatForm function 3-111
GXGetFormatJob function 2-33, 2-69
GXGetFormatMapping function 3-57, 3-109
GXGetFormatPaperType function 3-58, 3-110
GXGetJobCollection function 3-28, 3-117
GXGetJobError function 2-14, 2-52
GXGetJobFormat function 2-21, 2-69
GXGetJobFormatMode function 4-36, 4-81
GXGetJobFormattingPrinter function 4-26, 4-51
GXGetJobOutputPrinter function 4-22, 4-51
GXGetJobPageRange function 2-20, 2-62
GXGetJobPanelDimensions function 3-115
GXGetJobPaperType function 4-74
GXGetJobPrinter function 4-55
GXGetJobRefCon function 4-52
GXGetMessageHandlerResFile function 3-116
GXGetNewPaperType function 4-73
GXGetPaperTypeCollection function 3-118
GXGetPaperTypeDimensions 4-33
GXGetPaperTypeDimensions function 4-77

I N D E X

IN-4

GXGetPaperTypeJob function 4-78
GXGetPaperTypeName function 4-32, 4-76
GXGetPreferredJobFormatMode function 4-80
GXGetPrinterDriverName function 4-22, 4-59
GXGetPrinterDriverType function 4-22, 4-60
GXGetPrinterJob function 4-55
GXGetPrinterName function 4-22, 4-59
GXGetPrinterType function 4-22, 4-61
GXGetPrinterViewDevice function 4-26, 4-57
GXGetPrintFileJob function 4-64

GXH, GXI

GXHandlePanelEvent message 3-123
GXIdleJob function 4-90
GXInitPrinting function 2-11, 2-50
GXInsertPrintFilePage function 4-68
GXInstallApplicationOverride function 2-18,

2-54, 2-71, 3-67
gxInvertPageInfo structure 3-92

GXJ, GXK

GXJobDefaultFormatDialog function 2-35, 2-72
GXJobDefaultFormatDialog message 3-121
GXJobFormatModeQuery function 4-36, 4-83
gxJobFormatModeTable type 4-39
gxJobFormatMode type 4-39
gxJobInfo structure 3-78
GXJobPrintDialog function 2-38, 2-73
GXJobPrintDialog message 3-120
GXJobStatus message 4-91
gxJob type 2-47

GXL, GXM

gxLineCaps enumeration 4-47
gxLineCapSynonym type 4-14, 4-47
gxLoopStatus type 3-60, 3-76
gxManualFeedInfo structure 3-86

GXN

GXNewFormat function 3-42, 3-54, 3-104
GXNewJob function 2-13, 2-54
GXNewPaperType function 4-32, 4-71
gxNormalMappingInfo structure 3-86

GXO

GXOpenPrintFile function 4-29, 4-62
gxOrientationInfo structure 3-90

GXP

gxPageRangeInfo structure 3-81
gxPanelEvent enumeration 3-99
gxPanelInfoRecord structure 3-98
gxPanelSetupRecord structure 3-101
gxPaperFeedInfo structure 3-85
gxPaperTypeLockInfo structure 3-94
gxPaperType type 2-47
GXParsePageRange message 3-125
gxParsePageRangeResult type 3-102
gxPatterns enumeration 4-48
gxPatternSynonym structure 4-17, 4-47
gxPenTableEntry structure 4-21, 4-44
gxPenTable structure 4-21, 4-44
gxPositionConstraintTable structure 4-37, 4-41
gxPostControl structure 4-14, 4-45
gxPreciseBitmapInfo structure 3-94
gxPrinter type 2-47
gxPrintFile type 2-47
GXPrintingEvent message 2-17, 2-18, 2-76
gxPrintingPanelKind enumeration 3-102
GXPrintPage function 2-20, 2-21, 2-64, 2-69
gxPrintPanelInfo structure 3-88
gxPrintPanelType resource type 3-24, 3-70, 3-127
gxPsStateFlags enumeration 4-45

GXQ

gxQualityInfo structure 3-83
gxQueryType type 4-40
gxQuickDrawPict structure 4-18, 4-49

GXR

GXReadPrintFilePage function 4-30, 4-65
GXReplacePrintFilePage function 4-66

GXS

GXSavePrintFile function 4-70
gxScalingInfo structure 3-91

I N D E X

IN-5

GXSelectJobFormattingPrinter function 4-50
GXSelectJobOutputPrinter function 2-40, 2-61
GXSelectPrinterViewDevice function 4-58
GXSetAvailableJobFormatModes function 4-35, 4-80
GXSetFormatForm function 3-50, 3-111
GXSetFormatProfile function 4-88
GXSetJobError function 2-17, 2-53
GXSetJobFormatMode function 4-36, 4-82
GXSetJobRefCon function 4-23, 4-53
GXSetPrinterProfile function 4-87
GXSetupDialogPanel function 3-68
GXSetupPanel function 3-114
gxSimplePageRangeInfo structure 3-82
gxSpecialMappingInfo structure 3-87
GXStartJob function 2-20, 2-63
GXStartPage function 2-20, 2-22, 2-64, 2-66, 2-69
gxStatusRecord structure 4-42
gxStatusType resource type 4-93 to 4-94
gxStyleNameTable structure 4-37, 4-41

GXT

gxTranslatedDocumentInfo structure 3-89
gxTrayIndex type 3-88
gxTrayMappingInfo structure 3-88

GXU–GXZ

GXUnflattenJobFromHdl function 2-30, 2-58
GXUnflattenJob function 2-29, 2-32, 2-59
gxUnitsInfo structure 3-96
GXUpdateJob function 2-42, 2-60

H

halftones
printing with 3-21 to 3-22, 4-15 to 4-16, 4-46
specifying 3-52 to 3-53, 4-46
synonym for 4-46

horizontal page-flip information
as format collection item 3-13
defined 3-93

I

imaging phase of printing 1-5
item list resource type 3-71

J, K

job collection items
collation information 3-11, 3-80
copies information 3-11, 3-81
file-destination information 3-11, 3-83
file-fonts information 3-11, 3-85
file-format information 3-11, 3-84
file-location information 3-11, 3-84
format-panel information 3-12, 3-88
manual-feed information 3-11, 3-86
page-range information 3-11, 3-81
paper-feed information 3-11, 3-85
paper-mapping information 3-12, 3-89
print-job information 3-10, 3-78
print-panel information 3-12, 3-88
quality information 3-11, 3-83
special mapping information 3-11, 3-12, 3-87
standard mapping information 3-11, 3-86
translated-document information 3-12, 3-89
tray-mapping information 3-12, 3-88

job collections 3-10 to 3-12
accessing 3-117
as job object property 2-7
constants and data types for 3-78 to 3-89
items in. See job collection items

job format modes
defined 4-19 to 4-20, 4-39
determining preferred mode 4-80
retrieving current mode 4-81
setting current mode 4-82
specifying 4-80
text formatting 4-36 to 4-37, 4-40 to 4-41, 4-83
text query types defined 4-40
using 4-35 to 4-36

job object properties 2-5 to 2-7
collection 2-7
error 2-6
format list 2-7
format mode 2-6
formatting printer 2-6
output printer 2-6
page range 2-7
panel dimensions 2-7
paper-type list 2-7
reference constant 2-6

I N D E X

IN-6

job objects 1-16 to 1-17, 2-3 to 2-5, 2-5 to 2-7
accessing job collections 3-117
as format object property 2-8
as paper-type object property 2-9
as printer object property 4-7
as print file object property 4-10
copying 4-25, 4-53
counting format objects 3-107
counting paper-types for 4-75
creating 2-12 to 2-14, 2-54
defined 2-47
determining page range for 2-62
disposing of 2-28 to 2-29, 2-55
error for 2-52
finishing a print job 2-65
flattening 2-25 to 2-28, 2-56 to 2-58, 2-77
manipulating 2-54 to 2-60
manipulating format objects 3-108, 3-126
manipulating paper types 4-34 to 4-35, 4-78, 4-92
manipulating properties of 4-23 to 4-24, 4-50 to 4-54
printing with 2-61 to 2-68
print record conversion 2-75
properties of. See job object properties
retrieving 2-29 to 2-32
retrieving a printer 4-55
retrieving format objects from 2-69, 3-59 to 3-61
retrieving from format objects 2-69
retrieving panel dimensions 3-115
retrieving paper-type objects 4-74
retrieving printer information 4-22 to 4-23
saving 2-24 to 2-28
setting error condition 2-53
setting error conditions for 2-17
unflattening 2-30 to 2-32, 2-58 to 2-60, 2-78
updating 2-42 to 2-44, 2-60

L

line caps. See Caps
loop status information 3-76

M, N

Macintosh Printing Manager
compatibility with QuickDraw GX 1-30, 2-75
printing documents created with 2-44 to 2-45

manual-feed information
as job collection item 3-11
defined 3-86

mappings
and format objects 3-18 to 3-19, 3-57, 3-109
as format object property 2-8

message chain 1-13
message handlers 1-13, 2-71
messages 1-13 to 1-15

forwarding 3-23
installing handlers for 2-71
printing messages 1-13
retrieving resources for handler 3-116

MyDocumentRec structure 2-10
MyFlattenFunction application-defined

function 2-27, 2-77
MyFormatFunction application-defined function 3-60,

3-126
MyPaperTypeFunction application-defined

function 4-34, 4-92
MyUnflattenFunction application-defined

function 2-32, 2-78
MyViewDeviceFunction application-defined

function 4-92

O

objects. See also job objects; format objects; paper-type
objects; printer objects; print file objects

printing-related 1-6 to 1-7, 1-16 to 1-22
orientation information

as format collection item 3-13
defined 3-89

output printers
as job object property 2-6
changing color profiles 4-87
determining for job objects 4-51
retrieving color profiles 4-84
selecting 2-61

override functions 1-13
MyFormatDialogOverride application-defined

function 3-67
MyParsePageRangeOverride application-defined

function 3-75
MyPrintDialog application-defined function 3-73
MyPrintingEvent application-defined function 2-19
setting up 2-71

P

page count
as print file object property 4-10
determining for print file 4-29, 4-65

page formatting. See formatting

I N D E X

IN-7

page-inversion information
as format collection item 3-13
defined 3-92

page-range information 3-33 to 3-39
as job collection item 3-11
defined 3-81
parsing 3-73 to 3-75

page ranges
as job object property 2-7
deleting from print files 4-69
determining 2-62

Page Setup dialog box 2-35 to 2-37, 2-72, 3-121
page size. See also dimensions

from paper type 4-33, 4-77
panel dimensions

as job object property 2-7
determining 3-115

panel events
actions 3-101
automated responses 3-25 to 3-27
constants and data types 3-99 to 3-102
handling 3-25 to 3-27, 3-123 to 3-125

panel information structure 3-98
panel resources 3-24, 3-70, 3-127
panels 1-11 to 1-13. See also panel events

automating responses in 3-25 to 3-27
custom 3-22 to 3-24
for scaling 3-116
resources 3-24, 3-70, 3-127
retrieving dimensions of 3-115
setting up 3-67 to 3-69, 3-114

panel setup information structure 3-101
paper-feed information

as job collection item 3-11
defined 3-85

paper-mapping information, as job collection item 3-12
paper size. See also dimensions

from paper type 4-33, 4-77
paper-type collection items

base information 3-14, 3-94
comment information 3-14, 3-97
creator information 3-14, 3-95
flags information 3-14, 3-97
units information 3-14, 3-96

paper-type collections 3-14
accessing 3-118
as paper-type object property 2-9
constants and data types for 3-94 to 3-98
items in. See paper-type collection items

paper-type lock information
as format collection item 3-13
defined 3-94

paper-type name
as paper-type object property 2-9
determining 4-76

paper-type object properties 2-8 to 2-9
collection 2-9
dimensions 2-9
job object 2-9
name 2-9

paper-type objects 1-18, 2-3 to 2-5, 2-8 to 2-9
accessing paper-type collections 3-118
as format object property 2-8
as job object property 2-7
copying 4-76
creating 4-32, 4-71
creating from resources 4-73
defined 2-47
determining paper and page sizes 4-33, 4-77
determining the name of 4-32 to 4-33
disposing of 4-72
manipulating for a job object 4-34 to 4-35, 4-78, 4-92
manipulating properties of 4-71 to 4-79
properties of. See paper-type object properties
retrieving by format objects 3-57 to 3-59, 3-110
retrieving job object from 4-74, 4-78
retrieving the name 4-76

parse range results enumeration 3-102
parsing page range information 3-73 to 3-75
partial overrides of printing messages 1-13
path shapes, cubic synonym 4-17 to 4-18, 4-38, 4-48
patterns, synonym 4-17, 4-47 to 4-48
'pdoc' Apple event 2-40
pen tables 4-20 to 4-21, 4-43 to 4-44
portable digital document. See also print files

defined 1-5
position constraint table 4-37, 4-41
PostScript synonyms 4-12 to 4-14, 4-45
'ppnl' resource type. See panel resource
precise-bitmap information

as format collection item 3-13
defined 3-93

Print dialog box 1-10 to 1-12, 2-37 to 2-39, 2-73, 3-120
Print Documents ('pdoc') Apple event 2-40
printer driver name

as printer object property 4-7
retrieving 4-59

printer drivers 1-8 to 1-9
printer driver type

as printer object property 4-7
codes 4-7
retrieving 4-60

printer name
as printer object property 4-7
retrieving 4-59

I N D E X

IN-8

printer object properties 4-6 to 4-7
job object 4-7
printer driver name 4-7
printer driver type 4-7
printer name 4-7
printer type 4-7
view device list 4-7

printer objects 1-20, 4-6 to 4-9
color specification 4-8, 4-27 to 4-29, 4-84 to 4-89
counting view devices 4-57
defined 2-47
determining resolution for 4-26 to 4-27
manipulating properties of 4-54 to 4-61
manipulating view devices 4-56, 4-92
properties of. See printer object properties
retrieving from a job object 4-55
retrieving properties of 4-22 to 4-23
retrieving the driver name 4-59
retrieving the job object from 4-55
retrieving the printer driver type 4-60
retrieving the printer name 4-59
retrieving the printer type 4-61
retrieving view devices 4-57
selecting view devices 4-58
view devices 4-8, 4-25 to 4-29

printers. See formatting printers; output printers;
desktop printers

printer type
as printer object property 4-7
retrieving 4-61

print file object properties 4-10
format list 4-10
job object 4-10
page count 4-10
shape list 4-10

print file objects 1-20, 4-9 to 4-10. See also print files
defined 2-47
determining job object 4-30, 4-64
manipulating properties of 4-61 to 4-70
properties of. See print file object properties
using 4-29 to 4-31

print files 1-8
closing 4-29 to 4-30, 4-63
counting pages in 4-31, 4-65
deleting pages from 4-69
determining print-jobs 4-64
inserting pages in 4-68
opening 4-29 to 4-30, 4-62
QuickDraw picture data in 4-18 to 4-19
reading pages from 4-30 to 4-31, 4-65
replacing pages in 4-66
saving 4-30, 4-70

printing 1-25 to 1-31, 2-61 to 2-68
and collection objects 3-7 to 3-14
and error handling 2-14 to 2-17

and idling 4-90
core objects 2-3 to 2-9
dialog box customization 3-22 to 3-27
direct-mode implementation 4-35 to 4-36
each page 2-64
finish a print job 2-65
finishing a page 2-67
forms 3-20
Gestalt selector 2-11, 2-47
halftone specifications 3-21 to 3-22, 4-15 to 4-16, 4-46
handling events 2-76
initializing the environment 2-11 to 2-12, 2-50
introduction 1-3 to 1-31
job format mode 4-19 to 4-20, 4-35 to 4-36, 4-39
object summary 1-20 to 1-22
of QuickDraw picture data 4-18 to 4-19
page at a time 2-21 to 2-22
page formatting 3-15 to 3-22, 3-39 to 3-66
print loop 2-20 to 2-24
resources 1-13, 3-24, 3-70 to 3-73, 3-127 to 3-132, 4-93

to 4-94
setting up the environment 2-50 to 2-51
shape-by-shape 2-22 to 2-24, 2-66
starting a print job 2-63
support for Finder 2-39 to 2-42
supporting dialog boxes 2-17 to 2-19
terminating the environment 2-11 to 2-12, 2-51

printing errors
determining last 2-52
handling 2-14 to 2-17, 2-52 to 2-53
setting 2-53

printing extensions 1-9 to 1-10
Printing Manager, Macintosh

compatibility with QuickDraw GX 1-30, 2-75
printing documents created with 2-44 to 2-45

printing modes 4-19 to 4-20. See also job format modes
printing panel kinds 3-102
printing phases 1-3 to 1-5

application 1-4
device communications 1-5
imaging 1-5
spooling phase 1-5

printing-related collections 1-18 to 1-19. See also job
collections; format collections; paper-type
collections

accessing 3-28 to 3-33, 3-117 to 3-118
changing format items 3-112
collection tag ID 3-8, 3-77
identifying items 3-7 to 3-8
item categories 3-9, 3-76
items in 3-7 to 3-14
item structures 3-8
replacing items 3-31 to 3-33

Printing Status dialog box 4-91

I N D E X

IN-9

print-job information
as job collection item 3-10
defined 3-78

Print One Copy menu item 3-29
print-panel information

as job collection item 3-12
defined 3-88

print record conversion 2-45, 2-75

Q

quality information
as job collection item 3-11
defined 3-83

QuickDraw GX Translator 2-45
QuickDraw picture data in print files 4-18 to 4-19

R

reading pages from print files 4-65
reference constants

as job object property 2-6
retrieving from job objects 4-23 to 4-24, 4-52
setting in job objects 4-23 to 4-24, 4-53

resources
for dialog boxes 1-13, 3-24, 3-70 to 3-73, 3-127 to

3-132
retrieving from message handler 3-116

resource types
'DITL' 3-71
gxExtendedDITLType 3-72 to 3-73, 3-128 to 3-132
gxPrintPanelType 3-24, 3-70, 3-127
gxStatusType 4-93 to 4-94

S

scaling information
as format collection item 3-13
custom panel for 3-116
defined 3-91

shape list, as print file object property 4-10
shape objects, and printing 1-23
special mapping information

as job collection item 3-11, 3-12
defined 3-87

spooling phase of printing 1-5
standard mapping information

as job collection item 3-11
defined 3-86

'stat' resource type. See status resource
status message 4-90 to 4-91
status resource 4-93 to 4-94
status structure 4-42
style name table 4-37, 4-41
synonyms 4-11 to 4-19. See also tag types

cubic 4-17 to 4-18, 4-38, 4-48
dash 4-14, 4-46
defined 1-5, 4-11 to 4-12, 4-45 to 4-49
halftone 4-15 to 4-16, 4-46
line cap 4-14 to 4-15, 4-47
pattern 4-17, 4-47 to 4-48
PostScript 4-12 to 4-14, 4-45
QuickDraw picture 4-18 to 4-19, 4-49
using 4-38

T

tag objects
and printing 1-24
and synonyms 4-11 to 4-19

tag types
gxCubicSynonymTag type 4-18, 4-48
gxDashSynonymTag type 4-14, 4-46
gxFormatHalftoneTag type 4-15, 4-46
gxLineCapSynonymTag type 4-14, 4-47
gxPatternSynonymTag type 4-17, 4-47
gxPenTableTag type 4-21, 4-43
gxPostControlTag type 4-14, 4-45
gxPostScriptTag type 4-45
gxQuickDrawPictTag type 4-18, 4-49

text job format mode 4-36 to 4-37, 4-40 to 4-41. See also
job format modes

total overrides of printing messages 1-13
translated-document information

as job collection item 3-12
defined 3-89

tray-mapping information
as job collection item 3-12
defined 3-88

U

unflattening
job objects 2-30 to 2-32, 2-58 to 2-60, 2-78
print-job flattening function 2-32
print-job from handle 2-30 to 2-31

units information
as paper-type collection item 3-14
defined 3-96

I N D E X

IN-10

V, W

vector device pen tables 4-20 to 4-21, 4-43 to 4-44
vector pen table entry structure 4-21
vector pen table structure 4-21
vertical page-flip information

as format collection item 3-13
defined 3-93

view device mapping, for printers 4-8
view device objects

and printing 1-25
printer usage 4-8

view devices
as printer object property 4-7
counting for a printer 4-57
determining printer resolution 4-26 to 4-27
manipulating for printer objects 4-56, 4-92
retrieving for a printer 4-57
selecting for a printer 4-58

view port objects, and printing 1-24

X, Y, Z

'xdtl' resource type. See extended item list resource

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe Illustrator™ and
Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS

Gary McCue and Laine Rapin

DEVELOPMENTAL EDITOR

George Truett

ILLUSTRATORS

Ruth Anderson, Mai-Ly Pham

PRODUCTION EDITOR

Pat Christenson, Alan Morgenegg

PROJECT MANAGER

Trish Eastman

LEAD WRITER

David Bice

LEAD EDITOR

Laurel Rezeau

ART DIRECTOR/COVER DESIGNER

Barbara Smyth

Special thanks to Nik Bhatt, Tom Dowdy,
Dennis Farnden, Dave Hersey,
Ken Hittleman, Dan Lipton, Harita Patel,
Amy Rosenstock, Ingrid Voss, Ron Voss,
Sam Weiss, Chris Yerga

Acknowledgments to Betty Gee,
Lorraine Findlay, Gary Hillerson,
Marq Laube, Josephine Manuele,
Barbara Martinez, Diane Patterson,
Rich Pettijohn

