INSIDE MACINTOSH

QuickDraw GX Printing

[
rTw

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

APDA, Apple, the Apple logo,
LaserWriter, Macintosh, and StyleWriter
are trademarks of Apple Computer,

Inc., registered in the United States and
other countries.

ColorSync, Finder, and QuickDraw are
trademarks of Apple Computer, Inc.
Adobe lllustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompusServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40677-2
1234567 89-CRW-9897969594
First Printing, June 1994

The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. QuickDraw GX printing / [by Apple Computer, Inc.].

p. cm.
Includes index.
ISBN 0-201-40677-2

1. Macintosh (Computer)—Programming. 2. Computer graphics.

3. QuickDraw GX.
QAT76.8.M31562282 1994
005.7"1265—dc20

I. Apple Computer, Inc. Il. Title: QuickDraw GX printing.

94-17336
CIP

Contents

Figures, Tables, and Listings Xi

Preface About This Book xv
What to Read XVi
Chapter Organization XVii
Conventions Used in This Book XViii
Special Fonts Xviii
Types of Notes Xviii
Numerical Formats Xviii
Type Definitions for Enumerations XiX
Ilustrations Xix
Development Environment XiX
For More Information XX
Chapter 1 Introduction to Printing With QuickDraw GX 11

About QuickDraw GX Printing 1-3
Core Printing-Related Obijects 1-6
Desktop Printers 1-7
Print Files 1-8
Printer Drivers 1-8
Printing Extensions 1-9
Dialog Boxes 1-10
Message Passing 1-13

About QuickDraw GX Printing-Related Objects 1-16
Job Objects 1-16
Format Objects 1-17
Paper-Type Objects 1-18
Collection Objects 1-18
Printer Objects 1-20
Print File Objects 1-20

Summary of QuickDraw GX Printing-Related Objects 1-20

Using Printing-Related Objects With Other QuickDraw GX Objects

Shape Objects 1-23

Tag Objects 1-24

View Port Objects 1-24
View Device Objects 1-25

1-23

Chapter 2

Implementing QuickDraw GX Printing Features 1-25
Core Printing Features 1-26
Customizing QuickDraw GX Printing Features 1-28
Advanced Printing Features 1-30

Compatibility With the Macintosh Printing Manager 1-30

Core Printing Features 21

About Core Printing Features 2-3
Core Print Objects 2-5
Job Object Properties 2-5
Format Object Properties 2-7
Paper-Type Object Properties 2-8
Edit Menu Structure 2-9
Using Core Printing Features 2-10
Initializing QuickDraw GX Printing 2-11
Creating a Job Object for a Printable Document 2-12
Error Handling 2-14
Supporting QuickDraw GX Print Dialog Boxes 2-17
Printing Documents Using QuickDraw GX 2-20
Printing Pages as Single Picture Shapes 2-21
Printing Pages by Capturing Shapes 2-22
Saving a Job Object With a Document File 2-24
Saving a Job Object in a Single Handle 2-25
Saving a Job Object Using a Flattening Function 2-27

Disposing of a Job Object When Closing a Document 2-28

Retrieving a Job Object When Opening a Document 2-29
Retrieving a Job Object From a Handle 2-30
Retrieving a Job Object Using an Unflattening Function

Obtaining Object References 2-33

Obtaining Information From a Format Object 2-33

Displaying QuickDraw GX Print Dialog Boxes 2-35
Displaying the Page Setup Dialog Box 2-35
Displaying the Print Dialog Box 2-37

Supporting Printing From the Finder 2-39

Updating Job Object Information 2-42

Printing Macintosh Printing Manager Documents 2-44

Core Printing Features Reference 2-46

Constants and Data Types 2-46
Gestalt Selectors for Printing 2-47
QuickDraw GX Printing-Related Objects 2-47
Edit Menu Location 2-48
Dialog Box Results 2-48

2-32

Chapter 3

Functions 2-49
Initializing and Terminating QuickDraw GX Printing Features
Handling Errors 2-52
Creating and Managing Job Objects 2-54
Printing With QuickDraw GX 2-61
Obtaining Information on Printing-Related Objects 2-68
Displaying the Page Setup and Print Dialog Boxes 2-71
Converting a Print Record 2-75

Application-Defined Functions 2-76
Message Override Functions 2-76
Flattening and Unflattening Functions for Job Objects 2-77

Summary of Core Printing Features 2-79

Page Formatting and Dialog Box Customization

2-50

3-1

About Page Formatting and Dialog Box Customization 3-6
About Collection Objects 3-7
Collection Tag IDs and Item IDs 3-7
Item Structures 3-8
Categories of Collection Items 3-9
The Job Collection 3-10
The Format Collection 3-12
The Paper-Type Collection 3-14
About Page Formatting 3-15
Manipulating Format Objects 3-16
Mapping for Format Objects 3-18
Forms and Format Objects 3-20
Halftones and Format Collections 3-21
Dialog Box Customization 3-22
The Dialog Box Panel Resource 3-24
Responding to Panel Events 3-25
Automating Panel Events 3-25
Using Printing-Related Collection Objects 3-27
Accessing Data From a Collection Object 3-28
Using a Collection to Implement the Print One Copy Menu Item
Replacing Items in Collections 3-31
Specifying Page Ranges in the Job Collection 3-33

Using Format Objects and Collection Items to Format Pages 3-39

Creating a Format Object for a Page in a Document 3-40
Sharing Formats for Document Pages 3-44

Disposing of a Format Object for a Page in a Document 3-47
Using Forms With Format Objects 3-50

Storing Halftone Information in a Format Collection 3-52
Copying a Format Object for Use in Other Documents 3-54
Obtaining the Mapping From a Format Object 3-57

Obtaining a Paper-Type Object Associated With a Format 3-57

3-29

Vi

Scanning Through a Job’s Format Objects 3-59

Associating Format Objects With Document Pages
Customizing QuickDraw GX Dialog Boxes 3-66

Adding Panels to Dialog Boxes 3-67

Setting Up Dialog Box Resources 3-70

Parsing Page Ranges 3-73

3-61

Page Formatting and Dialog Box Customization Reference 3-75

Constants for Loop Status Information 3-76
Constants for Collection Item Categories and Tag IDs
Collection Item Categories 3-76
Collection Tag ID 3-77
Constants and Data Types for Job Collection Items
Print-Job Information 3-78
Collation Information 3-80
Copies Information 3-81
Page-Range Information 3-81
Quiality Information 3-83
File-Destination Information 3-83
File-Location Information 3-84
File-Format Information 3-84
File-Fonts Information 3-85
Paper-Feed Information 3-85
Manual-Feed Information 3-86
Standard Mapping Information 3-86
Special Mapping Information 3-87
Tray-Mapping Information 3-88
Print-Panel Information 3-88
Format-Panel Information 3-88
Paper-Mapping Information 3-89
Translated-Document Information 3-89
Constants and Data Types for Format Collection Items
Orientation Information 3-89
Scaling Information 3-91
Direct-Mode Information 3-91
Format-Halftone Information 3-92
Page-Inversion Information 3-92
Horizontal Page-Flip Information 3-93
Vertical Page-Flip Information 3-93
Precise-Bitmap Information 3-93
Paper-Type Lock Information 3-94

3-76

3-78

3-89

Constants and Data Types for Paper-Type Collection Items 3-94

Base Information 3-94
Creator Information 3-95
Units Information 3-96
Flags Information 3-97
Comment Information 3-97

Chapter 4

Panel-Related Constants and Data Types 3-98
The Panel Information Structure 3-98
Panel Events 3-99
Panel Responses 3-100
Panel Event Actions 3-101
The Panel Setup Structure 3-101
Printing Panel Kinds 3-102
Parse Range Results 3-102
Functions 3-103
Creating and Manipulating Format Objects 3-103
Manipulating Format Object Properties 3-109
Displaying the Custom Page Setup Dialog Box 3-113
Working With Panels 3-114
Accessing Printing-Related Collection Objects 3-117
Application-Defined Functions 3-119
Message Override Functions for Customizing QuickDraw GX Dialog
Boxes 3-119
Looping Through Format Objects 3-126
Dialog Box-Related Resources 3-127
The Panel Resource 3-127
The Extended Item List Resource 3-128
Summary of Page Formatting and Dialog Box Customization 3-133

Advanced Printing Features 41

About Advanced Printing Features 4-5

Printer Objects 4-6
Printer Driver Types 4-7
Printer View Devices 4-8
Color Matching for Printers 4-9

Print File Objects 4-9

Synonyms 4-11
General-Purpose PostScript Operator Synonym 4-12
PostScript Control Information Synonym 4-13
Dash Synonym 4-14
Line Cap Synonym 4-14
Halftone Synonym 4-15
Pattern Synonym 4-17
Cubic Synonym 4-17
QuickDraw Picture Synonym 4-18

Printing Modes 4-19

Pen Tables for Vector Devices 4-20

Vii

Using Advanced Printing Features 4-21
Using Advanced Job Object Functions 4-21
Obtaining Printer and Printer Driver Information for a Job 4-22
Getting and Setting the Reference Constant for a Job Object 4-23
Copying Job Object Information 4-25
Working With Printer Objects 4-25
Determining a Printer’s Resolution 4-26
Retrieving the Color Profile and Color Space for a Printer 4-27
Manipulating Print File Objects 4-29
Opening and Closing a Print File 4-29
Saving a Print File 4-30
Obtaining the Job Object for a Print File 4-30
Reading Print File Data 4-30
Counting the Pages in a Print File 4-31
Adding or Deleting Print File Pages 4-31
Defining Different Paper Sizes 4-31
Creating a Paper-Type Object 4-32
Obtaining the Name of a Paper Type 4-32
Obtaining the Dimensions of a Paper Type 4-33
Scanning the Paper Types Available to a Job 4-34
Implementing Direct-Mode Printing 4-35
Formatting for Text Job Format Mode Printing 4-36
Using Synonyms 4-38
Advanced Printing Features Reference 4-38
Constants and Data Types for Advanced Printing Features 4-39
Job Format Modes 4-39
Text Job Format (Direct) Mode 4-40
The Status Structure 4-42
Pen Tables for Vector Devices 4-43
Constants and Data Types for Synonyms 4-45
General-Purpose PostScript Operator Synonym 4-45
PostScript Control Information Synonym 4-45
Dash Synonym 4-46
Halftone Synonym 4-46
Line Cap Synonym 4-47
Pattern Synonym 4-47
Cubic Synonym 4-48
QuickDraw Picture Synonym 4-49
Functions 4-49
Advanced Job Object Functions 4-50
Manipulating Printer Objects 4-54
Working With QuickDraw GX Print Files 4-61
Working With Paper Types 4-71
Formatting for Specific Devices 4-79
Color Profile Functions 4-84
Idle Job Function 4-90
Application-Defined Functions 4-90

viii

Message Override Function for the Printing Status Dialog Box
Looping Through a Printer’s View Devices 4-92
Looping Through a Job’s Paper Types 4-92
The Status Resource 4-93
Summary of Advanced Printing Features 4-95

Glossary L1

4-90

Index IN-1

Preface

Chapter 1

Chapter 2

Figures, Tables, and Listings

About This Book xv

Figure P-1

Roadmap to the QuickDraw GX suite of books Xvi

Introduction to Printing With QuickDraw GX 1-1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11

Figure 1-12
Figure 1-13
Figure 1-14
Figure 1-15
Figure 1-16

Table 1-1

QuickDraw GX printing phases 1-4

QuickDraw GX printing-related objects 1-7
Dragging a document to a desktop printer icon 1-8
Default QuickDraw GX desktop printer icons 1-9
The Print dialog box 1-11

The expanded Print dialog box 1-11

The Print Time panel 1-12

The Paper Match panel 1-12

Message handlers in a message chain 1-14
Overriding the gxPri nti ngEvent message 1-15

Effect of specifying a shape in the form property of a format
object 1-17

A paper type for printing on letterhead paper 1-18
QuickDraw GX printing-related objects 1-21

Printing-related items in the File menu 1-25

Manipulating the job object in response to user actions 1-27
Printing a document containing multiple formats 1-29

QuickDraw GX printing-related objects 1-22

Core Printing Features 2-1

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8

Listing 2-1
Listing 2-2
Listing 2-3
Listing 2-4
Listing 2-5
Listing 2-6

Objects needed to implement core printing features 2-4
The job object 2-6

The format object 2-7

The paper-type object 2-8

The Page Setup dialog box 2-35

The expanded Page Setup dialog box 2-36

The Print dialog box 2-38

The expanded Print dialog box 2-38

Creating a job object for a printable document 2-12

Polling for errors after individual functions 2-15

Polling for errors after groups of functions 2-16

Override function for the gxPri nti ngEvent message 2-19
Using the GXPr i nt Page function to print a document 2-21

Using the GXSt ar t Page, GXDr awshape, and GXFi ni shPage
functions to print a document 2-23

Xi

Chapter 3

Xil

Listing 2-7

Listing 2-8
Listing 2-9
Listing 2-10

Listing 2-11

Listing 2-12
Listing 2-13
Listing 2-14
Listing 2-15
Listing 2-16

Listing 2-17
Listing 2-18

Using the GXFl at t enJobToHdl function to save a job

object 2-25

Using the GXFI at t enJob function to save a job object 2-28
Disposing of a job object when you close a document 2-29

Using the GXUnf | at t enJobFr ontdl function to retrieve a job
object 2-30

Using the GXUnf | at t enJob function to retrieve a job

object 2-32

Using the GXGet For mat Job function to obtain a job object 2-33
Using the GXGet For mat O nmensi ons function 2-34

Displaying the Page Setup dialog box 2-36

Displaying the Print dialog box 2-39

Responding to the Print Documents Apple event and specifying an
output printer 2-40

Updating a job when receiving resume events 2-43

Converting a print record into a job object 2-45

Page Formatting and Dialog Box Customization 3-1

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4

Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8

Figure 3-9

Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14

Figure 3-15
Figure 3-16

Figure 3-17
Figure 3-18

Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25

Table 3-1

The job collection 3-10
The format collection 3-12
The paper-type collection 3-14

A three page document and its corresponding job and format
objects 3-15

Manipulating the format object in response to user actions 3-17
Scaling a format object 3-19
Using a form to format a page 3-20

The expanded Custom Page Setup dialog box with two
panels 3-22

Print dialog box with default page range 3-35

Print dialog box with replacement page range 3-37

Print dialog box with customized page range 3-39

The Custom Page Setup dialog box 3-40

The expanded Custom Page Setup dialog box 3-40

A four-page document in which page two uses a unique format
object 3-41

A four-page document in which pages 2 and 3 use the same
format object 3-45

A four-page document in which pages 2 and 3 use unique formats
objects 3-48

Moving a format object from one document to another 3-55
A three-page document and its corresponding job object, format
objects, and paper-type objects 3-58

A panel added to the Custom Page Setup dialog box 3-70
Panel resource 3-127

Extended item list resource 3-128

Radio button items 3-129

Checkbox and pop-up menu items 3-130

Integer and real edit text items 3-131

String editable text items 3-132

Functions that enable dialog box panels 3-23

Chapter 4

Table 3-2

Listing 3-1
Listing 3-2
Listing 3-3
Listing 3-4

Listing 3-5
Listing 3-6
Listing 3-7
Listing 3-8
Listing 3-9
Listing 3-10
Listing 3-11

Listing 3-12
Listing 3-13
Listing 3-14
Listing 3-15
Listing 3-16

Listing 3-17
Listing 3-18
Listing 3-19

Listing 3-20
Listing 3-21

Listing 3-22
Listing 3-23
Listing 3-24
Listing 3-25
Listing 3-26
Listing 3-27
Listing 3-28

Listing 3-29

Functions that forward a dialog box message 3-24

A panel resource definition template 3-24

The extended item list resource definition template 3-26
Accessing copies information stored in a job collection 3-28
Modifying the job collection to implement the Print One Copy menu
item 3-29

Replacing collection items 3-31

Setting up a default page range 3-33

Setting up a replacement page range 3-35

Setting up a customized page range 3-37

Creating a format object for a page in a document 3-42
Cloning a format object for two pages in a document 3-46

Disposing of a format object for a page in a document and creating
a new one 3-49

Adding a form to a format object 3-51

Storing halftone information in a format collection 3-53
Moving a format object from one document to another 3-56
Obtaining a format object’s mapping 3-57

Obtaining the paper-type object associated with a format
object 3-59

Using the GXFor EachJobFor nat Do function 3-60
Obtaining scaling information on each format object 3-61

Saving the correspondence between format objects and document
pages in a format collection 3-62

Filling the handle 3-63

Retrieving the correspondence between document pages and
format objects from a format collection 3-65

Setting up a new panel 3-68

Sample panel resource 3-70

Sample item list resource 3-71

Sample ' CNTL' resource 3-72

Sample extended item list resource 3-72
Sample ' MENU resource 3-73

Installing an override function for the gxPar sePageRange
message 3-74

Override function for the gxPar sePageRange message 3-75

Advanced Printing Features 4-1

Figure 4-1
Figure 4-2
Figure 4-3

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7

The printer object 4-6
The print file object 4-10
The status resource 4-93

Printer driver types 4-7

QuickDraw GX printing synonyms 4-12

Print job format modes 4-20

Text job format mode query options 4-36

Status type IDs 4-43

The actions of the GXSet Pri nt er Prof i | e function 4-87
The actions of the GXSet For mat Pr of i | e function 4-89

xiil

Xiv

Table 4-8
Listing 4-1

Listing 4-2
Listing 4-3
Listing 4-4
Listing 4-5
Listing 4-6
Listing 4-7
Listing 4-8
Listing 4-9
Listing 4-10
Listing 4-11
Listing 4-12

Listing 4-13
Listing 4-14

Status types 4-94

Obtaining the names and types of a printer and printer
driver 4-22

Setting the job object’s reference constant property 4-23
Getting the job object’s reference constant property 4-24
Copying job object information 4-25

Determining a printer’s resolution 4-26

Retrieving the printer’s color profile and color space 4-27
Using the printer’s color profile to convert colors 4-28
Opening and closing a print file 4-29

Reading a page from a print file 4-31

Creating a new paper-type object 4-32

Obtaining a paper-type object’'s name 4-32

Obtaining page and paper rectangles for a paper-type
object 4-33

Executing a function for each paper-type object 4-34
Executing a procedure for each paper-type object 4-35

P REFACE

About This Book

QuickDraw GX is an integrated, object-based approach to graphics
programming on Macintosh computers. This book, Inside Macintosh:
QuickDraw GX Printing, describes how to design your application to use the
printing features of QuickDraw GX. It begins with an introduction to printing
with QuickDraw GX and discusses architectural aspects of QuickDraw GX
printing features—printing-related objects and the user interfaces. Then the
book separates QuickDraw GX printing features into core features, page
formatting and dialog box customization, and advanced features. You only
need to read as many chapters as apply to your application’s printing needs.

Before you begin this book, you should already be familiar with the
QuickDraw GX environment and QuickDraw GX objects. An overview of the
environment and objects is provided in the introductory chapter of Inside
Macintosh: QuickDraw GX Objects. Complete information can be found in
Inside Macintosh: QuickDraw GX Environment and Utilities and the other
chapters of Inside Macintosh: QuickDraw GX Objects.

For more information about programming with QuickDraw GX, you need to
refer to other books in the QuickDraw GX suite, including Inside Macintosh:
QuickDraw GX Objects, Inside Macintosh: QuickDraw GX Graphics, and Inside
Macintosh: QuickDraw GX Typography. If you need information on how to use
QuickDraw GX to write printer drivers or printing extensions, see Inside
Macintosh: QuickDraw GX Printing Extensions and Drivers.

XV

P REFACE

Figure P-1 shows the suggested reading order for the QuickDraw GX suite of
books. A pictorial overview of Inside Macintosh, including the QuickDraw GX
suite of books, appears inside the back cover.

Figure P-1 Roadmap to the QuickDraw GX suite of books

Cuick Drmee G
Ok jac b

U kilitie=

ik D 3 (1] i:l-'._[lr:'.w.' GX
Typograghy Prinking

Gy ick Dl G0
Prin ki ng

What to Read

This book is intended for developers who are interested in providing a
QuickDraw GX printing capability in their applications. You can design your
application to use the QuickDraw GX application-programming interface
(API) for printing, even if the application doesn’t use the graphics and
typographic capabilities of QuickDraw GX.

XVi

P REFACE

In this book, each succeeding chapter builds on the previous chapter’s
information. So it’s important to begin by learning the QuickDraw GX
printing concepts and terms that are in Chapter 1, “Introduction to Printing
With QuickDraw GX.” This chapter presents an overview of printing with
QuickDraw GX and briefly describes the dialog boxes that QuickDraw GX
provides for user interaction with the printing process.

Most applications only need to support the set of printing features that are
described in Chapter 2, “Core Printing Features.” You use the core printing
features when printing documents using QuickDraw GX. You also use them
to display the standard printing-related dialog boxes and to print documents
that were originally created to print with previous versions of the Macintosh
printing architecture.

However, if you want to add panels to QuickDraw GX print dialog boxes to
provide special features that require additional user specification, or if you
want to manipulate the objects that QuickDraw GX uses to format the pages
of a document, you also need to read Chapter 3, “Page Formatting and

Dialog Box Customization.” For example, through QuickDraw GX, your
application can allow users to specify unique formats for the individual pages
of a printable document.

Features that go beyond the core set and beyond those that allow you to
handle page-by-page formatting and dialog box customization are described
in Chapter 4, “Advanced Printing Features.” You can use these features to
optimize output for the capabilities of a particular device, create a file that is
application-independent, define custom paper sizes, and more.

The first two pages of this book are color plates. Plate 1 shows and example of
the QuickDraw GX color separation capability. Plate 2 shows common
color-transfer modes used in printing.

Chapter Organization

Most chapters in this book follow a standard general structure. For example,
the chapter “Core Printing Features” contains these sections:

n “About Core Printing Features.” This section provides an overview of the
core printing features provided by QuickDraw GX.

n “Using Core Printing Features.” This section describes the tasks you can
accomplish using the core printing features of QuickDraw GX. It describes
how to use the most common functions, gives related user interface
information, provides code samples, and supplies additional information.

Xvili

P REFACE

n “Core Printing Features Reference.” This section provides a complete
reference for the core printing calls by describing the data structures and
functions you can use. Each function description follows a standard
format, which gives the function declaration; a description of every
parameter; the function result, if any; and a list of result codes. Most
function descriptions give additional information about using the function
and include cross-references to related information elsewhere.

n “Summary of Core Printing Features.” This section shows the C interface
for the constants, data types, and functions associated with the core
printing features.

Conventions Used in This Book

Xviil

This book uses various conventions to present certain types of information.

Special Fonts

All code listings, reserved words, and the names of data structures, constants,
fields, parameters, and functions are shown in Courier (t his is Courier).

When new terms are introduced, they are in boldface. These terms are also
defined in the glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-10.) u

IMPORTANT

A note like this contains information that is especially important. (An
example appears on page 2-49.) s

Numerical Formats

Hexadecimal numbers are shown in this format: 0x0008.

The numerical values of constants are shown in decimal, unless the constants
are flag or mask elements that can be summed, in which case they are shown
in hexadecimal.

P REFACE

Type Definitions for Enumerations

Enumeration declarations in this book are commonly followed by a type
definition that is not strictly part of the enumeration. You can use the type to
specify one of the enumerated values for a parameter or field. The type name
is usually the singular of the enumeration name, as in the following example:

enum gxDashAttri butes {

gxBendDash = 0x0001,
gxBr eakDash = 0x0002,
gxd i pDash = 0x0004,
gxLevel Dash = 0x0008,
gxAut oAdvanceDash = 0x0010

b
typedef |ong gxDashAttri bute;

[llustrations

This book uses several conventions in its illustrations.

In illustrations that show object properties, properties that are object
references are in italics. For example, see Figure 1-13 on page 1-21.

Obijects in diagrams, whether shown with their properties or without, are
represented by distinctive icons, such as these:

Shapobpct Stk obpct Ink o biect
. op
= - - F

See, for example, Figure 1-2 on page 1-7.

Development Environment

The QuickDraw GX functions described in this book are available using C
interfaces. How you access these functions depends on the development
environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of
using various functions and illustrate techniques for accomplishing particular
tasks. Although most code listings have been compiled and tested, Apple
Computer, Inc., does not intend for you to use these code samples in your
applications.

XiX

P REFACE

For More Information

XX

APDA is Apple’s worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested
in developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

CHAPTER 1

Introduction to Printing
With QuickDraw GX

Contents

About QuickDraw GX Printing 1-3
Core Printing-Related Obijects 1-6
Desktop Printers 1-7
Print Files 1-8
Printer Drivers 1-8
Printing Extensions 1-9
Dialog Boxes 1-10
Message Passing 1-13
About QuickDraw GX Printing-Related Objects 1-16
Job Objects 1-16
Format Objects 1-17
Paper-Type Objects 1-18
Collection Objects 1-18
Printer Objects 1-20
Print File Objects 1-20
Summary of QuickDraw GX Printing-Related Objects 1-20
Using Printing-Related Objects With Other QuickDraw GX Objects
Shape Objects 1-23
Tag Objects 1-24
View Port Objects 1-24
View Device Objects 1-25
Implementing QuickDraw GX Printing Features 1-25
Core Printing Features 1-26
Customizing QuickDraw GX Printing Features 1-28
Advanced Printing Features 1-30
Compatibility With the Macintosh Printing Manager 1-30

Contents

1-23

1-1

CHAPTER 1

Introduction to Printing With QuickDraw GX

This chapter introduces the primary features of printing with QuickDraw GX and gives
you the overview you need to begin designing your application with printing in mind.

Before reading this chapter, you should be familiar with the general QuickDraw GX
capabilities, and especially, you should be familiar with the use of objects. For an
overview of QuickDraw GX and objects, see the introductory chapter of Inside Macintosh:
QuickDraw GX Objects.

This chapter begins by showing how QuickDraw GX printing works and which phases
of printing are of interest to the application developer. It also provides background
information to set the stage for the remaining sections. This chapter then

n introduces QuickDraw GX objects that directly support printing

n describes how these printing-related objects are used with other QuickDraw GX
objects

n describes a strategy for implementing QuickDraw GX printing features

n discusses compatibility between QuickDraw GX printing and the Macintosh Printing
Manager

About QuickDraw GX Printing

Printing with QuickDraw GX involves the interaction of your application program with
components that QuickDraw GX provides, or components that may be provided by a
printer manufacturer or other vendor. These components are

n printer drivers that translate QuickDraw GX shapes into instructions for rendering the
shapes on a device

n printing extensions that provide additional capabilities for the printing system

QuickDraw GX actually performs most of the translation work itself so that the
developer of a printer driver or printing extension can concentrate on the unique
features or characteristics of a printing device. As an application developer, your work
primarily consists of responding to printing-related menu selections and dialog boxes
within the application.

To understand the division of labor, consider the model of QuickDraw GX printing
phases in Figure 1-1.

About QuickDraw GX Printing 1-3

CHAPTER 1

Introduction to Printing With QuickDraw GX

Figure 1-1 QuickDraw GX printing phases

1-4

Prinlvg phase Aclos nben

L —

Fusl ke Lewa Iulr -3 =

Figcr: L

LT .
Dger chooese Frirt =l e |
T T T

B, Appicaton ekrie prinding
Application praes documerit

______________ LTI T
[Frrms oo MR A o oo o ooooooons
Fdim wllod | la.oRIF "0
Fapmdag o fw g I

Ll 117
Epcoling phaes Page data spocle=d ol
Pt S
— '
Imaging phaes Ewch paige ie deepocl=d ard
corwreried inde printable data

ﬂ 1

Dewica Soamm unicadone
th Correrted dats et o F-rin‘br

There are four phases of printing:

n The application phase, in which the application calls QuickDraw GX functions in
response to the user choosing a menu item or changing an item in a dialog box. For
example, when the user selects Print from the menu, the application calls functions to

About QuickDraw GX Printing

CHAPTER 1

Introduction to Printing With QuickDraw GX

display the Print dialog box and respond to the user’s choices. One of the
application’s responses is to print the requested pages of a document, which leads to
the spooling phase of printing.

n The spooling phase, in which the requested pages are placed in a spool file. The
application calls QuickDraw GX functions to perform this task, which is carried out
collaboratively by QuickDraw GX, the printer driver, and any printing extensions that
are active. From the application developer’s point of view, it is seldom necessary to
know how the work is divided between QuickDraw GX, a printer driver, or a printing
extension. Thus, in this book, all collaborative efforts by these components are
considered as being performed by the printer driver.

n The imaging phase, in which the requested pages are despooled by the printer driver
and the contents are translated into instructions for the printer.

n The device communications phase, in which the instructions are actually sent to the
printer hardware.

As an application developer, you are primarily concerned with the application phase of
printing. You may be interested indirectly in events in other phases because some of
those events can be controlled by the application. For example, your application can
provide alternative instructions for rendering output, rather than use the instructions
generated by the printer driver. These alternative instructions are called synonyms. As
another example, the application can retrieve and modify the contents of a file after it has
been spooled.

This book provides all the information you need to implement QuickDraw GX printing
in an application. For information about implementing printer drivers or printing
extensions, see Inside Macintosh: QuickDraw GX Printing Extensions and Drivers. The
following sections introduce topics that provide conceptual background for
implementing QuickDraw GX printing features. The topics are

n Core printing-related objects, which are objects that are used in every application and
work together to support QuickDraw GX printing.

n Desktop printers, which represent printers to the user as icons on the desktop.

n Print files, which are the output of the spooling phase. A special kind of print file that
can be opened and displayed without needing the fonts or application with which it
was created is called a portable digital document, or PDD.

n Printer drivers, which are responsible for defining the characteristics of the printing
environment in addition to providing translation between the QuickDraw GX
graphics representation of a page and the instructions that render it on a printer.

n Printing extensions, which are add-on software that provide an additional level of
customization to QuickDraw GX printing.

n Dialog boxes, which are extensible in QuickDraw GX and, if extended, use additional
resource types. Dialog boxes also require additional support because they are
movable, requiring the screen behind them to be redrawn when they are moved.

n Message passing, which is the basic technique used by the QuickDraw GX printing
system to communicate between the application, printer driver, and printing
extensions. It is also the technique used to notify the application when dialog boxes
are moved.

About QuickDraw GX Printing 1-5

1-6

CHAPTER 1

Introduction to Printing With QuickDraw GX

Core Printing-Related Objects

QuickDraw GX uses objects to represent printing-related data in the same way it uses
objects in its other major components, graphics and typography. The core QuickDraw
GX printing-related objects are job objects, format objects, and paper-type objects. There
are other printing-related objects that provide additional information in support of the
core objects or represent printers and files.

Because printing-related objects are interrelated, this section briefly describes how these
objects work together to provide a complete specification for printing a document. For a
more detailed description of each object, including those that support the core
printing-related objects, see “About QuickDraw GX Printing-Related Objects” on

page 1-16. The other chapters in this book provide a complete description of the
printing-related objects and show how to use them.

In QuickDraw GX printing, a job object specifies everything QuickDraw GX needs to
render a document. The most important specifications include the following ones;
however, there are many others:

n which pages to print
n which printer is to receive the output

n how to format the document; for example, for a particular page size and orientation,
such as 8.5-by-11 inches and landscape

The pages to print and the printer on which to print them are typically straightforward
specifications. The formatting specification can be more involved, however, because
QuickDraw GX provides these formatting features:

n You can print to a printer other than the one the document is formatted for; in other
words, you can print without automatically reformatting the document.

n You can specify a different format for each page of a document.

To support the first feature, the job object retains the formatting information for the
formatting printer separately from the formatting information for the output printer.
This allows a print job to be associated with two printers at the same time. The
formatting printer specifies the document’s format. The output printer is the printer to
which the document is sent to be printed. The document retains the format specified by
the formatting printer even though the output printer may affect the appearance of the
printed document. This feature is useful, for example, if you have formatted a long
document for a typesetter but want to make a final check of a page or two on a
StyleWriter printer.

To support the second feature, QuickDraw GX provides a format object. A format object
can be specified for each page as it is printed. All pages can use the same format object,
or selected pages can use different format objects. If desired, each page could use a
different format object. You might also print the same page several times, each time
specifying a different format object.

Associated with a format is a paper-type object. A paper-type object specifies the
characteristics of the paper on which a page is printed. A paper-type object is separate
from a format object because several format objects can share the same paper-type object.

About QuickDraw GX Printing

CHAPTER 1

Introduction to Printing With QuickDraw GX

Collection objects contain additional but less frequently used information about the job,
formats, and paper types. The printer object represents a printer, and the print file object
represents the spooled document or a portable digital document. Figure 1-2 shows the
relationship between the core printing-related objects, the collection objects that support
them, and the printer and print file objects.

Figure 1-2 QuickDraw GX printing-related objects

Fomatobpct Paperlype obic

[

For more information about each object, see “About QuickDraw GX Printing-Related
Objects” on page 1-16.

Desktop Printers

In QuickDraw GX, a printer is represented by an icon on the desktop, which is similar to
the way a hard disk or a shared volume is represented on the desktop. Thus, in
QuickDraw GX, printers are often called desktop printers. A desktop printer is more
than just an icon, however, because a desktop printer is associated with a queue to which
print jobs are sent. A desktop printer also provides the ability to control the queue and to
control the hardware itself with software.

A user can print from the Finder by dragging the document to the desktop printer icon.
Figure 1-3 shows the user dragging the document “My file” to the desktop printer icon

named “Gutenberg.” When the user releases the mouse, QuickDraw GX puts the print

file representation of the document into the printer’s queue.

About QuickDraw GX Printing 1-7

CHAPTER 1

Introduction to Printing With QuickDraw GX

Figure 1-3 Dragging a document to a desktop printer icon

= »1J T3
“deree £ S WEoreid 104 W

it

(D B
—

1
-
= b

Guterberg

Your application must implement the Print Document Apple event that allows Finder
printing. For more information about Finder printing, see the chapter “Core Printing
Features” in this book.

Print Files

A print file is a document that has been spooled to a file through the printing process.
The only way to create a print file is to print from the application, which causes the
document’s contents to be spooled in a print file. If you wish, your application can
retrieve a print file and insert, delete, or replace pages.

One kind of file an application might retrieve is a portable digital document, which is the
kind of file that is created by selecting the PDD Maker GX desktop printer icon and then
printing the document or by dragging the document to the icon. For an example of this
icon, see Figure 1-4 on page 1-9.

Printer Drivers

A QuickDraw GX printer driver defines the characteristics of a printer and the services
the printer provides. The printer driver also translates QuickDraw GX shapes into
instructions or operators that the printer understands, such as PostScript™. In reality,

About QuickDraw GX Printing

CHAPTER 1

Introduction to Printing With QuickDraw GX

much of a printer driver’s standard functionality, such as PostScript conversion, is
performed by QuickDraw GX for the printer driver.

From the application developer’s point of view, it is useful to group printer
driver-supplied features, printing extension-supplied features, and QuickDraw GX
rendering features together because they are represented by the printer object. You can
query the printer object for the characteristics of a printer, whether set by the printer
driver, printing extension, or QuickDraw GX.

For example, your application can query the printer object to determine how best to
print to the device that the printer object represents. Many of the default settings, such as
page size and landscape or portrait orientation, are specified by the printer driver.

The printer driver is responsible for providing the printer icon to display on the desktop.
Figure 1-4 shows examples of desktop printer icons for various devices.

Figure 1-4 Default QuickDraw GX desktop printer icons

Imzge Writer < rnage Writer Lo oxi Laveezr Wrider 1134 < Lavgenr Wrider <5

0 i
T - 3
Mg :

Laveer Wirider 200 o FODO M aker A ShleMriter Gl

These devices need not represent actual physical devices on the system. In particular, the
portable digital document printer driver, represented by the PDD Maker GX icon, is
used only to create a document that is packaged ready-to-view on another computer.

Printing Extensions

A QuickDraw GX printing extension defines add-on functionality that may be useful for
several applications and whose usefulness is not restricted to a particular printer driver.
For example, you may want a light-gray “Confidential” banner to appear as the
backdrop on each printed page. Because several applications may need this kind of
feature and these applications may print to a variety of printers, this kind of feature
typically is implemented in a printing extension rather than as part of the application or
printer driver.

About QuickDraw GX Printing 1-9

1-10

CHAPTER 1

Introduction to Printing With QuickDraw GX

Note

If you wish to provide functionality similar to a printing extension, such
as a backdrop banner specific to your application, you can create a form
shape and attach it to your format object. For an example of a form
shape, see Figure 1-11 on page 1-17. For information about the form
property of the format object, see the chapter “Page Formatting and
Dialog Box Customization” in this book. u

Dialog Boxes

QuickDraw GX print dialog boxes provide several key features:

n They are extensible, which allows you to collect or display information that is not in
the default dialog boxes.

n They are movable in addition to being modal. The ability to drag a dialog box around
the screen overcomes some of the inconvenience of modality in that the user can move
the dialog box if needed information in an underlying window is obscured. The user
is allowed to switch to a different application while the dialog box is active, as well.

n They can be set up to provide cut, copy, and paste editing operations.

n The application’s response to user choices in a dialog box can be automated by
specifying actions in resources associated with the dialog box; less procedural code is
required in the application.

QuickDraw GX provides three kinds of print dialog boxes that you can access in your
application:
n The Print dialog box appears in response to a request to print a document.

n The Page Setup dialog box appears in response to a request to change the default
formatting for the document.

n The Custom Page Setup dialog box appears in response to a request to change the
formatting of individual pages within a document.

In addition to these dialog boxes, the Printing Status dialog box appears when the
application is spooling a document to a print file.

Most dialog boxes display in both a normal view and an expanded view. You use the
normal view to display and accept the minimum amount of information that allows the
user to conveniently proceed with the task. Figure 1-5 shows the default Print dialog box
in its normal view.

About QuickDraw GX Printing

CHAPTER 1

Introduction to Printing With QuickDraw GX

Figure 1-5 The Print dialog box

Prinl

Print 1o: | Laserriter GH vl

Pages: @& All
) Frum:| | To: | |

rnnpies: |:|
(ancer) (Cerin)

The expanded view displays the complete range of options. Figure 1-6 shows the
expanded view of the Print dialog box.

Figure 1-6 The expanded Print dialog box

Prinl

Prinl luw: | Laserlldriler GH vI

Pages: & Al
(:}frnm:| | Tu:|

Copics: I:l [Collate Capics

Paner Ferd: 0 Antnmatir
r Manual

Friner Chnicps ranrel l Print I

()

Frinl Tinw

ot

Paper Match

Expanded views are divided into panels, which are subsets of the dialog box used to
display and collect related pieces of information. You can add panels to a dialog box in
the same way that a printer driver or printing extension may add panels. In Figure 1-6,
the expanded view is currently displaying information in the General panel. Each panel
is associated with an icon that displays in a scrolling list to the left of the panel. The
name of the panel appears underneath its icon.

About QuickDraw GX Printing 1-11

CHAPTER 1

Introduction to Printing With QuickDraw GX

Figure 1-7 shows the Print Time panel. This panel allows a user to specify information
related to a particular print job, such as the print job’s priority and designated time to
print.

Figure 1-7 The Print Time panel

_— Print Ommmmm———m—————

o>

Set the print time priority to:

& i Normal: print now
Genersl) Urgent: print before other documents
O Print at: 11:23 AM 3/16/94

7 Hold document in printer “LaserllUriter GH™
Show alert:

[J Before printing starts
[] After printing finishes

Faper Match || -
L Fewer Choices

Figure 1-8 shows the Paper Match panel. This panel allows a user to specify information
related to a print job’s paper type, such as standard or special paper mapping.

Figure 1-8 The Paper Match panel

Print=="————————

@ Print with input tray paper matching

> Ignore paper matching and redirect
document to paper in:

General

Print Time

Internal Tray

IT necessary:

w Crop B {1 Tile %%) Scale to fit

Fewer Choices Cancel I Print l

1-12 About QuickDraw GX Printing

CHAPTER 1

Introduction to Printing With QuickDraw GX

You can use the following resources to add panels to dialog boxes:

Resource Type Description

Item list resource "DI TL' Specifies a list of items in a dialog box, as
described in the Dialog Manager chapter of Inside
Macintosh: Macintosh Toolbox Essentials.

Panel resource "ppnl’ Names a panel and associates it with an item list
resource and an icon resource. For more
information, see the chapter “Page Formatting and
Dialog Box Customization” in this book.

Extended item list "xdtl]! Specifies the actions to take when an item is

resource manipulated; for example, when the user clicks a
radio button. For more information, see the
chapter “Page Formatting and Dialog Box
Customization” in this book.

Additional resources may be needed. For example, many items in a dialog box are
themselves defined as control or menu resources.

As mentioned previously, QuickDraw GX print dialog boxes are movable as well as
being modal. When a user moves a dialog box, you are responsible for redrawing the
screen that was behind it. QuickDraw GX notifies you that an update event occurred
when this happens. The notification is provided by QuickDraw GX passing a message to
the application, as described in the next section.

Message Passing

QuickDraw GX printing features are based on a message-passing architecture. The
messaging technology used with QuickDraw GX is described in the Message Manager
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. This section
provides you with a brief overview so that you can respond to messages passed to your
application.

QuickDraw GX sends printing messages when certain printing-related tasks need to be
accomplished or when certain printing-related conditions arise, such as when a print
dialog box is displayed or the user moves the dialog box. A printing message is a value
that QuickDraw GX passes down a chain of message handlers. A message handler is the
recipient of a message and can include the application, the printer driver, and any
printing extensions. The message chain consists of eligible message handlers.

The application can install itself as a message handler for particular messages. Typically,
these messages relate to dialog boxes. The message handler specifies the code to execute
when the message is received. This code is called an override function because it
overrides the actions of the other message handlers by changing the behavior associated
with the message.

The override function can forward the message so that other message handlers can act
on it. This situation is described as a partial override. If the function does not forward
the message, the situation is described as a total override because other message
handlers do not have a chance to act on the message.

About QuickDraw GX Printing 1-13

CHAPTER 1

Introduction to Printing With QuickDraw GX

If you are in doubt about whether to create a total override or not, try a partial override
first because a total override may prevent an overlooked piece of code from being
executed. For example, someone could provide a printing extension after your
application has been distributed. The printing extension may rely on intercepting a
message that was not previously required to be forwarded by your application and, thus,
create an incompatibility between your application and the printing extension.

Two examples follow that show the typical cases in which an application needs to
override QuickDraw GX messages. The first example shows how messages are involved
in displaying a dialog box. The second example shows how a message is involved in
handling movable dialog boxes.

When the user chooses the Print menu item, your application may wish to add a panel to
the Print dialog box before it is displayed. Because you want the printer driver to
provide the default dialog box, you install a message handler so you can override the
Print dialog box message, gxJobPr i nt Di al og. Figure 1-9 shows how this override
happens with several message handlers in a message chain: the application, a printing
extension, a printer driver, and QuickDraw GX.

1-14

Figure 1-9 Message handlers in a message chain
uIobFrintTialog
I e e
M ey chiin
Kt [
—— —— — @‘
Application Frinding =cteneion Frinder driver ik Dy ana 5
ﬂ .lhl
call
ot | orobFrinkDialog

H Foncione -

The application calls the GXJobPri nt Di al og function to display the dialog box. This
function also causes QuickDraw GX to pass the gxJobPr i nt Di al og message down the
message chain, starting with the application. Because the application installed a function
to respond to this message, the application’s override function is called. (The override
function is not shown in Figure 1-9.)

About QuickDraw GX Printing

CHAPTER 1

Introduction to Printing With QuickDraw GX

The override function is an application-defined function that is executed when
QuickDraw GX sends the application the gxJobPr i nt Di al og message. The override
function adds a panel to the dialog box and forwards the message. By forwarding a
message, each handler in the message chain—the application, printer driver, and
printing extensions—participates in building the dialog box. The chapter “Page
Formatting and Dialog Box Customization” in this book discusses the messages your
application must override to add panels to QuickDraw GX movable modal dialog boxes.

Figure 1-10 shows an application that installs a function to be called when

QuickDraw GX sends the gxPr i nti ngEvent message. QuickDraw GX sends this
message in response to an event, which allows the application to redraw a portion of the
screen if the event is an update event caused by the user moving the dialog box.

Figure 1-10 Overriding the gxPri nti ngEvent message

JUFE-intiTvgBirent
M= prcg e
M meeg = chain
Hu-a:uge
'i:rw:u’ded
Applicadion F“nn‘ir.g 3 Ty F"rln'bu orivrer sadick D

U

shet | UpdeE
arent

The override function that responds to the message has the responsibility to determine
the kind of event that occurred and to redraw the invalid part of its windows if the event
is an update event. This override function does not need to forward the message in this
case because once the task is done, no other handler needs to take action. Thus, the
function provides a total override of the gxPri nti ngEvent message in this case. For an
example of an override function for this message, see the chapter “Core Printing
Features” in this book.

About QuickDraw GX Printing 1-15

CHAPTER 1

Introduction to Printing With QuickDraw GX

About QuickDraw GX Printing-Related Objects

1-16

The section “Core Printing-Related Objects” on page 1-6 describes how the job, format,
and paper-type objects interrelate to define the printing environment for a document.
The following sections describe each of the QuickDraw GX printing-related objects in
more detail. At the end of these sections is a summary.

Job Objects

The job object represents a print job that controls the way a document is printed. It
contains properties to reference a formatting printer and an output printer. The
formatting printer controls how the document is formatted. The output printer is the
printer on which pages are printed. These specifications allow a document to be printed
on the output printer yet retain the format specified by the formatting printer.

The job object also specifies additional properties, which include the following:

n Reference constant. This property can be used for any application-specific purpose.
For example, it can point to the contents of a document. It is discussed in the chapter
“Advanced Printing Features” in this book.

n Error. This property contains the last error associated with the print job. For
information about accessing the error code, see the chapter “Core Printing Features”
in this book.

n Format list. This property specifies all of the formats that may be used with this print
job. The first format in the list is the default format. For information about accessing
the format list, see the chapter “Core Printing Features” in this book.

n Paper-type list. This property specifies all of the paper types that may be used with
this print job. The printer driver specifies the paper types in this list, although you can
create new ones and add them to the list.

n Format mode. This property specifies the preferred mode of printing the document
associated with the print job; for example, using QuickDraw GX shape rendering,
using raw PostScript, or using built-in fonts in the printer. For more information about
the job format mode, see the chapter “Advanced Printing Features” in this book.

n Page range. This property specifies the pages to print. For information about
determining the page range, see the chapter “Core Printing Features” in this book.

n Panel dimensions. This property specifies the size of panels in print dialog boxes,
such as the Print and Page Setup dialog boxes. It is useful if you do not use the
extended dialog item list resource to process events in dialog boxes and need to know
where an event, such as a mouse-down event, occurred.

A job object also refers to a collection of items that can be specified for a print job. For
more information about the job collection, see “Collection Objects” on page 1-18.

About QuickDraw GX Printing-Related Objects

CHAPTER 1

Introduction to Printing With QuickDraw GX

Most other objects refer to the job object. The reference allows the other objects to obtain
information about the print job with which they are associated, and it especially allows
them access to the reference constant property that points to application-specific
information.

Format Objects

A format object specifies how a document or page of a document is to be formatted. The
format object includes the following properties:

n Dimensions. This property specifies size of the printable area. For more information
about the dimensions property, see the chapter “Core Printing Features” in this book.

n Mapping. This property determines the scale and orientation of the page. The
mapping also determines the translation, skewing, and perspective as well; however,
these are seldom changed. For more information about the mapping property, see the
chapter “Page Formatting and Dialog Box Customization” in this book.

n Form. This property specifies a shape object to print as a backdrop on each page of
output and a mask shape that defines erasable areas within the form. For example, a
form shape may provide a template so that each page of the document appears as if it
is positioned within the template, or the form shape may appear as a logo or banner
behind the contents of a page. For more information about form shapes, see the
chapter “Page Formatting and Dialog Box Customization” in this book.

n Paper-type. This property contains a reference to the paper-type object associated
with this format. Because the paper-type object can restrict the printable area, you can
use a paper-type object to change the printable area. For more information about the
paper-type property, see the chapter “Advanced Printing Features” in this book.

A format object also refers to a collection of items that can be specified for a format. For
more information about the format collection, see “Collection Objects” on page 1-18.

In the format object itself, you may change only the form property and the paper types.
Figure 1-11 shows a form shape and how it can be used to format a document.

Figure 1-11 Effect of specifying a shape in the form property of a format object

About QuickDraw GX Printing-Related Objects 1-17

CHAPTER 1

Introduction to Printing With QuickDraw GX

Paper-Type Objects

A paper-type object defines a paper type for a format. The paper-type object includes
the following properties:

n Name. This property specifies the name of the paper type. This name can be used to
allow the user to select a paper type in a dialog box and is also used for paper
matching.

n Dimensions. This property specifies the size of the paper and the size of the printable
area within the paper. This property allows you to specify a printable area that is
different from the area specified by the dimensions property of the format object.

A paper-type object also refers to a collection of items that can be specified for a paper
type. For more information about the paper-type collection, see the next section,
“Collection Obijects.”

Figure 1-12 shows an example of a paper type that restricts the printable area for
printing on letterhead paper.

Figure 1-12 A paper type for printing on letterhead paper

1-18

1

H

E i

AR R R R R R R R RN R I:

}?}?}}}?}?}}}?}?}}}?}? b ?}}}?}?}}}?}?}}}?} .

:_:-:_:-:_:-:_:-:_;:_;:_:-:_:-:_:-:_:-:_ :_:-:_:-:_:-:_:-:_;:_;:_:-:_:-:_:-}
Bk R
EE Y R
A L
S B i

R

}z}z}:}z}z}:}z}z}:}z}
BN -

BN -

B I:-:-:-:-:-:-:-:-:-:-'
e Sl || (Xt
2-:‘:-:‘b:‘}:‘}:‘b:‘}:‘}:‘k:‘}:‘}:‘b:‘}:‘} E

SRR
S
R
DR
PR
R
Ry
S
e
R

i
i
i
i
i

MAATAAAAAAATAAAAAT A AAA NI AT 1A AT AT AT 1A AT AT AT AT AT AT 1A AAATTA A AA

Paper-type objects are introduced in the chapter “Core Printing Features” in this book.
Their use in defining different paper sizes is described in the chapter “Advanced
Printing Features” in this book.

Collection Objects

Collection objects are repositories for additional information associated with the core
printing-related objects. Each piece of information is called an item. The print collection
objects are

n The job collection, which contains items of information that are relevant to a print
job. These items include information about how to print the document; for example,
how many copies, how to collate them, paper feed options, whether the document is
to be printed to disk, and file information.

About QuickDraw GX Printing-Related Objects

CHAPTER 1

Introduction to Printing With QuickDraw GX

n The format collection, which contains items of information related to printing a page
from the document. It specifies the orientation of a page, whether a halftone should be
applied, the scale, and other items related to formatting a page.

n The paper-type collection, which contains items of information related to the kind of
paper to which the format applies. For example, it specifies the base paper type, such
as US letter or legal, and the units in which the paper is measured, such as inches or
millimeters.

Figure 1-13 on page 1-21 shows the items that QuickDraw GX defines for these collection
objects. They are discussed completely in the chapter “Page Formatting and Dialog Box
Customization” in this book.

Typically, an item in a collection object is set by the printer driver. The user can change
the item by setting values or controls in a dialog box. For example, the value in the
copies information item of the job collection is set by the printer driver. The default Print
dialog box allows the user to change the value. The value in the item is then used by the
printer driver to determine how many times to print the pages associated with the job
object.

You only need to be concerned about the information in collection objects in the
following situations:

n when you are printing without dialog boxes and need to set an item in a collection
object

n when you want to allow the user access to an item that is not provided by a printer
driver in a dialog box

For an example of the first situation, to implement the Print One Copy menu item, you
need to set the copies item in the job collection to 1 before printing and reset it to its
previous value afterwards.

Consider the following example that applies to the second situation. The job object
specifies the pages to print, which the printer driver uses, by default, in its Print dialog
box. The job collection object provides a page-range information item that allows a
complex range of pages to be specified. To support the complex page range, you must
customize the Print dialog box to display the range from the collection item and store the
new values back in the collection object when the user changes them. Of course, the
printer driver must be set up to use the collection item too.

A printer driver can define additional items and store them in the appropriate collection.
Your application can do likewise. You should consider whether these collections are
appropriate for the kind of information you wish to manage. You can also create your
own special-purpose collections. For more information about collections, see the
Collection Manager chapter of Inside Macintosh: QuickDraw GX Environment and Ultilities.

About QuickDraw GX Printing-Related Objects 1-19

1-20

CHAPTER 1

Introduction to Printing With QuickDraw GX

Printer Objects

A printer object represents the characteristics of a printer. They are set by the printer
driver. You can determine these characteristics by referring to the output or formatting
printer in a job object. You cannot change these characteristics.

The printer object includes the following properties:
n Printer name. This property contains the printer’s name; for example “All Mine.”

n Printer type. This property contains the kind of printer; for example, ' | wsc' for the
LaserWriter 11 SC.

n Printer driver name. This property contains the printer driver’s name; for example,
“LaserWriter 11 SC.”

n Printer driver type. This property contains the kind of printer driver; for example,
' post ' for a Postscript printer.

n View device list. This property refers to view devices that define a printer’s
resolution (dots-per-inch) and color space.

For information about each of these properties, see the chapter “Advanced Printing
Features” in this book.

Print File Objects

A print file object represents a file that is created by QuickDraw GX as the data is
spooled to disk for printing. A special kind of print file is the portable digital document,
which is created by the PDD Maker GX printer driver.

A print file is self-contained. When you open it, you specify a job object that QuickDraw
GX sets up to match the characteristics of the job that printed the file. Thus, a print file
retains information about the output and formatting printers, its format, paper types,
and so on.

The print file object contains the following properties:
n Page count. This property specifies the number of pages in the file.
n Format list. This property specifies the format object for each page.

n Shape list. This property specifies the picture shape object associated with each page.

For information about each of these properties, see the chapter “Advanced Printing
Features” in this book.

Summary of QuickDraw GX Printing-Related Objects

Figure 1-13 shows all the QuickDraw GX printing-related objects and collection objects.
In this figure, references are represented by arrows. References to job objects, however,
are not shown. Note that these are objects, not structures. The order of the contents is
arbitrary. You access the contents procedurally by calling functions, not by accessing
fields in a data structure.

About QuickDraw GX Printing-Related Objects

CHAPTER 1

Introduction to Printing With QuickDraw GX

Figure 1-13

QuickDraw GX printing-related objects

{.-I'.-."_l.r.:.-."_l.-:n:-'.l:-":'r'

LArninne JFIhT

Referanos coredant

Eror

St Sk

” F-2 .l"'\:"__l-_:,'-'.-l' sl

Ferm atm ode

Fagerange

Pand dim ensione

e r A

£

JobeoBechnm

Criertzdon indarmadion

el

Printjobinform afon

Healing irformaion

Calafon nm xbon

Dhr ezt e imdormn wlon

Cn:-Piuini:frn afon

Formzathalone infrm adon

Page-rangeinirmaion

Fageirwrersioninformaton

ity inform zion

Hermordal page-fip indem ation

Rle deedraion irdem abon

Werdcal prgedipindrm zion

Rl lecadion niem wbon

Precie=Litn apirfomaton

Rl fomn wt irdomn abon

Rlefrde inferm afion

F‘q:a-’q.rp-e lecks imforrn wlon

Papar-fead informaion

Manwl-ead irfrmadon

Standard mappirg irermaton

Dpecl mapping nfom ation

Tragr-ro 3ppireg irdemn aion

'L"@ Prialer object

Prinier nam =

Printpand informafion

P'rhtrtg.rp-e

Fomn a‘l:-Pmd irformaton

Prinder drir=r ram=

Papeer i 2pping irformaion

Frinder driver yrpe

S -

Tranelwie 4 docom antinformadon

St

e

hlarm=

Dliroy aropic ot

¥ i

gl

r\ﬂ Pagerbype ~+—

Bzt irdomn adion

Craador inform aion

Unite irdem afion

Rageirformaton

Commentintrmadon

S Sy

ot SR

it

About QuickDraw GX Printing-Related Objects

1-21

1-22

CHAPTER 1

Introduction to Printing With QuickDraw GX

Table 1-1 describes the printing-related objects.

Table 1-1 QuickDraw GX printing-related objects

Printing-related object
Job

Format

Paper type

Printer

Print file

Job collection

Format collection

Paper-type collection

Description

Holds the primary printing information for a document.
Every printable document has a job object associated with it.
The job object specifies the number of copies and a page
range and includes references to one or more format objects
and two printer objects.

Specifies page-formatting characteristics such as scaling and
page dimensions and includes a reference to a paper-type
object.

Specifies a paper-type name (such as “US Letter”), the
physical dimensions of the paper, and the printable area
within it.

Represents the capabilities of a physical printer and includes
a name and type, a printer driver name and type, and a

reference to one or more view device objects from which you
can retrieve information about the printer’s characteristics.

Represents the file that results from printing, such as a spool
file or a portable digital document.

Contains items of information that are relevant to a print job.
These items include information about how to print the
document; for example, how many copies, how to collate
them, paper feed options, whether the file is to be printed to
disk, and file information.

Contains items of information related to printing a page from
the document. It specifies the dimensions for the page, the
orientation, whether a halftone should be applied, the scale,
and other items related to formatting a page.

Contains items of information related to the kind of paper to
which the format applies. For example, it specifies the base
paper type, such as US letter or legal, and the units in which
the paper is measured, such as inches or millimeters.

About QuickDraw GX Printing-Related Objects

CHAPTER 1

Introduction to Printing With QuickDraw GX

Using Printing-Related Objects With Other QuickDraw GX

Objects

QuickDraw GX printing-related objects serve only one purpose—to support printing.
The parts of your application unrelated to printing do not require the use of or access to
printing-related objects. The parts of your application that do support printing, however,
require the use of other QuickDraw GX objects. These objects include

n shapes

n tags

n View ports
n Vview devices

The use of these objects to support QuickDraw GX printing is well structured. The
following sections discuss how these objects are used in QuickDraw GX printing.

Shape Objects

Shape objects specify the content of what you want to render on a page of output. The
format object, for example, allows you to specify a shape to be printed as a backdrop to
the document’s contents.

The document’s contents are also represented as shapes. For example, text is typically
represented as glyph or layout shapes. Graphics are specified by graphics shapes, such
as lines, rectangles, polygons, paths, and so on. QuickDraw GX represents each page of
output as a picture shape that contains these other shapes.

Either you can create a picture shape that represents the contents of the entire page, or
you can allow QuickDraw GX to collect into a page the shapes you specify. For example,
if you choose to create a picture shape and print it as a page, you pass the picture shape
to the GXPr i nt Page function, which spools the page to the printer.

If you choose to specify individual shapes to be included in the page, you call the

GXSt ar t Page function to start building a picture shape and call the GXDr awShape
function for each shape you want to render. When you call the GXFi ni shPage function,
QuickDraw GX spools the picture shape for the page.

For an example of each way of printing using shape objects, see the chapter “Core
Printing Features” in this book.

Using Printing-Related Objects With Other QuickDraw GX Objects 1-23

CHAPTER 1

Introduction to Printing With QuickDraw GX

Tag Objects

QuickDraw GX allows you to directly control the way that printing is performed
through the use of synonyms stored in tag objects. You specify the action to take in a tag
object and attach it to another object, such as a shape, ink, or transform. Here are two of
the uses of tag objects:

n Halftone specifications can be placed in a tag that is referred to by a shape’s ink object.
When the shape is drawn, QuickDraw GX draws it with the specified ink using the
halftone in the ink’s tag object.

n PostScript operators can be placed in a tag that is referred to by the shape itself or by
its style, ink, or transform objects. When the shape is drawn, the PostScript operators
are used directly, in place of QuickDraw GX data.

For information about how to set up and attach tag objects to shapes, see the tag objects
chapter of Inside Macintosh: QuickDraw GX Objects.

View Port Objects

View ports are used to restrict the parts of shapes that are spooled during printing. They
also specify how to associate a shape with a view port when reading the shapes from a
print file. For example, when you call the GXSt ar t Page function to build your picture
shape of the page, you specify a view port list. This view port list controls which shapes
are printed. When you call the GXDr awShape function for a shape in order to add the
shape to the picture shape, only the part of the shape that shows through a view port in
this list is added to the picture shape. When a print file is read, the picture shape is
associated with the view ports in the list you specify.

Note

The GXDr awShape function may also cause the shape to be drawn
onscreen. If you draw a shape with view ports that are in the onscreen
view group but not specified in the view port list when calling the
GXSt ar t Page function, the shape is displayed on the screen. u

For more information about using view ports with the GXSt ar t Page function, see the
chapter “Core Printing Features” in this book. For more information about using view
ports when reading print files, see the chapter “Advanced Printing Features” in this
book.

1-24 Using Printing-Related Objects With Other QuickDraw GX Objects

CHAPTER 1

Introduction to Printing With QuickDraw GX

View Device Objects

Printer objects refer to view devices that are created by the printer driver. You can
examine a printer’s view devices to determine its characteristics, such as resolution,
color set, and color profile. You cannot change these characteristics. For more
information about accessing a printer object’s view devices, see the chapter “Advanced
Printing Features” in this book.

Implementing QuickDraw GX Printing Features

As you prepare to implement QuickDraw GX printing, you need to consider which
printing-related services your application will provide and what features QuickDraw GX
provides to implement your services. Typically, the user expects to control printing
through menus and dialog boxes in the application or by printing from the Finder. These
are the core printing features that every application needs to implement. Figure 1-14
shows the File menu of a typical application that contains the printing-related menu
items.

Figure 1-14 Printing-related items in the File menu

new M
Open... #0
Close ELW
Save ES
Save Ais...

Page Setup...

Custom Page Setup...
Print... EP
Print One Copy

Quit #0

Implementing QuickDraw GX Printing Features 1-25

1-26

CHAPTER 1

Introduction to Printing With QuickDraw GX

As a core feature, of course, you allow the user to print the document. You also allow the
user to format all the pages in a document the same way. The user chooses the Page
Setup menu item to specify document formatting.

You may allow the user to customize the format of individual pages using the Custom
Page Setup menu item. You may also wish to change the content of the dialog boxes
from the defaults provided by the printer driver, printing extensions, and QuickDraw
GX. You are implementing customization features when you provide page-by-page
formatting and dialog box customization.

Other features that you may provide, but are probably not necessary to implement in
most applications, are considered advanced printing features. Advanced printing
features are not necessarily harder to implement than other features; it just is less likely
that your application needs to provide them.

The following sections describe three classes of printing features:
n core printing features
n customization features

n advanced printing features

Core Printing Features

Generally, you work with printing-related objects when a user creates, saves, closes, or
opens a printable document. A job object represents the primary association between a
document, which is application-defined, and QuickDraw GX printing features. The job
object represents a print job in the sense that it specifies the parameters for printing a
document. Thus, core printing features require you to manipulate the job object. Figure
1-15 shows how you manipulate the job object in response to user actions.

Implementing QuickDraw GX Printing Features

CHAPTER 1

Introduction to Printing With QuickDraw GX

Figure 1-15 Manipulating the job object in response to user actions

Usrer acBon ApplionBos er e

Uger oraates 2 docum 2nt Create 3 comespondng job object

[i | —
e Ll |
I FET |]
ez e
Sur E=

LETT [|::>

Lorlog nn | oumgz %ol .
.ﬁ.ﬁ

Fia lhis "ipe

il 1
Llgzr F-rini- 2 dooimn ant

N

Farc Lo,

] H -
I.:::':.l |r|-rl:.:.|.' LINTT IR Reeourcs| Data
Friak..
Pl L Vun
w
Ll ponired 3 docam et Faire job objest and data
EFI ™
LN . U
o S E} 4::%
ET L N
Iuie fclop. . —

mirrnFege S=ha.
Ful . A¥
Prisl Trr Tingg

1 +1]
Uezr chowme 3 document Diepoes of job cbject

napt 1Y
Ll ’ nlk :l
111y]
ETIE N L E:}
Ir}:::.l:l:-lrtr;r.i-hn.. Reeource) Dak
Fiml.. -.F
Fried 1me Irpp
oI M

Uz opene 2 dooan ent Retiere job objectand data

Implementing QuickDraw GX Printing Features 1-27

1-28

CHAPTER 1

Introduction to Printing With QuickDraw GX

When you create a job object, QuickDraw GX automatically provides you with default
format and paper-type objects. The initial values of these objects are determined by the
output printer that is currently selected when the job is created. These values can change
if the user later changes the output printer.

You associate your document’s data with the job object. QuickDraw GX maintains the
relationship between the job, format, paper-type objects, and their collections. This is
useful when you save or open a document because these objects must be flattened or
unflattened, respectively.

Flattening and unflattening QuickDraw GX printing-related objects is very similar to
flattening and unflattening a shape object. When you flatten a shape object, the style, ink,
and transform objects are flattened with it. For printing-related objects, QuickDraw GX
flattens all related objects with the job object, including multiple format, paper-type, and
collection objects. They may be flattened in the form of a handle, which is convenient for
writing the objects to the resource fork, or you can use your own procedure to store the
job object and related objects wherever you wish.

You are responsible for displaying the Print and Page Setup dialog boxes. Because these
dialog boxes are movable, your application must install a handler for the
gxPrinti ngEvent message to update the screen if a dialog box moves.

Actual printing, which from the application’s perspective means spooling the document
to the printer driver, involves looping through the pages to be printed, and perhaps
looping through the shapes to be included on each page. The work of applying
formatting instructions and such is the responsibility of the printer driver.

There are several other things you must do to implement core printing features:

n ldentify the location of the Edit menu and its items to allow QuickDraw GX to
support the Cut, Copy, and Paste menu items when a print dialog box is active.

n Support printing from the Finder, which requires that your application support the
Print Documents (' pdoc') Apple event and support this Apple event’s optional
attribute to allow the user to drag a copy of the document to a desktop printer for
printing.

n Allow users to print documents originally created to print with the Macintosh
Printing Manager.

None of these tasks are conceptually difficult. The chapter “Core Printing Features” in
this book shows you how to perform each of these tasks.

Customizing QuickDraw GX Printing Features

QuickDraw GX allows you to customize some of its features to address the needs of your
particular application. If you want to manipulate the objects that QuickDraw GX uses to
format the pages of a document or if you want to add panels to QuickDraw GX print
dialog boxes, you need to read the chapter “Page Formatting and Dialog Box
Customization” in this book.

Through QuickDraw GX, your application can allow users to specify unique formats for
the individual pages of a printable document. For example, using QuickDraw GX, your

Implementing QuickDraw GX Printing Features

CHAPTER 1

Introduction to Printing With QuickDraw GX

application can allow a user to create and print a single document that consists of an
address page on an envelope, a business letter on a sheet of paper in portrait orientation,
and a spreadsheet on a sheet of paper in landscape orientation. Figure 1-16 shows an
example.

Figure 1-16 Printing a document containing multiple formats

i

SEHa
VEE BT
EEEFhRRITEE

In addition, QuickDraw GX allows you to add panels to its dialog boxes to provide
special features that require additional user specification. A panel is a portion of a dialog
box in which an application can provide additional options for users. These
specifications are stored as items in collection objects. For example, your application may
add a panel that provides special color features, such as color separation and color
choices or halftone information, which need to be stored with a job or format.
QuickDraw GX dialog boxes are introduced in “Dialog Boxes,” which begins on

page 1-10. For information about collections, see “Collection Objects” on page 1-18.

Implementing QuickDraw GX Printing Features 1-29

CHAPTER 1

Introduction to Printing With QuickDraw GX

Advanced Printing Features

QuickDraw GX provides several features that allow your application to provide
additional control for users and allows the application to take advantage of features in
particular printers. These features allow you to

n provide access to and perhaps modify the contents of a portable digital document or
other print file

n use different paper-type objects, including those created with the PaperType Editor

n take advantage of a printer’s built in features, such as fast text-streaming using built-
in fonts by way of a direct job-formatting mode

n directly specify methods of rendering data with alternative representations of
QuickDraw GX graphics objects, such as with raw PostScript (These alternative
representations are called synonyms, which are stored in tag objects. For a brief
introduction of how you implement synonyms, see “Tag Objects” on page 1-24.)

n set up halftones on a shape-by-shape basis by specifying halftones for the inks they
use

n provide users with feedback about vector device capabilities

n examine the characteristics of a printer, such as its resolution and color-rendering
capabilities

n change the job properties if the user switched printers
n change or prevent the display of the Status dialog box

The chapter “Advanced Printing Features” in this book describes each of these features.

Compatibility With the Macintosh Printing Manager

1-30

Non-QuickDraw GX versions of Macintosh system software use the Printing Manager,
which QuickDraw GX replaces. The Printing Manager encompasses several concepts
for which QuickDraw GX printing introduces parallel vocabulary. Old and new printing
architecture terms include the following:

Printing Manager term QuickDraw GX term

Printer driver Printer driver and printing extensions
System printer Default desktop printer

Print record Job object

Spool file Print file

To enable the printing of QuickDraw documents on QuickDraw GX printers, you must
convert the document with the QuickDraw GX Translator, which is described in the
environment chapter of Inside Macintosh: QuickDraw GX Environment and Ultilities, and
convert the print record by calling the GXConver t Pri nt Recor d function, which is
described in the chapter “Core Printing Features” in this book.

Compatibility With the Macintosh Printing Manager

CHAPTER 1

Introduction to Printing With QuickDraw GX

Note

Printer drivers created with different versions of the Macintosh printing
architecture can be present in a computer along with QuickDraw GX
printer drivers. If QuickDraw GX is installed, the QuickDraw GX printer
drivers are active; otherwise, the QuickDraw GX printer drivers are not
active. u

Compatibility With the Macintosh Printing Manager

1-31

CHAPTER 2

Core Printing Features

Contents

About Core Printing Features 2-3
Core Print Objects 2-5
Job Object Properties 2-5
Format Object Properties 2-7
Paper-Type Object Properties 2-8
Edit Menu Structure 2-9
Using Core Printing Features 2-10
Initializing QuickDraw GX Printing 2-11
Creating a Job Object for a Printable Document 2-12
Error Handling 2-14
Supporting QuickDraw GX Print Dialog Boxes 2-17
Printing Documents Using QuickDraw GX 2-20
Printing Pages as Single Picture Shapes 2-21
Printing Pages by Capturing Shapes 2-22
Saving a Job Object With a Document File 2-24
Saving a Job Object in a Single Handle 2-25
Saving a Job Object Using a Flattening Function 2-27
Disposing of a Job Object When Closing a Document 2-28
Retrieving a Job Object When Opening a Document 2-29
Retrieving a Job Object From a Handle 2-30
Retrieving a Job Object Using an Unflattening Function 2-32
Obtaining Object References 2-33
Obtaining Information From a Format Object 2-33
Displaying QuickDraw GX Print Dialog Boxes 2-35
Displaying the Page Setup Dialog Box 2-35
Displaying the Print Dialog Box 2-37
Supporting Printing From the Finder 2-39
Updating Job Object Information 2-42
Printing Macintosh Printing Manager Documents 2-44

Contents

2-1

2-2

CHAPTER 2

Core Printing Features Reference 2-46
Constants and Data Types 2-46
Gestalt Selectors for Printing 2-47
QuickDraw GX Printing-Related Objects 2-47
Edit Menu Location 2-48
Dialog Box Results 2-48
Functions 2-49
Initializing and Terminating QuickDraw GX Printing Features
GXInitPrinting 2-50
GXExitPrinting 2-51
Handling Errors 2-52
GXGet JobError 2-52
GXSet JobErr or 2-53
Creating and Managing Job Obijects 2-54
GXNewJob 2-54
GXDi sposeJob 2-55
GXFl att enJobToHdI 2-56
GXFl at t enJob 2-57
GXUnf | at t enJobFr onHdI 2-58
GXUnf |l at t enJob 2-59
GXUpdat eJob 2-60
Printing With QuickDraw GX 2-61
GXSel ect JobQut put Printer 2-61
GXGet JobPageRange 2-62
GXSt art Job 2-63
GXPri nt Page 2-64
GXFi ni shJob 2-65
GXSt art Page 2-66
GXFi ni shPage 2-67
Obtaining Information on Printing-Related Objects 2-68
GXGet JobFor mat 2-69
GXCet For mat Job 2-69
GXCet For mat Di mensi ons 2-70
Displaying the Page Setup and Print Dialog Boxes 2-71
GXl nstal | ApplicationOverride 2-71
GXJobDef aul t For mat Di al og 2-72
GXJobPrint D al og 2-73
Converting a Print Record 2-75
GXConvert Print Record 2-75
Application-Defined Functions 2-76
Message Override Functions 2-76
GXPrinti ngEvent 2-76
Flattening and Unflattening Functions for Job Objects 2-77
MyFl at t enFuncti on 2-77
MyUnf | att enFuncti on 2-78
Summary of Core Printing Features 2-79

Contents

2-50

CHAPTER 2

Core Printing Features

This chapter describes how your application can use the core set of QuickDraw GX
printing features to print documents created with QuickDraw GX. Read the information
in this chapter if you want to print your application’s documents to an output device.
For example, you might use QuickDraw GX to print to a LaserWriter a document that
contains some text and a few illustrations.

Before reading this chapter, you should be familiar with the basic concepts and user
interface for printing with QuickDraw GX, as described in the chapter “Introduction to
Printing With QuickDraw GX” in this book.

This chapter describes the basic QuickDraw GX print objects: a job, a format, and a paper
type. This chapter also shows you how to

n set up the QuickDraw GX printing environment

n create a job object that contains the information needed to print a document
n detect error conditions

n print your application’s documents

n save job object information when a user saves a document

n dispose of a job object when a user closes a document

n retrieve job object information when a user opens a document

n obtain information on a format object

n display QuickDraw GX print dialog boxes

n support printing from the Finder

n convert a print record into a job object to print existing documents designed for
printing with the Macintosh Printing Manager

About Core Printing Features

Core printing features are features that must be implemented to allow printing
documents that contain QuickDraw GX graphics or typographical shapes. These features
include the ability to print to desktop printers, format a document for a particular
printer (a formatting printer), yet allow printing to another printer (the output printer)
without reformatting the document. Core features also include the ability to print from
the Finder and to print existing documents designed for printing with the Macintosh
Printing Manager.

About Core Printing Features 2-3

CHAPTER 2

Core Printing Features

To enable these core features, your application must manipulate three kinds of objects:

n the job object, which contains information about the print job used to print a
document

n the format object, which contains information about how to format one or more
pages of a document for printing

n the paper-type object, which contains information about the paper on which a
document is to be printed

Figure 2-1 shows the relationship between these objects.

Figure 2-1 Objects needed to implement core printing features

2-4

All aspects of printing with QuickDraw GX relate to a particular job object. The job
object defines the parameters with which to print the document, which a user typically
specifies in the Print dialog box.

Your application sets up the correspondence between a document and a job object. The
job object is tied to the format and paper-type objects through references. A job object
refers to at least one format object. The format object specifies how to format the pages in
a document. To implement core printing features, in which each page of a document is
formatted the same way, you are only concerned about the first reference to a format
object because this format object represents the default format.

Each format object refers to a paper-type object. Thus, it is actually this pair of objects
that specifies how the pages of a document are formatted. The user typically specifies the
format options, which translate into format object properties and specifies paper-type
options, which translate into paper-type object properties, in the Page Setup Dialog box.

These three objects—the job, format, and paper-type—can refer to other objects, some of
which are collections of additional specifications. These other objects and specifications
are not required, however, to implement the core printing features.

The references themselves are properties of the job, format, or paper-type objects. The
references are mentioned in the following section, which describes each object’s
properties. The other objects themselves, however, are described as they are used in the
chapters “Page Formatting and Dialog Box Customization” and “Advanced Printing
Features” in this book.

About Core Printing Features

CHAPTER 2

Core Printing Features

In addition to manipulating job, format, and paper-type objects, your application must
also initialize the printing environment, handle printing-related errors, and handle two
situations that can arise when the user invokes a print dialog box:

n Your application must let QuickDraw GX know which Edit menu items are to be
enabled when a QuickDraw GX dialog box is active. Although QuickDraw GX
implements the Cut, Copy, Paste, and Clear menu items for you, you must specify
which of these items are enabled. If other menu items are enabled, such as Undo, you
must also handle the item as well as enable it.

n Your application must respond to printing event messages, which allows updating the
screen when the user moves a dialog box. Printing event messages and movable
dialog boxes are described in the chapter “Introduction to Printing With QuickDraw
GX” in this book.

Your application should also handle printing from the Finder, which occurs when the
user chooses Print from the Finder’s File menu or drags a document onto a desktop
printer icon. Finally, your application can also handle printing of existing documents
designed for printing with the Macintosh Printing Manager.

The following section, “Core Print Objects,” describes the QuickDraw GX objects needed
to implement core printing features. The section “Using Core Printing Features”
beginning on page 2-10 provides examples of code that implements these core features.

Core Print Objects

QuickDraw GX printing information is contained in a set of print objects that you
associate with a printable document. When you create a job object, QuickDraw GX sets
up references to a format object and paper-type object. The initial values for the
properties in each of these objects is defined by the printer driver for the default output
printer.

The following sections describe specific properties of the job object, the format object,
and the paper-type object.

Job Object Properties

A job object has ten accessible properties, as shown in Figure 2-2. Note that, because the
data structure of a job object is private, the order of the properties as shown in Figure 2-2
is completely arbitrary. Properties in italics indicate references to other objects.

About Core Printing Features 2-5

CHAPTER 2

Core Printing Features

Figure 2-2 The job object

JAoboobjeck

Clydpnet peitees

fimad Lings |einde

Referancs cormdant

Emor

Firmd i
Tty Hst
Fom atrode

Fage range
Pana dimersione

Codletion

The properties of a job object are as follows:

n

Output printer. A reference to the output printer to which documents are sent for
printing. A user specifies an output printer in the Print dialog box. The initial value
contained in this property is the default output printer, which is the printer to which
documents are sent if the user does not select a different printer.

Formatting printer. A reference to the printer for which documents are formatted. A
user specifies a formatting printer in the Page Setup dialog box. The initial value
contained in this property is the default formatting printer, which is used to format
documents if the user does not specify a different printer.

Reference constant. This property contains a reference constant for your application’s
use. In the reference constant you can associate your own data with a particular job
object. For example, you may wish to store a pointer to the document data. Specifying
a reference constant for a job object is discussed in the chapter “Advanced Printing
Features” in this book.

Error. This property specifies the most recent error encountered for a particular job
object. QuickDraw GX associates printing-related errors with individual job objects. It
is necessary for you to check for errors after calling certain functions. Job object errors
are discussed in “Error Handling” beginning on page 2-14.

Format mode. This property specifies the mode associated with a particular job object.
QuickDraw GX supports text, PostScript, and graphics direct modes. By default, your
application uses the graphics direct mode to print text and graphics. Direct modes
allow your application to take advantage of a printer’s built-in features, such as fonts
and text-streaming capabilities, to provide faster output for users. Using direct mode,
however, does not take full advantage of QuickDraw GX features; therefore, the
appearance of the document may change when printed in direct mode. The user can

About Core Printing Features

CHAPTER 2

Core Printing Features

specify a direct mode in the Print dialog box. Direct modes are discussed in the
chapter “Advanced Printing Features” in this book.

Format list. A list of references to format objects. The first reference is to format object
that represents the default format. The default format is defined by the printer driver
of the default output printer. The user can change the value of the default format in
the Page Setup dialog box. Using multiple format objects in a document is discussed
in the chapter “Page Formatting and Dialog Box Customization” in this book. Format
object properties are discussed in the next section.

Paper-type list. A list of references to the paper-type objects that are associated with
the job’s format objects. The user can change the default paper type in the Page Setup
dialog box. Using different paper-type objects in a document is discussed in the
chapter “Advanced Printing Features” in this book.

Page range. This property contains the user-specified page range. A user specifies a
page range in the Print dialog box. How you determine the page range is discussed in
“Printing Documents Using QuickDraw GX” beginning on page 2-20.

Panel dimensions. This property defines the dimensions of QuickDraw GX dialog
box panels. You use this information when you want to locate the position of the
cursor within a panel. Panel dimensions are discussed in the chapter “Page
Formatting and Dialog Box Customization” in this book.

Collection. A reference to a job collection object, which stores additional information
about the print job. The job collection object is discussed in the chapter “Page
Formatting and Dialog Box Customization” in this book.

Format Object Properties

A format object contains six accessible properties, as shown in Figure 2-3. Note that,
because the data structure of a format object is private, the order of the properties as
shown in Figure 2-3 is completely arbitrary. Properties in italics indicate references to
other objects.

Figure 2-3 The format object

Formalobcl

Dhirvzresi o ree
M=ppirg
Fama

S e

I i

s

About Core Printing Features

2-7

CHAPTER 2

Core Printing Features

The properties of a format object are as follows:

n

Dimensions. This property defines the physical dimensions of the paper (the paper
size) and the printable area within these dimensions (the page size) after scaling and
orientation have been applied. Scaling is the percentage that objects are shrunk or
grown when printed. The orientation is either portrait or landscape.

Mapping. This property defines the mathematical representation of the format
object’s settings, such as scaling. The mapping property of a format object is discussed
in the chapter “Page Formatting and Dialog Box Customization” in this book.

Form. This property defines a backdrop that can be applied to a set of pages. A form
is made up of two shape objects—a shape that defines the form and another shape
that defines a mask, which represents the erasable area within the form. Forms are
discussed in the chapter “Page Formatting and Dialog Box Customization” in this
book.

Paper type. A reference to a paper-type object associated with this format object.
Paper-type object properties are discussed in the next section.

Collection. A reference to a format collection. Through this reference, you can access
additional information related to the format collection. This information includes data
such as the user-specified orientation (either portrait, landscape, or rotated landscape)
from the Page Setup dialog box. The format collection is discussed in the chapter
“Page Formatting and Dialog Box Customization” in this book.

Job. A reference to a job object. Through this reference, you can access the job object
associated with a particular format object.

Paper-Type Object Properties

A paper-type object contains four accessible properties, as show in Figure 2-4. Note that,
because the data structure of a paper-type object is private, the order of the properties as
shown in Figure 2-4 is completely arbitrary. Properties in italics indicate references to
other objects.

Figure 2-4 The paper-type object

Dhirvvm rei et

I i
_feata

2-8 About Core Printing Features

CHAPTER 2

Core Printing Features

The properties of a paper-type object are as follows:

n Name. This property contains the name of a paper type, such as US Letter. A user
specifies a paper-type name in the Page Setup or Custom Page Setup dialog box.
Paper-type object names are discussed in the chapter “Advanced Printing Features” in
this book.

n Dimensions. This property defines the physical dimensions of the paper (the paper
size) and the printable area within these dimensions (the page size) before scaling and
orientation have been applied. Paper-type object dimensions are discussed in the
chapter “Advanced Printing Features” in this book.

n Collection. A reference to a paper-type collection. Through this reference, you can
access additional information related to the paper-type object. This information
includes such data as paper-type units. The paper-type collection is discussed in the
chapter “Page Formatting and Dialog Box Customization” in this book.

n Job. A reference to a job object. Through this reference, you can access the job object
associated with a particular paper-type object.

Edit Menu Structure

QuickDraw GX supports basic editing commands when a print dialog box is active. The
user can Cut, Copy, Paste, and Clear edit text. To handle this task, QuickDraw GX must
know the ID of the Edit menu, and the location within the edit menu of the items that
correspond to Cut, Copy, Paste, and Clear.

Your application specifies this information in an Edit menu structure, named
gxEdi t MenuRecor d:

struct gxEditMenuRecor d{
short edi t Menul D

short cutltem
short copyltem
short pasteltem
short clearltem
short undol t em

}os

The edi t Menul D field specifies the ID of the Edit menu. The other fields identify the
location of items in the Edit menu. For an example of how to set up an Edit menu
structure, see “Displaying QuickDraw GX Print Dialog Boxes” beginning on page 2-35.

Note
QuickDraw GX does not support the Undo item. u

Because QuickDraw GX handles all menu items while a print dialog box is displayed,
your application should disable all of its menus, except the Edit menu. It should also
disable the About box under the Apple menu. Adjusting menus for movable modal
dialog boxes such as print dialog boxes is described in Inside Macintosh: Macintosh Toolbox
Essentials.

About Core Printing Features 2-9

CHAPTER 2

Core Printing Features

Using Core Printing Features

2-10

This section shows how to implement the core printing features in your application First,
you must determine if QuickDraw GX is installed and, if so, set up its environment.
Next, when the user creates a document, your application needs to create a job object for
the document and maintain other information about the document. The sample code
throughout this book uses a structure, MyDocumnent Rec, to keep the needed information
in one place:

typedef struct MyDocunment Rec {

gxJob docunent Job; /* the job object bound to the
docunent */

| ong nunPages; /* the nunber of pages in the
docunent */

| ong cur Page; /* the current page */

FSSpec docunent FSSpec; /* the file system specification
for the docunment */

Str31 docunment Titl e /* the title of the docunent

(such as “Untitled”) */
W ndowPt r docunent W ndow, /* the wi ndow for the document */
gxVi ewPort docurent ViewPort; /* the view port used for

drawi ng within the docunent

wi ndow */
gxShape docunent Page[kMaxPages] ;
/* the shape data for each
page */
gxFor nmat pageFor mat [kMaxPages] ;

/* the format object for each
page, if nil use the default
format */

} MyDocunent Rec, *MyDocunent Ptr;

This structure is set up to handle one shape per page. Each page may have its own
format, although in this chapter only one format is used. The individual fields in the
structure are described as they are used in the following sections.

Your application could define a similar structure, or you could maintain the needed
information in variables of your choosing. The variable used in this book is
myDocunent , which is defined as follows:

MyDocunment Rec myDocunent ;

Using Core Printing Features

CHAPTER 2

Core Printing Features

The following sections show how to

n initialize QuickDraw GX printing

n create a job object and initialize the myDocumnent variable
n handle errors

n printa document

n save a job object by flattening it

n retrieve a job object by unflattening it

n dispose of a job object and the objects it references
n obtain format information

n support print dialog boxes

n perform printing from the Finder

n update job object information after resume events

n print existing documents designed for printing with the Macintosh Printing Manager

Initializing QuickDraw GX Printing

For your application to use QuickDraw GX, the user must be running system software
version 7.1 or later. To test for the existence of QuickDraw GX printing features, use the
Gest al t function. The Gestalt selector is gest al t Pri nti ngMgr Ver si on (" pngr*').
The Gest al t function is discussed in Inside Macintosh: QuickDraw GX Environment and
Utilities.

Note

The Gestalt selector for the entire QuickDraw GX feature set is
gest al t GXVer si on. This selector is discussed in Inside Macintosh:
QuickDraw GX Environment and Utilities. u

After you call the GXEnt er Gr aphi cs function to initialize QuickDraw GX, you call the
GXI ni t Pri nti ng function to initialize QuickDraw GX printing features. The

GXEnt er Gr aphi cs function is discussed in Inside Macintosh: QuickDraw GX

Environment and Utilities.

Using Core Printing Features 2-11

CHAPTER 2

Core Printing Features

To terminate printing with QuickDraw GX, you must call the GXExi t Pri nti ng
function. You can only use this function after you have successfully called the

GXI ni t Pri nti ng function and before you call the GXExi t G- aphi cs function to shut
down QuickDraw GX:

CSErr err;

GXEnt er G- aphi cs() ;
err = GXInitPrinting(); /* Set up print facility */
if (lerr)

{

/* The event loop and nore initialization goes here */

}
GXExi t Printing(); /* Close QuickDraw GX printing. */
GXExi t G aphi cs();

Creating a Job Object for a Printable Document

For each printable document that a user creates, your application needs to create a
corresponding job object. Generally, you should manage job objects on a one-to-one basis
with documents. An introduction to manipulating the job object in response to user
actions is discussed in the chapter “Introduction to Printing With QuickDraw GX” in this
book. Properties of the job object are described in “Job Object Properties” on page 2-5.

Listing 2-1 shows the MyNewDocunent 1 function that creates a job object for a printable
document and initializes a MyDocumnent Rec structure. ThedocNane parameter of the
MyNewDocument 1 function is a Pascal string containing the name of the document, and
the myDocunent parameter is a pointer to a MyDocunent Rec structure. In this example,
the document is simplified to handle a maximum of 20 pages.

Listing 2-1 Creating a job object for a printable document

2-12

#def i ne kMaxPages 20

OSErr MyNewDocunent 1(Str31 docNane, MyDocunent Ptr myDocunent)
{

CSErr err;
Rect bounds;
myDocurnent - >nunPages = 0; /* there are no pages yet */

nmyDocunent - >cur Page = O;

Using Core Printing Features

CHAPTER 2

Core Printing Features

/* Create a new job */
err = GXNewJob(&ryDocunent - >docunent Job) ;

if (err == noErr)
{
/*
Install your application override for the
gxPrintingEvent nessage to di splay Quickbraw GX novabl e
nodal di al og boxes.
*/
GXlI nstal | Appl i cationOverride(nmyDocunent->docunent Job,
gxPrintingEvent,
MyPrinti ngEvent Overri de);

/*
Store the docunment’s nane. Limt is 31 characters (plus
a length byte).

*/

if (docNanme[0] > 31)
docNane[0] = 31;

Bl ockMove(&docName[0], &mryDocunent - >docunent Ti tl e[0],

(long) docNane[0] +1);

/*
Addi tional application-specific docunment initialization
can go here, such as the follow ng:
Create a wi ndow and a view port for the docunent. Store
the pointer to the MyDocument Rec structure in the
wi ndow s refCon field.
*/
Set Rect (&ounds, 30, 60, 300, 400);
myDocunent - >docunment W ndow = NewCW ndow(ni |, &bounds,
docNane, fal se, noG owDocProc, (WndowPtr) -1,
true, (long) nyDocunent);
err = MenError();
if (err == noErr)
{
Set Por t (myDocunent - >docunent W ndow) ;
myDocunent - >docunent Vi ewPort =
GXNewW ndowVi ewPor t (myDocunent - >docunent W ndow) ;

Using Core Printing Features 2-13

2-14

CHAPTER 2

Core Printing Features

err = GXCGet G aphi csError(nil);

if (err !'= noErr)
D sposeW ndow(myDocurent - >docunment W ndow) ;

}
if (err !'= noErr) GXDi sposeJob(nyDocunent->docunent Job);

}

return err;

}

The MyNewDocunent 1 function sets the number of pages in the document and the
current page number. Note that pages begin at 1 (not from 0 as in an array). The initial
value of 0 indicates that there are none.

The GXNewJob function creates a job object for the document. If an error does not occur,
the MyNewDocunent 1 function performs the following tasks:

n Calls the GXlI nstal | Appl i cati onQverri de function to install a function that
overrides the gxPri nti ngEvent message. This override is needed to handle
movable print dialog boxes. The GXI nst al | Appl i cati onOverri de function and
the gxPri nti ngEvent message are discussed in “Supporting QuickDraw GX Print
Dialog Boxes” beginning on page 2-17.

n Stores the document’s name by calling the Bl ockMove function. The name is passed
into the MyNewDocument 1 function.

n Creates the document’s window by calling the NewW ndow function and makes it the
focus by calling the Set Port function.

n Creates a view port for the window by calling the GXNewW ndowVi ewPor t function.
This view port is used to draw individual shapes on a page and is discussed in the
section “Printing Pages by Capturing Shapes” beginning on page 2-22. For
information about the GXNewW ndowVi ewPor t function, see the environment
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

In the event of an error, the job and window are disposed of, if necessary.

Error Handling

QuickDraw GX provides you with an error-handling method to poll for printing-related
errors. In previous versions of the Macintosh printing architecture, errors were handled
using the Pr Er r or function. This function returned the error status. Printing errors were
global to an application. In QuickDraw GX, an error is local to a job object.

You can poll for errors in two different ways: immediately after you call a function or
after you call groups of functions. QuickDraw GX provides the GXGet JobEr r or
function to allow you to poll for errors in both ways.

When an error occurs, the error is stored in the error property of the job object. The error
is not cleared until you call the GXGet JobEr r or function. Thus, GXGet JobEr r or
returns the first error since the last call to the GXGet JobEr r or function.

Using Core Printing Features

CHAPTER 2

Core Printing Features

IMPORTANT
If an error condition exists for a job object, QuickDraw GX will not
execute other functions associated with the job object until the error
condition is cleared. s

You should note that it is necessary for you to check for errors after certain functions. For
example, you should always check for errors after calling functions that begin with the
word St ar t or functions related to collection objects. Functions related to collection
objects are discussed in the chapter “Page Formatting and Dialog Box Customization” in
this book.

Polling for errors is a standard Macintosh method used by the Resource Manager and
the Macintosh Printing Manager. For information on the Resource Manager, see Inside
Macintosh: More Macintosh Toolbox. For information on QuickDraw, see Inside Macintosh:
Imaging.

Listing 2-2 shows an example of polling for errors by calling GXGet JobEr r or after
individual functions. The error conditions being checked for in the example can arise
while executing the print loop. For a discussion of the print loop, see “Printing
Documents Using QuickDraw GX” beginning on page 2-20.

Listing 2-2 Polling for errors after individual functions

GXGet JobPageRange(myDocunent - >docunent Job, &firstPage, &l astPage);
err = GXCGet JobError (myDocunent - >docunent Job) ;
if (err == noErr)
{
i f (lastPage > nyDocunent - >nunPages)
| ast Page = nyDocunent - >nunPages;
nunPages = | astPage - firstPage + 1;

GXSt ar t Job(myDocunent - >docunent Job,
myDocunent - >docunent Ti t | e, numnPages) ;
err = GXCGet JobError (myDocunent - >docunent Job) ;
if (err == noErr)
{
for (pg = firstPage; (err == noErr) && (pg <=
| ast Page); pg++)

{
GXPri nt Page(nyDocunent - >docunent Job, pg,
GXGet JobFor mat (nyDocumnent - >docunent Job, 1),
myDocurent - >docunent Page[pg -1]);
err = GXCGet JobError (myDocunent - >docunent Job) ;
}

Using Core Printing Features 2-15

CHAPTER 2

Core Printing Features

GXFi ni shJob(myDocunent - >docunent Job) ;
err = GXCGet JobError (myDocunent - >docunent Job) ;

}

Listing 2-3 shows an example of polling for errors after groups of functions. This
example shows how to obtain the dimensions of the paper and page associated with a
format object, which is explained on page 2-33. If the GXGet JobFor mat functionreturns
an error, the GXGet For mat Di mensi ons function returns immediately without
executing.

Listing 2-3 Polling for errors after groups of functions

2-16

OSErr MyGet For mat Di mensi ons(MyDocument Pt r myDocunent ,
gxRect angl e *pageBounds,
gxRect angl e *paper Bounds)

| ong cur Page;
gxFor mat pgFor mat ;

/*
Get the format object for the current page. If it is nil, use
the default format.
*/
cur Page = nyDocunent - >cur Page,;
pgFormat = nyDocunent - >pageFor mat [cur Page -1];
if (pgFormat == nil)
pgFor mat = GXGet JobFor mat (myDocunent - >documnent Job, 1);

/* Get the bounds of the format object.*/
GXGet For mat Di mensi ons(pgFor mat, pageBounds, paper Bounds);

return GXGet JobError (myDocunent - >docunent Job) ;
}

Unless otherwise indicated, errors are generally checked after groups of functions
throughout the code samples in this book.

Using Core Printing Features

CHAPTER 2

Core Printing Features

In addition, QuickDraw GX allows you to store an error with a particular job object
using the GXSet JobEr r or function. This function is useful when you want to abort or
cancel spooling, which is how data is sent to the printer driver. Spooling is discussed in
the chapter “Introduction to Printing With QuickDraw GX” in this book.

The following statement sets the error condition associated with the job object to the
contentsoferr:

GXSet JobEr r or (myDocunent - >docunent Job, err);

When the error status is tested using GXGet JobEr r or, it will return the status set by the
GXSet JobEr r or function, assuming that another error did not occur between the time
the value was set and then retrieved.

Supporting QuickDraw GX Print Dialog Boxes

Dialog boxes for QuickDraw GX printing features are movable modal. A movable
modal dialog box is a modal dialog box that contains a title bar by which users can drag
the dialog box. This type of dialog box allows users to view windows that would
otherwise be obscured by the dialog box. Movable modal dialog boxes are described in
Inside Macintosh: Macintosh Toolbox Essentials.

To support QuickDraw GX print dialog boxes, your application needs to identify the
Edit menu and its menu items, adjust the menu bar to enable or disable appropriate
menu items, and respond to the gxPr i nt i ngEvent message that QuickDraw GX sends
to your application.

You make menu adjustments just before you display the dialog box. Examples of setting
up the menu bar are shown in the sections “Displaying the Page Setup Dialog Box”
beginning on page 2-35 and “Displaying the Print Dialog Box” beginning on page 2-37.

This section shows how to set up the override for the gxPri nti ngEvent message.
QuickDraw GX sends this message to your application each time it receives an event,
such as a mouse click or a keystroke. Because you want the application to respond to
update events so that the window can be redrawn, you must install the application as a
handler for the gxPri nti ngEvent message.

You create a function that has the same prototype (the same format of parameters and
return value) as the GXPr i nt i ngEvent function and install it in the message chain. To
override the gxPri nti ngEvent message, you specify a pointer to an override function
in the GXI nst al | Appl i cati onOverri de function. Because dialog boxes are
associated with individual job objects, you must call

GXI nstal | Appl i cati onOverri de after you create each job object.

Using Core Printing Features 2-17

CHAPTER 2

Core Printing Features

The override persists until you dispose of the job object or install another override for
the gxPri nti ngEvent message. Listing 2-1 on page 2-12 shows the following call in
the context of creating a new job object:

GXI nstal | Appl i cationOverride(nmyDocunent - >docunent Job,
gxPrintingEvent,
MyPrintingEvent Overri de);

The GXI nst al | Appl i cati onOverri de function has three parameters:

n A reference to the job object. In Listing 2-1 on page 2-12, it is the job object that was
stored when the document was created.

n The ID of the message to override. In this case, it is gxPri nt i ngEvent .

n The function that responds to the message. In this case, it is
MyPrintingEvent Overri de.

The parameters to the override function named MyPr i nt i ngEvent Over ri de must
match those of the GXPr i nt i ngEvent message override function, which has the
following declaration:

OSErr GXPrintingEvent (EventRecord *anEvent Record,
Bool ean filterEvent);

The anEvent Recor d parameter is a pointer to the event record, which contains
information about what type of event occurred while the print dialog box was being
displayed; for example, a mouse click or key-down. The event record also contains
additional information associated with the event, such as which key was pressed for a
key-down event.

The filter Event parameter specifies whether the event can be filtered. QuickDraw
GXsendstwo gxPri nti ngEvent messages for each event. The first event can be
filtered, for example, by calling the Di al ogSel ect function to filter non-update events.

Note

The Window Manager generates update events to control the
appearance of windows on the screen. The Event Recor d data type, the
Window Manager, the Di al ogSel ect function, and update events are
discussed in Inside Macintosh: Macintosh Toolbox Essentials. u

2-18 Using Core Printing Features

CHAPTER 2

Core Printing Features

Listing 2-4 shows an override function for the gxPri nti ngEvent message.

Listing 2-4 Override function for the gxPri nti ngEvent message

OCSErr MyPrintingEvent Overri de(Event Record *anEvent,
Bool ean filterEvent)

{

OSErr err = noErr;

/* Handl e events in whatever way is appropriate. MDoEvent
is a generic event handler. Don't pass it events that
it shouldn't handle while print dialogs are displayed.

*/

if (!filterEvent)
swi tch (anEvent - >what)

{
case mouseDown:
case keyDown:
case aut oKey:
br eak;
defaul t:
err = MyDoEvent (anEvent);
}
return err;
}
Note

You do not need to forward the gxPr i nt i ngEvent message. u

In Listing 2-4, if the event is not a filter event, MyDoEvent is called because the event is
probably an update event. The MyDoEvent function is the general-purpose,
application-specific function that handles all events and is typically called after each

Wi t Next Event . The MyDoEvent function is called from this override to dispatch
redrawing of the document’s window in response to an update event.

Using Core Printing Features 2-19

2-20

CHAPTER 2

Core Printing Features

Printing Documents Using QuickDraw GX

There are two approaches you can take to printing a document depending on how you
store data. You can either print each page as a single picture shape or print each page by
allowing QuickDraw GX to capture multiple shapes. In the later case, you specify when
to start and stop capturing shapes that appear on the page.

If your application stores each page as a single picture shape, you should use the
GXPri nt Page function to print each page in a document. In the GXPr i nt Page
function, you need to provide QuickDraw GX with the picture shape for each page. A
picture shape is a container for other shapes—including other picture shapes, allowing
you to create hierarchies of shapes. Picture shapes are discussed in Inside Macintosh:
QuickDraw GX Graphics.

You may also choose to use the GXSt ar t Page, GXDr awShape, and GXFi ni shPage
functions to draw and print data. You should use these functions if your application
does not store each page as a single picture shape. QuickDraw GX allows you to print in
a way similar to how you draw to the screen except that QuickDraw GX captures shapes
to send to a print file, such as a spool file or a portable digital document, instead of to a
monitor. The GXDr awShape function is described in Inside Macintosh: QuickDraw GX
Objects.

IMPORTANT

Some QuickDraw GX functions begin with the word St art or Fi ni sh.
You must call the corresponding “finish” call only if the “start” call
succeeds. For example, after you call the GXSt ar t Page function, you
should immediately check for errors. You should call the

GXFi ni shPage function only if GXSt ar t Page did not return an

error. s

Regardless of whether you print pages as single picture shapes or print pages by
capturing shapes, the basic flow of control is as follows:

n After the user requests printing, you call the GXGet JobPageRange function to obtain
the user-specified page range.

n You use the GXSt ar t Job function to begin printing a document with parameters that
specify the job object and the name of the user’s document. You may also specify the
total number of pages the user chose to print or pass 0 if the page count is unknown.
In response to the GXSt ar t Job call, QuickDraw GX displays the Status dialog box,
which contains the current page number and the total page count, if it is not 0.

n After you finish printing, by either method, you call the GXFi ni shJob function to tell
QuickDraw GX that the document is ready to be queued for printing in the
background. Note that you should only call the GXFi ni shJob function if the
GXSt ar t Job function doesn’t return an error.

Using Core Printing Features

CHAPTER 2

Core Printing Features

Printing Pages as Single Picture Shapes

This section describes how to use the GXPr i nt Page function to print a user’s document.
To use this function, you specify the page to print in the pageNunber parameter.
QuickDraw GX compares the specified page number with the page range chosen by the
user and spools the page if it is within the page range. If it is not within range, the page
is ignored.

You should loop through each page of a document, calling the GXPr i nt Page function
for each page’s picture shape. You should check for errors after you print each page and
exit the loop if an error arises.

Listing 2-5 gives an example of how to use the GXPr i nt Page function to print a
document. In the example, only the default format is used to format each page. To obtain
this format, you call the GXGet JobFor mat function with an index of 1.

Listing 2-5 Using the GXPr i nt Page function to print a document

OSErr MyPri nt Docunent 2(MyDocument Pt r myDocunent)

{
OCSErr err;

long firstPage, |astPage, nunPages, pg;

/* Determ ne which pages the user selected to print. */
GXGet JobPageRange(myDocunent - >documnent Job,
&f i r st Page, & ast Page) ;
i f (lastPage > nyDocunent - >nunPages)
| ast Page = nyDocunent - >nunPages;

/*
Cal cul ate the total number of pages to print. |If there are
no errors, begin printing.
*/
nunPages = | astPage - firstPage + 1;
err = GXCGet JobError (nmyDocunent - >docunent Job) ;
if (err == noErr)
{
GXSt ar t Job(myDocunent - >docurrent Job,
myDocunent - >docunent Ti t| e, nunPages) ;
err = GXCGet JobError (nmyDocunent - >docunent Job) ;

Using Core Printing Features 2-21

2-22

CHAPTER 2

Core Printing Features

/*
Loop through each page. Call the GXPrintPage function for
each page's picture shape. 1In this exanple, we use the
job's default format to print each page.

*/

if (err == noErr)

for (pg = firstPage; (err == noErr) && (pg <= | ast Page);
pPg++)

GXPri nt Page(nyDocunent - >docunent Job, pg,
GXGet JobFor mat (nyDocunent - >docunent Job, 1),
myDocurent - >docunent Page[pg -1]);

err = GXCGet JobError (myDocunent - >docunent Job) ;

/* Finish printing. */
if (err == noErr)

{
GXFi ni shJob(nyDocunent - >docunent Job) ;

err = GXGet JobError (myDocunent - >docunent Job) ;

}

return err;

Printing Pages by Capturing Shapes

This section describes how to use the GXSt ar t Page, GXDr awShape, and

GXFi ni shPage functions to print pages in your application’s documents. You use the
GXSt ar t Page function to tell QuickDraw GX to capture shapes that you draw using the
GXDr awshape function. You call GXFi ni shPage when you are finished creating the
page of output.

In the GXSt ar t Page function, you set the page to print in the pageNunber parameter.
QuickDraw GX compares the specified page number with the page range chosen by the
user and spools the page if it is within the page range. If it is not within range, the page

is ignored.

Using Core Printing Features

CHAPTER 2

Core Printing Features

In the GXSt ar t Page function, you also specify avi ewPor t Li st parameter, which is
the list of view ports to use to capture shapes. The part of the shape that can be drawn
through the view port is spooled. In the numvi ewPor t s parameter, you specify the
number of view ports to use (as specified in the vi ewPor t Li st parameter). QuickDraw
GX drawing functions and view port objects are described in Inside Macintosh:
QuickDraw GX Objects.

Note

QuickDraw GX does not use the information in a view port, such as its
mapping or clipping properties. It uses a view port only to capture the
shape information, such as the geometry and color, as shapes are drawn.
For example, you can print as you draw by specifying view ports in the
onscreen view group in the call to GXSt ar t Page, or you can draw to
offscreen view ports to capture shapes without displaying them. In
either case, only the information about the shape is spooled. u

Listing 2-6 gives an example of how to print a document using the GXSt ar t Page,
GXDr awshape, and GXFi ni shPage functions.

Listing 2-6 Using the GXSt ar t Page, GXDr awshape, and GXFi ni shPage functions to print a

document

OSErr MyPri nt Docunent 2(MyDocument Pt r myDocunent)
{

OSErr err;

| ong firstPage, |astPage, nunPages, pg;

/* Determ ne which pages the user selected to print. */
GXGet JobPageRange(myDocunent - >documnent Job, &fir st Page,
&l ast Page) ;
i f (lastPage > nyDocunent - >nunPages)
| ast Page = nyDocunent - >nunPages;

/* Calculate the total nunber of pages to print.*/
nunPages = | astPage - firstPage + 1;
err = GXCGet JobError (myDocunent - >docunent Job) ;

/[* Begin printing if there are no errors. */
if (err == noErr)
{
GXSt ar t Job(nyDocunent - >docunent Job,
myDocunent - >docunent Ti t | e, nunPages) ;

Using Core Printing Features 2-23

2-24

CHAPTER 2

Core Printing Features

}

/*

*/

For each page, call the GXStartPage function, draw the
page, and then call the GXFinishPage function. In this
exanple, the default format and the docunent's view
port are used, drawing only a single shape on each page.

for (pg = firstPage; (err == noErr) && (pg <= | astPage);

/*

pg++)

[* Start the page. */

GXSt ar t Page(nyDocunent - >docunent Job, pg,
GXGet JobFor mat (nyDocument - >docunent Job, 1),
1, &myDocunent - >docunent Vi ewPort);

err = GXGet JobError (myDocunent - >docunent Job) ;

[* If there are no errors, draw the data for the page. */

if (err == noErr)

{
GXDr awsShape(myDocunent - >docunent Page[pg -1]);
err = (OSErr) GXGet GraphicsError(nil);

}

if (err == noErr)

GXFi ni shPage(myDocunent - >docunent Job) ;

Finish printing. */

GXFi ni shJob(myDocunent - >docunent Job) ;
err = GXCGet JobError (myDocunent - >docunent Job) ;

return err;

Saving a Job Object With a Document File

There are two approaches you can take to saving a job object with its corresponding
document. Either you can create a handle in which to store the job object and then flatten
the job object into this handle, or you can specify a pointer to a flattening function to
flatten the job object and save its data to disk.

When the user chooses the Save or Save As menu command from the File menu, you
should save the document and its corresponding job object to disk. To save a job object,
you flatten it. To retrieve a job object, you unflatten it. For an introduction to flattening
and unflattening QuickDraw GX print objects, see the chapter “Introduction to Printing
With QuickDraw GX” in this book.

Using Core Printing Features

CHAPTER 2

Core Printing Features

When a user saves a document, you may prefer to save a job object in a single handle
using the GXFI at t enJobToHdl function. You may also choose to use the

GXFI at t enJob function to save a job object. You specify a pointer to a flattening
function in this function because it requires less memory to save portions of job object
data to disk than it does to save the data in a single handle.

Saving a Job Object in a Single Handle

This section describes how to use the GXFI at t enJobToHd| function to save a job object
and its related data.

You should create a handle in which to store the job object and then flatten the job object
into this handle. You specify a handle in the aHandl e parameter to the

GXFl at t enJobToHdl function. QuickDraw GX grows or shrinks the size of the handle
you provide to accommodate the size of the job object. You then save the contents of the
handle, typically in the document’s resource fork.

Listing 2-7 shows how to save a job object in a document using the
GXFl at t enJobToHdl function.

Listing 2-7 Using the GXFl at t enJobToHdl function to save a job object

OSErr MySaveDocunent (MyDocurnent Pt r nyDocunent)

{
OSEr r err;
Handl e t heJobDat a, ol dJobDat a;
short dat aRef Num = -1;
short ol dResFil e, resRef Num = -1,
FSSpec *docFSSpec;
/*

Create a handle in which to store the job object and then
flatten the job object into this handle.

*/

ol dResFile = CurResFile();

t heJobDat a = NewHandl e(0);

err = MenkError();

if (err == noErr)

{
GXFl at t enJobToHdI (myDocunent - >docurent Job, theJobDat a);
err = GXCGet JobError (myDocunent - >docunent Job) ;

if (err == noErr)

{

Using Core Printing Features 2-25

2-26

CHAPTER 2

Core Printing Features

/* Open the file's data fork and resource fork. */
docFSSpec = &myDocunent - >docunent FSSpec;
err = FSpOpenDF(docFSSpec, fsRdW Perm &dataRef Nunj;

if (err == noErr)
{
resRef Num = HOpenResFi | e(docFSSpec- >vRef Num
docFSSpec- >par | D,
docFSSpec- >nane, fsRAW Perm;
err = ResError();
}
/* Delete any existing job object resources. */
if (err == noErr)
{
UseResFi | e(resRef Nun ;
ol dJobDat a = Get 1Resour ce(kMyJobType, kMyJobl D);
if (oldJobData != nil)
{
RmveResour ce(ol dJobDat a) ;
Updat eResFi | e(resRef Num ;
Di sposHandl e(ol dJobDat a) ;
}
/* Add the new job object resource. */
AddResour ce(t heJobbDat a, kMyJobType, kMyJobl D, "\p");
err = ResError();
if (err == noErr)
{
Wit eResource(theJobData);
Updat eResFi | e(resRef Num ;
Rel easeResour ce(t heJobDat a) ;
}
/*
Wite the data for a docunent’s pages to the data
fork. Place your application-specific code here to
save page data associated with the docunent.
*/
}

Using Core Printing Features

CHAPTER 2

Core Printing Features

/* Close the data and resource forks of this docunment. */
if (dataRef Num!= -1) FSC ose(dataRef Nunj ;
if (resRefNum != -1) d oseResFil e(resRef Nun;
}
el se
Di sposHandl e(t heJobDat a) ;
}
UseResFi | e(ol dResFil e);
return err;

Saving a Job Object Using a Flattening Function

This section describes how to use the GXFI at t enJob function to save a job object. You
specify a pointer to a flattening function in the aPri nt i ngFl at t enPr oc parameter of
this function.

An example of a flattening function named MyFl at t enFunct i on that you could write
is as follows:

CSErr MyFl attenJobFunc(l ong dat aSi ze, void *data,
voi d *dat aRef Num

|l ong count = dataSi ze;
return FSWite((short) dataRefNum &count, data);

}

QuickDraw GX calls your flattening function multiple times as it saves job object data to
disk. The dat aSi ze parameter specifies the number of bytes for this segment of the job
object data. The dat a parameter specifies a pointer to the segments of job object data to
write out. The dat aRef Numparameter specifies the file reference number of the open
file to which you want to write.

Using Core Printing Features 2-27

CHAPTER 2

Core Printing Features

Listing 2-8 shows how to save a job object using the GXFI at t enJob function.

Listing 2-8 Using the GXFl at t enJob function to save a job object

CSErr MySaveJobl nDat aFor k(MyDocunent Pt r myDocunent ,
short dat aRef Num

CSErr err;

/*
Reset the file's position to the beginning of the data fork
and wite the flattened job object there.
*/
err = Set FPos(dat aRef Num fsFrontStart, 0);
if (err == noErr)
{
GXFl at t enJob(myDocunent - >docunent Job,
(gxPrintingFl attenProc) M/Fl attenJobFunc,
dat aRef Nunj ;
err = GXCGet JobError (myDocunent - >docunent Job) ;
}

return err;

Disposing of a Job Object When Closing a Document

When the user chooses the Close menu command from the File menu to close a
document, you need to dispose of its job object. You should not dispose of a job object
while its document is open.

For each page in a document, you should dispose of the page’s shape. You can then call
the GXDi sposeJob function to dispose of a document’s job object and associated format
objects. Listing 2-9 shows how to dispose of a job object when a user closes a document.

2-28 Using Core Printing Features

CHAPTER 2

Core Printing Features

Listing 2-9 Disposing of a job object when you close a document

CSErr Myd oseDocunent (MyDocunent Pt r nyDocunent)
{
CSErr err = noErr, jobErr;

I ong pg;

/* Di spose of each page's shape */
for (pg = 1; pg <= nyDocunent - >nunPages; pg++)
GXDi sposeShape(nyDocunent - >docunent Page[pg- 1]) ;

/* Di spose of the docunment's correspondi ng job object. */
err = GXDi sposeJob(nyDocunent - >docunent Job) ;

/*
Pl ace any application-specific code here to close a
docunent .

*/

D sposeW ndow(myDocurent - >docunment W ndow) ;
return err;

}

Note

The GXDi sposeJob function returns an error because errors are
job-oriented. You cannot query a job object for errors once you have
disposed of it. u

Retrieving a Job Object When Opening a Document

When the user chooses the Open menu command from the File menu to open a
document, you need to retrieve its job object. To retrieve a job object, you unflatten it
using one of the QuickDraw GX unflattening functions. For an introduction to flattening
and unflattening QuickDraw GX print objects, see the chapter “Introduction to Printing
With QuickDraw GX” in this book.

There are two methods to retrieving a job object depending on how you have previously
saved it. If you saved the job object using the GXFI at t enJobToHdl function, you
should retrieve it using the GXUnf | at t enJobFr onHdl function. If you saved the job
object using the GXFI at t enJob function, you should retrieve it using the

GXUnf | at t enJob function. For details on the GXFI at t enJobToHdl and

GXFl at t enJob functions, see “Saving a Job Object With a Document File,” which
begins on page 2-24.

Using Core Printing Features 2-29

CHAPTER 2

Core Printing Features

Retrieving a Job Object From a Handle

This section describes how to use the GXUnf | at t enJobFr onHd|l function to retrieve a
job object and its related data.

When a user chooses the Open menu command from the File menu, you should open
the document and retrieve its previously saved job object. To do so, you open the
document’s data fork and resource fork. The MyOpenDocunent function in Listing 2-10
accomplishes this.

If there are no errors, you should specify the document’s file system specification
information, its title, and its window’s title. If there is a job object resource saved in the
resource file, you should load it and unflatten it using the GXUnf | at t enJobFr orHdI
function.

After the job object is unflattened, you can load the data for the document’s pages.
Finally, you should close the document’s data fork and resource fork. Listing 2-10 shows
how to open a document and retrieve its job object using the

GXUnf | at t enJobFr onHdl function.

Listing 2-10 Using the GXUnf | at t enJobFr omHdl function to retrieve a job object

CSErr MyQpenDocunent (MyDocunent Pt r nyDocunent)

{
CSErr err;
Handl e t heJobDat a;
short ol dResFi | g;
short dataRef Num = -1, resRefNum = -1;
St andar dFi | eRepl y sf Repl y;
SFTypelLi st myTypelLi st ;

/* Let the user select a docunent to open. */
ol dResFile = CurResFile();

myTypelLi st[0] = kMyDocType;
StandardGetFile(nil, 1, &myTypelList, &sfReply);
if (!sfReply.sfGood)

return nokErr;

/* Open the selected file's data fork and resource fork. */
err = FSpOpenDF(&sf Reply.sfFile, fsRIWPerm &dataRefNun);
if (err == noErr)
{
resRef Num = HOpenResFi | e(sf Reply. sfFile.vRef Num
sf Reply. sfFile.parlD,
sf Reply. sfFil e. nane, fsRdPernj;

2-30 Using Core Printing Features

CHAPTER 2

Core Printing Features

err = ResError();

}

if (err) return err;

/*
If no error, set the docunent's file system specification
information, its title, and its window s title.

*/

Bl ockMove(&sf Reply. sfFile, &myDocunent->docunent FSSpec,
si zeof (FSSpec)) ;
Bl ockMove(&sf Repl y. sf Fil e. nane, nyDocunent - >docunentTi tl e,
(long) sfReply.sfFile.nane[0] +1);
Set Wi t | e(nyDocument - >docunent W ndow,
myDocunent - >docunent Titl e);

/*
If there's a job object resource saved,
| oad and unflatten it.
*/
UseResFi | e(resRef Nunj ;
t heJobDat a = Get 1Resour ce(kMyJobType, kMyJobl D);
if (theJobData != nil)
{
GXUnf | at t enJobFr onHdl (nyDocunent - >docunent Job, theJobDat a);
err = GXCGet JobError (myDocunent - >docunent Job) ;
Rel easeResour ce(t heJobDat a) ;

/*
Pl ace your application-specific code here to | oad
other data associated with the docunent’s pages.
*/

/* Cose the data fork and resource fork of this docunent. */
if (dataRefNum!= -1) FSC ose(dataRef Nunj;

if (resRefNum != -1) d oseResFil e(resRef Nunj;

UseResFi | e(ol dResFil e);

return err;

Using Core Printing Features 2-31

CHAPTER 2

Core Printing Features

Retrieving a Job Object Using an Unflattening Function

This section describes how to use the GXUnf | at t enJob function to retrieve a job object.
You specify a pointer to an unflattening function in the aPri nti ngFl at t enPr oc
parameter of the GXUnf | at t enJob function.

An example of an unflattening function named MyUnf | at t enFunct i on that you could
write is as follows:

CSErr MyUnfl attenJobFunc(l ong dataSi ze, void *data,
voi d *dat aRef Num

|l ong count = dataSi ze;
return FSRead((short) dataRef Num &count, data);

}

QuickDraw GX calls your unflattening function multiple times as it retrieves job
object-related data from disk. The dat aSi ze parameter specifies the number of bytes for
this segment of the job object data. The dat a parameter specifies a pointer to the
segments of job object data to read. The dat aRef Numparameter specifies the file
reference number of the open file from which you want to read.

Listing 2-11 shows how to retrieve a job object using the GXUnf | at t enJob function.

Listing 2-11 Using the GXUnf | at t enJob function to retrieve a job object

CSErr MyLoadJobFr onDat aFor k(MyDocunent Pt r myDocunent ,
short dat aRef Num

{
OSErr err;
/*
Reset the file's position to the beginning of the data fork,
read and then unflatten the job object fromthere.
*/
err = Set FPos(dat aRef Num fsFrontStart, 0);
if (err == noErr)
{
GXUnf | at t enJob(nyDocunent - >docunent Job,
(gxPrintingFl attenProc) MyUnfl attenJobFunc,
(void *) dataRef Num;
err = GXCGet JobError (myDocunent - >docunent Job) ;
}
return err;
}

2-32 Using Core Printing Features

CHAPTER 2

Core Printing Features

Obtaining Object References

A job object can reference several format objects. Once you know which format object
you want, you can access its properties. QuickDraw GX provides the GXGet For mat Job
function to determine which job object is associated with a particular format object. Even
if you know the format’s job, you may still want to examine all references to the job’s
format objects. You can obtain these references with the GXGet JobFor mat function.

Listing 2-12 shows an example that uses the GXGet For nat Job function to obtain the job
object that references a format object and then loops through all the job’s format objects
using the GXGet JobFor mat function. The example’s function, My Get For nat | ndex,
returns the format’s position, or index value, of the specified format object in the job’s
list of format objects.

Listing 2-12 Using the GXGet For mat Job function to obtain a job object

| ong MyGet For mat | ndex(gxFor mat myFor nat)

{
gxJob f or mat sJob;
| ong i dx, nunfornmats;
/*
otain the job object and count of the nunber of fornat objects
it references.
*/
format sJob = GXGet For mat Job(myFor mat) ;
nuntormat s = GXCount JobFor mat s(f or mat sJob) ;
/*
Conpare each of the references to | ocate the specified fornmat
object and return the current format object index.
*/
for (idx = 1; idx <= nunfFormats; ++idx)
i f (nyFormat == GXGet JobFor mat (format sJob, idx))
return idx;
}

Obtaining Information From a Format Object

This section provides an example of how to obtain information from a format object.
QuickDraw GX provides functions that allow you to get, and in some cases set, the
values of printing-related object properties.

This example uses the GXGet For mat Di mensi ons function, which returns the
dimensions property of a format object. The dimensions property includes the
physical dimensions of the paper (the paper size) and the printable area within these

Using Core Printing Features 2-33

CHAPTER 2

Core Printing Features

dimensions (the page size) after scaling and orientation have been applied. For a

discussion of how the dimensions can be scaled or otherwise changed, see the chapter

“Page Formatting and Dialog Box Customization” in this book.

Listing 2-13 shows how to use the GXCGet For mat Di mensi ons function to obtain a

format object’s dimensions property.

Listing 2-13 Using the GXGet For nat D nensi ons function

2-34

OSErr MyGet For mat Di mensi ons(MyDocument Pt r myDocunent ,
gxRect angl e *pageBounds,
gxRect angl e *paper Bounds)

| ong cur Page;
gxFor mat pgFor mat ;

/*
Get the format object for the current page. If it is nil,
the default format.
*/
cur Page = nyDocunent - >cur Page;
pgFor mat = nyDocunent - >pageFor mat [cur Page - 1] ;
if (pgFormat == nil)
pgFor mat = GXGet JobFor mat (myDocunent - >docunent Job, 1);

/* Get the bounds of the format object.*/
GXGet For mat Di mensi ons(pgFor mat, pageBounds, paper Bounds);

return GXGet JobError (myDocunent - >docunent Job) ;
}

Note

The GXCGet For mat Di nensi ons function returns both the page size and
the paper size of a particular document. Most applications are generally
interested in only the page size, so QuickDraw GX allows you to pass

ni | for the pointer to the paper size. u

Using Core Printing Features

use

CHAPTER 2

Core Printing Features

Displaying QuickDraw GX Print Dialog Boxes

You call functions to display most QuickDraw GX print dialog boxes.You use the
GXJobDef aul t For mat Di al og function to display the Page Setup dialog box, and you
use the GXJobPri nt Di al og function to display the Print dialog box. You use the
GXFor mat Di al og function to display the Custom Page Setup dialog box, which is
discussed in the chapter “Page Formatting and Dialog Box Customization” in this book.

Displaying the Page Setup Dialog Box

When the user chooses the Page Setup menu command from the File menu, you call the
GXJobDef aul t For mat Di al og function to display the Page Setup dialog box. In this
dialog box, the user can specify formatting information for the default format. For
example, the user can specify the paper type, orientation, and scaling.

QuickDraw GX stores a user’s responses to some dialog items in the Page Setup dialog
box in a format collection. QuickDraw GX stores default items, such as these, for you
automatically. The format collection is discussed in the chapter “Page Formatting and
Dialog Box Customization” in this book.

Figure 2-5 shows the Page Setup dialog box the user sees when you call the
GXJobDef aul t For mat Di al og function.

Figure 2-5 The Page Setup dialog box

Paye Selup

Faper Type: U5 Letter TI

Orieniation: . T@ I
Scale: 100 | &

(oncer) (orma)

If the user chooses More Choices in the Page Setup dialog box, QuickDraw GX expands
the dialog box. Figure 2-6 shows the expanded Page Setup dialog box. The expanded
dialog box in this figure only contains one panel, the General panel. A printer driver,
printing extension, or application can customize the dialog box to add additional panels.
For more information about adding panels, see the chapter “Page Formatting and Dialog
Box Customization” in this book.

Using Core Printing Features 2-35

CHAPTER 2

Core Printing Features

Figure 2-6 The expanded Page Setup dialog box

Poye 5elup

|

Paper 19|.|u:| Us Leller vI

L Orientation: . I@ ‘I%

Scale: %

Format Tor: | Any Printer i

Friner Chnirps ranrel l Fnrmat I

=l

Listing 2-14 shows the MyFor mat Di al og function, which calls the

GXJobDef aul t For mat Di al og function to display the Page Setup dialog box. The Edit
menu structure, gxEdi t MenuRecor d, is set up before the dialog box is displayed. For
information about the Edit menu structure, see “Edit Menu Structure” beginning on
page 2-9. If the user chooses the Format button and there are no errors, document
formatting can proceed.

Listing 2-14 Displaying the Page Setup dialog box

#defi ne nEdit 128

#define kUndo
#def i ne kCut
#def i ne kCopy
#defi ne kPaste
#defi ne kd ear

o U1~ Wk

OSErr MyFor mat Di al og(MyDocunent Pt r nmyDocunent)

{
OSEr r err;
gxDi al ogResul t result;
gxEdi t MenuRecord edit MenuRec;
[* Fill in the location of your application’s Edit menu items. */
edi t MenuRec. editMenul D = nEdit;
edi t MenuRec. cut I tem = kCut;
edi t MenuRec. copyl tem = kCopy;
edi t MenuRec. pasteltem = kPast e;

2-36 Using Core Printing Features

CHAPTER 2

Core Printing Features

/*

/*

*/

edi t MenuRec. cl earl tem
edi t MenuRec. undol t em

kd ear;
kUndo;

Di spl ay the Page Setup dial og box. */

result = GXJobDef aul t For mat Di al og(myDocunent - >docunent Job,
&edi t MenuRec) ;

err = GXCGet JobError (myDocunent - >docunent Job) ;

If the user chooses the Format button and there are no
errors, performdocunent formatting.

if ((err == noErr) && (result == gxOKSel ect ed))

{
/*

Pl ace your application-specific code here if you need

to repagi nate the docunent.
*/

return err;

Displaying the Print Dialog Box

When the user chooses the Print menu command from the File menu, you call the
GXJobPri nt Di al og function to display the Print dialog box. In this dialog box, the
user can specify information related to actual printing of the document. For example, in
the panels of the Print dialog box the user can specify the printer, print quality, number
of copies to print, page range, automatic or manual paper feed, and whether a document
should be sent to a printer or a file.

QuickDraw GX stores a user’s responses to some dialog items in the Print dialog box in a
job collection. The job collection is discussed in the chapter “Page Formatting and
Dialog Box Customization” in this book.

Using Core Printing Features

2-37

CHAPTER 2

Core Printing Features

Figure 2-7 shows the Print dialog box the user sees when you call the
GXJobPri nt Di al og function.

Figure 2-7 The Print dialog box

Prinl

Print 1o: | Laserllriter GH Tl

Pages: @ All
3 Frum:| | To: | |

rnnies: |:|
[Cancer] (Cprnt)

If the user chooses More Choices in the Print dialog box, QuickDraw GX expands the
dialog box. Figure 2-8 shows the expanded Print dialog box. The expanded dialog box
includes the standard panels (General, Print Time, and Paper Match), and any panels
added by the application, printing extensions, or a printer driver.

Figure 2-8 The expanded Print dialog box

Prinl

Frinl luw; | Laserlhriler GH vI

Pagcs: & Al
1 From: | | Tu: |

Copics: D [Collate Copics

Paper Fepd: (@ Antnmatir
3 Manual

Destination: Quality:
Friner Chnicps ranrel I Print l

©

Frinl Tine

Listing 2-15 shows the MyPr i nt Di al og function, which calls the GXJobPri nt Di al og
function to display the Print dialog box. The Edit menu structure, gxEdi t MenuRecor d,
is set up before the dialog box is displayed. For information about the Edit menu
structure, see “Edit Menu Structure” beginning on page 2-9. If the user chooses the Print
button and there are no errors, printing can proceed.

2-38 Using Core Printing Features

CHAPTER 2

Core Printing Features

Listing 2-15 Displaying the Print dialog box

OCSErr MyPrint Di al og(MyDocunent Pt r myDocunent)

{
OSEr r err;
gxDi al ogResul t result;
gxEdi t MenuRecord edit MenuRec;

[* Fill in the location of your application's Edit nmenu itenms. */
edi t MenuRec. edit Menul D = nEdit;
edi t MenuRec. cut I tem = kCut;
edi t MenuRec. copyl tem = kCopy;
edi t MenuRec. pasteltem = kPaste;
edi t MenuRec. clearltem = kd ear
edi t MenuRec. undol t em = kUndo;

/* Display the Print dialog box. */
result = GXJobPrint Di al og(myDocunent - >docunent Job,
&edi t MenuRec) ;
err = GXCGet JobError (myDocunent - >docunent Job) ;

/*
If the user chooses the Print button and there are no errors,
call your printing function to print the pages.

*/
if ((err == noErr) && (result == gxOKSel ect ed))
err = MyPrint Docunent (nyDocunent) ;
return err;
}

Supporting Printing From the Finder

A user can print from the Finder in two ways. A user can select a document and then
choose the Print menu command from the File menu, or the user can drag a document to
a desktop printer icon. To support printing from the Finder, your application must
respond to the Print Documents (' pdoc') Apple event. Apple events provide your
application with a standard mechanism for communicating with other applications.

To handle the Print Documents event, your application should print the documents
specified in the Apple event. You can determine whether a document was dragged to a
desktop printer icon by checking the keyOpt i onal Keywor dAt t r attribute of the Print
Documents Apple event. Your application extracts this information and then prints the
specified documents. Your application should not open any windows for the documents.

Using Core Printing Features 2-39

CHAPTER 2

Core Printing Features

The Print Documents Apple event is discussed in the Apple events chapter of Inside
Macintosh: Interapplication Communication.

Your application is responsible for determining the output printer on which to print the
document. When a user drags a document to a desktop printer icon, your application
must call the GXSel ect JobQut put Pri nt er function to specify the output printer on
which to print the selected document. This call is necessary because the document may
have been printed previously and that job information may have been saved with the
document. The GXSel ect JobQut put Pri nt er function allows you to reselect the
printer.

Listing 2-16 shows how to respond to the Print Documents Apple event and specify an
output printer.

Listing 2-16 Responding to the Print Documents Apple event and specifying an output printer

2-40

pascal OSErr MyHandl ePDOC(Appl eEvent *t heAppl eEvent,
Appl eEvent *reply, |ong nmyRef Con)

{
CSEr r err;
AEDesclLi st doclLi st, dtpList;
FSSpec nmyFSS, dt pFSS;
| ong itemslnList, i;
AEKeywor d t heKeywor d;
DescType t ypeCode;
Bool ean draggedToDTP = fal se;
Si ze actual Si ze;

MyDocunment Rec myDocunent ;

/* Get the docunent list. */
err = AEGet ParanmDesc(t heAppl eEvent, keyDirect Object,
typeAELi st, &doclList);
if (err) return err;

/*
Check to see if the user dragged the docunent to a desktop
printer.
*/
err = AECet ParanmDesc(t heAppl eEvent, keyOpti onal Keywor dAttr,
typeAELi st, &dtpList);
if (err == noErr) draggedToDTP = true;

Using Core Printing Features

CHAPTER 2

Core Printing Features

/*

*/

/*

*/

Make sure you’'ve accounted for all of the paraneters passed
and count the nunber of docunments specified.

err = MyCheckAEPar ans(t heAppl eEvent);

if (err) return err;

err = AECount|temnms(&doclList, & tenslnList);
if (err) return err;

If the user dragged the docunent to a desktop printer, get the
nane of the desktop printer and throw away its description
list.

i f (draggedToDTP)

{
err = AEGet Nt hPtr(&dt pList, 1, typeFSS, &t heKeyword,
& ypeCode, (Ptr) &dtpFSS,
si zeof (FSSpec), &actual Size);
AEDI sposeDesc(&dt pLi st);
}
/*
For each entry in the docunent list, load it, print it, and
close it.
*/
for (i = 1; i<=itenslnList, err == noErr; i++)
{
err = AEGet Nt hPtr(&docList, i, typeFSS, &t heKeyword,
& ypeCode, (Ptr) &nyFSS, sizeof (FSSpec),
&act ual Si ze);
if (err == noErr)
{

/* Load the docunent. */

err = MyNewDocunent ("\p", &nmyDocunent);

if (err == noErr)

{
err = MyFSOpenDocunent (&ryDocunent, &myFSS);
if (err == noErr)

Using Core Printing Features 2-41

2-42

CHAPTER 2

Core Printing Features

/*
If the user dragged the docurment to a desktop
printer, select this printer as the output printer
for each job object.

*/
{
i f (draggedToDTP)
GXSel ect JobQut put Pri nt er (nyDocunent . docurnent Job,
dt pFSS. nane) ;
err = MyPrint Docunent (&ryDocunent) ;
}

/* C ose the document once it's printed. */
Myd oseDocunent (&ryDocunent) ;

/* \When you' re done, throw away the docunent list. */
AEDi sposeDesc(&doclLi st);
return err;

Updating Job Object Information

When you receive a resume event, you should use the GXUpdat eJob function to update
the job object because the printing environment may have changed while the user was
switched out of your application. For example, the user may have changed the desktop
printer’s settings, such as paper-tray information, while using another application.

Listing 2-17 shows an example of how to update the job object for a document. The
GXUpdat eJob function is called from the MyDoEvent function in response to a resume
event.

Using Core Printing Features

CHAPTER 2

Core Printing Features

Listing 2-17 Updating a job when receiving resume events

OSErr MyDoEvent (Event Record *event)
{
OSEr r err = nokrr;
W ndowPt r cur W ndow,
MyDocunent Ptr wi ndowDoc;

switch (event->what)
{
/*
Application-specific code to handl e nouse-down events,
update events, and so on.
*/
case O0sEvt:
switch ((event->nessage >> 24) & O0xOFF)

{

case suspendResuneMessage:
Set Cur sor (&qgd. arr ow) ;

/* On a suspend event, coerce the scrap. */

if ((event->nessage & resumeFlag) == 0)
{
ZeroScrap();
TEToScr ap() ;
}
el se
{

/*
On a resune event, call GXUpdateJdob on all of the docunents'
job objects. The user nmay have just changed sonet hi ng which
affects the job objects, such as the size of the paper in the
printer.

Using Core Printing Features 2-43

CHAPTER 2

Core Printing Features

Si nce your application stores the docunent pointers in the
ref erence constant fields of the docunents' w ndows, | oop
t hrough each wi ndow, extract the docunent pointers, and update
the associ ated job objects.
*/
if (event->nessage & convertd i pboardFl ag)
TEFr onscr ap() ;
cur Wndow = Front Wndow() ;
while (curWndow !'= nil)
{
if (((WndowPeek) curW ndow)->wi ndowKi nd ==
user Ki nd)

wi ndowboc = (MyDocunent Ptr)
Get WRef Con(cur W ndow) ;
GXUpdat eJob(w ndowDoc- >docunent Job) ;
}
cur Wndow = (WndowPtr) ((W ndowPeek)
cur W ndow) - >next W ndow;,

br eak;

}

br eak;

/*
Application-specific code to handl e high-1level events.
*/
}

return err;

Printing Macintosh Printing Manager Documents

Documents printed with applications that use the Macintosh Printing Manager can be
printed on a system with QuickDraw GX installed without the application being aware
that QuickDraw GX is installed. Printing in this way, however, does not allow the
application to take advantage of QuickDraw GX printing features, such as additional
options provided in QuickDraw GX print dialog boxes, formatting, customization, and
so on.

2-44 Using Core Printing Features

CHAPTER 2

Core Printing Features

You can modify an existing application to allow it to print a document designed for
printing with the Macintosh Printing Manager by determining whether QuickDraw GX
is installed and, if it is, performing these steps:

1. Convert the print record associated with a Macintosh Printing Manager document
into a job object.

2. Install the QuickDraw GX Translator to convert the results of QuickDraw functions
into special QuickDraw GX shape objects that are used to spool QuickDraw output.

3. Execute your print loop. See the section “Printing Documents Using QuickDraw GX”
beginning on page 2-20 for an example.

4, Remove the QuickDraw GX Translator.

To convert the print record associated with a Macintosh Printing Manager document into
a job object, use the GXConvert Pri nt Recor d function. Listing 2-18 shows how to use
the GXConvert Pri nt Recor d function.

Listing 2-18 Converting a print record into a job object

OSErr MyPri nt RecordToJob(MyDocunent Pt r myDocunent, THPrint hPrint)
{

/*
Convert the print record and store its settings in
the specified job object. Dispose of its handle.

*/
GXConvert Print Recor d(myDocurnent - >docunent Job, hPrint);
D sposHandl e((Handl e) hPrint);
return GXGet JobError (myDocunent - >docunent Job) ;

}

In addition to converting the print record, you must also translate QuickDraw data using
the QuickDraw GX Translator. You call the GXI nst al | QDTr ansl at or function to
install the translator, and you call the GXRenoveQDTr ansl at or function whenyouare
finished with the translation. The QuickDraw GX Translator and these functions are
described in the QuickDraw GX environment chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities.

After you call GXI nst al | QDTr ansl at or, you proceed to print using the normal print
loop; for example, by calling GXSt ar t Page to start a new page and GXFi ni shPage to
finish it. The results of any QuickDraw function is translated and the output is spooled.
When you are finished printing, call GXRenoveQDTr ansl at or to end translation.

Using Core Printing Features 2-45

CHAPTER 2

Core Printing Features

Core Printing Features Reference

This section describes the data types, constants, and functions that are specific to
QuickDraw GX core printing features.

The “Constants and Data Types” section shows the Gestalt selector enumeration for
QuickDraw GX printing features, the data types for QuickDraw GX printing-related
objects, the Edit menu structure, and the dialog box result enumeration.

The “Functions” section describes functions for initializing and terminating printing
features, handling errors, creating and managing job objects, printing using QuickDraw
GX, obtaining information on printing-related objects, displaying the Page Setup and
Print dialog boxes, and converting a print record into a job object.

The “Application-Defined Functions” section shows sample functions for flattening and
unflattening job objects.

Constants and Data Types

2-46

This section describes the data types and constants that you use to initialize QuickDraw
GX printing features, reference QuickDraw GX printing-related objects, and support
QuickDraw GX print dialog boxes.

You can use the Gestalt selector enumeration to test for the existence of QuickDraw GX
printing features.

The QuickDraw GX printing-related object structures are private. You can access print
objects through references.

You can use the Edit menu structure to specify the location of the Edit menu and its
menu items when displaying print dialog boxes.

You can use the dialog box result enumeration to store the user’s response to QuickDraw
GX print dialog boxes.

Core Printing Features Reference

CHAPTER 2

Core Printing Features

Gestalt Selectors for Printing

To test for the existence of QuickDraw GX printing features, use the Gest al t function.
The Gestalt selectors for the QuickDraw GX printing manager version and QuickDraw
GX are defined as follows:

#defi ne gestal t GXPri nti ngMgr Version ' pngr'
#def i ne gest al t GXVer si on ' qdgx'

The Gest al t function is discussed in Inside Macintosh: Operating System Utilities.

QuickDraw GX Printing-Related Objects

QuickDraw GX provides you with access to printing-related objects through references.
The contents of the structures are private.

You access a job object through a job object reference:

typedef struct gxPrivateJobRecord *gxJob;

You access printer objects through a printer object reference:

typedef struct gxPrivatePrinterRecord *gxPrinter;

You access a format object through a format object reference:

typedef struct gxPrivateFormatRecord *gxFormat;

You access a paper-type object through a paper-type object reference:
typedef struct gxPrivatePaper TypeRecord *gxPaper Type;
You access a print file object through a print file object reference:
typedef struct gxPrivatePrintFileRecord *gxPrintFile;

QuickDraw GX also provides the job, format, and paper-type collection objects. You
access collection objects through a collection object reference:

typedef struct PrivateCollectionRecord *Coll ection;

Core Printing Features Reference 2-47

CHAPTER 2

Core Printing Features

Edit Menu Location

When displaying QuickDraw GX print dialog boxes, your application needs to specify
the location of the Edit menu and its menu items. Your application specifies the location
of the Edit menu and its menu items in the Edit menu structure. The Edit menu structure
is defined as follows:

struct gxEditMenuRecord {
short edi t Menul D

short cutltem
short copyltem
short pasteltem
short clearltem
short undol t em

} oxEdi t MenuRecor d;

Field descriptions

edi t Menul D Your application’s resource ID for the Edit menu.
cutltem The position of the cut menu item under the Edit menu.
copyltem The position of the copy menu item under the Edit menu.
pasteltem The position of the paste menu item under the Edit menu.
clearltem The position of the clear menu item under the Edit menu.
undol t em The position of the undo menu item under the Edit menu.

Dialog Box Results

QuickDraw GX print dialog boxes support dialog box results. Results are defined in the
dialog box result enumeration.

enum {
gxCancel Sel ected
gxXOKSel ect ed
gxRevert Sel ect ed

(gxDi al ogResul t) 0,
(gxDi al ogResul t) 1,
(gxDi al ogResul t) 2

H

typedef |ong gxDi al ogResul t;

2-48 Core Printing Features Reference

CHAPTER 2

Core Printing Features

Constant descriptions

gxCancel Sel ected
Represents a cancelation of the dialog box without action being
taken, such as when the user chooses Cancel or presses Escape
while in a dialog box.

gxOKSel ect ed Represents a confirmation, such as when the user chooses Format in
the Page Setup dialog box.

gxRevert Sel ect ed
Represents a request to undo one or more actions, such as when the
user chooses Remove to remove a page format while in the Custom
Page Setup dialog box.

Functions

This section describes the functions for initializing and terminating printing features,
handling errors, creating and managing job objects, printing using QuickDraw GX,
obtaining information on print objects, displaying print dialog boxes, and converting a
print record into a job object.

Included with each function description is a list of specific result codes returned by
QuickDraw GX. In addition to these result codes, you may also receive file-system,
memory, and resource errors. For a complete listing of specific file-system, memory, and
resource errors, see Inside Macintosh: C Summary or Inside Macintosh: Pascal Summary.

You should note that not all possible result codes for a particular function are included in
function descriptions within this section. For example, the Message Manager, described
in Inside Macintosh: QuickDraw GX Environment and Utilities, allows QuickDraw GX
functions to send specific messages to your application. These messages can also
generate errors.

IMPORTANT
All printing functions in QuickDraw GX, with the exception of

the GXGet JobEr r or function, may move Macintosh memory. The
GXGet JobEr r or function, however, relies on data that may also move.
Therefore, your application should never call a QuickDraw GX
printing-related function at interrupt time. s

Core Printing Features Reference 2-49

CHAPTER 2

Core Printing Features

Initializing and Terminating QuickDraw GX Printing Features

After you call the GXEnt er Gr aphi cs function to initialize QuickDraw GX, you can call
the GXI ni t Pri nti ng function to initialize printing features within QuickDraw GX.

When you have successfully called the GXI ni t Pri nt i ng function and you need to
terminate printing features within QuickDraw GX, you must call the GXExi t Pri nti ng
function.

GXInitPrinting

You can use the GXI ni t Pri nti ng function to initialize printing features within
QuickDraw GX.

OSErr GXInitPrinting (void);

function result An error code of type OSEr r.

DESCRIPTION

Before you call the GXI ni t Pri nt i ng function, you must call the GXEnt er G aphi cs
function to initialize QuickDraw GX. You should also use the Gest al t function to
determine whether QuickDraw GX printing features are available on the user’s system.
The Gest al t selectoris' pngr' .

SPECIAL CONSIDERATIONS

If the GXI ni t Pri nti ng function returns an error, you should not attempt to call other
QuickDraw GX printing-related functions.

RESULT CODES

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

The GXEnt er G aphi cs function that initializes QuickDraw GX is described in Inside
Macintosh: QuickDraw GX Environment and Utilities.

To terminate printing features in QuickDraw GX, use the GXExi t Pri nt i ng function,
which is described in the next section.

2-50 Core Printing Features Reference

CHAPTER 2

Core Printing Features

GXEXxitPrinting

DESCRIPTION

RESULT CODES

SEE ALSO

You can use the GXExi t Pri nti ng function to terminate printing features within
QuickDraw GX.

CSErr GXExitPrinting (void);

function result An error code of type OSEr r.

The GXExi t Pri nti ng function terminates printing features within QuickDraw GX only
after you have successfully called the GXI ni t Pri nti ng function. You cannot call
QuickDraw GX printing functions after you call the GXExi t Pri nt i ng function.

You must call the GXExi t Pri nti ng function before you call the GXExi t G- aphi cs
function to shut down QuickDraw GX.

Before you call the GXExi t Pri nt i ng function, you should dispose of all QuickDraw
GX printing-related objects. If you want to use these objects again, you should save them.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For information about saving printing-related objects, see “Saving a Job Object With a
Document File” beginning on page 2-24.

The GXExi t Gr aphi cs function is described in the environment chapter of Inside
Macintosh: QuickDraw GX Environment and Utilities.

Core Printing Features Reference 2-51

CHAPTER 2

Core Printing Features

Handling Errors

QuickDraw GX printing features allow you to poll for errors in two ways: immediately
after you call a function or after you call groups of functions. QuickDraw GX provides
the GXGet JobEr r or function to allow you to poll for errors in both ways.

To allow your application to manage separate documents, errors are local to a job object.
To store an error with a particular job object, you use the GXSet JobEr r or function.

GXGetJobError

DESCRIPTION

You can use the GXGet JobEr r or function to obtain the first error encountered for a
particular job object since the last call to GXGet JobEr r or.

OSErr GXGet JobError (gxJob alJob);

aJob A reference to the job object whose most recent error you want to obtain.

function result An error code of type OSEr r.

The GXGet JobEr r or function returns printing-related errors associated with a job
object. Initially, you can call this function to obtain the current error code. If you
immediately call this function a second time, it returns noErr.

You can use the GXSet JobEr r or function to store an error in a specific job object.

SPECIAL CONSIDERATIONS

SEE ALSO

2-52

After an error occurs, calls to QuickDraw GX printing-related functions associated with
the specified job object return immediately without executing, until the
GXCet JobEr r or function is called.

The GXGet JobEr r or function does not move Macintosh memory; however, your
application should not call this function at interrupt time, because it relies on data
structures that may move.

Error-handling methods using the GXGet JobEr r or function are described in “Error
Handling,” which begins on page 2-14.

The GXSet JobEr r or function is described in the next section.

Core Printing Features Reference

CHAPTER 2

Core Printing Features

GXSetJobError

You can use the GXSet JobEr r or function to store an error in the provided job object.
voi d GXSet JobError (gxJob aJob, CSErr anError);

aJob A reference to the job object in which to store the error.
anError The error to store.

DESCRIPTION

The GXSet JobEr r or function stores an error with a particular job object. This function
is useful when you want to abort or cancel spooling.

Most applications do not need to use this function because QuickDraw GX sets the error
for you. You might want to use it, however, to artificially raise an error condition.

SPECIAL CONSIDERATIONS

An existing error is replaced when you call the GXSet JobEr r or function. If you wish to
save a previous error, you must call the GXGet JobEr r or function to obtain an error
prior to calling the GXSet JobEr r or function.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Core Printing Features Reference 2-53

CHAPTER 2

Core Printing Features

Creating and Managing Job Objects

GXNewlJob

When a user creates a new document, you need to create a corresponding job object
using the GXNewJ ob function. When a user closes a printable document, you need to
dispose of its corresponding job object using the GXDi sposeJob function.

When a user saves a printable document, you need to flatten its job object using either
the GXFI at t enJobToHdIl function or the GXFI at t enJob function. When a user opens
a printable document, you need to retrieve its job object using either the

GXUnf | at t enJobFr onHdl function or the GXUnf | at t enJob function.

When you receive a resume event, you should use the GXUpdat eJob function to update
the job object because the printing environment may have changed.

DESCRIPTION

2-54

You can use the GXNewJ ob function to create a job object to associate with a printable
document.

OSErr GXNewdob (gxJob *aJdob);

aJob On return, a reference to the newly created job object.

function result An error code of type OSEr r.

The GXNewJob function allocates space for a job object and returns a reference to the job
object. You need to call this function each time a user creates a new printable document.

When QuickDraw GX creates a new job object, it contains default values. Specifically, it
contains a default format and a default paper type. The default format and default paper
type are defined by the default output printer’s printer driver. If there is no default
output printer’s printer driver, the job object uses the format and paper type associated
with “Any Printer.”

You should call the GXI nst al | Appl i cati onOverri de function after you call the
GXNewd ob function to support QuickDraw GX print dialog boxes.

When a user closes a document, you need to dispose of a job object using the
GXDi sposeJob function.

Core Printing Features Reference

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPaper TypeNot Found The default paper-type object cannot be located.

Listing 2-1 on page 2-12 shows how to use the GXNewJ ob function to create a job object
for a printable document.

The GXI nst al | Appl i cati onOverri de function for supporting QuickDraw GX print
dialog boxes is described on page 2-71.

To dispose of a job object, see the description of the GXDi sposeJob function in the next
section.

GXDisposelJob

DESCRIPTION

You can use the GXDi sposeJob function to dispose of a job object associated with a
printable document.

OSErr GXDi sposeJob (gxJob aJob);

aJob A reference to the job object to be disposed of.

function result An error code of type OSEr r.

You should call the GXDi sposeJob function when a user closes a printable document
and deallocates space for an existing job object. This function returns an error if the
specified job objectis ni | .

Before you dispose of a job object, you should call the GXFI at t enJobToHdI function or
the GXFI at t enJob function to save a job object when a user saves a document.

Core Printing Features Reference 2-55

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 2-9 on page 2-29 shows how to use the GXDi sposeJob function to dispose of a
job object when a user closes a document.

The GXFl at t enJobToHdI function for saving job objects in a handle is described in the
next section. The GXFI at t enJob function for saving job objects by calling a function is
described on page 2-57.

GXFlattenJobToHdI

DESCRIPTION

2-56

You can use the GXFI at t enJobToHd| function to flatten a job object into a handle.
Handl e GXFl attenJobToHdl (gxJob aJob, Handl e aHandl e);

aJob A reference to the job object to be flattened.
aHandl e The handle into which the flattened data is placed.

function result The handle into which the flattened data is placed.

The GXFl at t enJobToHdI function provides your application with a mechanism for
saving all information associated with a job object in a handle. You should call this
function when a user saves a printable document.

You specify a handle in the aHandl e parameter. QuickDraw GX grows or shrinks the
size of the handle you provide to accommodate the size of the job object. You can specify
ni | in this parameter to allow QuickDraw GX to create and return a handle for you.

When you save a printable document, you can write the handle to the file’s resource or
data fork. You cannot directly modify the contents of this handle.

When a user opens a printable document, you need to unflatten all information
associated with a job object using the Unf | at t enJobToHdl function.

If you do not wish to save data in a handle, you can also use the GXFI at t enJob and
GXUnf | at t enJob functions to specify a function to save and restore a job object.

Core Printing Features Reference

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 2-7 on page 2-25 shows how to use the GXFl at t enJobToHdl function to save a
job object.

To unflatten all information associated with a job object, see the
GXUnf | at t enJobFr onHdl function, which is described on page 2-58.

You can also specify a function to save information associated with a job object by using
the GXFI at t enJob function, which is described in the next section.

GXFlattenJob

DESCRIPTION

You can use the GXFI at t enJob function when you want to call a function to flatten a
job object.

voi d GXFl attenJob (gxJob aJob,
gxPrintingFl attenProc aPrintingFl attenProc,
voi d *aVoi d);

aJob A reference to the job object to be flattened.

aPrintingFl attenProc
A pointer to a flattening function.

aVoi d A reference variable passed to the flattening function.

The GXFI at t enJob function provides your application with a mechanism for saving all
information associated with a job object by specifying a pointer to a flattening function.
QuickDraw GX calls your flattening function multiple times as it saves job object-related
data to disk.

You specify a pointer to a flattening function in the aPri nt i ngFl att enPr oc
parameter of the GXFI at t enJob function.You may prefer to use the GXFI at t enJob
function (instead of the GXFI| at t enJobToHdl function) because it requires less memory
to save portions of job object data to disk than it does to save all the data in a single
handle.

When a user opens a printable document, you need to unflatten all information
associated with a job object using the GXUnf | at t enJob function.

Core Printing Features Reference 2-57

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 2-8 on page 2-28 shows how to use the GXFI at t enJob function to save a job
object.

An example of a flattening function is described on page 2-76.

To unflatten all information flattened using GXFI at t enJob, see the GXUnf | att enJob
function, which is described on page 2-59.

To flatten a job to a handle, see the GXFI at t enJobToHdI function, which is described
on page 2-56.

GXUnflattenJobFromHdl

DESCRIPTION

2-58

You can use the GXUnf | at t enJobFr omHdl function to unflatten a job object that you
previously flattened using the GXFI at t enJobToHdl function.

gxJob GXUnfl attenJobFronHdl (gxJob aJob, Handl e aHandl e);

aJob A reference to the job object into which unflattened data is placed.
aHandl e A handle from which the job object is to be read.

function result The unflattened job object.

The GXUnf | att enJobFr omHdl function provides your application with a mechanism
for retrieving all information associated with a job object from a handle. You should call
this function when a user opens a printable document containing a job object that was
previously flattened using the GXFIl at t enJobToHdl function.

In the aJob parameter, you specify a job object in which to place the unflattened job
object data. You can specify ni | in this parameter to allow QuickDraw GX to create and
return a job object for you.

The aHandl e parameter specifies the handle from which the job object information is
read. You previously specified this handle using the GXFl at t enJobToHdl function.

Core Printing Features Reference

RESULT CODES

CHAPTER 2

Core Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

gxFl att enVer si onTooNew An attempt to unflatten a job object that was
flattened using a later version of QuickDraw GX.

gxPaper TypeNot Found The paper-type object cannot be located.

col | ecti onVersi onErr Version of the collection object is not compatible with
the current version of the Collection Manager.

SEE ALSO
Listing 2-10 on page 2-30 shows how to use the GXUnf | at t enJobFr onHdl function to
retrieve a job object from a handle.
You specify a handle in which to save a job object using the GXFI at t enJobToHdI
function, which is described on page 2-56.

GXUnflattenJob

DESCRIPTION

You can use the GXUnf | at t enJob function to unflatten a job object that you previously
flattened using the GXFI at t enJob function.

gxJob GXUnfl attenJob (gxJob aJob,
gxPrintingFl attenProc aPrintingFl attenProc,
voi d *aVoi d);

aJob A reference to the job object to be unflattened.
aPrintingFl attenProc
A pointer to a flattening function.

aVoi d A reference variable passed to the flattening function.

function result The unflattened job object.

The GXUnf | att enJob function provides your application with a mechanism for
retrieving all information associated with a job object by executing an
application-supplied function. In the aPri nti ngFl att enPr oc parameter, you specify
a pointer to an unflattening function. QuickDraw GX calls your unflattening function
multiple times as it retrieves job object-related data from disk.

In the aJob parameter, you specify a job object in which to place the unflattened job
object data. You can specify ni | in this parameter to allow QuickDraw GX to create and
return a job object for you.

Core Printing Features Reference 2-59

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

gxFl att enVer si onTooNew An attempt to unflatten a job object that was
flattened using a later version of QuickDraw GX.

gxPaper TypeNot Found The paper-type object cannot be located.

col | ecti onVersi onErr Version of the collection object is not compatible with
the current version of the Collection Manager.

Listing 2-10 on page 2-30 shows an example of how to use the GXUnf | at t enJob
function.

You specify a function to save a job object by using the GXFI at t enJob function, which
is described on page 2-57.

GXUpdateJob

DESCRIPTION

2-60

You can use the GXUpdat eJob function to update the contents of a job object.
Bool ean GXUpdat eJob (gxJob aJob);

aJob A reference to the job object whose contents may need to change.

function result A Boolean, which returnst r ue if anything actually changed.

The GXUpdat eJob function updates the job object to reflect the current QuickDraw GX
environment. You must call this function when your application receives a resume event,
indicating that it had been switched out because the user may have changed the
characteristics of a printer. For example, the user may have added an extension while the
application was switched out.

Core Printing Features Reference

CHAPTER 2

Core Printing Features

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

For an example that uses the GXUpdat eJob function, see “Updating Job Object
Information” on page 2-42.

Printing With QuickDraw GX

To support printing from the Finder, your application needs to call the
GXSel ect JobQut put Pri nt er function to specify an output printer.

When the user requests printing, you should call the GXGet JobPageRange function to
obtain the user-specified page range.

You call the GXSt ar t Job function to begin printing a document. If your application
stores each page as a single picture shape, you should use the GXPr i nt Page function to
print each page in a document.

You may also choose to use the GXSt ar t Page, GXDr awShape, and GXFi ni shPage
functions to draw and print data. You should use these functions if your application
does not store each page as a single picture shape.

After you have finished calling the GXPr i nt Page or the GXFi ni shPage function
(depending on the approach you choose), you call the GXFi ni shJob function to tell
QuickDraw GX that the document is ready to be spooled for printing in the background.

The GXDr awShape function is described in the shape objects chapter of Inside Macintosh:
QuickDraw GX Objects.

GXSelectJobOutputPrinter

You can use the GXSel ect JobQut put Pri nt er function to specify an output printer
for a printable document.

voi d GXSel ect JobQut put Printer (gxJob aJob, Str31 printerNane);

aJob A reference to the job object for which you are specifying an output
printer.

pri nter Nanme
The name of the desktop printer.

Core Printing Features Reference 2-61

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

Your application is responsible for determining the output printer on which to print the
document.

For example, when the user selects and prints a document from the Finder, your
application needs to respond to the Print Documents (' pdoc') Apple event and then
call the GXSel ect JobQut put Pri nt er function to specify an output printer on which
to print the selected document. The printer name can be obtained by using the Apple
event’s optional attribute, keyOpt i onal Keywor dAt tr.

fnfErr Printer driver cannot be located.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

gxPaper TypeNot Found The paper-type object cannot be located.

Listing 2-16 on page 2-40 shows how to respond to the Print Documents Apple event
and use the GXSel ect JobQut put Pri nt er function to specify an output printer.

GXGetJobPageRange

DESCRIPTION

2-62

You can use the GXGet JobPageRange function to obtain a user-specified page range.

voi d GXGet JobPageRange (gxJob aJob, long *firstPage,
| ong *| ast Page) ;

aJob A reference to the job object for which to retrieve the page range.
firstPage On return, the first page the user wants to print.
| ast Page On return, the last page the user wants to print.

When the user requests printing, you should call the GXGet JobPageRange function to
obtain the user-specified page range. The user specifies a page range in the Print dialog
box.

You can setthe f i r st Page parameter or the | ast Page parameter to ni | to ignore the
result.

Core Printing Features Reference

CHAPTER 2

Core Printing Features

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
col |l ecti onl t emNot FoundErr The collection object item cannot be located.
SEE ALSO

Listing 2-5 on page 2-21 and Listing 2-6 on page 2-23 show how to use the
GXGet JobPageRange function to obtain the user-specified page range.

GXStartJob

You can use the GXSt ar t Job function to initiate printing when a user wants to print a
document.

void GXStartJob (gxJob aJob, StringPtr docName, |ong pageCount);

aJob A reference to the job object of the print job to print.
docNane The name of the document to print.
pageCount The number of pages to print.

DESCRIPTION

You use the GXSt ar t Job function to begin printing a document. In the aJob parameter,
you specify the job object associated with the document to print. In the docNane
parameter, you specify the name of the user’s document. You can set this parameter to
ni | to use the default document name.

In the pageCount parameter, you specify the total number of pages the user chose to
print or pass 0 if the page count is unknown. You can call the GXGet JobPageRange
function to obtain the page range. In response to the GXSt ar t Job call, QuickDraw GX
displays the current page and the print job’s page count, if it is known, in the Status
dialog box.

SPECIAL CONSIDERATIONS

Immediately after you call the GXSt ar t Job function, you should check for errors by
calling the GXGet JobEr r or function. Only if no errors are returned should you call the
GXFi ni shJob function.

Core Printing Features Reference 2-63

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

gxPr User Abort Err The user has canceled printing.
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 2-5 on page 2-21 and Listing 2-6 on page 2-23 show how to use the GXSt art Job
function to begin printing a document.

For information about the GXGet JobPageRange function, see the previous section.

The GXGet JobEr r or function is described on page 2-52. The GXFi ni shJob function is
described on page 2-65.

GXPrintPage

DESCRIPTION

2-64

You can use the GXPr i nt Page function to print a page in a document if your
application stores each page as a single picture shape.

voi d GXPrint Page (gxJob aJob, |ong pageNunber, gxFormat aFormat,
gxShape aPage) ;

aJob A reference to the job object whose page you want to print.
pageNunber
The page number for the page.
aFor mat A reference to the format object for the page.
aPage A reference to the picture shape that specifies the output for the page.

The GXPr i nt Page function prints a page of a document. In the aPage parameter, you
specify the picture shape for each page. In the pageNunber parameter, you set the page
to print. QuickDraw GX compares the specified page number with the page range
chosen by the user and spools the page if it is within the page range. If it is not within
the range, QuickDraw GX ignores the data.

In the aFor mat parameter, you specify the format object for the page. You need to
provide your own mechanism for associating individual document pages with format
objects.

You should loop through each page of a document, calling the GXPr i nt Page function
for each page’s picture shape. You should check for errors after you print each page and
exit the loop if necessary.

If your application does not store each page as a single picture shape, you should use the
GXSt ar t Page, GXDr awShape, and GXFi ni shPage functions to print the page.

Core Printing Features Reference

CHAPTER 2

Core Printing Features

RESULT CODES
gxPr User Abort Err The user has canceled printing.
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
SEE ALSO

Listing 2-5 on page 2-21 shows how to use the GXPr i nt Page function to print each page
of a document.

Picture shapes are discussed in Inside Macintosh: QuickDraw GX Graphics.

The GXSt ar t Page function is described on page 2-66. The GXFi ni shPage function is
described on page 2-67. The GXDr awShape function is described in the shape objects
chapter of Inside Macintosh: QuickDraw GX Objects.

In addition to the result codes listed above, you may also receive errors that can occur
while flattening graphics objects during spooling. For more information about the
spooling phase of printing, see the chapter “Introduction to Printing With QuickDraw
GX” in this book. Flattening graphics objects is described in the shape objects chapter of
Inside Macintosh: QuickDraw GX Objects.

GXFinishJob

You can use the GXFi ni shJob function to notify QuickDraw GX that printing is
complete.

voi d GXFi ni shJob (gxJob aJob);

aJob A reference to the job object being printed.

DESCRIPTION

The GXFi ni shJob function completes the application phase of printing. You should call
this function after you have called the GXPr i nt Page function to print each page in a
document.

SPECIAL CONSIDERATIONS

You should only call the GXFi ni shJob function if the GXSt ar t Job function doesn’t
return errors.

Core Printing Features Reference 2-65

CHAPTER 2

Core Printing Features

RESULT CODES

gxPr User Abort Err The user has canceled printing.
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

In addition to the result codes listed above, you may also receive errors that can occur
while flattening graphics objects during spooling. Flattening graphics objects is
described in the shape objects chapter of Inside Macintosh: QuickDraw GX Objects.

SEE ALSO

Listing 2-5 on page 2-21 and Listing 2-6 on page 2-23 show how to use the
GXFi ni shJob function to tell QuickDraw GX that the document is ready to be queued
for printing in the background.

The GXSt ar t Job function is described on page 2-63.

Phases of printing are described in the chapter “Introduction to Printing With
QuickDraw GX” in this book.

GXStartPage

You can use the GXSt ar t Page function to print each page in a document if your
application does not store each page as a single picture shape.

Bool ean GXSt art Page (gxJob aJob, |ong pageNunber,
gxFormat aFormat, |ong nunVi ewPorts,
gxVi ewPort *vi ewPortList);

aJob A reference to the job object being printed.

pageNumnber
The page number of the page being printed.

aFor mat A reference to the format object for the page.

numvi ewPort s
The number of view ports contained in the vi ewPor t Li st parameter.

vi ewPor t Li st
A pointer to the list of references to view ports to use to capture shapes.

function result Returnst r ue if the page you specify in the pageNunber parameter is
within the user-specified page range, f al se if the page you specify is not.

DESCRIPTION

You use the GXSt ar t Page function to start printing the shapes drawn with
GXDr awShape. You call the GXSt ar t Page function after you call the GXSt ar t Job
function.

2-66 Core Printing Features Reference

CHAPTER 2

Core Printing Features

In the GXSt ar t Page function, you specify in the pageNunber parameter the page
number of the page to print. QuickDraw GX compares the specified page number with
the page range. The GXSt ar t Page function returnst r ue if the page you specify is
within the user-specified page range, and returns f al se if it is not. You can call the
GXGet JobPageRange function to determine the range of pages.

In the vi ewPor t Li st parameter, you specify the view ports to use to capture shapes.
The part of the shape that is drawn through a view port is printed. In the

nunVi ewPor t s parameter, you specify the number of view ports in the vi ewPor t Li st
parameter.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

After you finish calling the GXSt ar t Page function, you should immediately check for
errors using the GXGet JobEr r or function. Only if no errors are returned should you
draw the page’s shapes and call the GXFi ni shPage function.

gxPr User Abort Err The user has canceled printing.
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 2-6 on page 2-23 shows how to use the GXSt ar t Page function to print each page
of a document.

The GXDr awShape function is discussed in the shape objects chapter of Inside Macintosh:
QuickDraw GX Objects.

View port objects are discussed in the view-related objects chapter of Inside Macintosh:
QuickDraw GX Objects.

The GXFi ni shPage function is described in the next section. The GXGet JobEr r or
function is described on page 2-52. The GXGet JobPageRange function is described on
page 2-62.

GXFinishPage

You can use the GXFi ni shPage function to notify QuickDraw GX that you have
finished capturing shapes for the page.

voi d GXFi ni shPage (gxJob aJob);

aJob A reference to the job object being printed.

Core Printing Features Reference 2-67

DESCRIPTION

CHAPTER 2

Core Printing Features

You should call the GXFi ni shPage function after you have finished drawing the data
for a page using the GXDr awShape function. In the aJob parameter, you specify the job
object being printed.

After you call the GXFi ni shPage function for the final page to be printed, call the
GXFi ni shJob function to notify QuickDraw GX that printing is complete.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You should only call the GXFi ni shPage function if the GXSt ar t Page function doesn’t
return errors.

gxPr User Abort Err The user has canceled printing.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

In addition to the following result codes, you may also receive errors that can occur

while flattening graphics objects during spooling. Flattening graphics objects is

described in the shape objects chapter of Inside Macintosh: QuickDraw GX Objects.

Listing 2-6 on page 2-23 shows how to use the GXFi ni shPage function to tell
QuickDraw GX that you have finished capturing shapes.

The GXSt ar t Page function is described in the previous section.

The GXDr awShape function is discussed in the shape objects chapter of Inside Macintosh:
QuickDraw GX Objects.

Obtaining Information on Printing-Related Objects

2-68

QuickDraw GX functions allow you to obtain basic information about the job object and
format objects associated with a printable document. Although a document can contain
multiple format objects, all documents contain at least one format object, called the
default format.

When a user wants to print a document, you should call the GXGet JobFor mat function
to access the format objects associated with a particular job object.

You can specify a format object in the GXGet For mat Job function to obtain the job object
that references this format object.

You use the GXCGet For mat Di nensi ons function to obtain the dimensions information
from a format object. The information includes the physical dimensions of the paper (the
paper size) and the printable area within these dimensions (the page size) after scaling
and orientation have been applied.

Core Printing Features Reference

CHAPTER 2

Core Printing Features

GXGetJobFormat

You can use the GXGet JobFor mat function to obtain the format objects associated with
a job object.

gxFor mat GXGet JobFor mat (gxJob aJob, |ong whi chFormat);

aJob A reference to the job object whose format object you wish to obtain.

whi chFor mat
The index of the format object to retrieve.

function result A reference to a format object.

DESCRIPTION
The GXGet JobFor mat function allows you to obtain a format object from the job object
specified in the aJob parameter. The whi chFor mat parameter specifies the format
object to return. You can set this parameter to 1 to obtain the default format. The default
format is defined by the formatting printer.

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or

there was not enough memory to load it.

SEE ALSO
Listing 2-5 on page 2-21 and Listing 2-6 on page 2-23 show how to use the
GXGet JobFor mat function to obtain the default format when a user wants to print a
document.
Manipulating format objects is described in the chapter “Page Formatting and
Dialog Box Customization” in this book.

GXGetFormatJob

You can use the GXGet For nmat Job function to obtain the job object associated with a
format object.

gxJob GXGet Format Job (gxFornat aFornat);

aFor mat A reference to the format object whose job object you wish to obtain.

function result A reference to a job object.

Core Printing Features Reference 2-69

DESCRIPTION

RESULT CODES

CHAPTER 2

Core Printing Features

In the GXGet For mat Job function, you specify a format object whose job object you

want to obtain. You specify the format object in the aFor nat parameter. You should call
this function when you have a format object reference and you want to obtain the
reference of the job object associated with it.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXGetFormatDimensions

DESCRIPTION

2-70

You can use the GXGet For mat Di mensi ons function to obtain the page size and paper
size associated with a format object.

voi d GXGet For mat Di nensi ons (gxFormat aFor nat,
gxRect angl e *pageSi ze,
gxRect angl e *paper Si ze);

aFor mat A reference to the format object whose dimensions you wish to obtain.

pageSi ze On return, the imageable area—the area inside the margins where shapes
may be drawn.

paper Si ze On return, the physical dimensions of the paper.

The GXCGet For mat Di nensi ons function returns a page size and paper size associated
with a format object, after scaling and orientation have been applied. This function
provides your application with boundary information that is useful for setting up
margins for the drawing areas in your application. It is also useful for setting up rulers in
your application to display to users.

You can specify ni | in either the pageSi ze or paper Si ze parameters if you are
interested in only one of the values.

The page size is anchored at location (0.0, 0.0), regardless of orientation or scaling. The
paper size is outset from the page size, and the coordinates for the top-left corner of the
paper are negative. Because the page coordinates are zero-based, you can start drawing
at (0.0, 0.0) without regard for the paper size.

Core Printing Features Reference

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For a description of format object mapping and how it affects the dimensions property,
see the chapter “Page Formatting and Dialog Box Customization” in this book.

Displaying the Page Setup and Print Dialog Boxes

To support QuickDraw GX print dialog boxes, your application must override the
gxPrinti ngEvent message by installing an override function with the
GXlI nstal | Appl i cati onOverri de function.

When the user chooses the Page Setup menu command from the File menu, you call the
GXJobDef aul t For mat Di al og function to display the Page Setup dialog box.

When the user chooses the Print menu command from the File menu, you call the
GXJobPri nt Di al og function to display the Print dialog box.

GXlnstallApplicationOverride

DESCRIPTION

You can use the GXI nst al | Appl i cati onOverri de function to override messages
QuickDraw GX sends to your application.

void GXlnstall Applicati onOverride (gxJob aJob, short nessagel D,
void *override);

aJob A reference to the job object into which to install the override.
nmessagel D The ID of the message to override.
override A pointer to a function with which to override a message.

You can use the GXI nst al | Appl i cati onOver ri de function to specify a function that
is called in response to the message specified in the nessagel D parameter. For example,
you can override the gxPr i nt i ngEvent message that QuickDraw GX sends to your
application each time it receives an event by specifying a function to call in the

overri de parameter.

You specify a pointer to an override function in the over ri de parameter. Set this
parameter to ni | to remove your application’s override of a message.

Core Printing Features Reference 2-71

RESULT CODES

SEE ALSO

CHAPTER 2

Core Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 2-1 on page 2-12 shows how to override the gxPri nt i ngEvent message using
the GXI nst al | Appl i cati onOverri de function.

Supporting QuickDraw GX dialog boxes is discussed in “Supporting QuickDraw GX
Print Dialog Boxes,” which begins on page 2-17.

GXJobDefaultFormatDialog

DESCRIPTION

2-72

You can use the GXJobDef aul t For mat Di al og function to display the Page Setup
dialog box.

gxDi al ogResult GXJobDef aul t Format Di al og (gxJob aJob,
gxEdi t MenuRecord *anEdi t MenuRecord) ;

aJob A reference to the job object whose default format you are allowing the
user to modify.

anEdi t MenuRecord
A pointer to the Edit menu structure.

function result The user’s response to the dialog box.

After you use the GXJobDef aul t For mat Di al og function to display the Page Setup
dialog box, the user can specify formatting information for the default format. For
example, the user can specify the paper size, orientation, and the default formatting
printer.

In the anEdi t MenuRecor d parameter you specify an Edit menu structure to support
the standard editing operations of cut, copy, paste, and clear in dialog boxes.

The function returns gxOKSel ect ed if Format is chosen or gxCancel Sel ect ed if
Cancel is chosen.

If an error occurs, the function returns gxCancel Sel ect ed. Call the GXGet JobErr or
function to determine which error occurred.

This function causes QuickDraw GX to send the gxJobDef aul t For nat Di al og
message, which you can override to customize the Page Setup dialog box.

Note that QuickDraw GX stores a user’s responses to some dialog items in the Page
Setup dialog box in a format collection.

Core Printing Features Reference

CHAPTER 2

Core Printing Features

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

Listing 2-14 on page 2-36 shows how to use the GXJobDef aul t For mat Di al og
function to display the Page Setup dialog box.

The Edit menu structure is described on page 2-48.
The dialog box result enumeration is described on page 2-48.

The format collection is discussed in the chapter “Page Formatting and Dialog Box
Customization” in this book.

GXJobPrintDialog

You can use the GXJobPri nt Di al og function to display the Print dialog box when the
user chooses the Print menu command from the File menu.

gxDi al ogResult GXJobPrintDi al og (gxJob aJob,
gxEdi t MenuRecord *anEdi t MenuRecord) ;

aJob A reference to the job object whose print settings you are allowing the
user to modify.

anEdi t MenuRecord
A pointer to the Edit menu structure.

function result The user’s response to the dialog box.

DESCRIPTION

After you use the GXJobPr i nt Di al og function to display the Print dialog box, the user
can specify information related to actual printing of the document. For example, the user
can specify the printer, print quality, number of copies to print, page range, automatic or
manual paper feed, and whether a document should be output to a printer or a file.

A user must select an output printer in the Print dialog box regardless of the formatting
printer specified in the Page Setup dialog box. The output printer does not need to be in
the same device class as the printer for which the document is formatted.

Core Printing Features Reference 2-73

RESULT CODES

SEE ALSO

2-74

CHAPTER 2

Core Printing Features

In the anEdi t MenuRecor d parameter you specify an Edit menu structure. Your
application specifies the location of the Edit menu and its menu items in the Edit menu
structure.

The function returns gxOKSel ect ed if Print is chosen or gxCancel Sel ect ed if Cancel
is chosen.

If an error occurs, the function returns gxCancel Sel ect ed. Call the GXGet JobErr or
function to determine which error occurred.

This function causes QuickDraw GX to send the gxJobPr i nt Di al og message, which
you can override to customize the Print dialog box.

QuickDraw GX stores a user’s responses to some items in the Print dialog box in the job
collection.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 2-15 on page 2-39 shows how to use the GXJobPr i nt Di al og function to display
the Print dialog box.

The Edit menu structure is described on page 2-48.
The dialog box result enumeration is described on page 2-48.

The job collection is discussed in the chapter “Page Formatting and Dialog Box
Customization” in this book.

Core Printing Features Reference

CHAPTER 2

Core Printing Features

Converting a Print Record

QuickDraw GX allows documents originally created to print with the Macintosh
Printing Manager to be printed by applications that support QuickDraw GX. Before a
user can print these documents, you must convert the document’s print record
information into a job object using the GXConver t Pri nt Recor d function.

GXConvertPrintRecord

DESCRIPTION

RESULT CODES

SEE ALSO

You can use the GXConvert Pri nt Recor d function to translate a print record into a job
object.

voi d GXConvert PrintRecord (gxJob aJob, THPrint aPrint);

aJob A reference to the job object to receive the converted data.
aPrint The print record to be converted.

QuickDraw GX copies contents of the specified print record into the specified job object.
Before you call the GXConvert Pri nt Recor d function, you must first allocate space for
the job object using the GXNewJ ob function. QuickDraw GX attempts to preserve as
much print record information as possible.

In addition to converting the print record, you must also translate QuickDraw data by
calling the QuickDraw GX Translator functions, GXI nst al | QDTr ansl at or and
GXRenoveDTr ansl at or, or by calling the GXConvert Pl CTToShape function.

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 2-18 on page 2-45 shows how to use the GXConver t Pri nt Recor d function to
convert a print record into a job object.

The GXNewJob function is described on page 2-54.

The QuickDraw GX Translator functions, GXI nst al | QDTr ansl at or and
GXRenoveDTr ansl at or, are discussed in the environment chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities.

For information about the GXConver t PI CTToShape function, see the environment
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities.

Core Printing Features Reference 2-75

CHAPTER 2

Core Printing Features

Application-Defined Functions

The following sections describe application-defined functions that implement message
overrides and application-defined functions that flatten or unflatten job objects.

Message Override Functions

The GXPri nt i ngEvent function specifies the declaration for a function that you must
provide in order to respond to gxPr i nt i ngEvent messages.

GXPrintingEvent

DESCRIPTION

2-76

You must install an override function that QuickDraw GX invokes in response to the
gxPri nti ngEvent message. Your override must match the following formal
declaration:

OCSErr MyPrintingEvent (EventRecord *anEvent Record,
Bool ean filterEvent);

anEvent Record
A pointer to an event that occurred in a print dialog box.

filterEvent
A Boolean value that is t r ue if the event needs to be filtered, and f al se
if not.

function result An error code. The value noEr r indicates that the operation was
successful.

QuickDraw GX sends the gxPr i nt i ngEvent message whenever a specific event occurs
in one of the print dialog boxes that is displayed for printing. You can override the
gxPrinti ngEvent message to handle events, such as window update events, that
occur during display of print dialog boxes. You cannot name your function
GXPrintingEvent.

The default implementation of this message does nothing. You must override this
message to correctly support print dialog boxes.

The anEvent Recor d parameter is a pointer to the event record. The event record
contains information about what type of event occurred (a mouse-down, update, or
key-down event, for example) and contains additional information associated with the
event (for example, for a key-down event, the Event Manager also reports which key
was pressed).

Core Printing Features Reference

CHAPTER 2

Core Printing Features

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You never send the gxPr i nti ngEvent message yourself.

You typically create a total override of the gxPri nti ngEvent message.

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPr User Abort Err The user has canceled printing.

Overriding the gxPri nt i ngEvent message is described in “Supporting QuickDraw GX
Print Dialog Boxes,” which begins on page 2-17.

The GXI nst al | Appl i cati onOverri de function is described on page 2-71.

The Event Manager, the Event Recor d data type, and the Di al ogSel ect function are
discussed in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

Flattening and Unflattening Functions for Job Objects

When a user saves or opens a printable document, you need to save or retrieve its
corresponding job object. To save a job object, you can flatten it using the

GXFI at t enJob function. To retrieve a job object, you can unflatten it using the

GXUnf | at t enJob function. In each of these functions you must provide a pointer to an
application-supplied flattening or unflattening function, as appropriate. The following
sections describe these flattening and unflattening functions.

MyFlattenFunction

To save a job object when a user saves a printable document, provide a pointer to an
application-supplied flattening function in the GXFI at t enJob function. The
application-supplied function must match the following declaration. For example, this is
how you should declare the function if you were to name it MyFl at t enFuncti on:

OSErr MyFl attenFunction (long size, void *data, void *refCon);

si ze The size of the segment (in bytes) to write.
dat a A pointer to job object data to flatten.
r ef Con A pointer to a reference constant for application-specific information.

function result An error code of type OSEr r.

Core Printing Features Reference 2-77

CHAPTER 2

Core Printing Features

DESCRIPTION
When you use the GXFI at t enJob function, QuickDraw GX calls your flattening
function multiple times as it flattens job object data to disk. Each time it calls your
function, the function should write the next segment of the job object until the entire job
object is saved. You can use the r ef Con parameter to hold the file reference number of
the file containing the data to flatten. You can return any OSEr r value.

SEE ALSO
Listing 2-8 on page 2-28 shows how to use a flattening function.
The GXFI at t enJob function is described on page 2-57.
To retrieve a job object that has been flattened, see the next section.

MyUnflattenFunction
To retrieve a job object when a document is opened, you can call the GXUnf | at t enJob
function and provide a pointer to the application-supplied unflattening function you
want to use. The application-supplied function must match the following declaration.
For example, this is how you should declare the function if you were to name it
MyUnf | att enFuncti on:
OSErr MyUnfl attenFunction (long size, void *data, void *refCon);
si ze The size of the segment (in bytes) to read.
dat a A pointer to job object data to unflatten.
r ef Con A pointer to a reference constant for application-specific information.
function result An error code of type OSEr r.

DESCRIPTION
When you use the GXUnf | at t enJob function, QuickDraw GX calls your unflattening
function multiple times as the unflattening function retrieves the job object data from
disk. It continues to call your function until the entire job object is retrieved. You can use
the r ef Con parameter to hold the file reference number of the file containing the data to
unflatten. You can return any OSEr r value.

SEE ALSO
Listing 2-11 on page 2-32 shows how to use an unflattening function.
The GXUnf | at t enJob function is described on page 2-59.

2-78 Core Printing Features Reference

CHAPTER 2

Core Printing Features

Summary of Core Printing Features

Constants and Data Types

Gestalt Selectors for Printing

#def i ne gestal t GXPri nti ngMgr Version ' pngr'
#defi ne gestalt GXVersion ' gdgx

QuickDraw GX Printing-Related Objects

[* printing-related object structures */

t ypedef
t ypedef

t ypedef
t ypedef
t ypedef

t ypedef

struct
struct

struct

struct

struct

struct

gxPrivat eJobRecord *gxJob; /* job object structure */
gxPrivatePrinterRecord *gxPrinter; /* printer object */
/* structure */
gxPri vat eFor mat Record *gxFor mat ; /* format object */
[* structure */
gxPrivat ePaper TypeRecord *gxPaper Type;/* paper-type object */
/* structure */
gxPrivatePrintFil eRecord *gxPrintFile;/* print file object */
/* structure */
Privat eCol | ecti onRecord *Col |l ection;/* collection object */
[* structure */

Edit Menu Record Structure

typedef struct { /* location of Edit menu and its nmenu itenms */
short edit Menul D /* resource ID of the Edit nenu */
short cutltem /* location of the cut nenu item*/
short copyltem /* location of the copy nenu item*/
short pasteltem /* location of the paste nenu item*/
short clearltem /* location of the clear nenu item */
short undoltem /* location of the undo nenu item */

} gxEdit MenuRecor d;

Dialog Box Results

t ypedef

| ong gxDi al ogResul t; /* dialog result data type */

/* dialog box result enuneration */

Summary of Core Printing Features 2-79

CHAPTER 2

Core Printing Features

enum {
gxCancel Sel ected = (gxDi alogResult) 0,/* user cancel ed dial og box */
gxOKSel ect ed (gxDi al ogResult) 1,/* user confirnmed dial og box */
gxRevert Sel ect ed (gxDi al ogResult) 2 /* user chose Renove from
t he Custom Page Setup
di al og box */

Functions

Initializing and Terminating QuickDraw GX Printing Features

OSErr GXlnitPrinting (void);
OSErr GXExitPrinting (void);

Handling Errors

OSErr GXGet JobError (gxJob aJob);
voi d GXSet JobError (gxJob aJob, OSErr anError);

Creating and Managing Job Objects

OSErr GXNewdob (gxJob *aJob);

CSErr GXDi sposeJob (gxJob aJob);

Handl e GXFl att enJobToHdI (gxJob aJob, Handl e aHandl e);

voi d GXFl attenJob (gxJob aJob,
gxPrintingFl attenProc aPrintingFl attenProc,
voi d *aVoi d);

gxJob GXUnfl attenJobFromHdl (gxJob aJob, Handl e aHandl e);

gxJob GXUnfl attenJob (gxJob aJob,
gxPrintingFl attenProc aPrintingFl attenProc,
voi d *aVoi d);

Bool ean GXUpdat eJob (gxJob aJob);

Printing With QuickDraw GX

voi d GXSel ect JobQut put Printer
(gxJob aJob, Str31 printerNane);

voi d GXGet JobPageRange (gxJob aJob, long *firstPage, |ong *I|astPage);
void GXStartJob (gxJob aJob, StringPtr docNane, |ong pageCount);
voi d GXPri nt Page (gxJob aJob, | ong pageNunmber, gxFormat aFornmat,

gxShape aPage) ;

2-80 Summary of Core Printing Features

CHAPTER 2

Core Printing Features

voi d GXFi ni shJob (gxJob aJdob);

Bool ean GXSt art Page (gxJob aJob, | ong pageNunmber, gxFornmat aFornat,

| ong nunVi ewPorts, gxViewPort *viewPortlList);

voi d GXFi ni shPage (gxJob aJob);

Obtaining Information on Printing-Related Objects

gxFor mat GXGet JobFor mat (gxJob aJob, | ong whichFormat);
gxJob GXCGet For mat Job (gxFormat aFormat) ;

voi d GXGet For mat Di nensi ons (gxFornmat aFormat, gxRectangl e *pageSi ze,

gxRect angl e *paper Si ze) ;

Displaying the Page Setup and Print Dialog Boxes

voi d GXl nstall ApplicationOverride
(gxJob, aJob, short nessagel D,
void *override);

gxDi al ogResul t GXJobDef aul t For mat Di al og
(gxJob aJob,
gxEdi t MenuRecord *anEdi t MenuRecord) ;

gxDi al ogResul t GXJobPrint Di al og
(gxJob aJob,
gxEdi t MenuRecord *anEdi t MenuRecord) ;

Converting a Print Record
voi d GXConvert Print Record (gxJob aJob, THPrint aPrint);

Application-Defined Functions

Message Override Functions

CSErr GXPrintingEvent (Event Record *anEvent Record,
Bool ean filterEvent);

Flattening and Unflattening Functions for Job Objects

OSErr MyFl att enFuncti on (long size, void *data, void *refCon);
CSErr MyUnfl attenFunction (long size, void *data, void *refCon);

Summary of Core Printing Features

2-81

CHAPTER 3

Page Formatting and
Dialog Box Customization

Contents

About Page Formatting and Dialog Box Customization 3-6
About Collection Objects 3-7
Collection Tag IDs and Item IDs 3-7
Item Structures 3-8
Categories of Collection Items 3-9
The Job Collection 3-10
The Format Collection 3-12
The Paper-Type Collection 3-14
About Page Formatting 3-15
Manipulating Format Objects 3-16
Mapping for Format Objects 3-18
Forms and Format Objects 3-20
Halftones and Format Collections 3-21
Dialog Box Customization 3-22
The Dialog Box Panel Resource 3-24
Responding to Panel Events 3-25
Automating Panel Events 3-25
Using Printing-Related Collection Objects 3-27
Accessing Data From a Collection Object 3-28
Using a Collection to Implement the Print One Copy Menu Item 3-29
Replacing Items in Collections 3-31
Specifying Page Ranges in the Job Collection 3-33
Using Format Objects and Collection Items to Format Pages 3-39
Creating a Format Object for a Page in a Document 3-40
Sharing Formats for Document Pages 3-44
Disposing of a Format Object for a Page in a Document 3-47
Using Forms With Format Objects 3-50

Contents

CHAPTER 3

Storing Halftone Information in a Format Collection 3-

Copying a Format Object for Use in Other Documents
Obtaining the Mapping From a Format Object 3-57
Obtaining a Paper-Type Object Associated With a Format
Scanning Through a Job’s Format Objects 3-59

52

3-54

3-57

Associating Format Objects With Document Pages 3-61

Customizing QuickDraw GX Dialog Boxes 3-66
Adding Panels to Dialog Boxes 3-67
Setting Up Dialog Box Resources 3-70
Parsing Page Ranges 3-73

Page Formatting and Dialog Box Customization Reference
Constants for Loop Status Information 3-76

3-75

Constants for Collection Item Categories and Tag IDs 3-76

Collection Item Categories 3-76
Collection Tag ID 3-77

Constants and Data Types for Job Collection Items 3-78

Print-Job Information 3-78
Collation Information 3-80
Copies Information 3-81
Page-Range Information 3-81
Quiality Information 3-83
File-Destination Information 3-83
File-Location Information 3-84
File-Format Information 3-84
File-Fonts Information 3-85
Paper-Feed Information 3-85
Manual-Feed Information 3-86
Standard Mapping Information 3-86
Special Mapping Information 3-87
Tray-Mapping Information 3-88
Print-Panel Information 3-88
Format-Panel Information 3-88
Paper-Mapping Information 3-89
Translated-Document Information 3-89
Constants and Data Types for Format Collection Items
Orientation Information 3-89
Scaling Information 3-91
Direct-Mode Information 3-91
Format-Halftone Information 3-92
Page-Inversion Information 3-92
Horizontal Page-Flip Information 3-93
Vertical Page-Flip Information 3-93
Precise-Bitmap Information 3-93
Paper-Type Lock Information 3-94
Constants and Data Types for Paper-Type Collection Items
Base Information 3-94
Creator Information 3-95

Contents

3-89

3-94

CHAPTER 3

Units Information 3-96
Flags Information 3-97
Comment Information 3-97
Panel-Related Constants and Data Types
The Panel Information Structure
Panel Events 3-99
Panel Responses 3-100
Panel Event Actions 3-101
The Panel Setup Structure 3-101
Printing Panel Kinds 3-102
Parse Range Results 3-102
Functions 3-103
Creating and Manipulating Format Obj
GXNewfor mat 3-104
GXDi sposeFor mat
GXCopyFor mat 3-105
GXd oneFor nat 3-106
GXCount JobFor mat s
GXCount For mat Oawner s 3-107
GXFor EachJobFor mat Do 3-108
Manipulating Format Object Properties
GXGet For mat Mappi ng 3-109
GXCGet For mat Paper Type 3-110
GXGet For mat For m 3-111
GXSet For mat For m 3-111
GXChangedFor mat 3-112

3-104

3-107

Displaying the Custom Page Setup Dialog Box

GXFor mat Di al og 3-113

Working With Panels 3-114
GXSet upDi al ogPanel 3-114
GXGet JobPanel Di nensi ons
GXEnabl eJobScal i ngPanel

GXGet MessageHand! er ResFi |l e

Accessing Printing-Related Collection Objects

GXGet JobCol | ecti on

GXCet For mat Col | ecti on

GXGet Paper TypeCol | ecti on
Application-Defined Functions 3-119

3-117

3-
3-

3-98

3-98

ects 3-103

3-109

3-113

115
116
3-116
3-117

3-118

3-118

Message Override Functions for Customizing QuickDraw GX Dialog

Boxes 3-119
GXJobPrint Di al og 3-120
GXJobDef aul t For mat Di al og
GXFor mat Di al og 3-122
GXHandl| ePanel Event
GXFi | t er Panel Event
GXPar sePageRange

3-123
3-124
3-125

Contents

3-121

3-3

3-4

CHAPTER 3

Looping Through Format Objects 3-126
Dialog Box-Related Resources 3-127
The Panel Resource 3-127
The Extended Item List Resource 3-128
Summary of Page Formatting and Dialog Box Customization

Contents

3-133

CHAPTER 3

Page Formatting and Dialog Box Customization

This chapter describes how your application can manipulate the objects that QuickDraw
GX uses to format the pages of a document or add panels to QuickDraw GX dialog boxes.

Read the information in this chapter if you want your application to allow users to
specify unique formats for the individual pages of a printable document. For example,
using QuickDraw GX, your application can allow a user to create and print a single
document that consists of an address page on an envelope, a business letter on a sheet of
paper in portrait orientation, and a spreadsheet on a sheet of paper in landscape
orientation.

You should also read this chapter if you want to add panels to QuickDraw GX print
dialog boxes. For example, your application may add a panel that allows the user to
specify additional information, such as color-separation for color printing.

Before you begin using QuickDraw GX page formatting and dialog box customization
features, you should be familiar with the basic concepts for printing with QuickDraw
GX, as described in the chapter, “Introduction to Printing With QuickDraw GX.” You
should also be familiar with creating and manipulating a job object, as described in the
chapter “Core Printing Features” in this book.

This chapter begins by summarizing what you need to know to support the page
formatting and dialog box customization features of QuickDraw GX. Because

page formatting and dialog box customization can use collection objects, this topic is
introduced first. Page formatting is discussed next because you can use collection items
as parameters to specify formatting criteria. Dialog box customization is discussed after
the other two topics because you may need to use nondefault dialog boxes to allow the
user to set the values of items in a collection object. Keep in mind that any QuickDraw
GX print dialog box can be customized, not just the Custom Page Setup dialog box
associated with page formatting.

After introducing the basic concepts associated with printing-related collection objects,
page formatting, and dialog box customization, this chapter shows you how to

n access an item in a collection object for use with a dialog box

n keep track of format objects that are shared by multiple pages of a document
n create a format object for a page in a document

n clone a format object for multiple pages in a document

n dispose of a format object for a page in a document

n access information associated with a format object

n display the Custom Page Setup dialog box

n support special formatting features

n associate format objects with document pages

n add panels to QuickDraw GX dialog boxes

n automate panel information

3-5

CHAPTER 3

Page Formatting and Dialog Box Customization

About Page Formatting and Dialog Box Customization

Page formatting is the ability to format individual pages of a document differently from
the default format for the document. The available formats are specified by the printer
driver. You specify a format object when you print each page of a document. If you
specify the first format in the job object’s format list, the default format for the document
is used. If you specify another format, it is used to format the page. For more
information about printing pages and specifying formats, see the chapter “Core Printing
Features” in this book.

Typically, you associate the default format object with each page in the document and let
the user choose the pages to format differently from the default. The user can choose the
format with the Custom Page Setup menu item of the File menu, which displays the
Custom Page Setup dialog box on the user’s screen. You are responsible for associating
the chosen format with the page. Thus, you need to determine which format objects are
in use and save them with the job object when the document is saved. You also need to
retrieve them along with the job object when the document is opened. For more
information about saving and retrieving these job objects, see “Associating Format
Objects With Document Pages” on page 3-61.

The Custom Page Setup dialog box provided by QuickDraw GX allows the user to
format a page, remove the format and revert to the default format, change the paper type
for the page, and change the page’s scale and orientation. You can allow more choices by
customizing this dialog box. For example, you can allow the user to specify a halftone to
be applied to the page. Because the Custom Page Setup dialog box provided by
QuickDraw GX does not provide an option for specifying a page halftone, the printer
driver or a printing extension must customize the dialog box, or you must customize the
dialog box in the application.

If you customize a dialog box, you typically gather additional information from the user,
although you can also customize a dialog box to restrict the user’s choices. The
additional information is stored in a collection object. In the halftone example, the
printer driver stores the possible halftone options in the format collection. You can
customize the Page Setup dialog box to allow a halftone to be chosen for the default
format, or you can customize the Custom Page Setup dialog box to allow a halftone to be
chosen for a particular page.

3-6 About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX allows you to customize any of the print dialog boxes:
n The Print dialog box, in which the user specifies parameters for printing the job.

n The Page Setup dialog box, in which the user specifies default formatting by selecting
the formatting printer. This dialog box is also used to specify the default paper type.

n The Custom Page Setup dialog box, in which the user specifies formatting for a
particular page, including the paper type.

n The Printing Status dialog box, in which the status of the spooling operation is
displayed. This dialog box is not usually customized. You may choose, however, to
suppress the display of the dialog box under certain conditions.

About Collection Objects

QuickDraw GX supports collection objects to store and to allow your application to store
printing-related, formatting, and paper-type information associated with a printable
document. Essentially, these collections specify additional information that are not
absolutely required to print a job, format a document, or specify the kind of paper. In
QuickDraw GX printing, collection objects typically store information you can use to
customize dialog boxes. You can access information required by your application from
these collection objects, however, whether or not you allow the user a choice in a dialog
box. You can also use collection objects to store information that is of use only to your
application.

You can use collection objects without customizing dialog boxes. For example, a user
may print by dragging the document’s icon onto a desktop printer or by choosing the
Print One Copy menu item from the File menu. In these cases, your application may
need to change the settings in a collection object directly, without user intervention.

You can also store information that is not already provided by QuickDraw GX. For
example, as part of using QuickDraw GX page formatting features, your application is
responsible for managing the correspondence between format objects and individual
pages in a document. Your application can use a format collection item to store this
correspondence. Storing correspondence information in a format collection is discussed
in “Associating Format Objects With Document Pages,” which begins on page 3-61.

Collection Tag IDs and Item IDs

When you add data (referred to as a collection item) to a collection object, the Collection
Manager associates the data with a collection tag ID and a collection item tag. Together,
the 4-byte collection tag ID and the 4-byte collection item tag ID uniquely identify a
collection item within a particular collection object.

Note

To avoid the confusion between tag objects (which are not related to
collection objects at all), collection tags, and collection item tags, this
book refers to collection tags as tag IDs and to collection item tags as
item IDs. Tags, when used in this book, refer to tag objects. u

About Page Formatting and Dialog Box Customization 3-7

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX assigns the gxPri nti ngTagl Dtag ID to each of its predefined
collection items:

enum { gxPrintingTagl D = -28672 };

For each of its collection items, QuickDraw GX defines an item ID, such as
gxCopi esTag for the collection item that defines the number of copies to print:

enum { gxCopi esTag = 'copy'};

QuickDraw GX reserves all tag I1Ds that are negative or less than 127. It also reserves all
collection items defined by lowercase characters. For example, you can use your
application’s registered creator type for the tag ID.

In addition to the collection tag and collection item ID, the Collection Manager allows
items to be accessed by index. You can use an index to provide faster access to specific
items in a collection or to perform operations on all collection items in a collection object.
This index does not uniquely identify an item, however, because adding or removing
items can change an item’s index number. For information about collection indexes and
collection objects in general, see the Collection Manager chapter of Inside Macintosh:
QuickDraw GX Environment and Utilities.

Item Structures

A structure defines the form of most collection items. A type definition is associated with
each of these structures:

struct gxCopi esl nf o{
| ong copi es;

H
typedef struct gxCopi eslnfo gxCopieslnfo;

For example, you can use gxCopi esl nf o as both a structure name and a data type
definition:

gxCopi esl nfo nyCopi es;
struct gxCopi esl nfo myCopi es;

In this book, only the structure definition is presented. Type definitions are only
presented when they are not associated with a structure, as in
gxCol | ecti onCat egory, defined in the next section.

About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Categories of Collection Items

If you add an item to a collection, you need to decide whether the contents will be valid
if the output printer or formatting printer changes. You also must decide if the item
should persist when the collection is flattened.

QuickDraw GX purges the items that are not valid after the printer driver changes, based
on the contents of the collection item’s user attribute bits. It also decides which items to
flatten based on these bits. For general information about user attribute bits, see the
Collection Manager chapter of Inside Macintosh: QuickDraw GX Environment and Ultilities.

A printer-driver switch occurs whenever a user changes the device class (type of printer)
of the output printer or formatting printer associated with a particular document. For
example, if the user switches output printers, QuickDraw GX discards the tray-feed
information, which specifies the current paper tray, because it may have changed.

QuickDraw GX assigns collection object items into categories based on the contents of
the gxCol | ect i onCat egor y user attribute bits, as shown in the following
enumeration:

typedef short gxColl ectionCategory;

enum {
gxNoCol | ecti onCat egory
gxQut put Dri ver Cat egory
gxFormat ti ngDri ver Cat egory
gxDriver Vol ati | eCat egory

(gxCol | ecti onCat egory) 0x0000,
(gxCol | ecti onCat egory) 0x0001,
(gxCol | ecti onCat egory) 0x0002,
(gxCol | ecti onCat egory) 0x0004,

gxVol ati | eQut putDriverCategory =

gxQut put Dri ver Cat egory + gxDriverVol ati |l eCat egory,
gxVol ati | eFormatti ngDri ver Cat egory =

gxFormattingDri verCategory + gxDriverVol atil eCat egory

H

Items in the gxNoCol | ect i onCat egor y category are not purged. Data that is specific
to an output printer driver should be grouped in the

gxVol ati | eQut put Dri ver Cat egor y collection item category. Data that is specific to
a formatting printer driver should be grouped in the

gxVol ati | eFormat ti ngDri ver Cat egory collection item category.

Data that need not be saved when a job is flattened should be grouped in the

gxDriver Vol ati | eCat egory collection item category. You must also clear the

col | ecti onPer si st enceBi t attribute bit if you would like to keep the information
but do not require it to be saved with the collection.

About Page Formatting and Dialog Box Customization 3-9

CHAPTER 3

Page Formatting and Dialog Box Customization

The Job Collection

QuickDraw GX primarily stores in a job collection the information contained in the Print
dialog box and its General panel, Paper Match panel, and Print Time panel. Panels for
the Print dialog box are discussed in the chapter “Introduction to Printing With
QuickDraw GX” in this book. QuickDraw GX stores 18 items in a job collection, as
shown in Figure 3-1.

Figure 3-1 The job collection

...

Printpb inform afion
Colafon irom aton

Copies niem zion

Pagerrgeinfrmzion

wnrilr nform xdon

Rle-deediraion irdem adon

Rla-locadon irdem aton

Rlefomn 2t irdomafon

Rleforie normaion

Paper-fesdinformation

Marnml-fa=d infarmaton

Sndard m2ppirg irermaion

Dpecial mopping irdem ation

Traar-ra 2pping irdermaton

Printpan indermn ziion

Femnztpand informaion

Pap ar 2iching informadon

Tranelwieddo o antirdormaton

A brief description of each collection item follows. To see how the pieces of data are
structured in the collection item, see “Constants and Data Types for Job Collection
Items” beginning on page 3-78. Job collection items include the following:

n Print-job information. This collection item describes the job information for the print
job. It contains information such as the total number of pages to print, the print job’s
priority, designated time to print, and the amount of time in which to keep a print job

3-10 About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

in an alert state before cancelling the job. It also contains the first page from which

to begin printing and indicates whether the user chose to be alerted before printing
begins or after printing is finished. In addition, this property contains the name of the
application used to create the printable document, the name of the user’s document,
and the name of the user associated with the printable document.

n Collation information. This collection item specifies whether document pages should
be collated when printed. The user typically specifies whether collation is desired in
the Collate Copies checkbox in the Print dialog box.

n Copies information. This collection item contains the number of copies of the
document to print. The user specifies the number of copies to print in the Copies field
in the Print dialog box.

n Page-range information. This collection item contains the page-range information in
the job object as well as data that allows customized or replacement page ranges. It
contains the user-specified custom, default, or replacement page-range information
from the Print dialog box.

n Quality information. This collection item contains information about the quality
mode, such as the default quality mode and the current mode. It also includes the
number of quality menu items and an array of quality names (such as “Best”) to
display in the Quality pop-up menu in the Print dialog box.

n File-destination information. This collection item contains the file-destination
information for the job object. It specifies whether the user chose File in the
Destination pop-up menu in the Print dialog box.

n File-location information. This collection item contains the file-location information
as a FSSpec structure. It typically contains the result of a call to St andar dGet Fi | e,
which is used to determine the filename when the user prints to a file.

n File-format information. This collection item contains the name of the file format if
the destination of the print job is a file.

n File-fonts information. This collection item specifies whether fonts should be stored
as part of the file. If fonts are stored, it specifies whether all fonts are stored or only
nonstandard fonts.

n Paper-feed information. This collection item contains the paper-feed information for
the job object. It specifies whether the user chose the Automatic or Manual radio
button for Paper Feed in the Print dialog box.

n Manual-feed information. This property contains the manual-feed information for
the job object. It specifies the number of paper types to manually feed and an array of
paper-type names to display.

n Standard mapping information. This collection item specifies whether to use
standard mapping information for the print job. The item contains a Boolean value
that is t r ue if input tray paper matching is to be used.

n Special mapping information. This collection item contains the special mapping
information for the job object. It specifies mapping options, such as whether to
redirect the pages in a document to a particular paper tray or whether to scale pages
or tile pages in a document.

About Page Formatting and Dialog Box Customization 3-11

CHAPTER 3

Page Formatting and Dialog Box Customization

n Tray-mapping information. This collection specifies the tray-mapping information for
the job object. It contains the index for a paper tray, which the user typically specifies
by selecting a tray from the Paper Match panel of the Print dialog box.

n Print-panel information. This collection item contains the print-panel information for
the job object. It specifies the name of the first panel to appear when your application
displays the Print dialog box.

n Format-panel information. This collection item contains the format-panel information
for the job object. It specifies the name of the first panel to appear when your
application displays the Page Setup dialog box.

n Paper-mapping information. This collection item contains the paper-mapping
information for the job object. If it is used, it contains a flattened paper-type resource.

n Translated-document information. This collection item contains the
translated-document information for the job object. QuickDraw GX provides this
information only for documents designed for printing with the Macintosh Printing
Manager.

The Format Collection

QuickDraw GX primarily stores information from the Page Setup and Custom Page
Setup dialog boxes in a format collection. You need to call the GXChangedFor mat
function each time you change the format collection.

QuickDraw GX stores nine items in a format collection, as shown in Figure 3-2.

Figure 3-2 The format collection

3-12

& [

Crizndadon infrmaton

Eealing information

Cir &zt edz inferm xion

Formathalfons inform xion

Pageirrersion informadon

Harizartal page-fip irdfom ation

Werfcal pagetipintrmzion

Preciebitn ap informafon
Papar-ipe lockindem aion

About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

A brief description of each collection item follows. To see how the pieces of data are
structured in the collection item, see “Constants and Data Types for Format Collection
Items” beginning on page 3-89. Format collection items include the following:

n Orientation information. This collection item contains the orientation information for
the format object. It specifies whether to print a document (or a specific page) in
portrait, landscape, or rotated landscape orientation. A user typically specifies
orientation for an entire document in the Page Setup dialog box and specifies
orientation for an individual page in the Custom Page Setup dialog box.

n Scaling information. This collection item contains the scaling information for the
format object. It specifies a document’s horizontal and vertical scaling factors. It also
stores the minimum and maximum scaling factors allowed. A user typically specifies
scaling for an entire document in the Page Setup dialog box and specifies scaling for
an individual page in the Custom Page Setup dialog box.

n Direct-mode information. This collection item contains the direct-mode information
for the format object. It specifies whether the user chose the Direct checkbox in the
Page Setup dialog box. (This checkbox appears only if the printer driver supports text
job format mode printing.) The text job format mode is discussed in the chapter
“Advanced Printing Features” in this book.

n Format-halftone information. This collection item contains the format-halftone
information for the format object. It specifies the total number of halftone structures
that can be used for a specific page and an array of halftone structures. You can use
halftones to render continuous tone images on noncontinuous tone printers if the
printer driver or a printing extension supports halftones. For an introduction to
halftones, see the view-related objects chapter of Inside Macintosh: QuickDraw GX
Objects. For more information about this collection item, see “Halftones and Format
Collections” beginning on page 3-21.

n Page-inversion information. This collection item contains the page-inversion
information for the format object. It specifies whether to invert a page before printing.

n Horizontal page-flip information. This collection item contains the horizontal
page-flip information for the format object. It specifies whether to horizontally flip the
page left to right before printing.

n Vertical page-flip information. This collection item contains the vertical page-flip
information for the format object. It specifies whether to vertically flip the page top to
bottom before printing.

n Precise-bitmap information. This collection item contains the precise-bitmap
information for the format object. It specifies whether to scale a page by 96% on
300-dpi printers.

n Paper-type lock information. This collection item contains the paper-type object lock
information for the format object. It indicates whether the format’s paper-type object
is locked.

Note

The page-inversion information, page-flip information (horizontal and
vertical), and precise-bitmap information are used, by default, only by
PostScript printer drivers. u

About Page Formatting and Dialog Box Customization 3-13

CHAPTER 3

Page Formatting and Dialog Box Customization

The Paper-Type Collection

The paper-type collection contains additional information about the paper-type object.
QuickDraw GX stores in a paper-type collection five collection items, as shown in
Figure 3-3.

Figure 3-3 The paper-type collection

3-14

\b Paperty p collecBon

— —al

Bz infom abon
Crazir informadon

Urite infomn zbon

Azqe irfermaton

Comn o antinformaton

A brief description of each collection item follows. To see how the pieces of data are
structured in the collection item, see “Constants and Data Types for Paper-Type
Collection Items” beginning on page 3-94. Paper-type collection items include the
following:

n

Base information. This collection item contains the base paper type information for
the paper-type object, which indicates the source from which the paper type was
created. Base types include: unknown, US Letter, US Legal, A4, B5, and tabloid.

Creator information. This collection item contains the creator information structure
for the paper-type object. It specifies the creator type of a paper-type object; for
example, ' sypt' for a system paper-type object creator and ' uspt ' for a user
paper-type object creator.

Units information. This collection item contains the units information for the
paper-type object. Units can be specified in picas, millimeters, and inches.

Flags information. This collection item contains the flags information for the
paper-type object. The flags are bits used to set or clear specific attributes of

a paper-type object, such as whether the paper type is the default paper type for this
format. For information about paper-type object flags, see “Flags Information”
beginning on page 3-97.

Comment information. This collection item contains the comment information for the
paper-type object. It allows a comment to be associated with a paper-type object. You
can specify application-specific information in this comment. For example, you may
want to store a textual description of the paper-type and its purpose.

About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

About Page Formatting

Page formatting allows the user to format specific pages of a document differently from
the default formatting for the rest of the document. Using QuickDraw GX page
formatting features, your application can

n allow users to specify unique formats for the individual pages of a document
n retrieve a format object’s mapping

n attach a form to a format object as a backdrop to each page

n create documents that contain page-specific halftone information

n copy a format object for use in other documents

For example, using page-formatting features, a mail-merge application may
automatically generate a document in which the first page consists of a template in
which a user can enter addresses and the rest of the document consists of blank sheets
in which a user can add text.

Figure 3-4 shows a document that is composed of a two-page letter and many address
labels. The job object references two format objects, one for either page of the letter and
the other for the address label.

Figure 3-4 A three page document and its corresponding job and format objects

R TR TR
T

firteTE:

About Page Formatting and Dialog Box Customization 3-15

3-16

CHAPTER 3

Page Formatting and Dialog Box Customization

Manipulating format objects is described in the next section. Information on accessing a
format object’s mapping is discussed in “Mapping for Format Objects” beginning on
page 3-18. Information on attaching a form to a format object is discussed in “Forms and
Format Objects” beginning on page 3-20. Information on halftones is discussed in
“Halftones and Format Collections” beginning on page 3-21.

Manipulating Format Objects

A format object contains the basic information that your application needs to display a
single page or a set of pages. Generally, you work with format objects when a user

n creates a new format using the Custom Page Setup dialog box
n wants to use a format in several pages of a document
n modifies a format that is shared by other pages in the same document

n saves or opens a document

Figure 3-5 shows how you manipulate format objects in response to the first three
actions.

About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-5 Manipulating the format object in response to user actions
Uer artinn Applmbos espare
Y D= fultfomn 2t

1M x|

[aLHL alt

S =y

B AL

P —

LLWICM P4IC 426NE .

rred .. =r

Lol g “mpy

[ul: - cadckOraa G supplics 2 defaudt

T — formathat ie vesd by 2zch page

Page 1 Page2 P33 1
— — |
— === |
Ee— | | I —— |

urinsENan: hi' @ T‘_.."

Ugezr crazie s o ez form 3t

Creade anawiom atobject fr page 2

Fag=1 Page2 Page 3

L

Lleenr i b e Hroex rem
format on an xddifiona page

Clore e formatobject
e cinied with page 2

Pag=1 Fagez

Page

Fage 3

H:.ll-l:l an |‘3\.

Lewer rincdifie e i formatofpage 3

geg;

Diepoez of fomn atobject for page

and ore ke e fom at object

About Page Formatting and Dialog Box Customization

3-17

CHAPTER 3

Page Formatting and Dialog Box Customization

When a user creates a new format through the Custom Page Setup dialog box, you need
to create a new format object. Creating a new format object is discussed in “Creating a
Format Object for a Page in a Document,” which begins on page 3-40.

Each format object you create has an associated owner count. The owner count indicates
the number of times that a format object is shared. When a user creates a new format
through the Custom Page Setup dialog box, you need to create a new format object with
the GXNewf~or mat function. This function sets the owner count of a format object to 1.

When a user wants to use the new format to format another page the same way, you
need to increment the format object’s owner count. You use the GXCl oneFor mat

function to increment the owner count of a format object by 1. Cloning a format object is
discussed in “Sharing Formats for Document Pages,” which begins on page 3-44.

When a user modifies a format object that is also shared by other pages, you need to
dispose of its corresponding format object and create a new one. The

GXDi sposeFor mat function decrements the owner count of a format object by 1.
Disposing of a format object is discussed in “Disposing of a Format Object for a Page in a
Document,” which begins on page 3-47.

To obtain the current owner count of a format object, you use the
GXCount For mat Oaner s function. For more information about this function, see the
description of GXCount For mat Oawner s on page 3-107.

You also must create a correspondence between the format and the page. Typically, you
keep the correspondence in the format collection. You must save the correspondences
when the job is flattened and retrieve them when the job is unflattened. For an example,
see “Associating Format Objects With Document Pages” beginning on page 3-61.

Mapping for Format Objects

A format object’s mapping is a mathematical representation of the format object’s
settings. These settings include the paper size, page size, orientation, and scaling. The
paper size and page size are set when you create the format object.

QuickDraw GX uses this mapping to scale page information into device pixels. A device
pixel is the smallest physical area that a printer is capable of rendering. Typically, the
mapping consists of the high-resolution scaling information needed to print a page at the
highest quality.

QuickDraw GX and the printer driver set up the mapping. Your application can retrieve
the mapping but cannot set it directly. You might want to retrieve it, for example, to

set the mapping property of a view port to represent the printer on screen. For more
information about view port objects, see the view-related objects chapter of Inside
Macintosh: QuickDraw GX Objects.

3-18 About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-6 shows how the scaling item affects the mapping.

Figure 3-6 Scaling a format object
e mrre e mraa - - F‘ o dm
il A A e I05EY
'-— Fage size
D a, vET 0
Fom 2t betore wcaling
— Papoar wize
g e . (=10,-1.0,16, 21}
. '—— Page eize
: (0,0, 15,20
S0 reduction
.......................... - raize
: H ISR L oy
- 'ﬁ "— Page size
Ho00,7E
Afler moapping by
prirder driver

When 50% scaling is applied, the scaling variables in the mapping are actually doubled,
which causes the shape to appear the same size on a page of paper that is twice its
original size. When the printer driver maps the page to dots-per-inch, it reduces the
format dimension and everything within them, including the shape object. The result is
that the shape is scaled to 50% when it is printed.

About Page Formatting and Dialog Box Customization 3-19

CHAPTER 3

Page Formatting and Dialog Box Customization

Forms and Format Objects

QuickDraw GX provides the form property, which allows your application to format
pages of a document with a template. A form is made up of two shape objects—one
shape defines the form itself, and the other shape, the mask shape, defines erasable areas
within the form. The mask shape is optional; your application can erase the contents
within a form, but this technique is not recommended.

Your application can specify a form for any format object associated with the formatting
printer. Your application uses this form as a backdrop that is applied to a set of pages.
For example, you can use a form to define erasable areas within pages created using a
database application.

To associate a form shape and a mask shape with a format object associated with a page,
you use the GXSet For mat For mfunction. To retrieve the form and mask shapes for a
particular format object, you use the GXGet For mat For mfunction. The shape type that
you associate with a format object must be a picture shape.

Figure 3-7 shows a page from a document created by a database application. The figure
also shows the job object corresponding to the document, the job’s format object, and a
form.

Figure 3-7 Using a form to format a page

_____]_____
u
I

3-20

Forms save time during spooling, rendering, and I/0. During spooling, QuickDraw GX
spools a form shape only once. QuickDraw GX renders a form shape once for each
distinct format object it is attached to. During 1/0, if the printer can cache the
representation of the form, QuickDraw GX saves data transmission time by sending the
form to the printer only when it has to.

About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Halftones and Format Collections

You can use a halftone to represent more colors than can be represented on a printer by
alternating available colors of a fixed cell size so that a noncontinuous tone device
appears to produce continuous-tone grayscale or full-color images.

You can use the format collection to specify halftone information on a page-by-page
basis. Initially, the printer driver specifies the halftone information for the default format
by storing the information in this format’s format collection object. You can add
halftones to this collection, in which case you are changing the halftone for the entire
document. You can also change the halftone information in a format collection associated
with the format object for specific pages, in which case only the pages associated with
the format object receive the halftone. Storing halftone information in a format collection
is discussed in “Storing Halftone Information in a Format Collection,” which begins on
page 3-52.

Note

To specify halftone information on a shape-by-shape basis, you use a
synonym attached to the shape’s ink object. For more information about
the halftone synonym, see the chapter “Advanced Printing Features” in
this book. u

The format-halftone item in the format collection specifies the halftones to use. The
collection item specifies a gxFor nat Hal f t onel nf o structure that defines the number
of allowable halftones and their characteristics. For the definition of the

gxFor mat Hal f t onel nf o structure, see “Format-Halftone Information” on page 3-92.

The definition of each halftone is specified in a gxHal f t one structure, which is
described completely in the view-related objects chapter of Inside Macintosh: QuickDraw
GX Objects:

struct gxHal ftone{

fixed angl e; /* direction of halftone */
fixed frequency; /* cells per inch */

gxDot Type met hod; /* kind of pattern */

gxTi nt Type tinting; /* tint calculation method */
gxCol or dot Col or; /* col or of foreground */
gxCol or backgroundCol or; [/* color of background */
gxCol or Space tint Space; /* color space for tint */

H

You can specify any number of these gxHal f t one structures in the format-halftone
information item. QuickDraw GX selects appropriate halftones from the list of available
halftones in the item. Its selection is based upon the t i nti ng field in the halftone
structure;

n When you print to a black-and-white PostScript device, QuickDraw GX looks for a
halftone structure that specifies gxLum nanceTi nt inthe ti nti ng field. If no
halftone specifies this value, it looks for a halftone that specifies gxConponent 4Ti nt
as its tinting method. Component 4 is the black component in the CMYK (cyan,

About Page Formatting and Dialog Box Customization 3-21

CHAPTER 3

Page Formatting and Dialog Box Customization

magenta, yellow, and black) space. If no halftone specifies this tinting method either,
the first halftone in the list is used.

n When you print to a color PostScript device, a maximum of four halftones are used.
QuickDraw GX attempts to locate halftones for the following tint calculation methods:
gxConponent 1Ti nt for the cyan halftone, gxConponent 2Ti nt for the magenta
halftone, gxConponent 3Ti nt field for the yellow halftone, and
gxConponent 4Ti nt for the black halftone. If a tinting method is in the list more than
once, the first one in the list is used.

If a halftone for the gxConponent 4Ti nt method is not in the list, QuickDraw GX
uses the gxLum nanceTi nt tinting method for the black halftone. If the

gxLunmi nanceTi nt tinting method cannot be found either, QuickDraw GX uses the
first halftone in the list for the black halftone.

If QuickDraw GX cannot find a halftone for the gxConponent 1Ti nt,
gxConponent 2Ti nt , orgxConponent 3Ti nt tinting methods, it uses the black
halftone for the missing tinting method.

It is only possible to use halftones to the extent that a particular PostScript device
supports them. The dot color and background color of a halftone are ignored because
QuickDraw GX assumes that the dot color for a black-and-white device is black and the
dot color for a color device with the gxConponent 2Ti nt tinting method is magenta.

Dialog Box Customization

QuickDraw GX allows your application to customize print dialog boxes, typically, by
adding panels. A panel is a portion of an expanded dialog box that presents additional
printing options for users. For example, you may allow the user to specify custom
margins in a panel you add to the Page Setup dialog box or the Custom Page Setup
dialog box. Figure 3-8 shows the expanded Custom Page Setup dialog box with

two panels, the General panel and the “My override” panel. The contents of the General
panel are shown in Figure 3-8.

Figure 3-8 The expanded Custom Page Setup dialog box with two panels

3-22

Cuxlum Paye Selup

|| Foper Type: | US Leller vI

L Oricntation: . I @

Scale: A

g wverr e

g [FP.IIIP.I’ lhnires] [FIP.ITIHIIF!] [ranrel]l Format I

About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX stores a user’s responses to most default dialog items in collection
objects. Your application can use collection objects to store information from panels you
have added to dialog boxes. For information about storing items in collection objects and
retrieving them, see “Using Printing-Related Collection Objects” beginning on page 3-27.

Note

If several applications want to provide the same option in the same
panel, it may be better to implement the panel in a printing extension.
For more information about printing extensions, see the printing
extensions chapter of Inside Macintosh: QuickDraw GX Printing Extensions
and Drivers. u

To create a panel, you must define a panel resource (gxPr i nt Panel Type), as described
in the next section. You may also define an extended item list resource

(gxExt endedDI TLType) that defines how to respond to user actions, such as clicking a
button, while the panel is on the screen. This resource is described in the section
“Automating Panel Events” beginning on page 3-25.

Messages are used to notify the application when a print dialog box is about to be
displayed. This allows you to load the panel from the resource before the dialog box
is displayed. The functions that invoke these messages are shown in Table 3-1.

Table 3-1 Functions that enable dialog box panels
Function Description
GXJobPrint Di al og Displays the Print dialog box

GXJobDef aul t For mat Di al og Displays the Page Setup dialog box
GXFor mat Di al og Displays the Custom Page Setup dialog box

Your application typically takes these steps to enable a panel when the user chooses a
menu item that brings up a dialog box:

1. Call the appropriate function, such as GXJobPr i nt Di al og if the user chose the Print
menu item from the File menu.

2. Respond to the message, such as gxJobPr i nt Di al og, by invoking your override
function; for example, MyJobPri nt Di al og. This response was set up by the call to
GXI nstal | Appl i cationOverri de to set up the application as a message handler.

3. Set up the panel and call GXSet upDi al ogPanel to display it. These actions are
performed by the override function.

4. Forward the message. This action is also performed by the override function.

For an overview of how messages allow you to display a panel in a print dialog box, see
the chapter “Introduction to Printing With QuickDraw GX” in this book.

About Page Formatting and Dialog Box Customization 3-23

CHAPTER 3

Page Formatting and Dialog Box Customization

To forward a message, you call one of the functions in Table 3-2.

Table 3-2 Functions that forward a dialog box message

Function Description

Forwar d_GXJobPrint D al og

Forwards the gxJobPri nt Di al og
message

For war d_GXJobDef aul t For mat Di al og Forwards the

gxJobDef aul t For mat Di al og
message

For war d_GXFor mat Di al og Forwards the gxFor mat Di al og

message

You pass exactly the same arguments to the forwarding function as those with which
your override function was called. For an example of setting up a custom dialog box
with an added panel and forwarding a message, see the section “Adding Panels to
Dialog Boxes” beginning on page 3-67. For information about how to forward other
messages, see the Message Manager chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities.

The Dialog Box Panel Resource

A panel resource defines a panel. It specifies the following information:

n

n

n

n

The panel’s name, such as My over ri de. The name appears in the list of panels for an
extended dialog box, under the panel’s icon.

The script used to display the panel, such as snRoman.
The resource of the' DI TL' resource that defines the items in the panel.

The resource 1D of the icon to display in the extended dialog box.

Listing 3-1 shows the structure of a panel resource.

Listing 3-1 A panel resource definition template

3-24

type gxPrintPanel Type {

pstring[31]; [* name */

integer Script;/* international script */

fill word; /* long word reserved for future use */
fill word; /* long word reserved for future use */
i nt eger; [* the icon id */

i nteger; /* the ditl id */

About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Responding to Panel Events

QuickDraw GX handles events for its default panels automatically. If you change a
default panel or you add another one, you may need to override the messages that
QuickDraw GX sends in order to process the items that you added.

If an event occurs while a panel is displayed, QuickDraw GX sends a

gxFi | t er Panel Event message. If you want to filter the event, you can override this
message by installing a handler for it and by specifying a function that matches the
prototype defined for GXFi | t er Panel Event on page 3-124.

If you do not need to filter the event, you may choose to handle the event in your code,
you may automate the handling of the event, or you may do both. Events that you need
to handle in some way include mouse clicks on radio buttons or checkboxes, choosing an
item from a pop-up menu, and keystrokes in editable text fields.

To handle the event in your application code, you install an override for the

gxHandl ePanel Event message. You can override this message by installing a handler
for it and specifying a function that matches the prototype defined for

GXHandl ePanel Event on page 3-123.

For information about messages and how to override them, see the chapter
“Introduction to Printing With QuickDraw GX” in this book. For an example of
installing an override function, see the chapter “Core Printing Features” in this book. For
information about automatically handling panel events, see the next section.

Automating Panel Events

You can allow QuickDraw GX to automatically respond to selections in dialog box
panels without you writing additional application code. QuickDraw GX provides an
extended item list (gxExt endedDl TLType) resource that loads values or settings of
items and responds to changes to items in an item list (" DI TL') resource. The item types
for which QuickDraw GX can load values or settings and respond to changes in them
include

n radio buttons
n checkboxes
n PoOp-up menus

n editable text in strings; the strings may represent characters, integers, and real
numbers

QuickDraw GX obtains the values or settings from items in the job and format
collections and responds to changes, by updating the information in these items, when
the changes are confirmed. If the panel is part of the Print dialog box, the collection item
must be in the job collection. If the panel is part of the Page Setup or Custom Page Setup
dialog box, the collection item must be in the format collection.

For example, as a panel is displayed, an extended item resource specifies the collection
item to use to set a group of radio buttons. If a user clicks on an unselected radio button,
QuickDraw GX deselects the previously highlighted button and highlights the chosen

About Page Formatting and Dialog Box Customization 3-25

CHAPTER 3

Page Formatting and Dialog Box Customization

one. When the user closes the panel and confirms the settings (for example, by clicking
the OK button), the items specified by the extended item resource are placed back in
their collections. If the user cancels the panel, the collection items are not changed.

The processing for checkboxes is similar. If the checkbox is not checked, QuickDraw GX
checks it; if it is checked, QuickDraw GX unchecks it. Editable text is checked when the
panel is closed and confirmed.

QuickDraw GX uses the resource IDs of the extended item list resource and ' DI TL'
resources to determine which extended item list to associate with the item list. If both
kinds of resources have the same ID, they are used together. Specifically, when an
open-panel (gxPanel OpenEvt) message is sent in response to the user choosing a panel
in a dialog box, QuickDraw GX uses the extended item list resource that corresponds to
the panel’s' DI TL' resource to load and set the items. (Recall from the previous section
that the panel resource specifiesa' DI TL' resource.)

Listing 3-2 shows the extended item resource definition for editable text that represents a

real number.
Listing 3-2 The extended item list resource definition template
#define xdtl Radi oButtons 0
#define xdtl CheckBox 1
#define xdtlEditTextlnteger 2
#define xdtl Edit Text Real 3
#define xdtlEditTextString 4
#def i ne xdt| PopUp 5
type gxExt endedDl TLType {
case Edit Text Real :
key i nteger = xdtl| Edi t Text Real ;
literal 1ongint; /* 4 byte id for storage in job
obj ect or format object */
| ongi nt; /* nunerical id for storage in
job object or format object */
i nteger; /* offset in bytes into the item
byt e; /* corresponding ditl item*/
byt e; /[* 0 = dont select, 1 = select

pstring[15];/* |ow bound - nil neans '|I
don't care' */

pstring[15];/* high bound - nil means 'I
don't care' */

b
b

3-26 About Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

There are common fields for each item type supported by an extended item list resource:
n The tag ID, such as gxPri nti ngTagl Dfor QuickDraw GX defined tags.
n The ID of the collection item, such as gxFor mat Hal f t oneTag.

n The offset into the collection item. The offset allows you to specify several values,
such as the settings for checkboxes, in the same item.

n The corresponding item inthe' DI TL' resource, starting with 1.

The remaining fields depend on the kind of data. For real number editable text, the fields
specify the following:

n Whether or not to highlight the field’s contents when the panel is displayed; 0
specifies do not highlight, 1 specifies to highlight.

n The lowest possible value for range checking. A ni | string specifies no lower bound.
n The highest possible value for range checking. A ni | string specifies no upper bound.

If a user enters data that does not conform to the specified format or specifies a number
that is out of range, the text item inverts, and a system beep alerts the user to the
problem when the user attempts to leave the field.

For the definitions of other kinds of fields, see “The Extended Item List Resource” on
page 3-128. For an example of specifying an extended item list resource, see “Setting Up
Dialog Box Resources” on page 3-70.

Using Printing-Related Collection Objects

Your application can use collection objects to store information associated with a
particular document. To access collection objects used by QuickDraw GX printing
features, you use functions provided by QuickDraw GX. You manipulate the pieces of
information in collection objects using Collection Manager functions. The Collection
Manager is described in Inside Macintosh: QuickDraw GX Environment and Utilities.

QuickDraw GX allows you to access a collection object associated with a job object,
format object, or paper-type object. If you want to store or access printing-related
information associated with a document in the job collection, you use the

GXGet JobCol | ect i on function to access this collection object. If you want to store or
access formatting information in the format collection, you use the

GXGet For mat Col | ect i on function. If you want to store or access paper-type
information in the paper-type collection, you use the GXGet Paper TypeCol | ecti on
function.

Using Printing-Related Collection Objects 3-27

CHAPTER 3

Page Formatting and Dialog Box Customization

You then specify the collection item in a call to Get Col | ect i onl t emto retrieve the
specific data from a collection. The collection item corresponds to the data you wish to
retrieve. For example, the gxCopi esTag collection item specifies access to data in the
gxCopi esl nf o data structure:

enum { gxCopi esTag = ' copy'};

struct gxCopi esl nf o{
| ong copi es;

b

Note

The collection tags, collection item tags, and structures for collection
objects are defined in the section “Constants and Data Types” beginning
on page 3-133. For complete information about using collections, see the
Collection Manager chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities. u

Accessing Data From a Collection Object

The following example shows you how to access an item from a collection object. For an
example of adding an item to a collection object, see “Associating Format Objects With
Document Pages” on page 3-61. For an example of replacing a collection item, see “Using
a Collection to Implement the Print One Copy Menu Item” on page 3-29.

Listing 3-3 shows how to use the GXGet JobCol | ect i on function to access the number
of copies, which is stored in a job collection.

Listing 3-3 Accessing copies information stored in a job collection

3-28

OSErr MyGet JobCopi es(MyDocunent Ptr myDocunent, | ong *nunCopi es)
{

CSEr r err;

Col I ection jobCol | ecti on;

gxCopi esl nfo t heCopi esl nf o;

| ong dat aSi ze = si zeof (t heCopi esl nf 0) ;
/*

Get the job collection and | ook for a gxCopi esTag col |l ection
object item
*/
jobCol I ecti on = GXGet JobCol | ecti on(myDocunent - >docurnent Job) ;
err = GetCollectionlten(jobCollection,
gxCopi esTag,

Using Printing-Related Collection Objects

CHAPTER 3

Page Formatting and Dialog Box Customization

gxPrintingTagl D,
dat aSi ze,
&t heCopi esl nfo);

/* Extract the nunber of copies and return it. */
if (err == noErr)

*nuntCopi es = t heCopi esl nf o. copi es;
return err;

Using a Collection to Implement the Print One Copy Menu Item

To implement the Print One Copy menu item, you must change items in the job
collection. You must ensure that only one copy will be printed, that all pages will be
printed, and that the output will actually go to a printer and not to a print file. After the
copy has been printed, you must set the contents of the collection items back to their
original values so that the user's settings are preserved.

Listing 3-4 shows how to set the values of the gxCopi esTag, gxPageRangel nf o, and
gxFi | eDest i nati onTag items so that only one copy of all pages is printed and it is
sent to the printer. It also shows how to restore the original values for these collection
items after the print operation has been completed.

Listing 3-4 Modifying the job collection to implement the Print One Copy menu item

OSErr MyPri nt OneCopy(MyDocurnent Pt r whi chDocunent)

{
CSEr r err;
Col | ecti on jobCol | ecti on;
gxCopi esl nfo copi esl nf o;
gxFi | eDestinationlnfo dest | nf o;
gxPageRangel nf o pageRangel nf o;
Ptr ol dCopi esl nfo = nil;
Ptr ol dPageRangel nfo = nil;
Ptr ol dDestInfo = nil;
| ong ol dCopi esSi ze;
| ong ol dPageRangel nf 0Si ze;
| ong ol dDest | nf 0Si ze;

/* Get the job collection and set it up to print one copy */
jobCol | ection = GXGet JobCol | ecti on(whi chDocunent - >docunent Job) ;

Using Printing-Related Collection Objects 3-29

CHAPTER 3

Page Formatting and Dialog Box Customization

/* Set nunber of copies to 1 */

copi esl nfo. copies = 1;

err = MyRepl aceCol | ecti onltem &copi esl nf o,
si zeof (gxCopi esl nf o),
gxCopi esTag, gxPrintingTagl D
jobCol | ection, &ol dCopi esl nf o,
&ol dCopi esSi ze) ;

nrequire(err, ReplaceCopies_error);

/* Set page range to "all". */

pageRangel nf 0. si npl eRange. opti onChosen = gxDef aul t PageRange;

pageRangel nf 0. mi nFronPage = 1,

pageRangel nf o. si npl eRange. fronPage = 1;

pageRangel nf 0. maxToPage = whi chDocunent - >nunPages;

pageRangel nf 0. si npl eRange. t oPage = whi chDocunent - >nunPages;

pageRangel nf 0. si npl eRange. printAll = true;

err = MyRepl aceCol | ecti onl t em &pageRangel nf o,
si zeof (gxPageRangel nf o),
gxPageRangeTag, gxPrintingTagl D,
jobCol | ection, &ol dPageRangel nf o,
&ol dPageRangel nf 0Si ze) ;

nrequi re(err, Repl acePageRange _error);

/* Set destination to "printer". */
destinfo.toFile = fal se;
err = MyRepl aceCol | ecti onlten(&Jest | nf o,
si zeof (gxFi | eDesti nati onl nf o),
gxFi | eDesti nati onTag, gxPrintingTagl D,
jobCol | ection, &ol dDestl nfo,
&ol dDest | nf 0Si ze) ;
nrequire(err, ReplaceDestination_error);

/[* Print one copy of the docunent. (not shown here) */
err = MyPrint Docunent (whi chDocument) ;

/*
Restore original nunmber of copies, page range, and out put
destination in case it needs to be reused.
*/
Repl aceCopi es_error:
My/Repl aceCol | ecti onlt en(ol dCopi esl nfo, ol dCopi esSi ze,
gxCopi esTag, gxPrintingTagl D,
jobCol l ection, nil, nil);

3-30 Using Printing-Related Collection Objects

CHAPTER 3

Page Formatting and Dialog Box Customization

Repl acePageRange_error:

M/Repl aceCol | ecti onlt en(ol dPageRangel nf o, ol dPageRangel nf oSi ze,
gxPageRangeTag, gxPrintingTagl D,
jobCollection, nil, nil);

Repl aceDesti nati on_error:

MyRepl aceCol | ecti onlten(ol dDest| nfo, ol dDestlnfoSize,
gxFi | eDesti nati onTag, gxPrintingTagl D,
jobCol l ection, nil, nil);

/* Di spose of pointers created by MyRepl aceCol | ectionltem */
i f (ol dCopi esl nfo)
Di sposePt r (ol dCopi esl nf 0);
i f (ol dPageRangel nf o)
Di sposePt r (ol dPageRangel nf 0) ;
i f (ol dDest | nfo)
Di sposePtr (ol dDest | nfo);

return err;

Replacing Items in Collections

The MyRepl aceCol | ecti onl t emfunction is a generic routine that you could write to
replace collection items. In the implementation in Listing 3-5, the data being replaced is
returned in a variable pointed to by ol dDat a, unless the pointer is ni | . If the item does
not exist, the new data is returned via the pointer instead.

Listing 3-5 Replacing collection items

CSErr MyRepl aceCol | ectionlten(void *newData, |ong collectSize,
OSType col | ect Type, long col |l ectl D,
Col | ecti on whi chCol | ecti on,
Ptr *ol dData, |ong *ol dDat aSi ze)

{
CSErr err;
| ong i ndex;
/*

If returning the old data, get it.

If there is no old data, return a copy of the new data.
*/
if (ol dData)

Using Printing-Related Collection Objects 3-31

CHAPTER 3

Page Formatting and Dialog Box Customization

{
err = GetCol |l ectionltem nfo(whichColl ection,
col | ect Type,
col l ectlD,
dont Want | ndex,
ol dDat aSi ze,
dont Vant At tri but es) ;
if (err)
{
*ol dDat aSi ze = col | ect Si ze;
*ol dDat a = NewPtr Sys(*ol dDat aSi ze) ;
if (!(err = MenkError()))
Bl ockMbve(newDat a, *ol dData, coll ectSize);
}
el se
{
*ol dDat a = NewPtr Sys(*ol dDat aSi ze) ;
if (!'(err = MenkError()))
err = GetCol |l ectionlten(whichCollection,
col | ect Type,
col I ect 1D,
dont Vant Si ze,
*ol dDat a) ;
}
nrequi re(err, Coul dNot Set A dDat a) ;
}
/*
Add a new col lection item otherw se, get the existing
item s index and replace the old collection item
*/

err = AddCol | ectionlten(whi chCol | ecti on,
col | ect Type,

col l ect | D,
col l ectSi ze,
newDat a) ;

3-32 Using Printing-Related Collection Objects

CHAPTER 3

Page Formatting and Dialog Box Customization

if (err == collectionltenLockedErr)
{
err = GetCol |l ectionltem nfo(whichColl ection,

col | ect Type,
col l ect | D,
& ndex,
dont WANt Si ze,
dont Want At tri but es) ;

if (lerr)
err = Repl acel ndexedCol | ecti onltenwhi chCol | ecti on,
i ndex,
col | ect Si ze,
newDat a) ;

Coul dNot Set A dbDat a:
return err;

Specifying Page Ranges in the Job Collection

You can specify the page range and page range constraints in the page-range information
job collection item. QuickDraw GX provides three kinds of representations for page
ranges: simple numeric From and To values called the default page range, a single
editable text field that specifies a replacement page range, and alphanumeric From and
To values called a customized page range.

Listing 3-4 on page 3-29 shows how to set up a default page range for all pages to
support the Print One Copy menu item of the File menu. The examples that follow show
how to set up default, replacement, and customized page information for specific pages.

Listing 3-6 on page 3-33 shows how to set up the default page range for pages 1
through 4. The user may change these values to any within 1 and 9999.

Listing 3-6 Setting up a default page range

OSErr MyConfi gur ePageRangel(MyDocument Pt r myDocunent)

{
CSErr err;

gxPageRangel nf o **pageRangeHd| ;

/*
Create a handle to store the page range collection itemin,
and then retrieve the collection item

*/

Using Printing-Related Collection Objects 3-33

3-34

CHAPTER 3

Page Formatting and Dialog Box Customization

pageRangeHd|

= (gxPageRangel nfo **) NewHandl eCl ear (si zeof (gxPageRangel nfo));

nrequi re_action(err, NewHand

err = GetCol |l ectionltentHdl

| eClear Failed, err = MenkError(););

(GXGet JobCol | ect i on(nyDocunent - >docunent Job),
gxPageRangeTag,
gxPrintingTagl D
(Handl e) pageRangeHdl|) ;
nrequire(err, CetCollectionltenHdl _Failed);

/*
Use the standard "From To
default nuneric val ues.

" editable text field containing

Specify that the "all pages" radio button is not to be
selected and that the "Front field contains 1 and the

"To" field contains 4.
*/
(*pageRangeHdl) - >si npl eRange
(*pageRangeHdl) - >si npl eRange

(*pageRangeHdl) - >si npl eRange
(*pageRangeHdl) - >si npl eRange
(*pageRangeHdl) - >m nFr onPage
(*pageRangeHdl) - >maxToPage =

.optionChosen = gxDef aul t PageRange;
.printAll = false

1,

. fromPage
.toPage = 4;
= 1;
9999;

/* Add (or replace) the collection item and dispose of its

handl e. */
err = AddCol | ectionltenHdl (
GXCGet JobCo

I I ecti on(nmyDocunent - >docunent Job),

gxPageRangeTag,
gxPrintingTagl D
(Handl e) pageRangeHdl);

Get Col | ectionl tenHdl _Fai | ed:
Di sposHandl e((Handl e) pageRa

NewHand| eCl ear _Fai | ed:
return err;

Using Printing-Related Collection Objects

ngeHdl) ;

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-9 shows the Print dialog box after executing the code to set the page range.
QuickDraw GX obtains the page range to display from the collection item.

Figure 3-9 Print dialog box with default page range
Print
i Print to: | LaserWriter GH w |

A Pages: Al
@Frum:|l | Tu:|4

Copies: D B Collate Copies

Print Tirne Paper Feed: @ Automatic
) Manual

F Match |

[z

Listing 3-7 shows how to set up a replacement page range, in which the From and To
fields are replaced by a single editable text field. Note that the default editable text field
is only one character, therefore, you almost always increase the size of the handle to
accommodate the page range. The page range is a Pascal-style string.

Listing 3-7 Setting up a replacement page range

CSErr MyConfi gur ePageRange2(MyDocunent Pt r myDocunent)

{
CSErr err;

gxPageRangel nfo **pageRangeHd| ;

/*
Create a handle to store the page range collection itemin,
and then retrieve the collection item

*/

pageRangeHd|

= (gxPageRangel nfo **) NewHandl eCl ear (si zeof (gxPageRangel nfo));
nrequire_action(err, NewHandl eC ear Failed, err = MenError(););

Using Printing-Related Collection Objects 3-35

CHAPTER 3

Page Formatting and Dialog Box Customization

err = GetCol |l ectionltentHdl
(GXGet JobCol | ect i on(nyDocunent - >docunent Job) ,
gxPageRangeTag,
gxPrintingTagl D
(Handl e) pageRangeHdl|) ;
nrequire(err, GetCollectionltenHdl Failed);

/*
Repl ace the standard "From To" editable text fields, with a
single editable text field that contains “Chapter 5.~
Specify that the "all pages" radio button is not to be
sel ect ed.
*/
(*pageRangeHdl) - >si npl eRange. opt i onChosen = gxRepl acePageRange;
(*pageRangeHdl) - >si npl eRange. print All = fal se;
Set Handl eSi ze((Handl e) pageRangeHd! ,
si zeof (gxPageRangel nfo) +titleSize-1);
nrequire_action(err, SetHandl eSize Failed, err = MenkError(););
Bl ockMove(FroniToTitl e, (*pageRangeHdl)->repl aceStri ng,
titleSize);

/* Add (or replace) the collection item and dispose of its
handl e. */
err = AddCol | ectionltenHdl (
GXGet JobCol | ecti on(myDocunent - >docurnent Job) ,
gxPageRangeTag,
gxPrintingTagl D
(Handl e) pageRangeHdl|);

Set Handl eSi ze_Fai | ed:
Get Col l ectionltenHdl Fail ed:
Di sposHandl e((Handl e) pageRangeHdl) ;

NewHand| eC ear Fai | ed:
return err;

3-36 Using Printing-Related Collection Objects

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-10 shows the Print dialog box after executing the replacement page range code.
The contents of the title, “Chapter 5,” are displayed in a single editable text field. You
must check for the validity of this field if the user changes it. For more information about
parsing a page range to test its validity, see “Parsing Page Ranges” on page 3-73.

Figure 3-10 Print dialog box with replacement page range

Print
[t Print to: | Laserllriter GH |
A Pages: O All
@|Ehapter5
Copies: D [Collate Copies
it Sirme Paper Feed: ® Automatic
1 Manual
@ Destination: Quality:

Listing 3-8 shows how to set up a customized page range, in which the From and To
fields allow editable text.

Listing 3-8 Setting up a customized page range

OSErr MyConfi gur ePageRange3(MyDocument Pt r myDocunent)

{
CSErr err;

gxPageRangel nf o **pageRangeHd| ;

/*
Create a handle to store the page range collection itemin,
and then retrieve the collection item

*/

pageRangeHd|

= (gxPageRangel nfo **) NewHandl eCl ear (si zeof (gxPageRangel nfo));
nrequire_action(err, NewHandl eC ear_Failed, err = MenError(););

Using Printing-Related Collection Objects 3-37

CHAPTER 3

Page Formatting and Dialog Box Customization

err = GetCol |l ectionltentHdl
(GXGet JobCol | ect i on(nyDocunent - >docunent Job) ,
gxPageRangeTag,
gxPrintingTagl D,
(Handl e) pageRangeHdl|) ;
nrequire(err, GetCollectionltenHdl Failed);

/*
Use the standard "From To" editable text fields, but they
now contain a customformat for the page range val ues.
Specify that the "all pages" radio button is not to be
selected and that the "Front' field contains "iii" and the
"To" field contains "VI".
*/
(*pageRangeHdl) - >si npl eRange. opti onChosen =
gxCust om zePageRange;
(*pageRangeHd!) - >si npl eRange. print All = fal se;
Bl ockMove("iii", & *pageRangeHdl)->fronttring[1], 3);
(*pageRangeHdl) ->frontString[0] = 3;
Bl ockMove("VI", &(*pageRangeHdl)->toString[1], 2);
(*pageRangeHdl)->toString[0] = 2;

/* Add (or replace) the collection item and dispose of its
handl e. */
err = AddCol I ectionltenHdl (
GXGet JobCol | ecti on(myDocunent - >docunent Job) ,
gxPageRangeTag,
gxPrintingTagl D,
(Handl e) pageRangeHdl|) ;

Get Col l ectionltenHdl Fail ed:
Di sposHandl e((Handl e) pageRangeHdl) ;

NewHand| eC ear Fai | ed:
return err;

3-38 Using Printing-Related Collection Objects

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-11 shows the Print dialog box after executing the customized page range code.
The contents of the From and To fields are now editable text. You must check for the
validity of these fields if the user changes them. For more information about parsing a
page range to test its validity, see “Parsing Page Ranges” on page 3-73.

Figure 3-11 Print dialog box with customized page range

Print

i Print to: | LaserlWriter G |

A Pages: Al
® From: [iii | To:|vi

Copies: l:l [Collate Copies

Print Time Paper Feed: ® Automatic
_y Manual

P Match [
aper T -k Fewer Choices

Using Format Obijects and Collection Items to Format Pages

To support page-formatting features, your application needs to manipulate format
objects and keep track of the number of times a format object is shared. Generally, you
work with format objects when a user creates a new format, wants to share a format with
additional pages in a single document, disposes of a page, or modifies a format that is
shared by other pages in the same document. Because your application is responsible for
associating format objects with the individual pages of a document, you need to save
this association when a user saves a document.

Your application can also manipulate format objects to support special formatting
features. These features include associating form shapes with format objects, supporting
page-specific halftone information in your application’s documents, and copying format
objects for use in multiple documents. QuickDraw GX also allows you to access
information associated with a specific format object, such as its mapping and associated
paper-type objects.

The following sections describe how to use page-formatting features.

Using Format Objects and Collection Items to Format Pages 3-39

CHAPTER 3

Page Formatting and Dialog Box Customization

Creating a Format Object for a Page in a Document

When a user wants to create a unique format or change its settings, the user chooses the
Custom Page Setup menu item from the File menu. In response, you need to call the
GXFor mat Di al og function to display the Custom Page Setup dialog box on the user’s
screen. Figure 3-12 shows the Custom Page Setup dialog box.

Figure 3-12 The Custom Page Setup dialog box

Cuslum Paye Selup

Faper Type: U5 Letter VI

Orienfiation: . I@ I

Scale: 100 | %

[More Choices] [Hemuue] | cancel]l Format I

If the user clicks the More Choices button in the Custom Page Setup dialog box,
QuickDraw GX expands the dialog box. Figure 3-13 shows the expanded Custom Page
Setup dialog box.

Figure 3-13 The expanded Custom Page Setup dialog box

3-40

Cusluin Paye Selup

i Paper Type: [US Leller - |

L | I]ricntatiun:. I@ ‘I%

Scale: %

[[Fl‘-‘!IIIF!I’ Chnirps } [Ill'-‘!l'nl'lllﬂ} [I’anr.l:l]l Fnrmat I

You need to create a new format object when a user chooses the Format button in the
Custom Page Setup dialog box. For example, a user may create a four-page document,
move to page 2, and then choose landscape orientation in the Custom Page Setup dialog
box. The change to the page occurs when the user chooses the Format button.

Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-14 shows a four-page document in which the second page uses a new format.
Pages 1, 3, and 4 use the default format.

Figure 3-14 A four-page document in which page two uses a unique format object

A

|
|
D=tz :
ormat |

d

'ﬂ

!'|1|||!I'|IT||r
o |l|I|||||| i

Using Format Objects and Collection Items to Format Pages 3-41

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-9 shows how to create a new format object for a single page in a document. You
should note that the GXNewfor mat function sets the owner count for the new format

object to 1.
Listing 3-9 Creating a format object for a page in a document
OSErr MyPageFor mat Di al og(MyDocunent Pt r nmyDocumnent)
{
OSEr r err = noErr;
gxDi al ogResul t result;
gxEdi t MenuRecord edit MenuRec;
gxFor mat pageFor mat ;
Bool ean newPgFor mat = fal se;
[* Fill in the location of your application's Edit nmenu itens. */
edi t MenuRec. edit Menul D = nEdit;
edi t MenuRec. cut I tem = kCut;
edi t MenuRec. copyl tem = kCopy;
edi t MenuRec. pasteltem = kPaste;
edi t MenuRec. clearltem = kd ear;
edi t MenuRec. undol t em = kUndo;

| *
if

Modi fy existing format object, else create a new one. */
(myDocunent - >pageFor mat [myDocunent - >cur Page -1] != nil)
pageFor mat = myDocunent - >pageFor mat [nyDocunent - >cur Page - 1];

el se

{

/ *
if

pageFor mat GXNewfor mat (nyDocunent - >docunent Job) ;
newPgFor mat = true;
err = GXCGet JobError (myDocunent - >docunent Job) ;

If no errors, display the Page Setup dial og box. */
(err == noErr)

result = GXFormat Di al og(pageFormat, &editMenuRec, nil);

Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

/*
If the user chooses Renove, use the default format for
this page. If the user chooses Format, store the new
format with this page. If the user chooses Cancel,
di spose of the cloned copy of the default format.

*/
switch (result)
{
case gxRevert Sel ect ed:
GXDi sposeFor mat (pageFor mat) ;
pageFormat = nil;
case gxOKSel ect ed:
myDocunent - >pageFor mat [nyDocunent - >cur Page -1] =
pageFor mat ;
/*
Pl ace code here if your application needs to
adj ust the document based on the new format object.
*/
br eak;
case gxCancel Sel ect ed:
/*
If the user selects Cancel, dispose of the cloned
copy of the default fornmat object.
*/
i f (newPgFormat) GXDi sposefor nmat (pageFor mat) ;
br eak;
}
}
return err;

Using Format Objects and Collection Items to Format Pages 3-43

3-44

CHAPTER 3

Page Formatting and Dialog Box Customization

Within the Custom Page Setup dialog box used to create unique formats, the user has the
option to return to the default format by choosing the Remove button or to not save the
format by choosing the Cancel button. These options are handled by the

gxRevert Sel ect ed andgxCancel Sel ect ed cases, respectively, of the switch
statement in Listing 3-9.

For example, if the user decides that the second page in a document should not have a
unique format, the user may choose the Remove button in the Custom Page Setup dialog
box. When the user chooses this button, your application needs to dispose of the format
object for this page and reassociate it with the default format.

Although a user may choose to create a new format for a page using the Custom Page
Setup dialog box, the user may also decide not to save this format.

For example, a user may click on page 4 of a document, choose the Custom Page Setup
dialog box, and modify the scaling of this page. The user may then decide not to save the
new scaling information and choose the Cancel button in the dialog box. When the user
chooses the Cancel button, your application needs to dispose of the newly created
format object and reassociate this page with its previously saved format object.

Saving a job object and the format objects it references is discussed in the chapter “Core
Printing Features” in this book.

Sharing Formats for Document Pages

You need to clone a format object when a user wants to share a format, created using the
Custom Page Setup dialog box, with an additional page in the same document. For
example, a user may have a four-page document that consists of one page in landscape
orientation and three pages that use the default format. A user may decide that page 3 of
this document should also use landscape orientation.

When the user clicks on page 3 and chooses the Format button in the Custom Page Setup
dialog box, you need to clone the format object currently used for page 2 in this
document.

Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-15 shows a four-page document in which the second and third pages use the

same format. Pages 1 and 4 use the default format.

Figure 3-15 A four-page document in which pages 2 and 3 use the same format object

)

© e ———————
..-_.-_.-_.-:_!- - !-}!-}!-}!-}!- !-_.-_.-_... .

e

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I BENCICIE R -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

O

L LA
...-.-.-:-;iuﬂg R
R ErEEtE

- EEE -

A

rroen e]

E I |
Lo i

Dietautt | H :
format | : i

e T e T e e e e e

Using Format Objects and Collection Items to Format Pages

3-45

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-10 shows how to clone a format object when it becomes shared. You should
note that the GXCl oneFor mat function increments the owner count of this format object
by 1. In this example, the format object is shared by two pages in a single document, so
its owner count is also 2.

Listing 3-10 Cloning a format object for two pages in a document

OSErr MyAppl yPageFor mat (MyDocunent Pt r nyDocunent ,
gxFor mat aNewFor mat)

{
CSEr r err = noErr;
gxFor mat pageFor mat ;
/*

If the specified format object is not the sane as the
default format, clone it so it can be shared by different
pages. If it is the default format, set the reference to
nil, which specifies using the default format.

*/

if ((aNewFormat !'= nil) &&
(aNewFor mat ! = GXGet JobFor mat (nyDocunent - >docunent Job, 1)))

pageFormat = GXC oneFor mat (aNewfFor mat) ;

err = GXCGet JobError (myDocunent - >docunent Job) ;
}
el se

pageFormat = nil;

/*
If there are no errors, dispose of the old format object and
store the new one. Reformat the page, if necessary.

*/

if (err == noErr)

i f (nmyDocunent - >pageFor mat [nyDocunent - >cur Page -1] != nil)
GXDi sposeFor mat
(myDocunent - >pageFor mat [myDocunent - >cur Page- 1]) ;
myDocunent - >pageFor mat [nyDocunent - >cur Page - 1] = pageFor mat;

3-46 Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

/*
Pl ace code here if your application needs to adjust the

docunent based on the new format object.
*/

}

return err;

Disposing of a Format Object for a Page in a Document

You need to dispose of a format object when a user wants to modify a format for a single
page that is also shared by other pages in the same document, the user wants to return to
the default format, or the user decides not to save a format.

For example, a user may have a four-page document that consists of two pages in
landscape orientation (pages 2 and 3) and two pages that use the default format (pages 1
and 4). A user may decide to modify the scaling of page 3 of this document. A user
specifies scaling for a page in the Custom Page Setup dialog box. Note that a user also
can modify scaling for the default format in the Page Setup dialog box.

When the user clicks on page 3, specifies a scaling factor, and chooses the Format button
in the Custom Page Setup dialog box, you need to dispose of the format object for this
page and create a new one. This user is not modifying page 2, and therefore, you should
not modify or dispose of its format object.

Using Format Objects and Collection Items to Format Pages 3-47

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-16 shows a four-page document in which the second and third pages use
landscape orientation, but page 3 uses a modified scaling factor. Pages 1 and 4 use the
default format.

Figure 3-16 A four-page document in which pages 2 and 3 use unique formats objects

Listing 3-11 shows how to dispose of a format object for a page in a document. In this
example, you need to dispose of the format object because it is shared by another page in
the document (its owner count is greater than 1).

3-48 Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

The GXDi sposeFor mat function decrements the owner count of this format object by 1.
In this example, the format object is now used by only one page in the document, so its
owner count becomes 1. Storage for a format object is removed only when its owner
count becomes 0. After you call the GXDi sposeFor mat function, you need to call the
GXNewfor mat function to create a new format object for this page.

Listing 3-11 Disposing of a format object for a page in a document and creating a new one

OSErr MyDel et ePage(MyDocunent Pt r nyDocunent)

{
CSEr r err;
| ong cur Page, pg;
/*
D spose of the current page's shape object and format
obj ect.
*/

cur Page = nyDocunent - >cur Page,;
GXDi sposeShape(nyDocunent - >docunent Page[cur Page -1]);
i f (nyDocunent - >pageFor mat [curPage -1] != nil)
GXDi sposeFor mat (myDocunent - >pageFor mat [cur Page -1]);

/* Place application-specific code to delete a page here. */

/*
Shift all pages coming after this one to fill the gap
created by this deletion. Wen finished, decrenent the
nunber of pages in the docunent.

*/

i f (nyDocunent - >nunPages != 0)
for (pg = curPage; pg < nyDocument->nunPages; pg++)

{
nmyDocunent - >docunent Page[pg -1] =
myDocument - >docunent Page[pg] ;
nyDocument - >pageFor mat [pg -1] =
myDocunent - >pageFor mat [pg] ;
}

- -myDocunent - >nunPages;

Using Format Objects and Collection Items to Format Pages 3-49

3-50

CHAPTER 3

Page Formatting and Dialog Box Customization

[* If the current page is beyond the | ast page, reset it. */
i f (curPage > nyDocunent - >nunPages)
- - myDocunent - >cur Page,;

/*
I nval i date the wi ndow so that the page is updated on screen.
Check for errors and return.

*/

I nval Rect (& myDocunent - >docunent W ndow) - >port Rect) ;

err = GXCGet JobError (nmyDocunent - >docunent Job) ;

if (err == noErr) err = (OSErr)GXGet G aphi csError(nil);

return err;

Using Forms With Format Objects

Your application may choose to support a form that can be applied to each page in a
document. This may save printing time because the form can be stored in the printer’s
memory and need not be sent with each page of the document. For an introduction to
forms, see “Forms and Format Objects,” which begins on page 3-20.

To associate a form shape and its mask shape with a format object, you use the
GXSet For mat For mfunction. To retrieve the form and mask shapes for a particular
format object, you use the GXGet For mat For mfunction. The shape type that you
associate with a format object must be a picture shape.

The GXSet For nat For mfunction replaces any form previously associated with a
particular format object. It increments the owner counts of the new picture shapes (by
calling the GXCl oneShape function) and decrements the owner count of the old picture
shapes (by calling the GXDi sposeShape function).

Listing 3-12 shows how to associate a form with a format object. The
My AddFor mat For mfunction in the listing adds a form consisting of a rectangle to the
format object of the current page.

Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-12 Adding a form to a format object

OCSErr MyAddFor mat For m{ MyDocunent Pt r nyDocunent)
{

OSEr r err;

| ong cur Page;

gxFor mat t heFor mat ;

gxShape r ect Shape;

gxRect angl e pageRect ;

/*
Get the current format object. If it’s nil, use the job's
default format object.

*/

cur Page = nyDocunent - >cur Page;

t heFor mat = myDocunent - >pageFor mat [cur Page -1];

if (theFormat == nil)
t heFor mat = GXGet JobFor mat (myDocunent - >docunent Job, 1);

/*
Create a rectangl e shape to use as the format object's form
Make the rectangle's frame the i mageabl e area of the page.

*/

GXGet For mat Di mensi ons(t heFornmat, &pageRect, nil);

rect Shape = GXNewRect angl e(&ageRect);

GXSet ShapeBounds(rect Shape, &pageRect);

GXSet ShapePen(rect Shape, ff(3));

GXSet ShapeFi | | (rect Shape, gxC osedFraneFill);

err = (OSErr) GXGet GraphicsError(nil);

/*
Set the format object's formto a new picture shape, check
for errors, and then di spose of the shape.

*/

if (err == noErr)

GXSet ShapeType(rect Shape, gxPictureType);
GXSet For mat For m(t heFormat, rect Shape, nil);
err = GXGet JobError (myDocunent - >docunent Job) ;

}

GXDi sposeShape(rect Shape) ;

return err;

Using Format Objects and Collection Items to Format Pages 3-51

CHAPTER 3

Page Formatting and Dialog Box Customization

Storing Halftone Information in a Format Collection

Your application can store halftone information for each page in a document in a format
collection. QuickDraw GX stores the halftone structure for a format object as a collection
item in the format collection. For an introduction to printing with halftones, see
“Halftones and Format Collections,” which begins on page 3-21.

Halftones are described by the gxHal f t one structure definition:

struct gxHal ftone{

fixed angl e;

fixed frequency;

gxDot Type met hod;

gxTi nt Type tinting;

gxCol or dot Col or;

gxCol or backgr oundCol or;

gxCol or Space tint Space;
b

The angl e parameter describes the direction of the halftone. The f r equency parameter
describes the size of the dot, in cells per inch. The met hod parameter describes the way
in which the halftone cell is filled. The ti nti ng parameter describes how the desired
color is converted into a ratio of color dots and background dots. The dot Col or and
backgr oundCol or parameters are the colors of the dots used to form the halftone. And
the t i nt Space parameter describes the color space that the original color is converted
to before the tint value is determined. For detailed information on the gxHal f t one
structure, see the view-related objects chapter of Inside Macintosh: QuickDraw GX Objects.

The gxFor mat Hal f t oneTag enumerator is used to identify the
gxFor mat Hal f t onel nf o structure in the format collection:

enum { gxFormat Hal ftoneTag = 'hal f' };

struct gxFornat Hal ft onel nf o{
| ong nuntHal ft ones;
gxHal ftone hal ftones[1];

H

The nunHal f t ones field specifies how many gxHal f t one entries are in the
gxFor nmat Hal f t onel nf o structure. The hal f t ones field specifies each of them.

3-52 Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-13 shows how to store halftone information for a page in a format collection.

Listing 3-13 Storing halftone information in a format collection

OSErr MySet For mat Hal f t ones(gxFor mat t heFor nat,

}

gxFor mat Hal ft onel nf o *t heFor mat Hal f t ones)

CSErr err;
Coll ection fntCollection;

/*
Get the format collection, and attenpt to delete a
gxFormat Hal ft oneTag collection item in case one exists.
Then, add a new one.
*/
ft Coll ection = GXGet For mat Col | ecti on(t heFormat);
RenoveCol | ectionltem(fnt Col | ection,
gxFor mat Hal f t oneTag,
gxPrintingTagl D);
err = AddCol I ectionlten(fntCollection,
gxFor mat Hal f t oneTag,
gxPrintingTagl D,
si zeof (gxFor mat Hal ft onel nf o),
t heFor mat Hal f t ones) ;

/*
Since we changed the format object's collection itens, we
must call GXChangedFor mat .

*/

if (err == noErr)
GXChangedFor mat (t heFor mat) ;

return err;

To provide halftone information for shape objects drawn with the same ink, you use a
halftone synonym. For detailed information on how to use halftone synonyms, see the
chapter “Advanced Printing Features” in this book.

Using Format Objects and Collection Items to Format Pages

3-53

3-54

CHAPTER 3

Page Formatting and Dialog Box Customization

Copying a Format Object for Use in Other Documents

When a user wants to disassociate a format from a particular document and associate it
with another document, you use the GXNewf~or mat , GXCopy For mat , and

GXDi sposeFor mat functions. For example, a user may have a three-page document
that contains a format object for a single page in landscape orientation. This user may
want to use the landscape page in another document and delete it from the original
document.

Figure 3-17 shows two documents. Document A consists of two pages—one page uses
the default format, the other uses a unique format object. Document B also consists of
two pages—each page uses the default format. A user may decide to use the format of
page 2 in Document A for page 1 of Document B.

Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-17 Moving a format object from one document to another

Docamenl B l:_ :
F 1 T B
[Page] [i i i
I - I : : :
| | | e
: : e
I I
1 Pzge2 p———ui:
N=0
| _— |
I — |
I e I
| — |
| |
| |
o o B —1

Using Format Objects and Collection Items to Format Pages 3-55

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-14 shows how to move a format object from one document to another. The
srcPage andsr cDocunent parameters to the MyMoveFor mat ToJob function in the
listing represent the page’s location in the original document. The dest Page and
dest Docunent parameters refer to the new location and document. Initially, a format
object for the destination page does not exist.

Listing 3-14 Moving a format object from one document to another

OSErr MyMoveFor mat ToJob(| ong srcPage, MyDocunent Ptr srcDocunent,
| ong dest Page, MyDocument Ptr dest Docunent)

CSErr err;
gxFor mat srcPgFor mat, dest PgFor mat ;

/*
Get the source format object. If it is nil, create a
destination format object fromthe source job object.
*/
srcPgFormat = srcDocunent - >pageFor mat [srcPage- 1] ;
if (srcPgFormat == nil)
srcPgFor mat = GXNewfor mat (srcDocunent - >docunent Job) ;

/*
Create a new destination format object and copy the source
format object to it. Then dispose of the source format
obj ect and clear out the source page's reference.
*/
dest PgFor nat = GXNewror nat (dest Docunent - >docunent Job) ;
GXCopyFor mat (srcPgFor mat, dest PgFor mat) ;
GXDi sposeFor mat (srcPgFor mat) ;
srcDocunent - >pageFor mat [srcPage-1] = nil;

/*
If there were no errors, store the destination page's fornat
obj ect reference.
*/
err = GXCGet JobError (srcDocunent - >docunent Job) ;
if (err == noErr)
err = GXCGet JobError (dest Docunent - >docunent Job) ;
if (err == noErr)
dest Docunent - >pageFor mat [dest Page- 1] = dest PgFor mat ;
return err;

3-56 Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Obtaining the Mapping From a Format Object

To access a format object’s mapping, your application uses the GXGet For mat Mappi ng
function. Listing 3-15 shows how to obtain the mapping for the format object associated
with the whi chPage page.

Listing 3-15 Obtaining a format object’s mapping

CSErr MyGet For mat Mappi ng(MyDocunment Pt r myDocunent, | ong whi chPage,
gxMappi ng *t heMappi ng)

{
gxFor mat pgFor mat ;
/*
Get the current page's format. A nil reference specifies
using the job’s format object.
*/
pgFor mat = myDocunent - >pageFor mat [whi chPage -1];
if (pgFormat == nil)
pgFor mat = GXGet JobFor mat (myDocunent - >documnent Job, 1);
/[* Get the format's mapping. */
GXGet For mat Mappi ng(pgFor mat , t heMappi ng);
return GXGet JobError (myDocunent - >docunent Job) ;
}

For an introduction to mapping, see “Mapping for Format Objects” beginning on
page 3-18.

Obtaining a Paper-Type Object Associated With a Format

QuickDraw GX allows a user to specify a paper-type name for each page of a document.
Pages with different imageable areas require different format objects. Imageable areas
differ both because of physical characteristics (paper size and page size) and because of
rendering characteristics (such as scaling and orientation).

Pages require different paper-type objects only when the physical characteristics differ. A
change in the paper-type object requires a change in the format object. The job object in
Figure 3-18 references three format objects and three paper-type objects. This allows a
user to print the address page on an envelope, a letter that contains graphics on an
8.5-by-11 inch sheet of paper in portrait orientation, and a page of graphics on a sheet of
paper in landscape orientation.

Using Format Objects and Collection Items to Format Pages 3-57

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-18 A three-page document and its corresponding job object, format objects, and

paper-type objects

You can use the GXGet For mat Paper Type function to obtain a format object’s
associated paper-type object. For detailed information on working with paper-type
objects, see the chapter “Advanced Printing Features” in this book.

3-58 Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-16 shows how to obtain the paper-type object that a format object references.

The MyGet Paper TypeNane function in the listing returns the name stored in the
paper-type object.

Listing 3-16 Obtaining the paper-type object associated with a format object

OSErr MyGet Paper TypeNanme(MyDocunent Pt r myDocunent, Str255

paper TypeNane)

gxPaper Type t hePaper Type,;
| ong cur Page;
gxFor mat pgFor mat ;

/*

Get the current page's format. A nil reference specifies

using the job’s format object.
*/
cur Page = nyDocunent - >cur Page;
pgFor mat = nyDocunent - >pageFor mat [cur Page -1];
if (pgFormat == nil)
pgFor mat = GXGet JobFor mat (myDocunent - >docunent Job, 1);

/* Get the format's object paper-type object and name. */
t hePaper Type = GXGet For nmat Paper Type(pgFor nat) ;

GXGet Paper TypeName(t hePaper Type, paper TypeNane);

return GXGet JobError (myDocunent - >docunent Job) ;

Scanning Through a Job’s Format Objects

QuickDraw GX allows you to scan through the format objects associated with a

particular job. You can use the GXCount JobFor mat s function to obtain the number of

format objects in a particular job object. If you want to examine or manipulate each

format object for a job, you can use the GXFor EachJobFor mat Do function.

Note

You cannot use the GXFor EachJobFor mat Do function to modify the
default format. u

Using Format Objects and Collection Items to Format Pages

3-59

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-17 shows the GXFor EachJobFor mat Do function being called to execute the
My CheckMappi ngPr oc function on each format object.

Listing 3-17 Using the GXFor EachJobFor mat Do function

3-60

CSErr MyCheckAl | For mat Mappi ngs(MyDocunent Pt r nmyDocunent)

{
gxMappi ng t heMappi ng;

/* Loop through each format, and check its mapping. */

GXFor EachJobFor mat Do(myDocunent - >docunent Job,
My CheckMappi ngProc, (void *) &t heMapping);

return GXGet JobError (myDocunent - >docunent Job) ;
}

The GXFor EachJobFor mat Do function passes a pointer to the application-supplied
function to execute and a pointer to the information that the application-supplied
function returns. The prototype for the application-supplied function is as follows:

gxLoopSt at us MyFor mat Functi on (gxFormat aFormat, void *ref Con);

The first parameter, aFor nat , is a reference to a format object. QuickDraw GX sets this
parameter as it calls the function for each format object referenced by a job object. The
second parameter, r ef Con, is a pointer to a reference constant through which data can
be passed. The return value, gxLoopSt at us, specifies whether the application-supplied
function should be called again, allowing you to terminate the

GXFor EachJobFor mat Do function early.

Listing 3-18 shows the application-supplied function, MyCheckMappi ngPr oc, that
obtains scaling and orientation information for each format object associated with a
particular job. For example, you can use this function to obtain scaling information when
you need to adjust a ruler.

Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-18 Obtaining scaling information on each format object

pascal gxLoopStatus MyCheckMappi ngProc(gxFormat aFormat, void
*t heMappi ng)

{
/*
Get the mapping for the current format object, check it out,
and keep looping until all formats objects are accessed.
*/
GXGet For mat Mappi ng(aFor mat, (gxMappi ng *) theMappi ng);
/*
Your application could adjust rulers here, or do sone
ot her useful thing based on each format object's mapping.
*/
return gxKeeplLoopi ng;
}
Note

For information about the gxMappi ng structure that contains scaling
and rotation (orientation) information, see the mathematical functions
chapter of Inside Macintosh: QuickDraw GX Environment and Utilities. u

Associating Format Objects With Document Pages

Your application is responsible for managing the correspondence between format objects
and individual pages in a document. For example, a user may create a document that
consists of three pages. Through the Custom Page Setup dialog box, you can allow a user
to specify that pages 1 and 2 use portrait orientation and page 3 uses landscape
orientation. In this example, you need to store information that pages 1 and 2 use the
default format, while page 3 uses a unique format object.

When a user saves a document containing multiple format objects, you need to save
format collection information and then flatten the document’s job object. In addition,
when a user opens a document containing multiple format objects, you need to unflatten
its corresponding job object and retrieve the format collection information. Flattening
and unflattening a document’s corresponding job object is discussed in the chapter
“Core Printing Features” in this book.

Using Format Objects and Collection Items to Format Pages 3-61

CHAPTER 3

Page Formatting and Dialog Box Customization

There are several methods you can use to store formatting information. A common
method, shown in this section, is to save the correspondence between format objects and
pages in the format collection. Listing 3-19 shows a function that performs this task.

Listing 3-19 Saving the correspondence between format objects and document pages in a
format collection

OSErr MySaveFor mat Ref s(MyDocument Pt r myDocunent)

{
OSEr r err = nokrr;
Handl e t heFor mat | dxLi st ;
Col l ection fntCollection;
gxFor mat def aul t Fnt ;

/* Create a handl e containing all of the format object indices. */
i f (nyDocunent - >nunPages > 0)

{

/*
Obtain the format collection. If you have already have a
docunent page-to-format object correspondence item stored,
renove it.

*/

defaul t Fm = GXGet JobFor mat (myDocunent - >docunent Job, 1);
ft Coll ection = GXCGet For mat Col | ecti on(defaul t Fnt);

if (fmCollection !=nil)
RenmoveCol | ectionltem(fnt Coll ecti on, kMyFor mat| nfoType,
printingTagl D);

/*
Create a list of document page-to-format object
correspondences for the current docunent. If there are no
errors, add the itemto the format collection for |ater
retrieval.

*/

err = MyCreat eFor mat | ndexLi st (nyDocunent ,

&t heFor mat | dxLi st);

3-62 Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

if (err == noErr)
{
HLock(t heFor mat | dxLi st);
err = AddCol I ectionlten(fntCollection, kMy/FormatlnfoType,
printingTagl D,
Get Handl eSi ze(t heFor mat | dxLi st),
*t heFor mat | dxLi st);
Di sposHandl e(t heFor mat | dxLi st);

}

return err;

}

The MyCr eat eFor mat | ndexLi st function stores the index of each page’s format
object in a handle. The index of the format object for page 1 goes in the first long word of
t heFor mat | dxLi st handle. The index of the next page’s format object goes in the next
long word, and so on. The handle is created and returned to the caller. Listing 3-20
shows the MyCr eat eFor mat | ndexLi st function.

Listing 3-20 Filling the handle

OSErr MyCreat eFor mat | ndexLi st (MyDocunent Pt r myDocunent, Handl e
*t heFor mat | dxLi st)

{
CSErr err;
| ong fmtldx, pg, *idxList;
gxFor mat cur For mat ;

/*
Create a handle |large enough to hold all of our entries. This
exanpl e uses NewHandl eCl ear so that all of our indices are
initialized to 0 (an invalid format index). This application
stores a nil format reference for each page which uses the
default format. This allows us to indicate these "nil
ref erences" by an index of O in our resource.

*/

*t heFor mat | dxLi st = NewHandl ed ear (si zeof (1 ong) *
(myDocunent - >nunPages)) ;
err = MenkError();

Using Format Objects and Collection Items to Format Pages 3-63

CHAPTER 3

Page Formatting and Dialog Box Customization

/*
If there aren't any errors, go through each fornat object. If
the format object is used by any pages of the docunent, store
the format object's index in those page entries of
t heFor mat | dxLi st. Skip format object #1, because that's the
default format.
*/
if (err == noErr)
{
HLock(*t heFor mat | dxLi st) ;
i dxList = (long *) **theFornat!| dxLi st;

for (fnldx = 2; fmldx <=
GXCount JobFor mat s(myDocunent - >docunent Job) ; fnt | dx++)

cur Format = GXGet JobFor mat (nyDocunent - >docunent Job,
ftldx);

for (pg = 1; pg <= nyDocunent - >nunPages; pg++)
i f (nyDocunent - >pageFormat[pg -1] == cur Format)
i dxList[pg -1] = fntldx;

}
HUnl ock(*t heFor mat | dxLi st);

}

return err;

}

Listing 3-21 shows how to retrieve format object correspondence from a format
collection when a user opens a document containing multiple format objects. This
function associates new format object references with a document, based upon the
format object indices that are saved with the document. The function is called when a
document is opened. The format object references are stored in the passed
MyDocunent Rec structure.

3-64 Using Format Objects and Collection Items to Format Pages

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-21 Retrieving the correspondence between document pages and format objects from

a format collection

CSErr MyAdj ust For mat s(MyDocunent Pt r nyDocunent)
{

CSErr err = noErr;

Handl e t heFormat | dxList = nil;

gxFor mat t heFormat, defaultFnt;

| ong pg, hunPages, fntldx, *idxList, idx, listSize,
attribs;

Coll ection fntCollection;

/*

Get the format collection, and search for one of the
docunent page-to-fornmat object correspondence itens.

*/

defaul t Fm = GXGet JobFor mat (myDocunent - >document Job, 1);

ft Coll ection = GXCGet Format Col | ecti on(defaul t Fnt);

/*

Load the item containing the correspondences. First,
determine if the itemexists. Next, create a handle to
hold the item and retrieve it. Because there is one

det erm ne

I ong-word entry for each page of the docunent,
the nunber of pages in the docunent.
*/

err = GetCollectionltem nfo(fm Collection, kM/Fornmat!| nfoType,

gxPrintingTagl D, & dx, & istSize,

if (err == noErr)

t heFor mat | dxLi st = NewHandl e(li st Si ze);
if (theFormatldxList !'= nil)
{

HLock(t heFor mat | dxLi st);

err = GetCollectionlten(fntCollection, kMyFormatlnfoType,

&attribs);

gxPrintingTagl D, nil, *theFormatldxList);

nunPages = listSize / sizeof(long);

Using Format Objects and Collection Items to Format Pages

3-65

CHAPTER 3

Page Formatting and Dialog Box Customization

/*
Loop through each saved index. In this exanple, the first
index is for page 1, the second is for page 2, and so on.
Call the GXGetJobFormat function for each saved
i ndex. Store the format references as they are
processed. Wen finished, throw away the handl e.

*/
i dxList = (long *) *theFornmatl| dxList;
for (pg = 1; pg <= nunPages; pg++)
{
fmtldx = idxList[pg -1];
if (fmtldx '=nil)
t heFor mat = GXGet JobFor mat (myDocunent - >docunent Job,
frtldx);
el se
theFormat = nil;
myDocunent - >pageFormat [pg -1] = theFornat;
}

D sposHandl e(t heFor mat | dxLi st);
}

return err;

Customizing QuickDraw GX Dialog Boxes

3-66

Your application can customize QuickDraw GX dialog boxes. To customize a QuickDraw
GX dialog box, you need to take the following general steps:

1.

Install a message handler to override the message that causes a QuickDraw GX print
dialog box to be displayed. Your override function loads your panel.

. Create an item list (" DI TL') resource that defines the items, such as radio buttons,

editable text fields, checkboxes, and pop-up menus, that you want to include in your
panel. You may have to create additional resources, such as a control (" CNTL')
resource for pop-up menus.

. Create an icon resource that is displayed in the extended dialog box.

. Create a panel (gxPri nt Panel Type) resource that provides a name for your panel

and associates the panel with the item list resource and the icon resource.

. Install a handler to respond to events while the panel is active. This handler can be an

extended item list (gxExt endedDl TLType) resource or may be an override of the
gxHandl ePanel Event message.

Customizing QuickDraw GX Dialog Boxes

CHAPTER 3

Page Formatting and Dialog Box Customization

These steps need not be done in order; however, all must be completed. The following
sections describe how your application adds a panel to a QuickDraw GX dialog box and
how to automate the response to user actions using the extended item list

(gxExt endedDI TLType) resource.

Adding Panels to Dialog Boxes

To add a panel to a dialog box, you call the GXI nst al | Appl i cati onOverri de
function to override the messages that QuickDraw GX sends to display its dialog boxes.
The following call to GXI nst al | Appl i cati onOverri de sets up the

MyFor mat Di al ogOver ri de function to be called when the application receives the
gxFor nmat Di al og message:

GXlI nstal | Appl i cationOverride(nmyDocunent->docunent Job,
gxFor mat Di al og, MyFor mat Di al ogOverri de);

The MyFor mat Di al ogOver ri de function that is called in response to the message is as
follows:

CSErr MyFor nat Di al ogOverri de(gxFormat aFormat, StringPtr title,
gxDi al ogResult *result)

{
OSEr r err = nofrr;
err = MySet UpByPagePanel (aFor mat , GXGet MessageHandl er ResFil e());
if (lerr) err = Forward_Format Di al og(aFornmat, title, result);
return err;

}

Note

To remove the application override when a change to the default
behavior associated with the message is no longer desired, use the

&XI nst al | Appl i cati onOverri de function with the function pointer
settoni | to take the override out of the message chain. u

Because you have specified a function pointer in the

GXI nst al | Appl i cati onOverri de function to override the message that displays the
dialog box, QuickDraw GX calls the MyFor mat Di al ogQver ri de function just before it
displays the Custom Page Setup dialog box. The MyFor mat Di al ogOver ri de function
calls the GXSet upDi al ogPanel function for each panel that you want to add. The
MyFor mat Di al ogOver ri de function must forward the message to the next handler in
the message chain.

Customizing QuickDraw GX Dialog Boxes 3-67

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-22 shows the My Set UpByPagePanel function, which obtains information
from the collection to set up a new panel, calls GXSet upDi al ogPanel , and forwards
the message.

Listing 3-22 Setting up a new panel

#defi ne kCreator " Ex#9' /* registered
application
creator */

#def i ne kMyKi ndaCol | ecti onType kCr eat or /* collection
tag type */

#def i ne r _MyFor mat Panel Resl| D 6000 /* 1D of the pane

and panel icon
resources */

typedef struct MyKi ndaCol | ecti onRec {
unsi gned char i sEnabl ed; /* Enabl ed? */
char fillByte; [* Cadds this (if
you don’t) for
al i gnment */
} MyKi ndaCol | ecti onRec, *MyKi ndaCol | ectionPtr
**MyKi ndaCol | ecti onHdl ;

OSErr MySet UpByPagePanel (gxFor mat aFormat, short our ResFil e)

{
OSEr r err;
Col I ection ft Collection
gxPanel Set upRecord panel I nf o;

M/Ki ndaCol | ecti onRec mySettings;

/*
Access the format collection and search for the collection
object itemin which the default settings are stored.

*/

ft Coll ection = GXCGet For mat Col | ecti on(aFor mat) ;

err = GetCollectionlten(fntCollection, kMKindaColl ectionType,
gxPrintingTagl D, nil, &rySettings);

3-68 Customizing QuickDraw GX Dialog Boxes

CHAPTER 3

Page Formatting and Dialog Box Customization

}

/*

*/
if

/*

*/
if

}

If the collection object itemdoes not exist, create one and
add it to the format collection to support default settings
for the dial og panel.

(err == coll ectionltenmNot FoundErr)
mySettings.isEnabled = fal se;
err = AddCol I ectionlten(fntCollection,
kMyKi ndaCol | ecti onType,
gxPrintingTagl D,

si zeof (MyKi ndaCol | ecti onRec),
&y Settings);

Install the panel. Specify its type, resource ID, and the
resource file in which it is |ocated.

(terr)

panel | nf o. panel Ki nd gxAppl i cati onPanel ;

panel | nf o. panel Resl d r _MyFor mat Panel Resl D

panel | nf o. resour ceRef Num = our ResFi | e;

panel | nf o. ref Con = 0; /* not being used here */
err = GXSet upDi al ogPanel (&panel | nfo);

return err;

Once the user confirms or cancels the dialog box, QuickDraw GX disposes of all panel
information. Note that while QuickDraw GX uses a resource file number supplied by the
panel owner to look for panel resources, it does not leave the resource chain set to this
file. The resource chain’s current file is restored once the resources are retrieved.

Customizing QuickDraw GX Dialog Boxes 3-69

CHAPTER 3

Page Formatting and Dialog Box Customization

Setting Up Dialog Box Resources

Figure 3-19 shows the panel that is loaded in Listing 3-22. Listing 3-23 through Listing
3-27 show the resources required to add this panel.

Figure 3-19 A panel added to the Custom Page Setup dialog box

Sunday
HMonday
TuesUay
Custom Page Set| Wednesday =

Thursday
Friday

[bestuay ot the week: [ROATREN

& 0ff 2 0n

|| [FemerEhnkes] [nemuue][[ancel]lFurmatl

Listing 3-23 shows the panel resource, which is added to the dialog box by the
My Set UpByPagePanel function shown in Listing 3-22.

Listing 3-23 Sample panel resource

3-70

#defi ne r_dayPopUpCt | 150 /[* I D of the panel's pop-up CNTL */
#defi ne r_dayPopUpMenu 160 [* I D of the panel's pop-up nmenu */

/* Description of panel added to dialog box. */

resour ce gxPrintPanel Type (r_My/Format Panel Resl D, sysheap,

pur geabl e)
{
"My override", snmRonman, r_MyFornat Panel ResID,/* |con ReslD */
r _MyFor nat Panel ResI D /* Panel ReslID */
b

Customizing QuickDraw GX Dialog Boxes

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-24 shows the item list resource, ' DI TL' , that defines the contents of the panel.

Listing 3-24 Sample item list resource

resource 'DITL" (r_MyFor nmat Panel Resl D, sysheap, purgeable) {
{
{42, 120, 60, 166},
Radi oButton {
enabl ed,
"Of
1
{42, 175, 60, 220},
Radi oButton {

enabl ed,
" on”
b
{14, 27, 35, 323}, /* represents the days of the week
pop-up nenu */
Control {
enabl ed,
r _dayPopUpCt |
}
}
b
Note

When you design your ' DI TL' resources, note that (0.0, 0.0) for a panel
is at the top-left corner of the panel and not at the top-left corner of the

dialog box. When you want to locate the position of the cursor within a
panel, you use the GXGet JobPanel Di nensi ons function to obtain the
dimensions of a panel. u

Customizing QuickDraw GX Dialog Boxes

3-71

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-25 shows the control resource, ' CNTL' , that defines the pop-up menu control.

Listing 3-25 Sample ' CNTL' resource

resource 'CNTL' (r_dayPopUpCtl, sysheap, purgeable)

{
{72, 4, 93, 300},

popupTitl elLeft Just, [* menu's title is left justified */
vi si bl e, [* show it */
140, /[* width of the nenu title */
r _dayPopUpMenu, /* resource | D of the associated

menu */
popupMenuCDEFproc + popupFi xedW dt h, /* type of pop-up

menu */

0, /* reference constant */
"Best Day of the Wek:" /* control's title */

H

Listing 3-26 shows the extended item list resource that specifies how to process the items
in the panel. For more information about extended item list resources, see “Automating
Panel Events” beginning on page 3-25.

Listing 3-26 Sample extended item list resource

3-72

#defi ne kCreator " Ex#9'

#def i ne kMyKi ndaCol | ecti onType kCr eat or
#defi ne kMyKi ndaCol | ecti onTagl D gxPrintingTagl D +1

resour ce gxExtendedDl TLType (r_M/For mat Panel Resl D,
sysheap, purgeable)

{
{
Radi oButt ons {kMyKi ndaCol | ecti onType,
kMyKi ndaCol | ectionTagl D, 0, {1, 2}},
PopUp {kMyKi ndaCol | ecti onType,
kM/Ki ndaCol | ecti onTagl D, 2, 3}
s
b

This extended item list resource handles two items, a pair of radio buttons,
corresponding to the first two items in the ' DI TL' resource, and a pop-up menu. All of
these items are stored in one collection item, which is identified by the

Customizing QuickDraw GX Dialog Boxes

CHAPTER 3

Page Formatting and Dialog Box Customization

kM/Ki ndaCol | ecti onType collection tag and the kMyKi ndaCol | ecti onTagl Ditem
ID. The application creator is used for the collection type to distinguish it from collection
items provided by QuickDraw GX. The collection item ID is simply derived from a base;
in this case, gxPri nti ngTagl D.

The status of the radio buttons occupy the first 2 bytes of the collection item (from offset
0). These bytes specify the status of items 1 and 2. The status of the pop-up menu is at
offset 2. It specifies the status of item 3.

Listing 3-27 shows the ' MENU resource, which specifies the entries in the pop-up menu.
Note that the default entry is specified in the collection item.

Listing 3-27 Sample ' MENU resource

resource ' MENU (r_dayPopUpMenu, sysheap, purgeable) {
r _dayPopUpMenu,
t ext MenuPr oc,
al | Enabl ed,

enabl ed,

{
" Sunday", nol con, noKey, noMark, plain,
" Monday", nol con, noKey, noMark, plain,
"Tuesday", nol con, noKey, noMark, plain,
"Wednesday", nol con, noKey, noMark, plain,
"Thur sday", nol con, noKey, noMark, plain,
"Friday", nol con, noKey, noMark, plain,
" Sat ur day", nol con, noKey, noMark, plain

}

H

Parsing Page Ranges

You can install an override function for the gxPar sePageRange message, which allows
you to check the validity of page numbers that the user selects in the Print dialog box.
You must override this message if you allow the user to specify application-specific page
ranges, such as “Chapter 5.”

Listing 3-28 shows a function, MyPr i nt Di al og, which is called in response to the user
choosing the Print menu item from the File menu. The MyPr i nt Di al og function installs
an override for the gxPar sePageRange message, sets up a default page range, and
calls the GXPri nt Di al og function to display the dialog box with the default page
range. After the pages have been printed, or if an error occurred while setting up the
default page range, the override function for the gxPar sePageRange message is
removed.

Customizing QuickDraw GX Dialog Boxes 3-73

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-28 Installing an override function for the gxPar sePageRange message

3-74

OCSErr MyPrint Di al og(MyDocunent Pt r myDocunent)
{

OSEr r err;

gxDi al ogResul t result;

gxEdi t MenuRecord edi t MenuRec;

/* Install an override function to parse page ranges. */
GXlI nstal | Appl i cati onOverri de(myDocunent - >docurnent Job,
gxPar sePageRange,
My Par sePageRangeOverri de);

err = MySet upDef aul t PageRange(nyDocunent); /* not shown */
nrequi re(err, Coul dNot Confi gur ePageRange) ;

/*
Di splay the Print dialog box. If there are no errors and
the user selects the “OK” button, call a printing routine
to output the pages.
*/
result = GXJobPri nt Di al og(myDocunent - >docunent Job,
&edi t MenuRec) ;
err = GXCGet JobError (myDocunent - >docunent Job) ;
if ((err == noErr) && (result == gxOKSel ect ed))
err = MyPrint Docunent (nyDocunent); /* not shown */

/* Renmove the parse page range override function. */
Coul dNot Conf i gur ePageRange:
&XI nstal | Appl i cati onOverri de(myDocunent - >docurent Job,
gxPar sePageRange, nil);
return err;

}

The MySet upDef aul t PageRange function that sets up a page range is not shown. For
examples of setting up page ranges, see “Specifying Page Ranges in the Job Collection”
on page 3-33. The MyPr i nt Docunent function that prints pages is not shown. For
information about printing pages, see the chapter “Core Printing Features” in this book.

Customizing QuickDraw GX Dialog Boxes

CHAPTER 3

Page Formatting and Dialog Box Customization

Listing 3-29 shows the override function, MyPar sePageRangeOver ri de, which calls
another function, MyPageRangeVal i di t yCheck, to validate the page range.

Listing 3-29 Override function for the gxPar sePageRange message

OSErr MyPar sePageRangeOverride(StringPtr fronString,
StringPtr toString, gxParsePageRangeResult *result)

{
/*
Determine if the "To page" and "From page" strings are
valid. |If not, the MyPageRangeVali dityCheck routine
returns gxRangeBadFronval ue or gxRangeBadToVal ue.
O herwise it will return gxRangeParsed.
*/
if (*result == gxRangeNot Par sed)
*result = MyPageRangeValidityCheck(fronString, toString);
return nokErr;
}

The MyPageRangeVal i di t yCheck function is not shown. It returns gxRangePar sed
if the page range is valid, otherwise it returns gxRangeBadFr onVal ue if the From
value is invalid or gxRangeBadToVal ue if the To value is invalid. For information
about parse page range constants, see “The Panel Setup Structure” on page 3-101.

Page Formatting and Dialog Box Customization Reference

This section describes the constants, data types, functions, and resources that are specific
to the page formatting and dialog box customization features of QuickDraw GX.

There are several sections that describe constants and data types. The following section,
“Constants for Loop Status Information,” describes the constants that can be used when
looping over printing-related objects. The section “Constants for Collection Item
Categories and Tag IDs” on page 3-76 describes constants for manipulating
printing-related collection objects. The section “Constants and Data Types for Job
Collection Items” on page 3-78 describes constants and data types for job collections. The
section “Constants and Data Types for Format Collection Items” on page 3-89 describes
constants and data types for format collections. The section “Constants and Data Types
for Paper-Type Collection Items” on page 3-94 describes constants and data types for
paper-type collections.

The “Functions” section describes functions for creating and manipulating format
objects, manipulating format object properties, displaying the Custom Page Setup dialog

Page Formatting and Dialog Box Customization Reference 3-75

CHAPTER 3

Page Formatting and Dialog Box Customization

box, obtaining information on a document’s format objects, customizing QuickDraw GX
dialog boxes, and accessing printing-related collection objects.

The “Application-Defined Functions” section describes message override functions for
customizing QuickDraw GX dialog boxes and a function for looping through
QuickDraw GX format objects associated with a particular job object.

The “Resources” section describes the panel and extended item list resources used to
implement QuickDraw GX dialog boxes.

Constants for Loop Status Information

QuickDraw GX allows you to loop through the printing-related objects associated with
another object. For example, QuickDraw GX allows you to loop through the format
objects associated with a job object.

To allow you to loop through printing-related objects, QuickDraw GX defines loop status
values in the loop status enumeration:

enum {
gxSt opLoopi ng = fal se,
gxKeepLooping = true

s
t ypedef Bool ean gxLoopSt at us;

Constant descriptions

gxSt opLoopi ng If returned, QuickDraw GX stops looping through the specified
printing-related objects.

gxKeepLoopi ng If returned, QuickDraw GX keeps looping through the specified
printing-related objects.

Constants for Collection Item Categories and Tag IDs

This section describes the constants provided by QuickDraw GX to manipulate
printing-related collections. You can use the collection tag category enumeration to
determine collection item data to discard when a printer-driver switch occurs. You can
use the collection tag ID enumeration to define collection objects for use with
QuickDraw GX printing features.

Collection Item Categories

QuickDraw GX assigns collection object items to several collection item
categories. QuickDraw GX tag categories are defined in the collection tag category
enumeration, represented by gxCol | ecti onCat egory:

3-76 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

typedef short gxColl ectionCategory;

enum {
gxNoCol | ecti onCat egory
gxQut put Dri ver Cat egory
gxFormat ti ngDri ver Cat egory
gxDriver Vol ati | eCat egory

(gxCol | ecti onCat egory) 0x0000,
(gxCol | ecti onCat egory) 0x0001,
(gxCol | ecti onCat egory) 0x0002,
(gxCol | ecti onCat egory) 0x0004,

gxVol ati |l eQut putDriverCategory =
gxQut put Dri ver Cat egory + gxDriverVol atil eCat egory,
gxVol ati | eFormatti ngDri ver Cat egory =
gxFormattingDri ver Category + gxDriverVol atil eCat egory
b

Constant descriptions
gxNoCol | ecti onCat egory
The item persists whether or not a printer-driver switch occurs or
the collection is flattened.
gxQut put Dri ver Cat egory
The item is affected by a change in the output printer driver.
gxFormat ti ngDri ver Cat egory
The item is affected by a change in the formatting printer driver.
gxDriverVol ati | eCat egory
The item is affected by a change in either the output printer driver
or formatting printer driver. The item is purged when the collection
is flattened if the col | ecti onPer si st enceBit is also set.
gxVol ati | eQut put Dri ver Cat egory
The item is purged if the output printer driver changes.
gxVol ati |l eFormatti ngDri ver Cat egory
The item is purged if the formatting printer driver changes.

Collection Tag ID

QuickDraw GX assigns its collection objects with the same 4-byte collection tag ID.
The QuickDraw GX collection tag ID is defined in the collection tag ID enumeration:

enum { gxPrintingTagl D = -28672 };

Collection tag IDs for QuickDraw GX collection objects are discussed in
“About Collection Objects,” which begins on page 3-7.

Page Formatting and Dialog Box Customization Reference 3-77

CHAPTER 3

Page Formatting and Dialog Box Customization

Constants and Data Types for Job Collection Items

The sections that follow identify all of the collection items that QuickDraw GX provides
for the job collection object.

Print-Job Information

3-78

The collection item ID for print-job information is defined in the following enumeration:
enum { gxJobTag = '"job ' };
QuickDraw GX stores print-job information in the gxJobl nf o structure:

struct gxJoblnfo {

| ong nunPages;

| ong priority;

| ong ti meToPrint;

| ong j obTi neout ;

| ong firstPageToPrint
short jobAl ert;

Str31 appNane;
Str31 docunent Nane;
Str31 user Name;

s

Field descriptions

nunPages The total number of pages to print. The user specifies the page
range to print in the Print dialog box.

priority The print job’s priority. Priorities for print jobs are defined in the

print-job priorities enumeration. The user specifies the priority for a
print job in the Print Time panel.

ti meToPrint The designated time to print a print job. The user specifies a
designated printing time in the Print Time panel.
j obTi neout The time to cancel the print job, in ticks. QuickDraw GX defines two

print-job cancelation times in the print-job cancelation enumeration.

firstPageToPrint
The first page to begin printing.

j obAl ert When to alert the user about printing. QuickDraw GX defines print
job alerts in the print-job alert enumeration.
appNane A string containing the name of the application used to create the

printable document.
docunent Name A string containing the name of the user’s document.

user Name A string containing the name of the user associated with the
printable document.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX defines priorities for print jobs in the print-job priorities enumeration:

enum {
gxPrintJobU gent = 0x00000001,
gxPrintJobAt Tine = 0x00000002,
gxPri nt JobASAP = 0x00000003

b

Constant descriptions

gxPrint JobUr gent
If set, QuickDraw GX designates a print job as “urgent.”

gxPrint JobAt Ti ne
If set, QuickDraw GX designates the time to print a print job.

gxPrint JobASAP
If set, QuickDraw GX designates a print job as “as soon as possible.”

A holding bit for print-job priorities is defined in the following enumeration:
enum { gxPrintJobHol dingBit = 0x00001000 };
QuickDraw GX defines holding status for print jobs in the holding status enumeration:

enum {
gxPri nt JobHol di ng

(gxPrintJobHol di ngBit +
gxPri nt JobASAP) ,
gxPrint JobHol di ngAt Ti mre = (gxPrintJobHol di ngBit +
gxPrint JobAt Ti ne) ,
gxPrint JobHol di ngUrgent = (gxPrintJobHol di ngBit +
gxPrintJobUrgent)

H

Constant descriptions

gxPri nt JobHol di ng
If set, QuickDraw GX assigns a print job designated as “as soon as
possible” to a holding status.

gxPri nt JobHol di ngAt Ti ne
If set, QuickDraw GX assigns a print job designated to print at a
specific time to a holding status.

gxPri nt JobHol di ngUr gent
If set, QuickDraw GX assigns a print job designated as “urgent” to a
holding status.

Page Formatting and Dialog Box Customization Reference 3-79

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX defines print job alerts in the print-job alert enumeration:

enum {
gxNoPri nt Ti meAl ert
gxAl ert Before
gxAl ertAfter =
gxAl ert Bot hTi nes

W NP o

H

Constant descriptions
gxNoPri nt Ti meAl ert
If set, QuickDraw GX doesn’t alert the user about printing.
gxAl ert Bef ore If set, QuickDraw GX alerts the user that printing is about to begin.
gxAl ert After If set, QuickDraw GX alerts the user that printing has finished.

gxAl ert Bot hTi nes
If set, QuickDraw GX alerts the user when printing begins and
finishes.

QuickDraw GX defines two print-job cancelation times in the print-job cancelation
enumeration, which you could use if the user failed to respond to a condition, such as
out of paper:

enum {
gxThi rtySeconds = 1800,
gxTwoM nut es = 7200

H

Constant descriptions

gxThi rtySeconds
If set, QuickDraw GX cancels a print job in 30 seconds, or 1800 ticks.

gxTwoM nut es If set, QuickDraw GX cancels a print job in 2 minutes, or 7200 ticks.

Collation Information

3-80

The collection item ID for collation information is defined in the following enumeration:
enum { gxCol |l ati onTag = 'sort' };
QuickDraw GX stores collation information in the collation information structure:

struct gxCollationlnfo {
Bool ean col | ati on;

b

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Field descriptions

collation A Boolean value indicating whether the user wants to collate
document pages when printed. When the user chooses the Collate
Copies checkbox in the Print dialog box, the col | at i on field
containst r ue; otherwise, the field contains f al se.

Copies Information

The collection item ID for copies information is defined in the following enumeration;
enum { gxCopi esTag = 'copy' };
QuickDraw GX stores copies information in the copies information structure:

struct gxCopieslnfo {
| ong copi es;

H

Field descriptions

copi es The number of copies of a document to print. A user specifies the
number of copies to print in the Print dialog box.

The Print dialog box is discussed in the chapter “Core Printing Features” in this book.

Page-Range Information

The collection item ID for page-range information is defined in the following
enumeration:

enum { gxPageRangeTag = 'rang' };
QuickDraw GX stores page-range information in the gxPageRangel nf o structure:

struct gxPageRangel nfo {
gxSi npl ePageRangel nfo si npl eRange;

Str31l fronttring;
Str31 toString;
| ong m nFr onmPage;
| ong maxToPage;
char repl aceString[1];
b
Field descriptions
si mpl eRange A string containing the page-range information structure.
frontring A string containing the beginning of a user-specified custom page
range.
toString A string containing the end of a user-specified custom page range.

Page Formatting and Dialog Box Customization Reference 3-81

3-82

CHAPTER 3

Page Formatting and Dialog Box Customization

m nFr omPage The minimum default page range.
maxToPage The maximum default page range.

repl aceString A string containing the user-specified page range from the Print
dialog box. Initially, the string is one character long.

QuickDraw GX stores simple page-range information in the gxSi npl ePageRangel nf o
structure:

struct gxSi npl ePageRangel nfo {

char opti onChosen;
Bool ean printAll;

| ong fr onPage;

| ong t oPage;

H

Field descriptions

opti onChosen A character that contains the specific page-range option (either the
default page range, replacement page range, or customized page
range).

printAll A Boolean value indicating whether the user wants to print all of
the pages in a single document. When the user chooses the All radio
button in the Print dialog box, the pri nt Al | field contains t r ue;
otherwise, the field contains f al se.

fronPage The first page in the page range to print. The user specifies a page
range to print in the Print dialog box.
t oPage The last page in the page range to print. The user specifies a page

range to print in the Print dialog box.
QuickDraw GX defines page-range options in the following enumeration:

enum {
gxDef aul t PageRange = (char) O,
gxRepl acePageRange = (char) 1,
gxCust om zePageRange = (char) 2

b

Constant descriptions

gxDef aul t PageRange
If set, QuickDraw GX uses a standard numeric page range; for
example, the From field of the Print dialog box contains 1 and the
To field contains 4.

gxRepl acePageRange
If set, QuickDraw GX uses a single editable text field that specifies a
page range; for example, a field with “Chapter 5” as the contents.

gxCust oni zePageRange
If set, QuickDraw GX allows alphanumeric values for the From and
To fields in the Print dialog box. You are responsible for validation
of these values.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Quality Information

The collection item ID for quality information is defined in the following enumeration:

enum { gxQualityTag = 'qual' };

QuickDraw GX stores quality information in the gxQual i t yl nf o structure:

struct gxQualitylnfo {

Bool ean
short
short
short
char

H

Field descriptions
di sabl eQuality

defaul tQuality
currentQuality
qual i t yCount

qual i t yNanes

File-Destination Information

di sabl eQuality;
defaul tQuality;
currentQuality;
qual i t yCount ;
qual i t yNanes[1] ;

A Boolean value indicating whether to disable standard quality
controls.

The index of the string that represents the default quality.

The index of the string that represents the current quality.

The number of quality menu items displayed in the Quality pop-up
menu in the Print dialog box.

A list of packed strings (1-byte string length preceding the actual
string) that contain the menu item names (such as “Best”) displayed
in the Quality pop-up menu in the Print dialog box.

The collection item ID for file-destination information is defined in the following

enumeration:

enum { gxFil eDestinationTag = 'dest' };

QuickDraw GX stores file-destination information in the file-destination information

structure:

struct gxFileDestinationlnfo {
Bool ean toFil e;

H

Page Formatting and Dialog Box Customization Reference 3-83

CHAPTER 3

Page Formatting and Dialog Box Customization

Field descriptions

toFile A Boolean value indicating whether the user wants to print a
document to a file. When the user chooses File in the Destination
pop-up menu in the Print dialog box, the t oFi | e field contains
t r ue. When the user chooses Printer, the t oFi | e field contains
fal se.

File-Location Information

The collection item ID for file-location information is defined in the following
enumeration:

enum { gxFileLocationTag = 'floc' }
QuickDraw GX stores file-location information in the gxFi | eLocat i onl nf o structure:

struct gxFil eLocationlnfo {
FSSpec fil eSpec;
b

Field descriptions

fileSpec A file system specification containing the location of the file in
which to print the user’s document.

File-Format Information

The collection item ID for file-format information is defined in the following
enumeration:

enum { gxFileFormatTag = "ffm"' };
QuickDraw GX stores file-format information in the gxFi | eFor mat | nf o structure:

struct gxFileFormatlnfo {
Str31 fil eFor nat Nane;

H

Field descriptions

fil eFor mat Nane
A string containing the name of the format in which to print the
user’s document.

3-84 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

File-Fonts Information

The collection item ID for file-fonts information is defined in the following enumeration:
enum { gxFil eFontsTag = "incf' };
QuickDraw GX stores file-fonts information in the gxFi | eFont sl nf o structure:

struct gxFileFontslnfo {
char incl udeFonts;

b

Field descriptions

i ncl udeFont s A character that specifies the level of fonts to include when a user
prints to a file.

The level of fonts to include are defined by the following enummeration:

enum {
gxl ncl udeNoFont s = (char) 1,
gxl ncl udeAl | Font s = (char) 2,
gxl ncl udeNonSt andardFonts = (char) 3

H

Constant descriptions

gxl ncl udeNoFont s
Do not include any fonts.

gxl ncl udeAl | Font s
Include all fonts.

gxl ncl udeNonSt andar dFont s
Do not include standard fonts.

Paper-Feed Information

The collection item ID for paper-feed information is defined in the following
enumeration:

enum { gxPaper FeedTag = 'feed };
QuickDraw GX stores paper-feed information in the gxPaper Feedl nf o structure:

struct gxPaper Feedl nfo {
Bool ean aut oFeed;

b

Page Formatting and Dialog Box Customization Reference 3-85

CHAPTER 3

Page Formatting and Dialog Box Customization

Field descriptions

aut oFeed A Boolean value indicating whether the user wants to use
automatic or manual paper feed. When the user chooses the
Automatic radio button in the Print dialog box, the aut oFeed field
containst r ue. When the user chooses the Manual radio button in
the Print dialog box, the aut oFeed field contains f al se.

Manual-Feed Information

The collection item ID for manual-feed information is defined in the following
enumeration:

enum { gxManual FeedTag = 'manf' };

QuickDraw GX stores manual-feed information in the gxManual Feedl nf o structure:

struct gxManual Feedl nfo {
| ong nunPaper TypeNanes;
Str31 paper TypeNames[1] ;
s

Field descriptions
nunPaper TypeNane

The number of paper-type objects to manually feed.
paper TypeNanes

A string containing the names of paper-type objects to manually
feed.

Standard Mapping Information

The collection item ID for standard mapping information is defined in the following
enumeration:

enum { gxNor nmal Mappi ngTag = ' nnap' };

QuickDraw GX stores standard mapping information in the gxNor mal Mappi ngl nf o
information structure:

struct gxNor mal Mappi ngl nfo {
Bool ean nor nmal Paper Mappi ng;

H

3-86 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Field descriptions

nor mal Paper Mappi ng
A Boolean value indicating whether the user wants standard or
special paper mapping to print a document. When the user chooses
to print by specifying input-tray paper matching in the Paper Match
panel, the nor mal Paper Mappi ng field ist r ue. When the user
chooses to ignore paper matching and redirect the document, the
nor mal Paper Mappi ng field is f al se.

Special Mapping Information

The collection item ID for special mapping information is defined in the following
enumeration:

enum { gxSpeci al Mappi ngTag = 'smap' };

QuickDraw GX stores special mapping information in the gxSpeci al Mappi ngl nf o
structure;

struct gxSpeci al Mappi ngl nfo {
char speci al Mappi ng;
b

Field descriptions

speci al Mappi ng
A character which specifies how to handle paper matching if the
user chooses to ignore paper matching and redirect the document.

The following enummeration specifies the possible paper-mapping options:

enum {
gxRedi r ect Pages = (char) 1,
gxScal ePages = (char) 2,
gxTi | ePages = (char) 3

H

Constant descriptions

gxRedi r ect Pages
If set, QuickDraw GX crops the pages of a redirected document.

gxScal ePages If set, QuickDraw GX scales the pages of a document to fit the
physical page size.
gxTi | ePages If set, QuickDraw GX tiles the pages of a document.

Page Formatting and Dialog Box Customization Reference 3-87

CHAPTER 3

Page Formatting and Dialog Box Customization

Tray-Mapping Information

The collection item ID for tray-mapping information is defined in the following
enumeration:

enum { gxTrayMappi ngTag = 'tmap' };
The tray-mapping information is defined in a gxTr ayMappi ngl nf o structure:

struct gxTrayMappi ngl nfo {
gxTrayl ndex mapPaper ToTr ay;

b
The tray index type is used to designate a specific paper tray on a printer:

typedef |ong gxTrayl ndex;

Print-Panel Information

The collection item ID for print-panel information is defined in the following
enumeration:

enum { gxPrintPanel Tag = ' ppan' };
QuickDraw GX stores print-panel information in the gxPr i nt Panel | nf o structure:

struct gxPrintPanellnfo {
Str31 st art Panel Nane;

H

Field descriptions

st art Panel Nane
A string containing the name of the first panel to display in the
Print dialog box.

Format-Panel Information

3-88

The collection item ID for format-panel information is defined in the following
enumeration:

enum { gxFormat Panel Tag = ' fpan' };
QuickDraw GX stores format-panel information in the gxFor mat Panel | nf o structure:

struct gxFormat Panel | nfo {
Str31 st art Panel Nane;

H

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Field descriptions
st art Panel Nane

A string containing the name of the first panel to display in the Page
Setup dialog box.

Paper-Mapping Information

The collection item ID for paper-mapping information is defined in the following
enumeration:

enum { gxPaper Mappi ngTag = ' pmap' };

This collection item contains the flattened paper type that was selected for redirection.

Translated-Document Information

The collection item ID for translated-document information is defined in the following
enumeration:

enum { gxTransl at edDocunment Tag = "trns' };

QuickDraw GX stores translated-document information in the
gxTransl at edDocurnent | nf o structure:

struct gxTransl at edDocument I nfo {
I ong transl atorlnfo;

H

Field descriptions
transl at orl nf o A value that specifies translation information for the document.

Constants and Data Types for Format Collection Items

The sections that follow identify all of the collection items that QuickDraw GX provides
for the format collection object.

Orientation Information

The collection item ID for orientation information is defined in the following
enumeration:

enum { gxOrientationTag = 'layo' };

Page Formatting and Dialog Box Customization Reference 3-89

3-90

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX stores orientation information in the gxOri ent at i onl nf o structure:

struct gxOrientationlnfo {
char orientation;

}os

Field descriptions

orientation A character that contains the orientation information. For example,
a user may choose to print a document in portrait, landscape, or
rotated landscape orientation.

QuickDraw GX defines orientation options in the following enumeration:

enum {
gxPortraitlLayout = (char) O,
gxLandscapelayout = (char) 1,
gxRot at edPortraitLayout = (char) 2,

gxRot at edLandscapelLayout = (char) 3
H

Constant descriptions

gxPortraitlLayout
If set, QuickDraw GX uses portrait orientation for the user-specified
page.

gxLandscapelayout
If set, QuickDraw GX uses landscape orientation for the
user-specified page.

gxRot at edPort rai t Layout
If set, QuickDraw GX uses rotated portrait orientation for the page.

gxRot at edLandscapelLayout
If set, QuickDraw GX uses rotated landscape orientation for the
user-specified page.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Scaling Information

The collection item ID for scaling information is defined in the scaling information
enumeration:

enum { gxScalingTag = 'scal' };
QuickDraw GX stores scaling information in the gxScal i ngl nf o structure:

struct gxScal i ngl nf of

Fi xed hori zont al Scal eFact or;
Fi xed verti cal Scal eFact or;
short m nScal i ng;

short maxScal i ng;

H

Field descriptions

hori zont al Scal eFact or
The current horizontal scaling factor.

verti cal Scal eFact or
The current vertical scaling factor.

nm nScal i ng The minimum current scaling factor.
maxScal i ng The maximum current scaling factor.

Direct-Mode Information

The collection item ID for direct-mode information is defined in the following
enumeration:

enum { gxDirectModeTag = "dirm };
QuickDraw GX stores direct-mode information in the gxDi r ect Model nf o structure:

struct gxDirect Modelnfo {
Bool ean direct ModeOn;

b

Field descriptions

di r ect ModeOn A Boolean value indicating whether the user wants to print using
direct mode. When the user chooses the Direct checkbox in the Page
Setup dialog box, the di r ect MbdeOn field contains t r ue;
otherwise, this field contains f al se.

Page Formatting and Dialog Box Customization Reference 3-91

CHAPTER 3

Page Formatting and Dialog Box Customization

Format-Halftone Information

The collection item ID for halftone information is defined in the halftone information
enumeration:

enum { gxFornmat Hal ftoneTag = 'hal f' };

QuickDraw GX stores halftone information in the gxFor mat Hal f t onel nf o structure:

struct gxFormat Hal ftonel nfo {
| ong nunHal ftones;
gxHal ftone hal ftones[1];

H

Field descriptions
nuntHal ft ones The number of halftones in the structure.
hal ft ones The halftones to use when rendering a page with this format.

Page-Inversion Information

The collection item ID for page-inversion information is defined in the following
enumeration:

enum { gxlnvertPageTag = '"invp' };
QuickDraw GX stores page-inversion information in the gxI nver t Pagel nf o structure:

struct gxlnvertPagelnfo {
Bool ean invert;

H

Field descriptions

i nvert The user-specified page-inversion information, which indicates
whether a user chooses to invert a page before printing. If t r ue, the
page is inverted; otherwise, it is not inverted.

3-92 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Horizontal Page-Flip Information

The collection item ID for horizontal page-flip information is defined in the following
enumeration:

enum { gxFl i pPageHori zontal Tag = 'fl ph' };

QuickDraw GX stores horizontal page-flip information in the
gxFl i pPageHori zont al | nf o structure:

struct gxFlipPageHorizontal Info {
Bool ean flipHorizontal;

b

Field descriptions
flipHorizontal
The user-specified horizontal page-flip information. If t r ue,auser

chooses to horizontally flip the x coordinate on a page before
printing.

Vertical Page-Flip Information

The collection item ID for vertical page-flip information is defined in the following
enumeration:

enum { gxFlipPageVertical Tag = 'flpv' };

QuickDraw GX stores vertical page-flip information in the gxFl i pPageVerti cal I nfo
structure;

struct gxFlipPageVerticallnfo {
Bool ean flipVertical;

b

Field descriptions

flipVertical The user-specified vertical page-flip information. If t r ue, a user
chooses to vertically flip the y coordinate on a page before printing.

Precise-Bitmap Information

The collection item ID for precise-bitmap information is defined in the following
enumeration:

enum { gxPreciseBitmapsTag = ' pbnp' };

Page Formatting and Dialog Box Customization Reference 3-93

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX stores page bitmap information in the gxPr eci seBi t mapl nf o
structure:

struct gxPreciseBitmaplnfo {
Bool ean preci seBit maps;

b

Field descriptions

preci seBi t maps
The user-specified precise-bitmap information. If t r ue, a user
chooses to scale a page by 96%.

Paper-Type Lock Information

The collection item ID for lock information is defined in the following enumeration:
enum { gxPaper TypeLockTag = 'ptl k"' };

QuickDraw GX stores paper-type object lock information in the
gxPaper TypeLockl nf o structure:

struct gxPaper TypeLockl nfo {
Bool ean paper TypelLocked,;
b

Field descriptions

paper TypeLocked
A Boolean value indicating whether a paper-type object is locked.

Constants and Data Types for Paper-Type Collection Items

The sections that follow identify all of the collection items QuickDraw GX provides for
the paper-type collection object.

Base Information

3-94

The collection item ID for base information is defined in the following enumeration:
enum { gxBaseTag = 'base' };
QuickDraw GX stores base information in the gxBasel nf o structure:

struct gxBaselnfo {
| ong baseType;

H

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Field descriptions

baseType The user-specified base information, which indicates whether the
source of the paper is unknown, US Letter, US Legal, A4, B5, or
tabloid.

QuickDraw GX defines paper-type object base types in the following enumeration:

enum {
gxUnknownBase
gxUsLett er Base
gxUsLegal Base
gxAdLet t er Base
gxB5Lett er Base
gxTabl oi dBase

1
UrWN PO

b

Constant descriptions
gxUnknownBase If set, the base type is unknown.

gxUsLett er Base
If set, QuickDraw GX uses a US Letter base type.

gxUsLegal Base If set, QuickDraw GX uses a US Legal base type.

gxAdlLett er Base
If set, QuickDraw GX uses an A4 base type.

gxB5Let t er Base
If set, QuickDraw GX uses a B5 base type.

gxTabl oi dBase If set, QuickDraw GX uses a tabloid base type.

Creator Information

The collection item ID for creator information is defined in the following enumeration:
enum { gxCreatorTag = 'crea' };

QuickDraw GX stores paper-type object creator information in the gxCr eat or | nf o
structure;

struct gxCreatorlnfo {
CSType creator;

b

Field descriptions

creator An operating-system type that contains the creator type of a
paper-type object. You specify a system paper-type object creator as
"sypt', and you specify a user paper-type object creator as
"uspt'.

Page Formatting and Dialog Box Customization Reference 3-95

CHAPTER 3

Page Formatting and Dialog Box Customization

Applications do not need to set this collection item. Printer drivers that create paper-type
objects should use the creator type that identifies the printer driver. For example, a
printer driver for the LaserWriter SC should specify a paper-type object creator as
"lwsc'.

QuickDraw GX defines paper-type object creator types in the following enumeration:

enum {
gxSysPaper Type = 'sypt',
gxUser Paper Type "uspt’

b

Constant descriptions
gxSysPaper Type If set, QuickDraw GX uses a system-defined paper-type object.

gxUser Paper Type
If set, QuickDraw GX uses a user-defined paper-type object.

Units Information

3-96

The collection item ID for units information is defined in the following enumeration:
enum{ gxUnitsTag = "unit' };
QuickDraw GX stores units information in the gxUni t sI nf o structure:

struct gxUnitsinfo {
char units;

}os

Field descriptions

units A character that contains the units for a paper-type object. Units can
be specified in picas, millimeters, and inches.

QuickDraw GX defines paper-type object units in the following enumeration:

enum {
gxPicas = (char) O,
gxMrs = (char) 1,
gxlnches = (char) 2
b
Constant descriptions
gxPi cas If set, QuickDraw GX uses picas to define paper-type object units.
gxMrs If set, QuickDraw GX uses millimeters to define paper-type object
units.
gxl nches If set, QuickDraw GX uses inches to define paper-type object units.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Flags Information

The collection item ID for flags information is defined in the following enumeration:
enum { gxFlagsTag = 'flag" };
QuickDraw GX stores flags information in the following structure:

struct gxFl agsl nf of
Il ong flags;

H

Field descriptions

flags The flags information for a paper-type object. A flag is a bit position
that indicates the system software version used to create a
paper-type object.

QuickDraw GX defines paper-type object flags in the following enumeration:

enum {
gxA dPaper TypeFl ag = 0x00800000,
gxNewPaper TypeFl| ag = 0x00400000,
gxA dAndNewPaper TypeFl ag= 0x00C00000,
gxDef aul t Paper TypeFlag = 0x00100000,

H

Constant descriptions

gxQ dPaper TypeFl ag
A paper type used only with applications that do not support
QuickDraw GX printing.

gxNewPaper TypeFl ag
A paper type used only with applications that do support
QuickDraw GX printing.

gxA dAndNewPaper TypeFl ag
A paper type used with applications that support QuickDraw GX
printing and with those that do not.

gxDef aul t Paper TypeFl ag
The default paper type.

Comment Information

The collection item ID for comment information is defined in the following enumeration:

enum { gxCommentTag = 'cmt’' };

Page Formatting and Dialog Box Customization Reference 3-97

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX stores comment information in the gxConment | nf o structure:

struct gxCommentlnfo {
Str255 conmment ;

H

Field descriptions

coment A string containing an application-specified comment to associate
with a paper-type object.

Panel-Related Constants and Data Types

The following sections describe the constants and data types related to panels.

The Panel Information Structure

3-98

The panel information structure, of data type gxPanel | nf oRecor d, provides
information to the panel about the current dialog box and panel event. This structure is
used with the GXHandl ePanel Event and GXFi | t er Panel Event override functions,
whose descriptions begin on page 3-123.

struct gxPanel I nfoRecord {
gxPanel Event panel Evt ;

short panel Resl d;
Di al ogPtr pDl g;
Event Record *t heEvent ;
short itenHit;
short i temCount ;
short evt Acti on;
short error Stringld;
gxFor mat t heFor mat ;
voi d *r ef Con;
s
Field descriptions
panel Evt The event to filter or handle.
panel Resl d The resource ID of the current panel (gxPr i nt Panel Type)
resource.
pDl g A pointer to the dialog box structure.
t heEvent A pointer to the event that occurred.
itenmHt The actual item number where the event occurred, using the
item-numbering scheme of the Dialog Manager.
i t emCount The item count before your panel’s items in the dialog box.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

evt Acti on The action that results once this event is processed. This value is one
of the constants defined in the panel event actions enumeration,
which is described on page 3-101. This field is only meaningful for
filtering, and is used for parsing.

errorStringld ThelD ofthe' STR ' resource to put in the error alert. A value of 0
in this field indicates that there is no error string to display.

t heFor mat The current format. This is only meaningful in a Custom Page Setup
dialog box.
r ef Con A reference constant for use by the generator of the panel.

Panel Events

The panel event enumeration defines the possible event types that can occur in a panel.
This data type is used with the panel information structure, which is described in the
previous section.

enum {
gxPanel NoEvt = (gxPanel Event) O,
gxPanel QpenEvt = (gxPanel Event) 1,
gxPanel Cl oseEvt = (gxPanel Event) 2,
gxPanel Hi t BEvt = (gxPanel Event) 3,

gxPanel Act i vat eEvt
gxPanel Deacti vat eEvt
gxPanel | conFocusEvt
gxPanel Panel FocusEvt
gxPanel Fi | t er Evt
gxPanel Cancel Evt
gxPanel Confi r nEvt (gxPanel Event) 10,
gxPanel Di al ogEvt (gxPanel Event) 11,
gxPanel O her Evt = (gxPanel Event) 12,
gxUser W1 | Confi rnEvt (gxPanel Event) 13

(gxPanel Event)
(gxPanel Event)
(gxPanel Event)
(gxPanel Event)
(gxPanel Event)

0
1
2
3
(gxPanel Event) 4
5
6
7
8
9

H

typedef | ong gxPanel Event;

Constant descriptions
gxPanel NoEvt No event has occurred.

gxPanel OpenEvt
The panel is about to open. It needs to be initialized and drawn.

gxPanel Cl oseEvt
The panel is about to close.

gxPanel Hit Evt The user has selected an item in the panel.

gxPanel Act i vat eEvt
The dialog box in which the panel resides has just been activated.

Page Formatting and Dialog Box Customization Reference 3-99

CHAPTER 3

Page Formatting and Dialog Box Customization

gxPanel Deacti vat eEvt
The dialog box in which the panel resides is about to be deactivated.

gxPanel | conFocusEvt
The focus has changed from the panel to the icon list.

gxPanel Panel FocusEvt
The focus has changed from the icon list to the panel.

gxPanel Fi | t er Evt
The panel event needs to be filtered.

gxPanel Cancel Evt
The user has selected the Cancel button in the dialog box.

gxPanel Confi r nEvt
The user has selected the OK button in the dialog box.

gxPanel Di al ogEvt
An event has occurred in the panel that is going to be handled by a
dialog box handler such as the application, a printing extension, a
printer driver, or the Macintosh system software.

gxPanel O her Evt
A different kind of event, such as an operating-system event, has
occurred in the panel.

gxPanel User W1 | Confi r mEvt
The user has selected the confirm button, which means that it is
time to parse panel interdependencies.

Panel Responses

3-100

A handler of a panel in a dialog box (including applications, printing extensions, printer
drivers, and Macintosh system software) can return any value of type OSEr r as the
result of handling the panel. In addition, a panel handler can return an event of type
gxPanel Resul t, as shown here. This data type is used with the

GXHandl ePanel Event override function, which is described on page 3-123.

enum {
gxPanel NoResul t = 0,
gxPanel Cancel Confirmation 1

b

typedef |ong gxPanel Resul t;

Constant descriptions

gxPanel NoResul t
The result field does not currently have any meaning.

gxPanel Cancel Confi rmati on
This result is only valid if the panel event (as described in the
previous section) was of type gxPanel User W I | Confi r nEvt .
After the user confirms the panel, if the panel handler discovers that
the user entered an inappropriate value, the panel handler alerts the
user to the problem and generates this response, which tells

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

QuickDraw GX to not confirm the dialog box. This allows the user
the opportunity to fix the problem.

Panel Event Actions

The panel event actions enumeration defines the constants used in the evt Act i on field
of the panel information structure, which is described on page 3-98. Each value defines
what action takes place after an event is processed.

enum {
gxQt her Acti on
gxCl osePanel Acti on
gxCancel Di al ogAction = 2,
gxConfirnDi al ogActi on= 3

01
11

H

Constant descriptions
gxO her Acti on The current item does not change after processing this event.

gxCl osePanel Acti on
The panel is closed after this event is processed.

gxCancel Di al ogActi on
The dialog box is canceled after this event is processed.

gxConfirnDi al ogActi on
The dialog box is confirmed after this event is processed.

The Panel Setup Structure

The panel setup structure, of data type gxPanel Set upRecor d, is passed to the
GXSet upDi al ogPanel function when the user displays a dialog box.

struct gxPanel Set upRecord {
gxPrintingPanel Ki nd panel Ki nd;

short panel Resl d;
short r esour ceRef Num
voi d *r ef Con;

b

Field descriptions

panel Ki nd The kind of program that is using this panel. This value is one of the
constants defined in the printing panel kinds enumeration, which is
described in the next section.

panel Resl d The resource ID of the panel (' ppnl ') resource for the dialog box
panel.

r esour ceRef Num
The resource file reference number for the panel.

ref Con A reference constant for use by the creator of the panel.

Page Formatting and Dialog Box Customization Reference 3-101

CHAPTER 3

Page Formatting and Dialog Box Customization

Printing Panel Kinds

The printing panel kinds enumeration provides constants for use in the panel Ki nd field
of the panel setup structure, which is described in the previous section.

enum {
gxAppl i cati onPanel = (gxPrinti ngPanel Ki nd) O,
gxExt ensi onPanel (gxPrintingPanel Kind) 1,
gxDri ver Panel (gxPrintingPanel Ki nd) 2

H

typedef |ong gxPrintingPanel Ki nd;

Constant descriptions

gxAppl i cati onPanel
A panel created for an application.

gxExt ensi onPanel
A panel created for a printing extension.

gxDriver Panel A panel created for a printer driver.

Parse Range Results

The parse range results enumeration provides the constants that are used to parse dialog
box item responses.

enum {
gxRangeNot Par sed = (gxPar sePageRangeResult) O,
gxRangePar sed = (gxPar sePageRangeResult) 1,

gxRangeBadFr onval ue

0

1

(gxPar sePageRangeResul t) 2,
gxRangeBadToVal ue 3

(gxPar sePageRangeResul t)

b
typedef | ong gxParsePageRangeResul t;

Constant descriptions
gxRangeNot Par sed
QuickDraw GX has not yet parsed a page range in the string.
gxRangeParsed QuickDraw GX has successfully parsed a page range in the string.
gxRangeBadFr onval ue
QuickDraw GX has encountered an invalid value in the “from
page” string during the parse.
gxRangeBadToVal ue

QuickDraw GX has encountered an invalid value in the “to page”
string during the parse.

3-102 Page Formatting and Dialog Box Customization Reference

Functions

CHAPTER 3

Page Formatting and Dialog Box Customization

This section describes the functions for creating and manipulating format objects,
manipulating format object properties, displaying the Custom Page Setup dialog box,
obtaining information on a document’s format objects, customizing QuickDraw GX
dialog boxes, and accessing printing-related collection objects.

Included with each function description is a list of specific result codes returned by
QuickDraw GX. In addition to these result codes, you may also receive file-system,
memory, and resource errors. For a complete listing of specific file-system, memory, and
resource errors, see Inside Macintosh: C Summary or Inside Macintosh: Pascal Summary.

You should note that not all possible result codes for a particular function are included in
function descriptions within this section. For example, the Message Manager, described
in Inside Macintosh: QuickDraw GX Environment and Utilities, allows QuickDraw GX
functions to send specific messages to your application. These messages can also
generate errors.

IMPORTANT

All printing functions in QuickDraw GX, with the exception of

the GXGet JobEr r or function, may move Macintosh memory. The
GXGet JobEr r or function, however, relies on data that may also move.
Therefore, your application should never call a QuickDraw GX
printing-related function at interrupt time. s

Creating and Manipulating Format Objects

When a user creates a new document, clicks on a page, and chooses the Format button in
the Custom Page Setup dialog box, you use the GXNewfor mat function to create a new
format object.

When a user wants to modify a format for a single page that is also shared by other
pages in the same document, the user wants to return to the default format, or the user
decides not to save a format, you use the GXDi sposeFor mat function to dispose of the
format object, which decrements its owner count.

When a user wants to disassociate a format from a particular document and associate it
with another document, you use the GXCopy For mat function to copy a format object.
When a user wants to share a format, created using the Custom Page Setup dialog box,
with an additional page in the same document, you use the GXCl oneFor mat function to
clone a format object. This function increments the owner count.

You can use the GXCount JobFor mat s function to obtain the number of format objects

in a particular document, and you can use the GXFor EachJobFor mat Do function to
make changes to each format object associated with a printable document. You can use
the GXCount For mat Omner s function to determine the number of references to a format
object.

Page Formatting and Dialog Box Customization Reference 3-103

CHAPTER 3

Page Formatting and Dialog Box Customization

GXNewFormat

DESCRIPTION

RESULT CODES

SEE ALSO

You can use the GXNewfor mat function to create a format object.
gxFor mat GXNewFor mat (gxJob aJob);

aJob A reference to the job object to be associated with the new format object.

function result A reference to a format object.

The GXNewFor mat function creates a new format object and copies the default format
for the specified job object. The GXNewor mat function sets the owner count to 1. You
need to call this function each time a user creates a new format for a page in a document.

gxSegnent LoadFai | edErr A required code segment for QuickDraw GX
printing features failed to load due to low memory
or disk errors.

gxPaper TypeNot Found The default paper-type object cannot be located.

Listing 3-9 on page 3-42 shows how to use the GXNewor mat function to create a format
object.

To dispose of a format object, see the description of the GXDi sposeFor nat functionin
the next section.

GXDisposeFormat

DESCRIPTION

3-104

You can use the GXDi sposeFor mat function to dispose of a format object.
voi d GXDi sposeFormat (gxFormat aFormat);

aFor mat A reference to the format object whose owner count you want to
decrement.

You use the GXDi sposeFor mat function when you no longer need the format object.
The function decrements the format’s owner count. When the owner count reaches 0, the
format object is deleted.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

SPECIAL CONSIDERATIONS
You should not call this function for the default format object unless you have cloned it.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

Listing 3-9 on page 3-42 shows how to use the GXDi sposeFor mat function to dispose
of a format object.

GXCopyFormat

You can use the GXCopy For nat function to create a copy of a format object.
gxFormat GXCopyFor mat (gxFormat srcFormat, gxFormat dstFormat);

srcFormat A reference to the source format object to copy.
dst Format A reference to the destination format object.

function result A reference to a format object.

DESCRIPTION
The GXCopyFor mat function copies the properties from the source format object into
the destination object and returns a reference to the destination format object. If you
specify ni | for the dst For nat parameter, QuickDraw GX creates a format object to
receive the properties.

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or

there was not enough memory to load it.
gxPaper TypeNot Found The paper-type object cannot be located.

SEE ALSO

Listing 3-14 on page 3-56 shows how to use the GXCopyFor mat function to copy a
format object’s storage.

Page Formatting and Dialog Box Customization Reference 3-105

CHAPTER 3

Page Formatting and Dialog Box Customization

GXCloneFormat

You can use the GXO oneFor nat function to increment the owner count of a format
object by 1.

gxFormat GXd oneFormat (gxFormat aFormat);

aFor mat A reference to the format object you wish to clone.

function result A reference to a format object.

DESCRIPTION

When a user wants to share a format with another page in the same document, you use
the GXO oneFor mat function to increment the owner count of a format object by 1,
which prevents it from being deleted if it is disposed of when the other page no longer
needs the format.

You can use the GXCount For mat Owner s function to obtain the current owner count of
a format object.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

Listing 3-10 on page 3-46 shows how to use the GXCl oneFor mat function to increment
the owner count of a format object by 1.

The GXNewfor mat function, which creates a new format object with an owner count
of 1, is described on page 3-104.

The GXDi sposeFor mat function for decrementing the owner count of a format object
by 1 is described on page 3-104.

The GXCount For mat Oaner s function for obtaining the current owner count of a format
object is described on page 3-107.

3-106 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

GXCountJobFormats

DESCRIPTION

RESULT CODES

You can use the GXCount JobFor mat s function to obtain the number of format objects
in a job object.

| ong GXCount JobFormats (gxJob aJob);

aJob A reference to the job object in which to count the format objects.

function result The number of format objects for the job object.

The GXCount JobFor nat s function determines the number of format objects associated

with a particular job object and returns 1 if the default format is the only format object
associated with a job object. A job object may contain any number of format objects.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXCountFormatOwners

DESCRIPTION

You can use the GXCount For mat Owner s function to determine the owner count of a
format object.

| ong GXCount For mat Omers (gxFornmat aFornat);

aFor mat A reference to the format object in which to obtain the owner count.

function result The owner count.

The GXCount For mat Oaner s function returns the current number of references to the
format object specified by the aFor mat parameter. The GXNewfor nat function sets the
owner count to 1. The GXCl oneFor mat function increments the owner count of a format
object by 1, and the GXDi sposeFor mat function decrements the owner count by 1.

When the owner count reaches 0, QuickDraw GX disposes of the format object.

Page Formatting and Dialog Box Customization Reference 3-107

CHAPTER 3

Page Formatting and Dialog Box Customization

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

The GXNewfor mat function, which creates a new format object with an owner count
of 1, is described on page 3-104.

The GXA oneFor mat function, which increments the owner count of a format object
by 1, is described on page 3-106.

The GXDi sposeFor mat function for decrementing the owner count of a format object
by 1 is described on page 3-104.

GXForEachJobFormatDo

You can use the GXFor EachJobFor mat Do function to manipulate each format object in
a particular job object.

voi d GXFor EachJobFor mat Do (gxJob aJob, gxFormat Proc aFor mat Proc,
void *ref Con);

aJob A reference to the job object associated with a particular format object.
aFor mat Proc
A pointer to the function to call for each format object in a job object.

r ef Con The reference constant passed to the function.

DESCRIPTION

The GXFor EachJobFor mat Do function calls the application-defined function specified
in the aFor mat Pr oc parameter for each format object associated with the job object
specified in the aJob parameter. The GXFor EachJobFor mat Do function terminates
when the application-defined function returns gxSt opLoopi ng or all format objects
associated with the job object have been processed. The first format object to be
processed is the default format.

3-108 Page Formatting and Dialog Box Customization Reference

RESULT CODES

SEE ALSO

CHAPTER 3

Page Formatting and Dialog Box Customization

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Listing 3-17 on page 3-60 shows how to use the GXFor EachJobFor nat Do function to
access a format object function for each format object in a particular job object.

For information about setting up the function that is called each time through the loop,
see “Looping Through Format Objects” on page 3-126.

Manipulating Format Object Properties

You use the GXGet For mat Mappi ng function to obtain a format object’s mapping.

You use the GXCGet For nat Paper Type function to obtain a format object’s paper-type
object.

To retrieve the form and mask shapes for a particular format object, you use the
GXGet For mat For mfunction. To associate a form and its mask shape with a format
object, you use the GXSet For mat For mfunction.

You call the GXChangedFor mat function each time you change a format collection
associated with a format object.

GXGetFormatMapping

DESCRIPTION

You can use the GXGet For mat Mappi ng function to obtain the mapping for a format
object.

voi d GXGet For mat Mappi ng (gxFormat aFormat, gxMapping *aMappi ng);

aFor mat A reference to the format object for which to obtain the mapping.
aMappi ng On return, the mapping for a format object.

function result None.

The GXGet For mat Mappi ng function returns a mapping for a format object that is a
mathematical representation of the format object’s scaling and orientation settings.

Page Formatting and Dialog Box Customization Reference 3-109

CHAPTER 3

Page Formatting and Dialog Box Customization

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO
Listing 3-15 on page 3-57 shows how to use the GXGet For nmat Mappi ng function.

GXGetFormatPaperType

You can use the GXGet For nat Paper Type function to obtain the paper-type object
referenced by a format object.

gxPaper Type GXGet For mat Paper Type (gxFormat aFormat);

aFor mat A reference to the format object for which to obtain the paper-type object.

function result A reference to a paper-type object.

DESCRIPTION

The GXCGet For mat Paper Type function returns a reference to a paper-type object as its
function result.

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPaper TypeNot Found The paper-type object cannot be located.
SEE ALSO

Listing 3-16 on page 3-59 shows an example that uses the GXGet For mat Paper Type
function.

3-110 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

GXGetFormatForm

You can use the GXGet For mat For mfunction to retrieve the form and mask shapes for a
particular format object.

gxShape GXGet For mat Form (gxFornmat aFornmat, gxShape *nmask);

aFor mat A reference to the format object associated with the form and mask
shapes.
mask On return, the mask assigned to a format object.

function result A shape that represents the form.

DESCRIPTION
To retrieve the form and mask shapes for a particular format object, you use the
GXGet For mat For mfunction. To replace any form previously associated with a
particular format object, you use the GXSet For mat For mfunction. Picture shapes used
by the form are flattened to disk with the format object during spooling.

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or

there was not enough memory to load it.

SEE ALSO
To associate a form with a format object, see the description of the GXSet For nat For m
function in the next section.

GXSetFormatForm

You can use the GXSet For mat For mfunction to associate the form and mask shapes
with a specific format object.

voi d GXSet For mat For m (gxFor mat aFor mat, gxShape form
gxShape mask) ;

aFor mat A reference to the format object in which to associate the form and mask
shapes.

form A reference to a picture shape that specifies the form to assign to a format
object.

Page Formatting and Dialog Box Customization Reference 3-111

CHAPTER 3

Page Formatting and Dialog Box Customization

mask A reference to a picture shape that specifies the mask to assign to a format
object.

DESCRIPTION
The GXSet For nat For mfunction replaces any form previously associated with a
particular format object. It increments the owner counts of the new picture shapes (by
calling the GXCl oneShape function) and decrements the owner counts of the old picture
shapes (by calling the GXDi sposeShape function).
You may set either the f or mparameter or the nask parameter to ni | .
Picture shapes are flattened to disk with the format object during spooling. To retrieve
the form and mask shapes for a particular format object, you use the
GXCet For mat For mfunction.

RESULT CODES
gxSegment LoadFai | edErr A required code segment could not be found, or

there was not enough memory to load it.

SEE ALSO
Listing 3-12 on page 3-51 shows how to use the GXSet For mat For mfunction to associate
the form and mask shapes with a specific format object.
To obtain the form shape associated with a format object, see the description of the
GXGet For mat For mfunction in the previous section.

GXChangedFormat
You can use the GXChangedFor mat function each time you change a format without
directly calling QuickDraw GX.
voi d GXChangedFor mat (gxFormat aFormat);
aFor mat A reference to the format object which you are changing.

DESCRIPTION
You need to call the GXChangedFor nmat function each time you change a format object
indirectly. For example, you should call this function when you modify a format
collection.

3-112 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Displaying the Custom Page Setup Dialog Box

To allow a user to change a format object’s settings, you need to display the Custom
Page Setup dialog box. You use the GXFor mat Di al og function to display the
Custom Page Setup dialog box on the user’s screen.

GXFormatDialog

You can use the GXFor mat Di al og function to display the Custom Page Setup dialog
box when the user chooses the Custom Page Setup menu item from the File menu.

gxDi al ogResult GXFor mat Di al og (gxFormat aFor mat,
gxEdi t MenuRecord *anEdi t MenuRecor d,
StringPtr title);

aFor mat A reference to the format object that specifies the values to display in the
dialog box.
title The title of the dialog box.

anEdi t MenuRecord
A structure for your application’s Edit menu and its menu items.

function result The user’s response to the dialog box.

DESCRIPTION

After you use the GXFor mat Di al og function to display the Custom Page Setup dialog
box, the user can specify formatting information for a format (which is not the default
format). For example, the user can specify the paper size, orientation, and the default
formatting printer.

In the anEdi t MenuRecor d parameter you to specify an Edit menu structure to support
the standard editing operations of cut, copy, paste, and clear in dialog boxes.

The GXFor mat Di al og function returns a response that is defined in a dialog box result
enumeration. If the user chooses the Format button, the GXFor mat Di al og function
returns gxOKSel ect ed. If the user chooses the Cancel button, the function returns
gxCancel Sel ect ed. If the user chooses the Remove button, the function returns
gxRevert Sel ect ed.

If an error occurs, the function returns gxCancel Sel ect ed. Call the GXGet JobErr or
function to determine which error occurred.

Page Formatting and Dialog Box Customization Reference 3-113

SEE ALSO

CHAPTER 3

Page Formatting and Dialog Box Customization

This function causes QuickDraw GX to send the gxFor mat Di al og message, which you
can override to customize the Custom Page Setup dialog box.

Note that QuickDraw GX stores a user’s responses to some dialog box items in the
Custom Page Setup dialog box in a format collection.

Listing 3-9 on page 3-42 shows how to use the GXFor mat Di al og function to display the
Custom Page Setup dialog box.

The Edit menu structure and the dialog box result enumeration are described in the
chapter “Core Printing Features” in this book.

For information about customizing the Custom Page Setup dialog box, see “Adding
Panels to Dialog Boxes” beginning on page 3-67.

Working With Panels

The following functions allow you to add panels to a dialog box. The
GXSet upDi al ogPanel function adds a panel to a dialog box.

You use the GXCGet JobPanel Di mensi ons function to obtain the dimensions of a panel.
This function allows you to locate the position of the cursor within a dialog panel.

You usethe GXEnabl eJobScal i ngPanel function to prevent the display of the default
scaling field in the Page Setup and Custom Page Setup dialog boxes. For example, if you
implement your own scaling panel, you would disable the default scaling field provided
by QuickDraw GX.

You typically call these methods from within an override function for the message that
displays the panel. See the section “Message Override Functions for Customizing
QuickDraw GX Dialog Boxes” beginning on page 3-119 for information about these
message override functions.

GXSetupDialogPanel

3-114

You can use the GXSet upDi al ogPanel function to add a panel to a print dialog box.
OSErr GXSet upDi al ogPanel (gxPanel Set upRecord *panel Rec);

panel Rec A pointer to a panel setup structure.

function result An error code. The value noEr r indicates that the operation was
successful.

Page Formatting and Dialog Box Customization Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 3

Page Formatting and Dialog Box Customization

The GXSet upDi al ogPanel function adds a panel, as defined by the information in the
panel setup structure, to a print dialog box. You call this function from within your
override of the gxJobPri nt Di al og, gxFor mat Di al og, and

gxJobDef aul t For mat Di al og messages, before forwarding the message.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

gxPr User Abort Err The user has canceled printing.

gxCant AddPanel sNowEr r Panels can only be added to a dialog box when the

current driver is switched. This error is generated if
a panel addition request is made at any other time.
gxBadxdt | KeyErr An unknown key value was specified for an item in
an extended dialog control resource.
gxXdt | It enut Of RangeErr An item referenced by the panel does not belong to

the panel.
gxNoAct i onBut t onErr The action button for the panel is ni | .
gxTi tl esTooLongErr The length of the button titles exceeds the

maximum width allowed for a printing alert.

Listing 3-22 on page 3-68 shows how to use the GXSet upDi al ogPanel function to add
a panel to the Custom Page Setup dialog box.

GXGetJobPanelDimensions

DESCRIPTION

You can use the GXGet JobPanel Di nensi ons function to obtain the dimensions of the
area for the panel within a dialog box.

voi d GXGet JobPanel Di nensi ons (gxJob aJob, Rect *aRect);

aJob A reference to the job object associated with the panel.
aRect On return, the rectangle whose geometry specifies the panel’s size.

When you want to locate the position of the cursor within a panel, you use the
GXGet JobPanel Di nensi ons function to obtain the dimensions of a panel.

Page Formatting and Dialog Box Customization Reference 3-115

RESULT CODES

CHAPTER 3

Page Formatting and Dialog Box Customization

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXEnableJobScalingPanel

DESCRIPTION

RESULT CODES

You can use the GXEnabl eJobScal i ngPanel function to prevent display of the
default QuickDraw GX scaling field in the Page Setup and Custom Page Setup dialog
boxes.

voi d GXEnabl eJobScal i ngPanel (gxJob aJob, Bool ean enabl ed);

aJob A reference to the job object associated with the scaling field.
enabl ed A Boolean value that specifies whether or not to enable the scaling field.

The GXEnabl eJobScal i ngPanel function enables or disables the scaling field. You set
the enabl ed parameter to t r ue to enable the scaling field and f al se to disable it. For
example, you might disable this field if you want to provide your own scaling panel
instead of the default field. The scaling field is enabled by default.

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXGetMessageHandlerResFile

DESCRIPTION

3-116

You can use the GXGet MessageHandl er ResFi | e function to retrieve the resource file
reference number of the printing extension or printer driver.

short GXCGet MessageHandl er ResFil e (void);

function result The resource file reference number of the printing extension or printer
driver.

The GXGet MessageHandl er ResFi | e function returns the resource file reference
number for the printing extension or printer driver. You can use this function if you need
to access data from these resources.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPr User Abort Err The user has canceled printing.

Accessing Printing-Related Collection Objects

When you want to obtain a collection object associated with a particular job object,
format object, or paper-type object, you use the GXGet JobCol | ecti on,

GXGet For mat Col | ect i on, and GXCGet Paper TypeCol | ect i on functions. For more
information about collections, see the Collection Manager chapter of Inside Macintosh:
Environment and Utilities.

GXGetJobCollection

You can use the GXGet JobCol | ect i on function to obtain the job collection object
associated with a particular job object.

Col I ection GXGetJobCol Il ection (gxJob aJob);

aJob A reference to the job object whose collection object you want to obtain.

function result A reference to a collection object.

DESCRIPTION

After you call the GXGet JobCol | ect i on function to obtain a job collection object, you
must call the GXGet JobEr r or function to obtain errors. It is important that you resolve
errors immediately because the Collection Manager cannot work with a ni | collection
object.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

Listing 3-3 on page 3-28 shows how to use the GXGet JobCol | ect i on function to
obtain the collection object associated with a particular job object.

Page Formatting and Dialog Box Customization Reference 3-117

CHAPTER 3

Page Formatting and Dialog Box Customization

GXGetFormatCollection

DESCRIPTION

RESULT CODES

You can use the GXGet For mat Col | ect i on function to obtain the format collection
object associated with a particular format object.

Col I ecti on GXGet Format Col | ection (gxFormat aFornmat);

aFor mat A reference to the format object whose collection object you want to
obtain.

function result A reference to a collection object.

After you call the GXCGet For mat Col | ect i on function to obtain a format collection
object, you must call the GXGet JobEr r or function to obtain errors. It is important that
you resolve errors immediately because the Collection Manager cannot work with a ni |
collection object.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXGetPaperTypeCollection

DESCRIPTION

3-118

You can use the GXGet Paper TypeCol | ect i on function to obtain the paper-type
collection object associated with a particular paper-type object.

Col | ecti on GXGet Paper TypeCol | ecti on (gxPaper Type aPaper Type);
aPaper Type

A reference to the paper-type object whose collection object you want to
obtain.

function result A reference to a collection object.
After you call the GXGet Paper TypeCol | ect i on function to obtain a paper-type
collection object, you must call the GXGet JobEr r or function to obtain errors. It is

important that you resolve errors immediately because the Collection Manager cannot
work with a ni | collection object.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Application-Defined Functions

The following sections describe the functions that you must provide if you want to
override QuickDraw GX print dialog messages or manipulate the format objects
associated with a job object.

Message Override Functions for Customizing QuickDraw GX Dialog Boxes

To install an override function for a message, you need to call the

GXlI nstal | Appl i cati onOverri de function. Within the

GXI nst al | Appl i cati onOverri de function, you specify a pointer to a function that
you use to override a particular message for a specific dialog box. These messages
include

n gxJobPrintDi al og

n gxJobDef aul t For mat Di al og
n gxFormat Di al og

n gxHandl ePanel Event

n gxFilterPanel Event

n gxPar sePageRange

You can use dialog box messages to invoke your actions. QuickDraw GX sends the
gxJobDef aul t For mat Di al og message when your application calls

GXJobDef aul t For mat Di al og to display the Page Setup dialog box. QuickDraw GX
sends the gxFor mat Di al og message when your application calls GXFor nmat Di al og to
display the Custom Page Setup dialog box and it sends the gxJobPr i nt Di al og
message when your application calls GXJobPr i nt Di al og to display the Print dialog
box.

QuickDraw GX also sends the gxHandl ePanel Event message and the
gxFi | t er Panel Event message when an event occurs in a panel.

Page Formatting and Dialog Box Customization Reference 3-119

CHAPTER 3

Page Formatting and Dialog Box Customization

GXJobPrintDialog

QuickDraw GX sends the gxJobPr i nt Di al og message when the application calls
gxJobPri nt Di al og to display the Print dialog box. You can install an override
function for the gxJobPri nt Di al og message to modify the behavior or appearance of
the Print dialog box. Your override function must match the following formal declaration:

OSErr GXJobPrintDi al og (gxDi al ogResult *aDi al ogResul t);

aDi al ogResul t
On return, a pointer to the selection made by the user in the dialog box.

function result An error code. The value noEr r indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxJobPr i nt Di al og message when the user selects Print
from the File menu and the application subsequently calls the GXJobPr i nt Di al og
function to display the Print dialog box on the user’s screen.

The default implementation of this message adds the standard printing panels and
interface and then displays the dialog box.

You usually override this message to customize the dialog box by adding panels using
the GXSet upDi al ogPanel function.

SPECIAL CONSIDERATIONS
You never send the gxJobPri nt Di al og message yourself.

You must forward the gxJobPr i nt Di al og message to other message handlers.
Add your panels and then forward the message.

RESULT CODES

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPaper TypeNot Found The user has canceled printing.

3-120 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

GXJobDefaultFormatDialog

DESCRIPTION

QuickDraw GX sends the gxJobDef aul t For mat Di al og message when the
application calls the GXJobDef aul t For mat Di al og function to display the Page Setup
dialog box. You can install an override function for the gxJobDef aul t For mat Di al og
message to modify the behavior or appearance of the dialog box. Your override function
must match the following formal declaration:

OSErr GXJobDef aul t For mat Di al og (gxDi al ogResult *aDi al ogResul t);

aDi al ogResul t
On return, a pointer to a value that specifies the selection made by the
user in the dialog box.

function result An error code. The value noEr r indicates that the operation was
successful.

QuickDraw GX sends the gxJobDef aul t For mat Di al og message when the user clicks
the More Choices button in the Page Setup dialog box. The application calls the
GXJobDef aul t For mat Di al og function to display the extended Page Setup dialog box.

The default implementation of this message adds the standard printing panels and
interface and then displays the dialog box.

You usually override this message to customize the dialog box by adding panels using
the GXSet upDi al ogPanel function. You can add your own panels to the dialog box
through the normal QuickDraw GX printing calls.

SPECIAL CONSIDERATIONS

RESULT CODES

You never send the gxJobDef aul t For nat Di al og message yourself.

You must forward the gxJobDef aul t For mat Di al og message to other message
handlers. Add your panels and then forward the message.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPr User Abort Err The user has canceled printing.

Page Formatting and Dialog Box Customization Reference 3-121

CHAPTER 3

Page Formatting and Dialog Box Customization

GXFormatDialog

DESCRIPTION

QuickDraw GX sends the gxFor mat Di al og message when the application calls the
GXFor mat Di al og function to display the Custom Page Setup dialog box. You can

install an override function for the gxFor nmat Di al og message to modify the behavior
or appearance of the dialog box. Your override function must match the following formal
declaration:

OSErr GXFor et Di al og (gxFormat aFormat, StringPtr title,
gxDi al ogResult *aDi al ogResul t);

aFor mat A reference to the format object.
title The title of the dialog box. If you specify ni | as the value of this
parameter, the title “Custom Page Setup” is used.

aDi al ogResul t
On return, a pointer to the selection made by the user in the dialog box.

function result An error code. The value noEr r indicates that the operation was
successful.

QuickDraw GX sends the gxFor nmat Di al og message when the user selects the Custom
Page Setup menu item and an application subsequently calls the GXFor mat Di al og
function to display the Custom Page Setup dialog box.

The default implementation of this message adds the standard printing panels and
interface and then displays the dialog box.

You usually override this message to customize the dialog box by adding panels using
the GXSet upbi al ogPanel function.

SPECIAL CONSIDERATIONS

RESULT CODES

3-122

You never send the gxFor mat Di al og message yourself.

You must forward the gxFor mat Di al og message to other message handlers. Add your
panels and then forward the message.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

gxPr User Abort Err The user has canceled printing.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

GXHandlePanelEvent

QuickDraw GX sends the gxHandl ePanel Event message when an event happens in a
panel. You can install an override function for the gxHandl ePanel Event message to
handle panel events that cannot be handled using extended item list resources. Your
override function must match the following formal declaration:

OSErr GXHandl ePanel Event (gxPanel | nf oRecord *aPanel | nf oRecord,
gxPanel Result *panel Resul t);

aPanel | nf oRecord
A pointer to the panel information structure that supplies information to
the panel about the current dialog box and panel event.

panel Resul t
On return, the result of handling the panel event.

function result An error code. The value noEr r indicates that the operation was
successful.

DESCRIPTION
QuickDraw GX sends the gxHandl ePanel Event message to allow a panel to handle
events associated with the dialog box. The result code returned by the panel Resul t
parameter is either a value of type OSEr r, or one of the following values:
gxPanel NoResul t
The returned value does not currently have any meaning.

gxPanel Cancel Confirmation
The user confirmed the panel, however, the panel handler discovers
that the user entered an inappropriate value in the dialog box.

The default implementation of this message does nothing. You need to override this
message if you add panels that cannot be handled using extended item list resources.

SPECIAL CONSIDERATIONS
You never send the gxHandl ePanel Event message yourself.

You always perform a total override of the gxHandl ePanel Event message, in which
you handle any events of interest that occur in your panel.

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPr User Abort Err The user has canceled printing.

Page Formatting and Dialog Box Customization Reference 3-123

CHAPTER 3

Page Formatting and Dialog Box Customization

GXFilterPanelEvent

QuickDraw GX sends the gxFi | t er Panel Event message when an event happens in a
panel. You can install an override function for the gxFi | t er Panel Event message to
add panels that need a filter procedure. Your override function must match the following
formal declaration:

OSErr GXFi |l t er Panel Event (gxPanel | nf oRecord *aPanel | nf oRecor d;
Bool ean *ret urnl nmed) ;

aPanel | nf oRecord
A pointer to the panel information structure that supplies information to
the panel about the current dialog box and panel event.

r et ur nl med
On return, a Boolean value that is t r ue if there should be no further
processing on this event and f al se if not.

function result An error code. The value noEr r indicates that the operation was
successful.

DESCRIPTION
QuickDraw GX sends the gxFi | t er Panel Event message to filter panel events in a
dialog box.

The default implementation of this message does nothing. You need to override this
message if you add panels that require a filtering process.

SPECIAL CONSIDERATIONS
You never send the gxFi | t er Panel Event message yourself.

You always perform a total override of the gxFi | t er Panel Event message, in which
you filter any events that occur in your panel.

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPr User Abort Err The user has canceled printing.

3-124 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

GXParsePageRange

QuickDraw GX sends the gxPar sePageRange message when the user selects a range
of pages for printing. You can install an override function for the gxPar sePageRange
message to modify or validate the page range. Your override function must match the
following formal declaration:

OSErr GXPar sePageRange (StringPtr fronmString, StringPtr toString,
gxPar sePageRangeResult *result);

frontring A pointer to the string representation of the From page.
toString A pointer to the string representation of the To page.

resul t On return, a value that specifies the result code for the range parsing. The
constants for this value are given in the section “The Panel Setup
Structure” on page 3-101.

function result An error code. The value noEr r indicates that the operation was
successful.

DESCRIPTION

QuickDraw GX sends the gxPar sePageRange message to validate that a page range
entered by the user is appropriate for the print job.

The default implementation of this message adds the standard printing panels and
interface and then displays the dialog box.

You usually override this message to customize the dialog box by adding panels using
the GXSet upDi al ogPanel function.

SPECIAL CONSIDERATIONS
You rarely need to send the gxPar sePageRange message yourself.

You must forward the gxPar sePageRange message to other message handlers.

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPr User Abort Err The user has canceled printing.

Page Formatting and Dialog Box Customization Reference 3-125

CHAPTER 3

Page Formatting and Dialog Box Customization

Looping Through Format Objects

DESCRIPTION

3-126

When you want to make changes to each format object associated with a document, you
can use the GXFor EachJobFor nmat Do function to access format objects. In this function
you must provide a pointer to a format function.

To access each format object associated with a printable document, provide a pointer to a
format function in the GXFor EachJobFor mat Do function that takes two parameters:
the format object associated with a particular job object, and a pointer to a reference
constant in which you specify unique format object references. For example, this is how
you should declare the function if you were to name it MyFor mat Functi on:

gxLoopSt at us MyFor mat Functi on (gxFormat aFormat, void *refCon);

aFor mat The current format. This is provided by QuickDraw GX when the
function is called.

ref Con A pointer to a reference constant for each format object.

function result A Boolean value to indicate whether looping should stop.

When you use the GXFor EachJobFor mat Do function, QuickDraw GX calls your format
function multiple times as it retrieves each format object referenced by a job object.

Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Dialog Box-Related Resources

This section describes the resources that you use when you add panels to QuickDraw GX
dialog boxes.

The Panel Resource

Figure 3-20 shows the format of the compiled panel resource, gxPr i nt Panel Type.

Figure 3-20 Panel resource

SerptlD

Fimpex pre

Fimpex pre

lmon 1D

M M M [Mo

tbem lwet 1D

The compiled version of a panel resource contains the following elements:

n

n

Panel name. This is a Pascal string that contains the name of the panel.

Script ID. This is the name of the script in which the panel is written; for example,
smRoman.

Reserved. These words are reserved for future use.

Icon ID. This is the resource ID for the icon resource that displays in the expanded
dialog box.

Item ID. This is the resource ID of the items that are displayed in the panel.

Page Formatting and Dialog Box Customization Reference 3-127

CHAPTER 3

Page Formatting and Dialog Box Customization

The Extended Item List Resource

Figure 3-21 shows the format of the compiled extended item resource,
gxExt endedDl TLType.

Figure 3-21 Extended item list resource

E et N ITLTYpE rero e Byles
e count mine 1 2

V4 Riretitem Z variable

£ g

{ Laetitm { Wariable

The compiled version of this resource contains the following elements:
n Item count - 1. This is the number of items in the resource, less 1.
n A variable number of items.

The format of each item depends on its type, as defined below.

xdt | Radi oBut t ons Radio buttons

xdt | CheckBox Checkbox

xdt | Edi t Text | nt eger Integer-format editable text
xdt | Edi t Text Real Real-format editable text
xdt| Edit Text String String-format editable text
xdt | Popup Pop-up menu

3-128 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

The compiled version of an item for a group of radio buttons is shown in Figure 3-22.

Figure 3-22 Radio button items

Byles
by = Ll FadicFuttons 2
Caollecdon g ID 4
Collecdon item D 4
it 2
Countmirue 1 2
P.rray—[: Fadio buton iem room ber Courit

It contains the following elements:

n

n

Key. The key specifies the kind of item. It is always xdt | Radi oBut t ons.

Collection tag ID. The collection tag specifies the creator of the collection item, such as
gxPrinti ngTagl Dfor items provided by QuickDraw GX in the job, format, and
paper-type collections.

Collection item ID. The item ID specifies the collection item ID, such as ' i ncf' for
the level of fonts to include.

Offset. The offset specifies the start of storage for the data. It is the number of bytes
into the collection item.

Count. The count specifies the number of radio buttons in this list. Because there is 1
byte per button in the collection item, the count also specifies the size for the group of
buttons in the collection item.

Item number. The item number specifies the item list’s item that corresponds to this
radio button. There is one item per button.

Page Formatting and Dialog Box Customization Reference 3-129

CHAPTER 3

Page Formatting and Dialog Box Customization

The compiled version of an item for both a checkbox or pop-up menu is shown in
Figure 3-23.

Figure 3-23 Checkbox and pop-up menu items

Byles

by = wcltl Cha okl Eos 2
of Kot LFoptipg

Collecion kg 1D 4

Collecfion item 1D 4

e t 2

'DITL' ibern ramboer 1

Hll 1

It contains the following elements:

n

n

Key. The key specifies the kind of item. It is always xdt | CheckBox for checkboxes
and xdt | Popup for pop-up menus.

Collection tag ID. The collection tag specifies the creator of the collection item, such as
gxPrinti ngTagl Dfor items provided by QuickDraw GX in the job, format, and
paper-type collections.

Collection item ID. The item ID specifies the collection item ID, such as ' dest " for
whether to print to afile.

Offset. The offset specifies the start of storage for the data. It is the number of bytes
into the collection item.

Item number. The item number specifies the item list’s item that corresponds to this
checkbox or pop-up menu.

Fill. The fill is 1 byte.

The compiled version of an item for both integer or real editable text is shown in
Figure 3-24.

3-130 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Figure 3-24 Integer and real edit text items
Byles

Foear = ucttl B it T ed b Inbagee: 2

or uct 1Bdit TeutFoeml

Collecion g 1D 4

Calkcion it 10 4

ot t 2

'ITTIL ' ifem 1

Dadact 1

4 Lovser Bourde FA

{ UPF-H bourde { 16

It contains the following elements:

n Key. The key specifies the kind of item. It is always xdt | Edi t Text | nt eger for
integers and xdt | Edi t Text Real for real numbers.

n Collection tag ID. The collection tag specifies the creator of the collection item, such as
gxPrinti ngTagl Dfor items provided by QuickDraw GX in the job, format, and
paper-type collections.

n Collection item ID. The item ID specifies the collection item ID, such as ' copy' for
the number of copies.

n Offset. The offset specifies the start of storage for the data. It is the number of bytes
into the collection item.

n Item number. The item number specifies the item list’s item that corresponds to the
editable text item.

n Select. This element specifies whether or not to highlight the text. If its value is 0, the
text is not highlighted. If its value is 1, the text is highlighted.

n Lower bounds. This is a Pascal string that contains an optional sign (plus or minus),
digits, and for real numbers, an optional decimal point before the fractional part of the
number. If the string is ni | , no lower bounds is specified.

n Upper bounds. This is a Pascal string that contains an optional sign (plus or minus),
digits, and for real numbers, an optional decimal point before the fractional part of the
number. If the string is ni | , no upper bounds is specified.

Page Formatting and Dialog Box Customization Reference 3-131

CHAPTER 3

Page Formatting and Dialog Box Customization

The compiled version of an item for string editable text is shown in Figure 3-25.

Figure 3-25 String editable text items

Eyies
Fey = wdtlBdi tTewt Ste ing 2
Collecfon g ID 4
Calkclon it 10 4
ot t 2
'TTTIL " i 1
et 1

It contains the following elements:

n

n

Key. The key specifies the kind of item. It is always xdt | Edi t Text Stri ng.

Collection tag ID. The collection tag specifies the creator of the collection item, such as
gxPri ntingTagl Dfor items provided by QuickDraw GX in the job, format, and
paper-type collections.

Item ID. The item ID specifies the collection item ID, such as' i ncf' for the level of
fonts to include.

Offset. The offset specifies the start of storage for the data. It is the number of bytes
into the collection item.

Item number. The item number specifies the item list’s item that corresponds to the
editable text item.

Select. This element specifies whether or not to highlight the text. If its value is 0, the
text is not highlighted. If its value is 1, the text is highlighted.

3-132 Page Formatting and Dialog Box Customization Reference

CHAPTER 3

Page Formatting and Dialog Box Customization

Summary of Page Formatting and Dialog Box Customization

Constants and Data Types

Constants for Loop Status Information

enum {
gxSt opLooping = false, [/* stop |ooping */
gxKeepLoopi ng true /* keep | ooping */

H
typedef Bool ean gxLoopSt at us;

/* function for each fornmat object associated with a job object */
typedef gxLoopStatus (*gxFormatProc) (gxFormat aFormat, void *refCon);

Constants for Collection Item Categories and Tag IDs

Collection Item Categories

typedef short gxCollectionCategory; /* stored in collection object items’ */
/* user attribute bits */

enum {
gxNoCol | ecti onCat egory= (gxCol | ecti onCat egory) 0x0000,/* not volatile */
gxQut put Dri ver Cat egory= (gxCol | ecti onCat egory) 0x0001,/* affected by out-
put printer */
gxFormat ti ngDri ver Cat egory= (gxCol | ecti onCat egory) 0x0002,/* affected by
formatting
printer */
gxDriverVol ati| eCat egory= (gxCol | ecti onCat egory) 0x0004,/* volatile */

gxVol ati | eQut put DriverCategory =

/* purge when output printer driver changes */
gxQut put Dri ver Cat egory + gxDriverVol atil eCat egory,

Summary of Page Formatting and Dialog Box Customization 3-133

CHAPTER 3

Page Formatting and Dialog Box Customization

gxVol ati |l eFormatti ngDri ver Category =
/* purge when formatting printer driver changes */
gxFormattingDri verCategory + gxDriverVol atil eCat egory

H

Collection Tag ID

enum { gxPrintingTagl D = -28672);/* QuickDraw GX assigns its collection
objects with the sane 4-byte ID */

Constants and Data Types for Job Collection Items

Print-Job Information

enum { gxJobTag = '"job ' }; [* itemID for the print-job item*/

/* job object information structure */
struct gxJoblnfo {

| ong nunPages; /* total nunber of pages to print */
| ong priority; [* print job's priority */
| ong ti meToPrint; /* designated tine to print a print job */
| ong j obTi meout ; /* tinme to cancel print job, in ticks */
| ong firstPageToPrint /* first page to begin printing */
short jobAl ert; /* when to alert the user about printing */
Str31 appNane; /* nane of application used to create the */
[* printable docunment */
Str31 docunent Nane; /* name of the user’s document */
Str31 user Nane; /* nane of the user associated with the */
[* printable docunment */
b
enum {
[* print-job priorities */
gxPrintJobUrgent = 0x00000001, /* priority of print job is */
/[* “urgent” */
gxPrintJobAt Tine = 0x00000002, /* designated time to print the */
[* print job */
gxPrint JobASAP = 0x00000003 /* designated tine to print the */
[* print job is "as soon as */
[* possible” */
b

3-134 Summary of Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

enum { gxPrintJobHol di ngBit = 0x00001000 }; /* reserved bit in the
priority field indicates a
print job on hold */

enum {
[* print-job holding status */
gxPri nt JobHol di ng (gxPrintJobHol di ngBit + gxPrint JoObASAP)
gxPrint JobHol di ngAt Ti ne (gxPrintJobHol dingBit + gxPrintJobAtTi ne)

gxPri nt JobHol di ngUr gent = (gxPrintJobHol di ngBit + gxPrintJobUrgent)
b
enum {
[* print-job alert constants */
gxNoPrintTineAlert= 0, /* don't alert user when printing */
gxAl ert Before = 1, /* alert user before printing */
gxAl ertAfter = 2, [* alert user after printing */
gxAlertBothTines = 3 /* alert user before and after printing */
s
enum {
[* time to cancel print job */
gxThi rtySeconds = 1800, /* cancel print job in 30 seconds (in ticks) */
gxTwoM nut es = 7200 /* cancel print job in 2 mnutes (in ticks) */
s

Collation Information

enum { gxCollationTag = 'sort' };/* itemID for the collation itent/

[* collation information stucture */
struct gxCollationlnfo {
Bool ean col | ati on; /* indicates whether or not to collate */
/* copies */

s
Copies Information

enum { gxCopiesTag = 'copy' };/* itemID for the copies itent/

[* copies information structure */
struct gxCopieslnfo {
| ong copi es; /* nunber of copies of a docunent to print */

H

Summary of Page Formatting and Dialog Box Customization 3-135

CHAPTER 3

Page Formatting and Dialog Box Customization

Page-Range Information

enum { gxPageRangeTag = 'rang' };/* itemID for the page-range item */

/* page-range information structure */
struct gxPageRangel nfo {

gxSi npl ePageRangel nf o si mpl eRange; /* sinple page range */
/* information */

Str31 frontring; /* begi nning of custom zed */
/* page range */

Str31l toString; /* end of custom zed page */
/* range */

| ong m nFr onmPage; /* m ni mum of default page */
/* range */

| ong max ToPage; /* maxi mum of default page */
/* range */

char replaceString[1]; /* page-range replacenment */

[* string */

/* sinple page-range information structure */
struct gxSi npl ePageRangel nfo {

char optionChosen; [/* specific page-range option */
Bool ean printAll; [* true if user wants to print all pages of a */
/* document */
| ong fr onPage; [* first page in page range */
| ong t oPage; /* |l ast page in page range */
s
enum {
/* page-range options */
gxDef aul t PageRange = (char) 0, /* use default nuneric page range */
gxRepl acePageRange = (char) 1, /* use editable text field */
gxCust om zePageRange = (char) 2 /* use al phanuneric page range */
s

3-136 Summary of Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Quality Information

enum { gxQualityTag = 'qual’ /*

H

/[* quality information structure */

struct gxQualitylnfo {

itemID for the quality itent/

Bool ean di sabl eQuality; /* true to disable standard quality */
/* controls */
short defaul tQuality; [* default quality */
short currentQuality; [* current quality */
short qual i t yCount ; /* nunmber of quality nenu itens in */
[* Quality pop-up menu */
char qual ityNanes[1]; [/* Quality pop-up nmenu nanes, such as */
/[* “Best” */
b
File-Destination Information
enum { gxFileDestinationTag = 'dest' };/* itemID for the file- */

/* destination itent/

/* file-destination information structure */

struct gxFil eDestinationlnfo {
Bool ean toFil e; /*

H

File-Location Information

enum { gxFileLocationTag = 'floc' } /*

/*

/* file-location information structure
struct gxFileLocationlnfo {

FSSpec fil eSpec; /*
b
File-Format Information
enum{ gxFileFormatTag = "ffm" }; /*
/ *

Summary of Page Formatting and Dialog Box Customization

true if destinationis a file */

item|ID for the file- */
|l ocation itenr/

*/

|l ocation of file */

item|ID for the file- */

format itenr/

3-137

CHAPTER 3

Page Formatting and Dialog Box Customization

[* file-format information structure */
struct gxFileFormatlnfo {
Str31 fil eFor nat Nane; /* name of file format */

b
File-Fonts Information

enum { gxFileFontsTag = "incf' }; /[* itemID for the file-fonts item */

/* file-fonts informati on structure */
struct gxFileFontslnfo {

char i ncl udeFont s; [* font include level; if destination is
file */
b
enum { /* font include levels */
gxl ncl udeNoFont s = (char) 1,
gxl ncl udeAl | Font s = (char) 2
gxl ncl udeNonSt andar dFonts = (char) 3
s
Paper-Feed Information
enum { gxPaperFeedTag = 'feed' };/* itemID for paper-feed item*/

/* paper-feed information structure */
struct gxPaperFeedl nfo {
Bool ean aut oFeed; [* true if automatic feed, false if */
/* manual feed */

I
Manual-Feed Information

enum { gxManual FeedTag = 'manf' };/* itemID for nmanual -feed item */

/* manual -feed i nformation structure */
struct gxManual Feedl nfo {

| ong nunPaper TypeNanes; /* nunmber of paper-type objects to
/* manual ly feed */
Str31l paper TypeNanes[1] ; /* nanmes of paper-type objects to */

/* manual ly feed */

3-138 Summary of Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Standard Mapping Information

enum { gxNor mal Mappi ngTag = ' nmap' };

/[* mapping item*/

/* standard mapping information structure */

struct gxNor mal Mappi ngl nfo {
Bool ean

b

Special Mapping Information

enum { gxSpeci al Mappi ngTag = 'smap' };

[* speci al
struct gxSpeci al Mappi ngl nfo {

char speci al Mappi ng;

}

enum {
[* paper-mappi ng options */
gxRedi r ect Pages = (char) 1,
gxScal ePages = (char) 2
gxTi | ePages = (char) 3

s

Tray-Mapping Information

enum { gxTrayMappi ngTag = 't map'

struct gxTrayMappi ngl nf of
gxTrayl ndex mapPaper ToTr ay;

H

typedef |ong gxTrayl ndex;

Print-Panel Information

nor nmal Paper Mappi ng;

/*

/*

enum { gxPrintPanel Tag = ' ppan' };

/[* true if not overriding standard */

/* paper matching */

/* itemID for special

mappi ng i nformation structure */

/* specific paper-mappi ng option */

/* user
/* user
/* user

wants to scal e pages */
wants to tile pages */

tray to map all paper to */

specifies the paper tray setting */

/* itemI|D for the Print */
/* panel item*/

Summary of Page Formatting and Dialog Box Customization

/* itemI|D for the standard */

mappi ng */

wants to crop redirected pages */

3-139

CHAPTER 3

Page Formatting and Dialog Box Customization

[* print-panel information structure */
struct gxPrintPanellnfo {
Str31l st art Panel Nane; /* name of starting panel in
/[* Print dialog box */
s

Format-Panel Information

enum { gxFor mat Panel Tag = ' fpan' }; /* itemID for the format */
[* panel item*/

/* format-panel information structure */
struct gxFor mat Panel I nfo { /* name of starting panel in */
Str31 st art Panel Nane; /* Page Setup dial og box */

b

Paper-Mapping Information

enum { gxPaper Mappi ngTag = 'pmap' };/* itemID for print- */
/* panel item*/

/* This collection itemcontains a flattened paper-type object resource. */

Translated-Document Information

enum { gxTransl at edDocunentTag = 'trns' };

struct gxTransl at edDocunent | nfo {
| ong transl atorl nfo; [* information fromthe translation process */

H

Constants and Data Types for Format Collection Items

Orientation Information

enum { gxOrientationTag = 'layo' }; [* itemI|ID for the */
/* orientation item?*/

/* orientation information structure */

struct gxOrientationlnfo {
char orientation; /* an enunerated orientation val ue */

3-140 Summary of Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

enum {
/* orientation options */
gxPortraitLayout
gxLandscapelayout
gxRot at edPortrait Layout

not user specifiable*/

(char) 0, /* user wants portrait orientation */
(char) 1, /* user wants | andscape orientation */
(char) 2, /* rotated portrait orientation,

gxRot at edLandscapelLayout =(char) 3 /* user wants rotated | andscape */

/* orientation */

b

Scaling Information

enum { gxScalingTag = 'scal' }; /[* itemID for the scaling item*/

/* scaling information structure */
struct gxScalinglnfo {

Fi xed hori zont al Scal eFact or; /* current horizontal scaling */

/* factor */
Fi xed verti cal Scal eFact or; /* current vertical scaling factor */
short m nScal i ng; /* mnimum current scaling factor */
short maxScal i ng; /* maxi mum current scaling factor*/

b

Direct-Mode Information

enum { gxDirectModeTag = "dirm }; [* itemID for the direct- */
/* node item */

/* direct-node information structure */
struct gxDirectMdelnfo {

Bool ean direct ModeOn; /* true if direct node is enabled */
H
Format-Halftone Information
enum { gxFormat Hal ftoneTag = "half' }; /* itemID for the special */

/[* mapping item*/

/* format-halftone information structure */

struct gxFormat Hal ftonel nfo {
| ong nunHal ftones; /* nunber of hal ftones */
gxHal ftone hal ftones[1]; [* any nunber of halftones */

b

Summary of Page Formatting and Dialog Box Customization

3-141

CHAPTER 3

Page Formatting and Dialog Box Customization

Page-Inversion Information

enum { gxlnvertPageTag = "invp' }; /* itemID for the page- */
/* inversion item?*/

/* page-inversion information structure */
struct gxlnvertPagelnfo {
Bool ean invert; [* if true, invert the page */
}; /[* if missing or false, don't invert */
/* the page */

Horizontal Page-Flip Information

enum { gxFl i pPageHorizontal Tag = 'fl ph' }; /* itemID for the */
*/ horizontal page-flip item */

/* horizontal flip-page information structure */
struct gxFlipPageHori zontal I nf of
Bool ean flipHorizontal; [* if true, flip x coordinates on the */
}s /* page; if missing or false, don't flip */

Vertical Page-Flip Information

enum { gxFlipPageVerticalTag = "flpv' }; /[/* itemID for the */
[* vertical page-flip item*/

/* vertical page-flip information structure */
struct gxFlipPageVertical Info {
Bool ean flipVertical; [* if true, flip y coordinates on the */
}; /* page; if missing or false, don't flip */

Precise-Bitmap Information

enum { gxPreciseBitmapsTag = 'pbnp' }; /* itemID for the precise- */
[* bitmap item*/

[* precise-bitmap information structure */
struct gxPreciseBitmaplnfo {

Bool ean preci seBit maps; [* if true, scale the page by 96% */
}; /[* if missing or false, don't scale */

3-142 Summary of Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Paper-Type Lock Information

enum { gxPaper TypeLockTag = '"ptlk' }; /* itemID for the paper- */
/* type lock itent/

/* paper-type object |lock information structure */
struct gxPaper TypeLocklnfo {

Bool ean paper TypelLocked,; [* true if paper-type object */
}; /[* is locked */

Constants and Data Types for Paper-Type Collection Iltems

Base Information

enum { gxBaseTag = 'base' }; /[* itemID for the base item*/

/* base type information structure */
struct gxBaselnfo {

| ong baseType; /* base type chosen */

P

enum {
/* paper-type object base types */
gxUnknownBase = O, /* unknown base type */
gxUsLetterBase = 1, [* US letter base type */
gxUsLegal Base = 2, /* US | egal base type */
gxAdlLetterBase = 3, [* A4 letter base type */
gxB5Lett erBase = 4, /* B5 letter base type */
gxTabl oi dBase = 5 /* tabloid base type */

b

Creator Information

enum{ gxCreatorTag = 'crea' }; [/* itemIDfor the creator item?*/

/* creator information structure */
struct gxCreatorlnfo {

OSType creator; /* creator of the paper-type object */
b
enum {

/* paper-type object creator type */

gxSysPaper Type = 'sypt', /* system paper-type object creator */

Summary of Page Formatting and Dialog Box Customization 3-143

CHAPTER 3

Page Formatting and Dialog Box Customization

gxUser Paper Type = 'uspt’ [* user paper-type object creator */
[* if printer driver creates a paper-type object, use printer
[* driver’s creator type */

Units Information

enum { gxUnitsTag = "unit' }; [* itemID for the units item*/

/* unit information structure */
struct gxUnitsinfo {
char units; /* specific paper-type object */
/* measurenent */

b
enum {
/* paper-type object units */
gxPicas = (char) O, /* pica neasurenment */
gxMrs = (char) 1, [* mllinmeter measurenent */
gxlnches = (char) 2 [* inches measurement */
s

Flags Information

enum { gxFlagsTag = 'flag" }; /* itemID for the flags item?*/

/* flags information structure */
typedef struct {

long flags; [* paper-type object flags */
} gxFl agsl nfo

enum {
/* paper-type object flags (bit positions) */
gxQ dPaper TypeFl ag = 0x00800000, /* indicates a paper-type object */

[* with 7.0 settings */
0x00400000, /* indicates a paper-type object */
/[* with post 7.0 settings */
0x00C00000, /* indicates a paper-type object */
/* that is both old and new */
0x00100000, /* indicates the default paper */
[* type */

gxNewPaper TypeFl ag

gxAa dAndNewPaper TypeFl ag

gxDef aul t Paper TypeFl ag

3-144 Summary of Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Comment Information

enum { gxCommentTag = 'cmt' }; /* itemID for the comment item */
/* conmment information structure */

struct gxCommentlnfo {
Str255 conment ; /* paper-type object coment */

Panel-Related Constants and Data Types

QuickDraw GX Dialog Box Panel Information

/* constants for overriding nmessages when addi ng di al og box panels */
#def i ne gxJobSt at us 3
#defi ne gxPrintingEvent 4
#defi ne gxJobDef aul t Format Di al og 5

#def i ne gxFormat D al og 6
#def i ne gxJobPrint Di al og 7
#defi ne gxFilterPanel Event 8
#def i ne gxHandl ePanel Event 9
#def i ne gxPar sePageRange 10

/* dialog box related resources */
#def i ne gxXdt| Radi oButt ons
#def i ne gxXdt| CheckBox
#def i ne gxXdtl Edi t Text | nt eger
#def i ne gxXdt| Edi t Text Rea
#define gxXdtl Edi t Text String
#def i ne gxXdt| PopUp

g b~ W NP O

The Panel Information Structure

struct gxPanel | nfoRecord {
gxPanel Event panel Evt; [/* the event */

short panel Resl d; /* resource ID of current panel resource */
Di al ogPtr pD g; /* pointer to dialog */
Event Record *theEvent; /* pointer to event */
short itenHit; /* actual item nunber of event */
short itenCount; /* nunmber of itens before your itens */
short evtAction; /* the action that will occur after
this event is processed */
short errorStringld; [* "STR ' |ID of error string */

Summary of Page Formatting and Dialog Box Customization 3-145

CHAPTER 3

Page Formatting and Dialog Box Customization

gxFormat theFormat; /* the current format

*/

voi d *ref Con; [* ref Con from gxPanel Set upRecord */

b

Panel Events

enum {
gxPanel NoEvt (gxPanel Event) O,
gxPanel OpenEvt (gxPanel Event) 1,
gxPanel Cl oseEvt = (gxPanel Event) 2
3,
4,

gxPanel Hi t Evt = (gxPanel Event)
gxPanel Acti vat eEvt = (gxPanel Event)
gxPanel Deact i vat eEvt = (gxPanel Event) 5,
gxPanel | conFocusEvt = (gxPanel Event) 6
gxPanel Panel FocusEvt = (gxPanel Event) 7
gxPanel FilterEvt = (gxPanel Event) 8,

gxPanel Cancel Evt = (gxPanel Event) 9
gxPanel ConfirnEvt = (gxPanel Event) 10,
gxPanel Di al ogevt = (gxPanel Event) 11

gxPanel O her Evt = (gxPanel Event) 12

gxPanel User W | | Confi r nEvt
= (gxPanel Event) 13
b

typedef |ong gxPanel Event;

Panel Responses

enum {
gxPanel NoResul t
gxPanel Cancel Confirmati on

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*

no event */

panel is about to open */
panel is about to close */
user has selected item */
panel has been activated */
panel has been deactivated */
focus has changed to icons */
focus has changed to panel */
panel event needs to be
filtered */

panel has been canceled */
panel has been confirnmed */
panel event to be handl ed

by the dial og box handl er */
an OS event has occurred

in the panel */

user has selected OK */

0, /* no result from panel */
1, /* user confirned panel, but panel

handl er di scovered an error */

b

typedef |ong gxPanel Resul t;

Panel Event Actions

enum {
gxQ her Acti on = 0,
gxCl osePanel Action = 1,

/* current itemdoesn’t change after event */
/* panel is closed after event */

3-146 Summary of Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

gxCancel Di al ogAction = 2, /* dialog box is canceled after event */
gxConfirnDi al ogAction=3 /* dialog box is confirned after event */

b

The Panel Setup Structure

struct gxPanel Set upRecord {

gxPrinti ngPanel Ki nd panel Ki nd; /* kind of program using panel */
short panel Resl d; /* resource | D of panel */

short r esour ceRef Num /* resource file refnum of panel */
voi d *r ef Con; /* pointer to panel setup

structure used to build panel */

b

Printing Panel Kinds

enum {
gxAppl i cati onPanel = (gxPrintingPanel Kind) 0, /* an application panel */
gxExt ensi onPanel = (gxPrintingPanel Kind) 1, /* printing extension panel */

gxDri ver Panel

b

(gxPrintingPanel Kind) 2 /* printer driver panel */

typedef | ong gxPrintingPanel Ki nd;

Parse Range Results

enum {
gxRangeNot Par sed = (gxParsePageRangeResult) O, /* not parsed yet */
gxRangePar sed = (gxPar sePageRangeResult) 1, /* successful parse */

gxRangeBadFr omval ue= (gxPar sePageRangeResult) 2, [* the “from page” */
/* wvalue is invalid */
gxRangeBadToVal ue = (gxParsePageRangeResult) 3 /* the “to page” */
/* wvalue is invalid */

b

typedef | ong gxParsePageRangeResul t;

Functions

Creating and Manipulating Format Objects

gxFor mat GXNewFor mat (gxJob aJob);
voi d GXDi sposeFor mat (gxFormat aFormat) ;
gxFor mat GXCopyFor mat (gxFormat srcFormat, gxFormat dstFormat);

Summary of Page Formatting and Dialog Box Customization 3-147

CHAPTER 3

Page Formatting and Dialog Box Customization

gxFor mat GXd oneFor mat (gxFormat aFormat) ;
| ong GXCount JobFor mat s (gxJob aJob);
| ong GXCount For nat Oaner s (gxFormat aFormat) ;

voi d GXFor EachJobFor mat Do (gxJob aJob, gxFormat Proc aFormatProc, void

*ref Con) ;

Manipulating Format Object Properties

voi d GXGet For mat Mappi ng (gxFor mat
gxPaper Type GXGet For mat Paper Type

(gxFor mat
gxShape GXGet For mat Form (gxFor mat
voi d GXSet For mat Form (gxFor mat
voi d GXChangedFor mat (gxFor mat

aFormat, gxMappi ng *aMappi ng);

aFormat) ;

aFormat, gxShape *mask);

aFormat, gxShape form gxShape mask);
aFormat) ;

Displaying the Custom Page Setup Dialog Box

gxDi al ogResul t GXFor mat Di al og
(gxFor mat

aFor mat ,

gxEdi t MenuRecord *anEdi t MenuRecord,
StringPtr title);

Working With Panels

voi d GXSet upDi al ogPanel (gxPanel Set upRecord *aPanel Set upRecord);

voi d GXGet JobPanel Di nensi ons

(gxJob aJob, Rect *aRect)

voi d GXEnabl eJobScal i ngPane

(gxJob aJob, Bool ean enabl ed);

short GXCGet MessageHandl er ResFi | e
(void);

Accessing Printing-Related Collection Objects

Col | ecti on GXGet JobCol | ecti on

(gxJob aJdob);

Col | ecti on GXGet For mat Col | ecti on
(gxFor mat

Col | ecti on GXGet Paper TypeCol | ecti on

aFormat) ;

(gxPaper Type aPaper Type);

3-148 Summary of Page Formatting and Dialog Box Customization

CHAPTER 3

Page Formatting and Dialog Box Customization

Application-Defined Functions

Message Override Functions for Customizing Dialog Boxes
OSErr GXJobPrint Di al og (gxDi al ogResult *aDi al ogResul t);

OSErr GXJobDef aul t For mat Di al og
(gxDi al ogResult *aDi al ogResul t);

CSErr GXFor mat Di al og (gxFormat aFormat, StringPtr title
gxDi al ogResult *aDi al ogResul t);

CSErr GXHandl ePanel Event (gxPanel | nf oRecord *aPanel | nf oRecord,
gxPanel Result *aPanel Resul t);

OSErr GXFi |l t er Panel Event (gxPanel | nf oRecord *aPanel | nf oRecor d,

Bool ean *returnl mred);

CSErr GXPar sePageRange (StringPtr frontring, StringPtr toString
gxPar sePageRangeResult *result);

Looping Through Format Objects

gxLoopSt at us MyFor mat Functi on (gxFormat aFormat, void *ref Con);

Dialog Box-Related Resources

The Panel Resource

type gxPrint Panel Type {

pstring[31]; /* the panel nanme */

integer Script;/* script ID*/

fill word; /* reserve a long word for future use of
i nternational */

fill word; /* reserve a long word for future use of
i nternational */

i nteger; /* the icon ID */

i nt eger; /[* the itemlist ID*/

Summary of Page Formatting and Dialog Box Customization

3-149

CHAPTER 3

Page Formatting and Dialog Box Customization

The Extended Item List Resource

type gxExt endedDl TLType {

i nteger = $$Count O (xdtlarray) -1

wide array xdtlarray {

switch {
case Radi oButtons:
key i nteger =
literal 1ongint; /*
| ongi nt; /*
i nteger; /*

xdt | Radi oBut t ons;

4 byte id for storage in job
obj ect or format object */
nunerical id for storage in
job object or format object */
offset in bytes into item?*/

i nteger = $$Count O (Radi oButtonsArray) - 1;
wi de array Radi oButtonsArray

{
byt e; /*
b
case CheckBox
key i nteger =
literal 1ongint; /*
| ongi nt; /*
i nt eger; /*
byt e; /*
fill byte;

case Edit Textl| nteger:

key i nteger =

literal |ongint; /*
| ongi nt; /*
i nt eger; /*
byt e; /*
byt e; /*

pstring[15];/*

pstring[15];/*

3-150

array of corresponding itens*/

xdt | CheckBox;

4-byte I D for storage in job
obj ect or format object */
nunerical 1D for storage in
job object or format object */
offset in bytes into item*/
corresponding ditl item*/

xdt | Edi t Text | nt eger;

4-byte ID for storage in

job object or format object */
numerical ID for storage in
job object or format object */

offset in bytes into item*/
corresponding itemlist’'s item?*/
0 = dont select, 1 = select */

| ow bound - nil neans '

don't care' */

hi gh bound - nil neans 'I

don't care' */

Summary of Page Formatting and Dialog Box Customization

b

H

CHAPTER 3

Page Formatting and Dialog Box Customization

case Edit Text Real :
key i nteger =
literal 1ongint;

| ongi nt;
i nt eger;

byt e;
byt e;

xdt | Edi t Text Real ;

/*

/*

/*

/*
/*

pstring[15];/*

pstring[15];/*

case EditTextString:

key i nteger =
literal 1ongint;
| ongi nt;
i nt eger;
byt e;
byt e;
case PopUp
key i nteger =
literal 1ongint;
| ongi nt;
i nt eger;
byt e;
fill byte;

b

ali gn word;

4-byte I D for storage in job
obj ect or format object */
numerical ID for storage in
job object or format object */
offset in bytes into item*/
corresponding itemlist’'s item?*/
0 = don't select, 1 = select

| ow bound - nil neans '

don't care' */

hi gh bound - nil neans 'I
don't care' */

xdt | Edi t Text Stri ng;

/*

/*
/*

/*
/*
/*

4-byte I D for storage in job

obj ect */

or format object */

numerical ID for storage in

job object or format object */
offset in bytes into item*/
corresponding itemlist’'s item?*/
0 = don't select, 1 = select */

xdt | PopUp;

/*

/*

/*
/*

4-byte I D for storage in job

obj ect or format object */
nunerical ID for storage in

job object or format object */
offset in bytes into item*/
corresponding itemlist’'s item?*/

Summary of Page Formatting and Dialog Box Customization

3-151

CHAPTER 4

Advanced Printing Features

Contents

About Advanced Printing Features 4-5
Printer Objects 4-6
Printer Driver Types 4-7
Printer View Devices 4-8
Color Matching for Printers 4-9
Print File Objects 4-9
Synonyms 4-11
General-Purpose PostScript Operator Synonym 4-12
PostScript Control Information Synonym 4-13
Dash Synonym 4-14
Line Cap Synonym 4-14
Halftone Synonym 4-15
Pattern Synonym 4-17
Cubic Synonym 4-17
QuickDraw Picture Synonym 4-18
Printing Modes 4-19
Pen Tables for Vector Devices 4-20
Using Advanced Printing Features 4-21
Using Advanced Job Object Functions 4-21
Obtaining Printer and Printer Driver Information for a Job
Getting and Setting the Reference Constant for a Job Object
Copying Job Object Information 4-25
Working With Printer Objects 4-25
Determining a Printer’s Resolution 4-26
Retrieving the Color Profile and Color Space for a Printer
Manipulating Print File Objects 4-29
Opening and Closing a Print File 4-29
Saving a Print File 4-30
Obtaining the Job Object for a Print File 4-30
Reading Print File Data 4-30

Contents

4-22
4-23

4-27

4-1

4-2

CHAPTER 4

Counting the Pages in a Print File 4-31
Adding or Deleting Print File Pages 4-31
Defining Different Paper Sizes 4-31
Creating a Paper-Type Object 4-32
Obtaining the Name of a Paper Type 4-32
Obtaining the Dimensions of a Paper Type 4-33
Scanning the Paper Types Available to a Job 4-34
Implementing Direct-Mode Printing 4-35
Formatting for Text Job Format Mode Printing 4-36
Using Synonyms 4-38
Advanced Printing Features Reference 4-38
Constants and Data Types for Advanced Printing Features
Job Format Modes 4-39
Text Job Format (Direct) Mode 4-40
The Status Structure 4-42
Pen Tables for Vector Devices 4-43
Constants and Data Types for Synonyms 4-45
General-Purpose PostScript Operator Synonym 4-45
PostScript Control Information Synonym 4-45
Dash Synonym 4-46
Halftone Synonym 4-46
Line Cap Synonym 4-47
Pattern Synonym 4-47
Cubic Synonym 4-48
QuickDraw Picture Synonym 4-49
Functions 4-49
Advanced Job Object Functions 4-50
GXSel ect JobFormatti ngPri nter 4-50
GXGet JobFormat ti ngPrinter 4-51
GXGet JobQut put Pri nt er 4-51
GXCGet JobRef Con 4-52
GXSet JobRef Con 4-53
GXCopyJob 4-53
Manipulating Printer Objects 4-54
GXCGet JobPri nt er 4-55
GXGet Print erJob 4-55
GXFor EachPri nt er Vi ewDevi ceDo 4-56
GXCount Pri nt er Vi ewDevi ces 4-57
GXCet Pri nt er Vi ewDevi ce 4-57
GXSel ect Pri nt er Vi ewDevi ce 4-58
GXCGet PrinterDriver Name 4-59
GXGet Pri nt er Nane 4-59
GXGet PrinterDriver Type 4-60
GXCet Pri nt er Type 4-61
Working With QuickDraw GX Print Files 4-61
GXOpenPrintFile 4-62
GXO osePrintFile 4-63

Contents

4-39

CHAPTER 4

GXGet PrintFil eJob 4-64
GXCount Pri nt Fi | ePages 4-65
GXReadPri nt Fi | ePage 4-65
GXRepl acePrint Fi | ePage 4-66
GXl nsert Print Fi | ePage 4-68
GXDel et ePri nt Fi | ePageRange 4-69
GXSavePrintFile 4-70

Working With Paper Types 4-71
GXNewPaper Type 4-71
GXDi sposePaper Type 4-72
GXGet NewPaper Type 4-73
GXGet JobPaper Type 4-74
GXCount JobPaper Types 4-75
GXCopyPaper Type 4-76
GXCGet Paper TypeNane 4-76
GXGet Paper TypeDi nensi ons 4-77
GXGet Paper TypeJob 4-78
GXFor EachJobPaper TypeDo 4-78

Formatting for Specific Devices 4-79
GXSet Avai | abl eJobFor mat Mbdes 4-80
GXCet Pr ef err edJobFor mat Mode 4-80
GXCet JobFor mat Mode 4-81
GXSet JobFor mat Mode 4-82
GXJobFor mat ModeQuery 4-83

Color Profile Functions 4-84
GXFindPrinterProfile 4-84
GXFi ndFormat Profile 4-85
GXSetPrinterProfile 4-87
GXSet Format Profil e 4-88

Idle Job Function 4-90
GXlI dl eJob 4-90

Application-Defined Functions 4-90

Message Override Function for the Printing Status Dialog Box 4-90
GXJobsSt at us 4-91

Looping Through a Printer’s View Devices 4-92

Looping Through a Job’s Paper Types 4-92

The Status Resource 4-93
Summary of Advanced Printing Features 4-95

Contents

CHAPTER 4

Advanced Printing Features

This chapter describes how your application can use printing-related objects in ways that
may not be required for most applications. Read the information in this chapter if you
want your application to read or modify print files after they have been printed, create
and use custom paper types, or explicitly control the way that QuickDraw GX performs
certain printing operations.

To use this chapter, you should also be familiar with the printing-related objects,
including collection objects that QuickDraw GX uses to store job and format information,
as introduced in the chapter “Introduction to Printing With QuickDraw GX” in this
book. Because the objects and techniques discussed in this chapter build on applications
that already provide core printing features, you should be familiar with these features, as
introduced in the chapter “Introduction to Printing With QuickDraw GX” and discussed
in detail in the “Core Printing Features” chapter of this book.

This chapter describes the concepts required to use advanced QuickDraw GX printing
features and terms and then explains how to

n manipulate a job object; for example, using its reference constant property

n work with a printer object to obtain information about the device it represents, such as
information about the driver, its resolution, and color printing capabilities

n manipulate a print file object that represents a spooled file or a portable digital
document

n Mmanipulate a paper-type object to define paper sizes for different requirements
n optimize printing for specific devices

This chapter also describes the resource for Printing Status dialog boxes, as well as status
constants. Although you can customize Printing Status dialog boxes in your application,
they are used primarily by printer drivers and printing extensions. For information
about the use of Printing Status dialog boxes by printer drivers and printing extensions,
see the resource chapter of Inside Macintosh: QuickDraw GX Printing Extensions and
Drivers.

About Advanced Printing Features

Advanced printing features make use of objects described in the chapters “Core Printing
Features” and “Page Formatting and Dialog Box Customization” in this book. This
chapter shows how these objects can be used in additional ways to implement features
not typically required by every application that implements QuickDraw GX printing.

For example, the paper-type object is always associated with a format object. A paper
type that matches the format is provided by QuickDraw GX as a core feature. Ordinarily,
your application need not modify it. If, for example, your application needs to restrict
the printable area of a page to reserve room for a letterhead, it can create a paper-type
object that defines a new paper size. Although the technique is straightforward, the
feature is considered advanced because applications are not required to create

About Advanced Printing Features 4-5

CHAPTER 4

Advanced Printing Features

paper-type objects. Typically, the default paper-type object is sufficient for most
applications.

To implement other advanced printing features, you use the printer and print file objects.

n You can use a printer object to determine the device characteristics of a desktop
printer, such as its resolution

n You can use a print file object to determine the contents of a file that has been printed
and change them, if you wish.

The following sections describe the printer and print file objects.

Printer Objects

Each job object references two printer objects. One printer object specifies the output
printer on which the document is printed. The other printer object defines the
formatting printer that specifies how the document is formatted. A user chooses an
output printer in the Print dialog box and a formatting printer in the Page Setup dialog
box. When a job object is created, its output printer is the currently selected desktop
printer, and the formatting printer is specified by the output printer’s printer driver.

Each printer object has six accessible properties, as shown in Figure 4-1. Note that,
because a printer object is a private data structure, the order of the properties as shown
in Figure 4-1 is completely arbitrary. Properties in italics indicate references to other
objects.

Figure 4-1 The printer object

4-6

Prirtar raarn =
Prirder pe

Prirtar driver nan =

Priritar driver 'i_,rpe

T ket e Rt
Jod

About Advanced Printing Features

CHAPTER 4

Advanced Printing Features

The properties of a printer object are:

n

Printer name. This property contains the name of the printer. A user specifies a
printer by name in the Print dialog box. For example, a user could choose the printer
“My Printer” from the list of available printers.

Printer type. This property specifies the creator type of a printer. It is a 4-character
signature that uniquely identifies a kind of printer. You are responsible for registering
the printer type with Developer Technical Support at Apple Computer. An example of
a printer type is' LWRW for a LaserWriter.

Printer driver name. This property specifies the name of the printer driver to which
the job is printed. A user specifies a printer driver from the Chooser if the desired
printer is not already on the desktop.

Printer driver type. This property specifies the kind of printer driver. Table 4-1 shows
some printer driver types provided by QuickDraw GX.

View device list. This property contains a list of references to the view devices
associated with a printer. Each view device specifies a print resolution (dots-per-inch)
and color space (for example, CMYK or a grayscale space) that is supported by the
printer. For more information about the relationship between printer objects and view
devices, see the section “Printer View Devices” beginning on page 4-8.

Job. This property contains a reference to a job object. Through this reference, you can
access a job object associated with a printer object. The job object is discussed in the
chapter “Core Printing Features” in this book.

Printer Driver Types

Table 4-1 shows the printer driver types defined by QuickDraw GX. Do not make
assumptions about the kinds of service provided by a printer driver based on its type
alone. For example, two PostScript drivers may be subtly different.

Table 4-1 Printer driver types

Constant Value Explanation

gXAnyPri nt er Type "uni v' Universal type of printer

gxRast er Pri nt er Type ‘rast’ Raster printer

gxPost scri pt Printer Type ' post' Postscript printer

gxVect or Pri nt er Type "vect' Vector printer

gxPort abl eDocPri nt er Type " gxpd' Portable digital document maker
araars Unknown driver type

Note

You are responsible for registering your printer driver type with
Developer Technical Support. u

About Advanced Printing Features

4-7

4-8

CHAPTER 4

Advanced Printing Features

Printer View Devices

A printer object’s view device list specifies the resolutions and color spaces that can be
used with a printer. These view devices are created by the printer driver. Your
application can access, but not change, these characteristics. The printer’s resolution is
stored in the view device’s mapping property as the scaling factor. The printer’s color
space is stored in the bitmap shape that represents the imageable area of the device. A
view device object contains other properties as well; however, these properties are not
used in printing. For more information about view device objects, see the view-related
objects chapter of Inside Macintosh: QuickDraw GX Objects.

For example, the LaserWriter 1ISC GX driver creates a view device list with only one
view device, because the printer supports only one color space, black-and-white, and
one resolution, 300 dots-per-inch. The view device’s mapping property specifies a
scaling factor of 4.17, both horizontally and vertically, to achieve the 300 dots-per-inch
resolution. The scaling factor is determined by dividing the printer’s resolution, 300
dots-per-inch, by 72, which represents the resolution when the scaling factor is 1.

As another example, the ImageWriter |1 GX printer driver supports printing at two
resolutions in each of two color spaces:

n 144 dpi, with a 4-bit indexed CMYK (cyan, magenta, yellow, black) color space
n 144 dpi, 1-bit indexed color space

n 72 dpi, with a 4-bit indexed CMYK color space

n 72 dpi, 1-bit indexed color space

The driver creates a view device list with four view device references. The printer driver
sets up the mapping property in each view device to specify the correct scaling factor.
For an example of how to obtain the scaling factor, see the section*“Determining a
Printer’s Resolution” on page 4-26.

Note

A printer driver inherits a view device for a 72 dpi, 24-bit RGB color
space from QuickDraw GX and modifies the list as necessary to include
the view devices that the driver actually supports. For more information
about writing a printer driver, see the printer driver chapter of Inside
Macintosh: QuickDraw GX Printing Extensions and Drivers. u

About Advanced Printing Features

CHAPTER 4

Advanced Printing Features

Color Matching for Printers

QuickDraw GX provides a color profile object that is used to specify color-matching
information for a printer. The color profile object is discussed in the color and
color-related objects chapter of Inside Macintosh: QuickDraw GX Objects. Your application
can access the color profile object associated with a printer driver or a particular page of
output or set these color profile objects using the following functions:

Function Purpose

GXFindPrinterProfile Determine the color profile for a printer

GXFi ndFormat Profil e Determine the color profile for a format object
GXSetPrinterProfile Set the color profile for a printer
GXSet Format Profil e Set the color profile for a format object

For more information about these functions, see “Color Profile Functions” beginning on
page 4-84. For an example of retrieving the color profile and color space from a view
device, see “Retrieving the Color Profile and Color Space for a Printer” on page 4-27.

Print File Objects

A print file object represents the file that QuickDraw GX creates when your application
prints a document. If the document is printed to a printer, the print file contains the
spooled input to the printer driver. If the document is printed as a portable digital
document, the print file’s contents are kept in an application-independent form along
with data, such as font information, that allows the document to be viewed without the
application that created it.

You can use print file objects to

n open, save, and close print files

n retrieve the contents of a print file or the formats associated with it
n count the pages in a print file, and insert, replace, and delete pages

n retrieve the job object stored with the print file

About Advanced Printing Features 4-9

CHAPTER 4

Advanced Printing Features

Print file objects have four accessible properties, as shown in Figure 4-2. Note, that
because a print file object is a private data structure, the order of the properties as shown
in Figure 4-2 is completely arbitrary. Properties in italics indicate references to other
objects.

Figure 4-2 The print file object

P23 court

: Feworm S

e A

T U T ;

The properties of a print file object are:

n Page count. This property contains the number of pages in the print file.

n Format list. This property contains a list of references to format objects, one reference
for each page in the file. The first reference is the default format for the print job.

n Shape list. This property contains a list of references to shape objects, one reference
for each page in the file. Each page is stored as a picture shape in the file, whether the
file was created page-by-page or shape-by-shape for each page. Thus, the first
reference in the list is the picture shape for the first page, the second reference is the
shape for the second page, and so on.

n Job. This property is a reference to the job object associated with the file when it is
open. The properties of this job object match those of the job object used to create the
print file.

4-10 About Advanced Printing Features

CHAPTER 4

Advanced Printing Features

Synonyms

You can use synonyms to provide alternative printing directives instead of those
generated by QuickDraw GX. You are never required to use a synonym. They are
available for you to use if you want to explicitly control the way that QuickDraw GX
renders output.

For example, if you have special-purpose PostScript code for printing a shape and wish
to use it instead of the PostScript code that QuickDraw GX produces, you can create a
synonym for your code and attach it to the shape object. When the shape is printed, the
instructions associated with the synonym can be used to render the output.

If you use a synonym, the printer driver also must support its use; otherwise, the
synonym is ignored. The synonym is interpreted by the printer driver; thus one printer
driver may choose to implement a synonym using PostScript and another printer driver
might use a proprietary language to implement the same synonym.

You use a synonym by creating a tag object and setting up a reference to that tag in the
shape object or another kind of object. A tag object is a QuickDraw GX object that
provides you with the ability to associate data with objects, such as shapes, styles, inks,
colors, and transforms. For more information about tag objects, see the tag objects
chapter of Inside Macintosh: QuickDraw GX Objects.

QuickDraw GX provides five kinds of synonymes:

n Direct PostScript synonyms, which allow you to explicitly specify PostScript operators
for rendering images. You can use these synonyms with shape, style, ink, and
transform objects to control the behavior of these objects when printing.

n Style synonyms, such as dashes, line caps, or patterns that can be associated with style
objects.

n Halftone synonyms, which specify the halftone to be applied when a shape or page is
printed. For general information about halftones, see the view-related objects chapter
of Inside Macintosh: QuickDraw GX Objects.

n Cubic synonyms, which provide alternative directives for rendering path shapes. For
information about path shapes, see the geometric shapes chapter of Inside Macintosh:
QuickDraw GX Graphics.

n Picture synonyms, which specify QuickDraw picture data for rendering pages. For
example, QuickDraw GX uses picture synonyms to spool the output of documents
designed for printing with the Macintosh Printing Manager.

Note

Synonyms remain with the shape or a related object, such as the shape’s
ink, style, or transform. If you cut or copy a shape and then paste it, the
synonyms in the tag objects associated with the shape move with the
shape. Synonyms also stay with the shape if the print file that contains
the shape is redirected. u

About Advanced Printing Features 4-11

4-12

CHAPTER 4

Advanced Printing Features

Table 4-2 identifies the synonyms that QuickDraw GX provides.

Table 4-2 QuickDraw GX printing synonyms

Constant Value Explanation

gxPost Scri pt Tag ' post'’ Specifies PostScript operators

gxPost Cont r ol Tag " psct’ Specifies control information for a PostScript
printer

gxDashSynonynirag ' sdsh’ Specifies dashes, for example, with the
PostScript set dash operator

gxLi neCapSynonynirag "I cap' Specifies line caps, for example, with the
PostScript set | i necap operator

gxPat t er nSynonynirag "ptrn' Specifies a pattern, for example, on vector
devices

gxFor mat Hal f t oneTag "hal ' Specifies halftones, for example, the
PostScript halftone graphics state

gxCubi cSynonynirag ' cubx' Specifies a cubic representation for a path

gxQui ckDr awPi ct Tag "pict' Specifies a shape in QuickDraw picture
format

The following sections describe the contents of the tag objects that you create for each of
these synonyms. For an example of how to use a synonym, see “Using Synonyms,”
which begins on page 4-38.

General-Purpose PostScript Operator Synonym

If you want QuickDraw GX to use your own PostScript operators for rendering an
object, you may create agxPost Scri pt Tag synonym and attach it to the object. If you
only need to specify specific operators or set up the halftone graphics state, you may be
able to use one of the special-purpose synonyms listed in Table 4-2.

You can reference a tag object that contains the gxPost Scr i pt Tag synonym from a
shape object, style object, ink object, or transform object. The kind of object that
references the tag object controls the kind of PostScript operators you can use.

n With a shape object, you can use PostScript printing operators to render the shape.

n With a style object, you can use PostScript operators to define all stylistic
characteristics for the shapes that refer to the style object.

About Advanced Printing Features

CHAPTER 4

Advanced Printing Features

n With an ink object, you can use PostScript operators to define the color and transfer
mode for the shapes that refer to the ink object.

n With a transform object, you can use PostScript operators to define the clip and
mapping of the shapes that refer to the transform object. The gxPost Scri pt Tag
synonym may be ignored under certain conditions, such as when a transform object’s
mapping changes the perspective.

The data in the gxPost Scri pt Tag synonym is pure PostScript code that is generated
as one continuous PostScript data stream. There is no data type that defines the structure
of this synonym. You can attach multiple tag objects to an object. This allows you to
distribute data into smaller, more manageable pieces that require less memory to load.
For best results, you should limit the data in a gxPost Scri pt Tag synonym to 8 KB.

If you choose to write your own PostScript code, it is extremely important to make your
PostScript code portable, especially if users create portable digital documents. To create
portable PostScript code, try to follow these guidelines:

n Write PostScript code so that it runs on output devices that support Level 1 and
devices that support Level 2.

n Do not make assumptions about the current “PostScript state” of the output device.
n Do not make assumptions about the fonts that are installed in the output device.

Note

The y-axis of the QuickDraw GX coordinate system is the reverse of the
y-axis of the PostScript coordinate system. u

PostScript Control Information Synonym

A shape object can refer to a tag object that contains the gxPost Cont r ol Tag synonym.
The synonym includes flags that indicate how to modify the PostScript graphics state.

The gxPost Cont r ol Tag synonym provides data specific to PostScript devices that may
be necessary for these devices to properly render the data contained within the

gxPost Scri pt Tag synonym. You are not required, however, to have a

gxPost Cont r ol Tag synonym when you use gxPost Scr i pt Tag synonyms.

A shape object can refer to, at most, only one gxPost Cont r ol Tag synonym.
Information in this synonym affects all gxPost Scri pt Tag synonyms attached to a
shape object.

About Advanced Printing Features 4-13

4-14

CHAPTER 4

Advanced Printing Features

The gxPost Cont r ol structure defines the contents of a gxPost Cont r ol Tag synonym:

struct gxPost Control {
| ong fl ags;

H

Field descriptions

flags A flag that specifies how a shape is embedded in the PostScript data
stream. If it is gxNoSave, the PostScript data should be
encapsulated between a save and restore combination. If gxNoSave
is not specified or the gxPost Cont r ol Tag synonym is not present,
the save and restore combination is used.

Dash Synonym

A style object can refer to a tag that contains the gxDashSynonymrag synonym. This
tag causes QuickDraw GX to print simple dashes. For example, this synonym may cause
the printer driver to use the PostScript set dash operator instead of the specification in
the dash property of the style. The phase for the set dash operator might still be taken
from the phase value stored in the dash property of the style object.

The gxDashSynonymstructure defines the contents of a gxDashSynonynirag synonym:
struct gxDashSynonym {

| ong si ze;
fi xed dashLengt h[gxAnyNunber];

b

Field descriptions

si ze The number of elements in a dash array.
dashLengt h An array of lengths for the dashes.

Line Cap Synonym

A style object can refer to a tag that contains the gxLi neCapSynonymsynonym. For
example, this synonym may cause the printer driver to print with the PostScript linecap
operator instead of the specification in the cap property of the style.

The gxLi neCapSynonymstructure defines the gxLi neCapSynonynirag synonym:
typedef |ong gxLi neCapSynonym

The structure is a long word that specifies one of the values in the gxLi neCaps
enumeration:

enum gxLi neCaps{
gxButtCap = O,
gxRoundCap = 1,

About Advanced Printing Features

CHAPTER 4

Advanced Printing Features

gxSquareCap = 2,
gxTriangl eCap = 3

s

Constant descriptions

gxBut t Cap Use a square cap, such as the PostScript butt cap, for the line cap.

gxRoundCap Use a round cap, such as the PostScript round cap, for the line cap.

gxSquar eCap Use a square cap, such as the PostScript projecting square cap, for
the line cap.

gxTriangl eCap Use atriangle cap.

Halftone Synonym

QuickDraw GX supports halftones to represent more colors than can be represented on a
printer by alternating available colors in a fixed cell size to represent more colors.
QuickDraw GX, by default, chooses the appropriate halftone for you; however, you can
choose to specify halftone information on a shape-by-shape or page-by-page basis
yourself.

To provide halftone information for a particular shape object, the shape’s ink object must
refer to a tag object that contains the gxFor mat Hal f t oneTag synonym. This allows
halftones to be specified for individual inks. Shapes that are drawn with the same ink
use the same halftone. An ink that does not refer to the gxFor mat Hal f t oneTag
synonym uses the page’s halftone.

Note

If you specify halftone information on a page-by-page basis, you use the
format-halftone property in the format collection associated with the
page’s format. For more information about this property, see the chapter
“Page Formatting and Dialog Box Customization” in this book. u

The gxFor mat Hal f t onel nf o structure defines the contents of a
gxFor nat Hal f t oneTag synonym:

struct gxFornat Hal ftonelnfo {
| ong nuntHal f t ones;
gxHal ftone hal ftones[1];

H

Field descriptions
nurHal f t ones The number of halftones available for use.
hal ft ones The array of halftone specifications.

About Advanced Printing Features 4-15

4-16

CHAPTER 4

Advanced Printing Features

Halftones are specified in the gxHal f t one structures, which are described completely
in the view-related objects chapter of Inside Macintosh: QuickDraw GX Objects:

struct gxHal ftone{

fixed angl e; /* direction of halftone */
fixed frequency; /* cells per inch */

gxDot Type met hod; /* kind of pattern */

gxTi nt Type tinting; /* tint calculation method */
gxCol or dot Col or; /* col or of foreground */
gxCol or backgroundCol or; /* color of background */
gxCol or Space tint Space; /* color space for tint */

b

You can specify any number of halftones. QuickDraw GX selects appropriate halftones
from the list of available halftones. Its selection is based upon the ti nti ng field in the
halftone structures:

n When you print to a black-and-white PostScript device, QuickDraw GX looks for a
halftone structure that specifies gxLum nanceTi nt inthe ti nti ng field. If no
halftone specifies this value, it looks for a halftone specifies gxConponent 4Ti nt as
its tinting method. Component 4 is the black component in the CMYK (cyan,
magenta, yellow, and black) space. If no halftone specifies this tinting method either,
the first halftone in the list is used.

n When you print to a color PostScript device, a maximum of four halftones are used.
QuickDraw GX attempts to locate halftones for the following tint calculation methods:
gxConponent 1Ti nt for the cyan halftone, gxConponent 2Ti nt for the magenta
halftone, gxConponent 3Ti nt field for the yellow halftone, and
gxConponent 4Ti nt for the black halftone. If a tinting method is in the list more than
once, the first one in the list is used.

If a halftone for the gxConponent 4Ti nt method is not in the list, QuickDraw GX
uses the gxLum nanceTi nt tinting method for the black halftone. If the

gxLum nanceTi nt tinting method cannot be found either, QuickDraw GX uses the
first halftone in the list for the black halftone.

If QuickDraw GX cannot find a halftone for the gxConponent 1Ti nt,
gxConponent 2Ti nt, orgxConponent 3Ti nt tinting methods, it uses the black
halftone for the missing tinting method.

It is only possible to use halftones to the extent that a particular PostScript device
supports them. The dot color and background color of a halftone are ignored because
QuickDraw GX assumes that the dot color for a black-and-white device is black and the
dot color for a color device with the gxConponent 2Ti nt tinting method is magenta.

Note

Continuous tone output devices, such as a 32-bit color printer, may
choose to ignore the halftone synonym because halftones are not needed
on these output devices. u

About Advanced Printing Features

CHAPTER 4

Advanced Printing Features

Pattern Synonym

A style object can refer to a tag object that contains the gxPat t er nSynonynirag
synonym. This synonym causes QuickDraw GX to print with the pattern specified in the
tag instead of the specification in the pattern property of the style. For example, vector
devices typically support crosshatch patterns.

The gxPat t er nSynonyniTag structure defines the contents of a
gxPat t er nSynonynilrag synonym:

struct gxPatternSynonym {

| ong patternType;
fixed angl e;

fixed spaci ng;
fixed t hi ckness;

gxPoi nt anchor Poi nt ;

b

Field descriptions
patternType The pattern type, either gxHat ch or gxCr ossHat ch.

angl e The angle of the lines in the pattern.

spaci ng The distance between the lines in the pattern.

t hi ckness The thickness of the lines in the pattern.

anchor Poi nt A point that specifies the upper-left corner at which the pattern
begins.

Cubic Synonym

A path shape object can refer to a tag object that contains the gxCubi cSynonynirag
synonym. This synonym causes QuickDraw GX to print with a representation of the
shape using cubics, such as Bezier curves, instead of the quadratic Bezier curves
specified in the shape’s geometry.

The data in this synonym is ignored, however, when

n itis attached to any shape object other than a path

n the shape object’s transform hierarchy changes the perspective

n the shape object exceeds the PostScript point limit for the destination device

n the shape object is used as a pattern, dash, clip, cap, or join

About Advanced Printing Features 4-17

4-18

CHAPTER 4

Advanced Printing Features

The gxCubi cSynonynirag synonym contains a stream of flags and points. The flags are
specified in the gxCubi ¢ Synonymenumeration:

enum gxCubi cSynonymn{
gx!| gnor eFl ag = 0x0000,
gxLi neToFl ag 0x0001,
gxCurveToFl ag 0x0002,
gxMoveToFl ag = 0x0003,
gxCl osePat hFl ag 0x0004

H

Constant descriptions

gxl gnor eFl ag Ignore this flag; get the next one.

gxLi neToFl ag Draw a line from the current point to the point specified after this
flag.

gxCurveToFl ag Draw a curve from the current point through the three points
specified after this flag.

gxMoveToFl ag Move the start of a new contour, which becomes the current point,
to the point specified after this flag.

gxC osePat hFl ag
Close the contour.

The point, line, or curve specified after a line follow the conventions for a point, line, or
curve, (gxPoi nt, gxLi ne, orgxCur ve), respectively. The rendering of the shape still
depends on the fill of the shape object and the shape object’s style, ink, and transform.

Each flag is a short integer; however, QuickDraw GX only considers the low 8 bits. Your
application can store application-specific flags in the other 8 bits of the word. Set bits that
are not used to 0.

QuickDraw Picture Synonym

When QuickDraw GX spools a document containing QuickDraw imaging commands, it
creates and flattens, for each page, a QuickDraw GX rectangle shape with an attached
tag object of tag type ' pi ct' (the QuickDraw GX constant for that tag type is

gxQui ckDr awPi ct Tag). The tag object contains information that specifies the
characteristics and location of a file containing QuickDraw picture data for that page.

When QuickDraw GX subsequently despools the file, it (or the printer driver) uses the
QuickDraw GX Translator to convert the QuickDraw picture data into a QuickDraw GX
picture shape before printing it. The tag object contains a gxQui ckDr awPi ct structure:

struct gxQui ckDrawPi ct {

gxTransl ati onOpti ons options;
Rect srcRect;
Poi nt styleStretch;

About Advanced Printing Features

CHAPTER 4

Advanced Printing Features

unsi gned | ong dat aLengt h;
struct gxBitnmapDat aSourceAli as ali as;

b

Field descriptions

options The translation options to be used by the QuickDraw GX Translator
when converting the QuickDraw data.

srcRect The source rectangle for the translation, in QuickDraw coordinates.
It controls scaling of the image. This rectangle is the QuickDraw
picture frame that bounds the QuickDraw data.

styleStretch The scale factor (both horizontal and vertical) to apply to certain
items, such as dashes, in QuickDraw picture comments.

dat aLength The length of the QuickDraw picture data, in bytes.

alias A structure that defines the location of the file containing the
QuickDraw data, and the offset within the file to that data.

The QuickDraw GX rectangle shape that the tag object is attached to specifies the
destination bounding rectangle for drawing the QuickDraw data (in QuickDraw
coordinates). The relative sizes of the source rectangle and destination rectangle control
the scaling of the image when it is translated.

The QuickDraw GX Translator is described in the environment chapter of Inside
Macintosh: QuickDraw GX Environment and Utilities. Tag objects are described in the tag
objects chapter of Inside Macintosh: QuickDraw GX Objects. The

gxBi t mapDat aSour ceAl i as structure is described in the bitmap shapes chapter of
Inside Macintosh: QuickDraw GX Graphics. QuickDraw picture data is described in Inside
Macintosh: Imaging With QuickDraw.

Printing Modes

When you print, QuickDraw GX and the printer driver set up your document for
printing based on the specifications in the printer driver. For example, if you printto a
PostScript printer, QuickDraw GX converts the picture shapes to the appropriate
PostScript directives for you—your application does not need to get involved.

There can be cases, however, in which your application may wish to allow the user to
specify an alternative way of printing. Thus, the user may choose to print in a direct
mode, which is a mode that bypasses QuickDraw GX imaging. For example, direct mode
may be used in the following cases:

n to send text to an ImageWriter with built-in fonts

n to send PostScript-only output; for example, by attaching tag objects to empty shape
objects, in which the tag object contains PostScript code

The most common reason that a direct mode may be used is to speed up printing. The
major drawback to direct-mode printing is that the user cannot redirect the print file that
was created during printing to another printer.

About Advanced Printing Features 4-19

4-20

CHAPTER 4

Advanced Printing Features

Direct mode is a kind of job format mode. QuickDraw GX supports three job format
modes, which are shown in Table 4-3. Variables of type gxJobFor mat Mode are used to
store the print job format mode.

Table 4-3 Print job format modes

Constant Value Explanation

gxG aphi csJobFor mat Mbde ' grph’ Graphics output, which is used as
the default for QuickDraw GX
printing

gxText JobFor nat Mode "text' Text-only output

gxPost Scri pt JobFor mat Mode ' post'’ PostScript-only output

A printer driver may not support all of these modes, or it may support additional modes
that the application and printer driver agree to support. To support a job format mode
other than gxG aphi csJobFor mat Mode, the application must specify the available
modes. The printer driver uses this list of modes to choose its preferred mode. When the
user chooses to use direct mode, the user is selecting the printer driver’s preferred mode
of printing.

For information about how a printer driver sets the preferred mode, see the printer
driver chapter of Inside Macintosh: QuickDraw GX Printing Extensions and Drivers. For an

example of how to set the available modes and set the preferred mode in response to the
user choosing direct mode, see “Implementing Direct-Mode Printing” on page 4-35.

IMPORTANT

Only use gxText JobFor nmat Mbde printing when the user requests
direct-mode printing. s

Pen Tables for Vector Devices

If a device driver for a vector device sets up a pen table, your application can access it to
determine the colors and sizes of the pens in the device’s carousel. The driver sets up a
pen table in a tag object and creates a reference to the tag object in the view device object
associated with the vector device. For more information about how a driver sets up a
pen table, see the printing messages chapter of Inside Macintosh: QuickDraw GX Printing
Extensions and Drivers.

Your application can reference this pen table by retrieving the contents of the
gxPenTabl eTag tag, which is defined as ' pent ' , from the view device object
associated with the vector device. For example, if the user creates a line with a thickness
that is smaller than a pen’s thickness, your application could detect this situation and
warn the user that the screen display will not match the printed output.

About Advanced Printing Features

CHAPTER 4

Advanced Printing Features

The gxPenTabl eEnt ry structure defines the data available for each pen in the carousel:

struct gxPenTabl eEntry {
Str31 penNane;
gxCol or penCol or;

fixed penThi ckness;
short penUni ts;
short penPosi ti on;

H

The contents of the gxPenTabl eTag tag object contain one or more of these pen table
entries. The contents of the gxPenTabl eTag tag object are defined by agxPenTabl e
structure:

struct gxPenTabl e{
short nunmPens;
gxPenTabl eEntry pens[1] ;

b

Several constants are available for comparison with the contents of the penUni t s field:
n Use gxDevi ceUni t s to specify device-specific units.

n Use gxMrni t s to specify millimeters.

n Use gxl nchesUni t s to specify inches.

Using Advanced Printing Features

This section shows you how to implement advanced QuickDraw GX printing features in
your application. This section shows you several ways to manipulate job, printer, print
file, and paper-type objects. It also shows you how to set up direct-mode printing and
use synonymes.

Using Advanced Job Object Functions

QuickDraw GX advanced job object functions allow you to obtain specific information
about a particular job object. You can use these functions to

n retrieve printer driver and device information
n set or retrieve a job object’s reference constant

n copy job objects

Using Advanced Printing Features 4-21

CHAPTER 4

Advanced Printing Features

Obtaining Printer and Printer Driver Information for a Job

The job object contains information about the output and formatting printers. You can
obtain references to these printer objects with the GXGet JobQut put Pri nt er and
GXGet JobFor mat ti ngPri nt er functions, respectively. Listing 4-1 shows how to
obtain the reference to the output printer with the GXGet JobQut put Pri nt er function.

You can use these references to call functions to obtain additional information about the
printer and its driver from the printer object’s properties. Listing 4-1 also shows how to
obtain the printer’s name using the GXGet Pr i nt er Nane function, the printer driver’s
name using the GXGet Pri nt er Dri ver Nane function, the printer’s type using the
GXGet Pri nt er Type function, and the printer driver’s type using the

GXGet PrinterDri ver Type function.

For example, you could obtain this information and display it to the user in a dialog box.
In this case, you need to convert the printer type and printer driver type to strings. One
way you can do this is with the Bl ockMbve function, as shown in Listing 4-1.

Listing 4-1 Obtaining the names and types of a printer and printer driver

4-22

CSErr MyShowJobPri nt er | nf o(MyDocunent Pt r nyDocunent)
{

CSErr err;

gxPrinter jobPrinter;

OSType devi ceOSType, driver OSType;

Str255 devi ceNane, devi ceType, driverNane, driverType;
-

Get the current printer for this job. Fromthat, get the
current device nane, driver nane, device type, and driver
type.

*/

if (err == noErr)

jobPrinter = GXGetJobQut put Pri nter(myDocunent - >docunent Job) ;
GXGet Print er Name(j obPrinter, deviceNane);
GXGet PrinterDriverNane(jobPrinter, driverNane);

devi ceOSType = GXGet PrinterType(jobPrinter);
driver OSType = GXGetPrinterDriverType(jobPrinter);

Using Advanced Printing Features

CHAPTER 4

Advanced Printing Features

err = GXCGet JobError (nmyDocunent - >docunent Job) ;

if (err == noErr)

/*
Since the device and driver type are OSTypes, convert
themto the Pascal strings to display.

*/
{
Bl ockMove(&devi ceOSType, &devi ceType[1], (Il ong)
(devi ceType[0] = 4));
Bl ockMove(&dri ver OSType, &driverType[1l], (Ilong)
(driverType[0] = 4));
}

return err;

b

Getting and Setting the Reference Constant for a Job Object

QuickDraw GX maintains a reference constant in each job object for your application’s
use. You can use the GXGet JobRef Con function to obtain the reference constant and use
the GXSet JobRef Con function to set it. These functions allow you to associate your
own data with a particular job object.

For example, Listing 4-2 shows how you can store a pointer to the document data in the
reference constant of a job object for use by an override function that is called by
QuickDraw GX.

Listing 4-2 Setting the job object’s reference constant property

OSErr MyDoFor mat Di al og(MyDocunent Pt r myDocunent)

{
OSEr r err;
gxFor mat pageFor mat ;
gxDi al ogResul t resul t;

gxEdi t MenuRecord edit MenuRec;

/*
Store the pointer to the docunent in the job object's
reference constant to access it within the GXFornmatDi al og
overri de.

*/

GXSet JobRef Con(nyDocunent - >docunent Job, nyDocunent);

Using Advanced Printing Features 4-23

CHAPTER 4

Advanced Printing Features

/* Display and handl e the Custom Page Setup dial og box. */
result = GXFormat Di al og(pageFormat, nil, &editMenuRec);

return err;

Listing 4-3 shows the override of the GXFor mat Di al og function, in which the format’s
job object is retrieved. From the job object, the reference constant property is retrieved,
allowing access to the document associated with the job object from the override
function.

Listing 4-3 Getting the job object’s reference constant property

4-24

OCSErr MyFor nat Di al ogOverri de(gxFormat aFormat, StringPtr title,
gxDi al ogResult *result)

{
MyDocunment Ptr myDocunent ;
gxJob f or mat Job;
/*
Get the current job object by calling GXGetJob. Retrieve the
pointer to the docunment, and use it to set up the dial og box
panel .
*/
format Job = GXGet Job();
myDocurment = GXGet JobRef Con(f or mat Job) ;
My Set UpPanel (aFor mat, myDocunent,
GXGet MessageHandl er ResFil e());
/* Finally, forward this nessage to other handl ers. */
return Forward_GXFornmatDi al og(aFormat, title, result);
}

Using Advanced Printing Features

CHAPTER 4

Advanced Printing Features

Copying Job Object Information

You can duplicate a job object using the GXCopy Job function. This function allows you

to take an existing job object that references the output and formatting printers, format
object, and other job-specific information, and duplicate it for use with another
document. Listing 4-4 shows how to copy the job object from the source document to the
destination document. References to formats are no longer valid after you change job
objects because the formats are based on another job object. You must set these references
tonil.

Listing 4-4 Copying job object information

OSErr MyCopyJobToDoc(MyDocunent Ptr srcDocument, MyDocunent Ptr
dest Docunent)

Il ong pg;

/*
Copy the job object information. Note that this changes any
formats that the destination job originally had (and the
ol d references becone invalid).

*/

GXCopyJob(srcDocunent - >docurnent Job, dest Docunent - >docunent Job) ;

/* Invalidate any old format object references */
for (pg = 1; pg <= destDocunent - >nunPages; pg++)
dest Docunent - >pageFornmat[pg -1] = nil;

return GXGet JobError (srcDocunent - >docunent Job) ;

Working With Printer Objects

Each job object references two printer objects, a formatting printer and an output printer.
A printer object is implicitly created by the GXNewJd ob function. There is no external
application interface to create or dispose of printer objects.

Examples of how to retrieve a printer object’s properties, such as the printer name,
printer type, driver name, and driver type are shown in Listing 4-1 on page 4-22. The
following sections show you how to obtain the view devices associated with a printer
and use them to determine a printer’s resolution, color space, and color profile.

Using Advanced Printing Features 4-25

CHAPTER 4

Advanced Printing Features

Determining a Printer’s Resolution

You can determine a printer’s resolution from the view devices to which the printer
refers. The mapping property of the view device object contains a matrix in which the
scaling information is stored. Listing 4-5 shows how to obtain the highest resolution that
a printer supports.

Listing 4-5 Determining a printer’s resolution

4-26

voi d MyGet For mat Devi ceResol uti on(gxJob whi chJob,
fixed *hRes, fixed *vRes)

{
gxPrinter format Printer;
| ong nunVi ewDevi ces, i dx;
gxVi ewDevi ce pri nt er VDev;
gxMappi ng vDevMappi ng;
*hRes = 0;
*vRes = 0;
/*

Get the formatting printer and the nunber of
vi ew devices for that printer.
*/
format Printer = GXGet JobFormatti ngPrinter(whi chJob);
nunVi ewDevi ces = GXCount Pri nt er Vi ewDevi ces (formatPrinter);

/* Loop through the view devices that this printer supports. */
for (idx = 1; idx <= nunmVi ewDevi ces; idx++)
{
printerVDev = GXGet PrinterViewDevice(formatPrinter, idx);
GXGet Vi ewDevi ceMappi ng(pri nterVDev, & DevMappi ng);

if ((vDevMappi ng. map[0][0] > *hRes) &&
(vDevMappi ng. map[1] [1] > *VvRes))

*hRes = vDevMappi ng. map[0] [0] ;
*vRes vDevMappi ng. map[1] [1] ;

Using Advanced Printing Features

CHAPTER 4

Advanced Printing Features

/*
Convert scaling factors (nultiples of 72 dpi) into
resol utions.

*/
*hRes = FixedMul tiply(*hRes, ff(72));
*vRes = FixedMul tiply(*vRes, ff(72));

Retrieving the Color Profile and Color Space for a Printer

If you wish to retrieve the color profile for a printer, you can call the

GXFi ndPri nt er Prof i | e function to obtain the reference to a printer’s color profile
object, or you can call the GXFi ndFor mat Pr of i | e function to obtain the reference to a
format’s color profile object. You can set these color profiles with the

GXSet Pri nt er Profil e and GXSet For mat Pr of i | e functions, respectively. These
functions are described in the reference section of this chapter, starting on page 4-84.

If you want to obtain the color profile of a printer associated with a job object, you can
obtain the printer object and, with this reference, you can obtain a reference to the
printer’s view device. The view device’s bitmap shape points to both the color set and
the color profile for the printer. Listing 4-6 shows how to retrieve the color profile and
color space for the formatting printer.

Listing 4-6 Retrieving the printer’s color profile and color space

gxCol orProfile MyGet FormattingPrinterProfile
(MyDocunent Ptr nyDocunent, gxCol or Space *theSpace)

{
gxShape devi ceBi t Map;
gxBi t map devi ceBits;
gxPrinter formattingPrinter;
gxCol orProfile theProfile;
gxVi ewDevi ce pri nt erDevi ce;

/* Get the first profile for the formatting printer. */
formattingPrinter =

GXGet JobFor mat ti ngPri nt er (myDocunent - >docunent Job) ;
GXFindPrinterProfile(formattingPrinter, nil, 1, & heProfile);

Using Advanced Printing Features 4-27

CHAPTER 4

Advanced Printing Features

/*
Look at the characteristics of the formatting printer’s
view device and retrieve the printer’s col or space.

*/

printerDevice = GXGet PrinterVi ewbDevice(formattingPrinter, 0);

devi ceBi t Map = GXGet Vi ewDevi ceBi t map(pri nt er Devi ce);

GXGet Bi t map(devi ceBi t Map, &deviceBits, nil);

*t heSpace = deviceBits. space;

GXDi sposeShape(devi ceBi t Map) ;

return theProfile;

}

Listing 4-7 shows how the printer’s color profile and color space may be used to
determine if a color to be printed is in gamut and to convert the color into the printer’s
color space.

Listing 4-7 Using the printer’s color profile to convert colors

Bool ean MyMakePri nt er Col or (gxJob theJob, gxCol or *sourceCol or,
gxCol or *printedCol or)

{
gxCol orProfile printerProfile;
gxCol or Space pri nt er Space;
Bool ean i nGanut ;
[* Get the printer’s profile. */
printerProfile = MyGetFormattingPrinterProfile(theJob,
&pri nt er Space) ;
/*
Copy the source color, see if it is in ganut, and convert it
into the device's col or space.
*/
*printedCol or = *sourceCol or;
i nGanut = GXCheckCol or (printedCol or, printerSpace, nil,
printerProfile);
GXConvert Col or (printedCol or, printerSpace, nil,
printerProfile);
return i nGanut;
}

4-28 Using Advanced Printing Features

CHAPTER 4

Advanced Printing Features

Note

For more information about colors, color profiles, and color spaces, see
the color and color-related objects chapter of Inside Macintosh: QuickDraw
GX Objects. u

Manipulating Print File Objects

Print files can only be created by printing, which causes the document to be spooled to
the file. A portable digital document is a print file created by the user printing to a PDD
Maker GX desktop printer.

After you create a print file, your application or another application can manipulate it.
QuickDraw GX allows your application to

n open and close a print file

n save a print file

n retrieve a job object associated with a print file

n retrieve page or page format data from a print file
n count the pages in a print file

n delete, replace, or insert pages

Opening and Closing a Print File

You use the GXOpenPr i nt Fi | e function to open a print file and use the
GXd osePri nt Fi | e function to close one. You must provide a job object when you
open the print file. You can dispose of the job object after the file is closed.

Listing 4-8 shows how to open and close a print file. It also shows how to determine the
number of pages in a print file with the GXCount Pri nt Fi | ePages function.

Listing 4-8 Opening and closing a print file

OSErr MyGet Print Fi | ePages(FSSpec *print FSSpec, | ong *nunCopi es)
{

OSErr err;
gxPrintFile thePrintFile;
gxJob filedob;

/*

Create a new job object for GXOpenPrintFile, open the print
file object, get the nunber of pages init, close it, and
check for errors. Finally, dispose of the temporary job
obj ect and return.

*/

err = GXNewdob(&fil eJob);

Using Advanced Printing Features 4-29

4-30

CHAPTER 4

Advanced Printing Features

if (err == noErr)
{
thePrintFile = GXQpenPrintFile(filedob, printFSSpec,
fsCurPern;
*nuntCopi es = GXCount Pri nt Fi | ePages(thePrintFile);
GXC osePrintFile(thePrintFile);

err = GXCGetJobError(fileJob);

GXDi sposeJob(fileJob);

return err;

Saving a Print File

You use the GXSavePri nt Fi | e function to save a print file. You should save a print file
after you have added, deleted, or modified its pages, formats, or job object information.

Obtaining the Job Object for a Print File

You use the GXGet Pri nt Fi | eJob function to obtain the job object associated with a
particular print file object. This function is useful for determining which job object was
associated with the print file when the file was opened by the GXCpenPrintFi | e
function, if the reference to the job object was not saved.

Reading Print File Data

You use the GXReadPr i nt Fi | ePage function to retrieve a page from a print file along
with its page format. The page is returned as a single picture shape, which is how it is
stored in the file, even if the page was created with several calls to GXDr awShape.

When you call GXReadPr i nt Fi | ePage, you must specify the page number for the
page, starting from 1. You must also specify which view ports you want the picture
shape to refer to, so that the shape can be drawn through them when it is displayed
onscreen. Listing 4-9 shows how to read a page from a print file.

Using Advanced Printing Features

CHAPTER 4

Advanced Printing Features

Listing 4-9 Reading a page from a print file

OSErr MyReadPri nt Fi | ePage(MyDocurnent Ptr nmyDocunent, FSSpec
*print FSSpec, | ong whi chPg,
gxFormat *pgFormat, gxShape *pgShape)

{
gxPrintFile thePrintFile;
/*
Qpen the print file object, read the page, close the file,
and check for errors.
*/
thePrintFile = GXOpenPrint Fi | e(nyDocunent - >docunent Job,
print FSSpec, fsCurPern;
GXReadPrint Fi |l ePage(thePrintFile, whichPg, 1,
&ryDocunent - >docunent Vi ewPort, pgFormat, pgShape);
GXCA osePrintFile(thePrintFile);
return GXGet JobError (myDocunent - >docunent Job) ;
}

Counting the Pages in a Print File

You use the GXCount Pri nt Fi | ePages function to count the number of pages in the
print file object that you specify. See Listing 4-8 on page 4-29 for an example.

Adding or Deleting Print File Pages

After the user prints a file, you can replace, delete, or insert pages. You use the

GXRepl acePri nt Fi | ePage function to replace a single page from a print file. You can
use the GXDel et ePri nt Fi | ePageRange function to delete a range of pages within a
specified print file. You can use the GXI nsert Pri nt Fi | ePage function to insert a page
in a print file. For changes to the print file to take effect permanently, you must call
GXSavePri nt Fi | e before you call GXCl osePrintFil e.

Defining Different Paper Sizes

QuickDraw GX allows you to define unique paper types for the individual pages of a
printable document. You can use the GXNewPaper Type function to create a new
paper-type object for the specified job object, or you can use the GXGet NewPaper Type
function to load a paper-type object from a resource. You use the GXGet JobPaper Type
function to obtain a specific paper-type object by its index into the total set of paper-type
object definitions that are accessible from a specific job object. You can use the

GXCount JobPaper Types to obtain the total number of paper-type object definitions
that are accessible to a particular job object.

Using Advanced Printing Features 4-31

CHAPTER 4

Advanced Printing Features

Creating a Paper-Type Object

Listing 4-10 shows how to create a new paper-type object. When you create a paper-type
object, you specify its name and rectangles that define the paper type’s page size and
paper size.

Listing 4-10 Creating a new paper-type object

CSErr MyCr eat ePaper Type(MyDocurnent Pt r myDocunent, Str 31 paper Nane,
gxRect angl e *pageSi ze, gxRect angl e *paper Si ze,
gxPaper Type *newPaper Type)

{
*newPaper Type = GXNewPaper Type(nyDocunent - >docunent Job,
paper Nane, pageSi ze, paperSi ze);
return GXGet JobError (myDocunent - >docunent Job) ;
}

You use the GXDi sposePaper Type function to dispose of a paper-type object when it is
no longer needed.

Obtaining the Name of a Paper Type

You use the GXCGet Paper Ty peNane function to obtain a paper-type object’s name.
Listing 4-11 shows how to use this function to obtain the name of a paper-type object
associated with a format object.

Listing 4-11 Obtaining a paper-type object’'s name

4-32

OSErr MyGet Paper TypeNanme(MyDocunent Pt r myDocunent, Str255

paper TypeNane)
{
gxPaper Type t hePaper Type;
| ong cur Page;
gxFor mat pgFor mat ;
/*

Get the format object for the current page. If it is nil,
you shoul d use the default format.

*/

cur Page = nyDocunent - >cur Page;

pgFor mat = nyDocunent - >pageFor mat [cur Page -1];

if (pgFormat == nil)
pgFor mat = GXGet JobFor mat (myDocunent - >docunent Job, 1);

Using Advanced Printing Features

CHAPTER 4

Advanced Printing Features

/* Get the format object's paper-type and nane. */
t hePaper Type = GXGet For nmat Paper Type(pgFor nat) ;
GXGet Paper TypeNamne(t hePaper Type, paper TypeNane);

return GXGet JobError (myDocunent - >docunent Job) ;

Obtaining the Dimensions of a Paper Type

You use the GXGet Paper TypeDi mensi ons function to obtain the page rectangle and
the paper rectangle associated with a paper-type object. The page rectangle is the
imageable portion of a page. The paper rectangle defines the size of a page. The rectangle
size is specified in fixed 72 dpi units. Listing 4-12 shows how to use this function.

Listing 4-12 Obtaining page and paper rectangles for a paper-type object

OSErr MyGet Paper TypeDi nensi ons(MyDocunent Pt r myDocunent ,
gxRect angl e *pageBounds,
gxRect angl e *paper Bounds)

{
gxPaper Type t hePaper Type;
| ong cur Page;
gxFor mat pgFor mat ;
/*
Get the format object for the current page. If it is nil, use
the job object’s default fornat.
*/
cur Page = nyDocunent - >cur Page;
pgFor mat = nyDocunent - >pageFor mat [cur Page -1];
if (pgFormat == nil)
pgFormat = GXGet JobFor mat (myDocunent - >docunent Job, 1);
/*
Get the format’s paper type and the paper type’'s bounds.
Not e that you can al so use GXGet For nat Di nensi ons to do this.
*/
t hePaper Type = GXGet For mat Paper Type(pgFor mat) ;
GXGet Paper TypeDi nensi ons(t hePaper Type, pageBounds,
paper Bounds) ;
return GXGet JobError (myDocunent - >docunent Job) ;
}

Using Advanced Printing Features 4-33

CHAPTER 4

Advanced Printing Features

Scanning the Paper Types Available to a Job

You use the GXFor EachJobPaper TypeDo function to call an application-defined
function for each paper-type object that is accessible to a particular job. The parameters
for the GXFor EachJobPaper TypeDo function, in order, are:

n the job object whose paper-type objects you wish to examine or change

n a pointer to the application-defined function you want to execute on these paper-type
objects

n a pointer to a reference constant that refers to additional data you want to make
available to the application-defined function

n a Boolean value that specifies whether you wish to include paper-type objects
associated with the formatting printer (t r ue) or those associated with the output
printer (f al se)

Listing 4-13 shows you how to call an application-defined function,
MyPaper TypeFunct i on, for each paper-type object associated with the print job’s
output printer. The pointer to the reference constant is ni | .

Listing 4-13 Executing a function for each paper-type object

4-34

OSErr MyLi st Al | Paper Types(MyDocunent Ptr nyDocunent)
{
GXFor EachJobPaper TypeDo(myDocunent - >docurent Job,
(gxPaper TypeProc) MyPaper TypeFunction, nil,
fal se);
return GXGet JobError (myDocunent - >docunent Job) ;

}

An application-defined function executed by the GXFor EachJobPaper TypeDo
function is defined as follows:

typedef gxLoopStatus (*gxPaper TypeProc) (gxPaperType aPaper Type,
void *ref Con);

The first parameter to the application-defined function is the paper-type object that is to
be processed. It is set by the GXFor EachJobPaper TypeDo function to the next
paper-type object automatically. The second parameter is the reference constant passed
in by the call to GXFor EachJobPaper TypeDo. The application-defined function returns
a loop status, which it may set to terminate the GXFor EachJobPaper TypeDo function
before every paper-type object has been processed.

Listing 4-14 shows an example of an application-defined function that retrieves the
paper type’s name and dimensions and can be used to display them. It always returns
gxKeepLoopi ng, which prevents the GXFor EachJobPaper TypeDo function from
terminating until each paper-type object has been processed.

Using Advanced Printing Features

CHAPTER 4

Advanced Printing Features

Listing 4-14 Executing a procedure for each paper-type object

pascal gxLoopStatus MyPaper TypeFuncti on(gxPaper Type t hePaper Type,
voi d *ref Con)

{
gxRect angl e pageBounds, paper Bounds;
Str255 paper TypeNane;
/* Get the paper-type object's nanme. */
GXGet Paper TypeNane(t hePaper Type, paper TypeNane);
/* Add code here to display the paper-type object's nanme. */
/* Get the paper-type object's dinmensions. */
GXGet Paper TypeDi nensi ons(t hePaper Type, &pageBounds,
&paper Bounds) ;
/* Add code here to display the dinensions. */
/* Keep looping until all paper types are accessed. */
return gxKeeplLoopi ng;
}

Implementing Direct-Mode Printing

Some printer drivers support direct-mode printing, also known as text job format mode
printing, in which the generality of QuickDraw GX printing is traded off for faster
output using unique features built into the printer hardware. For example, an
ImageWriter Il printer contains built-in fonts, and its printer driver can make use of
them to provide faster printing of text. The printer driver typically allows the user to
choose direct-mode printing in these cases.

To allow printing in a nongraphics mode, you must call the

GXSet Avai | abl eJobFor mat Mbdes function to inform the printer driver of all the
modes that the application supports, such as gxG aphi csJobFor mat Mode for
QuickDraw GX printing, gxText JobFor mat Mbde for direct-mode printing, and
gxPost Scri pt JobFor mat Mode for PostScript-only printing.

All applications should support QuickDraw GX printing. Your application might
support direct-mode printing by reformatting the document to match the way it will
look when printed, or support PostScript-only output by warning the user that the
output cannot be retrieved from a print file when printed in this mode.

Using Advanced Printing Features 4-35

4-36

CHAPTER 4

Advanced Printing Features

Note

If you are reformatting the document to match the fonts built into the
printer, you must query the printer for the fonts, line lengths, and other
information using the GXJobFor nat MbdeQuer y function. For more
information about the information that can be obtained, see the
following section, “Formatting for Text Job Format Mode Printing.” u

If you want to know the mode in effect after the user dismisses the Page Setup dialog
box, you can call GXGet JobFor mat Mode. To change it, you can call
GXSet JobFor mat Mode.

Formatting for Text Job Format Mode Printing

If the user chooses to print in a direct mode and the driver’s preferred mode is

gxText JobFor mat Mode, you may choose to reformat the document based on

the characteristics of the printer. You must query the printer driver to obtain these
characteristics by calling the GXJobFor mat ModeQuer y function, which is described on
page 4-83.

QuickDraw GX provides an enumerated data type whose values specify the
characteristics that you may determine. You use one of these values in the

GXGet JobFor mat ModeQuer y function to specify the characteristic of interest. Table 4-4
identifies these characteristics. Variables of type gxQuer yType are used to store the kind
of request.

Table 4-4 Text job format mode query options

Constant Explanation

gxGet JobFor mat Li neConstr ai nt Query Used to determine line constraint
characteristics

gxCGet JobFor mat Font Const r ai nt Query Used to determine font positioning

constraints

gxGet JobFor mat Font CommonSt yl esQuery Used to determine the style name,
such as “normal” or “bold”

gxSet St yl eJobFor mat CormonSt yl eQuery Used to set style contents

gxGet JobFor mat Font sQuery Used to determine font information

A query returns a pointer to a data structure that contains the requested information.
The kind of data structure depends on the kind of query.

Using Advanced Printing Features

CHAPTER 4

Advanced Printing Features

The following structures are used to interpret the source and destination data:

n For the gxGet JobFor mat Li neConst r ai nt Quer y query, the source dataisni | ,
and the destination data is returned in a gxPosi t i onConst r ai nt Tabl e structure:

struct gxPositionConstraintTable {
gxPoi nt phase;
gxPoi nt offset;
| ong nunti zes;
Fi xed sizes[1];
b
n For the gxGet JobFor nmat Font Const r ai nt Quer y query, the source data is a

gxFont reference and the destination data is also returned in a
gxPosi ti onConstr ai nt Tabl e structure.

Note

Anunsi zes value of gxConst r ai nt Range indicates a range of sizes,
in which si ze[0] specifies the minimum size and si ze[1] specifies
the maximum size. u

n For the gxGet JobFor nat Font CommonSt yl esQuer y query, the source data is a
gxFont reference, and the destination data is returned in a gxSt yl eNaneTabl e
structure;

struct gxStyl eNaneTabl e {
| ong nuntt yl eNanes; /* nunber of style nanes */
Str255 styl eNames[1] ; [* any nunber of style names */

b

n For the gxSet St yl eJobFor mat CommonsSt yl eQuer y query, the source data is a
style name from a gxSt yl eNaneTabl e structure, and the destination data is
returned in a gxSt yl e reference.

n For the gxGet JobFor nmat Font sQuery query, the source data is ni | , and the
destination data is returned in a gxFont Tabl e structure:

struct gxFont Table {
| ong nunfont s; /* nunber of font references */
gxFont fonts[1]; [* any nunber of font references */

H

Using Advanced Printing Features 4-37

CHAPTER 4

Advanced Printing Features

Using Synonyms

Synonyms allow you to specify how QuickDraw GX objects are to be printed. Normally,
you do not need to use synonyms because QuickDraw GX and the printer driver
determine how output is to be rendered and handle it for you. There may be occasions,
however, when you want to explicitly specify how an object is to be printed. For
example, you might want to specify how to render a path in cubics or explicitly specify
the PostScript operators to use when printing an object.

A synonym is stored as a tag object that is referred to by the shapes, inks, transforms, or
other objects that use it. There are several ways you can set up your tag object, which are
described in the tag objects chapter of Inside Macintosh: QuickDraw GX Objects. Whenever
you set up your tag, you must specify the tag type and the data itself. For example, the
tag type for PostScript is gxPost Scri pt Tag. Its data is a stream of PostScript, such as
the following:

0 O moveto 10 10 lineto stroke

For more information about the synonyms provided by QuickDraw GX, see the section
“Synonyms” on page 4-11.

Advanced Printing Features Reference

4-38

This section describes the constants, data types, and functions that are specific to
advanced printing features of QuickDraw GX.

The Constants and Data Types sections show the enumerations and data types for loop
status information for paper-type objects and printer objects, job object direct modes,
status dialog box information, paper-type object mapping information, paper-type object
view device tag objects, and synonym information.

The “Functions” section describes functions for working with advanced job object
functions, manipulating printer objects, working with QuickDraw GX print file objects,
working with paper types, and formatting for specific devices.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

Constants and Data Types for Advanced Printing Features

This section describes the data types and constants that you use for job format modes,
status dialog box information, and pen tables for vector devices.

Job Format Modes

QuickDraw GX provides job format modes that allow a printer driver and an application
to negotiate the best mode for printing. The gxJobFor nmat Mbde data type specifies
modes, which are enumerated as follows:

enum {
/* direct nodes for job objects */
gxG aphi csJobFor mat Mbde = (gxJobFor mat Mbde) ' grph',

gxText JobFor mat Mode (gxJobFor mat Mbde) 'text',
gxPost scri pt JobFor nat Mode = (gxJobFor mat Mode) ' post'’

b
typedef OSType gxJobFor mat Mode;

Constant descriptions
gxG aphi csJobFor mat Mbde
If set, QuickDraw GX uses graphics mode.
gxText JobFor mat Mode
If set, QuickDraw GX uses text mode.
gxPost Scri pt JobFor mat Mode
If set, QuickDraw GX uses PostScript mode.
The application calls the GXSet Avai | abl eJobFor mat Modes function to inform the
printer driver of the modes that the application supports, using a
gxJobFor mat ModeTabl e structure to identify the supported modes.

struct gxJobFor mat MbdeTabl e{

| ong nunivbdes; /* nunber of direct nodes */
gxJobFor mat Mbde nmodes[1] ; [* any nunber direct nodes */
b
Field descriptions
nunivbdes The number of modes that the application supports.
nmodes| 1] An array that contains the modes.

Advanced Printing Features Reference 4-39

CHAPTER 4

Advanced Printing Features

Text Job Format (Direct) Mode

4-40

QuickDraw GX provides a text job format mode, sometimes called a direct mode, to
format a document to optimize for particular features and capabilities of a device. For
example, text mode provides a fast way to print text using the built-in fonts on a device.
This feature provides a replacement for draft printing, which was available in previous
versions of the printing architecture.

QuickDraw GX defines query types in the query type enumeration to be used with the
gxQuer yType data type:

enum {
/* query types */
gxGet JobFor mat Li neConstr ai nt Query = (gxQueryType) ,
gxGet JobFor mat Font sQuery = (gxQueryType))
gxGet JobFor mat Font CommonsSt yl esQuery = (gxQueryType)

gxGet JobFor mat Font Constr ai nt Query = (gxQueryType)
gxSet St yl eJobFor mat CormonSt yl eQuery (gxQueryType)

WD O

b
typedef |ong gxQueryType;

Constant descriptions

gxGet JobFor mat Li neConstr ai nt Query
Used to determine line constraint characteristics.

gxGet JobFor mat Font sQuery
Used to determine font information.

gxGet JobFor mat Font CommonSt yl esQuery
Used to determine the style name, such as “normal” or “bold.”

gxGet JobFor mat Font Constr ai nt Query
Used to determine font positioning constraints.

gxSet St yl eJobFor mat CormonSt yl eQuery
Used to set style contents.

QuickDraw GX defines constraint ranges for the constraint table in the constraint range
enumeration:

enum { gxConstrai ntRange = -1 };

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

QuickDraw GX stores constraint information in the position constraint table information
structure:

struct gxPositionConstraintTable {
gxPoi nt phase;
gxPoi nt offset;

| ong nunti zes;

Fi xed sizes[1];
b
Field descriptions
phase Where to start from the upper-left corner of the page.
of f set The distance between legal character positions.
nunti zes The number of sizes.
si zes[1] An array of sizes.

QuickDraw GX stores style information in the style name table information structure:

struct gxStyl eNameTabl e{
| ong nuntt yl eNanes;
Str 255 styl eNames[1] ;

b

Field descriptions
nuntt yl eNanes The number of style names.
styl eNames[1] An array of strings containing any number of style names.

QuickDraw GX stores font information in the font table information structure:

struct gxFont Table {
| ong nunfont s;
gxFont fonts[1];

s

Field descriptions

nunfFont s The number of fonts.
fonts An array of fonts.

Advanced Printing Features Reference 4-41

CHAPTER 4

Advanced Printing Features

The Status Structure

4-42

QuickDraw GX defines status type IDs to report various conditions. Not all of these
conditions can be reported from the application. For example, although QuickDraw GX
defines a status ID for the percentage completion of a print job, it is not available to the
application because printing takes place in the background. Status type IDs are specified
in the following enumeration:

struct gxStatusRecord {
unsi gned short statusType;
unsi gned short statusld;
unsi gned short statusAlertld;

Si gnature
short
short
short

st at usOaner ;
st at Resl d;

st at Resl ndex;
di al ogResul t;

unsi gned short bufferlLen;

char

b

statusBuffer[1];

typedef struct gxStatusRecord gxStatusRecord;

Field descriptions
statusType

statusld

statusAlertld
st at usOmner
stat Resl d

st at Res| ndex
di al ogResul t

buf f er Len
st at usBuf f er

Note

The type of status that this structure represents. This is one of the
values shown in Table 4-5.

The ID of the status that this structure represents. If the value of this
field is 0, there is no associated printing alert (" pl rt ") resource.

The ID of the printing alert for this status.
The creator type of the owner of this status structure.

The resource ID for the status (' st at ') resource used to process
this status.

The index value for indexing into the status resource for this status.

The ID of the button string that was selected to dismiss the printing
alert box associated with this status.

The number of bytes in the status buffer.

This field is a buffer for the caller to store any additional
information for use by the status-handling function.

The triplet of values that includes the st at usOaner, st at Resl d, and
st at Resl ndex fields must be unique for each status structure. u

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

Table 4-5 shows the status types that you can specify in a status structure.

Table 4-5 Status type IDs

Constant Value Explanation

gxNonFat al Error 1 Affects the icon in the status dialog box

gxFat al Error 2 Sends a printing alert to the status dialog
box

gxPrint er Ready 3 Signals QuickDraw GX to leave alert mode

gxUser Attention 4 Signals initiation of a modal dialog box

gxUser Al ert 5 Signals initiation of a printing alert box

gxPageTr ansmi ssi on 6 Signals that a page was sent to the printer
and decrements the page counts in strings
that are displayed to the user

gxQpenConnect i onSt at us 7 Signals QuickDraw GX to begin animation
on printer icon

gx! nf ormat i onal St at us 8 Specifies the default status type and has no
side effects

gxSpool i ngPagesSt at us 9 Signals that a page was spooled and
increments the page count in the status
dialog box

gxEndSt at us 10 Signals that spooling has ended

gxPer cent ageSt at us 11 Signals QuickDraw GX as to the amount of

Pen Tables for Vector Devices

the job that is currently complete

QuickDraw GX defines a tag object for a paper-type object’s view device in the pen table

tag enumeration:

enum { gxPenTabl eTag = ' pent'

QuickDraw GX defines paper-type object units in the paper-type units enumeration:

enum {
gxDeviceUnits = 0
gxMrni ts = 1
gxl nchesUnits = 2

H

Advanced Printing Features Reference

4-43

CHAPTER 4

Advanced Printing Features

Constant descriptions

gxDevi ceUni ts If set, QuickDraw GX uses specific printer units.
gxMrnits If set, QuickDraw GX uses millimeters.

gxl nchesUnits If set, QuickDraw GX uses inches.

QuickDraw GX defines pen information in the pen not loaded enumeration:
enum { gxPenNot Loaded = -1};
QuickDraw GX stores pen table information in the pen table information structure:

struct gxPenTabl eEntry {
Str31 penNane;
gxCol or penCol or;

fixed penThi ckness;
short penUni ts;
short penPosi ti on;
b
Field descriptions
penName A string containing the name of the pen.
penCol or The color that is part of the color set.
penThi ckness The size of the pen.
penUnits The units in which the pen thickness is defined.
penPosi tion The pen position in the carousel.

QuickDraw GX stores pen information in the pen table information structure:

struct gxPenTabl e {
short nunPens;
gxPenTabl eEntry pens[1];

b

Field descriptions

nunPens The number of pen entries.
pens[1] An array of pen entries.

4-44 Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

Constants and Data Types for Synonyms

This section describes the data types and constants that you use for synonyms.

General-Purpose PostScript Operator Synonym

The gxPost Scri pt Tagsynonym(' post ') for the general-purpose PostScript operator
is defined:

#def i ne gxPost Scri pt Tag 0x706f 7374

PostScript Control Information Synonym

The gxPost Cont r ol Tag synonym (' psct ') for the PostScript control information is
defined:

#def i ne gxPost Control Tag 0x70736374
The gxPost Cont r ol structure defines the contents of a gxPost Cont r ol Tag synonym:

struct gxPostControl {
| ong fl ags;

H

Field descriptions

flags A flag that specifies how a shape is embedded in the PostScript data
stream. If it is gxNoSave, the PostScript data should be
encapsulated between a save and restore combination. If gxNoSave
is not specified or the gxPost Cont r ol Tag synonym is not present,
the save and restore combination is used.

QuickDraw GX defines PostScript state flag information in the gxPs St at eFl ags
enumeration:

enum gxPsSt at eFl ags{
gxNoSave = 1 /* don't do save-restore around PostScript */
/* data */

Advanced Printing Features Reference 4-45

CHAPTER 4

Advanced Printing Features

Dash Synonym

The gxDashSynonynirag synonym (' sdsh') for dashes is defined:
#defi ne gxDashSynonyniTag Ox73647368
The gxDashSynonymstructure defines the contents of a gxDashSynonyniTag synonym:

struct gxDashSynonym {
| ong si ze;
fi xed dashLengt h[gxAnyNunber]

b

Field descriptions

si ze The number of elements in a dash array.
dashLengt h The array of lengths for the dashes.

Halftone Synonym

4-46

The gxFor mat Hal f t onel nf o structure defines the contents of a
gxFor mat Hal f t oneTag synonym:

struct gxFormat Hal ftonelnfo {
| ong numHal f t ones;
gxHal ftone hal ftones[1];

H

Field descriptions
nuntHal ft ones The number of halftones available for use.
hal ft ones The array of halftone specifications.

Halftones are specified in the gxHal f t one structures, which are described completely
in the view-related objects chapter of Inside Macintosh: QuickDraw GX Objects:

struct gxHal ftone{

fixed angl e; /* direction of halftone */
fixed frequency; /* cells per inch */

gxDot Type met hod; /[* kind of pattern */

gxTi nt Type tinting; /* tint calculation method */
gxCol or dot Col or; /* color of foreground */
gxCol or backgroundCol or; [/* color of background */
gxCol or Space ti nt Space; /* col or space for tint */

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

Line Cap Synonym

The gxLi neCapSynonynirag synonym (' | cap') for dashes is defined:
#defi ne gxLi neCapSynonyniTag 0x6C636170
QuickDraw GX defines line cap information in the line cap synonym enumeration:

enum gxLi neCaps{
gxButt Cap =
gxRoundCap =
gxSquareCap =
gxTriangl eCap =

W NP o

b
typedef long gxLi neCapSynonym

Constant descriptions

gxBut t Cap Use a cap that does not look like a cap, such as the PostScript butt
cap.

gxRoundCap Use a round cap, such as the PostScript round cap.

gxSquar eCap Use a square cap, such as the PostScript projecting square cap.

gxTriangl eCap Use atriangle cap.

Pattern Synonym

The gxPat t er nSynonyniTag synonym (' pt rn') for patterns is defined:
#def i ne gxPatternSynonymlag 0x7074726E

The gxPat t er nSynonymstructure defines the contents of a gxPat t er nSynonynirag
synonym:

struct gxPatternSynonym {

| ong patternType;
fixed angl e;

fixed spaci ng;
fixed t hi ckness;

gxPoi nt anchor Poi nt ;

Advanced Printing Features Reference 4-47

CHAPTER 4

Advanced Printing Features

Field descriptions
patternType The pattern type, either gxHat ch orgxCr ossHat ch.

angl e The angle of the lines in the pattern.

spaci ng The distance of the lines in the pattern.

t hi ckness A point that specifies the upper-left corner at which the pattern
begins.

Patterns can be either hatch or crosshatch:

enum gxPatterns {
gxHat ch
gxCrossHat ch

no
= o

H

Constant descriptions
gxHat ch Use a hatch pattern.
gxCrossHat ch Use a crosshatch pattern.

Cubic Synonym

4-48

The gxCubi cSynonynirag synonym (' cubx') for cubics is defined:
#def i ne gxCubi cSynonynTag 0x63756278
QuickDraw GX defines cubic synonym information in the cubic synonym enumeration:

enum gxCubi cSynonyn{
gxl gnoreFl ag = 0
gxLi neToFl ag = 1
gxCurveToFl ag = 2
gxMoveToFl ag = 3
gxCl osePat hFlag = 4

b
typedef short gxCubi cSynonyntl ags;

Constant descriptions

gxl gnor eFl ag Ignore this flag; get the next one.
gxLi neToFl ag Draw a line from the current point to the point specified after this
flag.

gxCurveToFl ag Draw a curve from the current point through the three points
specified after this flag.

gxMoveToFl ag Move the start of a new contour, which becomes the current point,
to the point specified after this flag.

gxC osePat hFl ag
Close the contour.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

QuickDraw Picture Synonym

The gxQui ckDr awPi ct Tag tag object contains a gxQui ckDr awPi ct structure:

struct gxQui ckDrawPi ct {

gxTransl ati onOpti ons options;
Rect srcRect;
Poi nt styl eStretch;
unsi gned | ong dat aLengt h;
struct gxBit mapDat aSourceAli as al i as;
b
Field descriptions
options The translation options to be used by the QuickDraw GX Translator
when converting the QuickDraw data.
srcRect The source rectangle for the translation, in QuickDraw coordinates.

It controls scaling of the image. This rectangle is the QuickDraw
picture frame that bounds the QuickDraw data.

styleStretch The scale factor (both horizontal and vertical) to apply to certain
items, such as dashes, in QuickDraw picture comments.

dat aLength The length of the QuickDraw picture data, in bytes.

alias A structure that defines the location of the file containing the
QuickDraw data, and the offset within the file to that data.

Functions

This section describes functions that allow you to implement advanced features of
QuickDraw GX printing. Many of these features are implemented by functions that
manipulate

n job objects

n printer objects and associated view-device objects and color profiles
n print file objects

n paper-types objects

Included with each function description is a list of specific result codes returned by
QuickDraw GX. In addition to these result codes, you may also receive file-system,
memory, and resource errors. For a complete listing of specific file-system, memory, and
resource errors, see Inside Macintosh: C Summary or Inside Macintosh: Pascal Summary.

Advanced Printing Features Reference 4-49

CHAPTER 4

Advanced Printing Features

You should note that not all possible result codes for a particular function are included in
function descriptions within this section. For example, the Message Manager, described
in Inside Macintosh: QuickDraw GX Environment and Utilities, allows QuickDraw GX
functions to send specific messages to your application. These messages can also
generate errors.

IMPORTANT

All printing functions in QuickDraw GX, with the exception of

the GXGet JobEr r or function, may move Macintosh memory. The
GXGet JobEr r or function, however, relies on data that may also move.
Therefore, your application should never call a QuickDraw GX
printing-related function at interrupt time. s

Advanced Job Object Functions

You use the GXCGet JobQut put Pri nt er function to determine the output printer for a
print job and use the GXGet JobFor mat t i ngPr i nt er function to determine the
formatting printer for the print job. You use the GXSel ect JobFor nmat ti ngPri nt er
function to specify a formatting printer for a particular print job.

QuickDraw GX provides a place to store a reference constant in each job object for your
application’s use. A reference constant is accessible through the GXGet JobRef Con
function. You use the GXSet JobRef Con function to set a reference constant.

You can duplicate a job object using the GXCopy Job function. This function allows you

to take an existing job object and duplicate it for use with another document, causing the
associated printer driver, formatting information, and other settings to be used by the
other document.

GXSelectlobFormattingPrinter

DESCRIPTION

4-50

You can use the GXSel ect JobFor nat ti ngPri nt er function to specify a formatting
printer for a particular print job.

voi d GXSel ect JobFormattingPrinter (gxJob aJob, Str31 printerNane);

aJob A reference to the job object for which you are specifying a formatting
printer.

pri nt er Name
The name of the formatting printer.

You call GXSel ect JobFor mat t i ngPri nt er when the user selects a formatting
printer. You can obtain the name of the formatting printer from the Page Setup dialog
box and place it in the pri nt er Name parameter before calling this function.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
fnfErr The printer driver cannot be located.

GXGetJobFormattingPrinter

You can use the GXGet JobFor mat t i ngPri nt er function to obtain the formatting
printer for a particular print job.

gxPrinter GXGetJobFormattingPrinter (gxJob aJob);

aJob A reference to the job object whose formatting printer you wish to obtain.

function result A reference to a printer object.

DESCRIPTION

The GXGet JobFor mat t i ngPri nt er function returns a reference to the formatting
printer associated with the job specified in the aJob parameter.

RESULT CODES

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXGetJobOutputPrinter

You can use the GXGet JobQut put Pri nt er function to obtain the output printer for a
particular job.

gxPrinter GXGetJobQutputPrinter (gxJob aJob);

aJob A reference to the job object whose output printer you wish to obtain.

function result A reference to a printer object.

DESCRIPTION

The GXGet JobQut put Pri nt er function returns a reference to the output printer
associated with the job object specified in the aJob parameter.

Advanced Printing Features Reference 4-51

CHAPTER 4

Advanced Printing Features

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

For an example that uses the GXGet JobQut put Pri nt er function, see “Obtaining
Printer and Printer Driver Information for a Job” on page 4-22.

GXGetJobRefCon

You can use the GXGet JobRef Con function to obtain a reference constant associated
with a particular job object.

voi d* GXGet JobRef con (gxJob aJob);

aJob A reference to the job object from which you wish to obtain a reference
constant.

DESCRIPTION

You can use the GXGet JobRef Con function to obtain application-defined data
associated with a job object.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

To associate a reference constant with a job object, see the description of the
GXSet JobRef Con function in the next section.

For an example that uses the GXGet JobRef Con function, see “Getting and Setting the
Reference Constant for a Job Object” on page 4-23.

4-52 Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXSetJobRefCon

You can use the GXSet JobRef Con function to associate a reference constant with a
particular job object.

voi d GXSet JobRef con (gxJob aJob, void *refCon);

aJob The job object in which to assign a reference constant.
r ef Con A pointer to the reference constant to assign.

DESCRIPTION
The GXSet JobRef Con function sets the reference constant for a job object. For example,
the reference constant may point to the document data associated with the print job.
RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
SEE ALSO
To get the reference constant associated with a job object, see the description of the
GXGet JobRef Con function in the previous section.
For an example that uses the GXSet JobRef Con function, see “Getting and Setting the
Reference Constant for a Job Object” on page 4-23.
GXCopyJob

You can use the GXCopyJob function to copy job object data from one job object to
another.

gxJob GXCopyJob (gxJob srcJob, gxJob dstJob);

srcJob A reference to the job object to copy.
dst Job A reference to the job object in which to receive the copied data.

function result A reference to a job object.

Advanced Printing Features Reference 4-53

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 4

Advanced Printing Features

The GXCopyJob function makes a copy of the job object specified by the sr cJob
parameter and stores a reference to it in the dst Job parameter. If you set the dst Job
parameter to ni | , QuickDraw GX allocates and returns a new job object with the
properties of the sr cJob parameter.

For example, you can use this function to copy a job object for use with another
document. All information from the source job object is copied into the destination job
object, including references to the output and formatting printers, formats, and paper
types.

QuickDraw GX allocates appropriate space if the job object that you are copying (the
source job object) contains more objects, such as formats, than the job object that you are
copying into (the destination job object).

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For an example that uses the GXCopyJob function, see “Copying Job Object
Information” on page 4-25.

Manipulating Printer Objects

4-54

You use the GXGet JobPr i nt er to obtain the printer used by a specific print job. You
use the GXGet Pr i nt er Job function to obtain the job object associated with a specific
printer object.

You use the GXFor EachPr i nt er Vi ewDevi ceDo function to loop through the view
devices associated with a printer object.

You can use the GXCount Pri nt er Vi ewDevi ces function to obtain the number of view
devices associated with a particular printer object.

You use the GXCet Pri nt er Vi ewDevi ce function to obtain a particular view device
associated with a printer object. You use the GXSel ect Pri nt er Vi ewDevi ce function
to select the view device to represent a printer’s resolution and color space.

You use the GXGet Pri nt er Dri ver Narme and GXCGet Pr i nt er Nane functions to obtain
the names of a printer and driver, respectively, from a printer object.

You use the GXGet Pri nt er Dri ver Type function to obtain the printer driver type
(such as raster, vector, or PostScript) associated with a particular printer object. You use
the GXCGet Pri nt er Type function to obtain the printer’s type.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXGetJobPrinter

DESCRIPTION

RESULT CODES

You can use the GXGet JobPri nt er function to determine the printer object used by a
specific job object.

gxPrinter GXGetJobPrinter (gxJob aJob);

aJob A reference to the job object from which you wish to obtain a printer
object.

function result A reference to a printer object.

Your application can use the printer object to determine information specific to a device
and printer driver for use in formatting and optimizing the user’s data.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXGetPrinterJob

DESCRIPTION

You can use the GXGet Pri nt er Job function to obtain the job object associated with a
particular printer object.

gxJob GXGetPrinterJob (gxPrinter aPrinter);

aPrinter A reference to the printer object from which you wish to obtain the job
object.

function result A reference to the job object associated with the printer object.

The GXCGet Pri nt er Job function returns a reference to the job object that refers to the
printer object specified in the aPri nt er parameter.

Advanced Printing Features Reference 4-55

CHAPTER 4

Advanced Printing Features

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXForEachPrinterViewDeviceDo

You can use the GXFor EachPr i nt er Vi ewDevi ceDo function to execute an
application-defined function on each view device associated with a particular printer
object.

voi d GXFor EachPri nt er Vi ewDevi ceDo (gxPrinter aPrinter,
gxVi ewDevi ceProc aVi ewDevi ceProc,
voi d *ref Con);

aPrinter A reference to the printer object whose view devices you want to
manipulate.

aVi ewDevi cePr oc
The function you want to execute for each view device.

r ef Con A pointer to the reference constant that is passed to the
application-defined function.

DESCRIPTION

You can use the GXFor EachPr i nt er Vi ewDevi ceDo function to perform the actions
specified in an application-defined function, aVi ewDevi cePr oc, on all the view devices
associated with a particular printer object.

The GXFor EachPri nt er Vi ewDevi ceDo function calls your application-defined
function and terminates when the application-defined function returns gx St opLoopi ng
or when GXFor EachPri nt er Vi ewDevi ceDo has been called for each view device.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

For information about declaring the application-defined function, see “Message
Override Function for the Printing Status Dialog Box” on page 4-90.

4-56 Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXCountPrinterViewDevices

DESCRIPTION

RESULT CODES

SEE ALSO

You can use the GXCount Pri nt er Vi ewDevi ces function to obtain the number of view
devices associated with a particular printer object.

| ong GXCount PrinterVi ewDevi ces (gxPrinter aPrinter);

aPrinter A reference to the printer object whose view devices you want to count.

function result The number of view devices associated with the printer object specified
by the aPri nt er parameter.

The GXCount Pri nt er Vi ewDevi ces function returns the number of view devices
associated with the specified printer object. A printer object can have multiple view
devices, one for each possible combination of printer resolution and color space.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For an example that uses the GXCount Pri nt er Vi ewDevi ces function, see
“Determining a Printer’s Resolution” on page 4-26.

GXGetPrinterViewDevice

You can use the GXCet Pri nt er Vi ewDevi ce function to obtain a printer object’s view
device, using an index value.

gxVi ewDevi ce GXGet PrinterVi ewbDevice (gxPrinter aPrinter,
| ong whi chVi ewDevi ce);

aPrinter A reference to the printer object whose view device you wish to obtain.

whi chVi ewDevi ce
An index value that specifies the position of the view device reference in
the printer object’s view device list.

function result A reference to the specified view device.

Advanced Printing Features Reference 4-57

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 4

Advanced Printing Features

You specify an index value, starting with 1, in the whi chVi ewDevi ce parameter. The
parameter specifies a particular view device. You can specify 0 in the

whi chVi ewDevi ce parameter to obtain the view device that represents the current
view device, which allows you to obtain the current resolution and color space for the
printer.

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For examples that use the GXGet Pri nt er Vi ewDevi ce function, see “Determining a
Printer’s Resolution” on page 4-26 and “Retrieving the Color Profile and Color Space for
a Printer” on page 4-27.

GXSelectPrinterViewDevice

DESCRIPTION

4-58

You can use the GXSel ect Pri nt er Vi ewDevi ce function to specify a view device for a
printer object.

voi d GXSel ect PrinterViewDevice (gxPrinter aPrinter,
| ong whi chVi ewDevi ce) ;

aPrinter A reference to the printer object associated with a particular view device.

whi chVi ewDevi ce
The index value of the view device you want to select.

The GXSel ect Pri nt er Vi ewDevi ce function determines the printer resolution and
color space of the printer referenced by the aPri nt er parameter. A printer object refers
to one or more view devices, each of which contains a combination of printer resolution
and color space available for the specified printer. You specify an index value, starting
with 1, in the whi chVi ewDevi ce parameter. The parameter specifies a particular view
device.

Advanced Printing Features Reference

RESULT CODES

CHAPTER 4

Advanced Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXGetPrinterDriverName

DESCRIPTION

RESULT CODES

SEE ALSO

You can use the GXGet Pri nt er Dr i ver Name function to obtain the name of the printer
driver associated with a particular printer object.

voi d GXGet PrinterDriverNane (gxPrinter aPrinter, Str31 nane);

aPrinter A reference to the printer object associated with a particular formatting
printer driver.

nane On return, the formatting printer driver’s name.

The GXGet Pri nt er Dri ver Nane function retrieves the name of the printer driver to
which the aPri nt er parameter refers and places it in the nane parameter.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For an example that uses the GXGet Pri nt er Dri ver Nane function, see “Obtaining
Printer and Printer Driver Information for a Job” on page 4-22.

GXGetPrinterName

You can use the GXGet Pri nt er Name function to obtain the name of the printer
associated with a particular printer object.

voi d GXGet PrinterNane (gxPrinter aPrinter, Str3l1 nane);

aPrinter A reference to the printer object associated with a printer.
nane On return, the printer’s name.

Advanced Printing Features Reference 4-59

CHAPTER 4

Advanced Printing Features

DESCRIPTION

The GXCGet Pri nt er Nane function retrieves the name of the printer to which the
aPri nt er parameter refers and places it in the nane parameter.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

For an example that uses the GXGet Pr i nt er Nane function, see “Obtaining Printer and
Printer Driver Information for a Job” on page 4-22.

GXGetPrinterDriverType

You can use the GXGet Pri nt er Dri ver Type function to obtain the printer driver type
associated with a particular printer object.

OSType GXCGetPrinterDriverType (gxPrinter aPrinter);

aPrinter A reference to the printer object associated with a particular printer driver
type.

function result The printer driver type associated with the printer object.

DESCRIPTION

The GXCGet Pri nt er Dri ver Type function returns a printer type in the format of an
OSType. Do not make assumptions about the services provided by driver based on its

type.

RESULT CODES

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

For an example that uses the GXGet Pri nt er Dri ver Type function, see “Obtaining
Printer and Printer Driver Information for a Job” on page 4-22.

For possible values of printer driver types, see “Printer Driver Types” on page 4-7.

4-60 Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXGetPrinterType

DESCRIPTION

RESULT CODES

SEE ALSO

You can use the GXGet Pri nt er Type function to obtain the printer type of the printer
associated with a particular printer object.

OSType GXGet PrinterType (gxPrinter aPrinter);

aPrinter A reference to the printer object associated with a particular printer.

function result The printer type.

The GXCGet Pri nt er Type function returns a printer type in the format of an OSType; for
example, ' LMRW for LaserWriter GX.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For an example that uses the GXGet Pr i nt er Type function, see “Obtaining Printer and
Printer Driver Information for a Job” on page 4-22.

Working With QuickDraw GX Print Files

You use the GXOpenPri nt Fi | e and GXO osePr i nt Fi | e functions to open and close
print files.

You use the GXCet Pri nt Fi | eJob function to obtain the job object associated with a
particular print file. This function is useful when you need to access or modify
information of the job object associated with a print file.

You use the GXCount Pri nt Fi | ePages function to count the number of pages in a
print file.

You use the GXReadPr i nt Fi | ePage function to retrieve a page or page format for a
print file.

You use the GXRepl acePri nt Fi | ePage function to replace a page or page format
from a print file. To insert a new page in a print file, you use the
GXI nsert Print Fi | ePage function.

You use the GXDel et ePri nt Fi | ePageRange function to delete a range of pages
within a specified print file.

Advanced Printing Features Reference 4-61

CHAPTER 4

Advanced Printing Features

You use the GXSavePri nt Fi | e function to save a print file. You should save a print file
object if you add, delete, or modify its pages, formats, or job object information.

GXOpenPrintFile

DESCRIPTION

You can use the GXOpenPr i nt Fi | e function to open a print file.

gxPrintFile GXOpenPrintFile (gxJob aPrintFileJob,
FSSpecPtr pFil eSpec,
char perm ssion);

aPrintFileJdob
A reference to the job object to associate with a particular printer file.

pFi | eSpec A pointer to a file system specification.

per ni ssi on
The access privileges to use when opening the print file object.

function result A reference to a print file object.

The GXOpenPri nt Fi | e function attempts to open the print file specified by a pointer to
a file system specification record, pFi | eSpec. If successful, the function returns a print
file object that represents the file. The per mi ssi on parameter specifies the access
privileges, which can be read-only or read-and-write access.

The information for the print file’s job object is unflattened into the job object you specify
in the aPri nt Fi | eJob parameter. This job object specified in the parameter remains
associated with the print file until you close the file by calling the GXO osePrintFil e
function.

To check for errors, you should call the GXGet JobEr r or function with the specified job
object following calls that operate on the print file.

SPECIAL CONSIDERATIONS

4-62

The GXOpenPri nt Fi | e function sets up a warning handler, which chains to the
application’s warning handler, if it exists. For more information about warning handlers,
see the errors, warnings, and notices chapter of Inside Macintosh: QuickDraw GX
Environment and Utilities.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

gxl nconpl etePrintFil eErr Contents of file are incomplete.

gxCrashedPrintFil eErr File is currently printing or crashed while
printing.

gxl nval i dPrint Fi | eVersi on Cannot read file due to incompatible file version.

gxFl at t enVer si onTooNew An attempt was made to unflatten a job object

that was flattened using a later version of
QuickDraw GX.

col | ecti onVersi onErr The version of the collection object is not
compatible with the current version of the
Collection Manager.

SEE ALSO

For an example that uses the GXOpenPr i nt Fi | e function, see “Opening and Closing a
Print File” on page 4-29.

To close a print file object, you use the GXCl osePr i nt Fi | e function, which is described
in the next section.

GXClosePrintFile

You can use the GXO osePri nt Fi | e function to close a print file and invalidate the
reference to the print file object.

void GXClosePrintFile (gxPrintFile aPrintFile);
aPrintFile

A reference to the print file object for the file to close.

DESCRIPTION

The GXO osePri nt Fi | e function closes the specified file and invalidates the print file
object’s association with a job object.

Advanced Printing Features Reference 4-63

RESULT CODES

SEE ALSO

CHAPTER 4

Advanced Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For an example that uses the GXCl osePri nt Fi | e function, see “Opening and Closing a
Print File” on page 4-29.

GXGetPrintFileJob

DESCRIPTION

RESULT CODES

4-64

You can use the GXGet Pri nt Fi | eJob function to obtain the job object associated with a
particular print file object.

gxJob GXGetPrintFileJob (gxPrintFile aPrintFile);

aPrintFile
A reference to the print file object whose job object you wish to obtain.

function result A reference to a job object.

The GXCGet Pri nt Fi | eJob function returns a reference to the job object that was
associated with the print file object when you called the GXOpenPri nt Fi | e function. If
you save the reference when you call the GXOpenPr i nt Fi | e function, you do not need
to call this function.

This function is useful when you need to access or modify information in the job object
associated with a print file object. For example, you can use this function to obtain the
job object and then call GXGet JobEr r or for the job object to test for an error condition
associated with the print file.

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXCountPrintFilePages

You can use the GXCount Pri nt Fi | ePages function to count the number of pagesin a
print file.

| ong GXCount PrintFilePages (gxPrintFile aPrintFile);

aPrintFile
A reference to the print file object that represents the print file.

function result The number of pages in the file.

DESCRIPTION
The GXCount Pri nt Fi | ePages function returns the number of pages in the file.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXReadPrintFilePage

You can use the GXReadPr i nt Fi | ePage function to retrieve a page or page format for
a print file object.

voi d GXReadPrintFil ePage (gxPrintFile aPrintFile, |ong pageNunber,
| ong nunVi ewPorts, gxViewPort *viewPortlList,
gxFormat *pageFor mat, gxShape *pageShape);

aPrintFile
A reference to the print file object whose file you want to access.

pageNumnber
The page you want to access.

nunvi ewPort s
The number of view ports in the view port list.

vi ewPor t Li st
A pointer to a list of references to view ports through which you want the
page’s picture shape to draw.

pageFor mat
On return, a reference to the format object associated with the page.

pageShape Onreturn, a reference to the picture shape that contains the page’s data.

Advanced Printing Features Reference 4-65

DESCRIPTION

CHAPTER 4

Advanced Printing Features

The GXReadPr i nt Fi | ePage function retrieves the print file object’s page that you
specify in the pageNunber parameter. It returns the page format and a picture shape
representing the contents of the page in the pageFor mat and pageShape parameters,
respectively. You can set one or both of these parameters to ni | if you do not want them
returned.

The page shape is associated with the view ports in the vi ewPor t Li st list parameter,
which is the list of view ports you want the shape to be drawn through when you call
GXDr awShape for the shape in the pageShape parameter. The nunVi ewPort s
parameter specifies how many view ports are in the list.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Do not change the page format or page shape, pointed to by the pageFor nat and
pageShape parameters, directly. If you want to change the format or shape, make a
copy of the format or shape and modify the copy. After you make a change to the copy,
you can replace the format or page in the print file with your copy or insert your copy
into the print file.

For speed and memory efficiency, dispose of the references to the format and page shape
objects as soon as they are no longer needed. For example, dispose of them as soon as
you make a copy of them or draw a page with them.

The page number specified in the pageNunber parameter must be valid. Call the
GXCount Pri nt Fi | ePages function to ensure that the page number is valid.

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For an example that uses the GXReadPr i nt Fi | ePage function, see “Reading Print File
Data” on page 4-30.

GXReplacePrintFilePage

4-66

You can use the GXRepl acePri nt Fi | ePage function to replace a page in a print file
object.

voi d GXRepl acePrintFil ePage (gxPrintFile aPrintFile,
| ong pageNunber, gxFornmat pageFor mat,
gxShape pageShape);

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

aPrintFile
A reference to the print file object in which you want to replace a page.

pageNurber
The page you want to replace.

pageFor mat
A reference to the page’s format object.

pageShape A reference to the page’s picture shape object.

DESCRIPTION

The GXRepl acePri nt Fi | ePage function replaces in the page specified in the
pageNunber parameter.

You specify a replacement page format and page shape in the pageFor mat and
pageShape parameters, respectively. You can specify ni | for either of these parameters
to ensure that the page format or the page shape remains unchanged.

Any changes you make to a print file are not permanent until you save the print file
object with the GXSavePri nt Fi | e function.

SPECIAL CONSIDERATIONS

After you call the GXRepl acePri nt Fi | ePage function, do not change the page format
or page shape referenced by the pageFor nat and pageShape parameters. For
example, if you want to change the format or shape later, make a copy, and modify the
copy. Dispose of the original page or format after you make the copy.

For speed and memory efficiency, dispose of the references to the format and page
parameters immediately after you call GXRepl acePri nt Fi | ePage.

If a format or page is to be duplicated, passing a clone of the object to the function is
more efficient than passing a copy. For example, you can pass a clone of a page or format
to replicate a page or format already in the file. The cloned object may be one that you
have previously read from a print file or one that you created.

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

To save a print file object, see the description of the GXSavePri nt Fi | e function on
page 4-70.

Advanced Printing Features Reference 4-67

CHAPTER 4

Advanced Printing Features

GXlnsertPrintFilePage

DESCRIPTION

You can use the GXI nser t Pri nt Fi | ePage function to insert a new page in a print file.

void GXInsertPrintFilePage (gxPrintFile aPrintFile,
| ong at PageNunber, gxFornmat pageFormat, gxShape pageShape);

aPrintFile
A reference to the print file object in whose file you want to insert a page.

at PageNurber
The page to insert.

pageFor mat
A reference to a format object for the inserted page.

pageShape A reference to a picture shape object for the inserted page.

The GXI nsert Pri nt Fi | ePage function inserts a page in a print file before the page
number that you specify in the at PageNunber parameter. You can pass a value of 1 in
this parameter to insert the new page before all other pages in the print file. When you
pass a value that is higher than the current page count, QuickDraw GX appends the
page to the end of the print file.

Any changes you make to a print file are not permanent until you save the print file
object by calling the GXSavePr i nt Fi | e function.

SPECIAL CONSIDERATIONS

4-68

After you call the GXI nsert Pri nt Fi | ePage function, do not change the page format
or page shape referenced by the pageFor mat and pageShape parameters. For
example, if you want to change the format or shape later, make a copy, and modify the
copy. Dispose of the original page or format after you make the copy.

For speed and memory efficiency, dispose of the references to the format and page
parameters immediately after you call GXI nsert Pri nt Fi | ePage.

If a format or page can be reused, passing a clone of the object to the function is more
efficient than passing a copy. For example, you can pass a clone of a page or format to
replicate a page or format already in the file. The cloned object may be one that you have
previously read from a print file or one that you created.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

To save a print file object, see the description of the GXSavePri nt Fi | e function on
page 4-70.

GXDeletePrintFilePageRange

You can use the GXDel et ePri nt Fi | ePageRange function to delete a range of pages
within a particular print file object.

voi d GXDel et ePrint Fi |l ePageRange (gxPrintFile aPrintFile,
| ong fronPageNunber,
| ong t oPageNumnber);

aPrintFile
A reference to the print file object from whose file you want to delete

pages.
f r onPageNurnber
The first page that you want to delete.

t oPageNunber
The last page that you want to delete.

DESCRIPTION
The GXDel et ePri nt Fi | ePageRange function deletes a page or pages in a print file
object within the range that you specify in the f r onPageNunber andt oPageNunber
parameters. The range of page numbers is inclusive. For example, deleting from page 2
to page 3 deletes both pages 2 and 3.

Any changes you make to a print file are not permanent until you save the print file
object with the GXSavePri nt Fi | e function.

Advanced Printing Features Reference 4-69

RESULT CODES

SEE ALSO

CHAPTER 4

Advanced Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

To save a print file object, see the description of the GXSavePri nt Fi | e function in the
next section.

GXSavePrintFile

DESCRIPTION

RESULT CODES

4-70

You can use the GXSavePr i nt Fi | e function to save a print file object.

void GXSavePrintFile (gxPrintFile aPrintFile, FSSpec *pFil eSpec);

aPrintFile
A reference to the print file object whose file you want to save.

pFi | eSpec A pointer to a file system specification record.

The GXSavePri nt Fi | e function writes an entire print file to disk. This file must
previously have been opened with the GXOpenPr i nt Fi | e function. To replace or
update the print file, you can pass ni | in the pFi | eSpec parameter. Otherwise, you can
specify a name and location in the pFi | eSpec parameter to save the updated print file
and leave the original print file intact.

This function compacts a print file by recovering any space no longer needed. Space
becomes available when pages are removed or when a format no longer references any
pages. This function also permanently saves any changes that you have made to the
print file.

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

Working With Paper Types

You use the GXNewPaper Ty pe function to create a new paper-type object, and you use
the GXDi sposePaper Type function to dispose of a paper-type object.

You can use the GXGet NewPaper Type function to retrieve a paper-type object from a
resource or use the GXGet JobPaper Type function to access a specific paper-type object.
You use the GXCGet JobPaper Type function to obtain the indexed paper-type object
from the total set of paper-type objects that are accessible to a particular job object.

You can use the GXCount JobPaper Types function to obtain the total number of
paper-type definitions that are accessible to a particular job object.

You use the GXCopy Paper Type function to replace the contents of the destination
paper-type object with that of the source paper-type object.

You use the GXGet Paper Ty peNane function to obtain the name of a paper-type object.

You use the GXGet Paper TypeDi nensi ons function to obtain the page rectangle and
the paper rectangle associated with a paper-type object.

You use the GXGet Paper TypeJdob function to obtain the reference to the job object that
owns the paper-type object.

You use the GXFor EachJobPaper TypeDo function to call an application-defined
function for each paper-type definition that is accessible to a particular job object.

GXNewPaperType

DESCRIPTION

You can use the GXNewPaper Type function to create a new paper-type object.

gxPaper Type GXNewPaper Type (gxJob aJob, Str31 nane,
gxRect angl e *pageSi ze, gxRectangl e *paperSi ze);

aJob A reference to the job object with which to associate the new paper-type
object.
nane The name of the new paper type.

pageSi ze A pointer to a rectangle that defines the page size, or imageable area of
the paper.

paper Si ze A pointer to a rectangle that defines the paper size.

function result A reference to the newly created paper-type object.

The GXNewPaper Type function creates a paper-type object with the title nane, the
imageable area defined by the pageSi ze rectangle, and the paper size defined by the

paper Si ze rectangle. This function associates a paper type of these specifications with
the specified job object.

Advanced Printing Features Reference 4-71

CHAPTER 4

Advanced Printing Features

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
col | ecti onVersi onErr The version of the collection object is not compatible
with the current version of the Collection Manager.
gxPaper TypeNot Found The paper-type object cannot be located.
SEE ALSO

For an example that uses the GXNewPaper Type function, see “Creating a Paper-Type
Object” on page 4-32.

GXDisposePaperType

You can use the GXDi sposePaper Type function to dispose of a paper-type object.
voi d GXDi sposePaper Type (gxPaper Type aPaper Type);

aPaper Type
A reference to the paper-type object that you want to dispose of.

DESCRIPTION

The GXDi sposePaper Type function disposes of the paper-type object specified by the
aPaper Type parameter by decrementing its owner count. If the owner count falls to 0,
QuickDraw GX may delete the paper-type object.

RESULT CODES

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

4-72 Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXGetNewPaperType

DESCRIPTION

RESULT CODES

You can use the GXGet NewPaper Type function to create a new paper-type object from a
resource template.

gxPaper Type GXGet NewPaper Type (gxJob alJob, short reslD);
aJob A reference to the job object associated with the new paper-type object.

resl D The ID of the resource template.

function result A reference to a paper-type object.

The GXGet NewPaper Type function creates a paper-type object in the same way that the
GXNewPaper Type function does, except that the title, the imageable area, and the paper
size are defined in the resource identified by r es| D. The GXGet NewPaper Type
function associates the returned paper-type object reference with the aJob job object.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

col | ecti onVersi onErr The version of the collection object is not compatible
with the current version of the Collection Manager.

gxPaper TypeNot Found The paper-type object cannot be located.

Advanced Printing Features Reference 4-73

CHAPTER 4

Advanced Printing Features

GXGetJobPaperType

You can use the GXGet JobPaper Type function to access the specified paper-type object
associated with a particular job object.

gxPaper Type GXGet JobPaper Type (gxJob aJob, |ong whi chPaper Type,
Bool ean for For mat Devi ce,
gxPaper Type aPaper Type);

aJob A reference to the job object from which to obtain the paper-type object.

whi chPaper Type
The index that specifies which paper-type object to obtain.

f or For mat Devi ce
A Boolean value that specifies whether the paper-type objects are
associated with the formatting printer (t r ue) or with the output printer
(f al se).

aPaper Type
A valid paper-type object reference.

function result A reference to a paper-type object.

DESCRIPTION

The GXCGet JobPaper Type function retrieves the specified paper type from the job
object based on the index value in the whi chPaper Type parameter. Index values begin
at 1.

Set the f or For nat Devi ce parameter to t r ue to retrieve only the paper types
associated with the formatting printer or to f al se to retrieve only paper
types associated with the output printer.

If the desired paper-type object is found, based on its index value, this function replaces
the contents of the aPaper Type parameter with that of the retrieved paper-type object.

If the paper-type object is not located, the job object’s error is set to
gxPaper TypeNot Found. Any error generated by this function can be retrieved using
the GXGet JobErr or function.

RESULT CODES

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPaper TypeNot Found The paper-type object cannot be located.

4-74 Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXCountJobPaperTypes

DESCRIPTION

RESULT CODES

You can use the GXCount JobPaper Types function to obtain the total number of
paper-type definitions that are accessible to a particular job object.

| ong GXCount JobPaper Types (gxJob aJob, Bool ean for For nat Devi ce);

aJob A reference to the job object from which to obtain the number of
paper-type definitions.

f or For mat Devi ce
A Boolean value that specifies whether the paper-type objects are
associated with the formatting printer (t r ue) or with the output printer
(f al se).

function result The number of paper-type objects that are associated with the print job.

The GXCount JobPaper Types function returns the number of paper types associated
with either the print job’s formatting printer or output printer.

Set the f or For mat Devi ce parameter tot r ue to count only the paper types associated
with the formatting printer or to f al se to count only paper types associated with the
output printer.

Depending on the format specification of the job object, the total number of paper types
returned may include the total number of system paper types, user paper types, printer
driver paper types, and printer-configuration-file paper types.

Use the GXGet JobEr r or function to retrieve errors for this function.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

Advanced Printing Features Reference 4-75

CHAPTER 4

Advanced Printing Features

GXCopyPaperType

You can use the GXCopy Paper Type function to copy paper-type object data from one
paper-type object to another paper-type object.

gxPaper Type GXCopyPaper Type (gxPaper Type srcPaper Type,
gxPaper Type dst Paper Type) ;

sr cPaper Type
A reference to the paper-type object whose data you want to copy.

dst Paper Type
A reference to the paper-type object in which to copy the data.

function result Reference to a paper-type object.

DESCRIPTION

The GXCopyPaper Type function copies the contents of the paper-type object referred to
in the sr cPaper Type parameter to the paper-type object referred to in the

dst Paper Type parameter. Each component of the paper-type object is copied. You
must specify valid paper types in both the sr cPaper Type and dst Paper Type

parameters.
RESULT CODES
gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPaper TypeNot Found The paper-type object cannot be located.
GXGetPaperTypeName

You can use the GXGet Paper Ty peNane function to obtain the name of a paper-type
object.

voi d GXGet Paper TypeNane (gxPaper Type aPaper Type,

Str31 nane);
aPaper Type
A reference to the paper-type object from which to obtain the name.
nane On return, the name of the paper type.

4-76 Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

DESCRIPTION
The GXCGet Paper Ty peNan®e function returns the name of the paper-type object specified
by the aPaper Type parameter. The aPaper Type parameter must refer to a valid
paper-type object. The name of the paper-type object is returned in the nane parameter.
RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPaper TypeNot Found The paper-type object cannot be located.
SEE ALSO

For an example that uses the GXGet Paper TypeNane function, see “Obtaining the Name
of a Paper Type” on page 4-32.

GXGetPaperTypeDimensions

You can use the GXGet Paper TypeDi nensi ons function to obtain the page rectangle
and the paper rectangle associated with a paper-type object.

voi d GXGet Paper TypeDi nensi ons (gxPaper Type aPaper Type,
gxRect angl e *aPageSi ze,
gxRect angl e *aPaper Si ze) ;

aPaper Type
A reference to the paper-type object from which to obtain page and paper
sizes.

aPageSi ze A pointer to a rectangle that receives the page size of the paper type.

aPaper Si ze
A pointer to a rectangle that receives the paper size of the paper type.

DESCRIPTION

The GXGet Paper TypeDi mensi ons function returns the page and paper size for the
specified paper type in the geometry of rectangles. The page rectangle is the imageable
portion of a page. The paper rectangle is the size of the paper. The geometry for each
rectangle specifies the size in 72 dots-per-inch units. Passing a ni | pointer for either the
aPageSi ze or the aPaper Si ze parameters causes QuickDraw GX to ignore the
parameter.

Advanced Printing Features Reference 4-77

CHAPTER 4

Advanced Printing Features

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPaper TypeNot Found The paper-type object cannot be located.

SEE ALSO

For an example that uses the GXGet Paper TypeDi nensi ons function, see “Obtaining
the Dimensions of a Paper Type” on page 4-33.

GXGetPaperTypelob

You can use the GXGet Paper TypeJob function to obtain a reference to the job object
that owns a paper-type object.

gxJob GXCGet Paper Typedob (gxPaper Type aPaper Type) ;
aPaper Type

A reference to the paper-type object for which you want to obtain the job
object.

function result A reference to the job object that owns the paper type.

RESULT CODES

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXForEachJobPaperTypeDo

You can use the GXFor EachJobPaper TypeDo function to call an application-defined
function for each paper-type definition that is accessible to a particular job object.

voi d GXFor EachJobPaper TypeDo (gxJob aJob,
gxPaper TypeProc aPaper TypeProc,
void *ref Con,
Bool ean forFormattingPrinter);

aJob A reference to the job object from which to obtain the paper-type object.

aPaper TypePr oc
An application-defined function to be called for each paper-type
definition accessible to a job object.

4-78 Advanced Printing Features Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 4

Advanced Printing Features

ref Con A pointer to a reference constant.

forFormattingPrinter
A Boolean value that specifies whether the paper-type objects are
associated with the formatting printer (t r ue) or with the output printer
(f al se).

The GXFor EachJobPaper TypeDo function loops over each of the paper-type objects
for the specified print job, executing the application-supplied function on each one.

The application-defined function is called until either all the paper types have been
processed or the function returns the gx St opLoopi ng constant.

Set the f or For mat t i ngPri nt er parameter tot r ue to execute the application-defined
function only on the paper types associated with the formatting printer or to f al se to
execute the application-defined function only on paper types associated with the output
printer.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For an example that uses the GXFor EachJobPaper TypeDo function, see “Scanning the
Paper Types Available to a Job” on page 4-34.

For information about declaring the application-defined function, see “Looping Through
a Job’s Paper Types” on page 4-92.

Formatting for Specific Devices

You use the GXSet Avai | abl eJobFor mat Mbdes function to set your list of job format
modes for a particular job object, and you use the GXCet Pr ef er r edJobFor mat Mode
function to obtain the printer driver’s preferred mode.

You use the GXGet JobFor mat Mode function to obtain the current job format mode and
the GXSet JobFor mat Mode function to set it.

You use the GXJobFor mat ModeQuer y function to get or set additional information for
the text job format mode.

Advanced Printing Features Reference 4-79

CHAPTER 4

Advanced Printing Features

GXSetAvailableJobFormatModes

You can use the GXSet Avai | abl eJobFor mat Mbdes function to set the list of job
format modes that your application supports.

voi d GXSet Avai | abl eJobFor mat Modes (gxJob aJob,
gxJobFor mat MbdeTabl eHdl aJobFor mat ModeTabl eHdl) ;

aJob A reference to the job object to which the list of format modes applies.

aJobFor mat MbdeTabl eHd|
A handle that contains the list of supported modes.

DESCRIPTION

The GXSet Avai | abl eJobFor mat Mbdes function provides the printer driver with the
list of modes that the printer driver could return as its preferred mode.

RESULT CODES

gxSegment LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

For more information about how to use this function, see “Implementing Direct-Mode
Printing” on page 4-35.

GXGetPreferredJobFormatMode

You can use the GXGet Pr ef er r edJobFor mat Mbde function to obtain the preferred
mode of printing to the printer associated with a print job.

gxJobFor mat Mbde GXGet Pr ef err edJobFor mat Mode (gxJob aJob,
Bool ean *direct Only);

aJob A reference to the job whose format mode you wish to determine.

directOnly
A pointer to a Boolean value returned by this function that specifies
whether the preferred mode is the only mode.

function result The preferred mode.

4-80 Advanced Printing Features Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 4

Advanced Printing Features

The GXGet Pr ef er r edJobFor mat Mode function returns the preferred mode of printing
to the job’s output printer. The preferred mode is one of the modes proposed by the
application in a call to GXSet Avai | abl eJobFor mat Mbdes. From that information, the
printer driver can respond with its preferred mode.

The preferred mode is typically a mode supported directly by the driver’s hardware. In
the case of an ImageWriter Il, the GXCGet Pr ef er r edJobFor mat Mbde function returns
gxText JobFor mat Mode because it can use fonts built into the printer itself for faster
text printing. The preferred mode typically represents the job format mode with the
fastest throughput; however, it may limit the quality or even the kind of output that may
be printed.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

For more information about how to use this function, see “Implementing Direct-Mode
Printing” on page 4-35.

GXGetJobFormatMode

You can use the GXGet JobFor mat Mbde function to obtain the current job format mode
for a particular job object.

gxJobFor mat Mode GXGet JobFor mat Mode (gxJob aJob);

aJob A reference to the job object whose current format mode you wish to
obtain.

function result The current job format mode.

Advanced Printing Features Reference 4-81

DESCRIPTION

RESULT CODES

CHAPTER 4

Advanced Printing Features

The GXGet JobFor mat Mode function returns the current job format mode specified in
the GXSet JobFor mat Mode function. The modes defined by QuickDraw GX are:

Constant Value Explanation

gxG aphi csJobFor mat Mbde "grph' QuickDraw GX default printing
gxText JobFor mat Mode "text' Text-only output

gxPost Scri pt JobFor mat Mode ' post'’ PostScript-only output

A printer driver may define additional modes.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

GXSetlobFormatMode

DESCRIPTION

RESULT CODES

4-82

You can use the GXSet JobFor mat Mode to set the job format mode.
voi d GXSet JobFor mat Mode (gxJob aJob, gxJobFornat Mode aMode);

aJob A reference to the job object associated with the direct mode.
aMbde The direct mode to set.

The GXSet JobFor mat Mode function activates the specified job format mode for a job
object whether or not the mode is supported by the printer driver or the application. You
might want to call GXSet JobFor mat Mode to set the mode when printing without
dialog boxes, such as when the user prints from the Finder.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXJobFormatModeQuery

DESCRIPTION

You can use the GXJobFor mat ModeQuer y function to get or set additional information
related to a job format mode.

voi d GXJobFor mat ModeQuery (gxJob aJob, gxQueryType aQueryType,
void *srcData, void *dstData);

aJob A reference to the job object for which information relating to the
printer’s format mode is being requested.

aQueryType
The kind of query requested.
srchat a A pointer to the source data.

dst Dat a A pointer to the destination data.

The GXJobFor mat ModeQuer y function obtains information from a printer driver that
relates to the printer driver’s preferred mode. The kinds of queries that can be specified
in the aQuer yType parameter depend on the printer driver. The format and direction of
the data transfer depends on the kind of query.

QuickDraw GX defines query types for use with printer drivers whose preferred mode is
gxText JobFor mat Mode:

Constant Value Explanation

gxGet JobFor mat Li neConstr ai nt Query 0 Used to determine line
constraint characteristics

gxGet JobFor mat Font sQuery 1 Used to determine font
information

gxGet JobFor mat Font CommonSt yl esQuery 2 Used to determine style
names

gxGet JobFor mat Font Constr ai nt Query 3 Used to determine font

positioning constraints
gxSet St yl eJobFor mat CormonSt yl eQuery 4 Used to set style names

Advanced Printing Features Reference 4-83

CHAPTER 4

Advanced Printing Features

RESULT CODES

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

SEE ALSO

For more information the kinds of queries and the format of data returned, see
“Formatting for Text Job Format Mode Printing” on page 4-36.

Color Profile Functions

QuickDraw GX allows you to find and set the color profiles that are used for color
matching. Color matching and the ColorSync Manager are described in Inside Macintosh:
Advanced Color Imaging.

GXFindPrinterProfile

You can use the GXFi ndPr i nt er Pr of i | e function to determine the color profile used
by an output printer.

OSErr GXFindPrinterProfile (gxPrinter thePrinter,
voi d *searchData, |ong index,
gxCol orProfile *returnedProfile, Iong *nunProfiles);

thePrinter
A reference to the printer object.

sear chDat a
A pointer to a block of data that is assumed to be a ColorSync searching
block of type CMPr of i | eSear chRecor d. If this value is not ni | , then
the value of the i ndex parameter must not be 0 if you want the search to
take place.

If this value is ni | , the value of the i ndex parameter defines which
profile is returned.

i ndex The index of the profile to return. If the value is 0, then the current profile
is returned in the r et ur nedPr of i | e parameter.

If the value of this parameter is not 0, then the behavior this function
depends on the value of the sear chDat a parameter. If i ndex isnhot0
and sear chDat aisni | , the indexed profile is returned in the

ret ur nedPr of i | e parameter. If i ndex isnot 0 and sear chDat a is not
ni | , then the printer profiles are searched.

4-84 Advanced Printing Features Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 4

Advanced Printing Features

returnedProfile
On return, a list of references to color profiles matching the criteria
specified by the sear chDat a andi ndex parameters. If no color profiles
are found, this parameter is ni | upon return.

nunmProfil es
On return, the number of profiles that were found.

function result An error code. The value noEr r indicates that the operation was
successful.

The GXFi ndPri nt er Pr of i | e function searches for a color profile that matches the
specifications in the sear chDat a andi ndex parameters.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

The gxFi ndPri nt er Pr of i | e message that determines which profiles are returned is
described in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

Color matching, color profiles, the CMPr of i | eSear chRecor d structure, and color
profile resources are described in Inside Macintosh: Advanced Color Imaging.

GXFindFormatProfile

You can use the GXFi ndFor mat Pr of i | e function to determine color-matching
information for a specific format object. This function is similar to the

GXFi ndPri nt er Profi | e function (described in the previous section), except that it
finds a color profile that is associated with a format object rather than a printer object.

CSErr GXFi ndFormat Profil e (gxFormat theFornat,
voi d *searchData, |ong index,
gxCol orProfile *returnedProfile, Iong *nunProfiles);

t heFor mat A reference to the format object.

Advanced Printing Features Reference 4-85

DESCRIPTION

RESULT CODES

SEE ALSO

4-86

CHAPTER 4

Advanced Printing Features

sear chDat a
A pointer to a block of data that is assumed to be a ColorSync searching
block of type CMPr of i | eSear chRecor d. If this value is not ni | , then
the value of the i ndex parameter must not be 0 if you want the search to
take place.

If this value is ni | , the value of the i ndex parameter defines which
profile is returned.

i ndex The index of the profile to return. If the value is 0, then the current profile
is returned in the r et ur nedPr of i | e parameter.

If the value of this parameter is not 0, then the behavior this function
depends on the value of the sear chDat a parameter. If i ndex isnhot0
and sear chDat a is ni | , the indexed profile is returned in the
ret ur nedPr of i | e parameter. If i ndex is not 0 and sear chDat a is not
ni |, then the printer profiles are searched.

returnedProfile
On return, a list of references to color profiles matching the criteria
specified by the sear chDat a andi ndex parameters. If no color profiles
are found, this parameter returns ni | .

nunProfiles
On return, the number of profiles that were found.

function result An error code. The value noEr r indicates that the operation was
successful.

The GXFi ndFor mat Pr of i | e function searches for a color profile that matches the
specifications in the sear chDat a andi ndex parameters.

gxSegmnent LoadFai | edErr A required code segment could not be found, or there
was not enough memory to load it.

The gxFi ndFor mat Pr of i | e message that determines which profiles are returned is
described in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

Color matching, color profiles, the CMPr of i | eSear chRecor d structure, and color
profile resources are described in Inside Macintosh: Advanced Color Imaging.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXSetPrinterProfile

DESCRIPTION

You can call the GXSet Pri nt er Pr of i | e function to change the current color profile for
a printer.

OSErr GXSetPrinterProfile (gxPrinter thePrinter,
gxCol orProfile oldProfile, gxColorProfile newProfile);

thePrinter
A reference to the printer object.
ol dProfile
A reference to the profile that has been associated with the printer object.

newProfile
A reference to the profile to add to the list of profiles for a printer object.

function result An error code. The value noEr r indicates that the operation was
successful.

You can call GXSet Pri nt er Prof i | e to change the current profile for a printer, to
replace an existing profile that is associated with the printer object, or to remove a profile
from the list of color profiles that are associated with the printer object.

A printer driver or printing extension defines the values of the ol dPr of i | e and
newPr of i | e parameters that determine what happens in response to this message.
Table 4-6 shows an example.

Table 4-6 The actions of the GXSet Pri nt er Prof i | e function

Value of Value of

oldProfile newProfile Action taken

nil nil None

Valid nil ol dProfi | e is deleted from the list of profiles
associated with the printer object.

nil Valid newPr of i | e is added to the list of profiles for the
printer object and becomes the current profile.

Valid Valid ol dProfi | e is deleted from the list of profiles,

newPr of i | e is added, and newPr of i | e becomes
the current profile for the printer object.

Advanced Printing Features Reference 4-87

RESULT CODES

SEE ALSO

CHAPTER 4

Advanced Printing Features

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.

The gxSet Pri nt er Profi | e message is described in Inside Macintosh: QuickDraw GX
Printing Extensions and Drivers.

Color matching, color profiles, and color profile resources are described in Inside
Macintosh: Advanced Color Imaging.

GXSetFormatProfile

DESCRIPTION

4-88

You can use the GXSet For mat Pr of i | e function to change the current color profile for
a format object.

OSErr GXSet Format Profil e (gxFormat theFornat,
gxCol orProfile oldProfile, gxColorProfile newProfile);

t heFor mat A reference to the format object.

oldProfile
A reference to the profile that has been associated with the format object.

newProfil e
A reference to the profile to add to the list of profiles for a format object.

function result An error code. The value noEr r indicates that the operation was

successful.

You can call the GXSet For mat Pr of i | e function to change the current profile for a
format object, to replace an existing profile that is associated with the format object, or to
remove a profile from the list of color profiles that are associated with the format object.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

A printer driver or printing extension defines the values of the ol dPr of i | e and
newPr of i | e parameters that determine what happens in response to this message.
Table 4-7 shows an example.

Table 4-7 The actions of the GXSet For mat Pr of i | e function

Value of Value of

ol dProfile newProfile Action taken

nil nil None

Valid nil ol dProfi | e is deleted from the list of profiles
associated with the format object.

nil Valid newPr of i | e is added to the list of profiles for the
format object and becomes the current profile.

Valid Valid ol dProfi | e is deleted from the list of profiles,
newPr of i | e is added, and newPr of i | e becomes
the current profile for the format object.

RESULT CODES
gxSegment LoadFai | edErr A required code segment could not be found, or

there was not enough memory to load it.

SEE ALSO

The gxSet For mat Pr of i | e message is described in Inside Macintosh: QuickDraw GX
Printing Extensions and Drivers.

Color matching, color profiles, and color profile resources are described in Inside
Macintosh: Advanced Color Imaging.

Advanced Printing Features Reference 4-89

CHAPTER 4

Advanced Printing Features

Idle Job Function

You can call the GXI dl eJob function to allow other applications time to execute while
your application is spooling.

GXldlelJob

You can use the GXI dl eJob function to release time to other processes while your
application is performing a computationally intensive task.

void GXldl eJob (gxJob aJob);

aJob A reference to a job object.

DESCRIPTION
The GXI dl eJob function tells QuickDraw GX to release time to other processes that are
currently active. If your application is performing a computationally intensive process
that can potentially lock other processes out for an extended period of time, you need to
periodically call this function.

RESULT CODES
gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPr User Abort Err The user has canceled printing.

Application-Defined Functions

The following sections describe the application-defined functions for preventing the
display of the Printing Status dialog box, for manipulating the view devices associated
with a printer object, and for manipulating the paper types associated with a job object.

Message Override Function for the Printing Status Dialog Box

You can call the GXI nst al | Appl i cati onOverri de function to install an override
function for the gxJobSt at us message to prevent the Printing Status dialog box from
being displayed while spooling.

4-90 Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

GXJobStatus

DESCRIPTION

QuickDraw GX sends the gxJobSt at us message to display the current status of a print
job during spooling and despooling. You can install an override function for the
gxJobSt at us message to prevent the display of status information during spooling.
Your override function must match the following formal declaration:

OSErr GXJobStatus (gxStatusRecord *aStat usRecord);

aSt at usRecord
A pointer to a status structure.

function result An error code. The value noEr r indicates that the operation was
successful.

QuickDraw GX sends the gxJobSt at us message when a printing extension or printer
driver calls the GXRepor t St at us function. This is not under the application’s control.

The default implementation of this message displays the status in the desktop printer
window. To prevent the display of the Printing Status dialog box, your override function
should return noEr r as its only action.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You never send the gxJobSt at us message yourself.

You must forward the gxJobSt at us message to other message handlers.

gxSegnent LoadFai | edErr A required code segment could not be found, or
there was not enough memory to load it.
gxPr User Abort Err The user has canceled printing.

The status structure is described in the section “The Status Structure” on page 4-42.

For more information about status information, see the printing functions chapter of
Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.

Advanced Printing Features Reference 4-91

CHAPTER 4

Advanced Printing Features

Looping Through a Printer’s View Devices

DESCRIPTION

The application-defined function called by the GXFor EachPr i nt er Vi ewDevi ceDo
function takes two parameters: the view device object associated with a particular
printer object, and a pointer to a reference constant in which you specify data passed into
the application-defined function. For example, this is how you should declare the
application-function if you were to name it MyVi ewDevi ceFuncti on:

gxLoopSt at us MyVi ewbDevi ceFuncti on(gxVi ewDevi ce aVi ewDevi ce,
voi d *ref Con);

aVi ewDevi ce
A reference to the current view device. This is provided by QuickDraw
GX when the MyVi ewDevi ceFunct i on function is called.

ref Con A pointer to a reference constant.

function result A Boolean to indicate whether looping should stop.

When you use the GXFor EachPr i nt er Vi ewDevi ceDo function, QuickDraw GX calls
the application-defined function for each view device object referenced by the specified
printer object until the application-defined function returns gx St opLoopi ng or there
are no more view devices in the list. If you want the

GXFor EachPri nt er Vi ewbevi ceDo function to continue with the next view device,
return gxKeepLoopi ng from the application-defined function.

Looping Through a Job’s Paper Types

4-92

The application-defined function called by the GXFor EachJobPaper TypeDo function
takes two parameters: the view device object associated with a particular printer object,
and a pointer to a reference constant in which you specify data passed into the
application-defined function. For example, this is how you should declare the
application-function if you were to name it MyPaper TypeFunct i on:

gxLoopSt at us MyPaper TypeFuncti on(gxPaper Type aPaper Type,
void *ref Con);

aPaper Type
A reference to the current paper type. This is provided by QuickDraw GX
when the MyPaper TypeFunct i on function is called.

r ef Con A pointer to a reference constant.

function result A Boolean to indicate whether looping should stop.

Advanced Printing Features Reference

CHAPTER 4

Advanced Printing Features

DESCRIPTION

When you use the GXFor EachJobPaper TypeDo function, QuickDraw GX calls the
application-defined function for each paper-type object referenced by the specified job
object until the application-defined function returns gxSt opLoopi ng or there are no
more paper types in the list. If you want the GXFor EachJobPaper TypeDo function to
continue with the next paper type, return gxKeepLoopi ng from the application-defined
function.

The Status Resource

You need to include a status resource, of type gx St at usType, to define the status
messages that are displayed during the printing process. Figure 4-3 shows the structure
of the status resource.

Figure 4-3 The status resource

OETtate ST ype e e Bylex

St o rer 4

i 2

Shiue ype
Statue | D =
Stue zkert ID 2
ry— Fm————————————————
‘7 Stbue etirg ‘f Warnakl=

L Mignmertbrte Berd

The status resource contains a count of the status entries and an array of status
definitions.

n Status owner. The signature of the printing extension or printer driver to which this
status resource belongs.

Each status definition contains four values:

n Status type. The kind of status message that this is. The status type constants are
shown in Table 4-8.

n Status ID. The ID of this status message within the status resource. You typically
assign sequential numbers to the status messages within each status resource, as
shown in the example at the end of this section.

Advanced Printing Features Reference 4-93

4-94

CHAPTER 4

Advanced Printing Features

n Status alert ID. The ID of the printing alert associated with this status message. Use
the ID 0 to indicate that this status message does not require a printing alert.

n Status string. The status message string to display to the user.

Most of the status types produce side effects. For example, if you send a status message
with status type gxSpool i ngPagesSt at us, the page count is incremented in the
spooling status that is displayed on the user’s screen. Table 4-8 shows the status type
constants and the side effects associated with each.

Table 4-8 Status types

Constant Value Explanation of side effects

gxNonFat al Error 1 Affects the icon that is displayed during
spooling

gxFat al Error 2 Displays a printing alert during spooling

gxPri nt er Ready 3 Signals that alert mode is done

gxUser Attention 4 Signals initiation of a modal alert

gxUser Al ert 5 Signals initiation of a printing alert

gxPageTr ansmi ssi on 6 Signals that a page has been sent to the
printer and increments the printed page
count

gxQpenConnect i onSt at us 7 Signals that animation of the printer icon is
to begin

gx! nformati onal St at us 8 Displays an informational status message
and continues

gxSpool i ngPagesSt at us 9 Signals that a page has been spooled and
increments the spooled page count

gxEndSt at us 10 Signals the end of spooling

gxPer cent ageSt at us 11 Signals the percentage of the current print

Advanced Printing Features Reference

job that is currently complete

CHAPTER 4

Advanced Printing Features

Summary of Advanced Printing Features

Constants and Data Types for Advanced Printing Features

Job Format Modes

typedef OSType gxJobFor mat Mbde;

enum {
/* job format nodes */
gxGraphi csJobFor mat Mbde
gxText JobFor mat Mode
gxPost scri pt JobFor mat Mbde

(gxJobFor mat Mbde) 'grph', /* graphics node */
(gxJobFor mat Mbde) 'text', /* text node */
(gxJobFor mat Mbde) 'post' [/* format node */

s

struct gxJobFor mat ModeTabl e {
| ong numvbdes; /* nunber of nodes */
gxJobFor mat Mbde nmodes|[1] ; /[* any nunber of nodes */

Text Job Format (Direct) Mode

typedef |ong gxQueryType; /* a query type */

enum {
/[* query types */
gxGet JobFor mat Li neConstrai nt Query = (gxQueryType) O, /* line */

/* constraint */
(gxQueryType) 1, [/* fonts */
(gxQueryType) 2, [/* font common */
[* style */
(gxQueryType) 3, [* font */
/* constraint */
gxSet Styl eJobFor mat CormonStyl eQuery = (gxQueryType) 4 [/* common */
[* style */

gxGet JobFor mat Font sQuery
gxGet JobFor mat Font CommonSt yl esQuery

gxGet JobFor mat Font Constr ai nt Query

b

enum { gxConstrai nt Range = -1 };

Summary of Advanced Printing Features 4-95

CHAPTER 4

Advanced Printing Features

struct gxPositionConstraintTable {

gxPoi nt phase; /* the phase */
gxPoi nt offset; /[* the offset */
| ong nunti zes; [* the number of constraint sizes */
Fi xed sizes[1]; /* any nunber of constraint sizes */
b
struct gxStyl eNaneTabl e {
| ong nuntt yl eNanes; /* nunmber of style nanes */
Str255 styl eNames[1] ; [* any nunber of style names */
s
struct gxFont Table {
| ong nunfont s; /* nunber of font references */
gxFont fonts[1]; /* any nunber of font references */

H

The Status Structure

enum {
[*status type |Ds*/
gxNonFat al Error = 1, /* affects icon on spooling dialog box */
gxFat al Error = 2, /* sends up user alert on spooling */
/* dialog box */
gxPri nt er Ready = 3, /* signals QuickDraw GX to | eave alert */
/* node */
gxUser Attention = 4, /* signals initiation of a nodal alert */
gxUser Al ert = 5, /* signals initiation of a novable */
/* nodal alert */
gxPageTr ansni ssi on = 6, /* signals page sent to printer, */
/* increnments page count in strings to */
[* user */
gxOpenConnectionStatus = 7, /* signals QuickDraw GX to begin */
/* animation of printer icon */
gx! nf ormat i onal St at us = 8, /* default status type, no effects */
gxSpool i ngPagesSt at us = 9, /* signals page spooled, increments */
/* page count in spooling dialog box */
gxEndSt at us = 10, /* signals end of spooling */
gxPer cent ageSt at us = 11 /* signals to QuickDraw GX the anount */
[* of the print job which is currently */
[* conplete */
s

4-96 Summary of Advanced Printing Features

CHAPTER 4

Advanced Printing Features

/* status structure */
struct gxStatusRecord {

unsi gned short statusType; /*
unsi gned short statusld; /*
unsi gned short statusAlertld; /*
Si gnature st at usOaner ; /*
short st at Resl d; /*
short st at Resl ndex; /*
short di al ogResul t; [/*
unsi gned short bufferlLen; /*
char statusBuffer[1];

Pen Tables for VVector Devices

enum { gxPenTabl eTag = 'pent' };

enum {
/* pen wi dths */
gxDevi ceUnits = 0,
gxMrnits = 1,
gxl nchesUnits = 2

/* pen constants */
enum { gxPenNot Loaded = -1};

/* pen table entry structure */
struct gxPenTabl eEntry {

Str31 penNane;
gxCol or penCol or;
fixed penThi ckness;
short penUni ts;
short penPosi ti on;

the type of status */

specific status ID */

printing alert ID for status */
status owner signature */

resource ID for 'stat' resource */
index into 'stat' resource */

I D of button selected to

dismiss the printing alert box */
of bytes in status buffer */
[* user response fromalert */

/* device-specific units */
[* mllinmeters */
[* inches */

/* name of the pen */

/* color that is part of the */
/* color set */

/* size of the pen */

/* specifies units in which pen */

/* thickness is defined */
/* pen position in the carousel

Summary of Advanced Printing Features

4-97

CHAPTER 4

Advanced Printing Features

struct gxPenTabl e {

short nunmPens; /* nunber of pen entries in */
/* the following array */
gxPenTabl eEntry pens[1] ; [* array of pen entries */

b

Constants and Data Types for Synonyms

General-Purpose PostScript Operator Synonym

#def i ne gxPost Scri pt Tag 0x706f 7374 [* 'post' synonym */

PostScript Control Information Synonym

#def i ne gxPost Control Tag 0x70736374 [* 'psct’ synonym */

enum gxPsSt at eFl ags {
gxNoSave = 1 /* don’t do save-restore around Post Script data */

b

struct gxPost Control {
long flags; /* PostScript state flags */

b
Dash Synonym

#def i ne gxDashSynonyniTag 0x73647368 /* 'sdsh' synonym */

struct gxDashSynonym {
| ong si ze; /* nunber of elenents in array */
fixed dashLengt h[gxAnyNumber] ; [* array of dash | engths */

s
Halftone Synonym

enum { gxFornmat Hal ftoneTag = 'hal f' };

struct gxFormat Hal ftonel nf o{
| ong nuntal f t ones; /* how many hal ftones */
gxHal ftone hal ftones[1]; [* any nunber of hal ftones */

H

4-98 Summary of Advanced Printing Features

CHAPTER 4

Advanced Printing Features

struct gxHal ftone{

fixed angl e; /* direction of halftone */
fixed frequency; /* cells per inch */

gxDot Type met hod; /* kind of pattern */

gxTi nt Type tinting; /* tint calculation method */
gxCol or dot Col or; /* col or of foreground */
gxCol or backgroundCol or; [/* color of background */
gxCol or Space tint Space; /* color space for tint */

b

Line Cap Synonym

#def i ne gxLi neCapSynonynirag 0x6¢636170 /* 'lcap' synonym */

enum gxLi neCaps { /* possible line caps */
gxBut t Cap = 0, /* square butt cap */
gxRoundCap =1, /* round cap */
gxSquar eCap = 2, /* square cap */
gxTriangleCap = 3 [* triangle cap */

b

typedef |long gxLineCapSynonym /* line cap type */

Pattern Synonym

#def i ne gxPatternSynonynrag 0x7074726E /* 'ptrn' synonym */

enum gxPatterns {
gxHat ch = 0, /* hatch pattern */
gxCrossHat ch /* crosshatch pattern */

1
=

struct gxPatternSynonym {

| ong patternType; /* one of the patterns: hatch or crosshatch */
fixed angl e; /* angle at which pattern is drawn */

fixed spaci ng; /* distance between two parallel pattern |lines */
fixed t hi ckness; /* thickness of the pattern */

gxPoi nt anchorPoint; /* point with respect to the pattern position */
/* calculated */

Summary of Advanced Printing Features 4-99

CHAPTER 4

Advanced Printing Features

Cubic Synonym

#def i ne gxCubi cSynonyniTag 0x63756278 [* 'cubx' synonym */

enum gxCubi cSynonym {

gxl gnoreFl ag = 0x0000, /* ignore this word, get next one */

gxLi neToFl ag = 0x0001, /* draw a line to point following this */
[* flag */

gxCurveToFl ag = 0x0002, /* draw a curve through the 3 points */
/* following this flag */

gxMoveToFl ag = 0x0003, /[* start a new contour at the point */

[* following this flag */
gxd osePat hFl ag = 0x0004 /* close the contour */
b

#defi ne gxCubicl nstructi onMask OxO00F /* low 4 bits are point */
/* instructions */

typedef short gxCubi cSynonyntl ags;
/* low 8 bits are instruction (noveto, lineto, curveto, closepath) */

QuickDraw Picture Synonym

struct gxQui ckDrawPi ct {

gxTransl ati onOpti ons opti ons; /* transl ator options */
Rect srcRect; /* Qui ckDraw source Rect */
Poi nt styleStretch;/* the scale factor */
unsi gned | ong datalLength; /* length of picture data */
struct gxBitmapDat aSourceAl i as al i as; /* alias to QuickDraw data */
b
Functions

Working With Advanced Job Object Functions
voi d GXSel ect JobFormattingPrinter
(gxJob aJob, Str31 printerNane);

gxPrinter GXGetJobFornmattingPrinter
(gxJob aJob);

gxPrinter GXGetJobQutputPrinter
(gxJob aJob);

voi d* GXGet JobRef con (gxJob aJob);

4-100 Summary of Advanced Printing Features

CHAPTER 4

Advanced Printing Features

voi d GXSet JobRef con (gxJob aJob, void *refCon);
gxJob GXCopyJob (gxJob srcJob, gxJob dstJob);

Manipulating Printer Objects

gxPrinter GXGetJobPrinter (gxJob aJob);
gxJob GXGet PrinterJob (gxPrinter aPrinter);
voi d GXFor EachPri nt er Vi ewDevi ceDo

(gxPrinter aPrinter,

gxVi ewDevi ceProc aVi ewDevi ceProc,
void *ref Con);
| ong GXCount Pri nt er Vi ewDevi ces
(gxPrinter aPrinter);

gxVi ewDevi ce GXGet Pri nt er Vi enDevi ce
(gxPrinter aPrinter,|ong whichVi ewDevice);

voi d GXSel ect Printer Vi ewDevi ce
(gxPrinter aPrinter, |ong whichViewDevice);

void GXGetPrinterDriverNanme (gxPrinter aPrinter, Str31l nane);
voi d GXGet Pri nt er Nane (gxPrinter aPrinter, Str31 nane);

OSType GXCGet PrinterDriverType
(gxPrinter aPrinter);

OSType GXCGet Print er Type (gxPrinter aPrinter);

Working With QuickDraw GX Print Files

gxPrintFile GXOpenPrintFile (gxJob aPrintFilelob, FSSpecPtr pFileSpec,
char perm ssion);

void GXOl osePrintFile (gxPrintFile aPrintFile);

gxJob GXGetPrintFiledob (gxPrintFile aPrintFile);

I ong GXCount PrintFilePages (gxPrintFile aPrintFile);

voi d GXReadPri nt Fi | ePage (gxPrintFile aPrintFile, |ong pageNunber,
 ong nunVi ewPorts, gxViewPort *viewPortlList,
gxFormat *pageFormat, gxShape *pageShape);

voi d GXRepl acePrintFilePage (gxPrintFile aPrintFile,
| ong pageNunber, gxFormat pageFor mat,
gxShape pageShape);

void GXInsertPrintFilePage (gxPrintFile aPrintFile, |ong atPageNunber,
gxFormat pageFormat, gxShape pageShape);

voi d GXDel et ePri nt Fi | ePageRange
(gxPrintFile aPrintFile,
| ong fronmPageNunber,
| ong t oPageNunber) ;

voi d GXSavePrintFile (gxPrintFile aPrintFile, FSSpec *pFil eSpec);

Summary of Advanced Printing Features

4-101

CHAPTER 4

Advanced Printing Features

Working With Paper Types

gxPaper Type GXNewPaper Type (gxJob aJob, Str31 nane,
gxRect angl e *pageSi ze, gxRectangl e *paperSi ze);
voi d GXDi sposePaper Type (gxPaper Type aPaper Type);
gxPaper Type GXGet NewPaper Type
(gxJob aJob, short reslD);

gxPaper Type GXGet JobPaper Type
(gxJob aJob, | ong whi chPaper Type,
Bool ean f or For mat Devi ce,
gxPaper Type aPaper Type) ;
| ong GXCount JobPaper Types (gxJob aJob, Bool ean forFor mat Devi ce);

gxPaper Type GXCopyPaper Type (gxPaper Type srcPaper Type,
gxPaper Type dst Paper Type);
voi d GXGet Paper TypeNane (gxPaper Type aPaper Type,
Str31 nane);
voi d GXGet Paper TypeDi nensi ons
(gxPaper Type aPaper Type,
gxRect angl e *aPageSi ze,
gxRect angl e *aPaper Si ze) ;
gxJob GXCGet Paper TypeJdob (gxPaper Type aPaper Type);
voi d GXFor EachJobPaper TypeDo
(gxJob aJob, gxPaper TypeProc aPaper TypeProc,
voi d *ref Con, Boolean forFormatti ngPrinter);

Formatting for Specific Devices

voi d GXSet Avai | abl eJobFor mat Modes
(gxJob aJob,
JobFor mat ModeTabl eHdl
aJobFor nat ModeTabl eHdl) ;

gxJobFor mat Mode GXGet Pr ef er r edJobFor mat Mode
(gxJob aJob,
Bool ean *directOnly);

gxJobFor mat Mode GXGet JobFor mat Mbde
(gxJob aJob);

voi d GXSet JobFor mat Mbde (gxJob aJob, gxJobFor mat Mode alMbde);

voi d GXJobFor mat MbdeQuery (gxJob aJob, gxQueryType aQueryType,
void *srcData, void *dstData);

4-102 Summary of Advanced Printing Features

CHAPTER 4

Advanced Printing Features

Color Profile Functions

OSErr GXFindPrinterProfile (gxPrinter thePrinter, void *searchData,
| ong i ndex, gxColorProfile *returnedProfile,
| ong *nunProfiles);
OSErr GXFi ndFornmat Profil e (gxFormat theFormat, void *searchDat a,
| ong i ndex, gxColorProfile *returnedProfile,
| ong *nunProfiles);
OSErr GXSetPrinterProfile (gxPrinter thePrinter,
gxCol orProfil e ol dProfile,
gxCol orProfile newProfile);
OSErr GXSet Format Profile (gxFormat theFormat,
gxCol orProfil e ol dProfile,
gxCol orProfile newProfile);

Idle Job Function
voi d GXl dl eJob (gxJob aJob);

Application-Defined Functions
CSErr GXJobSt at us (gxStat usRecord *aSt atusRecord);

gxLoopSt at us MyVi ewbDevi ceFuncti on
(gxVi ewDevi ce aVi ewDevi ce,
voi d *ref Con);

gxLoopSt at us MyPaper TypeFuncti on
(gxPaper Type aPaper Type,
void *refCon);

Summary of Advanced Printing Features

4-103

Glossary

application phase In QuickDraw GX printing,
the phase when the application calls QuickDraw
GX and interacts with the user by displaying
dialog boxes to establish printing parameters,
such as page orientation and paper type.

CMYK color space A color space whose four
components measure the cyan, magenta, yellow,
and black elements of a color. Used mostly for
printing.

collection object An extensible object, managed
by the Collection Manager, that is used to hold
any kind of information. See job collection,
format collection, paper-type collection.

color matching A method of accurately
converting colors in one color space to another
color space, or from display on one device to
display on another device.

color profile A QuickDraw GX object
associated with a transfer mode, color, or bitmap
data structure and used for color matching. A
color profile usually describes the color response
curve of a display device in terms of an objective
standard.

color space A specification of a particular
method for color representation, such as RGB,
CMYK, or gray space.

ColorSync Utilities A part of Macintosh
system software that manages color matching,
color profiles, and the drawing of matched
colors. QuickDraw GX color profile objects
contain ColorSync color profiles, and QuickDraw
GX uses the ColorSync Utilities to perform its
color matching.

despool To open a print file and send its data to
a device for printing. See spooling phase.

direct mode See job format mode.

desktop printer The representation of a
QuickDraw GX printer as an icon on the user’s
desktop.

device communications phase In QuickDraw
GX printing, the phase when the data that
represents the rendered form of each page is sent
to the output device.

extended item list A resource that extends an
item list (" DI TL") resource by responding
automatically to items when they are
manipulated by the user.

flatten To convert the private, object-based
description of an object or set of objects into a
public-format data stream suitable for file or
clipboard storage. Used when saving a print job.
Compare unflatten.

formatting printer The printer for which a
document’s format is retained. See also output
printer.

format collection A collection of items that are
relevant to a format but are not required to define
a format. See also collection object.

format object An object that represents how
pages of a document are to be formatted,
including scaling, orientation, and paper type. It
allows a form to be associated with a format. See
also paper-type object, form.

form A property of a format object that allows a
picture shape to be printed as a backdrop to the
contents of the page. A form can optionally
include a mask shape that defines areas that are
not printed.

forward To pass a message on to the next
message handler in a message chain. See also
message chain, message handler, override.

gamut The limits of the colors that a device can
produce. Different devices have different gamuts,
so color matching is necessary when converting
colors from one device to another.

grayscale Consisting entirely of shades of gray.

GL-1

GLOSSARY

gray space A color space whose single
component is the lightness or brightness of a
color.

halftone A QuickDraw GX data structure that
specifies a pattern and a set of colors. A halftone
is used to achieve a greater range of colors that
may be otherwise available.

imaging phase In QuickDraw GX printing, the
phase when each previously spooled page is
rendered into a form that can be printed on the
output device.

job collection A collection of items that are
relevant for a print job but not required to define
a print job. See also collection object.

job format mode A mode of printing, either
graphics (the QuickDraw GX default), text-only,
or PostScript-only. The text and PostScript modes
are sometimes called direct-mode printing; used
to trade off the ability to redirect output to
another printer for faster output on a specific
printer.

job object An object that represents the
parameters associated with printing, such as the
printer and page range. These parameters specify
a “print job.”

mapping A 3" 3 matrix—a property of a
format object that specifies scaling and
orientation.

message A notice sent by one message handler
to another that a certain condition has arisen or
that a certain task needs to be accomplished. See
also printing message.

message chain A hierarchy of message
handlers eligible to receive and respond to
messages.

message handler A recipient of messages. In
QuickDraw GX printing, applications, printing
extensions, printer drivers, and QuickDraw GX
are all message handlers, which are part of a
message chain.

message override The response, by a message
handler, of intercepting a message and taking
some action. The response to a message is
performed by an override function. See also
override function.

GL-2

message-passing architecture A software
system driven by messages that are sent in
response to certain conditions or events. The
messages activate message handlers, which take
action in response to the messages. QuickDraw
GX printing uses a message-passing architecture.

output printer The printer to which a
document is sent to be printed. If the document’s
formatting printer is different than the output
printer, the print file reflects the output printer’s
formatting; however, the document itself retains
its original format. See also formatting printer.

override (n.) See message override and
override function. (v.) To intercept a message
and take action on it.

object A private QuickDraw GX data structure.
An object has specific properties and is accessed
through a reference.

override function The code, defined in a
message handler, that responds to a message. See
also message override.

owner A variable, structure, or QuickDraw GX
object that references an object. Many objects can
be referenced by more than one variable and can
thus have multiple owners.

panel A subset of a dialog box used to display
and collect related pieces of information. An
expanded dialog box may contain one or more
panels, each of which is named and associated
with an icon. A panel is defined by a panel
resource.

paper-type collection A collection of items that
are relevant to a kind of paper but are not
required to define a paper type. See also
collection object.

paper-type object A paper-type object
represents the paper for which a page is
formatted. It specifies the name of the paper, the
size, and the printable area. See also format
object.

partial override An implementation of a
printing message override that forwards the
message to other message handlers. You typically
forward the message at the beginning or end of
your override function.

GLOSSARY

picture shape A shape type that represents a
collection of other shapes.

portable digital document (PDD) A print file
that can be viewed without the application or
fonts that created it. It is created by printing with
the PDD Maker GX printer driver. See also print
file.

printer See desktop printer, formatting printer,
output printer.

printer driver A program that converts data
that is sent by an application program into data
and control sequences intended for a specific
output device.

printer object An object that represents the
characteristics of a printer, such as its color space
and resolution. The output printer and
formatting printer are represented by printer
objects.

print dialog box A dialog box provided by
QuickDraw GX that is both movable and modal.
Most print dialog boxes have both a normal and
an expanded version. The application can
customize print dialog boxes by adding panels.
See also panel.

print file A document or data that has been
spooled by actually printing the file. See also
portable digital document.

print file object A representation of a print file,
which allows an application to access the
contents of the file.

print job See job object.

printing extension An add-on software module
that allows you to extend printing functionality
provided by applications and printer drivers.

printing message A notice that QuickDraw GX
sends to the message handlers in a message chain
that a certain printing-related condition has
arisen or that a certain printing-related task
needs to be accomplished. See also message
chain, message handler.

printing message override See message
override.

property An item or set of data in a QuickDraw
GX object. A property of an object is analogous to
a field (or member) of a data structure; however,
a field is accessed though its name, whereas a
property is accessed through a function.

reference A long-word value, neither a pointer
nor a handle, through which an application
accesses a QuickDraw GX object. References are
created by QuickDraw GX and passed to
applications.

scale To proportionally enlarge or shrink.

shape (1) A graphic or typographic item (such
as a geometric shape, a bitmap, or a line of text)
created and drawn with QuickDraw GX. (2) A set
of QuickDraw GX objects that, taken together,
describe the type and characteristics of such a
graphic or typographic item. A shape consists of
a shape object, a style object, an ink object, and a
transform object.

shape object A QuickDraw GX object that,
along with several other objects, describes a
QuickDraw GX shape. A shape object specifies
the fundamental type and contents of a shape.

spooling phase In QuickDraw GX printing, the
phase when the application sends the document
pages to disk, in preparation for printing. The
printer driver stores printable output in a file
from which it is subsequently despooled,
rendered, and sent to the output device. See also
despool.

synonym A particular kind of tag object, used
by QuickDraw GX to provide an alternate
representation of an object for printing. The
synonym specifies data, such as alternative
PostScript operators, for the printer driver to use
instead of the instructions that QuickDraw GX
generates.

tag list A property of many QuickDraw GX
objects. It is an array of references to tag objects
associated with the object.

tag object A QuickDraw GX object whose
purpose, structure, and content are entirely
controlled by the application creating it. Tag
objects exist to allow custom information and
behavior to be attached to standard QuickDraw

GL-3

GLOSSARY

GX objects. Tag objects are classified by tag type;
objects reference their tag objects through a tag
list.

tag type A longword data type (equivalent to
OSType) that can be represented by four 1-byte
characters, such as ' appl ' . Tag types specify the
formats of tag objects, such as synonymes.

total override An implementation of a printing
message override that does not forward the
message to other message handlers.

unflatten To convert the public, stream-based
description of an object or set of objects into the
private, native QuickDraw GX object-based
format. Used when retrieving a print job.
Compare flatten.

GL-4

Index

A

D

advanced printing features 1-30, 4-5 to 4-102

application phase of printing 1-4

attribute bit masks, for printing-related collections 3-9,
3-76

B

base information
as paper-type collection item 3-14
defined 3-94

C

caps, synonym 4-14 to 4-15, 4-47
collation information
as job collection item 3-11
defined 3-80
collection items, printing-related 3-7 to 3-8
collection objects. See also printing-related collections
printing tag 3-8, 3-77
Col | ecti on type 2-47
color matching, for printers 4-9
color profile objects, for printers 4-9, 4-27 to 4-29, 4-84
to 4-89
color spaces, printer specification 4-8, 4-27 to 4-29
comment information
as paper-type collection item 3-14
defined 3-97
compatibility of QuickDraw GX printing with
Macintosh Printing Manager 1-30
copies information
as job collection item 3-11
defined 3-81
core printing features 1-26 to 1-28, 2-3 to 2-81
creator information
as paper-type collection item 3-14
defined 3-95
customizing printing features 1-28 to 1-29, 3-22 to
3-27, 3-33 to 3-39, 3-66 to 3-75, 3-98 to 3-102,
3-113to 3-125
Custom Page Setup dialog box 3-113

dashes, synonym 4-14, 4-46
desktop printers 1-7 to 1-8
application support for 2-39 to 2-42
icons for 1-9
device communications phase of printing 1-5
dialog boxes 1-10 to 1-13, 2-17 to 2-19
customization 3-6 to 3-7, 3-22 to 3-27, 3-66 to 3-73,
3-119 to 3-125
Custom Page Setup dialog box 3-113
displaying 2-37 to 2-39, 2-71 to 2-74, 3-23, 3-113 to
3-121
Edit menu structure 2-9
extended item list resources 3-72 to 3-73, 3-128 to
3-132
Page Setup dialog box 2-35 to 2-37, 2-72, 3-121
panel resources 3-24, 3-70, 3-127
parsing responses in 3-102
Print dialog box 1-10 to 1-12, 2-37 to 2-39, 2-73, 3-120
Printing Status dialog box 4-91
results defined 2-48
setting up panels 3-67 to 3-69, 3-114
dimensions
as format object property 2-8
as paper-type object property 2-9
from format objects 2-33 to 2-34, 2-70
from paper-type objects 4-33, 4-77
of panels 2-7, 3-115
direct mode 4-19 to 4-20, 4-35 to 4-36. See also job
format modes
direct-mode information
as format collection item 3-13
defined 3-91
direct mode. See job format modes
"Dl TL' resource type 3-71

E

Edit menu structure 2-9
defined 2-48
error. See also printing errors
as job object property 2-6
extended item list resources 3-72 to 3-73, 3-128 to 3-132

IN-1

INDEX

F

file-destination information
as job collection item 3-11
defined 3-83
file-fonts information
as job collection item 3-11
defined 3-85
file-format information
as job collection item 3-11
defined 3-84
file-location information
as job collection item 3-11
defined 3-84
Finder printing support 2-39 to 2-42
flags information
as paper-type collection item 3-14
defined 3-97
flattening
job objects 2-25 to 2-28, 2-56 to 2-58, 2-77
print-job flattening function 2-27 to 2-28
print-job to handle 2-25 to 2-27
font table 4-37, 4-41
format collection items
changing 3-112
direct-mode information 3-13, 3-91
format-halftone information 3-13, 3-92
horizontal page-flip information 3-13, 3-93
orientation information 3-13, 3-89
page-inversion information 3-13, 3-92
paper-type lock information 3-13, 3-94
precise-bitmap information 3-13, 3-93
scaling information 3-13, 3-91
vertical page-flip information 3-13, 3-93
format collections 3-12 to 3-13
accessing 3-118
accessing page correspondences 3-61 to 3-66
as format object property 2-8
constants and data types for 3-89 to 3-94
halftone information 3-21 to 3-22, 3-52 to 3-53
items in. See format collection items
mapping items 3-18 to 3-19
format-halftone information. See also halftones
as format collection item 3-13
defined 3-92
format list, as print file object property 4-10
format mode. See also job format modes
as job object property 2-6
format object properties 2-7 to 2-8
collection 2-8
dimensions 2-8

IN-2

form 2-8
job object 2-8
mapping 2-8
paper type 2-8
format objects 1-17, 2-3 to 2-5, 2-7 to 2-8
accessing format collections 3-118
as job object property 2-7
changing collection items 3-112
cloning 3-44 to 3-47, 3-106
copying 3-54 to 3-56, 3-105
counting owners 3-107
creating 3-40 to 3-44, 3-104
current format mode 4-81, 4-82
defined 2-47
disposing of 3-47 to 3-50, 3-104
forms 3-20, 3-50 to 3-51, 3-111
manipulating 3-16 to 3-22
manipulating properties of 2-33 to 2-34, 3-103 to
3-112
manipulation by job objects 3-108, 3-126
mapping 3-18 to 3-19
obtaining job object from 2-33, 2-69
properties of. See format object properties
retrieving dimensions 2-33 to 2-34, 2-70
retrieving forms 3-111
retrieving from job object 2-69
retrieving mapping 3-57, 3-109
retrieving the paper type 3-57 to 3-59, 3-110
sharing 3-44 to 3-47
format-panel information
as job collection item 3-12
defined 3-88
formatting
associating pages and formats 3-61 to 3-66
for specific devices 4-79 to 4-84
page formatting 3-6 to 3-7, 3-15 to 3-22, 3-39 to 3-66
text mode queries 4-36 to 4-37, 4-83
formatting printers
as job object property 2-6
changing color profiles 4-88
determining for job objects 4-51
retrieving color profiles 4-85
selecting 4-50
forms 1-17
as format object property 2-8
printing 3-20
retrieving 3-111
specifying 3-111
using 3-50 to 3-51
forwarding messages 3-23

INDEX

GA-GXB

GXF

Gestalt selectors, for QuickDraw GX printing 2-11, 2-47

gxBasel nf o structure 3-94

GXC

GXChangedFor mat function 3-112

GXd oneFor mat function 3-46, 3-106

GXd osePrint Fi | e function 4-29, 4-63

gxCol | at i onl nf o structure 3-80

gxCol | ecti onCat egory type 3-9, 3-77
gxConment | nf o structure 3-98

GXConvert Pri nt Recor d function 2-45, 2-75
gxCopi esl nf o structure 3-81

GXCopyFor nmat function 3-54, 3-105

GXCopyJob function 4-25, 4-53

GXCopyPaper Type function 4-76

GXCount For mat Oaner s function 3-107

GXCount JobFor nat s function 3-107

GXCount JobPaper Types function 4-75

GXCount Pri nt er Vi ewDevi ces function 4-26, 4-57
GXCount Pri nt Fi | ePages function 4-29, 4-30, 4-65
gxOr eat or | nf o structure 3-95

gxQubi cSynonymenumeration 4-48

gxQubi cSynonyntl ags type 4-48

GXD

gxFi | eDesti nati onl nf o structure 3-83

gxFi | eFont sl nf o structure 3-85

ogxFi | eFor mat | nf o structure 3-84

oxFi | eLocat i onl nf o structure 3-84

GXFi | t er Panel Event message 3-124

GXFi ndFor nat Prof i | e function 4-85

GXFi ndPrinterProfil efunction 4-84

GXFi ni shJob function 2-20, 2-65

GXFi ni shPage function 2-20, 2-22, 2-64, 2-67
oxFl agsl nf o structure 3-97

GXFl at t enJob function 2-25, 2-27, 2-28, 2-29, 2-57
GXFl at t enJobToHdl function 2-25, 2-29, 2-56
gxFl i pPageHori zont al | nf o structure 3-93
gxFl i pPageVerti cal | nf o structure 3-93
gxFont Tabl e structure 4-37, 4-41

GXFor EachFor mat Do function 3-108

GXFor EachJobFor mat Do function 3-60

GXFor EachJobPaper TypeDo function 4-34, 4-78
GXFor EachPri nt er Vi enDevi ceDo function 4-56
GXFor mat D al og function 3-113, 4-24

GXFor mat D al og message 3-122

gxFor mat Hal f t onel nf o structure 3-92, 4-15, 4-46
gxFor mat Panel | nf o structure 3-88

gxFor mat type 2-47

GXG

gxDashSynonymstructure 4-14, 4-46

GXDel et ePri nt Fi | ePageRange function 4-69
gxDi al ogResul t type 2-48

gxDi r ect Model nf o structure 3-91

GXDi sposeFor mat function 3-49, 3-54, 3-104
GXDi sposeJob function 2-28, 2-29, 2-55

GXDi sposePaper Type function 4-72

GXDr awshape function 2-20, 2-22, 2-64

GXE

gxEdi t MenuRecor d structure 2-9, 2-48

GXEnabl eJobScal i ngPanel function 3-116

GXEnt er @ aphi cs function 2-11, 2-50

GXEXi t G aphi cs function 2-12, 2-51

GXExi t Printing function 2-12, 2-51

gxExt endedDl TLType resource type 3-72 to 3-73,
3-128 to 3-132

GXCet For mat Col | ect i on function 3-53, 3-118
GXGet For mat Di nensi ons function 2-12, 2-70
GXGet For mat For mfunction 3-111

GXGet For mat Job function 2-33, 2-69

GXGet For mat Mappi ng function 3-57, 3-109
GXGet For mat Paper Type function 3-58, 3-110
GXCet JobCol | ect i on function 3-28, 3-117
GXGet JobEr r or function 2-14, 2-52

GXGet JobFor nat function 2-21, 2-69

GXGet JobFor nmat Mode function 4-36, 4-81
GXGet JobFor mat ti ngPri nt er function 4-26, 4-51
GXGet JobQut put Pri nt er function 4-22, 4-51
GXGet JobPageRange function 2-20, 2-62
GXGet JobPanel D nensi ons function 3-115
GXGet JobPaper Type function 4-74

GXGet JobPri nt er function 4-55

GXCet JobRef Con function 4-52

GXGet MessageHand! er ResFi | e function 3-116
GXCGet NewPaper Type function 4-73

GXGet Paper TypeCol | ecti on function 3-118
GXGet Paper TypeD nensi ons 4-33

GXGet Paper TypeD rensi ons function 4-77

IN-3

INDEX

GXGet Paper TypeJob function 4-78

GXCet Paper TypeNane function 4-32, 4-76
GXGet Pr ef er r edJobFor mat Mode function 4-80
GXCet Pri nt er Dri ver Nane function 4-22, 4-59
GXCet Pri nter Dri ver Type function 4-22, 4-60
GXCet Pri nt er Job function 4-55

GXGet Pri nt er Nane function 4-22, 4-59

GXGet Pri nt er Type function 4-22, 4-61

GXGet Pri nt er Vi ewDevi ce function 4-26, 4-57
GXGet Print Fi | eJob function 4-64

GXH, GXI

GXO

GXOpenPri nt Fi | e function 4-29, 4-62
gxOri ent ati onl nf o structure 3-90

GXP

GXHand| ePanel Event message 3-123

&Xl dl eJob function 4-90

&Xl ni t Printing function 2-11, 2-50

Xl nsert Print Fi | ePage function 4-68

Xl nstal | Appl i cationOverri de function 2-18,
2-54,2-71, 3-67

oxl nvert Pagel nf o structure 3-92

GXJ, GXK

GXJobDef aul t For mat Di al og function 2-35, 2-72
GXJobDef aul t For mat Di al og message 3-121
GXJobFor nat ModeQuer y function 4-36, 4-83
gxJobFor nat ModeTabl e type 4-39

gxJobFor nat Mbde type 4-39

gxJobl nf o structure 3-78

GXJobPri nt O al og function 2-38, 2-73
GXJobPri nt O al og message 3-120

GXJobSt at us message 4-91

gxJob type 2-47

GXL, GXM

gxPageRangel nf o structure 3-81

gxPanel Event enumeration 3-99

gxPanel | nf oRecor d structure 3-98
gxPanel Set upRecor d structure 3-101
gxPaper Feedl nf o structure 3-85

gxPaper TypeLockl nf o structure 3-94
gxPaper Type type 2-47

GXPar sePageRange message 3-125

gxPar sePageRangeResul t type 3-102
gxPat t er ns enumeration 4-48

gxPat t er nSynonymstructure 4-17, 4-47
gxPenTabl eEnt ry structure 4-21, 4-44
gxPenTabl e structure 4-21, 4-44

gxPosi ti onConst rai nt Tabl e structure 4-37, 4-41
gxPost Cont rol structure 4-14, 4-45

gxPr eci seBi t mapl nf o structure 3-94
gxPrinter type 2-47

gxPrintFil etype 2-47

GXPrinti ngEvent message 2-17, 2-18, 2-76
gXxPri nti ngPanel Ki nd enumeration 3-102
GXPri nt Page function 2-20, 2-21, 2-64, 2-69
gxPri nt Panel | nf o structure 3-88

gxPri nt Panel Type resource type 3-24, 3-70, 3-127
gxPsSt at eFl ags enumeration 4-45

GXQ

gxLi neCaps enumeration 4-47
gxLi neCapSynonymtype 4-14, 4-47
gxLoopSt at us type 3-60, 3-76
gxManual Feedl nf o structure 3-86

GXN

gxQual i tyl nf o structure 3-83
gxQuer yType type 4-40
gxQui ckDr awPi ct structure 4-18, 4-49

GXR

GXNewFor mat function 3-42, 3-54, 3-104
GXMNewdob function 2-13, 2-54
GXNewPaper Type function 4-32, 4-71
oxNor mal Mappi ngl nf o structure 3-86

IN-4

GXReadPr i nt Fi | ePage function 4-30, 4-65
GXRepl acePri nt Fi | ePage function 4-66

GXS

GXSavePrint Fi | e function 4-70
gxScal i ngl nf o structure 3-91

INDEX

GXSel ect JobFor nat ti ngPri nt er function 4-50
GXSel ect JobQut put Pri nt er function 2-40, 2-61
GXSel ect Pri nt er Vi ewDevi ce function 4-58
GXSet Avai | abl eJobFor mat Modes function 4-35, 4-80
GXSet For mat For mfunction 3-50, 3-111

GXSet For mat Prof i | e function 4-88

GXSet JobErr or function 2-17, 2-53

GXSet JobFor mat Mode function 4-36, 4-82

GXSet JobRef Con function 4-23, 4-53

GXSet Pri nt er Profil e function 4-87

GXSet upDi al ogPanel function 3-68

GXSet upPanel function 3-114

gxSi npl ePageRangel nf o structure 3-82
gxSpeci al Mappi ngl nf o structure 3-87

GXSt ar t Job function 2-20, 2-63

GXSt ar t Page function 2-20, 2-22, 2-64, 2-66, 2-69
gxSt at usRecor d structure 4-42

gxSt at usType resource type 4-93 to 4-94

gxSt yl eNaneTabl e structure 4-37, 4-41

GXT

gxTr ansl at edDocurrent | nf o structure 3-89
gxTrayl ndex type 3-88
oxTr ayMappi ngl nf o structure 3-88

GXU-GXZ

GXUnf | at t enJobFr ontHdl function 2-30, 2-58
GXUnf | at t enJob function 2-29, 2-32, 2-59
gxUni t sl nf o structure 3-96

GXUpdat eJob function 2-42, 2-60

H

halftones
printing with 3-21 to 3-22, 4-15 to 4-16, 4-46
specifying 3-52 to 3-53, 4-46
synonym for 4-46
horizontal page-flip information
as format collection item 3-13
defined 3-93

imaging phase of printing 1-5
item list resource type 3-71

J, K

job collection items
collation information 3-11, 3-80
copies information 3-11, 3-81
file-destination information 3-11, 3-83
file-fonts information 3-11, 3-85
file-format information 3-11, 3-84
file-location information 3-11, 3-84
format-panel information 3-12, 3-88
manual-feed information 3-11, 3-86
page-range information 3-11, 3-81
paper-feed information 3-11, 3-85
paper-mapping information 3-12, 3-89
print-job information 3-10, 3-78
print-panel information 3-12, 3-88
quality information 3-11, 3-83
special mapping information 3-11, 3-12, 3-87
standard mapping information 3-11, 3-86
translated-document information 3-12, 3-89
tray-mapping information 3-12, 3-88
job collections 3-10 to 3-12
accessing 3-117
as job object property 2-7
constants and data types for 3-78 to 3-89
items in. See job collection items
job format modes
defined 4-19 to 4-20, 4-39
determining preferred mode 4-80
retrieving current mode 4-81
setting current mode 4-82
specifying 4-80
text formatting 4-36 to 4-37, 4-40 to 4-41, 4-83
text query types defined 4-40
using 4-35 to 4-36
job object properties 2-5 to 2-7
collection 2-7
error 2-6
format list 2-7
format mode 2-6
formatting printer 2-6
output printer 2-6
page range 2-7
panel dimensions 2-7
paper-type list 2-7
reference constant 2-6

IN-5

INDEX

job objects 1-16 to 1-17, 2-3 to 2-5, 2-5 to 2-7
accessing job collections 3-117
as format object property 2-8
as paper-type object property 2-9
as printer object property 4-7
as print file object property 4-10
copying 4-25, 4-53
counting format objects 3-107
counting paper-types for 4-75
creating 2-12 to 2-14, 2-54
defined 2-47
determining page range for 2-62
disposing of 2-28 to 2-29, 2-55
error for 2-52
finishing a print job 2-65
flattening 2-25 to 2-28, 2-56 to 2-58, 2-77
manipulating 2-54 to 2-60
manipulating format objects 3-108, 3-126
manipulating paper types 4-34 to 4-35, 4-78, 4-92
manipulating properties of 4-23 to 4-24, 4-50 to 4-54
printing with 2-61 to 2-68
print record conversion 2-75
properties of. See job object properties
retrieving 2-29 to 2-32
retrieving a printer 4-55
retrieving format objects from 2-69, 3-59 to 3-61
retrieving from format objects 2-69
retrieving panel dimensions 3-115
retrieving paper-type objects 4-74
retrieving printer information 4-22 to 4-23
saving 2-24 to 2-28
setting error condition 2-53
setting error conditions for 2-17
unflattening 2-30 to 2-32, 2-58 to 2-60, 2-78
updating 2-42 to 2-44, 2-60

L

line caps. See Caps
loop status information 3-76

M, N

Macintosh Printing Manager
compatibility with QuickDraw GX 1-30, 2-75
printing documents created with 2-44 to 2-45
manual-feed information
as job collection item 3-11
defined 3-86

IN-6

mappings
and format objects 3-18 to 3-19, 3-57, 3-109
as format object property 2-8
message chain 1-13
message handlers 1-13, 2-71
messages 1-13 to 1-15
forwarding 3-23
installing handlers for 2-71
printing messages 1-13
retrieving resources for handler 3-116
M/Docunent Rec structure 2-10
M/Fl at t enFunct i on application-defined
function 2-27, 2-77
M/For mat Funct i on application-defined function 3-60,
3-126
M/Paper TypeFunct i on application-defined
function 4-34, 4-92
M/Unf | at t enFunct i on application-defined
function 2-32, 2-78
M/Vi ewDevi ceFunct i on application-defined
function 4-92

O

objects. See also job objects; format objects; paper-type
objects; printer objects; print file objects
printing-related 1-6 to 1-7, 1-16 to 1-22
orientation information
as format collection item 3-13
defined 3-89
output printers
as job object property 2-6
changing color profiles 4-87
determining for job objects 4-51
retrieving color profiles 4-84
selecting 2-61
override functions 1-13
M/For nat Di al ogOver ri de application-defined
function 3-67
M/Par sePageRangeOver ri de application-defined
function 3-75
M/Pri nt D al og application-defined function 3-73
M/Pri nti ngEvent application-defined function 2-19
setting up 2-71

P

page count
as print file object property 4-10
determining for print file 4-29, 4-65
page formatting. See formatting

INDEX

page-inversion information
as format collection item 3-13
defined 3-92
page-range information 3-33 to 3-39
as job collection item 3-11
defined 3-81
parsing 3-73to 3-75
page ranges
as job object property 2-7
deleting from print files 4-69
determining 2-62
Page Setup dialog box 2-35 to 2-37, 2-72, 3-121
page size. See also dimensions
from paper type 4-33, 4-77
panel dimensions
as job object property 2-7
determining 3-115
panel events
actions 3-101
automated responses 3-25 to 3-27
constants and data types 3-99 to 3-102
handling 3-25 to 3-27, 3-123 to 3-125
panel information structure 3-98
panel resources 3-24, 3-70, 3-127
panels 1-11 to 1-13. See also panel events
automating responses in 3-25 to 3-27
custom 3-22 to 3-24
for scaling 3-116
resources 3-24, 3-70, 3-127
retrieving dimensions of 3-115
setting up 3-67 to 3-69, 3-114
panel setup information structure 3-101
paper-feed information
as job collection item 3-11
defined 3-85
paper-mapping information, as job collection item 3-12
paper size. See also dimensions
from paper type 4-33, 4-77
paper-type collection items
base information 3-14, 3-94
comment information 3-14, 3-97
creator information 3-14, 3-95
flags information 3-14, 3-97
units information 3-14, 3-96
paper-type collections 3-14
accessing 3-118
as paper-type object property 2-9
constants and data types for 3-94 to 3-98
items in. See paper-type collection items
paper-type lock information
as format collection item 3-13
defined 3-94
paper-type name
as paper-type object property 2-9
determining 4-76

paper-type object properties 2-8 to 2-9
collection 2-9
dimensions 2-9
job object 2-9
name 2-9
paper-type objects 1-18, 2-3 to 2-5, 2-8 to 2-9
accessing paper-type collections 3-118
as format object property 2-8
as job object property 2-7
copying 4-76
creating 4-32,4-71
creating from resources 4-73
defined 2-47
determining paper and page sizes 4-33, 4-77
determining the name of 4-32 to 4-33
disposing of 4-72

manipulating for a job object 4-34 to 4-35, 4-78, 4-92

manipulating properties of 4-71to 4-79
properties of. See paper-type object properties
retrieving by format objects 3-57 to 3-59, 3-110
retrieving job object from 4-74, 4-78
retrieving the name 4-76
parse range results enumeration 3-102
parsing page range information 3-73 to 3-75
partial overrides of printing messages 1-13

path shapes, cubic synonym 4-17 to 4-18, 4-38, 4-48

patterns, synonym 4-17, 4-47 to 4-48
' pdoc' Apple event 2-40
pen tables 4-20 to 4-21, 4-43 to 4-44
portable digital document. See also print files
defined 1-5
position constraint table 4-37, 4-41
PostScript synonyms 4-12 to 4-14, 4-45
"ppnl ' resource type. See panel resource
precise-bitmap information
as format collection item 3-13
defined 3-93

Print dialog box 1-10 to 1-12, 2-37 to 2-39, 2-73, 3-120

Print Documents (* pdoc') Apple event 2-40
printer driver name
as printer object property 4-7
retrieving 4-59
printer drivers 1-8to 1-9
printer driver type
as printer object property 4-7
codes 4-7
retrieving 4-60
printer name
as printer object property 4-7
retrieving 4-59

IN-7

INDEX

printer object properties 4-6 to 4-7
job object 4-7
printer driver name 4-7
printer driver type 4-7
printer name 4-7
printer type 4-7
view device list 4-7

printer objects 1-20, 4-6 to 4-9
color specification 4-8, 4-27 to 4-29, 4-84 to 4-89
counting view devices 4-57
defined 2-47
determining resolution for 4-26 to 4-27
manipulating properties of 4-54 to 4-61
manipulating view devices 4-56, 4-92
properties of. See printer object properties
retrieving from a job object 4-55
retrieving properties of 4-22 to 4-23
retrieving the driver name 4-59
retrieving the job object from 4-55
retrieving the printer driver type 4-60
retrieving the printer name 4-59
retrieving the printer type 4-61
retrieving view devices 4-57
selecting view devices 4-58
view devices 4-8, 4-25 to 4-29

printers. See formatting printers; output printers;

desktop printers

printer type
as printer object property 4-7
retrieving 4-61

print file object properties 4-10
format list 4-10
job object 4-10
page count 4-10
shape list 4-10

print file objects 1-20, 4-9 to 4-10. See also print files
defined 2-47
determining job object 4-30, 4-64
manipulating properties of 4-61 to 4-70
properties of. See print file object properties
using 4-29 to 4-31

print files 1-8
closing 4-29 to 4-30, 4-63
counting pages in 4-31, 4-65
deleting pages from 4-69
determining print-jobs 4-64
inserting pages in 4-68
opening 4-29 to 4-30, 4-62
QuickDraw picture data in 4-18 to 4-19
reading pages from 4-30 to 4-31, 4-65
replacing pages in 4-66
saving 4-30, 4-70

printing 1-25 to 1-31, 2-61 to 2-68
and collection objects 3-7 to 3-14
and error handling 2-14 to 2-17

IN-8

and idling 4-90
core objects 2-3to 2-9
dialog box customization 3-22 to 3-27
direct-mode implementation 4-35 to 4-36
each page 2-64
finish a print job 2-65
finishing a page 2-67
forms 3-20
Gestalt selector 2-11, 2-47
halftone specifications 3-21 to 3-22, 4-15 to 4-16, 4-46
handling events 2-76
initializing the environment 2-11 to 2-12, 2-50
introduction 1-3to 1-31
job format mode 4-19 to 4-20, 4-35 to 4-36, 4-39
object summary 1-20 to 1-22
of QuickDraw picture data 4-18 to 4-19
page at a time 2-21 to 2-22
page formatting 3-15 to 3-22, 3-39 to 3-66
print loop 2-20 to 2-24
resources 1-13, 3-24, 3-70 to 3-73, 3-127 to 3-132, 4-93
to 4-94
setting up the environment 2-50 to 2-51
shape-by-shape 2-22 to 2-24, 2-66
starting a print job 2-63
support for Finder 2-39 to 2-42
supporting dialog boxes 2-17 to 2-19
terminating the environment 2-11 to 2-12, 2-51
printing errors
determining last 2-52
handling 2-14 to 2-17, 2-52 to 2-53
setting 2-53
printing extensions 1-9 to 1-10
Printing Manager, Macintosh
compatibility with QuickDraw GX 1-30, 2-75
printing documents created with 2-44 to 2-45
printing modes 4-19 to 4-20. See also job format modes
printing panel kinds 3-102
printing phases 1-3to 1-5
application 1-4
device communications 1-5
imaging 1-5
spooling phase 1-5
printing-related collections 1-18 to 1-19. See also job
collections; format collections; paper-type
collections
accessing 3-28 to 3-33, 3-117 to 3-118
changing format items 3-112
collection tag ID 3-8, 3-77
identifying items 3-7 to 3-8
item categories 3-9, 3-76
items in 3-7 to 3-14
item structures 3-8
replacing items 3-31 to 3-33
Printing Status dialog box 4-91

INDEX

print-job information
as job collection item 3-10
defined 3-78
Print One Copy menu item 3-29
print-panel information
as job collection item 3-12
defined 3-88
print record conversion 2-45, 2-75

Q

quality information
as job collection item 3-11
defined 3-83
QuickDraw GX Translator 2-45
QuickDraw picture data in print files 4-18 to 4-19

R

reading pages from print files 4-65
reference constants
as job object property 2-6
retrieving from job objects 4-23 to 4-24, 4-52
setting in job objects 4-23 to 4-24, 4-53
resources
for dialog boxes 1-13, 3-24, 3-70 to 3-73, 3-127 to
3-132
retrieving from message handler 3-116
resource types
'DITL" 3-71
gxExt endedD TLType 3-72 to 3-73, 3-128 to 3-132
gxPri nt Panel Type 3-24, 3-70, 3-127
gxSt at usType 4-93 to 4-94

S

scaling information
as format collection item 3-13
custom panel for 3-116
defined 3-91
shape list, as print file object property 4-10
shape objects, and printing 1-23
special mapping information
as job collection item 3-11, 3-12
defined 3-87
spooling phase of printing 1-5
standard mapping information
as job collection item 3-11
defined 3-86

'stat' resource type. See status resource
status message 4-90 to 4-91
status resource 4-93 to 4-94
status structure 4-42
style name table 4-37, 4-41
synonyms 4-11 to 4-19. See also tag types
cubic 4-17 to 4-18, 4-38, 4-48
dash 4-14, 4-46
defined 1-5, 4-11 to 4-12, 4-45 to 4-49
halftone 4-15 to 4-16, 4-46
line cap 4-14 to 4-15, 4-47
pattern 4-17, 4-47 to 4-48
PostScript 4-12 to 4-14, 4-45
QuickDraw picture 4-18 to 4-19, 4-49
using 4-38

T

tag objects
and printing 1-24
and synonyms 4-11 to 4-19
tag types
gxQubi cSynonynTag type 4-18, 4-48
gxDashSynonynTag type 4-14, 4-46
gxFor mat Hal ft oneTag type 4-15, 4-46
gxLi neCapSynonyniag type 4-14, 4-47
gxPat t er nSynonyniag type 4-17, 4-47
gxPenTabl eTag type 4-21, 4-43
gxPost Cont r ol Tag type 4-14, 4-45
gxPost Scri pt Tag type 4-45
gxQui ckDr awPi ct Tag type 4-18, 4-49
text job format mode 4-36 to 4-37, 4-40 to 4-41. See also
job format modes
total overrides of printing messages 1-13
translated-document information
as job collection item 3-12
defined 3-89
tray-mapping information
as job collection item 3-12
defined 3-88

U

unflattening
job objects 2-30 to 2-32, 2-58 to 2-60, 2-78
print-job flattening function 2-32
print-job from handle 2-30 to 2-31

units information
as paper-type collection item 3-14
defined 3-96

IN-9

INDEX

VvV, W

vector device pen tables 4-20 to 4-21, 4-43 to 4-44
vector pen table entry structure 4-21
vector pen table structure 4-21
vertical page-flip information
as format collection item 3-13
defined 3-93
view device mapping, for printers 4-8
view device objects
and printing 1-25
printer usage 4-8
view devices
as printer object property 4-7
counting for a printer 4-57
determining printer resolution 4-26 to 4-27
manipulating for printer objects 4-56, 4-92
retrieving for a printer 4-57
selecting for a printer 4-58
view port objects, and printing 1-24

X, Y, Z

"xdtl" resource type. See extended item list resource

IN-10

T HE A PP LE PUBLISH

N

G

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created

using Adobe Illustrator" and

Adobe Photoshop ™. PostScript ™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as

program listings, are set in Apple Courier.

WRITERS
Gary McCue and Laine Rapin

DEVELOPMENTAL EDITOR
George Truett

ILLUSTRATORS
Ruth Anderson, Mai-Ly Pham

PRODUCTION EDITOR
Pat Christenson, Alan Morgenegg

PROJECT MANAGER
Trish Eastman

LEAD WRITER
David Bice

LEAD EDITOR
Laurel Rezeau

ART DIRECTOR/COVER DESIGNER
Barbara Smyth

Special thanks to Nik Bhatt, Tom Dowdy,
Dennis Farnden, Dave Hersey,

Ken Hittleman, Dan Lipton, Harita Patel,
Amy Rosenstock, Ingrid VVoss, Ron Voss,
Sam Weiss, Chris Yerga

Acknowledgments to Betty Gee,
Lorraine Findlay, Gary Hillerson,
Marq Laube, Josephine Manuele,
Barbara Martinez, Diane Patterson,
Rich Pettijohn

