INSIDE MACINTOSH

QuickTime

[
rTw

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1993, Apple Computer, Inc.

All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
and MPW are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
QuickDraw, QuickTime, and System 7
are trademarks of Apple Computer, Inc.
Adobe lllustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.
America Online is a service mark of
Quantum Computer Services, Inc.
CompusServe is a registered service
mark of CompusServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Windows is a trademark of Microsoft
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62201-7
123456 789-MU-9796959493
First Printing, March 1993

Preface

Contents

Figures, Tables, and Listings xi

About This Book xv

Chapter 1

Format of a Typical Chapter XVi

Conventions Used in This Book XVii

Special Fonts Xvii
Types of Notes Xvii
Development Environment XVii

Introduction to QuickTime

1-1

Chapter 2

QuickTime Concepts 1-3
Movies and Media Data Structures
Components 1-3
Image Compression 1-4
Time 1-4

The QuickTime Architecture 1-5
The Movie Toolbox 1-6
The Image Compression Manager
The Component Manager 1-6
QuickTime Components 1-7

Using QuickTime 1-8
Playing Movies 1-8

Creating and Editing Movies 1-10
1-12
1-13

Movie-Editing Applications
Movie-Creating Applications

Movie Toolbox 21

1-3

1-6

Introduction to Movies 2-5

Time and the Movie Toolbox 2-5
Time Coordinate Systems 2-6

Time Bases 2-8
Movies 2-9
Tracks 2-12
Media Structures 2-13
About Movies 2-14
Movie Characteristics 2-15
Track Characteristics 2-17

Media Characteristics 2-18
Spatial Properties 2-20
The Transformation Matrix 2-26
Audio Properties 2-29
Sound Playback 2-29
Adding Sound to Video 2-30
Sound Data Formats 2-31
Data Interchange 2-32
Movies on the Clipboard 2-32
Movies in Files 2-32
Using the Movie Toolbox 2-32
Determining Whether the Movie Toolbox Is Installed 2-33
Getting Ready to Work With Movies 2-35
Getting a Movie From a File 2-35
Playing Movies With a Movie Controller 2-38
Playing a Movie 2-41
Movies and the Scrap 2-45
Creating a Movie 2-45
A Sample Program for Creating a Movie 2-46
A Sample Function for Creating and Opening a Movie File 2-47
A Sample Function for Creating a Video Track in a New Movie 2-48
A Sample Function for Adding Video Samples to a Media 2-50
A Sample Function for Creating Video Data for a Movie 2-52
A Sample Function for Creating a Sound Track 2-52
A Sample Function for Creating a Sound Description Structure 2-55
Parsing a Sound Resource 2-59
Saving Movies in Movie Files 2-61
Using Movies in Your Event Loop 2-62
The Movie Toolbox and System 6 2-63
The Alias Manager 2-64
The File Manager 2-64
Previewing Files 2-65
Previewing Files in System 6 Using Standard File Reply
Structures 2-65
Customizing Your Interface in System 6 2-67
Previewing Files in System 7 Using Standard File Reply
Structures 2-68
Customizing Your Interface in System 7 2-70
Using Application-Defined Functions 2-71
Working With Movie Spatial Characteristics 2-73
Movie Toolbox Reference 2-76
Data Types 2-76
Movie Identifiers 2-77
The Time Structure 2-77
The Fixed-Point and Fixed-Rectangle Structures 2-78
The Sound Description Structure 2-79

Functions for Getting and Playing Movies 2-81

Initializing the Movie Toolbox 2-82

Error Functions 2-84

Movie Functions 2-87

Saving Movies 2-100

Controlling Movie Playback 2-111

Movie Posters and Movie Previews 2-114

Movies and Your Event Loop 2-124

Preferred Movie Settings 2-130

Enhancing Movie Playback Performance 2-134

Disabling Movies and Tracks 2-145

Generating Pictures From Movies 2-148

Creating Tracks and Media Structures 2-150

Working With Progress and Cover Functions 2-155
Functions That Modify Movie Properties 2-157

Working With Movie Spatial Characteristics 2-158

Working With Sound Volume 2-181

Working with Movie Time 2-184

Working With Track Time 2-191

Working With Media Time 2-194

Finding Interesting Times 2-196

Locating a Movie’s Tracks and Media Structures 2-202

Working With Alternate Tracks 2-207

Working With Data References 2-215

Determining Movie Creation and Modification Time 2-219

Working With Media Samples 2-222

Working With Movie User Data 2-230
Functions for Editing Movies 2-242

Editing Movies 2-243

Undo for Movies 2-254

Low-Level Movie-Editing Functions 2-257

Editing Tracks 2-262

Undo for Tracks 2-268

Adding Samples to Media Structures 2-271
Media Functions 2-281

Selecting Media Handlers 2-282

Video Media Handler Functions 2-287

Sound Media Handler Functions 2-288

Text Media Handler Functions 2-290
Functions for Creating File Previews 2-301
Functions for Displaying File Previews 2-304
Time Base Functions 2-315

Creating and Disposing of Time Bases 2-315

Working With Time Base Values 2-322

Working With Times 2-332

Time Base Callback Functions 2-335
Matrix Functions 2-341

Application-Defined Functions 2-354
Progress Functions 2-354
Cover Functions 2-357
Error-Notification Functions 2-358
Movie Callout Functions 2-359
File Filter Functions 2-360
Custom Dialog Functions 2-360
Modal-Dialog Filter Functions 2-362
Standard File Activation Functions 2-363
Callback Event Functions 2-364
Text Functions 2-364

Summary of the Movie Toolbox 2-366

C Summary 2-366
Constants 2-366
Data Types 2-369
Functions for Getting and Playing Movies 2-378
Functions That Modify Movie Properties 2-383
Functions for Editing Movies 2-389
Media Functions 2-392
Functions for Creating File Previews 2-394
Functions for Displaying File Previews 2-394
Time Base Functions 2-395
Matrix Functions 2-397
Application-Defined Functions 2-398

Pascal Summary 2-399
Constants 2-399
Data Types 2-404
Routines for Getting and Playing Movies 2-408
Routines That Modify Movie Properties 2-413
Routines for Editing Movies 2-418
Media Routines 2-421
Routines for Creating File Previews 2-423
Routines for Displaying File Previews 2-423
Time Base Routines 2-423
Matrix Routines 2-425
Application-Defined Routines 2-426

Result Codes 2-427

Chapter 3 Image Compression Manager — 3-1

Introduction to the Image Compression Manager 3-5
Data That Is Suitable for Compression 3-6
Storing Images 3-8
About Image Compression 3-8
Image-Compression Characteristics 3-8
Compression Ratio 3-8

Vi

Compression Speed 3-9
Image Quality 3-9
Compressors Supplied by Apple 3-9
The Photo Compressor 3-10
The Video Compressor 3-10
The Compact Video Compressor 3-11
The Animation Compressor 3-11
The Graphics Compressor 3-11
The Raw Compressor 3-12
Types of Images Suitable for Different Compressors 3-13
Using the Image Compression Manager 3-24
Getting Information About Compressors and Compressed Data 3-24
Working With Pictures 3-24
Compressing Images 3-27
Decompressing Images 3-30
Compressing Sequences 3-31
Decompressing Sequences 3-33
Decompressing Still Images From a Sequence 3-34
Using Screen Buffers and Image Buffers 3-34
A Sample Program for Compressing and Decompressing a Sequence of
Images 3-35
A Sample Function for Saving a Sequence of Images to a Disk
File 3-36
A Sample Function for Creating, Compressing, and Drawing a Sequence
of Images 3-38
A Sample Function for Decompressing and Playing Back a Sequence
From a Disk File 3-42
Spooling Compressed Data 3-44
Banding and Extending Images 3-45
Defining Key Frame Rates 3-47
Fast Dithering 3-47
Understanding Compressor Components 3-48
Image Compression Manager Reference 3-49
Data Types 3-49
The Image Description Structure 3-49
The Compressor Information Structure 3-52
The Compressor Name Structure 3-55
The Compressor Name List Structure 3-56
Compression Quality Constants 3-57
Image Compression Manager Function Control Flags 3-58
Image Compression Manager Functions 3-61
Getting Information About Compressor Components 3-62
Getting Information About Compressed Data 3-67
Working With Images 3-73
Working With Pictures and PICT Files 3-88
Making Thumbnail Pictures 3-103
Working With Sequences 3-106

Vii

Chapter 4

Changing Sequence-Compression Parameters 3-120
Constraining Compressed Data 3-127
Changing Sequence-Decompression Parameters 3-129
Working With the StdPix Function 3-137
Aligning Windows 3-142
Working With Graphics Devices and Graphics Worlds 3-147
Application-Defined Functions 3-148
Data-Loading Functions 3-149
Data-Unloading Functions 3-150
Progress Functions 3-152
Completion Functions 3-154
Alignment Functions 3-155
Summary of the Image Compression Manager 3-157
C Summary 3-157
Constants 3-157
Data Types 3-159
Image Compression Manager Functions 3-163
Application-Defined Functions 3-169
Pascal Summary 3-170
Constants 3-170
Data Types 3-172
Image Compression Manager Routines 3-175
Application-Defined Routines 3-181
Result Codes 3-182

Movie Resource Formats 41

viii

Introduction to Movie Resources 4-3
Storing Movies in Files 4-4
Atoms 4-5
Atom Types 4-6
The Layout of a QuickTime Atom 4-7
Overview of the Movie Resource Atom 4-8
Movie Atoms 4-10
Movie Header Atoms 4-11
Track Atoms 4-13
Track Header Atoms 4-14
Media Atoms 4-16
Media Header Atoms 4-17
Handler Reference Atoms 4-18
User-Defined Data Atoms 4-19
Clipping Atoms 4-22
Clipping Region Atoms 4-22
Track Matte Atoms 4-23
Compressed Matte Atoms 4-23
Edit Atoms 4-24

Edit List Atoms 4-25
Media Information Atoms 4-26
Video Media Information Atoms 4-26
Video Media Information Header Atoms 4-27
Sound Media Information Atoms 4-28
Sound Media Information Header Atoms 4-29
Data Information Atoms 4-30
Data Reference Atoms 4-32
An Introduction to Samples 4-32
Sample Table Atoms 4-33
Sample Description Atoms 4-35
Time-to-Sample Atoms 4-36
Sync Sample Atoms 4-38
Sample-to-Chunk Atoms 4-39
Sample Size Atoms 4-41
Chunk Offset Atoms 4-42
Shadow Sync Atoms 4-44
Using Media Information Atoms 4-45
Finding a Sample 4-46
Finding a Key Frame 4-46

Glossary cL-1

Index IN-1

Figures, Tables, and Listings

Chapter 1 Introduction to QuickTime 1-1

Figure 1-1 QuickTime playing a movie 1-5

Figure 1-2 A QuickTime movie with Apple’s movie controller 1-8

Figure 1-3 A QuickTime movie with an active selection rectangle 1-9

Figure 1-4 Capturing and playing back movies 1-11

Figure 1-5 Apple’s movie controller with a portion of the movie selected for
editing 1-12

Figure 1-6 A monitor window 1-13

Figure 1-7 Compression settings 1-14

Chapter 2 Movie Toolbox 2-1

Figure 2-1 Time scales 2-7

Figure 2-2 A time coordinate system and a time base 2-8

Figure 2-3 A movie’s time coordinate system 2-9

Figure 2-4 A movie containing several tracks 2-10

Figure 2-5 A movie, its preview, and its poster 2-11

Figure 2-6 A track in a movie 2-12

Figure 2-7 A track and its media 2-13

Figure 2-8 A media and its data 2-14

Figure 2-9 Movie characteristics 2-15

Figure 2-10 Track characteristics 2-17

Figure 2-11 Media characteristics 2-19

Figure 2-12 Spatial processing of a movie and its tracks 2-21

Figure 2-13 A track rectangle 2-22

Figure 2-14 Clipping a track’s image 2-23

Figure 2-15 A track transformed into a movie coordinate system 2-23

Figure 2-16 Clipping a movie’s image 2-24

Figure 2-17 A movie transformed to the display coordinate system 2-25

Figure 2-18 Clipping a movie for final display 2-25

Figure 2-19 A point transformed by a 3-by-3 matrix 2-26

Figure 2-20 The identity matrix 2-26

Figure 2-21 A matrix that describes a translation operation 2-27

Figure 2-22 A matrix that describes a scaling operation 2-27

Figure 2-23 A matrix that describes a rotation operation 2-28

Figure 2-24 A matrix that describes a scaling and translation operation 2-28

Figure 2-25 An alert box that tells the user that QuickTime is
unavailable 2-34

Figure 2-26 A dialog box used when searching for a movie’'s data 2-36

Figure 2-27 A dialog box that informs the user the movie file cannot be
found 2-37

Figure 2-28 A dialog box that allows the user to specify a movie
file to try 2-37

Figure 2-29 An alert for an invalid movie file 2-38

Figure 2-30 An alert when QuickTime cannot be found 2-38

Xi

Chapter 3

Xil

Figure 2-31
Figure 2-32
Figure 2-33

Figure 2-34
Figure 2-35
Figure 2-36
Figure 2-37
Figure 2-38

Figure 2-39
Figure 2-40
Figure 2-41

Figure 2-42
Figure 2-43
Figure 2-44

Figure 2-45
Table 2-1

Listing 2-1
Listing 2-2
Listing 2-3
Listing 2-4
Listing 2-5
Listing 2-6
Listing 2-7
Listing 2-8
Listing 2-9
Listing 2-10
Listing 2-11
Listing 2-12
Listing 2-13
Listing 2-14
Listing 2-15

A movie controller playing a movie 2-39
A sample movie Save As dialog box 2-62

SFGet Fi | ePr evi ewor SFPCGet Fi | ePr evi ewdialog box without
preview 2-66

SFGet Fi | ePr evi ewor SFPCGet Fi | ePr evi ewdialog box with
preview 2-66

Standard preview dialog box for SFGet Fi | ePr evi ewand
SFPGet Fi | ePrevi ew 2-67

St andar dGet Fi | ePr evi ewor Qust onGet Fi | ePr evi ewdialog box
without preview 2-68

St andar dGet Fi | ePr evi ewor Qust onGet Fi | ePr evi ewdialog box
with preview 2-69

Dialog box showing automatic file-to-movie conversion

option 2-69

Dialog box for saving a movie converted from a file 2-70
Standard preview dialog box for Qust onGet Fi | ePreview — 2-71
Dialog box showing automatic file-to-movie conversion

option 2-304

Dialog box for saving a movie converted from a file 2-305
Transforming an image with the Rect Mat ri x function 2-351

Matrix created as a result of calling the Rect Matri x
function 2-352

Transforming an image with the MapMat r i x function 2-353
Common movie time scales 2-6

Using the Gestalt Manager with the Movie Toolbox 2-34
Getting a movie from a file 2-35

Playing a movie using a movie controller component 2-39
Playing a movie 2-42

Creating a movie: The main program 2-46

Creating and opening a movie file 2-47

Creating a video track 2-49

Adding video samples to a media 2-50

Creating video data 2-52

Creating a sound track 2-53

Creating a sound description 2-55

Parsing a sound resource 2-59

Handling movie update events 2-63

Two sample movie cover functions 2-72

Creating a track matte 2-73

Image Compression Manager — 3-1

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

Figure 3-6

24-bit photographic image 3-13

24-bit synthetic image 3-14

8-bit graphic image 3-15

8-bit photographic image 3-16

Compressor performance for a 921 KB, 24-bit, photographic
image 3-17

Compressor performance for a 502 KB, 24-bit, synthetic
image 3-19

Chapter 4

Figure 3-7
Figure 3-8

Figure 3-9
Figure 3-10

Table 3-1
Table 3-2

Table 3-3

Listing 3-1
Listing 3-2

Listing 3-3
Listing 3-4

Listing 3-5

Compressor performance for a 30 KB, 8-bit, graphic image 3-21
Compressor performance for a 302 KB, 8-bit, dithered,
photographic image 3-23

Image bands and their measurements 3-46

The operation of the Dr awTr i nmredPi ct ur e function 3-100

Fields of the PICT opcode for compressed QuickTime
images 3-26

Fields of the PICT opcode for uncompressed QuickTime
images 3-27

Compressor type descriptors 3-64

Compressing and decompressing an image 3-28

Compressing and decompressing a sequence of images: The main
program 3-35

Compressing and decompressing a sequence of images: Saving a
sequence to a disk file 3-36

Compressing and decompressing a sequence of images: Drawing
one frame with QuickDraw 3-39

Compressing and decompressing a sequence of images:
Decompressing and playing back a sequence from a disk

file 3-42

Movie Resource Formats 4-1

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23
Figure 4-24
Figure 4-25
Figure 4-26

Movie files and single-fork movie files 4-4

The structure of a single-fork movie file 4-5

A sample QuickTime atom 4-7

Sample organization of a one-track video movie 4-9
The layout of a movie atom 4-10

The layout of a movie header atom 4-11

The layout of a track atom 4-13

The layout of a track header atom 4-14

The layout of a media atom 4-16

The layout of a media header atom 4-17

The layout of a handler reference atom 4-18

The layout of a user-defined data atom 4-20

The layout of a clipping atom 4-22

The layout of a track matte atom 4-23

The layout of an edit atom 4-24

The layout of an edit list table 4-25

The layout of a media information atom for video 4-26
The layout of a media information header atom for video 4-27
The layout of a media information atom for sound 4-28
The layout of a sound media information header atom 4-29
The layout of a data information atom 4-31

Samples in a media 4-33

The layout of a sample table atom 4-34

The layout of a sample description atom 4-35

The layout of a time-to-sample atom 4-36

The layout of a time-to-sample table 4-37

xiil

Figure 4-27 An example of a time-to-sample table 4-37

Figure 4-28 The layout of a sync sample atom 4-38
Figure 4-29 The layout of a sync sample table 4-39
Figure 4-30 The layout of a sample-to-chunk atom 4-39
Figure 4-31 The layout of a sample-to-chunk table 4-40
Figure 4-32 An example of a sample-to-chunk table 4-40
Figure 4-33 The layout of a sample size atom 4-41
Figure 4-34 An example of a sample size table 4-42
Figure 4-35 The layout of a chunk offset atom 4-43
Figure 4-36 An example of a chunk offset table 4-44
Figure 4-37 The layout of a shadow sync atom 4-44
Figure 4-38 The layout of a shadow sync table 4-45
Table 4-1 Apple-defined atom types 4-6

Xiv

P REFACE

About This Book

This book describes QuickTime, an extension of Macintosh system software
that enables you to integrate time-based data into mainstream Macintosh
applications. This book also provides a complete technical reference to the
Movie Toolbox, the Image Compression Manager, and the movie resources.

Time-based data types contain data that can be stored and retrieved as values
over time. Examples include sound, video, animation, data produced by
scientific instruments, and financial results. Time-based data can now be
manipulated in the same ways as other standard types of data in the
Macintosh environment. In QuickTime, a set of time-based data is referred to
as a movie. This book shows in detail how your application can allow users to
display, edit, cut, copy, and paste movies and movie data in the same way that
they can work with text and graphic elements today.

If you want your application to be able to handle time-based data, you should
first read the chapter “Introduction to QuickTime” for an introduction to the
QuickTime concepts, architecture, managers, and components.

If you want your application to be able to paste and run QuickTime movies,
to edit them, or to create new movies, you should read the chapter “Movie
Toolbox.” Your application may only need to paste a movie from the
Clipboard and play it—for example, a word processor might paste a movie as
it does a picture, and the user might use a movie controller to play the movie.
A more media-intensive application might add the ability to edit the movie
after it is pasted—for example, the user might cut a segment of the movie,
add a video segment, or add a different sound track. Full “mediagenic”
applications could create a movie from disparate sources such as CD tracks,
video clips, sounds, animation from graphics programs, or still images.

If you want your application to use the facilities of QuickTime to compress
and decompress still images, you should read the chapter “Image
Compression Manager.” These single images are not QuickTime movies—
they do not contain time-based data. Nevertheless, you can use the image
compression and decompression facilities of QuickTime for images that are
not stored in movies. The chapter describes the Image Compression Manager,
including compression and decompression algorithms, and the steps involved
in compressing and decompressing single images and sequences of images.

If you are going to play movies or compress images, you should be familiar
with QuickDraw and Color QuickDraw, described in Inside Macintosh:
Imaging. If you are going to create QuickTime movies, you should also be
familiar with the Sound Manager, described in Inside Macintosh: More
Macintosh Toolbox, and with the human interface guidelines as described

in Macintosh Human Interface Guidelines. If you are going to use QuickTime

XV

P REFACE

components, you should be familiar with the Component Manager as
described in Inside Macintosh: More Macintosh Toolbox.

If your application imports or exports movies to other platforms, you should
read the chapter “Movie Resource Formats.” It presents details of the movie
file format used by QuickTime. Most applications do not need this
information.

The companion to this book, Inside Macintosh: QuickTime Components, includes
descriptions of the Apple-supplied QuickTime components: clock
components, compressor components, standard image-compression

dialog components, movie controller components, sequence grabber
components, sequence grabber channel components, sequence grabber

panel components, video digitizer components, media data-exchange
components, preview components, and media handler components.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the
chapter “Image Compression Manager” contains these sections:

n “Introduction to the Image Compression Manager.” This section presents a
general introduction to image compression.

n “About Image Compression.” This section provides an overview of the
features provided by the Image Compression Manager.

n “Using the Image Compression Manager.” This section describes the tasks
you can accomplish using the Image Compression Manager. It describes
how to use the most common functions, gives related user interface
information, provides code samples, and supplies additional information.

n “Image Compression Manager Reference.” This section provides a
complete reference to the Image Compression Manager by describing the
constants, data structures, and functions that it uses. Each function
description also follows a standard format, which gives the function
declaration and description of every parameter of the function. Some
function descriptions also give additional descriptive information, such as
assembly-language information or result codes.

n “Summary of the Image Compression Manager.” This section provides the
Image Compression Manager’s C interface, as well as the Pascal interface,
for the constants, data structures, functions, and result codes associated
with the Image Compression Manager.

XVi

P REFACE

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain types
of information, such as parameter blocks, use special formats so that you can
scan them quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and functions are shown in Courier (this is
Couri er).

Words that appear in boldface are key terms or concepts and are defined in
the glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-3.) u

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 2-84.) s

S WARNING
Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 2-59.) s

Development Environment

The system software functions described in this book are available using C or
Pascal interfaces. How you access these functions depends on the
development environment you are using. This book shows system software
functions in their C interface using the Macintosh Programmer’s Workshop
(MPW) version 3.2.

Xvili

P REFACE

All code listings in this book are shown in C. They show methods of using
various functions and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and, in most cases, tested. However,
Apple Computer, Inc., does not intend that you use these code samples in
your application.

In a few cases, the functions documented in one chapter may be listed in the
MPW interface files associated with another manager. An example is the
MakeFi | ePr evi ewfunction, which is documented for conceptual
consistency in the chapter “Movie Toolbox.” This function does not appear in
the Movi es. h MPW interface file; rather, it is listed in the

I mageConpr essi on. h MPW interface file. When this occurs, the disparity is
noted in the function descriptions.

APDA, Apple’s source for developer tools, offers worldwide access to a broad
range of programming products, resources, and information for anyone
developing on Apple platforms. You’ll find the most current versions of
Apple and third-party development tools, debuggers, compilers, languages,
and technical references for all Apple platforms. To establish an APDA
account, obtain additional ordering information, or find out about site
licensing and developer training programs, contact

APDA

Apple Computer, Inc.

P. O.Box 319

Buffalo, NY 14207-0319

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax: 716-871-6511

AppleLink: APDA

America Online: APDA

CompuServe: 76666,2405

Internet: APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other
technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014-6299

Xviil

CHAPTER 1

Introduction to QuickTime

Contents

QuickTime Concepts 1-3
Movies and Media Data Structures
Components 1-3
Image Compression 1-4
Time 1-4
The QuickTime Architecture 1-5
The Movie Toolbox 1-6
The Image Compression Manager
The Component Manager 1-6
QuickTime Components 1-7
Using QuickTime 1-8
Playing Movies 1-8

Creating and Editing Movies 1-10
1-12
1-13

Movie-Editing Applications
Movie-Creating Applications

Contents

1-3

1-6

1-1

CHAPTER 1

Introduction to QuickTime

This chapter introduces the concepts underlying QuickTime, a set of functions and data
structures that you can use in your application to control time-based data. In QuickTime,
a set of time-based data is referred to as a movie. Your application can allow users to
display, edit, cut, copy, and paste movies and movie data in the same way that they can
work with text and graphic elements today.

This chapter also introduces the QuickTime architecture, the managers, and the
components that constitute QuickTime. It will help you decide what level of QuickTime
support your application may need to incorporate.

QuickTime Concepts

To use QuickTime, you need to understand some concepts that are new to most
developers of Macintosh applications: movies, media data structures, components,
image compression, and time.

Movies and Media Data Structures

A traditional movie, whether stored on film, laser disk, or tape, is a continuous stream of
data. A QuickTime movie can be similarly constructed, but it need not be: a QuickTime
movie can consist of data in sequences from different forms, such as analog video and
CD-ROM. The movie is not the medium; it is the organizing principle.

A QuickTime movie may contain several tracks. Each track refers to a media that
contains references to the movie data, which may be stored as images or sound on hard
disks, floppy disks, compact discs, or other devices. The data references constitute the
track’s media. Each track has a single media data structure.

Note

Throughout this book, the term media is used to refer to a Movie Toolbox
data structure that contains information that describes the data for a
track in a movie. Note that a media does not contain its data; rather, a
media contains a reference to its data. If more than one media is being
discussed, the term media structures is used. u

Your application need never work directly with the movie data, as Movie Toolbox
functions allow you to manage movie content and characteristics. See the chapter
“Movie Toolbox™ later in this book for a comprehensive reference to the Movie Toolbox.

Components

QuickTime provides components so that every application doesn’t need to know about
all possible types of audio, visual, and storage devices. Acomponent is a code resource
that is registered by the Component Manager. The component’s code can be available as
a systemwide resource or in a resource that is local to a particular application. Each
QuickTime component supports a defined set of features and presents a specified

QuickTime Concepts 1-3

1-4

CHAPTER 1

Introduction to QuickTime

functional interface to its client applications. Applications are thereby isolated from the
details of implementing and managing a given technology. For example, you could
create a component that supports a certain data encryption algorithm. Applications
could then use your algorithm by connecting to your component through the
Component Manager, rather than by implementing the algorithm over again. For
comprehensive reference to the QuickTime components supplied by Apple, see the book
Inside Macintosh: QuickTime Components.

Image Compression

Image data requires a large amount of storage space. Storing a single 640-by-480

pixel image in 32-bit color can require as much as 1.2 MB. Similarly, sequences of images,
like those that might be contained in a QuickTime movie, demand substantially more
storage than single images. This is true even for sequences that consist of fairly small
images, because the movie consists of a large number of those images. Consequently,
minimizing the storage requirements for image data is an important consideration for
any application that works with images or sequences of images.

The Image Compression Manager provides your application with an interface for
compressing and decompressing images and sequences of images that is independent of
devices and algorithms. See the chapter “Image Compression Manager” later in this
book for details.

Time

Image compression is difficult but worthwhile—images, not to mention long sequences
of images, take a lot of memory. Time management in QuickTime is equally essential.
You must understand time management to understand the QuickTime functions and
data structures.

Seemingly simple issues prove interesting—for example, determining the proper length
(duration) of a movie. For many movies, the proper duration is the time required to play
them in “real” time—that is, a rate in which human actions appear natural, and objects
fall to earth accelerating at 32 feet per second per second. But what is the length of a
movie that shows spreadsheet data charted over time, or a map of the earth that
recapitulates continental drift? Add to this the differing clock speeds of different
platforms, and the need to decompress in real time, and time proves, as ever, complex.

To manage these situations, QuickTime defines time coordinate systems, which anchor
movies and their media data structures to a common temporal reality, the second. A time
coordinate system contains a time scale that provides the translation between real time
and the time in a movie. Time scales are marked in time units. The number of units that
pass per second quantifies the scale—that is, a time scale of 26 means that 26 units pass
per second and each time unit is 1/26 of a second. A time coordinate system also
contains a duration, which is the length of a movie or a media in the number of time
units it contains. Particular points in a movie can be identified by a time value, the
number of time units elapsed to that point.

QuickTime Concepts

CHAPTER 1

Introduction to QuickTime

Each media has its own time coordinate system, which starts at time 0. The Movie
Toolbox maps each type of media data from the movie’s time coordinate system to the
media’s time coordinate system.

Time bases and time coordinate systems are described in the chapter “Movie Toolbox™
later in this book.

The QuickTime Architecture

QuickTime comprises two managers: the Movie Toolbox and the Image Compression
Manager. QuickTime also relies on the Component Manager, as well as a set of
predefined components. Figure 1-1 shows the relationships of these managers and an
application that is playing a movie.

Figure 1-1 QuickTime playing a movie

e
Ayt
uncions:

Image
Compresslon
hBnager

] hode ToolDos

QulckDiraw

EI)

EhEhEhL

AAAAAAAAAATAATAATAATAATAATAATAATAATAAT AT AT AT AAAAAI A A A A AT AT A,

The following sections discuss these managers in more detail.

The QuickTime Architecture 1-5

1-6

CHAPTER 1

Introduction to QuickTime

The Movie Toolbox

Your application gains access to the capabilities of QuickTime by calling functions in the
Movie Toolbox. The Movie Toolbox allows you to store, retrieve, and manipulate
time-based data that is stored in QuickTime movies. A single movie may contain several
types of data. For example, a movie that contains video information might include both
video data and the sound data that accompanies the video.

The Movie Toolbox also provides functions for editing movies. For example, there are
editing functions for shortening a movie by removing portions of the video and sound
tracks, and there are functions for extending it with the addition of new data from other
QuickTime movies.

The Movie Toolbox is described in the chapter “Movie Toolbox™ later in this book. That
chapter includes code samples that show how to play movies.

The Image Compression Manager

The Image Compression Manager comprises a set of functions that compress and
decompress images or sequences of graphic images.

The Image Compression Manager provides a device-independent and
driver-independent means of compressing and decompressing images and sequences
of images. It also contains a simple interface for implementing software and hardware
image-compression algorithms. It provides system integration functions for storing
compressed images as part of PICT files, and it offers the ability to automatically
decompress compressed PICT files on any QuickTime-capable Macintosh computer.

In most cases, applications use the Image Compression Manager indirectly, by calling
Movie Toolbox functions or by displaying a compressed picture. However, if your
application compresses images or makes movies with compressed images, you will call
Image Compression Manager functions.

The Image Compression Manager is described in the chapter “Image Compression
Manager” later in this book. This chapter also includes code samples that show how to
compress images or make movies with compressed images.

The Component Manager

Applications gain access to components by calling the Component Manager. The
Component Manager allows you to define and register types of components and
communicate with components using a standard interface. A component is a code
resource that is registered by the Component Manager. The component’s code can be
stored in a systemwide resource or in a resource that is local to a particular application.

The QuickTime Architecture

CHAPTER 1

Introduction to QuickTime

Once an application has connected to a component, it calls that component directly. If
you create your own component class, you define the function-level interface for the
component type that you have defined, and all components of that type must support
the interface and adhere to those definitions. In this manner, an application can freely
choose among components of a given type with absolute confidence that each will work.

The Component Manager is described in Inside Macintosh: More Macintosh Toolbox.

QuickTime Components

QuickTime includes several components that are provided by Apple. These components
provide essential services to your application and to the managers that make up the
QuickTime architecture. The following Apple-defined components are among those used
by QuickTime:

n movie controller components, which allow applications to play movies using a
standard user interface

n standard image-compression dialog components, which allow the user to specify the
parameters for a compression operation by supplying a dialog box or a similar
mechanism

n image compressor components, which compress and decompress image data

n sequence grabber components, which allow applications to preview and record video
and sound data as QuickTime movies

n video digitizer components, which allow applications to control video digitization by
an external device

n media data-exchange components, which allow applications to move various types of
data in and out of a QuickTime movie

n derived media handler components, which allow QuickTime to support new types of
data in QuickTime movies

n clock components, which provide timing services defined for QuickTime applications

n preview components, which are used by the Movie Toolbox’s standard file preview
functions to display and create visual previews for files

n sequence grabber components, which allow applications to obtain digitized data from
sources that are external to a Macintosh computer

n sequence grabber channel components, which manipulate captured data for
a sequence grabber component

n sequence grabber panel components, which allow sequence grabber components to
obtain configuration information from the user for a particular sequence grabber
channel component

These components and the interfaces they support are discussed in Inside Macintosh:
QuickTime Components.

The QuickTime Architecture 1-7

CHAPTER 1

Introduction to QuickTime

Using QuickTime

Applications that use QuickTime fall into two categories: applications that can play
existing movies, and applications that can create and edit movies. The following sections
describe how applications of both types use QuickTime.

Playing Movies

QuickTime provides a complete set of tools that allow you to play movies in your
application. You can also allow the user to position, resize, copy, and paste movies
within the documents that your application creates and manipulates.

The Movie Toolbox provides functions that enable you to get a movie into your
application; you can either get a movie from a file or from the scrap. Positioning the
movie within a document varies with the application. For example, in a text document
a movie might be repositioned with tab settings, whereas in a paint document the user
might position the movie by selecting and dragging the movie rectangle.

Once you have loaded the movie into your document, you can allow the user to play it
by calling the movie controller component provided by Apple. Figure 1-2 shows a
sample movie controller.

Figure 1-2 A QuickTime movie with Apple’s movie controller

1-8

SO=————— Pencil Test

Using QuickTime

CHAPTER 1

Introduction to QuickTime

Resizing the movie’s rectangle is the same as resizing PICT rectangles within a text or
paint document. When the user selects the movie, a selection rectangle appears with
resizing handles at the corners of the rectangle, like those shown in Figure 1-3. The user
can drag the handles to resize the movie rectangle.

Figure 1-3 A QuickTime movie with an active selection rectangle

Changing the size of a movie window may affect the performance of the video during
playback as well as its appearance on the display.

Using QuickTime 1-9

1-10

CHAPTER 1

Introduction to QuickTime

Creating and Editing Movies

More sophisticated applications allow the user to create new movies and edit existing
ones. An example of a movie-creating application is an electronic mail system that
supports the creation and transmission of video memos. Other examples are an
application that might be included in a video digitizer card package, an architectural
walk-through program, or an application that creates animation sequences that can be
saved as QuickTime movies.

Movie-creating applications fall into two categories:

n those that use a sequence grabber component and the compression functions of the
Image Compression Manager to obtain movie data

n those that make a movie and then use the Movie Toolbox and the decompression
functions of the Image Compression Manager to work with the movie data

If you are creating an application that creates or edits movies, you are going to use more
of the capabilities of the Movie Toolbox and the other managers that make up
QuickTime. Figure 1-4 shows some of these other elements in an expanded view of

the QuickTime architecture. For comprehensive information on the video digitizer
component, the sequence grabber channel component, the sequence grabber component,
and video and media handlers, see Inside Macintosh: QuickTime Components.

Using QuickTime

CHAPTER 1

Introduction to QuickTime

Figure 1-4

Capturing and playing back movies

Sound
Inpui
orler

=ound
L en e
gabber

chann &l

iden
dgizer
M ponent

uiden
e EncE
Jabber

channel

S en o
qgrabber
Componen

f-.ﬂ:l'l.lE"u @

Tracks

Using QuickTime

M e Com presshon
Lanager
COom presslon unciions

[

Image
NI s 5.0

COMm ponent:

1-11

CHAPTER 1

Introduction to QuickTime

Movie-Editing Applications

The Movie Toolbox includes functions that help your application provide movie-editing
capabilities to the user. The easiest way to allow the user to edit a movie is to use the
movie controller component provided by Apple.

Alternatively, you can use QuickTime’s editing functions to remove, copy, replace,
rearrange, or extend the content of movies. The user interface for editing is up to you, as
long as you observe the guidelines suggested by Apple (see the chapter “Movie Toolbox”
later in this book for more information on human interface guidelines for movie
applications).

To give a user some simple editing tools, you could use the movie controller
component to create a movie-editing window similar to the one shown in Figure 1-5.

Figure 1-5 Apple’s movie controller with a portion of the movie selected for editing

1-12

D panej] Tesl SEEma——

This window gives the user access to various viewing and editing controls. These
controls include a real-time position controller that allows random access over the length
of the movie, single-step controls in both forward and reverse directions, visual feedback
for selecting a sequence of frames in the movie, and a rectangular marker highlighting
the currently displayed frame.

Using QuickTime

CHAPTER 1

Introduction to QuickTime

Movie-Creating Applications

Applications that create QuickTime movies can capture the movie’s data from an
external source and store it in a media. As with any movie, this data may be digitized
video, digitized sound, computer animation, MIDI (Musical Instrument Digital
Interface) data, external data such as an audio CD or videotape, and so on. Each type of
data in a movie has an associated movie track. Movie tracks contain an edit list that
sequences the data stored in the media.

The Movie Toolbox supplies functions that allow you to modify the edit list of the tracks
in a movie to rearrange, remove, and extend the playback display sequence of the data in
the movie. You can use these functions to create an application that captures external
video and creates movies.

Figure 1-6 shows a sample user interface for a video-capture application. Before the user
digitizes the data, the application displays an editing window (called a monitor window)
to help preview the information prior to capturing it.

Figure 1-6 A monitor window

Monitor

Using QuickTime 1-13

CHAPTER 1

Introduction to QuickTime

Figure 1-7 shows a dialog box that this application provides to allow the user to select
compression methods for video using the standard image-compression dialog
component.

Figure 1-7 Compression settings

1-14

Compression Settings
--COmpressor

| Apple Animation

| 256 Grays
--Quality
Lealust Lolw Nor:'na'l Hi:;h Mozt
--Motion

Frames per Second: IEI

[]1Key frame every I:I framels)

[Cancel][[oK]]

The remainder of this book provides the technical reference you need to develop an
application that lets users display, edit, cut, copy, and paste movies and movie data in
the same way that they currently manipulate text and graphic elements.

Chapter 2 discusses the Movie Toolbox, the set of functions with which you can create
and modify movies and movie files.

Chapter 3 describes the Image Compression Manager, with which your application can
compress and decompress still images and video sequences.

Chapter 4 describes the format and content of movie resources and movie files.
This chapter is of interest only to developers of QuickTime components.

The book concludes with a glossary and an index.

Using QuickTime

CHAPTER 2

Movie Toolbox

Contents

Introduction to Movies 2-5
Time and the Movie Toolbox 2-5
Time Coordinate Systems 2-6
Time Bases 2-8
Movies 2-9
Tracks 2-12
Media Structures 2-13
About Movies 2-14
Movie Characteristics 2-15
Track Characteristics 2-17
Media Characteristics 2-18
Spatial Properties 2-20
The Transformation Matrix 2-26
Audio Properties 2-29
Sound Playback 2-29
Adding Sound to Video 2-30
Sound Data Formats 2-31
Data Interchange 2-32
Movies on the Clipboard 2-32
Movies in Files 2-32
Using the Movie Toolbox 2-32
Determining Whether the Movie Toolbox Is Installed 2-33
Getting Ready to Work With Movies 2-35
Getting a Movie From a File 2-35
Playing Movies With a Movie Controller 2-38
Playing a Movie 2-41
Movies and the Scrap 2-45
Creating a Movie 2-45
A Sample Program for Creating a Movie 2-46
A Sample Function for Creating and Opening a Movie File 2-47

Contents 2-1

CHAPTER 2

A Sample Function for Creating a Video Track in a New Movie 2-48
A Sample Function for Adding Video Samples to a Media 2-50
A Sample Function for Creating Video Data for a Movie 2-52
A Sample Function for Creating a Sound Track 2-52
A Sample Function for Creating a Sound Description Structure 2-55
Parsing a Sound Resource 2-59
Saving Movies in Movie Files 2-61
Using Movies in Your Event Loop 2-62
The Movie Toolbox and System 6 2-63
The Alias Manager 2-64
The File Manager 2-64
Previewing Files 2-65

Previewing Files in System 6 Using Standard File Reply
Structures 2-65

Customizing Your Interface in System 6 2-67

Previewing Files in System 7 Using Standard File Reply
Structures 2-68

Customizing Your Interface in System 7 2-70
Using Application-Defined Functions 2-71
Working With Movie Spatial Characteristics 2-73
Movie Toolbox Reference 2-76
Data Types 2-76
Movie Identifiers 2-77
The Time Structure 2-77
The Fixed-Point and Fixed-Rectangle Structures 2-78
The Sound Description Structure 2-79
Functions for Getting and Playing Movies 2-81
Initializing the Movie Toolbox 2-82
Error Functions 2-84
Movie Functions 2-87
Saving Movies 2-100
Controlling Movie Playback 2-111
Movie Posters and Movie Previews 2-114
Movies and Your Event Loop 2-124
Preferred Movie Settings 2-130
Enhancing Movie Playback Performance 2-134
Disabling Movies and Tracks 2-145
Generating Pictures From Movies 2-148
Creating Tracks and Media Structures 2-150
Working With Progress and Cover Functions 2-155
Functions That Modify Movie Properties 2-157
Working With Movie Spatial Characteristics 2-158
Working With Sound Volume 2-181
Working with Movie Time 2-184
Working With Track Time 2-191
Working With Media Time 2-194
Finding Interesting Times 2-196

Contents

CHAPTER 2

Locating a Movie’s Tracks and Media Structures 2-202
Working With Alternate Tracks 2-207
Working With Data References 2-215
Determining Movie Creation and Modification Time 2-219
Working With Media Samples 2-222
Working With Movie User Data 2-230
Functions for Editing Movies 2-242
Editing Movies 2-243
Undo for Movies 2-254
Low-Level Movie-Editing Functions 2-257
Editing Tracks 2-262
Undo for Tracks 2-268
Adding Samples to Media Structures 2-271
Media Functions 2-281
Selecting Media Handlers 2-282
Video Media Handler Functions 2-287
Sound Media Handler Functions 2-288
Text Media Handler Functions 2-290
Functions for Creating File Previews 2-301
Functions for Displaying File Previews 2-304
Time Base Functions 2-315
Creating and Disposing of Time Bases 2-315
Working With Time Base Values 2-322
Working With Times 2-332
Time Base Callback Functions 2-335
Matrix Functions 2-341
Application-Defined Functions 2-354
Progress Functions 2-354
Cover Functions 2-357
Error-Notification Functions 2-358
Movie Callout Functions 2-359
File Filter Functions 2-360
Custom Dialog Functions 2-360
Modal-Dialog Filter Functions 2-362
Standard File Activation Functions 2-363
Callback Event Functions 2-364
Text Functions 2-364
Summary of the Movie Toolbox 2-366
C Summary 2-366
Constants 2-366
Data Types 2-369
Functions for Getting and Playing Movies 2-378
Functions That Modify Movie Properties 2-383
Functions for Editing Movies 2-389
Media Functions 2-392
Functions for Creating File Previews 2-394
Functions for Displaying File Previews 2-394

Contents

2-4

CHAPTER 2

Time Base Functions 2-395
Matrix Functions 2-397
Application-Defined Functions 2-398
Pascal Summary 2-399
Constants 2-399
Data Types 2-404
Routines for Getting and Playing Movies 2-408
Routines That Modify Movie Properties 2-413
Routines for Editing Movies 2-418
Media Routines 2-421
Routines for Creating File Previews 2-423
Routines for Displaying File Previews 2-423
Time Base Routines 2-423
Matrix Routines 2-425
Application-Defined Routines 2-426
Result Codes 2-427

Contents

CHAPTER 2

Movie Toolbox

This chapter describes the Movie Toolbox and the key concepts that underlie QuickTime.
The Movie Toolbox allows your application to use the full range of features provided by
QuickTime. This toolbox provides functions that allow you to load, play, create, edit, and
store objects that contain time-based data. If you are developing an application that
works with time-based data, or if you are developing a component that will be used by
movie applications, you should be familiar with the capabilities of the Movie Toolbox
and the concepts discussed in this chapter.

This chapter is divided into the following major sections:

n “Introduction to Movies” discusses many of the concepts that are key to
understanding how to use QuickTime, including time, movies, tracks, and media
structures

n “About Movies” discusses the characteristics of QuickTime movies, tracks, and media
structures

n “Using the Movie Toolbox™ describes how you can use the Movie Toolbox to work
with movies

n “Movie Toolbox Reference” describes the constants, data types, and functions
provided by the Movie Toolbox

n “Summary of the Movie Toolbox” contains a condensed listing of the constants, data
types, and functions provided by the Movie Toolbox in C and in Pascal

Introduction to Movies

QuickTime allows you to manipulate time-based data such as video sequences, audio
sequences, financial results from an ongoing business operation, laboratory data
recorded over time, and so on. QuickTime uses the metaphor of a movie to describe
time-based data. Therefore, QuickTime stores time-based data in objects called movies.

Just as a cinematic movie can contain several tracks (for example, a video track and a
sound track), a single QuickTime movie can contain more than one stream of data.
Following the movie metaphor, each of these data streams is called atrack. Tracks in
QuickTime movies do not actually contain the movie’s data. Rather, each track refers to a
single media that, in turn, contains references to the actual media data. The media data
may be stored on disks, CD-ROM volumes, videotape, or other appropriate storage
devices.

Underlying all this is the notion of time. The next section describes how time is
represented in QuickTime. Following that are sections that discuss how QuickTime
movies, tracks, and media structures relate to time and to one another.

Time and the Movie Toolbox

At the most basic level, the Movie Toolbox allows you to process time-based data. As
such, the Movie Toolbox must provide a description of the time basis of that data as well
as a definition of the context for evaluating that time basis. In QuickTime, a movie’s time

Introduction to Movies 2-5

CHAPTER 2

Movie Toolbox

basis is referred to as its time base. Geometrically, you can think of the time base as a
vector that defines the direction and velocity of time for a movie. The context for a time
base is called its time coordinate system. Essentially, the time coordinate system defines
the axis on which the time base vector is plotted (see Figure 2-2 on page 2-8). The
smallest single unit of time marked on that axis is defined by the time scale as the units
per absolute second.

The following sections discuss each of these key concepts further.

Time Coordinate Systems

A movie’s time coordinate system provides the context for evaluating the passage of
time in the movie. If you think of the time coordinate system as defining an axis for
measuring time, it is only natural that this axis would be marked with a scale that
defines a basic unit of measurement. In QuickTime, that measurement system is called a
time scale.

A QuickTime time scale defines the number of time units that pass each second in a
given time coordinate system. A time coordinate system that has a time scale of 1
measures time in seconds. Similarly, a time coordinate system that has a time scale of 60
measures sixtieths of a second. In general, each time unit in a time coordinate system is
equal to (1/time scale) seconds. Some common time scales are listed in Table 2-1.

Table 2-1 Common movie time scales

Time scale Absolute time measured

1 Seconds

60 Sixtieths of a second (Macintosh ticks)
1000 Milliseconds

2225454 Sound sampled at 22 kHz (kilohertz)

Figure 2-1 shows a duration of two seconds in absolute time and equivalent durations in
the common time scales listed in Table 2-1.

Introduction to Movies

CHAPTER 2

Movie Toolbox

Figure 2-1 Time scales
I I I fscluiedme et
0 1 P
I I I Sxlets ola second
1] 1] 180
I I I PAIlseconds
0 1000 2000
I I I = hHz sound
0 20454 4490005

A particular point in time in a time coordinate system is represented using a time value.
A time value is expressed in terms of the time scale of its time coordinate system.
Without an appropriate time scale, a time value is meaningless. For example, in a time
coordinate system with a time scale of 60, a time value of 180 translates to 3 seconds.
Because all time coordinate systems tie back to absolute time (that is, time as we measure
it in seconds), the Movie Toolbox can translate time values from one time coordinate
system into another.

Time coordinate systems have a finite maximum duration that defines the
maximum time value for a time coordinate system (the minimum time value is
always 0). Note that as a QuickTime movie is edited, the duration changes.

As the value of the time scale increases (as the time unit for a coordinate system gets
smaller in terms of absolute time), the maximum absolute time that can be represented in
a time coordinate system decreases. For example, if a time value were represented as an
unsigned 16-bit integer, its maximum value would be 65,535. In a time coordinate system
with a time scale of 1, the maximum time value would represent 65,535 seconds.
However, in a time coordinate system with a time scale of 5, the maximum time value
would correspond to 13,107 seconds. Hence, a time coordinate system’s duration is
limited by its time scale. QuickTime uses 32-bit and 64-bit quantities to represent time
values, so you only need to worry about attaining a maximum absolute time

in situations where a time coordinate system’s duration is very long or its time scale is
very large.

Introduction to Movies 2-7

CHAPTER 2

Movie Toolbox

Time Bases

A movie’s time base defines its current time value and the rate at which time passes for
the movie. The rate specifies the speed and direction in which time travels in a movie.
Negative rate values cause you to move backward through a movie’s data; positive
values move forward. The time base also contains a reference to the clock that provides
timing for the time base. QuickTime clocks are implemented as components that are
managed by the Component Manager.

Time bases exist independently of any specific time coordinate system. However, time
values extracted from a time base are meaningless without a time scale. Therefore,
whenever you obtain a time value from a time base, you must specify the time scale of
the time value result. The Movie Toolbox translates the time base’s time value into a
value that is sensible in the specified time scale.

Note

A time base differs from a time coordinate system, which provides the
foundation for a time base. (A time coordinate system is the field of play
that defines the coordinate axis for a time base.) A time base operates in
the context of a time coordinate system. It has a rate, which implies a
direction as well as a speed through the movie. u

Figure 2-2 represents a time coordinate system and a time base geometrically. The

time coordinate system is represented by a coordinate axis. In this example, the time
coordinate system has a time scale of 2; that is, there are two time units in each second.
The duration of this time coordinate system is 2 seconds, which is equivalent to 4 time
units. An object’s time base is depicted by the large arrow under the axis that represents
the time coordinate system. This time base has a current time value of 3 and a rate of 1.
The starting time is a time value, expressed in the units of the time coordinate system.

Figure 2-2 A time coordinate system and a time base
I I I Bhepclire firn e | emcorde)
1] 1 2
| | | | | Moune dinn e coordinaie wredem
0 1 2 A 4
I I

—-| |a—

1 1
M curie i & unit — W Moz ime baes

Introduction to Movies

CHAPTER 2

Movie Toolbox

Movies

QuickTime movies have a time dimension defined by a time scale and a duration, which
are specified by a time coordinate system. Figure 2-3 illustrates a movie’s time
coordinate system. A movie always starts at time 0. The time scale defines the unit of
measure for the movie’s time values. The duration specifies how long the movie lasts.

Figure 2-3 A movie’s time coordinate system
Moz fme Moo fime baes
|| el
I I I I I I I I I I I I |
0 |
]

|
|
!
m*DDDDP
:
|
|
|
|
|
|
|

0000pOO0D00D00DO0DO0D0000C

—

Moz i = unit

_x___

Moz dursdion

o T

A movie can contain one or more tracks. Each track refers to media data that can be
interpreted within the movie’s time coordinate system. Each track begins at the
beginning of the movie. However, a track can end at any time. In addition, the actual
data in the track may be offset from the beginning of the movie. Tracks with data that
does not commence at the beginning of a movie contain empty space that precedes the
track data.

At any given point in time, one or more tracks may or may not be enabled.

Note

Throughout this book and its companion, Inside Macintosh: QuickTime
Components, the term enabled track denotes a track that may become
activated if the movie time intersects the track. An enabled track refers
to a media that in turn refers to media data. u

Introduction to Movies 2-9

CHAPTER 2

Movie Toolbox

However, no single track needs to be enabled during the entire movie. As you move
through a movie, you gain access to the data that is described by each of the enabled
tracks. Figure 2-4 shows a movie that contains five tracks. The lighter shading in

each track represents the time offset between the beginning of the movie and the start of
the track’s data (this lighter shading corresponds to empty space at the beginning of
these tracks). When the movie’s time value is 6, there are three enabled tracks: Video 1
and Audio 1, and Video 2, which is just being enabled. The Other 1 track does not
become enabled until the time value reaches 8. The Audio 2 track becomes enabled at
time value 10.

A movie can contain one or more layers. Each layer contains one or more tracks that may
be related to one another. The Movie Toolbox builds up a movie’s visual representation
layer by layer. For example, in Figure 2-4, if the images contained in the Video 1 and
Video 2 tracks overlap spatially, the user sees the image that is stored in the front layer.
You assign individual tracks to movie layers using Movie Toolbox functions that are
described in “Working With Movie Spatial Characteristics” beginning on page 2-158.

Figure 2-4 A movie containing several tracks

2-10

The Movie Toolbox allows you to define both a movie preview and a movie poster for a
QuickTime movie. A movie preview is a short dynamic representation of a movie.
Movie previews typically last no more than 3 to 5 seconds, and they should give the user
some idea of what the movie contains. (An example of a movie preview is a narrative
track.) You define a movie preview by specifying its start time, its duration, and

its tracks. A movie may contain tracks that are used only in its preview.

Introduction to Movies

CHAPTER 2

Movie Toolbox

A movie poster is a single visual image representing the movie. You specify a poster as a
point in time in the movie. As with the movie itself and the movie preview, you define

which tracks are enabled in the movie poster.

Figure 2-5 shows an example of a movie’s tracks. The video track is used for the movie,

the preview, and the poster. The movie audio track is used only for the movie. The

preview audio track is used only for the preview. The poster graphic track is used only

for the poster.

Figure 2-5 A movie, its preview, and its poster

Moz dime b

000000000000 00a0

Enabled

Wideo ¥ack ..---"J.-'lIl "?*.'Fﬁ.fﬁ? #ﬂ"f-ﬂ’ ;F;ﬁﬁ-l! i A
M curie zodio trcks P e A ?'a- pob i et e L
Praviaw aodic ek 7y 2k

Poeler graphice Fack

O O000000000000000

g !

] M aurie durefion

] !
Ervabled FIEIEIDEIEIEIEIEIEI[IEIEIEIEI

Wides Fack =1
Moz audio track O ks
Fresiew audio track =
Poster grphice b2k [] E:

Praview durdion

Enzbled

Wideo Fack

M o= audio taick
Pravizw adic track
Poeler graphice Fack

|
OO0 000000o0n0oonn
:F'a-ahrirne

i Thow e poeder

Introduction to Movies

2-11

CHAPTER 2

Movie Toolbox

Tracks

A movie can contain one or more tracks. Each track represents a single stream of data
in a movie and is associated with a single media. The media has control information that
refers to the actual movie data.

All of the tracks in a movie use the movie’s time coordinate system. That is, the movie’s
time scale defines the basic time unit for each of the movie’s tracks. Each track begins at
the beginning of the movie, but the track’s data might not begin until some time value
other than 0. This intervening time is represented by blank space—in an audio track the
blank space translates to silence; in a video track the blank space generates no visual
image. Each track has its own duration. This duration need not correspond to the
duration of the movie. Movie duration always equals the maximum duration of all the
tracks. An example of this is shown in Figure 2-6.

Figure 2-6 A track in a movie

I Track cffest

I Tradk durzion

A track is always associated with one media. The media contains control information
that refers to the data that constitutes the track. The track contains a list of references that
identify portions of the media that are used in the track. In essence, these references are
an edit list of the media. Consequently, a track can play the data in its media in any order
and any number of times. Figure 2-7 shows how a track maps data from a media into a
movie.

2-12 Introduction to Movies

CHAPTER 2

Movie Toolbox

Figure 2-7 A track and its media

\.rl""-r

J'l.i] . T T T
{'.-."‘:ﬁr"'.l'"lf""'..-__.__-. EAARE S -":'.:I"U;';h'r’ ; !I.r|..r
"i"'lur_“". '-1"' |_|-;|."'— R ;"'-_-'.'.';Hh‘_|:|. "l-"'ll" ""|:|.1'

1

Lottt rrrrerrvrebrrrrrrretl
i ||||||||||||||||||||||||||
! LD i secton ottne | :
0 I jmeda s notin he Tack, I
I I ' ' I
:Me-:llaimeunn :
—ll

Il" RAedia duradon .JI

Media Structures

A media describes the data for a track. The data is not actually stored in the media.
Rather, the media contains references to its media data, which may be stored in disk files,
on CD-ROM discs, or other appropriate storage devices. Note that the data referred to by
one media may be used by more than one movie, though the media itself is not reused.

Each media has its own time coordinate system, which defines the media’s time scale
and duration. A media’s time coordinate system always starts at time 0, and it is
independent of the time coordinate system of the movie that uses its data. Tracks map
data from the movie’s time coordinate system to the media’s time coordinate system.
Figure 2-7 shows how tracks perform this mapping.

Each supported data type has its own media handler. The media handler interprets the
media’s data. The media handler must be able to randomly access the data and play
segments at rates specified by the movie. The track determines the order in which the
media is played in the movie and maps movie time values to media time values.

Introduction to Movies 2-13

CHAPTER 2

Movie Toolbox

Figure 2-8 shows the final link to the data. The media in the figure references digital
video frames on a CD-ROM disc.

Figure 2-8 A media and its data

0000Ff00DG000000000D0000

aa FVTT — S —

§ ::.';J: ::;gﬁr_,a e e E“Lﬂ F;‘I‘l:'":.'rhlf;ﬂ\r"'iﬁ
i -.1' n'l \"‘T‘..-'I..-'-‘_' B el t’l‘f!n‘l}?—ll;"-:"
i Whadie e s d ot dodedododcddodododededcdicdesdededadedadeiodude

0 :)
!
1 -
TR

This section discusses the characteristics that govern playing and storing movies, tracks,
and media structures. This section has been divided into the following topics:

n “Movie Characteristics” discusses the time, display, and sound characteristics of a
QuickTime movie

“Track Characteristics” describes the characteristics of a movie track

2-14 About Movies

CHAPTER 2

Movie Toolbox

n “Media Characteristics” discusses the characteristics of a media

n “Spatial Properties” describes how the Movie Toolbox displays a movie, including
how the data from each media is collected and transformed prior to display

n “The Transformation Matrix” describes how matrix operations transform visual
elements prior to display

n “Audio Properties” describes how the Movie Toolbox works with a movie’s sound
tracks

n “Data Interchange” discusses how the format and content of a movie changes when it
is stored on the scrap or in a file

Movie Characteristics

A QuickTime movie is represented as a private data structure. Your application never
works with individual fields in that data structure. Rather, the Movie Toolbox provides
functions that allow you to work with a movie’s characteristics. Figure 2-9 shows some
of the characteristics of a QuickTime movie.

Figure 2-9 Movie characteristics

About Movies 2-15

2-16

CHAPTER 2

Movie Toolbox

Every QuickTime movie has some state information, including a creation time and a
modification time. These times are expressed in standard Macintosh time format,
representing the number of seconds since midnight, January 1, 1904. The creation time
indicates when the movie was created. The modification time indicates when the movie
was last modified and saved.

Each movie has its own time coordinate system and time scale. Any time values that
relate to the movie must be defined using this time scale and must be between 0 and the
movie’s duration.

A movie’s preview is defined by its starting time and duration. Both of these time values
are expressed in terms of the movie’s time scale. A movie’s poster is defined by its time
value, which is in terms of the movie’s time scale. You assign tracks to the movie
preview and the movie poster by calling the Movie Toolbox functions that are described
later in this chapter.

Your current position in a movie is defined by the movie’s current time. If the movie is
currently playing, this time value is changing. When you save a movie in a movie file,
the Movie Toolbox updates the movie’s current time to reflect its current position. When
you load a movie from a movie file, the Movie Toolbox sets the movie’s current time to
the value found in the movie file.

The Movie Toolbox provides high-level editing functions that work with a movie’s
current selection. The current selection defines a segment of the movie by specifying a
start time, referred to as the selection time, and a duration, called the selection duration.
These time values are expressed using the movie’s time scale.

For each movie currently in use, the Movie Toolbox maintains an active movie segment.
The active movie segment is the part of the movie that your application is interested in
playing. By default, the active movie segment is set to be the entire movie. You may wish
to change this to be some segment of the movie—for example, if you wish to play a
user’s selection repeatedly. By setting the active movie segment, you guarantee that the
Movie Toolbox uses no samples from outside of that range while playing the movie. See
“Enhancing Movie Playback Performance,” which begins on page 2-134, for details on
functions that work with the active segment.

A movie’s display characteristics are specified by a number of elements. The movie has a
movie clipping region and a 3-by-3 transformation matrix. The Movie Toolbox uses these
elements to determine the spatial characteristics of the movie. See “Spatial Properties”
beginning on page 2-20 for a complete description of these elements and how they are
used by the Movie Toolbox.

When you save a movie, you can establish preferred settings for playback rate and
volume. The preferred playback rate is called the preferred rate. The preferred
playback volume is called the preferred volume. These settings represent the most
natural values for these movie characteristics. When the Movie Toolbox loads a movie
from a movie file, it sets the movie’s volume to this preferred value. When you start
playing the movie, the Movie Toolbox uses the preferred rate. You can then use Movie
Toolbox functions to change the rate and volume during playback.

Movies contain each of their tracks. See the next section for more information about
tracks and their characteristics.

About Movies

CHAPTER 2

Movie Toolbox

The Movie Toolbox allows your application to store its own data along with a movie.
You define the format and content of these data objects. This application-specific data is
called user data. You can use these data objects to store both text and binary data. For
example, you can use text user data items to store a movie’s copyright and credit
information. The Movie Toolbox provides functions that allow you to set and retrieve a
movie’s user data. This data is saved with the movie when you save the movie.

Track Characteristics

A QuickTime track is represented as a private data structure. Your application never
works with individual fields in that data structure. Rather, the Movie Toolbox provides
functions that allow you to work with a track’s characteristics. Figure 2-10 shows the
characteristics of a QuickTime track.

Figure 2-10 Track characteristics

E Creakar ine
r’hd'ﬁm'.:"" tiwe Track: linma infarnalisn
ialicnh
1
i Tane I Track D
Abernale yroap Treadk, ielativn=lip
Track widkh
_ ek height Gpalial charscheiistics
i rack clizping regien
! Tiss mate
Meai-
! Walurns Sound infomnetior
r Edtlst 7 Editdata.
i hkediza Mkedia mifornizlun
! Umze dcka, Uzzr doko,
i

AAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAARARA

As with movies, each track has some state information, including a creation time and a
modification time. These times are expressed in standard Macintosh time format,
representing the number of seconds since midnight, January 1, 1904. The creation time

About Movies 2-17

2-18

CHAPTER 2

Movie Toolbox

indicates when the track was created. The modification time indicates when the track
was last modified and saved.

Each track has its own duration value, which is expressed in the time scale of the movie
that contains the track.

As has been discussed, movies can contain more than one track. In fact, a movie can
contain more than one track of a given type. You might want to create a movie with
several sound tracks, each in a different language, and then activate the sound track that
is appropriate to the user’s native language. Your application can manage these
collections of tracks by assigning each track of a given type to an alternate group. You
can then choose one track from that group to be enabled at any given time. You can
select a track from an alternate group based on its language or its playback quality.

A track’s playback quality indicates its suitability for playback in a given environment.
All tracks in an alternate group should refer to the same type of data.

A track’s display characteristics are specified by a number of elements, including track
width, track height, a transformation matrix, and a clipping region. See “Spatial
Properties,” which begins on page 2-20, for a complete description of these elements and
how they are used by the Movie Toolbox.

Each track has a current volume setting. This value controls how loudly the track plays
relative to the movie volume.

Perhaps most important, tracks contain a media edit list. The edit list contains entries
that define how the track’s media is to be used in the movie that contains the track. Each
entry in the edit list indicates the starting time and duration of the media segment, along
with the playback rate for that segment.

Each track contains its associated media. See the next section for more information about
media structures and their characteristics.

The Movie Toolbox allows your application to store its own user data along with a track.
You define the format and content of these data objects. The Movie Toolbox provides
functions that allow you to set and retrieve a track’s user data. This data is saved with
the track when you save the movie.

Media Characteristics

As is the case with movies and tracks, a QuickTime media is represented as a private
data structure. Your application never works with individual fields in that data structure.
Rather, the Movie Toolbox provides functions that allow you to work with a media’s
characteristics. Figure 2-11 shows the characteristics of a QuickTime media.

About Movies

CHAPTER 2

Movie Toolbox

Figure 2-11 Media characteristics

:

H
i o abioy b
! Fodificstionr i
! ! o e Mzdis e irfomaticn
Tirn s s 3
Cruarsbing i
i b edla handler Mzdia Fandier
Langasqe ba s b st st imi i
Plasback quadty mAm T aaee e i
i
; tacia infomnetior Madia bparpas o niomr adon
i
i Ll=et data, L ser ek,
i

Each QuickTime media has some state information, including a creation time and a
modification time. These times are expressed in standard Macintosh time format,
representing the number of seconds since midnight, January 1, 1904. The creation time
indicates when the media was created. The modification time indicates when the media
was last modified and saved.

Each media has its own time coordinate system, which is defined by its time scale and
duration. Any time values that relate to the media must be defined in terms of this time
scale and must be between 0 and the media’s duration.

A media contains information that identifies its language and playback quality. These
values are used when selecting from among the tracks in an alternate group.

The media specifies a media handler, which is responsible for the details of loading,
storing, and playing media data. The media handler can store state information in the
media. This information is referred to as media information. The media information
identifies where the media’s data is stored and how to interpret that data. Typically, this
data is stored in a data reference, which identifies the file that contains the data and the
type of data that is stored in the file.

The Movie Toolbox allows your application to store its own user data along with a
media. You define the format and content of these data objects. The Movie Toolbox
provides functions that allow you to set and retrieve a media’s user data. This data is
saved with the media when you save the movie.

About Movies 2-19

2-20

CHAPTER 2

Movie Toolbox

Spatial Properties

When you play a movie that contains visual data, the Movie Toolbox gathers the movie’s
data from the appropriate tracks and media structures, transforms the data as
appropriate, and displays the results in a window. The Movie Toolbox uses only those
tracks that

n are not empty
n contain media structures that reference data at a specified time

n are enabled in the current movie mode (standard playback, poster mode, or preview
mode)

Consequently, the size, shape, and location of many of these regions may change during
movie playback. This process is quite complicated and involves several phases of
clipping and resizing.

The Movie Toolbox shields you from the intricacies of this process by providing two
high-level functions, Get Movi eBox and Set Mbvi eBox (described on page 2-162 and
page 2-161, respectively), which allow you to place a movie box at a specific location in
the display coordinate system. When you use these functions, the Movie Toolbox
automatically adjusts the contents of the movie’s matrix to satisfy your request.

Figure 2-12 provides an overview of the entire process of gathering, transforming, and
displaying visual data. Each track defines its own spatial characteristics, which are then
interpreted within the context of the movie’s spatial characteristics.

This section describes the process that the Movie Toolbox uses to display a movie. The
process begins with the movie data and ends with the final movie display. The phases,
which are described in detail in this section, include

1. the creation of a track rectangle (see Figure 2-13 on page 2-22)
2. the clipping of a track’s image (see Figure 2-14 on page 2-23)

3. the transformation of a track into the movie coordinate system (see Figure 2-15 on
page 2-23)

4. the clipping of a movie image (see Figure 2-16 on page 2-24)

5. the transformation of a movie into the display coordinate system (see Figure 2-17 on
page 2-25)

6. the clipping of a movie for final display (see Figure 2-18 on page 2-25)

Note

Throughout this book and in Inside Macintosh: QuickTime Components, the
term time coordinate system denotes QuickTime’s time-based system. All
other instances of the term coordinate system refer to QuickDraw’s
graphic coordinates. u

About Movies

CHAPTER 2

Movie Toolbox

Figure 2-12 Spatial processing of a movie and its tracks
Trach dipping regon Trach rectange Traci mate Trach boundary regon
- - o~
AN ‘i
+ L\(i.*_:{{{{ — I
] r] L |

a b u Trach marlx Tackcoondnale ryslken

cdou

g oy owe| TTECH Mk B vie coordinale i

Mo dlpping reglon
Moue cordinge =y=Em
s - — —
+
Cllpped ¥ac
g m oue bounds y
¥ B regloms
. Trach mo e —
Trach 2 bounda yragiors

ab Ul moweman: Mo vie coordinale sysien

cdou

w oy owe| Mowemars Displary coordinake syslem

Mo depl yalpping regon
— - o e o —
+ §oue bo =
Y ¥
acl d=piay
o ounda | regors
: Moue digplay boundar yreglon Find moue bounda yregion
U N

About Movies

2-21

CHAPTER 2

Movie Toolbox

Each track defines a rectangle into which its media is displayed. This rectangle is
referred to as the track rectangle, and it is defined by the track width and track height
values assigned to the track. The upper-left corner of this rectangle defines the origin
point of the track’s coordinate system.

Note

Henceforth, the graphic coordinate system for a track is referred to
simply as its coordinate system. u

The media handler associated with the track’s media is responsible for displaying an
image into this rectangle. This process is shown in Figure 2-13.

Figure 2-13 A track rectangle

2-22

Media handler

The Movie Toolbox next mattes the image in the track rectangle by applying the track
matte and the track clipping region. This does not affect the shape of the image—only
the display. Both the track matte and the track clipping region are optional.

A track matte provides a mechanism for mixing images. Mattes contain several bits per
pixel and are defined in the track’s coordinate system. The matte can be used to perform
a deep-mask operation on the image in the track rectangle. The Movie Toolbox displays
the weighted average of the track and its destination based on the corresponding pixel
value in the matte.

The track clipping region is a QuickDraw region that defines a portion of the track
rectangle to retain. The track clipping region is defined in the track’s coordinate system.
This clipping operation creates the track boundary region, which is the intersection of
the track rectangle and the track clipping region.

About Movies

CHAPTER 2

Movie Toolbox

This process and its results are shown in Figure 2-14.

Figure 2-14 Clipping a track’s image

Trach rechn ge Trach m ate Trach clipping regon Trach boun daryregon

(0 i (20

[rack uldh,
ok helght]

b b b
Y Y ¥)

AAAAAAAATAATAATAATAATAAT AT AT AT AT AT AT A AT AT AT AT AT AT AT AT AT AATAATAATAATAATAATAATAATAAAAAAAAA AAA A

Hi

After clipping and matting the track’s image, the Movie Toolbox transforms the resulting
image into the movie’s coordinate system. The Movie Toolbox uses a 3-by-3
transformation matrix to accomplish this operation (see the next section,

“The Transformation Matrix,” for a complete discussion of matrix operations in the
Movie Toolbox). The image inside the track boundary region is transformed by

the track’s matrix into the movie coordinate system. The resulting area is bounded by the
track movie boundary region. Figure 2-15 shows the results of this transformation
operation.

Figure 2-15 A track transformed into a movie coordinate system

Track coordin ale sy lem Track matl: Moue coordnate <ysiem

.0 H 0.0 #

Ry
. I,rgaf:'nb':" ndary . Track mende
: ¥ boun dary region

e T i e a e T a a a

About Movies 2-23

CHAPTER 2

Movie Toolbox

The Movie Toolbox performs this portion of the process for each track in the movie.
Once all of the movie’s tracks have been processed, the Movie Toolbox proceeds to
transform the complete movie image for display.

The union of all track movie boundary regions for a movie defines the movie’s movie
boundary region. The Movie Toolbox combines a movie’s tracks into this single region
where layers are applied. Therefore, tracks in back layers may be partially or completely
obscured by tracks in front layers. The Movie Toolbox clips this region to obtain the
clipped movie boundary region. The movie’s movie clipping region defines the portion
of the movie boundary region that is to be used. Figure 2-16 shows the process by which
a movie is clipped and the resulting clipped movie boundary region.

Figure 2-16 Clipping a movie's image

R Coordn 2k s dem

] 0.0 Gl

Clpped Tacs,
monde oy I1l:|-':'l"5l'
reglons

RACue boun dany reglon Mode dippn g reglon Clpped monde boundaryreglon

a0 e e e e e e

2-24

After clipping the movie’s image, the Movie Toolbox transforms the resulting image into
the display coordinate system. The Movie Toolbox uses a 3-by-3 transformation matrix to
accomplish this operation (see the next section, “The Transformation Matrix,” for a
complete discussion of matrix operations in the Movie Toolbox). The image inside the
clipped movie boundary region is transformed by the movie’s matrix into the display
coordinate system. The resulting area is bounded by the movie display boundary region.
Figure 2-17 shows the results of this step.

About Movies

CHAPTER 2

Movie Toolbox

Figure 2-17 A movie transformed to the display coordinate system

Ao coordnatke ysem RAcule matis Dlsplaycoordn ade sysdem

£.0)

“ £.0) H

a b u
X c d w| =
Trach dsplay
oW oW bou Ny regons
Cilpped Tach m e boundany regon Mgl displany bou ndaryregion

S S N T R N R N Sl Nl R Nl S Rl Sl Sl Sl N 0 Nl N R N Sl N Nl R Nl S Nl Rl Sl Rl U N N R N

The rectangle that encloses the movie display boundary region is called the movie box,
as shown in Figure 2-18. You can control the location of a movie’s movie box by
adjusting the movie’s transformation matrix.

Figure 2-18 Clipping a movie for final display

- I
y =
¥
e .
RAvule dsplayboun daryregion MATWe dsplay cdpping region AN A mowe boun daryTeglon

Once the movie is in the display coordinate system (that is, the QuickDraw graphics
world), the Movie Toolbox performs a final clipping operation to generate the image that
is displayed. The movie is clipped with the movie display clipping region. When a
movie is displayed, the Movie Toolbox ignores the graphics port’s clipping region—this
is why there is a movie display clipping region. Figure 2-18 shows this operation.

About Movies 2-25

CHAPTER 2

Movie Toolbox

The Transformation Matrix

The Movie Toolbox makes extensive use of transformation matrices to define graphical
operations that are performed on movies when they are displayed. A transformation
matrix defines how to map points from one coordinate space into another coordinate
space. By modifying the contents of a transformation matrix, you can perform several
standard graphical display operations, including translation, rotation, and scaling. The
Movie Toolbox provides a set of functions that make it easy for you to manipulate
translation matrices. Those functions are discussed in “Matrix Functions” which begins
on page 2-341. The remainder of this section provides an introduction to matrix
operations in a graphical environment.

The matrix used to accomplish two-dimensional transformations is described
mathematically by a 3-by-3 matrix. Figure 2-19 shows a sample 3-by-3 matrix. Note that
QuickTime assumes that the values of the matrix elements u and v are always 0.0, and
the value of matrix element w is always 1.0.

Figure 2-19 A point transformed by a 3-by-3 matrix

a b wu
Eyil}{cdw:E'E"il
te ty W

During display operations, the contents of a 3-by-3 matrix transform a point (x,y) into a
point (x',y") by means of the following equations:

X'=ax +cy + ty
y'=bx+dy +ty

For example, the matrix shown in Figure 2-20 performs no transformation. It is referred
to as the identity matrix.

Figure 2-20 The identity matrix

2-26

About Movies

CHAPTER 2

Movie Toolbox

Using the formulas discussed earlier, you can see that this matrix would generate a new
point (x',y") that is the same as the old point (x,y):

X'=1x+0y+0
y'=0x+1y+0
X'=yandy'=y

In order to move an image by a specified displacement, you perform a translation
operation. This operation modifies the x and y coordinates of each point by a specified
amount. The matrix shown in Figure 2-21 describes a translation operation.

Figure 2-21 A matrix that describes a translation operation

You can stretch or shrink an image by performing a scaling operation. This operation
modifies the x and y coordinates by some factor. The magnitude of the x and y factors
governs whether the new image is larger or smaller than the original. In addition, by
making the x factor negative, you can flip the image about the x-axis; similarly, you can
flip the image horizontally, about the y-axis, by making the y factor negative. The matrix
shown in Figure 2-22 describes a scaling operation.

Figure 2-22 A matrix that describes a scaling operation

L
o

-
L

About Movies 2-27

CHAPTER 2

Movie Toolbox

Finally, you can rotate an image by a specified angle by performing a rotation operation.
You specify the magnitude and direction of the rotation by specifying factors for both x
and y. The matrix shown in Figure 2-23 rotates an image counterclockwise by an angle g.

Figure 2-23 A matrix that describes a rotation operation

cos(H) sinfA) ©

. =sin{Al cos(A) O
A " 1

You can combine matrices that define different transformations into a single matrix. The
resulting matrix retains the attributes of both transformations. For example, you can both
scale and translate an image by defining a matrix similar to that shown in Figure 2-24.

Figure 2-24 A matrix that describes a scaling and translation operation

2-28

5,0 O 1 0 0 5, 0 0
0 sy 0f X [0 1 0of = |0 5 0
00 1 ty ty 1 ty ty 1

You combine two matrices by concatenating them. Mathematically, the two matrices are
combined by matrix multiplication. Note that the order in which you concatenate
matrices is important—matrix operations are not commutative.

Transformation matrices used by the Movie Toolbox contain the following data types:
[0] [O]Fixed [1] [O]Fixed [2] [O]Fract
[0] [1]Fixed [1] [1]Fixed [2] [1]Fract
[0] [2]Fixed [1] [2]Fixed [2] [2]Fract

Each cell in this table represents the data type of the corresponding element of a 3-by-3
matrix. All of the elements in the first two columns of a matrix are represented by Fi xed
values. Values in the third column are represented as Fr act values. The Fract data
type specifies a 32-bit, fixed-point value that contains 2 integer bits and 30 fractional bits.
This data type is useful for accurately representing numbers in the range from -2 to 2.
For more information about the Fr act data type, see Inside Macintosh: Imaging.

About Movies

CHAPTER 2

Movie Toolbox

Audio Properties

This section discusses the sound capabilities of QuickTime and the Movie Toolbox. It has
been divided into the following topics:

n “Sound Playback” discusses the playback capabilities of the Movie Toolbox

n “Adding Sound to Video” discusses several issues you should consider when creating
movies that contain both sound and video

n “Sound Data Formats” describes the formats the Movie Toolbox uses to store sound
information

Sound Playback

As is the case with video data, QuickTime movies store sound information in tracks.
QuickTime movies may have one or more sound tracks. The Movie Toolbox can play
more than one sound at a time by mixing the enabled sound tracks together during
playback. This allows you to put together movies with separate music and voice tracks.
You can then manipulate the tracks separately but play them together. You can also use
multiple sound tracks to store different languages.

There are two main attributes of sound in QuickTime movies: volume and balance. You
can control these attributes using the facilities of the Movie Toolbox.

Every QuickTime movie has a current volume setting. This volume setting controls the
loudness of the movie’s sound. You can adjust a movie’s current volume by calling the
Set Movi eVol une function (described on page 2-182). In addition, you can set a
preferred volume setting for a movie. This value represents the best volume for the
movie. The Movie Toolbox saves this value when you store a movie into a movie file.
The value of the current volume is lost. You can set a movie’s preferred volume by
calling the Set Movi ePr ef er r edVol une function (described on page 2-132). When you
load a movie from a movie file, the Movie Toolbox sets the movie’s current volume to the
value of its preferred volume.

Each track in a movie also has a volume setting. A track’s volume governs its loudness
relative to other tracks in the movie. You can set a track’s volume by calling the
Set Tr ack Vol une function (described on page 2-183).

In the Movie Toolbox, movie and track volumes are represented as 16-bit, fixed-point
numbers that range from -1.0 to +1.0. The high-order 8 bits contain the integer portion of
the value; the low-order 8 bits contain the fractional part. Positive values denote volume
settings, with 1.0 corresponding to the maximum volume on your computer. Negative
values are muted, but retain the magnitude of the volume setting so that, by toggling the
sign of a volume setting, you can turn off the sound and then turn it back on at the
previous level (something like pressing the mute button on a radio).

A track’s volume is scaled to a movie’s volume, and the movie’s volume is scaled to the
value the user specifies for speaker volume using the Sound control panel. That is, a
movie’s volume setting represents the maximum loudness of any track in the movie. If
you set a track’s volume to a value less than 1.0, that track plays proportionally quieter,
relative to the loudness of other tracks in the movie.

About Movies 2-29

2-30

CHAPTER 2

Movie Toolbox

Each track in a movie has its own balance setting. The balance setting controls the mix of
sound between a computer’s two speakers. If the source sound is monaural, the balance
setting controls the relative loudness of each speaker. If the source sound is stereo, the
balance setting governs the mix of the right and left channels. You can set the balance for
a track’s media by calling the Set SoundMedi aBal ance function (described on

page 2-289). When you save the movie, the balance setting is stored in the movie file.

In the Movie Toolbox, balance values are represented as 16-bit, fixed-point numbers that
range from -1.0 to +1.0. The high-order 8 bits contain the integer portion of the value; the
low-order 8 bits contain the fractional part. Negative values weight the balance toward
the left speaker; positive values emphasize the left channel. Setting the balance to 0
corresponds to a neutral setting.

Adding Sound to Video

Most QuickTime movies contain both sound data and video data. If you are creating an
application that plays movies, you do not need to worry about the details of how sound
is stored in a movie. However, if you are developing an application that creates movies,
you need to consider how you store the sound and video data.

There are two ways to store sound data in a QuickTime movie. The simplest method is to
store the sound track as a continuous stream. When you play a movie that has its sound
in this form, the Movie Toolbox loads the entire sound track into memory, and then reads
the video frames when they are needed for display. While this technique is very efficient,
it requires a large amount of memory to store the entire sound, which limits the length of
the movie. This technique also requires a large amount of time to read in the entire
sound track before the movie can start playing. For this reason, this technique is only
recommended when the sound for a movie is fairly small (less than 64 KB).

For larger movies, a technique called interleaving must be used so that the sound and
video data may be alternated in small pieces, and the data can be read off disk as it is
needed. Interleaving allows for movies of almost any length with little delay on startup.
However, you must tune the storage parameters to avoid a lower video frame rate and
breaks in the sound that result when sound data is read from slow storage devices. In
general, the Movie Toolbox hides the details of interleaving from your application. The
Fl at t enMovi e and Fl at t enMovi eDat a functions (described on page 2-105 and

page 2-107, respectively) allow you to enable and disable interleaving when you create a
movie. These functions then interact with the appropriate media handler to correctly
interleave the sound and video data for your movie. For more information about
working with sound, see the chapter “Sound Manager” in Inside Macintosh: More
Macintosh Toolbox.

About Movies

CHAPTER 2

Movie Toolbox

Sound Data Formats

The Movie Toolbox stores sound data in sound tracks as a series of digital samples. Each
sample specifies the amplitude of the sound at a given point in time, a format commonly
known as linear pulse-code modulation (linear PCM). The Movie Toolbox supports both
monaural and stereo sound. For monaural sounds, the samples are stored sequentially,
one after another. For stereo sounds, the samples are stored interleaved in a left/right/
left/right fashion.

In order to support a broad range of audio data formats, the Movie Toolbox can
accommodate a number of different sample encoding formats, sample sizes, sample
rates, and compression algorithms. The following paragraphs discuss the details of each
of these attributes of movie sound data.

The Movie Toolbox supports two techniques for encoding the amplitude values in a
sample: offset-binary and twos-complement. Offset-binary encoding represents the
range of amplitude values as an unsigned number, with the midpoint of the range
representing silence. For example, an 8-bit sample stored in offset-binary format would
contain sample values ranging from 0 to 255, with a value of 128 specifying silence (no
amplitude). Samples in Macintosh sound resources are stored in offset-binary form.

Twos-complement encoding stores the amplitude values as a signed number—in this
case silence is represented by a sample value of 0. Using the same 8-bit example,
twos-complement values would range from -128 to 127, with 0 meaning silence. The
Audio Interchange File Format (AIFF) used by the Sound Manager stores samples in
twos-complement form, so it is common to see this type of sound in QuickTime movies.

The Movie Toolbox allows you to store information about the sound data in the sound
description. See “The Sound Description Structure,” which begins on page 2-79, for
details on the sound description structure. Sample size indicates the number of bits used
to encode the amplitude value for each sample. The size of a sample determines the
quality of the sound, since more bits can represent more amplitude values. The basic
Macintosh sound hardware supports only 8-bit samples, but the Sound Manager also
supports 16-bit and 32-bit sample sizes. The Movie Toolbox plays these larger samples
on 8-bit Macintosh hardware by converting the samples to 8-bit format before playing
them.

Sample rate indicates the number of samples captured per second. The sample rate also
influences the sound quality, because higher rates can more accurately capture the
original sound waveform. The basic Macintosh hardware supports an output sampling
rate of 22.254 kHz. The Movie Toolbox can support any rate up to 65.535 kHz; as with
sample size, the Movie Toolbox converts higher sample rates to rates that can be
accommodated by the Macintosh hardware when it plays the sound.

In addition to these sample encoding formats, the Movie Toolbox also supports the
Macintosh Audio Compression and Expansion (MACE) capability of the Sound
Manager. This allows compression of the sound data at ratios of 3to 1 or 6 to 1.
Compressing a movie’s sound can yield significant savings in storage and RAM space, at
the cost of somewhat lower quality and higher CPU overhead on playback.

About Movies 2-31

CHAPTER 2

Movie Toolbox

Data Interchange

This section discusses how you can exchange movies between applications on your
Macintosh computer or between your Macintosh and other computers.

Movies on the Clipboard

Working with QuickTime and applications that employ QuickTime, the user may cut,
copy, and paste movies just like any other type of data. When your application performs
a cut or a copy operation, the Movie Toolbox returns a movie. Use the Movie Toolbox’s
Put Movi eOnScr ap and NewMovi eFr onScr ap functions (described on page 2-244 and
page 2-245, respectively) to work with movies on the scrap.

Because a movie contains only references to its media data, it is small enough to put onto
the scrap.

Movies in Files

A QuickTime movie file typically stores a movie in the resource fork of the file. The data
for this movie may reside in the data fork of the same file, or in other files. In fact, a
movie file may have no data fork at all—all the data for a movie may reside in other files.
This allows several movies to share the same data.

The data referenced by a media is always stored in the data fork of a file. Because a
movie can contain more than one media, and each media in a movie can refer to a
different data file, it follows that a single movie may refer to more than one data file.

The Movie Toolbox allows you to create a movie file that contains all of its movie data.
Such files are called self-contained movie files. Self-contained movie files can be used to
move a movie from one Macintosh computer to another.

The Movie Toolbox also accommodates operating systems that do not recognize files
with more than one fork. In this case, you can create a movie file that stores the movie
and all of its data in the data fork of the Macintosh file. You can then transfer that file to a
computer that runs another operating system. For more information, see the chapter
“Movie Resource Formats” later in this book.

Using the Movie Toolbox

2-32

The Movie Toolbox provides functions that allow applications to control all aspects of
movies in Macintosh computer applications. There are Movie Toolbox functions that
provide basic operations for opening and playing movies as well as more complex
functions for the creation and manipulation of the data that makes up the movie’s media.

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

This section discusses a humber of the more common operations your application may
perform with the Movie Toolbox, and it has been divided into the following sections:

n “Determining Whether the Movie Toolbox Is Installed” describes how to use the
Gestalt Manager to retrieve the version of the Movie Toolbox that is installed

n “Getting Ready to Work With Movies” describes the steps you must take before you
can work with QuickTime movies

n “Getting a Movie From a File” discusses how to load a movie from a movie file

n “Playing Movies With a Movie Controller” shows how you can use a movie controller
component to simplify playing a movie

n “Playing a Movie” describes how to play a movie using Movie Toolbox functions

n “Movies and the Scrap” discusses how your application can place movies onto the
system scrap and retrieve movies from the scrap

n “Creating a Movie” shows how you can create a new movie
n “Saving Movies in Movie Files” describes how to save movies into movie files

n “Using Movies in Your Event Loop” discusses how to grant time to the Movie Toolbox
to allow your movies to play

n “The Movie Toolbox and System 6” discusses using the Movie Toolbox on Macintosh
computers that are running System 6

n “Previewing Files” describes how to create and display file previews

n “Using Application-Defined Functions” describes how your application can retrieve
information about long Movie Toolbox operations and perform custom display
processing

n “Working With Movie Spatial Characteristics” shows how to create a track matte

Many of these sections include sample code that demonstrates how to use the Movie
Toolbox.

Determining Whether the Movie Toolbox Is Installed

Use the Gestalt Manager to determine whether the Movie Toolbox is present. (The
Gestalt Manager is fully described in Inside Macintosh: Overview.)

To determine whether the Movie Toolbox is available, use the Gestalt selector
gest al t Qui ckTi nme. This selector has a value of ' gti m . If the Movie Toolbox is not
installed, the Gestalt Manager returns an error.

For a description of how the version number is formatted, see the description of the
numeric version part of the ' ver s' resource in the chapter “Gestalt Manager” in Inside
Macintosh: Overview.

Using the Movie Toolbox 2-33

CHAPTER 2

Movie Toolbox

The code in Listing 2-1 contains a function that demonstrates how your application can
call the Gestalt Manager.

Listing 2-1 Using the Gestalt Manager with the Movie Toolbox

#i ncl ude <Gestalt Equ. h>
#i ncl ude <Movi es. h>

Bool ean 1 sQui ckTinelnstalled (void)

{
short error;
long result;
error = Cestalt (gestaltQuickTinme, &esult);
return (error == nokErr);
}
void main (void)
{
Bool ean qtlnstall ed;
gtinstalled = IsQuickTinmelnstalled ();
}

If you store movies inside your application document rather than just dealing with
movie files, you must account for the possibility that a user’s computer does not have
QuickTime installed. If the Movie Toolbox is not available on a computer, your
application can display a still-image representation of a movie in place of the movie
itself. For example, you can store a PICT image from the movie in the document file, in
addition to the movie itself. Your application can then display that image whenever the
Movie Toolbox is unavailable. If the user tries to play the movie, you should inform the
user that your application cannot play the movie by displaying an alert box like the one
shown in Figure 2-25.

Figure 2-25 An alert box that tells the user that QuickTime is unavailable

2-34

Please place the QuickTime™
extension in your system folder and
then restart your Macintosh.

|

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

Getting Ready to Work With Movies

The Movie Toolbox maintains state information for every application using it. In order to
set up this information for your application, you must initialize the Movie Toolbox. You
initialize the Movie Toolbox by calling the Ent er Movi es function (described on

page 2-82).

You should call the Ent er Movi es function after you have initialized other Macintosh
managers. Before calling this function you should make sure that the Movie Toolbox is
available by calling the Gestalt Manager, as discussed in “Determining Whether the
Movie Toolbox Is Installed” on page 2-33.

If you are writing a standard application, you do not need to call the Exi t Movi es
function. Call the Exi t ToShel | routine instead.

If you are writing a code resource, you may need to call the Exi t Movi es function
(described on page 2-83), which allows the Movie Toolbox to clean up after your
application has finished. After calling Exi t Movi es, you cannot make further calls to the
Movie Toolbox.

Getting a Movie From a File

Before your application can work with a movie, you must load the movie from its file.
Your application must open the movie file and create a new movie from the movie stored
in the file. You can then work with the movie. Use the OpenMovi eFi | e function
(described on page 2-98) to open a movie file. Use the New\bvi eFr onti | e

function (described on page 2-88) to load a movie from a movie file. The code in Listing
2-2 shows how you can use these functions.

Listing 2-2 Getting a movie from a file

Movi e Get Movie (void)

{
OSErr err;
SFTypelLi st typelLi st = {MovieFil eType, 0, 0, 0};
St andardFi | eReply reply;
Movi e aMovie = nil;
short movi eResFi | e;

St andardGet Fil ePreview (nil, 1, typeList, &eply);
if (reply.sfGood)

{
err = OpenMovieFile (&eply.sfFile, &movieResFile,
f sRdPerm ;
if (err == noErr)
{
short movi eResI D = 0; /* want first nmovie */

Using the Movie Toolbox 2-35

CHAPTER 2

Movie Toolbox

Str255 nmovi eNaneg;
Bool ean was Changed;

err = NewMbvi eFronFil e (&Mvie, novi eResFil e,
&ovi eResl D,
novi eNane,
newMbvi eAct i ve, [* flags */
&wasChanged) ;
Cl oseMovi eFil e (novi eResFil e);

}

return albvi e;

}

QuickTime movies are stored in movie files. The Movie Toolbox uses the features of the
Alias Manager and the new File Manager functions to manage a movie’s references to its
data (see “The Movie Toolbox and System 6 which begins on page 2-63 for more
information about these features). A movie file does not necessarily contain the movie’s
data. The movie’s data may reside in other files, which are referred to by the movie file.

When your application instructs the Movie Toolbox to play a movie, the toolbox
attempts to collect the movie’s data. If the movie has become separated from its data, the
Movie Toolbox uses the features of the Alias Manager to locate the data files. During this
search, the Movie Toolbox automatically displays a dialog box similar to that shown in
Figure 2-26. The user can cancel the search by clicking the Stop button.

Figure 2-26 A dialog box used when searching for a movie’'s data

2-36

Searching for movie data in file “Love
My Life, Tokyo 1990%,

The Movie Toolbox performs a number of tests to verify that the file selected by the user
is appropriate for the current movie. These tests include checking the creation date of the
found file against the expected date and checking the size of the found file. The Movie
Toolbox displays a dialog box similar to the one shown in Figure 2-27.

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

Figure 2-27 A dialog box that informs the user the movie file cannot be found

The movie file “Love My Life,

0 Tokyo 1990% cannot be found.
Without this file, the movie
cannot play properly.

The user has two options:

n by clicking Search, the user acknowledges the warning; the Movie Toolbox allows the
user to locate a different data file

n by clicking Cancel, the user instructs the Movie Toolbox to ignore the current data
reference—the Movie Toolbox tries to play the movie without the corresponding
movie data

If the Movie Toolbox cannot locate a needed file, it displays a dialog box that allows the
user to specify a file to try. Figure 2-28 shows a sample dialog box.

Figure 2-28 A dialog box that allows the user to specify a movie file to try

Please locate file “Love My Life, Tokyo 19907, It
was previously on “OuickTime™".

[=2 Ty's Rock & Roll Show |

O Courtesy of ‘The Residents' [{+| =— QuickTime™
0O Courtesy of Todd Rundgren’

Eject
Desktop

Cancel

<

Using the Movie Toolbox 2-37

CHAPTER 2

Movie Toolbox

If the user chooses a file that is not a valid movie file, it displays an alert similar to the
one shown in Figure 2-29.

Figure 2-29 An alert for an invalid movie file

The file “Fred's Surprise™ is not
a valid movie file.

Figure 2-30 An alert when QuickTime cannot be found

2-38

Please place the QuickTime™
extension in your system folder and
then restart your Macintosh.

|

Playing Movies With a Movie Controller

Movie controller components provide a simple method for displaying movies along with
associated play controls. Using a movie controller component is the easiest way to
incorporate a good movie player interface without having to write a substantial amount
of code. A typical movie controller component allows the user to play a movie, make the
movie pause, move forward and backward, and resize the movie’s display. Some movie
controllers may allow the user to edit the movie as well. Figure 2-31 shows Apple’s
movie controller.

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

Figure 2-31 A movie controller playing a movie

SO=——— Pencil Test

Listing 2-3 shows how to play a movie using a movie controller component. This
program uses the Get Movi e function that is defined in Listing 2-2 on page 2-35. Refer to
Inside Macintosh: QuickTime Components for a complete description of movie controller
components and how to use them.

Listing 2-3 Playing a movie using a movie controller component

4
i
i
i
i
i
i
i
i
i
i
i

ncl ude <Types. h>

ncl ude <Menory. h>

ncl ude <Traps. h>

ncl ude <Menus. h>

ncl ude <Fonts. h>

ncl ude <Packages. h>

ncl ude <Gestal t Equ. h>

ncl ude <StandardFil e. h>

ncl ude <QDOf f screen. h>

ncl ude "Movi es. h"

ncl ude "1 nmageConpressi on. h"
ncl ude " Qui ckTi neConponent s. h"

void main (void)

{

Using the Movie Toolbox 2-39

CHAPTER 2

Movie Toolbox

Movi e Controll er

aController;

W ndowPt r aW ndow,

Rect aRect ;

Movi e aMovi e;

Bool ean done = fal se;
OSEr r err,;

Event Record t heEvent;

W ndowPt r whi chW ndow,
short part;

InitGaf (&d.thePort);
InitFonts ();

I nitWndows ();
InitMenus ();

TEInit ();

InitDialogs (nil);

err = EnterMyvies ();

i

Set Rect (&aRect, 100, 100, 200, 200);

aW ndow = NewCW ndow (nil, &aRect, "\pMovie",
fal se, noG owDocProc,
(WndowPtr)-1, true, 0);

Set Port (aW ndow) ;
aMbvie = Get Movie ();
if (aMovie == nil) return;

Set Rect (&aRect, 0, 0, 100, 100);
aControll er = NewMwbvi eController (aMvie, &aRect,
ncTopLeft Movi e) ;

if (aController == nil) return;
err = MCCet Control |l erBoundsRect (aController, &aRect);
Si zeW ndow (aW ndow, aRect.ri ght,
aRect . bottom true);
ShowW ndow (aW ndow) ;
err = MCDoAction (aController,
ncAct i onSet KeysEnabl ed, (Ptr) true);

whil e (!done)

{
Wi t Next Event (ever yEvent,
if (! Ml sPlayerEvent(aController,

& heEvent, 0, nil);
& heEvent))

switch (theEvent. what)

2-40 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox
{
}
}
}

case updat eEvt:
whi chW ndow = (W ndowPt r)t heEvent. nessage;
Begi nUpdat e (whi chW ndow) ;
Er aseRect (&whi chW ndow >port Rect);
EndUpdat e (whi chW ndow) ;
br eak;
case nmouseDown:
part = Fi ndW ndow (theEvent. where,
&whi chW ndow) ;
i f (whichWndow == aW ndow)

{
switch (part)
{
case i nGoAway:
done = TrackGoAway (whi chW ndow,
t heEvent . where) ;
br eak;
case inDrag:
Dr agW ndow (whi chW ndow,
t heBEvent . wher e,
&qd. screenBi ts. bounds) ;
br eak;
}
}

Di sposeMvi eController (aController);
Di sposeMovi e (aMvie);
Di sposeW ndow(aW ndow) ;

Playing a Movie

The easiest way to play a movie is to use a movie controller component. See the previous
section for more information about using movie controller components. If you want to
create your own control for playing movies, you should observe the following guidelines:

n Your application should allow the user to manipulate movies in the same way

that your application allows the user to work with static graphics—the user should be
able to select, resize, cut, copy, and paste movies.

n Your application should save the current position of each movie in a document.

Using the Movie Toolbox

2-41

CHAPTER 2

Movie Toolbox

n Your application should not automatically play the movies in a document when the
user opens the document.

n You should keep your movie controls simple and close to the movie.

n You should be consistent in the way that you allow the user to play a movie. Do not
use single-clicking and double-clicking for the same thing. In general, use a single
click to select a movie and use a double click to play it.

n When printing, your application should print each movie’s current frame. You may
choose to allow the user to select the frame for each movie, perhaps by means of a
special menu item. Be sure not to print any of the user controls.

Once you have loaded a movie, you can play the movie. Your application must perform
the following tasks:

1. Create a window for the movie to play in.

2. Position the movie in the window.

3. Start the movie.

4. Play the movie until it is done.

5. Dispose of the movie when it is done playing.

When you play a movie, the Movie Toolbox processes the movie’s data in the context of
the movie’s time coordinate system. If the movie contains video data, the Movie Toolbox
displays the resulting image in the display window you specify. If the movie contains
audio data, the Movie Toolbox plays that sound track at the volume you set.

You must call the Movi esTask function (described on page 2-124) repeatedly until the
movie is done playing. Each time you call the Movi esTask function, the Movie Toolbox
processes the movie you are playing, updates the display as appropriate, and uses the
Sound Manager to play the movie’s sound. You can use the | sMbvi eDone function
(described on page 2-125) to determine when the movie is finished playing.

The code in Listing 2-4 shows the steps your application must follow in order to play a
movie. This program retrieves a movie, sizes the window properly, plays the movie
forward, and exits. This program uses the Get Movi e function, shown in Listing 2-2 on
page 2-35 to retrieve a movie from a movie file. The movie controller component
supplied by Apple also plays a movie. For more information, see the chapter “Movie
Controller Components” in Inside Macintosh: QuickTime Components.

Listing 2-4 Playing a movie

#i ncl ude <Types. h>
#i ncl ude <Traps. h>
#i ncl ude <Menus. h>
#i ncl ude <Fonts. h>
#i ncl ude <Packages. h>

2-42 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

#i ncl ude <GCestalt Equ. h>
#i ncl ude "Mbvi es. h"
#i ncl ude "I nageConpressi on. h"

/* #include "QuickTi neConponents. h" */
#def i ne doTheRi ght Thi ng 5000

void main (void)

{
W ndowPt r aW ndow,
Rect wi hdowRect ;
Rect novi eBox;
Movi e aMovi e;
Bool ean done = fal se;
CSErr err;

Event Record t heEvent;
W ndowPt r whi chW ndow;
short part;

InitGaf (&qd.thePort);
InitFonts ();

I nitWndows ();
InitMenus ();

TEInit ();

InithDialogs (nil);

err = EnterMyvies ();
if (err) return;

Set Rect (&wm ndowRect, 100, 100, 200, 200);
aW ndow = NewCW ndow (nil, & ndowRect, "\pMovie",
fal se, noG owDocProc, (WndowPtr)-1,

true, 0);
Set Port (aW ndow) ;
aMbvie = GetMwvie ();
if (aMovie == nil) return;

Get Movi eBox (aMovi e, &novi eBox);
O fset Rect (&novi eBox, -novi eBox.|eft, -novieBox.top);
Set Movi eBox (alMbvi e, &novi eBox) ;

Si zeW ndow (aW ndow, novi eBox.right, novi eBox. bottom true);
ShowW ndow (aW ndow) ;

Using the Movie Toolbox 2-43

CHAPTER 2

Movie Toolbox

Set Movi eGMrl d (aMvie, (CG afPtr)aWndow, nil);
Start Movi e (aMovi e);

while (!lsMvieDone(aMovie) && !done)

{
i f (WaitNextEvent (everyEvent, &t heEvent, 0, nil))
{
switch (theEvent.what)
{
case updat eEvt:
whi chW ndow = (W ndowPt r)t heEvent . nessage;
i f (whi chWndow == aW ndow)
{
Begi nUpdat e (whi chW ndow) ;
Updat eMovi e(aMbvi e) ;
Set Port (whi chW ndow) ;
Er aseRect (&whi chW ndow >port Rect);
EndUpdat e (whi chW ndow) ;
}
br eak;
case mouseDown:
part = Fi ndW ndow (theEvent. where,
&whi chW ndow) ;
i f (whichWndow == aW ndow)
{
switch (part)
{
case i nGoAway:
done = TrackGoAway (whi chW ndow,
t heEvent . where) ;
br eak;
case inDrag:
Dr agW ndow (whi chW ndow,
t heEvent . wher e,
&qd. screenBi t s. bounds) ;
br eak;
}
}
br eak;
}
}

2-44 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

Movi esTask (aMovi e, DoTheRi ght Thi ng);

}
Di sposeMovi e (aMvie);
D sposeW ndow (aW ndow) ;

Movies and the Scrap

The Movie Toolbox makes it very easy for your application to deal with the scrap by
providing two high-level functions that handle the details for you. When you want to
put a movie onto the scrap, call the Put Movi eOnScr ap function (described on

page 2-244). When you want to get a movie from the scrap, use the

NewMovi eFr onScr ap function (described on page 2-245).

When you use these functions, the Movie Toolbox takes care of all of the appropriate
resources. For example, when you call the Put Movi eOnScr ap function, the Movie
Toolbox creates a movie resource and a PICT image from the movie, and it places both
on the scrap. In the future, as QuickTime grows, Apple will maintain these functions so
that they continue to handle the appropriate resources.

Creating a Movie

Creating a movie involves several steps. You must first create and open the movie file
that is to contain the movie. You then create the tracks and media structures for the
movie. You then add samples to the media structures. Finally, you add the movie
resource to the movie file. The sample program in this section, Cr eat eWayCool Movi e,
demonstrates this process.

This program has been divided into several segments. The main segment,

Cr eat eMyCool Movi e, creates and opens the movie file, then invokes other functions
to create the movie itself. Once the data has been added to the movie, this function saves
the movie in its movie file and closes the file.

The Cr eat eMyCool Movi e function uses the Cr eat eMyVi deoTr ack

and Cr eat eMySoundTr ack functions to create the movie’s tracks. The

Cr eat eMyVi deoTr ack function creates the video track and the media that contains the
track’s data. It then collects sample data in the media by calling the

AddVi deoSanpl esToMedi a function. Note that this function uses the Image
Compression Manager. The Cr eat eMySoundTr ack function creates the sound track

and the media that contains the sound. It then collects sample data by calling the
AddSoundSanpl esToMedi a function.

Note

Throughout this volume, sound track refers to a QuickTime movie track
that contains sound—as opposed to a soundtrack, which denotes the
entire audio presentation of a movie as filmgoers know it. Consequently,
a soundtrack may be made up of one or more QuickTime sound

tracks. u

Using the Movie Toolbox 2-45

CHAPTER 2

Movie Toolbox

A Sample Program for Creating a Movie

The Cr eat eWay Cool Movi e program consists of a number of segments, many of which
are not included in this sample. Omitted segments deal with general initialization logic
and other common aspects of Macintosh programming. The Handl eEdi t Menu function,
shown in Listing 2-5, has been included here to show how to initialize the Movie Toolbox
with the Ent er Movi es function.

Listing 2-5 Creating a movie: The main program

2-46

"
i
i
i
i
i
i

ncl ude <Types. h>
ncl ude <Traps. h>
ncl ude <Menus. h>
ncl ude <Packages. h>
ncl ude <Menory. h>
ncl ude <Errors. h>
ncl ude <Fonts. h>

"
i
i
i
i
i

ncl ude <Qui ckDr aw. h>
ncl ude <Resources. h>
ncl ude <Gestal t Equ. h>
ncl ude <Fi xMat h. h>
ncl ude <Sound. h>

ncl ude <string. h>

4i
#i

ncl ude "Movi es. h"
ncl ude "1 mageConpressi on. h"

voi d CheckError (OSErr error, Str255 displayString)
{
if (error == noErr) return;
if (displayString[0] > 0)
DebugSt r (di spl ayString);
Exi t ToShel | ();

void I nitMvieTool box (void)

{
OCSErr err;

InitGaf (&qd.thePort);

InitFonts ();
I nitWndows ();

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

InitMenus ();

TEInit ();

InithDialogs (nil);

err = EnterMyvies ();

CheckError (err, "\pEnterMvies");

}
void main(void)
{
I ni t Movi eTool box ();
Creat eMyCool Movie ();
}

A Sample Function for Creating and Opening a Movie File

The Cr eat eMyCool Movi e function, shown in Listing 2-6, contains the main logic for
this program. This function creates and opens a movie file for the new movie. It then
establishes a data reference for the movie’s data (note that, if your movie’s data is stored
in the same file as the movie itself, you do not have to create a data reference—set the
data reference to 0). This function then calls two other functions,

Creat eMyVi deoTr ack and Cr eat eMy SoundTr ack, to create the tracks for the new
movie. Once the tracks have been created, Cr eat eMyCool Movi e adds the new resource
to the movie file and closes the movie file.

Listing 2-6 Creating and opening a movie file

#defi ne kMyCreat or Type ' TVOD

/*
Sanpl e Player's creator type since it is the novie player
of choice. You can use your own creator type, of course.
*/

#define kPronpt "\pEnter novie file name:"

voi d Creat eMyCool Movi e (voi d)
{
Poi nt where = {100, 100} ;
SFReply theSFReply;
Movi e theMovie = nil;
FSSpec ny Spec;

short resRef Num = O;
short resld = 0O;
OSEr r err = nofrr;

Using the Movie Toolbox 2-47

CHAPTER 2

Movie Toolbox

SFPut File (where, "\pEnter novie file nane:",
"\'pMovie File", nil, & heSFReply);
if (!theSFReply.good) return;

FSMakeFSSpec(t heSFRepl y. vRef Num O,
t heSFRepl y. f Nane, &nySpec);

err = CreateMyvieFile (&mySpec,
" TVOD
sntCurrent Scri pt,
creat elMbvi eFi | eDel eteCurFi l e,
& esRef Num
&t heMovi e);
CheckError(err, "\pCreatehMvieFile");

Creat eMyVi deoTrack (theMovie);
Creat eMySoundTrack (theMvie);

err = AddMovi eResource (theMyvie, resRefNum &resld,
t heSFRepl y. f Nane) ;

CheckError(err, "\pAddMovi eResource");

if (resRefNum) C oseMovieFile (resRefNun;

Di sposeMvi e (theMvie);

A Sample Function for Creating a Video Track in a New Movie

The Cr eat eMyVi deoTr ack function, shown in Listing 2-7, creates a video track in the
new movie. This function creates the track and its media by calling the NewiVbvi eTr ack
and NewTr ackMedi a functions, respectively. This function then establishes a
media-editing session and adds the movie’s data to the media. The bulk of this work is
done by the AddVi deoSanpl esToMedi a subroutine. Once the data has been added to
the media, this function adds the media to the track by calling the Movie Toolbox’s

I nsert Medi al nt oTr ack function (described on page 2-265).

2-48 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

Listing 2-7 Creating a video track

#define kVi deoTi neScal e 600

#define kTrackStart 0
#define kMediaStart 0
#define KkFix1 0x00010000

void CreateM/VideoTrack (Mvie theMvie)

{

Track t heTr ack;

Medi a t heMedi a;

OSEr r err = nofrr;

Rect trackFrane = {0, 0, 100, 320};

theTrack = NewMovi eTrack (theMvi e,
Fi xRati o(trackFrane.right, 1),
Fi xRati o(trackFrane. bottom 1),
kNoVol une) ;

CheckError(Get MoviesError(), "\pNewhovieTrack");

t heMedi a = NewTrackMedi a (theTrack, VideoMedi aType,
600, // Video Tinme Scal e
nil, 0);

CheckError(GetMviesError(), "\pNewTlrackMedia");

err = Begi nMedi aEdits (theMedia);
CheckError(err, "\pBegi nMedi aEdits");

AddVi deoSanpl esToMedi a (t heMedi a, &t rackFrane);

err = EndMedi aEdits (theMedia);
CheckError(err, "\pEndMedi aEdits");

err = InsertMedialntoTrack (theTrack, 0,/* track start time */
0, /* nmedia start tinme */

Get Medi aDur ati on (theMedi a),

kFi x1);
CheckError(err, "\plnsertMedi al ntoTrack");

Using the Movie Toolbox

2-49

CHAPTER 2

Movie Toolbox

A Sample Function for Adding Video Samples to a Media

The AddVi deoSanpl esToMedi a function, shown in Listing 2-8, creates video data
frames, compresses each frame, and adds the frames to the media. This function creates
its own video data by calling the Dr awAFr anme function. Note that this function does not
temporally compress the image sequence; rather, the function only spatially compresses
each frame individually.

Listing 2-8 Adding video samples to a media
#def i ne kSanpl eDurati on 240
/* video frames |ast 240 * 1/600th of a second */

#def i ne kNunVi deoFr anes 29

#define KkNoOf fset 0

#defi ne kMgr Choose 0

#define kSyncSanpl e 0

#defi ne kAddOneVi deoSanpl e 1

#defi ne kPi xel Depth 16

voi d AddVi deoSanpl esToMedi a (Medi a t heMedi a,
const Rect *trackFrane)

{
| ong maxConpr essedSi ze;
Gor | dPt r theGwrld = nil;
| ong cur Sanpl e;
Handl e conpressedbData = nil;
Ptr compr essedDat aPt r;
| mgeDescri pti onHandl e i mageDesc = nil;
CGafPtr ol dPort ;
GDHandl e ol dCDevi ceH;
CSErr err = noErr;

err = NewGWrld (& heGnorl d,
16, [* pixel depth */
trackFrane,
nil,
nil,
(GWor | dFl ags) 0);
CheckError (err, "\pNewGnorld");

LockPi xel s (t heGwor | d- >port Pi xMap) ;

2-50 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

err = Get MaxConpressi onSi ze (theGar | d->port Pi xMap,
trackFrane,
0, /* let 1CMchoose depth */
codecNor mal Quality,
‘rle ',
(Conpr essor Conponent) anyCodec,
&maxConpr essedSi ze) ;

CheckError (err, "\pGetMaxConpressionSize");

compr essedDat a = NewHandl e(maxConpr essedSi ze) ;
CheckError(MenError(), "\pNewHandle");

MoveHH (conpressedData);
HLock(conpressedbata);
conpressedDat aPtr = Stri pAddress(*conpressedbData);

i mgeDesc = (| mageDescri pti onHandl e) NewHandl e(4) ;
CheckError(MenError(), "\pNewHandle");

Get GWrld (&ol dPort, &ol dG@evi ceH);
SetGMWrld (theGwrld, nil);

for (curSanple = 1; curSanple < 30; curSanpl e++)
{

Er aseRect (trackFrane);

Dr awFr ame(trackFrane, cur Sanpl e);

err = Conpresslmge (theGarl d->port Pi xMap,
trackFrane,
codecNor mal Quality,
‘rle ',
i mageDesc,
conpressedDat aPtr);
CheckError(err, "\pConpresslmge");

err = AddMedi aSanpl e(t heMedi a,
compr essedDat a,
0, /* no offset in data */
(**i mageDesc) . dat aSi ze,
60, [* franme duration = 1/10 sec */
(Sanpl eDescri pti onHandl e) i mageDesc,
1, [* one sample */

Using the Movie Toolbox 2-51

CHAPTER 2

Movie Toolbox

0, /* sel f-contained sanples */
nil);
CheckError(err, "\ pAddMedi aSanple");
}

Set GWrld (ol dPort, ol dGDevi ceH);
i f (imageDesc) DisposeHandl e ((Handl e)i mageDesc);

i f (conpressedbData) Di sposeHandl e (conpressedDat a);
if (theGworld) D sposeGMrid (theGwrld);

A Sample Function for Creating Video Data for a Movie

The Dr awAFr ane function, shown in Listing 2-9, creates video data for this movie. This
function draws a different frame each time it is invoked, based on the sample number,
which is passed as a parameter.

Listing 2-9 Creating video data

2-52

voi d DrawFrame (const Rect *trackFranme, |ong cur Sanple)

{
Str255 nunttr;

ForeCol or (redColor);
Pai nt Rect (trackFrane);

For eCol or (bl ueCol or);

NumToString (curSanple, nunftr);

MoveTo (trackFrame->right / 2, trackFrame->bottom/ 2);
Text Si ze (trackFrame->bottom/ 3);

DrawString (nunttr);

A Sample Function for Creating a Sound Track

The Cr eat eMySoundTr ack function, shown in Listing 2-10, creates the movie’s sound
track. This sound track is not synchronized to the video frames of the movie—rather, it is
just a separate sound track that accompanies the video data. This function relies upon an
"snd ' resource for its source sound. The Cr eat eMySoundTr ack function uses the

Cr eat eSoundDescr i pt i on function to create the sound description structure for these
samples.

As with the Cr eat eMyVi deoTr ack function discussed earlier, this function creates the
track and its media by calling the NewMbvi eTr ack and NewTr ackMedi a functions,

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

respectively. This function then establishes a media-editing session and adds the movie’s
data to the media. This function adds the sound samples using a single invocation of the
AddMedi aSanpl e function. This is possible because all the sound samples are the same
size and rely on the same sample description (the SoundDescr i pti on structure). If you
use this approach, it is often advisable to break up the sound data in the movie, so that
the movie plays smoothly. After you create the movie, you can call the Fl at t enMovi e
function (described on page 2-105) to create an interleaved version of the movie. Another
approach is to call AddMedi aSanpl e multiple times, breaking the sound into multiple
chunks at that point.

Once the data has been added to the media, this function adds the media to the track by
calling the Movie Toolbox’s | nsert Medi al nt oTr ack function (described on
page 2-265).

Listing 2-10 Creating a sound track

#define kSoundSanpl eDuration 1
#define kSyncSanple 0

#define kTrackStart O

#define kMediaStart O

#define kFix1l 0x00010000

voi d Creat eMySoundTrack (Movi e thelMvie)

{
Track t heTr ack;
Medi a t heMedi a;
Handl e sndHandl e = nil;
SoundDescri pti onHandl e sndDesc = nil;
| ong sndDat aOf f set ;
| ong sndDat aSi ze;
| ong nunmanpl es;
OSEr r err = noErr;

sndHandl e = Get Resource ('snd ', 128);
CheckError (ResError(), "\pCetResource");
if (sndHandle == nil) return;

sndDesc = (SoundDescri pti onHandl e) NewHandl e(4);
CheckError (MenkError(), "\pNewHandle");

Creat eSoundDescri ption (sndHandl e,
sndDesc,

Using the Movie Toolbox 2-53

CHAPTER 2

Movie Toolbox

&sndDat aOf f set
&nunanpl es,
&sndDat aSi ze);

theTrack = NewMovi eTrack (theMovie, 0, 0, kFull Vol une);
CheckError (GetMviesError(), "\pNewMvieTrack");

t heMedi a = NewTrackMedi a (theTrack, SoundMedi aType,
Fi xRound ((**sndDesc). sanpl eRat e),
nil, 0);

CheckError (GetMviesError(), "\pNewTlrackMedia");

err = Begi nMedi aEdits (theMedi a);
CheckError(err, "\pBegi nMedi aEdits");

err = AddMedi aSanpl e(t heMedi a,

sndHandl e,

sndDat aOffset, /* offset in data */

sndDat aSi ze,

1, [* duration of each sound sanple */
(Sanpl eDescri pti onHandl e) sndDesc,

nunBSanpl es,

0, /* sel f-contained sanpl es */

nil);

CheckError(err, "\pAddMedi aSanple");

err = EndMedi aEdits (theMedia);
CheckError(err, "\pEndMedi aEdits");

err = InsertMedial ntoTrack (theTrack,
o, /* track start tinme */
0, /[* nmedia start time */
Get Medi aDur ati on (theMedi a),
kFi x1);

CheckError(err, "\plnsertMedi al ntoTrack");

if (sndDesc != nil) DisposeHandl e((Handl e) sndDesc);

2-54 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

A Sample Function for Creating a Sound Description Structure

The Cr eat eSoundDescri pti on function, shown in Listing 2-11, creates a sound
description structure that correctly describes the sound samples obtained from the
"snd ' resource. This function can handle all the sound data formats that are possible
in the sound resource. This function uses the Get SndHdr O f set function to locate the
sound data in the sound resource.

Listing 2-11 Creating a sound description

/* Constant definitions */

/*
for the followi ng constants, please consult the Mucintosh
Audi o Conpression and Expansi on Tool ki t

*/

#defi ne kMACEBegi nni ngNunber Of Bytes 6

#def i ne KMACE31MonoPacket Si ze 2

#defi ne KMACE31St er eoPacket Size 4

#def i ne KMACE61MonoPacket Size 1

#def i ne KMACE61St er eoPacket Si ze 2

voi d Creat eSoundDescri ption (Handl e sndHandl e,
SoundDescri pti onHandl esndDesc,
| ong *sndDat aO>f f set,
| ong *nunBanpl es,
| ong *sndDat aSi ze)

{
| ong sndHdr O f set = 0;
| ong sanpl eDat adf f set ;
SoundHeader Pt r sndHdrPtr = nil;
| ong nunfr ames;
| ong sanpl esPer Fr ane;
| ong byt esPer Fr ane;
Si gnedByt e sndHSt at e;
SoundDescri pti onPtr sndDescPtr;

*sndDat alOf f set = 0O;
*nunBanpl es = O;
*sndDat aSi ze = 0;

Set Handl eSi ze((Handl e) sndDesc,

si zeof (SoundDescri ption));

CheckError(MenError(), "\ pSet Handl eSi ze") ;

Using the Movie Toolbox

2-55

CHAPTER 2

Movie Toolbox

sndHdr O f set = Get SndHdr O f set (sndHandl e) ;
if (sndHdrOfset == 0) CheckError(-1, "\pGetSndHdrOifset ");

/* we can use pointers since we don't nmove nmenory */
sndHdr Ptr = (SoundHeaderPtr) (*sndHandle + sndHdrOf fset);
sndDescPtr = *sndDesc;

sndDescPtr->descSi ze = sizeof (SoundDescription);

/* total size of sound description structure */
sndDescPtr->resvdl 0;
sndDescPtr->resvd2 = 0;
sndDescPt r - >dat aRef | ndex = 1;
sndDescPt r - >conpressi onl D = 0;
sndDescPtr - >packet Si ze = 0;
sndDescPtr->version = 0
sndDescPtr->revl evel =
sndDescPtr->vendor = O;

0;

switch (sndHdrPtr->encode)
{
case stdSH:
sndDescPtr->dataFormat = 'raw ';
/* unconpressed offset-binary data */
sndDescPt r- >nuntChannel s = 1;
/* nunber of channels of sound */
sndDescPtr->sanpl eSi ze = 8;
/* nunmber of bits per sanple */
sndDescPtr - >sanpl eRat e = sndHdr Ptr - >sanpl eRat e;
/* sanple rate */

*nunBanpl es = sndHdr Ptr - >l engt h;
*sndDat aSi ze = *nunBanpl es;
byt esPer Frane = 1,

sanpl esPer Frame = 1;
sampl eDat aOf fset = (Ptr) &ndHdr Ptr - >sanpl eAr ea

- (Ptr)sndHdrPtr;
br eak;

case ext SH:
{
Ext SoundHeader Pt r ext SndHdr P;

ext SndHdr P = (Ext SoundHeader Pt r) sndHdr Pt r ;

2-56 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

sndDescPtr->dataFormat = 'raw ';

/* unconpressed offset-binary data */

sndDescPt r - >nuntChannel s = ext SndHdr P- >nuntChannel s;

/* nunber of channels of sound */

sndDescPtr->sanpl eSi ze = ext SndHdr P- >sanpl eSi ze;

/* nunmber of bits per sanple */

sndDescPtr - >sanpl eRat e = ext SndHdr P- >sanpl eRat e;

/* sanple rate */

nunframes = ext SndHdr P- >nuntr anes;
*nunBSanpl es = nunfranes;
byt esPer Franme = ext SndHdr P- >nuntChannel s *

(ext SndHdr P- >sanpl eSi ze / 8);

sampl esPer Frame = 1;
*sndDat aSi ze = nunfranes * byt esPer Franeg;
sanpl eDat aOf fset = (Ptr) (& ext SndHdr P- >sanpl eAr ea)

- (Ptr)ext SndHdr P;

}

br eak;
case cnpSH.
{

CmpSoundHeader Pt r cnpSndHdr P;

cnpSndHdr P = (CpSoundHeader Pt r) sndHdr Pt r ;
sndDescPt r - >nuntChannel s = cnpSndHdr P- >nuntChannel s;

/* nunber of channels of sound */

sndDescPtr->sanpl eSi ze = cnpSndHdr P- >sanpl eSi ze;

/* number of bits per sanple before conpression */

sndDescPtr - >sanpl eRat e = cnpSndHdr P- >sanpl eRat e;

/* sanple rate */

nunFranmes = cnpSndHdr P- >nunfr anes;
sanpl eDat aOf fset =(Ptr) (& npSndHdr P- >sanpl eAr ea)

- (Ptr)cnpSndHdr P;

swi tch (cnpSndHdr P- >conpr essi onl D)

{

case threeToOne:

sndDescPtr - >dat aFormat = ' MAC3';

/* conpressed 3:1 data */

sanpl esPer Frane = kMACEBegi nni ngNunber O Byt es;
*nunBSanpl es = nunfranmes * sanpl esPer Fr ane;
switch (cnmpSndHdr P- >nuntChannel s)

{

case 1:

Using the Movie Toolbox 2-57

CHAPTER 2

Movie Toolbox

byt esPer Frame = cnpSndHdr P- >nuntChannel s
* kMACE31MonoPacket Si ze;
br eak;
case 2:
byt esPer Franme = cnpSndHdr P- >nuntChannel s
* kMACE31St er eoPacket Si ze;
br eak;
defaul t:
CheckError (-1, "\pCorrupt sound data");
br eak;
}
*sndDat aSi ze = nunfranes * byt esPer Franeg;
br eak;
case si xToOne:
sndDescPtr->dat aFormat = ' MACE' ;
[* conpressed 6:1 data */
sanpl esPer Frame = kMACEBegi nni ngNunber Of Byt es;
*nunBSanpl es = nunfFranes * sanpl esPer Fr ane;
swi tch (cnpSndHdr P- >nuntChannel s)

{
case 1:
byt esPer Frame = cnpSndHdr P- >nuntChannel s
* kMACE61MonoPacket Si ze;
br eak;
case 2:
byt esPer Franme = cnpSndHdr P- >nuntChannel s
* KMACE61St er eoPacket Si ze;
br eak;
defaul t:
CheckError (-1, "\pCorrupt sound data");
br eak;
}
*sndDat aSi ze = (*nunSanpl es) * byt esPer Fr ane;
br eak;
defaul t:
CheckError (-1, "\pCorrupt sound data");
br eak;
}
} /* switch cnpSndHdr P- >conpressi onl D: */

br eak; [* of cnmpSH:. */

defaul t:
CheckError (-1, "\pCorrupt sound data");

2-58 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

br eak;

} /[* switch sndHdr Ptr->encode */
*sndDat aOf f set = sndHdr Of f set + sanpl eDat aCf f set ;

Parsing a Sound Resource

The Get SndHdr O f set function, shown in Listing 2-12, parses the specified sound
resource and locates the sound data stored in the resource. The Get SndHdr O f set
function cruises through a specified' snd ' resource. It locates the sound data, if any,
and returns its type, offset, and size into the resource.

The Get SndHdr O f set function returns an offset instead of a pointer so that the data is
not locked in memory. By returning an offset, the calling function can decide when and if
it wants the resource locked down to access the sound data.

The first step in finding this data is to determine if the ' snd ' resource is format (type)
1 or format (type) 2. A type 2 is easy, but a type 1 requires that you find the number of
"snt h' resource types specified and then skip over each one, including the i ni t
option. Once you do this, you have a pointer to the number of commands in the' snd
resource. When the function finds the first one, it examines the command to find out if it
is a sound data command. Since it is a sound resource, the command also has its

dat aPoi nt er FI ag parameter set to 1. When the function finds a sound data command,
it returns its offset and type, and exits.

WARNING

Do not send the Get SndHdr O f set function ani | handle; if you do,
your system will crash. s

Listing 2-12 Parsing a sound resource

typedef SndCommand *SndCndPtr;

typedef struct

f ormat;
nunBSynt hs;

} SndlHeader, *SndlHdrPtr, **SndlHdr Hndl ;

typedef struct

format;
r ef Count ;

} Snd2Header, *Snd2HdrPtr, **Snd2Hdr Hndl ;

Using the Movie Toolbox 2-59

CHAPTER 2

Movie Toolbox

typedef struct

{
short synt hl D,

| ong i nitOption;
} Synthlnfo, *SynthlnfoPtr;

| ong Get SndHdr Of f set (Handl e sndHandl e)

{
short howianyCnds;

I ong sndOffset = 0;
Ptr sndPtr;

if (sndHandle == nil) return O;
sndPtr = *sndHandl e;
if (sndPtr == nil) return O;

if ((*(SndlHdrPtr)sndPtr).format == first SoundFor mat)

{
short synths = ((SndlHdr Ptr)sndPtr)->nuntynt hs;
sndPtr += sizeof (SndlHeader) + (sizeof (Synthlnfo) * synths);
} else
{
sndPtr += si zeof (Snd2Header);
}

howvanyCnds = *(short *)sndPtr;

sndPtr += si zeof (howManyCnids) ;
/*
sndPtr is now at the first sound conmmand--cruise all
commands and find the first soundCnrd or bufferCnd
*/
whi | e (howvanyCrds > 0)
{
switch (((SndCndPtr)sndPtr)->cnd)
{
case (soundCnd + dataOf fsetFl ag):
case (bufferCnmd + dataO fsetFlag):
sndOf fset = ((SndCdPtr) sndPtr) - >par an®;
howvanyCnds = 0;/* done, get out of |oop */
br eak;
defaul t: /* catch any other type of commands */

2-60 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

sndPtr += si zeof (SndConmand) ;
howvany Cnds- - ;
br eak;

} /* done with all comrands */

return sndOf f set;
} [* of GetSndHdr Of fset */

Saving Movies in Movie Files

The Movie Toolbox allows you to save movies in movie files. Movie files have a file type
of' MooV . Typically, the movie itself is stored in the resource fork of the movie file. The
movie’s data may reside in the data fork of the movie file, or in other files.

When you create a new movie, you must create a file to contain the movie data. Use the
Cr eat eMovi eFi | e function (described on page 2-96) to create a new movie file. This
function returns a file system reference number that you must use to identify the file to
other Movie Toolbox functions. You can add your movie to the file by calling the
AddMbvi eResour ce function (described on page 2-102). When you are done with the
file, you close it by calling the Cl oseMvi eFi | e function (described on page 2-99). Your
movie is now safely stored in the movie file.

If you are working with an existing movie, you must read that movie from a movie file
or choose a movie from the scrap. You first open the movie file by calling the

OpenMvi eFi | e function (described on page 2-98). You then load the movie from that
file by calling the NewMovi eFr onfi | e function (described on page 2-88). Alternatively,
you can use the NewMovi eFr omHandl e function (described on page 2-90). After you
have edited the movie, you must store it in your file if you want to save your changes. If
you want to replace the old movie, use the Updat eMovi eResour ce function (described
on page 2-103). If you want to keep the old movie, create a new movie by calling the
AddMovi eResour ce function described on page 2-102 (a movie file may contain more
than one movie resource). You should then close the movie file by calling the

Cl oseMovi eFi | e function (described on page 2-99).

The Movie Toolbox maintains a changed flag for each movie your application loads. You
can use this flag to determine when to save your movie. The Movie Toolbox sets this flag
tot r ue whenever you make a change to a movie that should be saved. You can read this
flag by calling the HasMovi eChanged function (described on page 2-101). You can set
the flag to f al se by calling the Cl ear Movi eChanged function (described on

page 2-102).

The Movie Toolbox provides two functions for deleting movies: Del et eMbvi eFi | e and
RenoveMovi eResour ce. Use Del et eMovi eFi | e (described on page 2-100) to delete a
movie file. Use RenobveMvi eResour ce (described on page 2-104) to delete a movie
from a movie file. Don’t use the corresponding standard Macintosh Toolbox routines
(FSpDel et e and RmveResour ce). The Movie Toolbox maintains movie references
between files correctly whereas these routines do not.

Using the Movie Toolbox 2-61

CHAPTER 2

Movie Toolbox

The Movie Toolbox allows you to create movie files that contain all of their movie data,
rather than containing references to data in other files. This may be necessary when
creating a version of a movie that is to be moved to another computer system. The Movie
Toolbox also accommodates operating systems that do not recognize files that contain
more than one fork. In this case, you can use the Fl at t enMovi e or

Fl at t enMbvi eDat a functions (described on page 2-105 and page 2-107, respectively)
to create a movie file that stores the movie and all of its data in the data fork of a
Macintosh file. You can then transfer that file to another operating system. Your
application may allow the user to decide how to save the movie. In this case, you can use
a Save As dialog box similar to the one shown in Figure 2-32. In this dialog box, the user
can elect to create a movie file that contains all of the data for a movie by clicking the
“Make movie self-contained” radio button.

Figure 2-32 A sample movie Save As dialog box

2-62

It B b Henuen — walker
L Hapny Moss —

TR £ rRR
L dnteresiing Deskio

- E _IJ
O dph-rouh _
o Hip
Mew file name: |M|
|Samp|e Mouvie | Cancel

{2 Save normally (allowing dependencies)
Estirmated file size: 1K

@ Make movie self-contained
Estimated file size : 263K

Using Movies in Your Event Loop

Your application needs to grant time to the Movie Toolbox to allow your movies to play.
To do this, you call the Movi esTask function from your main event loop. The

Movi esTask function (described on page 2-124) instructs the Movie Toolbox to service
all your active movies. Call Movi esTask regularly so that your movie can play
smoothly. You can use the Updat eMovi e function to force your movie to be redrawn
after it has been uncovered. It will not be redrawn until the next call to Movi esTask.

Your application should call Updat eMovi e between the Window Manager’s

Begi nUpdat e and EndUpdat e functions. (For details on Begi nUpdat e and

EndUpdat e, see Inside Macintosh: Macintosh Toolbox Essentials.) Do not call Movi esTask
at this time. You will observe better display behavior if you call Movi esTask at the end
of your update processing.

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

The code shown in Listing 2-13 demonstrates the use of the Updat eMbvi e function in a
Window Manager update sequence. For the Movie Toolbox to know that it has to display
(or update) a movie when Movi esTask is called, you must call Updat eMovi e as
shown. If you are using the movie controller component and call the

MCI sPl ayer Event function, you do not need to call Updat eMovi e in response to an
update event. (See the chapter “Movie Controller Component” in Inside Macintosh:
QuickTime Components, for details on MCl sPl ayer Event .)

Note

Contrary to normal update handling, where applications draw to the
window in between calls to Begi nUpdat e and EndUpdat e, you should
not call Movi esTask. u

The Updat eMovi e function tells the Movie Toolbox that a portion of the movie has been
invalidated. However, it is not redrawn until Movi esTask is called.

Listing 2-13 Handling movie update events

#i ncl ude <Events. h>
#i ncl ude <Tool Util s. h>
#i ncl ude "Mbvi es. h"

voi d DoUpdate (W ndowPtr theW ndow, Mbvie theMyvie)
{

Begi nUpdat e (theW ndow) ;

Updat eMovi e (theMovi e);

EndUpdat e (t heW ndow) ;
} /* DoUpdate */

The Movie Toolbox and System 6

The Movie Toolbox makes extensive use of some of the facilities of System 7. In
particular, the toolbox uses the features of the Alias Manager and the new File Manager
routines that support the FSSpec data type. In order to allow you to use QuickTime on
Macintosh computers that are running System 6, QuickTime provides its own support
for these features.

This section discusses the details of the Movie Toolbox’s support. For a complete
description of the Alias Manager and File Manager features of System 7, refer to Inside
Macintosh: Files.

Note

Track mattes are approximated. The System 7 version of the Time
Manager is installed, but not its Gestalt selector. u

Using the Movie Toolbox 2-63

2-64

CHAPTER 2

Movie Toolbox

The Alias Manager

When you run the Movie Toolbox on a Macintosh computer that is running System 6,
QuickTime installs a limited version of the Alias Manager. This version of the Alias
Manager supports most of the routines that are supported by the standard manager. In
addition, aliases you create in System 6 are completely compatible with those you create
in System 7. However, the limited version of the Alias Manager does not support relative
aliases, does not search multiple volumes, does not support exhaustive searches, and
does not mount network volumes.

The following list provides more detailed information about this limited version of the
Alias Manager.

n The NewAl i as function is supported and acceptsaf r onFi | e specification; however,
the function does not create relative aliases.

n The NewAl i asM ni mal Fr onful | Pat h function is not supported.

n The Resol veAl i as function is supported and accepts a f r onFi | e specification;
however, the function ignores this parameter.

n The Resol veAl i asFi | e function is not supported.

n The Mat chAl i as function is supported, but it ignores the k ARMSear chMor e,
kARMSear chRel Fi r st , and KARMMUI t Vol s options of the r ul esMask parameter.

n The Updat eAl i as function is supported and accepts af r onFi | e specification;
however, the function ignores this parameter.

Note

This limited version of the Alias Manager does not install the Alias
Manager’s Gestalt selector. If your application relies on more support
than this version supplies, be sure to examine the Alias Manager’s
Gestalt selector. u

The File Manager

The Movie Toolbox uses the File Manager functions that support the file system
specification structures (of type FSSpec). When you use QuickTime on Macintosh
computers that are running System 6, QuickTime installs support for most of the new
File Manager routines. These routines behave the same as they do in System 7.

Specifically, QuickTime provides support for the following File Manager functions that
use the FSSpec data type:

FSMakeFSSpec FSpOpenDF
FSpOpenRF FSpCreate
FSpDi r Creat e FSpDel et e
FSpGet FI nf o FSpSet FI nf o
FSpSet FLock FSpRst FLock

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

FSpRenanme FSpCat Move
FSpOpenResFi |l e FSpCreat eResFi |l e
FSpGet Cat | nf o

QuickTime does not support the FSpExchangeFi | es function.

Note

QuickTime does not install the File Manager’s Gestalt selector for the
functions that support the FSSpec data type. If QuickTime is installed,
you can assume that these File Manager functions are supported, even if
gest al t HasFSSpecCal | s isnot set. u

Previewing Files

QuickTime includes extensions to the Standard File Package that allow you to create and
display file previews—information that gives the user an idea of a file’s contents without
opening the file. Typically, a file’s preview is a small PICT image (called a thumbnail), but
previews may also contain other types of information that is appropriate to the type of
file being considered. For example, a text file’s preview might tell the user when the file
was created and what it discusses. You can use the Image Compression Manager to
create thumbnail images—see the chapter “Image Compression Manager” later in this
book for more information about thumbnail images.

QuickTime provides new standard file functions that your application can use to display
afile’s preview during the Open dialog box. These functions allow your application to
support previews automatically.

Note

Before using these new standard file functions, make sure that the Image
Compression Manager is installed. See the chapter “Image Compression
Manager” in this book for information about the Image

Compression Manager’s Gestalt selector. u

In addition, the Movie Toolbox includes two functions that allow you to create a preview
for a file.

Previewing Files in System 6 Using Standard File Reply Structures

The Movie Toolbox provides two new standard file functions that allow you to display
file previews in an Open dialog box in System 6 using standard file reply structures:
SFCet Fi | ePrevi ewand SFPCet Fi | ePr evi ew The SFGet Fi | ePr evi ewfunction
(described on page 2-306) corresponds to the existing SFGet Fi | e function;

the SFPGet Fi | ePr evi ewfunction (described on page 2-308) corresponds to the

existing SFPGet Fi | e function. Both of these new functions take the same parameters as
their existing counterparts. For information about SFCet Fi | e and SFPCet Fi | e, see
Inside Macintosh: Files.

Using the Movie Toolbox 2-65

CHAPTER 2

Movie Toolbox

IMPORTANT
All the functions for previewing files are present in System 6 except the
Cust ontet Fi | ePr evi ewfunction. The St andar dGet Fi | ePr evi ew
function is preferable and will work on System 6. s

The SFCGet Fi | ePr evi ewfunction uses the dialog box shown in Figure 2-33. The
SFPCet Fi | ePr evi ewfunction can also use this dialog box, if you do not supply
your own.

Figure 2-33 SFGet Fi | ePrevi ewor SFPGet Fi | ePr evi ewdialog box without preview

[Uncompressed |

[Backup the Cat [+ = QuickTime™...
[bike

D Callisto Dalhalla
[Deco House
0 Dry Cleaning

D Ganymede [e
[Ganymede Large
O Jaguar

D Jet 5

[J show Preview

You use these new functions in place of the existing standard file functions to indicate
whether or not you want to allow the user to display previews during the Open dialog
box. The user displays a file’s preview by selecting a file in the dialog box and clicking
Show Preview. When the user does so, the functions display the preview for the file,

as shown in Figure 2-34.

Figure 2-34 SFGet Fi | ePrevi ewor SFPGet Fi | ePr evi ewdialog box with preview

[= Uncompressed |

Preview O Backup the Cat [+ QuickTime™...
O bike B
0 Callisto Valhalla
O Deco Huus:e
0 Dry Cleaning
D Ganymede [e
O Ganymede Large
0O Jaguar

Lroaie 0 Jet Iy

] Show Preview

2-66 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

The preview area of the dialog box is displayed whenever previewing is enabled.

Customizing Your Interface in System 6

If your application requires it, you can customize the user interface for identifying files.
The SFGet Fi | ePr evi ewfunction does not allow you to use a custom dialog box by
creating your own dialog template resource. However, the SFPGet Fi | ePr evi ew
function does let you access a custom dialog box of any resource type with the dl gl D
parameter.

Figure 2-35 shows the standard dialog box used by SFPGet Fi | ePr evi ewand
SFGet Fi | ePr evi ew Your dialog box and dialog filter function must support at least
these dialog items.

Note

Alter the dialog boxes only if necessary. Apple does not guarantee future
compatibility if you use a customized dialog box. u

Figure 2-35 Standard preview dialog box for SFGet Fi | ePr evi ewand SFPGet Fi | ePr evi ew

IH§H

Cancel

[O show Prewill=]

Items to the left of item 13 are visible only when previewing. If you want to define items
that are visible only during a file preview, place them to the left of item 13 in your
custom dialog box.

If your application defines a custom dialog box, be sure to include the following items in
your dialog box definition:

enum

{

/* dialog itens to include in dialog box definition for use
with SFPCet Fi | ePrevi ew function

*/
sfpl t enPrevi ewAr ealUser = 11, [* user preview area */
sfpltenPrevi ewSt ati cText = 12, /* static text preview */

Using the Movie Toolbox 2-67

CHAPTER 2

Movie Toolbox

sfpltenPrevi ewDi vi der User = 13, [* user divider preview */
sfpltenCreat ePrevi enButton = 14, /* create preview button */
sf pl t enShowPr evi ewBut t on = 15 /* show preview button */

H

Previewing Files in System 7 Using Standard File Reply Structures

The Movie Toolbox provides two new standard file functions,

st andar dGet Fi | ePr evi ewand Cust ontGet Fi | ePr evi ew that allow you to display
file previews in an Open dialog box in System 7 using standard file reply structures (of
type St andar dFi | eRepl y). The St andar dGet Fi | ePr evi ewfunction (described on
page 2-310) corresponds to the existing St andar dGet Fi | e function; the

Cust ontet Fi | ePr evi ewfunction (described on page 2-312) corresponds to the
existing Cust ontet Fi | e function. Both of these new functions take the same
parameters as their existing counterparts. See Inside Macintosh: Files for information
about St andar dGet Fi | e and Cust onCGet Fi | e.

The St andar dGet Fi | ePr evi ewfunction uses the dialog box shown in
Figure 2-36. The Cust onGet Fi | ePr evi ewfunction can also use this dialog box, if you
do not supply your own.

Figure 2-36 St andar dGet Fi | ePr evi ewor Qust onGet Fi | ePr evi ewdialog box without

2-68

preview

|E] Uncompressed v | — QuickTime™...

Backup the Cat

bike

Callisto Ualhalla Desktop

]

0O

]

[0 Deco House
O Dry Cleaning
]
0O

Ganymede
Ganymede Large r_]
O Jaguar [Open |

[] Show Preview

You use these new functions in place of the existing standard file functions

whenever you want to allow the user to display previews during the Open dialog box.
The user causes a file’s preview to be displayed by selecting a file in the dialog box and
clicking Show Preview. When the user does so, the functions display the preview for the
file, as shown in Figure 2-37.

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

Figure 2-37 St andar dGet Fi | ePr evi ewor Qust onGet Fi | ePr evi ewdialog box with preview

|ﬁ| Uncompressed v |

Preview
[0 Backup the Cat
[bike

O Callisto Valhalla
O Deco House

O Dry Cleaning

O Ganymede

0 canymede Large

{renty O Jaguar

— QuickTime™...

[<] Show Preview

The preview portion of the dialog box is displayed only when the dialog box is showing

afile’s preview.

The SFGet Fi | ePr evi ew SFPGet Fi | ePr evi ew St andar dGet Fi | ePr evi ew and

Cust ontet Fi | ePr evi ewfunctions allow the user to automatically convert files to
movies if your application requests movies. If there is a file that can be converted into

a movie file using a movie import component, then the file is shown in the Standard File

dialog box in addition to any movies. When the user selects the file, the Open button
changes to a Convert button. Figure 2-38 provides an example of this dialog box.

Figure 2-38 Dialog box showing automatic file-to-movie conversion option

— walker ¥

Preview
Digital Film
discipline
Dumpster

E<])))) EarthSpin

Is anystereo?
Is anystereo?(fast)

]
]
(]
0
O Elvis (RIFF)
O for doug
0
frsais O
|

Show Preview

Using the Movie Toolbox

2-69

CHAPTER 2

Movie Toolbox

Choosing Convert displays a dialog box that allows the user to choose where the
converted file should be saved. Figure 2-39 shows this dialog box.

Figure 2-39 Dialog box for saving a movie converted from a file

2-70

= transylvania

fEmt

0 Bivds

0% Brdue e
dusiray
T

i LR
mivint aaxl
LI osndEnten

1 mountain?

Desktop

Gptiong...

Cancel

E

Save converted file as:
[Elis (RIFF) Movie | [save

O
—

When conversion is complete, the converted file is returned to the calling application as
the movie that the user chose. If you want to disable automatic file conversion in your
application, you must write a file filter function and pass it to the file preview display
function you are using. Your file filter function must call the File Manager's

FSpGet Fi | el nf o function on each file that is passed to it to determine its actual file
type. If the File System parameter block pointer passed to your file filter function
indicates that the file type is ' MooV , and the actual type returned by FSpGet Fi | el nf o
isnot' MooV , then the file filter function will convert this file. If you do not wish a file
to be displayed as a candidate for conversion, your file filter function should return a
value of t r ue when it is called for that file.

See “File Filter Functions” beginning on page 2-360 for comprehensive details on the
interaction of application-defined file filter functions with the file preview display
functions. For information on FSpGet Fi | el nf o, see Inside Macintosh: Files.

Customizing Your Interface in System 7

If your application requires it, you can customize the user interface for identifying files.
The Cust ontzet Fi | ePr evi ewfunction allows you to specify a custom dialog box of
any resource type with the dl gl D parameter.

Figure 2-40 shows the standard dialog box used by Cust ontzet Fi | ePr evi ew Your
dialog box and dialog filter function must support at least these dialog items.

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

Note
Alter the dialog boxes only if necessary. Apple does not guarantee future
compatibility if you use a customized dialog box. u

Figure 2-40 Standard preview dialog box for Qust ontet Fi | ePr evi ew

Eject

Desktop

=

Cancel

|D Show Preuii‘_f'_|

Items to the left of item 13 are visible only when previewing. If you want to define items
that are visible only during a file preview, place them to the left of item 13 in your
custom dialog box.

If your application defines a custom dialog box, be sure to include the following items in
your dialog box definition:

enum

{

/* dialog itens to include in dialog box definition */
sfpl t enPrevi ewAr ealUser = 11, /* user preview area */
sfpltenPrevi ewSt ati cText = 12, /* static text preview */

sfpltenPrevi ewbi vi der User 13, /* user divider preview */
sfpl t enCr eat ePrevi ewButt on 14, /* create preview button */
sf pl t enShowPr evi ewBut t on = 15 /* show preview button */

H

Using Application-Defined Functions

The Movie Toolbox allows your application to define functions that are invoked during
specific operations. You can create a progress function that monitors the Movie
Toolbox’s progress on long operations, and you can create a cover function that allows
your application to perform custom display processing.

See “Application-Defined Functions,” which begins on page 2-354, for comprehensive
details on these two types of functions.

Using the Movie Toolbox 2-71

CHAPTER 2

Movie Toolbox

Listing 2-14 shows two sample cover functions. Whenever a movie covers a portion of a
window, the MyCover Pr oc function removes the covered region from the window’s
clipping region. When a movie uncovers a screen region, the MyUncover Pr oc function
invalidates the region and adds it to the window’s clipping region. By invalidating the
region, this function causes the application to receive an update event, informing the
application to redraw its window. The | ni t Cover Pr ocs function initializes the
window’s clipping region and installs these cover functions.

Listing 2-14 Two sample movie cover functions

2-72

pascal OSErr MyCoverProc (Mvie aMvie, RgnHandl e changedRgn,
| ong refcon)

{
CGafPtr nPort ;
GDHandl e 1€
Get Movi eGMWFrl d (aMovie, &nPort, &nED);
D ffRgn (nmPort->clipRgn, changedRgn, nPort->clipRgn);
return noErr;
}

pascal OSErr MyUnCover Proc (Movie aMyvie, RgnHandl e changedRgn,
| ong refcon)

CG af Ptr mPort, curPort;
GDHandl e m&D, cur A,

Get Movi eGMIrl d (aMovie, &rPort, &nED);
GetGWOrld (&curPort, &cur@D);
SetGwrld (mPort, nGD);

I nval Rgn (changedRgn) ;
Uni onRgn (nPort->clipRgn, changedRgn, nPort->clipRgn);

Set GWrld (curPort, curG);
return noErr;

}

voi d I nitCoverProcs (WndowPtr aWndow, Mvie alMvie)
{

Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

RgnHandl e di spl ayBounds;
GafPtr cur Port;

di spl ayBounds = Get Movi eDi spl ayBoundsRgn (aMovi e);
i f (displayBounds == nil) return;

Get Port (&curPort);

Set Port (aW ndow) ;

Cli pRect (&aW ndow >port Rect);

Di ff Rgn (aW ndow >cl i pRgn, di spl ayBounds, aW ndow- >cli pRgn);
Di sposeRgn(di spl ayBounds);

Set Port (curPort);

Set Movi eCover Procs (aMovi e, &WUnCover Proc, &WCover Proc, 0);

Working With Movie Spatial Characteristics

The following section provides an example of how to create a track matte.

Listing 2-15 provides an example of how to create a track matte. The

Creat eTr ackMat t e function adds an uninitialized, 8-bit-deep, grayscale matte to a
track. The Updat eTr ackMat t e function draws a gray ramp rectangle around the edge
of the matte and fills the center of the matte with black. (A ramp rectangle shades
gradually from light to dark in smooth increments.)

Listing 2-15 Creating a track matte

void CreateTrackMatte (Track theTrack)

{

QErr err;
GWor |l dPtr aGW

Rect trackBox;

Fi xed trackHei ght;

Fi xed trackW dt h;
CTabHandl e grayCTab;

Get TrackDi nensi ons (theTrack, &t rackWdth, &trackHeight);
Set Rect (&t rackBox, 0, 0, FixRound (trackWdth),
Fi xRound (trackHei ght));

Using the Movie Toolbox 2-73

CHAPTER 2

Movie Toolbox

grayCrlab = GetCTabl e(40); /* 8 bit + 32 = 8 bit gray */
err = NewGWrld (& GWN 8, &t rackBox, grayCrTab,
(CGDHandl e) nil, 0);
Di sposeCTabl e (grayCTab);
if (lerr & (aGW!=nil))

{
Set TrackMatte (theTrack, aGW >port Pi xMap);
D sposeGMrid (aGW;
}
}
voi d Updat eTrackMatte (Track theTrack)
{

CSErr err;

Pi xMapHandl e trackMatte;
Pi xMapHandl e savePort Pi x;
Movi e t heMovi e;

Gnorl dPtr tenpGW

CG af Ptr savePort;

GDHandl e saveGDevi ce;
Rect mat t eBox;

short i

theMovi e = Get TrackMovi e (theTrack);
trackMatte = Get TrackMatte (theTrack);
if (trackivatte == nil)

{
/* track doesn't have a natte, so give it one */
CreateTrackMatte (theTrack);
trackMatte = Get TrackMatte (theTrack);
if (trackMatte == nil)
return;
}

2-74 Using the Movie Toolbox

CHAPTER 2

Movie Toolbox

GetGMrld (&savePort, &saveCDevice);
matt eBox = (**trackMatte). bounds;
err = NewGWr | d(& enpGW
(**trackMatte). pi xel Si ze, &matt eBox,
(**trackMatte). pnifabl e, (GHandle) nil, 0);
if (err || (tempGW == nil)) return;

SetGWrld (tempGW nil);
savePort Pi x = tenpGW >port Pi xMap;
LockPi xel s (trackMatte);
Set Port Pi x (trackhatte);

/* draw a gray ranp rectangle around the edge of the matte */
for (i =0; i < 35; i++)
{

RGBCol or aCol or;

| ong t empLong;

tenpLong = 65536 - ((65536 / 35) * (long)i);

aCol or.red = aCol or.green = aCol or. bl ue = tenpLong;
RGBFor eCol or (&aCol or) ;

FrameRect (&matteBox);

I nset Rect (&matteBox, 1, 1);

/* fill the center of the matte with black */
For eCol or (bl ackCol or);
Pai nt Rect (&matt eBox);

Set Port Pi x (savePortPi x);
Set GWrl d (savePort, save@evice);
D sposeGMrid (tempGW;

Unl ockPi xel s (trackMatte);
Set TrackMatte (theTrack, trackhMatte);

D sposeMatte (trackMatte);

Using the Movie Toolbox 2-75

CHAPTER 2

Movie Toolbox

Movie Toolbox Reference

This section describes all the Movie Toolbox data types and functions. The Movie
Toolbox provides a rich and varied set of functions that allow your application to work
with QuickTime movies. This discussion has been divided into the following sections:

“Data Types” identifies the data types used by your application when interacting with
the Movie Toolbox

n “Functions for Getting and Playing Movies” describes the functions that applications
can use to create, get, and play movies

n “Functions That Modify Movie Properties” describes functions that allow you to
change the display, time, and sound characteristics of a movie

n “Functions for Editing Movies” discusses the functions that you can use to edit the
contents of movies

n “Media Functions” discusses the functions that allow you to communicate with media
handlers

n “Functions for Creating File Previews” describes the functions provided by the Movie
Toolbox that allow you to create file previews

n “Functions for Displaying File Previews” describes the Movie Toolbox functions that
let you display file previews

n “Time Base Functions” discusses the various Movie Toolbox functions that work
with time bases

n “Matrix Functions” describes the Movie Toolbox functions that allow you to
manipulate transformation matrices

n “Application-Defined Functions” describes the functions your application can provide
when interacting with the Movie Toolbox

If you are developing a QuickTime-aware application that plays existing movies, you
should read “Functions for Getting and Playing Movies,” which begins on page 2-81.

If you are developing an application that allows the user to create and edit movies, you
should also read “Functions for Editing Movies,” which begins on page 2-242. More
advanced display and editing applications may use some of the functions described in
“Functions That Modify Movie Properties,” which begins on page 2-157.

Data Types

2-76

Most Movie Toolbox data structures are private data structures. Your application never
modifies the contents of these structures directly. Rather, the Movie Toolbox provides a
number of functions that allow you to work with these data structures.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Movie ldentifiers

You identify a data structure to the Movie Toolbox by means of a data type that is
supplied by the Movie Toolbox. The following data types are currently defined:

Medi a Specifies the media for an operation. Your application obtains a media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

Movi e Specifies the movie for an operation. Your application obtains a movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movi eEdi t St at e
Specifies the movie edit state for an operation. Your application obtains a
movie edit state identifier when you create the edit state by calling the
NewMbvi eEdi t St at e function (described on page 2-255).

Qrcal | Back
Specifies the callback for an operation. You obtain a callback identifier
from the NewCal | Back function (described on page 2-336).

Ti meBase Specifies the time base for an operation. Your application obtains a time
base identifier from the NewTi neBase or Get Movi eTi neBase functions
(described on page 2-316 and page 2-190, respectively).

Track Specifies the track for an operation. Your application obtains a track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

TrackEdi t St ate
Specifies the track edit state for an operation. Your application obtains a
track edit state identifier when you create the edit state by calling the
NewTr ackEdi t St at e function (described on page 2-269).

UserData Specifies the user data list for an operation. You obtain a user data list
identifier by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a functions (described on page 2-231, page 2-232, and
page 2-233, respectively).

The Time Structure

The Movie Toolbox provides a number of functions that allow you to work with time
specifications. These functions are described in “Time Base Functions” beginning on
page 2-315. Many of these functions require that you place a time specification in a data
structure called a time structure. The time structure allows you to fully describe a time
specification. The Ti meRecor d data type defines the format of a time structure.

struct Ti neRecord

{
ConpTi neVal ue val ue; /* time value (duration or absolute) */
Ti meScal e scal e; /[* units per second */

Movie Toolbox Reference 2-77

CHAPTER 2

Movie Toolbox

Ti neBase base; /* reference to the tine base */
b

typedef struct Ti meRecord Ti neRecord;

Field descriptions

val ue Contains the time value. The time value defines either a duration or
an absolute time by specifying the corresponding number of units
of time. For durations, this is the number of time units in the period.
For an absolute time, this is the number of time units since the
beginning of the time coordinate system. The unit for this value is
defined by the scale field.
The time value is expressed as a ConpTi neVal ue data type, which
is a 64-bit integer quantity. This 64-bit quantity consists of two
32-bit integers, and it is defined by the | nt 64 data type, which is
described next in this section.

scal e Contains the time scale. This field specifies the number of units of
time that pass each second. If you specify a value of 0, the time base
uses its natural time scale.

base Contains a reference to the time base. You obtain a time base by
calling the Movie Toolbox’s Get Movi eTi meBase or NewTi neBase
functions (described on page 2-190 and page 2-316, respectively).
If the time structure defines a duration, set this field toni | .
Otherwise, this field must refer to a valid time base.

You specify the time value in a time structure in a 64-bit integer value as follows:

typedef Int64 ConpTi neVal ue;

The Movie Toolbox uses this format so that extremely large time values can be
represented. The | nt 64 data type defines the format of these signed 64-bit integers.

struct |nt64
{
long hi; /* high-order 32 bits-value field in tinme structure */
long lo; /* loworder 32 bits-value field in time structure */
b
typedef struct |Int64 I|nt64;

Field descriptions

hi Contains the high-order 32 bits of the value. The high-order bit
represents the sign of the 64-bit integer.

lo Contains the low-order 32 bits of the value.

The Fixed-Point and Fixed-Rectangle Structures

2-78

The Movie Toolbox matrix functions provide two mechanisms for specifying points and
rectangles. Some of the functions work with standard QuickDraw points and rectangles,
which use integer values to identify coordinates. Others, such as the

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Tr ansf or ni xedRect function (described on page 2-349), work with points and
rectangles whose coordinates are expressed as fixed-point numbers. By using fixed-point
numbers in these points and rectangles, the Movie Toolbox can support a greater degree
of precision when defining graphic objects.

The Fi xedPoi nt data type defines a fixed point. The Fi xedRect data type defines a
fixed rectangle. Note that both of these structures define the x coordinate before the y
coordinate. This is different from the standard QuickDraw structures.

struct Fi xedPoi nt

{

Fi xed x; /* point's x coordinate as fixed-point nunber */
Fi xed vy; [* point's y coordi nate as fixed-point nurmber */
b
typedef struct Fi xedPoint FixedPoint;

Field descriptions
X Defines the point’s x coordinate as a fixed-point number.
y Defines the point’s y coordinate as a fixed-point number.

struct Fi xedRect

{
Fi xed left; /* x coordinate of upper-left corner */
Fi xed t op; /* y coordinate of upper-left corner */
Fi xed right; /* x coordinate of |ower-right corner */
Fi xed bottom /* y coordinate of |ower-right corner */
b

typedef struct FixedRect Fi xedRect;

Field descriptions

| eft Defines the x coordinate of the upper-left corner of the rectangle as
a fixed-point number.

top Defines the y coordinate of the upper-left corner of the rectangle as
a fixed-point number.

ri ght Defines the x coordinate of the lower-right corner of the rectangle as
a fixed-point number.

bottom Defines the y coordinate of the lower-right corner of the rectangle as

a fixed-point number.

The Sound Description Structure

A sound description structure contains information that defines the characteristics of one
or more sound samples. Data in the sound description structure indicates the type of
compression that was used, the sample size, the rate at which samples were obtained,
and so on. Sound media handlers use the information in the sound description structure
when they process the sound samples.

Movie Toolbox Reference 2-79

2-80

CHAPTER 2

Movie Toolbox

See the chapter “Image Compression Manager” for a description of the image
description structure, which contains information that defines the characteristics of an

image.

The SoundDescri pt i on data type defines the layout of a sound description structure.
See “Media Functions,” which begins on page 2-281, for more information about sound

media handlers.

struct SoundDescription
{
I ong descSize;
| ong dataFornmat;
Il ong resvdil;
short resvdz;
short dat aRef | ndex;
short version;
short revlevel;
| ong vendor;
short numnChannel s;
short sanpl eSi ze;
short conpressionl D;
short packet Si ze;
Fi xed sanpl eRat e;

/* nunber of bytes in this structure */
/* format of the sound data */
/* reserved--set to 0 */

/* reserved--set to 0 */
/* reserved--set to 1 */
/* reserved--set to 0 */
/* reserved--set to 0 */
/* reserved--set to 0 */
/* nunmber of channels used by sanple */

/* number of bits in each sanple */

/* reserved--set to 0 */

/* reserved--set to 0 */

/* rate at which sanpl es were obtained */

b

Field descriptions

descSi ze Defines the total size, in bytes, of this sound description structure.

dat aFor mat Describes the format of the sound data. Possible values include:
"raw ' Sound samples are stored uncompressed, in

t wos

" MAC3'

1 IVACGI

offset-binary format (that is, sample data values range
from 0 to 255).

Sound samples are stored uncompressed, in
twos-complement format (that is, sample data values
range from -128 to 127). The Sound Manager uses this
format when it creates sound files in Audio Interchange
File Format (AIFF).

Sound samples have been compressed by the Sound
Manager at a ratio of 3:1.

Sound samples have been compressed by the Sound
Manager at a ratio of 6:1.

Some older movie files sometimes have a zero value in this field.
You should assume that this is the same asthe ' raw ' value.

resvdl Reserved for Apple. Set this field to 0 in any sound description
structures you create.
resvd2 Reserved for Apple. Set this field to 0 in any sound description

structures you create.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

dat aRef | ndex Reserved for Apple. Set this field to 0 in any sound description
structures you create.

version Reserved for Apple. Set this field to 0 in any sound description
structures you create.

reviLevel Reserved for Apple. Set this field to 0 in any sound description
structures you create.

vendor Reserved for Apple. Set this field to 0 in any sound description
structures you create.

nuntChannel s Indicates the number of sound channels used by the sound sample.
Set this field to 1 for monaural sounds; set it to 2 for stereo sounds.

sanpl eSi ze Specifies the number of bits in each sound sample. Set this field to 8

for 8-bit sound; set it to 16 for 16-bit sound.

compressi onl D Reserved for Apple. Set this field to 0 in any sound description
structures you create.

packet Si ze Reserved for Apple. Set this field to 0 in any sound description
structures you create.
sampl eRat e Indicates the rate at which the sound samples were obtained. Sound

media handlers use this value to influence the natural playback
speed of the sound described by this sound description structure.
This field contains an unsigned, fixed-point number that specifies
the number of samples collected per second. Some common values

include:

Ox15BBA2ES Specifies a sample rate of 5563.6363 samples per
second.

Ox1CFA2E8SB Specifies a sample rate of 7418.1818 samples per
second.

0x2B7745D1 Specifies a sample rate of 11127.2727 samples per
second.

Ox56EE8BA3 Specifies a sample rate of 22254.5454 samples per
second.

0xAC440000 Specifies a sample rate of 44100.0000 samples per
second.

Functions for Getting and Playing Movies

The Movie Toolbox provides a number of functions that allow applications to get and
play movies. There are also a number of functions that allow you to create new movies.
This section describes those functions and has been divided into the following topics:

n “Initializing the Movie Toolbox” discusses the functions that your application must
use to gain access to the Movie Toolbox

n “Error Functions” discusses the Movie Toolbox functions that allow you to work
with error codes returned by Movie Toolbox functions

n “Movie Functions” describes functions that your application can use to create and
access movie resources and movie files

Movie Toolbox Reference 2-81

CHAPTER 2

Movie Toolbox

n “Saving Movies” describes the Movie Toolbox functions that allow you to save movies

n “Controlling Movie Playback” describes the functions that you can use to control
movie playback

n “Movie Posters and Movie Previews” discusses the functions that allow applications
to work with movie posters and movie previews

n “Movies and Your Event Loop” discusses the Movie Toolbox functions that your
application must call from its main event loop

n “Preferred Movie Settings” describes functions your application can use to set
the preferred playback settings of a movie

n “Enhancing Movie Playback Performance” discusses several techniques for
improving movie playback performance

n “Disabling Movies and Tracks” describes the functions that allow your application
to disable movies and tracks

n “Generating Pictures From Movies” discusses the Movie Toolbox functions that allow
your application to create pictures from movie data

n “Creating Tracks and Media Structures” describes the functions your application must
use to create new data for a movie

n “Working With Progress and Cover Functions” describes the functions that allow you
to specify a custom function that is called during movie playback

Initializing the Movie Toolbox

The Movie Toolbox maintains state information for every application that is currently
using the toolbox. The toolbox uses this information to keep track of the application’s
movies. Before calling any other Movie Toolbox functions, your application must
establish this working environment by calling the Ent er Movi es function. When your
application is finished with the Movie Toolbox, you can release this storage by calling the
Exi t Movi es function.

EnterMovies

2-82

Before you call any Movie Toolbox functions, you must initialize the toolbox. Use the
Ent er Movi es function to initialize the Movie Toolbox. When your application calls this
function, the Movie Toolbox creates its private storage area for your application.

You should initialize any other Macintosh managers your application uses before calling
the Ent er Movi es function.

pascal OSErr Enter Mvies (void);

Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

If the Ent er Movi es function fails, it returns an error value—be sure to check the value
returned by this function before using any other facilities of the Movie Toolbox.

In addition, you should use the Gestalt Manager to determine whether the Movie
Toolbox is installed (see “Determining Whether the Movie Toolbox Is Installed”
beginning on page 2-33 for more information).

Your application may call the Ent er Movi es function multiple times for a given A5
world, as long as you balance each invocation of Ent er Movi es with an invocation of
Exi t Movi es.

SPECIAL CONSIDERATIONS

ERROR CODES

The Movie Toolbox identifies an application by the value in the A5 register. If you are
writing a stand-alone code resource, you must ensure that A5 is the same whenever you
call any Movie Toolbox functions.

Memory Manager errors

SEE ALSO
Listing 2-3 on page 2-39 provides an example of the Ent er Movi es function.

ExitMovies
QuickTime calls the Exi t Movi es function automatically when your application quits—
you only need to call this function if you finish with the Movie Toolbox long before your
application is ready to quit. As a general rule, your application should not use this
function.
pascal void ExitMovies (void);

DESCRIPTION

When you call the Exi t Movi es function, the Movie Toolbox releases the private storage
(which may be significant) that was allocated when you called the Ent er Movi es
function, which is described in the previous section.

Movie Toolbox Reference 2-83

CHAPTER 2

Movie Toolbox

SPECIAL CONSIDERATIONS

ERROR CODES

Before calling the Exi t Movi es function, be sure that you have closed your connections
to any components that use the Movie Toolbox (such as movie controllers, sequence
grabbers, and so on).

None

Error Functions

2-84

The Movie Toolbox provides a number of functions that allow your application to
examine result codes generated by toolbox functions. In addition, the Movie Toolbox
allows your application to provide a function that performs custom error notification.
This section discusses these error functions.

IMPORTANT
The Movie Toolbox introduces an additional error-reporting mechanism.
In addition to returning errors as function results, the Movie Toolbox
functions return error indications to calling applications by setting one
of two values that are private to the Movie Toolbox: a current error value
or a sticky error value. Your application can retrieve these values by
calling the Get Movi esError or Get Movi esSti ckyError functions
described in this section. To let you know whether there is an error
indication, the heading “ERROR CODES” may appear with the entry
“None” in function descriptions throughout this chapter. s

The Movie Toolbox maintains two error values for your application: the current error
and the sticky error. The current error value contains the result code from the last Movie
Toolbox function. The toolbox updates the current error value each time your application
calls a Movie Toolbox function. Your application may call the Get Movi esEr r or
function to obtain the current error value after calling any Movie Toolbox function.
Many Movie Toolbox functions do not return an error as a function result—you must use
the Get Movi esError function to obtain the result code. Even if a function explicitly
returns an error as a function result, that result is also available using the

Get Movi esError function.

The Movie Toolbox saves a result code in the sticky error value. Your application clears
the sticky error value by calling the Cl ear Movi esSt i ckyErr or function. The Movie
Toolbox then places the first nonzero result code from any toolbox function used by your
application into the sticky error value. The Movie Toolbox does not replace the value

in the sticky error value until your application clears the value again. Your application
uses the Get Movi esSti ckyError function to obtain the result code stored in the sticky
error value. In this manner, you can preserve and retrieve important result code
information.

Your application uses the Set Movi esEr r or Pr oc function to designate an error
function. The Movie Toolbox calls this error function each time there is an error.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMoviesError

DESCRIPTION

ERROR CODES

The Get Movi esEr r or function returns the contents of the current error value and
resets the current error value to 0.

pascal OSErr Get MoviesError (void);

The current error value contains the result code from the previous Movie Toolbox
function. Most Movie Toolbox functions do not return an error as a function result—you
must use the Get Movi esEr r or function to obtain the result code. Even if a function
explicitly returns an error as a function result, that result is also available using the

Get Movi esError function.

Any Movie Toolbox result code (see “Summary of the Movie Toolbox™ at the end of this
chapter)

GetMoviesStickyError

DESCRIPTION

ERROR CODES

The Get Movi esSti ckyEr r or function returns the contents of the sticky error
value. The sticky error value contains the first nonzero result code from any Movie
Toolbox function that you called after having cleared the sticky error with the

Cl ear Movi esSti ckyEr ror function.

pascal OSErr Get MoviesStickyError (void);

The Movie Toolbox does not clear the sticky error value when you call the
Get Movi esSti ckyError function. Your application clears the sticky error value by
calling the Cl ear Movi esSt i ckyError function, which is described in the next section.

Any Movie Toolbox result code (see “Summary of the Movie Toolbox™ at the end of this
chapter)

Movie Toolbox Reference 2-85

CHAPTER 2

Movie Toolbox

ClearMoviesStickyError

The O ear Movi esSti ckyEr r or function clears the sticky error value.

pascal void C earMviesStickyError (void);

DESCRIPTION

The Movie Toolbox does not place a result code into the sticky error value until the field
has been cleared. Your application should clear the sticky error value to ensure that it
does not contain a stale result code.

ERROR CODES
None

SetMoviesErrorProc

The Movie Toolbox allows applications to perform custom error notification. Your
application must identify its custom error-notification function to the Movie Toolbox.
The Set Movi esEr r or Pr oc function allows you to identify your application’s
error-notification function. Error-notification functions can be especially useful when
you are debugging your program.

pascal void Set MoviesErrorProc (ErrorProcPtr errProc,
| ong refcon);

errProcPtr
Points to your error-notification function, MyEr r Pr oc.

The entry point to your error-notification function must take the
following form:

pascal void MyErrProc (CSErr theErr, |ong refCon);

See “Application-Defined Functions” beginning on page 2-354 for details
on the parameters.

refcon Contains a reference constant value. The Movie Toolbox passes this
reference constant to your error-notification function each time it calls
your function.

2-86 Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

Once you have identified an error-notification function, the Movie Toolbox calls your
function each time the current error value is to be set to a nonzero value. The Movie
Toolbox manages the sticky error value. The Movie Toolbox calls your error-notification
function only in response to errors generated by the Movie Toolbox.

SPECIAL CONSIDERATIONS

ERROR CODES

The Set Movi esEr r or Pr oc function is just for debugging.

None

Movie Functions

The Movie Toolbox provides a set of functions that allow your application to create,
access, and convert movie files. Movie files contain data for QuickTime movies. You can
also use the Movie Toolbox to load movies into memory, in preparation for working with
the movie. These functions differ based on where the movie is stored.

Before your application can play a movie, you must first open the file that contains the
movie. Your application can use the QpenMbvi eFi | e function (described on page 2-98)
to open a movie file. Once you are done with the file, your application releases the file by
calling the C oseMvi eFi | e function. Your application can create and open a new
movie file by calling the Cr eat eMovi eFi | e function. Your application can delete

a movie file by calling the Del et eMovi eFi | e function.

You can use the Newibvi e function to create a new empty movie. If your application is
loading a movie from an existing file, use either the Newivbvi eFr onti | e function or the
NewhMbvi eFr omDat aFor k function. The NewMovi eFr onti | e function works with the
file reference number you obtain from the OpenMovi eFi | e function. The

NewMovi eFr onDat aFor k function works with movies stored in your document file’s
data fork. Your application can then use the functions described in “Saving Movies,”
which begins on page 2-100, to load and store movies.

You can use the Convert Fi | eToMovi eFi | e function to specify an input file and
convert it to a movie file. The Convert Movi eToFi | e takes a specified movie (or a
single track within that movie) and converts it into an output file.

Once you are finished working with a movie, you should release the resources used by
the movie by calling the Di sposeMvi e function.

Movie Toolbox Reference 2-87

CHAPTER 2

Movie Toolbox

NewMovieFromFile

2-88

The NewMovi eFr onfi | e function creates a movie in memory from a resource that is
stored in a movie file. Your application specifies the movie file with the file reference
number that was returned by the QpenMvi eFi | e function, which is described on
page 2-98. Your application can use the NewMovi eFr onHandl e function, described in
the next section, to load a movie from a handle. Once you have opened a movie file and
loaded a movie, your application can proceed to work with the movie.

pascal OSErr NewMovi eFronFile (Mvie *theMvie, short resRef Num
short *resld,
StringPtr resNane,
short newMbvi eFl ags,
Bool ean *dat aRef WasChanged) ;

t heMovi e Contains a pointer to a field that is to receive the new movie’s identifier. If
the function cannot load the movie, the returned identifier is setto ni | .

resRef Num Identifies the movie file from which the movie is to be loaded. Your
application obtains this value from the OpenMovi eFi | e function,
described on page 2-98.

resid Contains a pointer to a field that specifies the resource containing the
movie data that is to be loaded. If the field referred to by the resl d
parameter is set to 0, the Movie Toolbox loads the first movie resource it
finds in the specified file. The toolbox then returns the movie’s resource
ID number in the field referred to by the r es| d parameter. The following
enumerated constant is available:

novi el nDat aFor kResl| D
Forces the movie to come out of the data fork. If the
resource was stored in the file’s data fork, the Movie
Toolbox sets the returned value to
novi el nDat aFor kRes| D(-1). In this case, you cannot
add a movie resource to the file unless you create a
resource fork in the movie file.

If the r esl d parameter is set to ni | , the Movie Toolbox loads the first
movie resource it finds in the specified file and does not return that
resource’s ID number.

r esName Points to a character string that is to receive the name of the movie
resource that is loaded. If you set the r esNane parameter to ni | , the
toolbox does not return the resource name.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

newMbvi eFl ags

Controls the operation of the Newbvi eFr onFi | e function. The
following flags are available (be sure to set unused flags to 0):

newlMbvi eActi ve

Controls whether the new movie is active. Set this flag to 1
to make the new movie active. You can make a movie
active or inactive by calling the Set Movi eActi ve
function, which is described on page 2-145.

newMbvi eDont Resol veDat aRef s

Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on multiple
volumes. If you set this flag to 1, the Movie Toolbox only
looks in the specified file.

If the Movie Toolbox cannot completely resolve all the data
references, it still returns a valid movie identifier. In this
case, the Movie Toolbox also sets the current error value to
coul dNot Resol veDat aRef .

newMbvi eDont AskUnr esol vedDat aRef s

Controls whether the Movie Toolbox asks the user to locate
files. If you set this flag to 0, the Movie Toolbox asks the
user to locate files that it cannot find. If the Movie Toolbox
cannot locate a file even with the user’s help, the function
returns a valid movie identifier and sets the current error
value to coul dNot Resol veDat aRef .

newMbvi eDont Aut oAl t er nat e

dat aRef VasChanged

Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

Contains a pointer to a Boolean value. The Movie Toolbox sets the
Boolean to indicate whether it had to change any data references while
resolving them. The toolbox sets the Boolean value to t r ue if any
references were changed. Use the Updat eMovi eResour ce function
(described on page 2-103) to preserve these changes.

Set the dat aRef WAsChanged parameter to ni | if you do not want to
receive this information. See “Creating Tracks and Media Structures”
beginning on page 2-150 for more information about data references.

Movie Toolbox Reference

2-89

DESCRIPTION

CHAPTER 2

Movie Toolbox

The Movie Toolbox sets many movie characteristics to default values. If you want to
change these defaults, your application must call other Movie Toolbox functions. For
example, the Movie Toolbox sets the movie’s graphics world to the one that is active
when you call Newibvi eFr onfi | e. To change the graphics world for the new movie,
your application should use the Set Movi eGWr | d function, which is described on
page 2-159.

SPECIAL CONSIDERATIONS

ERROR CODES

The Movie Toolbox automatically sets the movie’s graphics world based upon the
current graphics port. Be sure that your application’s graphics world is valid before you
call this function.

badl mageDescri ption —2001 Problem with an image description
badPubl i cMovi eAt om -2002 Movie file corrupted

cant Fi ndHandl er —-2003 Cannot locate a handler

cant OpenHandl er —2004 Cannot open a handler

File Manager errors
Memory Manager errors
Resource Manager errors

NewMovieFromHandle

2-90

The NewMovi eFr omHandl e function creates a movie in memory from a movie resource
or a handle you obtained from the Put Movi el nt oHandl e function.

pascal OSErr Newibvi eFronmHandl e (Movie *theMvi e, Handl e h,
short newMbvi eFl ags,
Bool ean *dat aRef WasChanged) ;

t heMovi e Contains a pointer to a field that is to receive the new movie’s identifier. If
the function cannot load the movie, the returned identifier is setto ni | .

h Contains a handle to the movie resource from which the movie is to be
loaded.

newMbvi eFl ags
Controls the operation of the NewMbvi eFr omHandl e function. The
following flags are available (be sure to set unused flags to 0):

newMbvi eActi ve
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. You can make a movie
active or inactive by calling the Set Movi eActi ve
function, which is described on page 2-145.

Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

newMbvi eDont Resol veDat aRef s
Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only
looks in the specified file.

If the Movie Toolbox cannot completely resolve all the data
references, it still returns a valid movie identifier. In this
case, the Movie Toolbox also sets the current error value to
coul dNot Resol veDat aRef .

newMbvi eDont AskUnr esol vedDat aRef s
Controls whether the Movie Toolbox asks the user to locate
files. If you set this flag to 0, the Movie Toolbox asks the
user to locate files that it cannot find on available volumes.
If the Movie Toolbox cannot locate a file even with the
user’s help, the function returns a valid movie identifier
and sets the current error value to
coul dNot Resol veDat aRef .

newibvi eDont Aut oAl t er nat e
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

dat aRef VasChanged
Contains a pointer to a Boolean value. The Movie Toolbox sets the
Boolean value to indicate whether it had to change any data references in
order to resolve them. The toolbox sets the Boolean value to t r ue if any
references were changed. Set the dat aRef WAsChanged parameter to
ni | if you do not want to receive this information.

The Newbvi eFr onHandl e function returns the new movie’s identifier. If the function
cannot create the movie, the function sets the returned identifier toni | .

Your application can use the Newvbvi eFr onFi | e function, described in the previous
section, to load a movie from a movie file that was opened with the

OpenMbvi eFi | e function. If you are loading a movie from a resource, use the
NewMbvi eFr onti | e function instead. The Movie Toolbox uses information about the
resource file when it resolves data references in the movie.

The Movie Toolbox sets many movie characteristics to default values. If you want to
change these defaults, your application must call other Movie Toolbox functions. For
example, the Movie Toolbox sets the movie’s graphics world to the one that is active
when you call Newibvi eFr onHandl e. To change the graphics world for the new
movie, your application should use the Set Movi eGWr | d function, which is described
on page 2-159.

Movie Toolbox Reference 2-91

CHAPTER 2

Movie Toolbox

SPECIAL CONSIDERATIONS

ERROR CODES

NewMovie

The Movie Toolbox automatically sets the movie’s graphics world based upon the
current graphics port. Be sure that your application’s graphics world is valid before you
call this function.

badl mageDescri pti on —2001 Problem with an image description
badPubl i cMovi eAt om —-2002 Movie file corrupted

cant Fi ndHandl er —2003 Cannot locate a handler

cant OpenHandl er —2004 Cannot open a handler

File Manager errors
Memory Manager errors
Resource Manager errors

DESCRIPTION

2-92

The NewMovi e function creates a new movie in memory. The Movie Toolbox

initializes the data structures for the new movie, which contains no tracks. Your
application assigns the data to the movie by calling the functions that are described later
in “Creating Tracks and Media Structures” beginning on page 2-150.

pascal Mvie NewMovie (I ong newMovi eFl ags) ;

newMbvi eFl ags
Specifies control information for the new movie. The following flags are
available (be sure to set unused flags to 0):

newMbvi eActi ve
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. A movie that does not have
any tracks can still be active. When the Movie Toolbox tries
to play the movie, no images are displayed, because there
is no movie data. You can make a movie active or inactive
by calling the Set Movi eAct i ve function, which is
described on page 2-145.

newMbvi eDont Aut oAl t er nat e
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

The NewMbvi e function returns the identifier for the new movie. If the function fails, the
returned identifier is set to ni | . Use the Get Movi esEr r or function (described on
page 2-85) to obtain the result code.

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

The Movie Toolbox sets many movie characteristics to default values. If you want to
change these defaults, your application must call other Movie Toolbox functions. For
example, the Movie Toolbox sets the movie’s graphics world to the one that is active
when you call Newivbvi e. To change the graphics world for the new movie, your
application should use the Set Movi eGWr | d function, which is described on

page 2-159.

The default QuickTime movie time scale is 600 units per second; however, this number
may change in the future. The default time scale was chosen because it is convenient for
working with common video frame rates of 30, 25, 24, 15, 12, 10, and 8.

You should use the NewMovi e function only if you have not created a new movie and
movie file by calling the Cr eat eMovi eFi | e function.

WARNING

The Movie Toolbox automatically sets the movie’s graphics world based
upon the current graphics port. Be sure that your application’s graphics
port is valid before you call this function. s

nmovi eTool boxUninitialized -2020 You haven’t initialized the Movie
Toolbox

Memory Manager errors

ConvertFileToMovieFile

The Convert Fi | eToMovi eFi | e takes a specified file and converts it to a movie file.

pascal OSErr ConvertFil eToMovieFile (const FSSpec *inputFile,
const FSSpec *outputFil e,
OSType creator,
Scri pt Code scri pt Tag,
short *reslD, |ong flags,
Conponent | nst ance user Conp,
Movi ePr ogressProcPtr proc,
I ong refCon);

i nput Fi | e Contains a pointer to the file system specification for the file to be
converted into a movie file.

outputFile
Contains a pointer to the file specification for the destination movie file.

creator Specifies the creator value for the file if it is a new one.

Movie Toolbox Reference 2-93

DESCRIPTION

2-94

CHAPTER 2

Movie Toolbox

scri pt Tag

resl D

flags

user Conp

proc

r ef Con

Specifies the script in which the movie file should be converted. Use the
Script Manager constant snSyst enScr i pt to use the system script; use
the smCur r ent Scri pt constant to use the current script. See Inside
Macintosh: Text for more information about scripts and script tags.

Contains a pointer to a field that is to receive the resource ID of the file to
be converted. If you don’t want to receive the resource ID, set this
parameter to ni | .

Controls movie file conversion flags. The following value is valid:

createMyvi eFil eDel eteCurFil e
Indicates whether to delete an existing file. If you set this
flag to 1, the Movie Toolbox deletes the file (if it exists)
before converting the new movie file. If you set this flag
to 0 and the file specified by the f i | eSpec parameter
already exists, the Movie Toolbox uses the existing file. In
this case, the toolbox ensures that the file has both a data
and a resource fork.

Indicates a component or component instance of the movie export
component you want to perform the conversion. Otherwise, set this
parameter to 0 for the Movie Toolbox to choose the appropriate
component. If you pass in a component instance, it will be used by
Convert Fi | eToMovi eFi | e. This allows you to communicate directly
with the component before using this function to establish any conversion
parameters. If you pass in a component ID, an instance is created and
closed within this function. For details on movie export components, see
Inside Macintosh: QuickTime Components.

Points to your progress function. To remove a movie’s progress function,
set this parameter to ni | . Set this parameter to —1 for the Movie Toolbox
to provide a default progress function. See “Progress Functions,” which
begins on page 2-354, for the interface your progress function must
support.

Specifies a reference constant. The Movie Toolbox passes this value to
your progress function.

Because some conversions may take a nontrivial amount of time, you can pass a
standard movie progress function in the pr oc andr ef Con parameters.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

ConvertMovieToFile

The Convert Movi eToFi | e function takes a specified movie (or a single track within
that movie) and converts it into a specified file and type.

pascal OSEr

t heMbvi e

onl yTrack
outputFile
fileType

creator

scri pt Tag

resl D

flags
user Conp

r ConvertMvi eToFi|l e(Movi e theMyvie, Track onl yTrack,
const FSSpec *outputFil e,
OSType fil eType, OSType creator,
Scri pt Code scri pt Tag,
short *reslD, |ong flags,
Conponent | nst ance user Conp) ;

Specifies the source movie for this conversion operation. Your application
obtains this movie identifier from such functions as Newiovi €,

NewMovi eFr onfi | e, and NewMbvi eFr onHandl e (described on

page 2-92, page 2-88, and page 2-90, respectively).

Specifies the track within the source movie for this conversion operation.
To specify all tracks, set the value of this parameter to 0.

Contains a pointer to the file specification for the destination file.

Specifies the data type of the destination file for the movie specified in the
parameter t heMovi e.

Specifies the creator value for the output file if it is a new one.

Specifies the script into which the movie should be converted if the
output file is a new one. Use the Script Manager constant

snByst enScri pt to use the system script; use the smCur r ent Scri pt
constant to use the current script. See Inside Macintosh: Text for more
information about scripts and script tags.

Contains a pointer to a field that is to receive the resource ID of the open
movie. If you don’t want to receive this information, set the r esl D
parameter to ni | .

Set this parameter to 0.

If you want a particular movie export component to perform the
conversion, you may pass the component or an instance of that
component in this parameter. Otherwise, set it to 0 to allow the Movie
Toolbox to use the appropriate component. If you pass in a component
instance, it is used by Convert Movi eToFi | e. This allows you to
communicate directly with the component before making this call to
establish any conversion parameters. If you pass in a component ID, an
instance is created and closed within this call.

Movie Toolbox Reference 2-95

CHAPTER 2

Movie Toolbox

DisposeMovie

The Di sposeMovi e function frees any memory being used by a movie, including the
memory used by the movie’s tracks and media structures. Your application should call
this function when it is done working with a movie.

pascal void Di sposeMvie (Mvie thelMvie);

t heMbvi e Identifies the movie to be freed. Your application obtains this
movie identifier from such functions as Newhbvi e, NewlWbvi eFr onFi | e,
or NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

SPECIAL CONSIDERATIONS

Do not dispose of a movie if it has any special clients—for example, if it has an attached
movie controller component. Only dispose of the movie after any clients are done with it.

ERROR CODES
i nval i dvbvi e -2010 This movie is corrupted or invalid

CreateMovieFile

The Cr eat eMovi eFi | e function creates an open movie file, opens the movie file,
creates an empty movie which references the file, and opens the movie file with write
permission.

pascal OSErr CreateMovieFile (const FSSpec *fil eSpec,
CSType creator,
Scri pt Code scri pt Tag,
| ong createMvi eFil eFl ags,
short *resRef Num
Movi e *newMbvi e) ;

fil eSpec Contains a pointer to the file system specification for the movie file to be
created.

creator Specifies the creator value for the new file.

script Tag Specifies the script in which the movie file should be created. Use the
Script Manager constant snSyst enScri pt to use the system script; use
the snCur rent Scri pt constant to use the current script. See Inside
Macintosh; Text for more information about scripts and script tags.

2-96 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

creat eMbvi e

r esRef Num

Fi | eFl ags
Controls movie-file creation flags. The following flags are available:

createMvi eFil eDel eteCurFil e
Indicates whether to delete an existing file. If you set this
flag to 1, the Movie Toolbox deletes the file (if it exists)
before creating the new movie file. If you set this flag to 0
and the file specified by the fi | eSpec parameter already
exists, the Movie Toolbox uses the existing file. In this case,
the toolbox ensures that the file has both a data and a
resource fork.

cr eat eMbvi eFi | eDont Cr eat eMbvi e
Controls whether the Cr eat eMovi eFi | e function creates
a new movie in the movie file. If you set this flag to 1, the
Movie Toolbox does not create a movie in the new movie
file. In this case, the function ignores the newivbvi e
parameter. If you set this flag to 0, the Movie Toolbox
creates a movie and returns the movie identifier in the field
referred to by the newhbvi e parameter.

creat eMovi eFi | eDont OpenFi | e
Controls whether the Cr eat eMbvi eFi | e function opens
the new movie file. If you set this flag to 1, the Movie
Toolbox does not open the new movie file. In this case, the
function ignores the r esRef Numparameter. If you set this
flag to 0, the Movie Toolbox opens the new movie file and
returns its reference number into the field referred to by the
r esRef Numparameter.

newhbvi eActi ve
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. A movie that does not have
any tracks can still be active. When the Movie Toolbox tries
to play the movie, no images are displayed, because there
is no movie data. You can make a movie active or inactive
by calling the Set Movi eAct i ve function, which is
described on page 2-145.

newMbvi eDont Aut oAl t er nat e
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

Contains a pointer to a field that is to receive the file reference number for
the opened movie file. Your application must use this value when calling
other Movie Toolbox functions that work with movie files. If you set this
parameter to ni | , the Movie Toolbox creates the movie file but does not
open the file.

Movie Toolbox Reference 2-97

CHAPTER 2

Movie Toolbox

newi\bvi e Contains a pointer to a field that is to receive the identifier of the new
movie. The Cr eat eMovi eFi | e function returns the identifier of the
new movie. If the function could not create a new movie, it sets this
returned value toni | . If you set this parameter to ni | , the Movie
Toolbox does not create a movie.

ERROR CODES

novi eTool boxUni nitialized -2020 You haven’t initialized the Movie
Toolbox

File Manager errors
Memory Manager errors

SEE ALSO
You can delete a movie file by calling the Del et eMbvi eFi | e function, which is
described on page 2-100.
Your application can use the functions described in “Creating Tracks and Media
Structures,” which begins on page 2-150, to place movie data into the new movie file.
OpenMovieFile

The OpenMovi eFi | e function opens a specified movie file. Your application identifies
the movie file with a file system specification.

pascal OSErr OpenMbvi eFile (const FSSpec *fil eSpec,
short *resRef Num char perns);

fileSpec Contains a pointer to the file system specification for the movie file to be
opened.

resRef Num Contains a pointer to a field that is to receive the file reference number for
the opened movie file. Your application must use this value when calling
other Movie Toolbox functions that work with movie files. This reference
number refers to the file fork that contains the movie resource—if the
movie is stored in the data fork of the file, the returned reference number
corresponds to the data fork.

per ns Specifies the permission level for the file. If your application is only going
to play the movie that is stored in the file, you can open the file with read
permission. If you plan to add data to the file or change data in the file,
you should open the file with write permission. Supply a valid File
Manager permission value. See Inside Macintosh: Files for valid values.

2-98 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

DESCRIPTION

Your application must open a movie file before reading movie data from it or writing
movie data to it. You can open a movie file more than once—be sure to call

Cl oseMovi eFi | e (described in the next section) once for each time you call
OpenMvi eFi | e.

Note that opening the movie file with write permission does not prevent other
applications from reading data from the movie file.

If the specified file has a resource fork, the OpenMovi eFi | e function opensthe resource
fork and returns a file reference number to the resource fork. If the movie file does not
have a resource fork (that is, it is a single-fork movie file—see the chapter “Movie
Resource Formats” in this book for more information), the QpenhMbvi eFi | e function
opens the data fork instead. In this case, your application cannot use the

AddMbvi eResour ce function (described on page 2-102) with the movie file.

ERROR CODES

novi eTool boxUni nitialized -2020 You haven’t initialized the Movie
Toolbox

File Manager errors
Memory Manager errors

CloseMovieFile

The O oseMovi eFi | e function closes an open movie file.
pascal OSErr C oseMovieFile (short resRef Nun;

resRef Num Specifies the movie file to close. Your application obtains this reference
number from the OpenMovi eFi | e function, which is described in the
previous section.

DESCRIPTION

Your application should call this function when you are done working with a movie
file. You must call this function once each time you open a movie file. You can still use
the movie. If you are not editing the movie, it is advisable to close it.

ERROR CODES
File Manager errors

Movie Toolbox Reference 2-99

CHAPTER 2

Movie Toolbox

DeleteMovieFile

DESCRIPTION

ERROR CODES

The Del et eMovi eFi | e function deletes a movie file.
pascal OSErr Del eteMyvieFile (const FSSpec *fil eSpec);

fil eSpec Contains a pointer to the file system specification for the movie file to be
deleted.

Do not use the file system to delete movie files. The Movie Toolbox maintains references
between files.

File Manager errors

Saving Movies

2-100

The Movie Toolbox provides a set of high-level functions for storing movies within files.
These files have a file type of ' MooV' and a resource type of ' moov' . Your application
can gain access to existing movies with either the NewMbvi eFr onti | e function or the
NewMbvi eFr onDat aFor k function (described on page 2-88 and page 2-109,
respectively). Once you have loaded the movie, your application uses the functions that
are described in this section to save any changes you have made to the movie.

You can use the AddMovi eResour ce function to add a new movie resource to a movie
file. Your application can use this function to save a movie that it created using the
functions described in “Functions for Editing Movies” beginning on page 2-242. You can
use the Updat eMbvi eResour ce function to replace an existing movie resource in a
movie file. You can remove a movie resource by calling the RenbveMovi eResour ce
function.

The movie resources that your application creates with the AddMbvi eResour ce and
Updat eMovi eResour ce functions may contain references to movie data. These
references identify the data that constitute the movie. However, the movie data can be
stored outside of the movie file. If you want to create a movie file that contains all of its
movie data, use the Fl at t enMovi e function. If you want to create a single-fork movie
file, use the FI at t enMovi eDat a function.

The Put Movi el nt oHandl e function places a QuickTime movie into a handle. You can
then convert the movie into specialized data formats.

The HasMovi eChanged and Cl ear Movi eChanged functions allow your application to
work with the movie changed flag that is maintained by the Movie Toolbox. You can use
this flag to determine whether a movie has been changed.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

The movie changed flag indicates whether you have changed the movie. Such actions as
editing the movie, adding samples to a media, or changing a data reference cause the
flag to indicate that the movie has changed. There are several operations that the movie
changed flag does not reflect, including changing the volume, rate, or time settings for
the movie. These settings change frequently when a movie is played. Your application
must monitor these settings itself.

The Movie Toolbox also supplies functions for storing and retrieving movies that are
stored in the data fork of a file. These functions provide robust data reference resolution
and improve low memory performance. The Newbvi eFr onDat aFor k function

enables you to retrieve a movie that is stored anywhere in the data fork of a file. You can
use the Put Movi el nt oDat aFor k function to store an atom version of a specified movie
in the data fork of a file.

HasMovieChanged

DESCRIPTION

ERROR CODES

SEE ALSO

The HasMbvi eChanged function allows your application to determine whether a movie
has changed and needs to be saved.

pascal Bool ean HasMovi eChanged (Movi e theMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The HasMbvi eChanged function returns a Boolean value that reflects the contents of the
movie changed flag. The function sets the returned value to t r ue if the movie has been
changed in such a way that it should be saved. Otherwise, the returned value is set to
fal se.

Your application can clear the movie changed flag, indicating that the movie has not
changed, by calling the O ear Movi eChanged function, which is described in the next
section.

i nval i dvbvi e -2010 This movie is corrupted or invalid

Both the AddMbvi eResour ce function (described on page 2-102) and the
Updat eMovi eResour ce function (described on page 2-103) update the movie file and
clear the movie changed flag, indicating that the movie has not been changed.

Movie Toolbox Reference 2-101

CHAPTER 2

Movie Toolbox

ClearMovieChanged

ERROR CODES

SEE ALSO

The C ear Movi eChanged function sets the movie changed flag to indicate that the
movie has not been changed.

pascal void d ear Movi eChanged (Movi e thelMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

i nval i dvbvi e -2010 This movie is corrupted or invalid

Your application can read the contents of the movie changed flag by calling the
HasMovi eChanged function, which is described in the previous section. Both the
AddMbvi eResour ce and Updat eMbvi eResour ce functions also clear the movie
changed flag.

AddMovieResource

2-102

The AddMovi eResour ce function adds a movie resource to a specified resource file.
Your application identifies the movie to be added to the movie file.

pascal OSErr AddMovi eResource (Movie theMvie, short resRef Num
short *resld,
const StringPtr resNane);

t heMovi e Specifies the movie you wish to add to the movie file. Your application
obtains this movie identifier from such functions as NewMbvi e,
NewMovi eFr onti | e, and NewMbvi eFr onHandl e (described on
page 2-92, page 2-88, and page 2-90, respectively).

resRef Num Identifies the movie file to which the resource is to be added. Your
application obtains this value from the CpenMovi eFi | e function,
described on page 2-98. The movie file specified by this parameter cannot
be a single-fork movie file.

resld Contains a pointer to a field that contains the resource ID number for the
new resource. If the field referred to by the r esl d parameter is set to 0,
the Movie Toolbox assigns a unique resource ID number to the new
resource. The toolbox then returns the movie’s resource ID number in the
field referred to by the r es| d parameter. The AddMovi eResour ce

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

function assigns resource ID numbers sequentially, starting at 128. If the
r esl d parameter is set to ni | , the Movie Toolbox assigns a unique
resource ID number to the new resource and does not return

that resource’s 1D value.

r esName Points to a character string that contains the name of the movie resource.
If you set the r esName parameter to ni | , the toolbox creates an unnamed
resource.

The AddMovi eResour ce function adds the movie to the file, effectively saving any
changes you have made to the movie. This function does not work with single-fork
movie files.

After updating the movie file, AddMbvi eResour ce clears the movie changed flag,
indicating that the movie has not been changed.

i nval i dMbvi e -2010 This movie is corrupted or invalid

File Manager errors
Memory Manager errors
Resource Manager errors

UpdateMovieResource

The Updat eMovi eResour ce function replaces the contents of a movie resource in a
specified movie file. You specify the movie that is to be placed into the resource.

This function can accommodate single-fork movie files.

pascal OSErr Updat eMovi eResource (Mvie theMyvie, short resRef Num
short resld,
const StringPtr resNane);

t heMovi e Specifies the movie you wish to place in the movie file. Your application
obtains this movie identifier from such functions as NewVbvi e,
NewMovi eFr onti | e, and Newbvi eFr onHandl| e (described on
page 2-92, page 2-88, and page 2-90, respectively).

resRef Num Identifies the movie file that contains the resource to be changed. Your
application obtains this value from the OpenMovi eFi | e function,
described on page 2-98. If this parameter specifies a single-fork movie file
using the novi el nDat aFor Resl D(—1) constant, the Movie Toolbox
places the movie resource into the file’s data fork.

resid Specifies the resource to be changed.

Movie Toolbox Reference 2-103

CHAPTER 2

Movie Toolbox

r esName Points to a new name for the resource. If you do not want to change the
resource’s name, set this parameter to ni | .

DESCRIPTION

After updating the movie file, the Updat eMovi eResour ce function clears the movie
changed flag, indicating that the movie has not been changed.

ERROR CODES
i nval i dMbvi e -2010 This movie is corrupted or invalid

File Manager errors
Memory Manager errors
Resource Manager errors

RemoveMovieResource

The RenpbveMovi eResour ce function removes a movie resource from a specified
movie file.

pascal OSErr RenpbveMvi eResource (short resRef Num short resld);

resRef Num Identifies the movie file that contains the movie resource. Your
application obtains this value from the OpenMovi eFi | e function,
described on page 2-98.

resld Specifies the resource to be removed.

ERROR CODES

File Manager errors
Resource Manager errors

PutMovielntoHandle

The Put Movi el nt oHandl e function creates a new movie resource for you. You can use
this handle to store a QuickTime movie in a specialized storage format.

pascal OSErr Put Movi el nt oHandl e (Movi e theMvi e,
Handl e publi cMvi e);

2-104 Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

publ i cMovi e
Contains the handle that is to receive the new movie resource. The
Put Movi el nt oHandl e function places the new movie resource into this
handle. The function resizes the handle if necessary.

Note that you cannot use this new movie with other Movie Toolbox functions, except for
the NewMovi eFr onHandl e function. You can use the NewMovi eFr onHandl e function,
described on page 2-90, to load a movie from a handle.

SPECIAL CONSIDERATIONS

ERROR CODES

Movies saved using Put Movi el nt oHandl e contain less robust data references than
those created using the AddMovi eResour ce or Put Movi el nt oDat aFor k functions
(described on page 2-102 and page 2-110, respectively).

i nval i dvbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

FlattenMovie

The Fl at t enMbvi e function creates a new movie file containing a specified movie. This
file also contains all the data for the movie—that is, the Movie Toolbox resolves any data
references and includes the corresponding movie data in the new movie file.

pascal void FlattenMvie (Mvie theMvie, |ong novieFlattenFl ags,
const FSSpec *theFil e,
OSType creator, ScriptCode scriptTag,
| ong createMvi eFil eFl ags,
short *resld, const StringPtr resNane);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference 2-105

2-106

CHAPTER 2

Movie Toolbox

movi eFl at t enFl ags

theFile

creator
scri pt Tag

Controls the process of adding movie data to the new movie file. The
following flags are available (be sure to set unused flags to 0):

fl att enAddMovi eToDat aFor k
Causes the movie to be placed in the data fork of the new
movie file, as well as in the resource fork. You may use this
flag to create movie files that are more easily moved to
other computer systems from your Macintosh.

flattenDont | nterl eaveFl atten
Allows you to disable the Movie Toolbox’s data storage
optimizations. By default, the Movie Toolbox stores movie
data in a format that is optimized for playback. Set this flag
to 1 to disable these optimizations.

flattenActiveTracksOnly
Causes the Movie Toolbox to add only enabled movie
tracks to the new movie file. You can use the
Set Tr ackEnabl ed function, described on page 2-147, to
enable and disable movie tracks.

Contains a pointer to the file system specification for the movie file to be
created.

Specifies the creator value for the new file.

Specifies the script in which the movie file should be created. Set this

parameter to the Script Manager constant snSyst enScri pt to use the
system script; set it to smCur r ent Scri pt to use the current script. See
Inside Macintosh: Text for more information about scripts and script tags.

creat eMbvi eFi | eFl ags

resld

resName

Controls file creation options. The following flag is available:

creat eMovi eFi |l eDel eteCurFil e
Indicates whether to delete an existing file. If you set this
flag to 1, the Movie Toolbox deletes the file (if it exists)
before creating the new movie file. If this flag is set to 0 and
the file specified by the f i | eSpec parameter already
exists, the Movie Toolbox uses the existing file. In this case,
the toolbox ensures that the file has both a data and a
resource fork. If this flag is not set, the data is appended to
the file.

Contains a pointer to a field that contains the resource ID number for the
new resource. If the field referred to by the r es| d parameter is set to 0,
the Movie Toolbox assigns a unique resource ID number to the new
resource. The toolbox then returns the movie’s resource ID number in the
field referred to by the r esl d parameter. The Movie Toolbox assigns
resource ID numbers sequentially, starting at 128. If the r es| d parameter
is set to ni | , the Movie Toolbox assigns a unique resource ID humber to
the new resource and does not return that resource’s ID value.

Points to a character string with the name of the movie resource. If you
set the r esNane parameter to ni | , the toolbox creates an unnamed
resource.

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The toolbox places the movie resource into the resource fork of the movie file. The Movie
Toolbox does not alter the source movie.

The Movie Toolbox calls your progress function during long operations.

i nval i dvbvi e -2010 This movie is corrupted or invalid
pr ogr essProcAborted -2019 Your progress function returned an error
cant Cr eat eSi ngl eForkFi |l e —2022 Error trying to create a single-fork file

File Manager errors
Memory Manager errors
Resource Manager errors

FlattenMovieData

The Fl at t enMovi eDat a function creates a new movie file and creates a new movie
that contains all of its movie data. However, unlike the Fl at t enMovi e function
described in the previous section, this function does not add the new movie resource to
the new movie file. Instead, the Fl at t enMovi eDat a function returns the new movie to
your application. Your application must dispose of the returned movie.

pascal Mvie FlattenMvieData (Mvie thelMvie,
| ong novi eFl at t enFl ags,
const FSSpec *theFil e,
CSType creator,
Scri pt Code scri pt Tag,
| ong createMvi eFil eFl ags) ;

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

movi eFl at t enFl ags
Controls the process of adding movie data to the new movie file. These
flags affect how the toolbox adds movies to the new movie file later. The
following flags are available (be sure to set unused flags to 0):

fl att enAddMovi eToDat aFor k
Causes the movie to be placed in the data fork of the new
movie file. You may use this flag to create single-fork movie
files, which can be more easily moved to other computer
systems from your Macintosh.

Movie Toolbox Reference 2-107

DESCRIPTION

ERROR CODES

2-108

CHAPTER 2

Movie Toolbox

theFil e

creator
scri pt Tag

flattenDont | nterl eaveFl atten
Allows you to disable the Movie Toolbox’s data storage
optimizations. By default, the Movie Toolbox stores movie
data in a format that is optimized for the storage device. Set
this flag to 1 to disable these optimizations.

flattenActiveTracksOnly
Causes the Movie Toolbox to add only enabled movie
tracks to the new movie file. You can use the
Set Tr ackEnabl ed function, which is described on
page 2-147, to enable and disable movie tracks.

Contains a pointer to the file system specification for the movie file to be
created.

Specifies the creator value for the new file.

Specifies the script in which the movie file should be created. Set this
parameter to snByst en5cri pt to use the system script; set it to

snCur rent Scri pt to use the current script. See Inside Macintosh: Text for
more information about scripts and script tags.

creationFl ags

Controls file creation options. The following flag is available:

createMvi eFil eDel eteCurFil e
Indicates whether to delete an existing file. If you set this
flag to 1, the Movie Toolbox deletes the file (if it exists)
before creating the new movie file. If this flag is set to 0 and
the file specified by the f i | eSpec parameter already
exists, the Movie Toolbox uses the existing file. In this case,
the toolbox ensures that the file has both a data and a
resource fork. If this flag isn’t set, the data is appended to
the file.

The Fl at t enMovi eDat a function returns the movie identifier of the new movie. If the

function could

not create the movie, it sets this returned identifier toni | .

You can also use this function to create a single-fork movie file. Set the
fl att enAddMovi eToDat aFor k flag in the novi eFl at t enFl ags parameter to 1. The
Movie Toolbox then places the movie into the data fork of the movie file.

The Movie Toolbox calls your progress function during long operations.

The Movie Toolbox does not alter the source movie.

i nval i dMbvi e -2010 This movie is corrupted or invalid
progressProcAborted -2019 Your progress function returned an error
cant Creat eSi ngl eForkFi | e —2022 Error trying to create a single-fork file

File Manager e

rrors

Memory Manager errors

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

NewMovieFromDataFork

The NewMovi eFr onDat aFor k function enables you to retrieve a movie that is stored
anywhere in the data fork of a specified file.

pascal OSErr NewMovi eFronDat aFork (Movie *theMvi e,
short f Ref Num
long fileOfset,
short newh\bvi eFl ags,
Bool ean *dat aRef WVasChanged) ;

t heMbvi e Contains a pointer to the movie identifier for the movie to be retrieved.
Your application obtains this movie identifier from such functions as
NewMbvi e, Newbvi eFr onFi | e, and NewMbvi eFr onHandl e
(described on page 2-92, page 2-88, and page 2-90, respectively).

f Ref Num Contains a file reference number to a file that is already open.

fileOfset
Specifies the starting file offset of the atom in the data fork of the
file specified by the f Ref Numparameter.

newMbvi eFl ags
Contains the standard flags in the newMovi e enumeration.

newMbvi eActi ve
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. A movie that does not have
any tracks can still be active. When the Movie Toolbox tries
to play the movie, no images are displayed, because there
is no movie data. You can make a movie active or inactive
by calling the Set Movi eAct i ve function, which is
described on page 2-145.

newhbvi eDont Aut oAl t er nat e
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

newibvi eDont Resol veDat aRef s
Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only
looks in the specified file.

If the Movie Toolbox cannot completely resolve all the data
references, it still returns a valid movie identifier. In this
case, the Movie Toolbox also sets the current error value to
coul dNot Resol veDat aRef .

Movie Toolbox Reference 2-109

CHAPTER 2

Movie Toolbox

newMbvi eDont AskUnr esol vedDat aRef s
Controls whether the Movie Toolbox asks the user to locate
files. If you set this flag to 0, the Movie Toolbox asks the
user to locate files that it cannot find on available volumes.
If the Movie Toolbox cannot locate a file even with the
user’s help, the function returns a valid movie identifier
and sets the current error value to
coul dNot Resol veDat aRef .

dat aRef WVasChanged
Contains a pointer to a Boolean value. The Movie Toolbox sets the
Boolean to indicate whether it had to change any data references while
resolving them. The toolbox sets the Boolean value to t r ue if any
references were changed. Use the Updat eMovi eResour ce function
(described on page 2-103) to preserve these changes.

Set the dat aRef WAsChanged parameter to ni | if you do not want to
receive this information. See the “Creating Tracks and Media Structures”
beginning on page 2-150 for more information about data references.

ERROR CODES

badl mageDescri ption —2001 Problem with an image description
badPubl i cMovi eAt om -2002 Movie file corrupted

cant Fi ndHandl er —-2003 Cannot locate a handler

cant OpenHandl er —2004 Cannot open a handler

File Manager errors
Memory Manager errors

PutMovielntoDataFork

The Put Movi el nt oDat aFor k function allows you to store a movie in the data fork of a
given file.

pascal OSErr Put Movi el nt oDat aFork (Movi e theMvie, short fRef Num
| ong of fset, |ong maxSi ze);

t heMbvi e Identifies the movie to be stored in the data fork of an atom. Your
application obtains this movie identifier from such functions as
NewMbvi e, Newbvi eFr onFi | e, and NewMovi eFr omHandl e
(described on page 2-92, page 2-88, and page 2-90, respectively).

f Ref Num Contains a file reference number for the data fork of the given file. You
pass in an open write path in the f Ref Numparameter.

of f set Indicates where the movie should be written.
maxSi ze Indicates the largest number of bytes that may be written.

2-110 Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

If necessary, the file will be extended. If there is insufficient space to write the movie,
either due to a lack of disk space or because of the limit specified in the naxSi ze
parameter, this function returns a dskFul | Er r error code. If there is no limit on how
much space the movie may take up in the file, pass 0 in the maxSi ze parameter.

i nval i dMbvi e -2010 This movie is corrupted or invalid

Memory Manager errors
File Manager errors

Controlling Movie Playback

StartMovie

This section describes a number of high-level functions provided by the Movie Toolbox
that allow your application to play movies. For information about how to control a
movie’s playback rate, see “Working with Movie Time” beginning on page 2-184.

You can use the St ar t Movi e and St opMovi e functions to start and stop movies.

The Movie Toolbox provides functions that can be used to control your position within a
movie. You can use two functions, GoToBegi nni ngOf Movi e and GoToEndOF Movi e, to
set the position at either the beginning or the end of a movie. These functions are
described in this section. Functions that work with time bases, such as

Set Movi eTi neVal ue and Get Movi eTi neScal e, can be used to control the current
position anywhere within a movie. These advanced functions are described in
“Functions That Modify Movie Properties” beginning on page 2-157.

The St ar t Movi e function starts the movie playing from the current movie time, which
is where the movie last stopped playing. Before playing the movie, the Movie Toolbox
makes the movie active, prerolls the movie, and sets the movie to its preferred playback
rate. You can use the Set Movi ePr ef er r edRat e function (described on page 2-130) to
change this setting.

pascal void StartMyvie (Mvie theMuvie);
t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and

NewMbvi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference 2-111

DESCRIPTION

ERROR CODES

SEE ALSO

StopMovie

CHAPTER 2

Movie Toolbox

Note that a movie’s current time is saved when a movie is stored in a movie file.
Therefore, your application should appropriately position a movie before playing the
movie—use the GoToBegi nni ngOf Movi e function (described on page 2-113) to set
a movie to play from its start.

You are not required to call St ar t Movi e to start a movie. This function is included
merely for convenience.

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

You can also start a movie playing by calling the Set Movi eRat e function (described on
page 2-187) and setting the movie’s rate to a nonzero value.

ERROR CODES

SEE ALSO

2-112

The St opMovi e function stops the playback of a movie.

pascal void StopMyvie (Mvie thelMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and

NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

i nval i dvbvi e -2010 This movie is corrupted or invalid

You can use the St ar t Movi e function described in the previous section to resume
playing.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GoToBeginningOfMovie

DESCRIPTION

The GoToBegi nni ngOf Movi e function repositions a movie to play from its start.
pascal void GoToBegi nni ngOf Movi e (Movi e t helMvi e) ;

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

If you have defined an active movie segment, the GoToBegi nni ngOf Movi e function
repositions to the start of the active segment. The active movie segment is the part of the
movie that your application is interested in playing. By default, the active movie
segment is set to be the entire movie. You may wish to change this to be some segment of
the movie—for example, if you wish to play a user’s selection repeatedly. By setting the
active movie segment, you guarantee that the Movie Toolbox uses no samples from
outside of that range while playing the movie.

If the movie is in preview mode, the function goes to the start of the preview segment of
the movie. In all other cases, this function moves you to the start of the movie, where the
movie time value is 0.

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

Movies need not be at the start position when they are saved. The Movie Toolbox stores
a movie’s time position in the movie when it is saved. If you want to play a movie from
the beginning, your application should call the GoToBegi nni ngOf Movi e function
before playing a movie you have loaded from a movie file.

i nval i dvbvi e -2010 This movie is corrupted or invalid

You can use the Set Movi eAct i veSegnent and Get Movi eAct i veSegnent functions
to work with the active segment. For details, see “Enhancing Movie Playback
Performance” beginning on page 2-134.

Movie Toolbox Reference 2-113

CHAPTER 2

Movie Toolbox

GoToEndOfMovie

DESCRIPTION

ERROR CODES

SEE ALSO

The GoToEndOf Movi e function repositions a movie to play from its end.
pascal void GoToEndOf Movi e (Mvie theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewVbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

If you have defined an active movie segment, the GoToEndCf Movi e function
repositions the movie to the end of the active segment. If the movie is in preview mode,
the function goes to the end of the preview segment of the movie. In all other cases, this
function moves you to the end of the movie.

i nval i dvbvi e -2010 This movie is corrupted or invalid

You can use the Set Movi eAct i veSegnent and Get Movi eAct i veSegnent functions
to work with the active segment. For details, see “Enhancing Movie Playback
Performance” beginning on page 2-134.

Movie Posters and Movie Previews

2-114

A QuickTime movie may contain a preview and a poster. A movie preview is a very
short version of a movie, typically less than five seconds in duration. The preview is
intended to give the user an idea of a movie’s contents.

A movie poster is a still frame representing the movie.

This section describes the Movie Toolbox functions that allow your application to work
with movie previews and movie posters.

Use the Pl ayMovi ePr evi ewfunction to display a movie’s preview. The
Pl ayMovi ePr evi ewfunction sets the movie into preview mode, plays the movie
preview, sets the movie back to normal playback mode, and returns to your application.

Alternatively, your application can control the playback of a movie’s preview. Use the
Set Movi ePr evi ewivbde function to place a movie into preview mode. You can then
use the St art Movi e and St opMovi e functions to control movie playback—these
functions are described on page 2-111 and page 2-112, respectively. Your application can
find out if a movie is in preview mode by calling the Get Mbvi ePr evi ewivbde function.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Your application can specify the starting time and duration of the movie preview with
the Set Movi ePr evi ewTi me and Get Movi ePr evi ewTi e functions.

Use the Showvbvi ePost er function to display a movie’s poster. You can work with the
poster’s boundary rectangle using the Set Post er Box and Get Post er Box functions.
Your application can work with the starting time of the poster with the

Set Movi ePost er Ti ne and Get Movi ePost er Ti e functions. Posters always have no
duration.

Tracks may be specified for use in the movie, its preview, its poster, or any combination
of the three. So, for example, when the Movie Toolbox plays the movie preview it uses
only those tracks that are assigned to the preview. Your application controls the use of a
movie’s tracks with the Set Tr ackUsage function. You can find out how a track is used
by calling the Get Tr ackUsage function.

SetTrackUsage

ERROR CODES

SEE ALSO

The Set Tr ackUsage function allows your application to specify whether a track is
used in a movie, its preview, its poster, or a combination of these.

pascal void SetTrackUsage (Track theTrack, |ong usage);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

usage Contains flags that specify how the track is to be used. The following flags
are defined (be sure to set unused flags to 0):

trackUsagel nMovi e
The track is used in the movie. If this flag is set to 1, the
track is used in the movie.

trackUsagel nPrevi ew
The track is used in the preview. If this flag is set to 1, the
track is used in the preview.

trackUsagel nPost er
The track is used in the poster. If this flag is set to 1, the
track is used in the poster.

i nval i dTrack —2009 This track is corrupted or invalid

Your application can determine how a track is used by calling the Get Tr ackUsage
function, which is described in the next section.

Movie Toolbox Reference 2-115

CHAPTER 2

Movie Toolbox

GetTrackUsage

DESCRIPTION

ERROR CODES

The Get Tr ackUsage function allows your application to determine whether a track is
used in a movie, its preview, its poster, or a combination of these. Your application can
specify how a track is used by calling the Set Tr ackUsage function, which is described
in the previous section.

pascal |ong Get TrackUsage (Track theTrack);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get Tr ackUsage function returns a long integer that contains flags indicating the
track’s usage. The following flags are defined (unused flags are set to 0):

trackUsagel nMovi e
The track is used in the movie. If this flag is set to 1, the track is used in
the movie.

trackUsagel nPrevi ew
The track is used in the movie preview. If this flag is set to 1, the track is
used in the preview.

trackUsagel nPost er
The track is used in the movie poster. If this flag is set to 1, the track is
used in the poster.

i nval i dTrack —2009 This track is corrupted or invalid

ShowMoviePoster

2-116

You can use the Showbvi ePost er function to display a movie’s poster. The movie
poster uses the movie’s matrix and display clipping characteristics.

pascal void Showwbvi ePoster (Movie theMvie);
t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and

NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

The Movie Toolbox draws the movie poster once, in the movie’s graphics world. This
function works on active and inactive movies.

i nval i dvbvi e -2010 This movie is corrupted or invalid

You can set the poster’s starting time with the Set Movi ePost er Ti ne function
(described on page 2-118). You can set the position and size of the poster by calling the
Set Post er Box function (described in the next section).

SetPosterBox

DESCRIPTION

ERROR CODES

SEE ALSO

You can use the Set Post er Box function to set a poster’s boundary rectangle. You
define the poster’s image by specifying a time in the movie (use the

Set Movi ePost er Ti me function, described on page 2-118). You specify the size and
position of the poster image with this function.

pascal void Set PosterBox (Mvie thelMvie, const Rect *boxRect);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

boxRect Contains a pointer to a rectangle. The Movie Toolbox sets the poster’s
boundary rectangle to the coordinates specified in the structure referred
to by this parameter.

If you do not specify a boundary rectangle for the poster, the Movie Toolbox uses the
movie’s matrix when it displays the poster.

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dRect -2036 Specified rectangle has invalid coordinates

Your application can retrieve a poster’s boundary rectangle by calling the
Get Post er Box function, which is described in the next section.

Movie Toolbox Reference 2-117

CHAPTER 2

Movie Toolbox

GetPosterBox

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Post er Box function allows you to obtain a poster’s boundary rectangle.
pascal void Get PosterBox (Movie theMyvie, Rect *boxRect);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewVbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

boxRect Contains a pointer to a rectangle. The Movie Toolbox returns the poster’s
boundary rectangle into the structure referred to by this parameter.

When you call Get Post er Box without having called Set Post er Box, the current
movie matrix is applied to the poster tracks to determine the poster box.

i nval i dMbvi e -2010 This movie is corrupted or invalid

You set the poster’s boundary rectangle by calling the Set Post er Box function, which is
described in the previous section.

SetMoviePosterTime

2-118

The Set Movi ePost er Ti e function sets the poster time for the movie. Since a movie
poster is a still frame, it is defined by a point in time within the movie. The poster’s time
is expressed in the movie’s time coordinate system. Your application can retrieve a
poster’s time by calling the Get Movi ePost er Ti ne function, which is described in the
next section.

pascal void Set Movi ePosterTi ne (Mvie theMuvie,
Ti meVal ue posterTine);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

post er Ti me
Contains the starting time for the movie frame that contains the poster
image.

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dTi me -2015 This time value is invalid

Your application can set the poster’s boundary rectangle by calling the Set Post er Box
function, which is described on page 2-117.

GetMoviePosterTime

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Movi ePost er Ti me function returns the poster’s time in the movie. Since a
movie poster has no duration, a poster is defined by a point in time within the movie.
The time value returned is in the time coordinate system of the movie.

pascal Ti neVal ue Get Movi ePosterTi ne (Movi e theMvie);
t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and

NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi ePost er Ti ne function returns a time value. This time value contains the
starting time for the movie frame that contains the movie poster image.

i nval i dvbvi e —-2010 This movie is corrupted or invalid

Your application can set a poster’s time by calling the Set Movi ePost er Ti ne function,
which is described in the previous section.

Movie Toolbox Reference 2-119

CHAPTER 2

Movie Toolbox

PlayMoviePreview

The Pl ayMovi ePr evi ewfunction plays a movie’s preview.

pascal void Pl ayMvi ePreview (Mvie theMvie,
Movi ePr evi ewCal | Qut Proc cal | Qut Proc,
I ong refcon);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

cal | Qut Proc
Contains a pointer to a movie callout function in your application. The
Movie Toolbox calls this function repeatedly while the movie preview is
playing. You can use this function to stop the preview. If you do not want
to assign a function, set this parameter to ni | .

Your function should have the following form:
pascal Bool ean MyCal |l Qut Proc (long refcon);

The r ef Con parameter contains the reference constant you specified
when you called the Pl ayMovi ePr evi ewfunction.

Your function returns a Boolean value. The Movie Toolbox examines this
value before continuing. If your function sets this value tof al se, the
Movie Toolbox stops the preview and returns to your application. For
details, see “Movie Callout Functions” on page 2-359.

Note that if you call the Get Movi eAct i veSegnent function (described
on page 2-137) from within your movie callout function, the Movie
Toolbox will have changed the active movie segment to be the preview
segment of the movie. The Movie Toolbox restores the active segment
when the preview is done playing.

refcon Contains a reference constant for your function. The Movie Toolbox
passes this value to your function.

DESCRIPTION

The Pl ayMovi ePr evi ewfunction sets the movie into preview mode, plays the movie
preview, sets the movie back to normal playback mode, and returns to your application.
The Movie Toolbox plays the preview in the movie’s graphics world.

2-120 Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dvbvi e -2010 This movie is corrupted or invalid

Use the Set Movi ePr evi ewTi nme function, described on page 2-122, to define the
starting time and duration of the movie preview.

SetMoviePreviewMode

DESCRIPTION

ERROR CODES

The Set Movi ePr evi ewvbde function allows your application to place a movie into
and out of preview mode. When a movie is in preview mode, only those tracks identified
as preview tracks are serviced. You specify how a track is used by calling the

Set Tr ackUsage function, which is described on page 2-115.

pascal void Set Movi ePrevi embde (Mvie theMvi e,
Bool ean usePrevi ew) ;

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

usePrevi ew
Specifies the movie’s mode. Set this parameter to t r ue to place the movie
into preview mode. Set this parameter to f al se to place the movie into
normal playback mode.

When you place a movie into preview mode, the Movie Toolbox sets the active movie
segment to be the preview segment of the movie. When you take a movie out of
preview mode and place it back in normal playback mode, the toolbox sets the active
movie segment to be the entire movie. For information about working with active movie
segments, see “Enhancing Movie Playback Performance” beginning on page 2-134.

i nval i dMbvi e -2010 This movie is corrupted or invalid

Movie Toolbox Reference 2-121

CHAPTER 2

Movie Toolbox

GetMoviePreviewMode

DESCRIPTION

ERROR CODES

The Get Movi ePr evi ewvbde function allows your application to determine whether a
movie is in preview mode. If a movie is in preview mode, only the movie’s preview can
be displayed. Your application can place a movie into and out of preview mode by
calling the Set Movi ePr evi ewbde function, which is described in the previous section.

pascal Bool ean Get Movi ePrevi ewbde (Movi e thelMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi ePr evi ewvbde function returns a Boolean value. If the movie is in
preview mode, the function sets this return value to t r ue. If the movie is in normal
playback mode, the function sets this value to f al se.

i nval i dMbvi e -2010 This movie is corrupted or invalid

SetMoviePreviewTime

2-122

The Set Movi ePr evi ewTi ne function allows your application to define the starting
time and duration of the movie’s preview. These time values are in the movie’s time
coordinate system.

pascal void Set Movi ePrevi ewTi me (Mvie theMvie,
Ti meVal ue previ ewTi e,
Ti nmeVal ue previ ewburation);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

previ ewTi e
Contains a time value that specifies the preview’s starting time.

previ ewDur ati on
Contains a time value that specifies the preview’s duration.

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

Your application can retrieve the starting time and duration of the preview with the
Get Movi ePr evi ewTi e function, which is described in the next section.

GetMoviePreviewTime

ERROR CODES

SEE ALSO

The Get Movi ePr evi ewTi e function returns the starting time and duration of the
movie’s preview. These time values are expressed in the movie’s time coordinate system.

pascal void Get Movi ePrevi ewTi me (Mvie theMvie,
Ti reVal ue *previ ewTi e,
Ti reVal ue *previ ewburation);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

previ ewTi me
Contains a pointer to a time value. The Movie Toolbox places the
preview’s starting time into the field referred to by this parameter. If the
movie does not have a preview, the Movie Toolbox sets this returned
value to 0.

previ ewDur at i on
Contains a pointer to a time value. The Movie Toolbox places the
preview’s duration into the field referred to by this parameter. If the
movie does not have a preview, the Movie Toolbox sets this returned
value to 0.

i nval i dMbvi e -2010 This movie is corrupted or invalid

Your application sets the starting time and duration of the movie preview with the
Set Movi ePr evi ewTi e function, which is described in the previous section.

Movie Toolbox Reference 2-123

CHAPTER 2

Movie Toolbox

Movies and Your Event Loop

In order for your movies to play, your application must grant time to the Movie Toolbox.
You do this by calling the Movi esTask function from your main event loop. The

Movi esTask function causes the Movie Toolbox to service all your active movies. You
should call this function regularly so that your movie can play smoothly. You can use the
Updat eMovi e function to force your movie to be redrawn after it has been uncovered.

You may want your application to take a particular action when a movie is done playing.
The Movie Toolbox provides the | sMovi eDone function, which allows you to determine
whether a movie is done playing. The Movie Toolbox also provides more sophisticated
callback mechanisms, which are discussed in “Time Base Functions” beginning on

page 2-315.

The Movie Toolbox provides two functions that allow your application to determine
whether a specified point lies in either a movie or a track. Use the Pt | nMbvi e function
with movies; use the Pt | nTr ack function with tracks.

Your application can retrieve some status information about movies and tracks. Use the
Get Movi eSt at us function to retrieve movie status; use the Get Tr ack St at us function
to get track status.

MoviesTask

2-124

The Movi esTask function services active movies.
pascal void MyviesTask (Mwvie theMvie, long maxM I 1i SecToUse);

t heMbvi e Specifies the movie for this operation. If you set this parameter to ni | , the
Movie Toolbox services all of your active movies. Your application obtains
this movie identifier from such functions as Newbvi e,
NewMovi eFr ontFi | e, and Newbvi eFr onHandl e (described on
page 2-92, page 2-88, and page 2-90, respectively).

maxM | | i SecToUse
Determines the maximum number of milliseconds that Movi esTask can
work before returning. If this parameter is 0, Movi esTask services every
active movie exactly once and then returns. If the parameter is nonzero,
Movi esTask services as many movies as it can in the allotted time before
returning.

Once the Movi esTask function starts servicing a movie, it cannot stop
until it has completely met the requirements of the movie. Consequently,
the Movi esTask function may execute for a longer time than that

specified in maxM | | i SecToUse. However, the function does not start
servicing a new movie if the time specified by maxM | | i SecToUse has
elapsed.

Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

The preferred way to use Movi esTask is to set the maxM | | i SecToUse
parameter to 0; however, if you just want to play one movie, you can call
Movi esTask on that one.

If your rate is 0, Movi esTask draws that frame and no other.

When servicing a movie, the Movie Toolbox performs the processing that is appropriate
for the movie—displaying frames, playing sound, reading data from disk, or other tasks.
The only time the Movie Toolbox actually draws a movie is during the operation of the
Movi esTask function.

You should call Movi esTask as often as possible from your application’s main event
loop. Note that you should call this function after you have performed your own event
processing.

The Movi esTask function services only active movies, and only enabled tracks within
those active movies. Use the Set Movi eAct i ve function (described on page 2-145) and
the Set Tr ackEnabl ed function (described on page 2-147) to enable and disable movies
and tracks.

SPECIAL CONSIDERATIONS

ERROR CODES

Note that the Movi esTask function services only your movies. Your application must
call the Event Manager’s WAi t Next Event routine (or the Event Manager’s

Get Next Event routine and the Syst enifask routine) to give other applications the
opportunity to call Movi esTask for their movies. For details on Wai t Next Event ,
Get Next Event , and Syst enilask, see Inside Macintosh: Macintosh Toolbox Essentials.

i nval i dMbvi e -2010 This movie is corrupted or invalid

IsMovieDone

Your application may wish to take a particular action when a movie is done playing. The
| sMovi eDone function allows you to determine if a particular movie has completely
finished playing.

pascal Bool ean | shbvi eDone (Mvie theMvie);
t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and

NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference 2-125

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The | sMovi eDone function returnst r ue if the specified movie has finished playing;
otherwise it returns f al se. A movie with a positive rate (playing forward) is considered
done when its movie time reaches the movie end time. Conversely, a movie with a
negative rate (playing backward) is considered done when its movie time reaches the
movie start time.

If your application has changed the movie’s active segment, the status returned by the

I sMbvi eDone function is relative to the active segment, rather than to the entire movie.
You can use the Set Movi eAct i veSegnent function (described on page 2-136) to
change a movie’s active segment.

i nval i dvbvi e -2010 This movie is corrupted or invalid

UpdateMovie

DESCRIPTION

2-126

The Updat eMovi e function allows your application to ensure that the Movie Toolbox
properly displays your movie after it has been uncovered.

Your application should call this function between the Window Manager’s

Begi nUpdat e and EndUpdat e functions. (For details, see Inside Macintosh: Macintosh
Toolbox Essentials.) Do not call Movi esTask at this time. You will observe better display
behavior if you call Movi esTask at the end of your update processing.

pascal OSErr UpdateMovie (Mvie thelMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Updat eMovi e function does not actually update the movie’s graphics world.
Rather, the function invalidates the movie’s display state so that the Movie Toolbox
redraws the movie the next time you call the Movi esTask function. If you need to force
a movie to be redrawn outside of a Window Manager update sequence, your application
can call Updat eMovi e and then call the Movi esTask function (described on

page 2-124) to service the movie.

The Movie Toolbox determines the portion of the screen to update by examining the
graphics port’s visible region.

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid

SEE ALSO
For sample code that uses the Updat eMbvi e function in a Window Manager update
sequence, see Listing 2-13 on page 2-63.
PtinMovie
The Pt I nMovi e function allows your application to determine whether a specified point
lies in the region defined by a movie’s final display boundary region after it has been
clipped by the movie’s display clipping region. This function is accurate at the current
movie time.
pascal Bool ean PtInMvie (Mvie theMvie, Point pt);
t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).
pt Specifies the point to be checked. This point must be expressed in the
movie’s local display coordinate system.
DESCRIPTION

The Pt | nMovi e function returns a Boolean value. The function sets this value to t r ue if
the point lies in the movie’s display space.

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

The region that Pt | nMbvi e checks for is different from the movie box.

i nval i dMbvi e -2010 This movie is corrupted or invalid

To find out if a point lies in the region defined by a track’s display boundary region after
it has been clipped by a movie’s final display clipping region, you use the Pt I nTr ack
function. See the next section for details.

Movie Toolbox Reference 2-127

PtInTrack

CHAPTER 2

Movie Toolbox

DESCRIPTION

The Pt | nTr ack function allows your application to determine whether a specified point
lies in the region defined by a track’s display boundary region after it has been clipped
by the movie’s final display clipping region. This function is accurate at the current
movie time.

pascal Boolean PtInTrack (Track theTrack, Point pt);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

pt Specifies the point to be checked. This point must be expressed in the
local display coordinate system of the movie that contains the track.

The Pt | nTr ack function returns a Boolean value. The function sets this value to t r ue if
the point lies in the track’s display space.

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

The region that Pt | nTr ack checks for is different from the movie box.

i nval i dMbvi e -2010 This movie is corrupted or invalid

To find out if a point lies within the region defined by a movie’s final display boundary
region after it has been clipped by the movie’s display clipping region, you can use the
Pt I nMovi e function, which is described in the previous section.

GetMovieStatus

2-128

The Get Movi eSt at us function searches for errors in all the enabled tracks of the
movie. This function returns information about errors that are encountered during the
processing associated with the Movi esTask function (described on page 2-124). These
errors typically reflect playback problems, such as low-memory conditions.

pascal Conponent Result Get Movi eStatus (Movie thelMvie,
Track *firstProbl emlrack);

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

firstProbl emlrack
Contains a pointer to a track identifier. The Movie Toolbox places the
identifier for the first track that is found to contain an error into the field
referred to by this parameter. If you do not want to receive the track
identifier, set this parameter to ni | .

The Get Movi eSt at us function returns the error from the first problem track. If the
component does not find any errors, the result is set to noEr r.

Any Movie Toolbox result code (see “Summary of the Movie Toolbox™ at the end of this
chapter)

GetTrackStatus

DESCRIPTION

ERROR CODES

The Get Tr ackSt at us function returns the value of the last error the media
encountered while playing a specified track. This function returns information about
errors that are encountered during the processing associated with the Movi esTask
function (described on page 2-124). These errors typically reflect playback problems,
such as low-memory conditions.

The media clears this error code when it detects that the error has been corrected.
pascal Conponent Result GetTrackStatus (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from the Get Movi eSt at us function, described in the previous
section.

The Get Tr ackSt at us function returns the last error encountered for the specified
track. If the component does not find any errors, the result is set to noErr.

Any Movie Toolbox result code (see “Summary of the Movie Toolbox™ at the end of this
chapter)

Movie Toolbox Reference 2-129

CHAPTER 2

Movie Toolbox

Preferred Movie Settings

Every movie has default, or preferred, settings for playback rate and volume. These
settings are stored with the movie in its movie file. The Movie Toolbox provides
functions that allow your application to manipulate these default settings.

You can use the Get Movi ePr ef er r edRat e and Set Movi ePr ef er r edRat e functions
to work with a movie’s default playback rate. You can use the

Get Movi ePr ef er r edVol une and Set Movi ePr ef er r edVol une functions to work
with the default sound volume of a movie.

You can use the Set Movi eRat e function to change a movie’s playback rate—see
“Working with Movie Time” beginning on page 2-184 for a complete description of this
function. The Movie Toolbox also provides a number of functions that allow you to
change other settings when you play a movie. These functions are discussed in
“Functions That Modify Movie Properties” beginning on page 2-157.

SetMoviePreferredRate

DESCRIPTION

The Set Movi ePr ef er r edRat e function allows your application to specify a movie’s
default playback rate.

pascal void Set Movi ePreferredRate (Myvie theMvie, Fixed rate);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

rate Specifies the new movie rate as a 32-bit, fixed-point number. Positive
integers indicate forward rates and negative integers indicate reverse
rates.

The default playback rate is the rate that the St art Movi e function (described on
page 2-111) uses when it starts playing a movie. The default preferred rate of a movie is
set to 1.0 (the kFi x1 constant) when the movie is created.

SPECIAL CONSIDERATIONS

2-130

Do not set the preferred rate to 0.

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid

Your application can obtain the preferred playback rate by calling the
Get Movi ePr ef er r edRat e function, which is described in the next section.

You can set the current playback rate of a movie by calling the Set Movi eRat e function,
which is described on page 2-187.

GetMoviePreferredRate

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Movi ePr ef er r edRat e function returns a movie’s default playback rate. This is
the rate that the St art Movi e function uses when it starts playing a movie.

pascal Fi xed Get Movi ePreferredRate (Movi e theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewVbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi ePr ef er r edRat e function returns the default movie rate as a 32-bit,
fixed-point number. Positive integers indicate forward rates and negative integers
indicate reverse rates.

i nval i dvbvi e -2010 This movie is corrupted or invalid

Your application can change the preferred playback rate by calling the

Set Movi ePr ef er r edRat e function, which is described in the previous section. You
can change the current playback rate of a movie by calling the Set Movi eRat e function,
which is described on page 2-187.

Movie Toolbox Reference 2-131

CHAPTER 2

Movie Toolbox

SetMoviePreferredVVolume

DESCRIPTION

ERROR CODES

2-132

The Set Movi ePr ef er r edVol une function allows your application to set a movie’s
preferred volume setting.

pascal void Set Movi ePreferredVol une (Mvie theMuvie,
short vol une);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

vol une Specifies the preferred volume setting of the movie. The vol une
parameter must contain a 16-bit, fixed-point number that contains the
movie’s default volume. The high-order 8 bits contain the integer part of
the value; the low-order 8 bits contain the fractional part. Volume values
range from -1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting. You may find the following
constants useful:

kFul | Vol ure
Sets the movie to full volume (constant value is 1.0).

kNoVol une
Sets the movie to no volume (constant value is 0.0).

Your application can obtain the preferred volume setting by calling the

Get Movi ePr ef er r edVol une function, which is described in the next section. You can
change a movie’s current volume by calling the Set Movi eVol une function, which is
described on page 2-182.

A movie’s tracks may have their own volume settings. Use the Set Tr ackVol une
function, described on page 2-183, to set the volume of an individual track. A track’s
volume is scaled by the movie’s volume to produce the track’s final volume.
Furthermore, the movie’s volume is scaled by the sound volume that is returned by the
Operating System’s Get SoundVol routine (described in Inside Macintosh: More
Macintosh Toolbox). Thus, the user can control the overall volume from the Sound control
panel.

i nval i dMbvi e -2010 This movie is corrupted or invalid

Movie Toolbox Reference

SEE ALSO

CHAPTER 2

Movie Toolbox

When a movie is loaded, the current setting is set to preferred volume. The St art Movi e
function (described on page 2-111) uses this volume setting when it starts playing a
movie.

GetMoviePreferredVVolume

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Movi ePr ef er r edVol une function returns a movie’s preferred volume setting.
pascal short Get Movi ePreferredVol ume (Myvie theMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi ePr ef er r edVol une function returns a 16-bit, fixed-point number that
contains the movie’s default volume. The high-order 8 bits contain the integer part of the
value; the low-order 8 bits contain the fractional part. Volume values range from 0.0

to 1.0.

You can change a movie’s current volume by calling the Set Movi eVol une function,
which is described on page 2-182.

A movie’s tracks have their own volume settings. Use the Set Tr ackVol ume function,
described on page 2-183, to set the volume of an individual track. A track’s volume is
scaled by the movie’s volume to produce the track’s final volume. Furthermore, the
movie’s volume is scaled by the sound volume that is returned by the Operating
System’s Get SoundVol routine (described in Inside Macintosh: More Macintosh Toolbox).
Thus, the user can control the overall volume from the Sound control panel.

i nval i dMbvi e -2010 This movie is corrupted or invalid

When a movie is loaded, the current setting is set to preferred volume. The St art Movi e
function (described on page 2-111) uses this volume setting when it starts playing a
movie.

Movie Toolbox Reference 2-133

CHAPTER 2

Movie Toolbox

Enhancing Movie Playback Performance

2-134

There are circumstances in which an application needs to optimize the performance of a
movie or a portion of a movie. The Movie Toolbox provides several functions to help in
this process.

The first step you can take to enhance movie playback performance is to allow the Movie
Toolbox to preroll the movie. When the toolbox prerolls a movie, it informs the media
handlers that the movie is about to play. The media handlers can then load the
appropriate movie data. In this manner, the movie can play smoothly from the start. Use
the Prerol | Movi e function to preroll a movie.

The next performance enhancement technique is to load portions of a movie, track, or
media into memory, thus reducing or eliminating disk access during playback. Loading
the movie into RAM provides most noticeable performance improvements when there is
a lot of random access involved in the playback process and the entire movie fits into
available memory. Use the LoadMovi el nt oRam LoadTr ackl nt oRam and

LoadMedi al nt oRamfunctions to copy all or part of a movie into memory.

Note

The LoadMovi el nt oRam LoadTr ackl nt oRam and

LoadMedi al nt oRamfunctions load tracks into memory in a time-slice
order so that, if a function fails because it is out of memory, all tracks are
left loaded to about the same point in time. u

You can influence the temporal accuracy, and therefore the speed, with which the Movie
Toolbox tries to display a movie by calling either the Set Movi ePl ayHi nt s or
Set Medi aPl ayHi nt s function.

For each movie currently in use, the Movie Toolbox maintains an active movie segment.
The active movie segment is the part of the movie that your application is interested in
playing. By default, the active movie segment is set to be the entire movie. You may wish
to change this to be some segment of the movie—for example, if you wish to play a
user’s selection repeatedly. By setting the active movie segment you guarantee that the
Movie Toolbox uses no samples from outside of that range while playing the movie. Use
the Set Movi eActi veSegnent and Get Movi eAct i veSegnent functions to work
with the active segment.

Some movies contain very few key frames and a great number of frame differences.
These movies play back very well because they have a lower data rate. Unfortunately,
this makes random access operations, such as scrubbing, on a movie difficult. In such
movies, random access is difficult.

To improve random access performance of movies with few key frames and many frame
differences, shadow sync samples may be added. Shadow sync samples are
self-contained samples that are alternates for already existing frame difference samples.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

During certain random access operations, a shadow sync sample is used instead of a
normal key frame, which may be very far away from the desired frame.

The Movie Toolbox provides two functions to let you create just such an association
between a frame difference sample and a sync sample. Set Medi aShadowSync
establishes a shadow sync sample for a media. You can use Get Medi aShadowSync to
find out if a particular frame difference sample has a shadow sync sample.

PrerollMovie

DESCRIPTION

ERROR CODES

The Prerol | Movi e function allows your application to prepare a portion of a movie for
playback.

pascal CSErr Preroll Mvie (Mvie theMvie, TinmeValue tine,
Fi xed Rate);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

time Contains the starting time of the movie segment to play.

Rat e Specifies the rate at which you anticipate playing the movie. You specify
the movie rate as a 32-bit, fixed-point number. Positive integers indicate
forward rates and negative integers indicate reverse rates.

When your application calls the Pr er ol | Movi e function, the Movie Toolbox tells the
appropriate media handlers to prepare to play the movie. The media handlers may then
load the movie data and perform any other necessary preparations to play the movie,
such as allocating sound channels and starting up image-decompression sequences. In
this manner, you can eliminate playback stutter when the movie starts playing.

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dTi me -2015 This time value is invalid

Movie Toolbox Reference 2-135

CHAPTER 2

Movie Toolbox

SetMovieActiveSegment

You can use the Set Movi eAct i veSegnent function to define a movie’s active
segment. Your application defines the active segment by specifying the starting time and
duration of the segment. These values must be expressed in the movie’s time coordinate
system. By default, the entire movie is active.

pascal void Set Movi eActiveSegnment (Movie theMuvie,
Ti meVal ue startTi ne,
Ti nreVal ue duration);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

start Ti me Contains a time value specifying the starting point of the active segment.
Set this parameter to —1 to make the entire movie active. In this case, the
Set Movi eAct i veSegnent function ignores the dur at i on parameter.

duration Contains a time value that specifies the duration of the active segment. If
you are making the entire movie active (by setting the st art Ti ne
parameter to —1), the Movie Toolbox ignores this parameter.

DESCRIPTION

Your application can retrieve the information that defines a movie’s active segment by
calling the Get Movi eAct i veSegnent function, which is described in the next section.

SPECIAL CONSIDERATIONS

Note that placing a movie into preview mode destroys the movie’s active segment. You
use the Set Movi ePr evi ewvbde function, described on page 2-121, to control preview

mode.
ERROR CODES
i nval i dvbvi e -2010 This movie is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

2-136 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMovieActiveSegment

DESCRIPTION

ERROR CODES

Use the Get Movi eAct i veSegnent function to determine what portion of a movie is
currently active for playing.

pascal void Get Movi eActiveSegnent (Movie theMuvie,
Ti meVal ue *startTi e,
Ti meVal ue *duration);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

start Ti me Contains a pointer to a time value. The Get Movi eAct i veSegnent
function places the starting time of the active segment into the field
referred to by this parameter. If the returned time value is set to -1, the
entire movie is active. In this case, the Movie Toolbox does not return any
duration information via the dur at i on parameter.

duration Contains a pointer to a time value. The Get Movi eAct i veSegnent
function places the duration of the active movie segment into the field
referred to by this parameter. If the entire movie is active (the returned
starting time is set to —1), the Movie Toolbox does not return any duration
information.

Your application can set the active segment by calling the Set Movi eAct i veSegnent
function, which is described in the previous section.

i nval i dMbvi e —-2010 This movie is corrupted or invalid

SetMoviePlayHints

The Set Movi ePl ayHi nt s function allows your application to provide information to
the Movie Toolbox that can influence movie playback. This function accepts a flag in
which you specify optimizations that the Movie Toolbox can use during movie playback.
These optimizations apply to all of the media structures used by the movie.

pascal void Set MviePlayH nts (Mvie theMvie, |ong flags,
| ong fl agsMask);

Movie Toolbox Reference 2-137

ERROR CODES

2-138

CHAPTER 2

Movie Toolbox

t heMbvi e

flags

fl agsMask

i nval i dMovi

Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and

page 2-90, respectively).

Specifies the optimizations that can be used with this movie. Each bit in
the f | ags parameter corresponds to a specific optimization. The
following flag is defined (be sure to set unused flags to 0):

hi nt sScr ubMbde
Indicates that the Movie Toolbox can prefer to display key
frames when the movie is repositioned. This optimization
is used only when a movie’s rate is set to 0. If you set this
flag to 1, the Movie Toolbox is free to display the nearest
key frame when you set the movie’s current time; the
Movie Toolbox then moves to the appropriate frame as
time permits. If you set this flag to 0, the Movie Toolbox
displays the frame that corresponds to the new current
time, even if that frame is not a key frame.

By displaying key frames first, the Movie Toolbox can
display data from temporally compressed movies much
more quickly in response to changes to the movie’s current
time. This, in turn, can improve the liveliness of a movie
control. For example, if the user is positioning in a stopped
movie, the Movie Toolbox can display a key frame that
corresponds to the new position without having to build
up the image offscreen. In this manner, the user gets
quicker feedback from your application.

hi nt sUseSoundl nterp
Turns on sound interpolation—that is, tells the Sound
Manager to use sound interpolation when playing back
sound. In certain situations, this improves the sound
quality to 11 kHz.

hi ntsAl |l ow nterl ace
Tells the Image Compression Manager to use the interlace
option for image compressor and decompressor
components. For more information, see Inside Macintosh:
QuickTime Components.

Indicates which flags in the f | ags parameter are to be considered in this
operation. For each bit in the f | ags parameter that you want the Movie
Toolbox to consider, you must set the corresponding bit in the

f I agsMask parameter to 1. Set unused flags to 0. This allows you to
work with a single optimization without altering the settings of other
flags.

e -2010 This movie is corrupted or invalid

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SetMediaPlayHints

The Set Medi aPl ayHi nt s function allows your application to provide information to
the Movie Toolbox that can influence playback of a single media. This function accepts a
flag in which you specify optimizations that the Movie Toolbox can use during movie
playback. These optimizations apply to only the specified media.

pascal void Set Medi aPl ayHi nts (Media theMedia, |ong flags,

| ong fl agsMask);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

flags Specifies the optimizations that can be used with this media. Each bit in
the f | ags parameter corresponds to a specific optimization. The
following flag is defined (be sure to set unused flags to 0):

hi nt sScr ubMode

Indicates that the Movie Toolbox can prefer to display key
frames when the movie that uses this media is
repositioned. This optimization is used only when a
movie’s rate is set to 0. If you set this flag to 1, the Movie
Toolbox is free to display the nearest key frame when you
set the movie’s current time; the Movie Toolbox then
moves to the appropriate frame as time permits. If you set
this flag to 0, the Movie Toolbox displays the frame that
corresponds to the new current time, even if that frame is
not a key frame.

By displaying key frames first, the Movie Toolbox can
display data from temporally compressed movies much
more quickly in response to changes to the movie’s current
time. This, in turn, can improve the liveliness of a movie
control. For example, if the user is positioning in a stopped
movie, the Movie Toolbox can display a key frame that
corresponds to the new position without having to build
up the image offscreen. In this manner, the user gets
quicker feedback from your application.

hi nt sUseSoundl nterp

Turns on sound interpolation—that is, tells the Sound
Manager to use sound interpolation when playing back
sound. In certain situations, this improves the sound
quality to 11 kHz.

hintsAl |l om nterl ace

Movie Toolbox Reference

Tells the Image Compression Manager to use the interlace
option for image compressor and decompressor
components. For more information, see Inside Macintosh:
QuickTime Components.

2-139

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

fl agsMask

i nval i dMedi

Indicates which flags in the f | ags parameter are to be considered in this
operation. For each bit in the f | ags parameter that you want the Movie
Toolbox to consider, you must set the corresponding bit in the

f I agsMask parameter to 1. Set unused flags to 0. This allows you to
work with a single optimization without altering the settings of other
flags.

a -2008 This media is corrupted or invalid

To set optimizations for all of a movie’s media structures, use the Set Movi ePl ayHi nt s
function, which is described in the previous section.

LoadMovielntoRam

2-140

The LoadMovi

el nt oRamfunction loads a movie’s data into memory. If the movie does

not fit, the function returns an error.

pascal OSEr

t heMovi e
time
durati on
flags

r LoadMovi el nt oRam (Movi e t heMovi e, TineVal ue tine,
Ti meVal ue durati on,
I ong flags);

Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr onmHandl e (described on page 2-92, page 2-88, and

page 2-90, respectively).

Allows you to specify a portion of the movie to load. The t i me parameter
contains the starting time of the movie segment to load. The dur at i on
parameter specifies the length of the segment to load.

Allows you to specify a portion of the movie to load. The t i me parameter
contains the starting time of the movie segment to load. The dur at i on
parameter specifies the length of the segment to load. You can use the

Get Movi eDur at i on function (described on page 2-185) to determine the
length of the entire movie. Note that the Movie Toolbox may load more
data than you specify due to the way the data is loaded.

Gives you explicit control over what is loaded into memory and how long
to keep it around. The following constants are provided. You can set these
flags in any combination that makes sense for you.

keepl nRam
Renders all data loaded with this flag set as nonpurgeable.
Nonpurgeable data is not released from memory until you
request it explicitly. This practice can fill up your heap very
quickly. Exercise caution.

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

unkeepl nRam

Renders all indicated data purgeable. The data is not
necessarily released from memory immediately, however.
Information about whether a chunk can be purged is
maintained internally by a single bit. This means there is no
counter. Therefore, if you care very much about the data,
you have to work very hard and use the edit list
meticulously.

f 1 ushFr omRam

Purges all indicated data from memory, unless it is
currently in use by a media handler (for example, if it is
still drawing frames from the requested times). This flag
makes the memory available for purging, and then
performs the purge. You may want to use this option if you
are particularly low on memory.

| oadFor war dTr ackEdi t s

In some cases, an edited movie plays back much more
smoothly if the data around edits is already in RAM. By
setting either this flag or the | ookBackwar dTr ackEdi t s
flag, you can load only the data around edits. The Movie
Toolbox walks through the edits and decides the right
amount of data to load for you. If you are going to play the
movie forward, set only the | oadFor war dTr ackEdi t s
flag. If you are going to play in both directions, or you
don’t know which direction, set both flags.

| oadBackwar dTr ackEdi t s

In some cases, an edited movie plays back much more
smoothly if the data around edits is already in RAM. By
setting either this flag or | ookFor war dTr ackEdi t s, you
can load only the data around edits. The Movie Toolbox
walks through the edits and decides the right amount of
data to load for you. If you are going to play the movie
only backward, set the | oadBackwar dTr ackEdi t s flag.
If you are going to play in both directions, or you don’t
know which direction, set both flags.

If LoadMovi el nt oRamfails because it was out of memory, no data is purged.

i nval i dvbvi e

i nval i dDur ati on

i nval i dTi e

progr essProcAborted
File Manager errors
Memory Manager errors

Movie Toolbox Reference

-2010 This movie is corrupted or invalid

-2014 This duration value is invalid

-2015 This time value is invalid

-2019 Your progress function returned an error

2-141

CHAPTER 2

Movie Toolbox

LoadTracklntoRam

ERROR CODES

2-142

The LoadTr ackl nt oRamfunction loads a track’s data into memory. If the track does
not fit, the function returns an error.

pascal OSEr

t heTr ack

duration

flags

i nval i dTrac
i nval i dDur a
i nval i dTi me
progressPro
File Manager e
Memory Mana

Movie Toolbox R

r LoadTrackl nt oRam (Track theTrack, TineValue tine,
Ti meVal ue duration, |long flags);

Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

Allows you to specify a portion of the track to load. The t i me parameter
contains the starting time of the track segment to load. The dur ati on
parameter specifies the length of the segment to load. You must specify
this time value in the movie’s time coordinate system.

Allows you to specify a portion of the track to load. The t i ne parameter
contains the starting time of the track segment to load. The dur ati on
parameter specifies the length of the segment to load. You can use the

Get TrackDur at i on function (described on page 2-191) to determine the
length of the entire movie. Note that the media handler may load more
data than you specify.

Gives you explicit control over what is loaded into memory and how long
to keep it around. The following constants are provided:

enum
{
keepl nRam = 1<<0,
unkeepl nRam = 1<<1,
fl ushFronRam = 1<<2,
| oadForwardTrackEdits = 1<<3,
| oadBackwar dTrackEdits = 1<<4

H

You can set these flags in any combination that makes sense. For
descriptions of the individual flag constants, see the description of the
LoadMbvi el nt oRamfunction on page 2-140.

k —-2009 This track is corrupted or invalid
tion -2014 This duration value is invalid
-2015 This time value is invalid
cAborted -2019 Your progress function returned an error

rrors
ger errors

eference

CHAPTER 2

Movie Toolbox

LoadMedialntoRam

DESCRIPTION

ERROR CODES

The LoadMedi al nt oRamfunction loads a media’s data into memory.

The exact behavior of LoadMedi al nt oRamis dependent on the media handler.

pascal OSErr LoadMedi al nt oRam (Medi a t heMedi a, Ti neVal ue tine,
Ti reVal ue duration, long flags);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

time Allows you to specify a portion of the media to load. The t i me parameter
contains the starting time of the media segment to load. The dur ati on
parameter specifies the length of the segment to load. This time value
must be expressed in the media’s time coordinate system.

duration Allows you to specify a portion of the media to load. The t i me parameter
contains the starting time of the media segment to load. The dur ati on
parameter specifies the length of the segment to load. You can use the
Get Medi aDur at i on function (described on page 2-194) to determine the
length of the entire media. Note that the media handler may load more
data than you specify if the media data was added in larger pieces.

flags Gives you explicit control over what is loaded into memory and how long
to keep it around. The following constants are provided:

enum
{
keepl nRam = 1<<0,
unkeepl nRam = 1<<1,
flushFromRam = 1<<2,

b
You can set these flags in any combination that makes sense. For

descriptions of the individual flag constants, see the description of the
LoadMbvi el nt oRamfunction on page 2-140.

If the LoadMedi al nt oRamfunction fails because it is out of memory, no data is purged.

i nval i dvedi a —-2008 This media is corrupted or invalid

i nval i dDur ati on -2014 This duration value is invalid

i nval i dTi e -2015 This time value is invalid

progr essProcAborted -2019 Your progress function returned an error

File Manager errors
Memory Manager errors

Movie Toolbox Reference 2-143

CHAPTER 2

Movie Toolbox

SetMediaShadowSync

DESCRIPTION

The Set Medi aShadowSync function creates an association between the indicated frame
difference sample and a specified self-contained sample in a given media. This
association makes the self-contained sample a shadow sync sample for the frame
difference sample.

pascal OSErr Set Medi aShadowSync (Media theMedi a,
I ong framebDi ff Sanpl eNum
| ong syncSanpl eNunj ;

theMedia The media in which the shadow sync is to be created.

frameDi ff Sanpl eNum
Specifies a frame difference sample. The sample number is obtained from
the Medi aTi meToSanpl eNumfunction.

syncSanpl eNum
Specifies a shadow sync sample. The sample number is obtained from the
Medi aTi meToSanpl eNumfunction.

Note that the association established is between sample numbers—not sample times.

SPECIAL CONSIDERATIONS

ERROR CODES

Shadow sync samples should not be part of a track. You should not call

I nsert Medi al nt oTr ack on these media samples. Typically, you add shadow sync
samples after a media is completely created. Shadow sync samples are not maintained
when editing or flattening movies.

Memory Manager errors

GetMediaShadowSync

2-144

The Get Medi aShadowSync function returns the sample number of the shadow sync
associated with a given frame difference sample number.

pascal OSErr Get Medi aShadowSync (Media theMedi a,
I ong frameDi ff Sanmpl eNum
| ong *syncSanpl eNunj ;

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

t heMedi a Indicates the media in which the shadow sync sample has been
established and the shadow sync number is to be obtained.

frameDi f f Sanpl eNum
Specifies the frame difference sample number associated with the desired
shadow sync sample number.

syncSanpl eNum
Contains a pointer to the sample number of the shadow sync. If the
franmeDi f f Sanpl e parameter does not have a shadow sync, 0 is
returned in the syncSanpl eNumparameter.

Memory Manager errors

Disabling Movies and Tracks

The Movie Toolbox services only movies and tracks that are active. This section describes
functions that allow your application to enable and disable tracks and movies.

You can use the Set Movi eAct i ve function to activate and deactivate a movie. Use the
Cet Movi eAct i ve function to determine whether a movie is active.

Similarly, your application can use the Set Tr ackEnabl ed function to enable and
disable a track. Use the Get Tr ackEnabl ed function to determine whether a track is
enabled. The Movie Toolbox also allows you to assign alternate tracks based on language
or quality criteria. Functions that work with alternate tracks are discussed in “Working
With Alternate Tracks” beginning on page 2-207.

SetMovieActive

The Set Movi eAct i ve function allows your application to activate and deactivate a
movie.

pascal void Set MvieActive (Myvie theMvie, Bool ean active);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

active Activates or deactivates the movie. Set this parameter to t r ue to activate
the movie; set this parameter to f al se to deactivate the movie.

Movie Toolbox Reference 2-145

CHAPTER 2

Movie Toolbox

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

The Movie Toolbox services only active movies. When you deactivate a movie, the
Movie Toolbox may release system resources required by the movie, such as sound
hardware, open files, and allocated memory. Unless you set the newhbvi eAct i ve flag
when creating a movie, you should call Set Movi eAct i ve before playing a movie.

i nval i dMbvi e -2010 This movie is corrupted or invalid

You can determine whether a movie is active by calling the Get Movi eAct i ve function,
which is described in the next section.

GetMovieActive

DESCRIPTION

ERROR CODES

SEE ALSO

2-146

The Get Movi eAct i ve function allows your application to determine whether a movie
is currently active. The Movie Toolbox services only active movies.

pascal Bool ean Get Movi eActive (Movie thelMvie);
t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and

NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi eAct i ve function returns a Boolean value. The function sets this value to
t rue if the movie is active and f al se if the movie is not active.

i nval i dvbvi e —-2010 This movie is corrupted or invalid

You can make a movie active by calling the Set Movi eAct i ve function, which is
described in the previous section.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SetTrackEnabled

The Set Tr ackEnabl ed function allows your application to enable and disable a
track. The Movie Toolbox services only enabled tracks.

pascal void SetTrackEnabl ed (Track theTrack, Bool ean isEnabl ed);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

i sEnabl ed Enables or disables the track. Set this parameter to t r ue to enable the
track. Set this parameter to f al se to disable the track.

SPECIAL CONSIDERATIONS

When you disable a track, the Movie Toolbox may release system resources that are used
by the track, including allocated memory.

ERROR CODES
i nval i dTrack -2009 This track is corrupted or invalid

SEE ALSO

You can determine whether a track is enabled by calling the Get Tr ackEnabl ed
function, which is described in the next section.

GetTrackEnabled

The Get Tr ackEnabl ed function allows your application to determine whether a track
is currently enabled. The Movie Toolbox services only enabled tracks.

pascal Bool ean Get TrackEnabl ed (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The Get Tr ackEnabl ed function returns a Boolean value. The function sets this value to
true if the track is enabled and f al se if the track is disabled.

Movie Toolbox Reference 2-147

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dTrack —-2009 This track is corrupted or invalid

You can enable a track by calling the Set Tr ackEnabl ed function, which is described in
the previous section.

Generating Pictures From Movies

The Movie Toolbox provides a set of functions that allow your application to create
QuickDraw pictures from movies, tracks, and posters. This section discusses those
functions.

You can use the Get Movi ePi ct function to create a picture from a movie or its

preview; you can use the Get Tr ackPi ct function to create a picture from a track. The
Get Movi ePost er Pi ct function lets you create a picture that contains a movie’s poster.
If a movie or track has no spatial representation, the returned picture is empty—that is,
the upper-left and lower-right coordinates are equal.

GetMoviePict

DESCRIPTION

2-148

The Get Movi ePi ct function creates a picture from the specified movie at the specified
time. This function uses only those movie tracks that are currently enabled and would
therefore be used in playback. Your application may call this function even if the movie
is inactive.

pascal PicHandl e Get Movi ePi ct (Movie theMvie, TineValue tine);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, NewMbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

time Specifies the movie image for the picture. The t i me parameter contains
the time from which the image is taken.

The Get Movi ePi ct function returns a handle to the picture. Your application must
dispose of this picture handle by calling QuickDraw’s Ki | | Pi ct ur e routine. If the
function could not create the picture, the returned handle issettoni | .

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

You can use the Get Movi ePi ct function to create a picture. If the movie contains
compressed data, the picture created by this function may also contain compressed data
that cannot be displayed without QuickTime.

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dTi e -2015 This time value is invalid

Image Compression Manager errors

Memory Manager errors

If you want to create a picture from a movie’s preview, put the movie into preview mode
by calling the Set Movi ePr evi ewMode function (described on page 2-121), and then call
the Get Movi ePi ct function.

GetMoviePosterPict

DESCRIPTION

The Get Movi ePost er Pi ct function creates a picture that contains a movie’s poster.
pascal Pi cHandl e Get Movi ePosterPi ct (Mvi e theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi ePost er Pi ct function returns a handle to the picture. Your application
must dispose of this picture handle by calling QuickDraw’s Ki | | Pi ct ur e routine. If the
function could not create the picture, the returned handle issettoni | .

SPECIAL CONSIDERATIONS

ERROR CODES

If you have not assigned a poster time for the movie, the Movie Toolbox creates the
poster from the movie image that corresponds to a time value of 0.

i nval i dMbvi e -2010 This movie is corrupted or invalid

Image Compression Manager errors
Memory Manager errors

Movie Toolbox Reference 2-149

CHAPTER 2

Movie Toolbox

GetTrackPict

DESCRIPTION

The Get Tr ackPi ct function creates a QuickDraw picture from the specified track at the
specified time. This function is similar to the Get Movi ePi ct function (described on
page 2-148), except that Get Tr ackPi ct uses only the specified track to create the
picture.

pascal PicHandl e Get TrackPict (Track theTrack, TineValue tine);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

tinme Specifies the track image for the picture. The t i me parameter contains the
time from which the image is taken.

The Get Tr ackPi ct function returns a handle to the picture. Your application must
dispose of this picture handle by calling QuickDraw’s Ki | | Pi ct ur e routine. If the
function could not create the picture, the returned handle issettoni | .

SPECIAL CONSIDERATIONS

ERROR CODES

You can specify a disabled track. If the track contains compressed data, the picture
created by this function may also contain compressed data that cannot be displayed
without QuickTime.

i nval i dTrack —2009 This track is corrupted or invalid
i nval i dTi e —-2015 This time value is invalid

Image Compression Manager errors
Memory Manager errors

Creating Tracks and Media Structures

2-150

The Movie Toolbox provides several functions that allow your application to create new
movie tracks and media structures and to dispose of existing tracks and media
structures. You use these functions when you are creating a new movie or when you are
editing an existing movie.

You can use the NewMbvi eTr ack function to create a new track for a specified movie.
Conversely, you can use the Di sposeMvi eTr ack function to dispose of an existing
track.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Your application can create a new media for a track by calling the NewTr ackMedi a
function. You can use the Di sposeTr ackMedi a function to dispose of an existing
media.

NewMovieTrack

You can create movie tracks by calling the NewMbvi eTr ack function. Immediately after
creating a new track, you should call the NewTr ackMedi a function to create a media for
the track—a track without a media is of no use.

Note that when you add a track to a movie, the Movie Toolbox automatically adjusts the
display rectangle of the movie. You may want to detect these changes by calling the

Get Movi eBox function (described on page 2-162) so that you can adjust the size of the
movie’s display window.

pascal Track NewMovi eTrack (Mvie theMwvie, Fixed w dth,
Fi xed hei ght, short trackVol une);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

wi dt h Specifies a fixed number denoting the display width of the track, in
pixels. Along with the hei ght parameter, this parameter defines the
track’s display rectangle.

hei ght Specifies a fixed number denoting the display height of the track, in pixels.

Together, the hei ght andwi dt h parameters define the track’s display
rectangle. The upper-left corner of this rectangle lies at (0,0) in the
movie’s rectangle. The hei ght andwi dt h parameters therefore establish
the lower-right corner of the track’s display rectangle. If you are creating
a track that is not displayed, such as a sound track, set the hei ght and
wi dt h parameters to 0.

trackVol une
Specifies the volume setting of the track as a 16-bit, fixed-point number.
The high-order 8 bits specify the integer portion; the low-order 8 bits
specify the fractional part. Volume values range from -1.0 to 1.0. Negative
values play no sound but preserve the absolute value of the volume
setting. Set this parameter to kFul | Vol ure to play the track at its full,
natural volume. Set this parameter to kNoVol une to set the volume to 0.

kFul | Vol ure
Sets the track to full volume (constant value is 1.0).

kNoVol une
Sets the track to no volume (constant value is 0.0).

Movie Toolbox Reference 2-151

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The NewMovi eTr ack function returns a track identifier. If the function cannot create the
track, it sets the returned identifier toni | .

i nval i dvbvi e -2010 This movie is corrupted or invalid

Memory Manager errors

DisposeMovieTrack

DESCRIPTION

The Di sposeMvi eTr ack function removes a track from a movie.
pascal void Di sposeMyvieTrack (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as Newibvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

When you remove a track from a movie, the Movie Toolbox also removes the
corresponding media from the movie.

SPECIAL CONSIDERATIONS

ERROR CODES

2-152

Your application should not call this function as part of the process of disposing of a
movie. When you dispose of a movie by calling the Di sposeMovi e function (described
on page 2-96), the Movie Toolbox disposes of all the movie’s tracks and their associated
media structures.

i nval i dTrack -2009 This track is corrupted or invalid
trackNot | nMovi e -2030 This track is not in this movie

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

NewTrackMedia

After you have created a new track, you can create a media for the track by calling the

NewTr ack Med

pascal Medi

t heTr ack

medi aType

ti meScal e
dat aRef

dat aRef Type

i a function. The media refers to the actual data samples used by the track.

a NewTrackMedi a (Track theTrack, OSType nedi aType,
Ti meScal e ti meScal e, Handl e dat aRef,
OSType dat aRef Type);

Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newivbvi eTr ack
(described on page 2-151).

Specifies the type of media to create. The Movie Toolbox uses this value to
find the correct media handler for the new media. If the toolbox cannot
locate an appropriate media handler, it returns an error. The following
types are available:

Vi deoMedi aType Video media
SoundMedi aType Sound media
Text Medi aType Text media

Defines the media’s time coordinate system.

Specifies the data reference. This parameter contains a handle to the
information that identifies the file that contains this media’s data. The
type of information stored in that handle depends upon the value of the
dat aRef Type parameter.

If you are creating a new media that refers to existing media data, you
can use the Get Medi aDat aRef function (described on page 2-217) to
obtain information about the existing data reference. You can then supply
information about that reference to this function.

Set this parameter to ni | to use the file that is associated with the movie
or if the movie does not have a movie file. For example, if you have
created the movie using the Cr eat eMovi eFi | e function (described on
page 2-96) or the NewVbvi eFr onFi | e function (described on page 2-88),
the Movie Toolbox assumes that the movie’s data resides in the file
specified at that time. If you have created the movie using the

NewMbvi eFr onScr ap or Newibvi e functions (described on page 2-245
and page 2-92, respectively), the movie does not have a movie file.

Specifies the type of data reference. If the data reference is an alias, you
must set this parametertor Al i asType (' al i s'), indicating that the
reference is an alias. See Inside Macintosh: Files for more information about
aliases and the Alias Manager.

If you are creating a new media that refers to existing media data, you
can use the Get Medi aDat aRef function (described on page 2-217) to
obtain information about the existing data reference. You can then supply
information about that reference to this function.

Movie Toolbox Reference 2-153

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

Set this parameter to ni | to use the file that is associated with the movie
or if the movie does not have a movie file. For example, if you have
created the movie using the Cr eat eMovi eFi | e function (described on
page 2-96) or the Newvbvi eFr onFi | e function (described on page 2-88),
the Movie Toolbox assumes that the movie’s data resides in the file
specified at that time. If you have created the movie using the

NewMbvi eFr onScr ap or Newibvi e functions (described on page 2-245
and page 2-92, respectively), the movie does not have a movie file.

The NewTr ackMedi a function returns a media identifier. If the function cannot create
the new media, it sets this returned value toni | .

cant Fi ndHandl er -2003 Cannot locate a handler

cant OpenHandl er —2004 Cannot open a handler

noMedi aHandl er -2006 Media has no media handler

i nval i dTr ack —2009 This track is corrupted or invalid
i nval i dTi me -2015 This time value is invalid

Memory Manager errors

DisposeTrackMedia

The Di sposeTr ackMedi a function removes a media from a track. This function does
not remove the track from its movie.

pascal void D sposeTrackMedi a (Medi a t heMedi a);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

SPECIAL CONSIDERATIONS

ERROR CODES

2-154

Your application should not call the Di sposeTr ackMedi a function as part of the
process of disposing of a movie. When you dispose of a movie by calling

Di sposeMvi e, the Movie Toolbox disposes of all the movie’s tracks and their
associated media structures.

i nval i dMedi a —-2008 This media is corrupted or invalid

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Working With Progress and Cover Functions

The Movie Toolbox allows your application to assign two types of custom functions:
progress functions and cover functions. These functions allow you to perform special
processing under certain circumstances.

Some Movie Toolbox functions can take a long time to execute. For example, if you call
the FI at t enMbvi e function and specify a large movie, the Movie Toolbox must read
and write all the sample data for the movie. During such operations you may wish to
display some kind of progress indicator to the user.

A progress function is an application-defined function that you can use to track the
progress of time-consuming activities, and thereby keep the user informed about
that progress.

The Movie Toolbox allows your application to perform custom processing whenever one
of your movie’s tracks covers a screen region or reveals a region that was previously
covered. You perform this processing in cover functions.

There are two types of cover functions: those that are called when your movie covers a
screen region, and those that are called when your movie uncovers a screen region that
was previously covered. Cover functions that are called when your movie covers a
screen region are responsible for erasing the region—you may choose to save the hidden
region in an offscreen buffer. Cover functions that are called when your movie reveals a
hidden screen region must redisplay the hidden region.

Note

The Movie Toolbox does not call your cover function in response to
changes to the movie’s transformation matrix (for example, changing
the matrix by calling the Set Movi eBox function, which is described on
page 2-161, does not cause your cover function to be invoked). u

For a complete discussion of progress and cover functions, see “Application-Defined
Functions,” which begins on page 2-354.

The Set Movi ePr ogr essPr oc function helps your application work with progress
functions and the Set Movi eCover Pr ocs function helps your application work with
cover functions.

SetMovieProgressProc

The Set Movi ePr ogr essPr oc function allows you to attach a progress function to each
movie. The function will be called whenever a long operation is underway. The Movie
Toolbox indicates the progress of the operation to your progress function.

Movie Toolbox Reference 2-155

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Movie Toolbox ensures that your progress function is called regularly, but not too
often. In addition, the toolbox calls your function only during long operations.

pascal void Set Movi eProgressProc (Mvie thelMvie,
Movi ePr ogressProcPtr p,
| ong ref Con);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

p Points to your progress function. To remove a movie’s progress function,
set this parameter to ni | . Set this parameter to —1 for the Movie Toolbox
to provide a default progress function. See “Progress Functions”
beginning on page 2-354 for the interface your progress function must
support.

r ef Con Specifies a reference constant. The Movie Toolbox passes this value to
your progress function.

The following Movie Toolbox functions use progress functions:

Convert Fi | eToMovi eFi | e (described on page 2-93), Cut Movi eSel ecti on
(described on page 2-247), CopyMovi eSel ect i on (described on page 2-248),

AddMovi eSel ect i on (described on page 2-250), and | nsert Movi eSegnent
(described on page 2-257).

i nval i dvbvi e -2010 This movie is corrupted or invalid

SetMovieCoverProcs

2-156

The Set Movi eCover Pr ocs function allows you to set both types of cover functions.

pascal void Set Movi eCover Procs (Mvie theMuvie,
Movi eRgnCover Proc uncover Proc,
Movi eRgnCover Proc cover Proc,
I ong refcon);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

uncover Proc

Points to a cover function. This function is called whenever one of your
movie’s tracks is removed from the screen or resized, revealing a
previously hidden screen region. If you want to remove the cover
function, set this parameter to ni | . When the uncover Pr oc parameter is
ni |, Set Movi eCover Procs uses the default cover or uncover function.
The default cover function does nothing. The default uncover function
erases the uncovered area. See “Cover Functions” beginning on

page 2-357 for the interface your cover function must support.

cover Proc Points to a cover function. The Movie Toolbox calls this function

whenever one of your movies covers a portion of the screen. If you want
to remove the cover function, set this parameter to ni | . See “Cover
Functions” beginning on page 2-357 for the interface your cover function
must support.

refcon Specifies a reference constant. The Movie Toolbox passes this value to

your cover functions.

i nval i dMbvi e —-2010 This movie is corrupted or invalid

Functions That Modify Movie Properties

The Movie Toolbox provides a number of functions that allow applications to edit
existing movies or to create the contents of new movies. This section describes those
functions. It has been divided into the following topics:

n “Working With Movie Spatial Characteristics” describes a number of functions that

allow you to work with the display characteristics of movies

“Working With Sound Volume” discusses the functions that your application can use
to work with the sound volume of a movie or a track

“Working with Movie Time” discusses several functions that allow your application
to change the time characteristics of movies

“Working With Track Time” describes functions that your application can use to
change the time characteristics of individual tracks within a movie

“Working With Media Time” discusses the functions that your application can use to
change the time characteristics of a media

“Finding Interesting Times” describes the Movie Toolbox functions that allow you to
retrieve information about when key events occur in movies, tracks, and media
structures

“Locating a Movie’s Tracks and Media Structures” describes the functions that allow
your application to find tracks that are associated with a movie

“Working With Alternate Tracks” discusses the Movie Toolbox functions that allow
you to define and use alternate tracks in a movie

Movie Toolbox Reference 2-157

CHAPTER 2

Movie Toolbox

n “Working With Data References” describes the Movie Toolbox functions that allow
you to work with a movie’s data references

n “Determining Movie Creation and Modification Time”discusses the functions that
you can use to determine when a movie was created or last changed

n “Working With Media Samples” describes several functions that allow you to get and
set detailed information about sample data in a media

n “Working With Movie User Data” discusses the functions that you can use to get and
set the user data that is associated with a movie

Working With Movie Spatial Characteristics

2-158

The Movie Toolbox provides a number of functions that allow your application to
determine and change the display characteristics of movies and tracks. These functions
are discussed in the following sections. Before using any of these functions, you should
be familiar with the way in which the Movie Toolbox displays movies. See the discussion
of spatial properties in “About Movies” on page 2-14.

You can use the Set Movi eGMr | d and Get Movi eGWr | d functions to work with a
movie’s graphics world. See Inside Macintosh: Imaging for more information about
graphics worlds.

Your application can work with a movie’s matrix by calling the Get Movi eMat ri x
and Set Movi eMat ri x functions, and it can work with a track’s matrix with the

Get TrackMat ri x and Set Tr ackMat r i x functions. Then you can perform operations
on matrices with the Movie Toolbox’s matrix functions described in “Matrix Functions”
beginning on page 2-341.

The following functions affect the displayed movie and its tracks in the final display
coordinate system. The Set Movi eGMr | d and Get Movi eGNor | d functions let you
work with a movie’s display destination. The Get Movi eBox and Set Movi eBox
functions allow you to work with a movie’s boundary rectangle and its associated
transformations. Alternatively, you can use the Get Movi eMat ri x and

Set Movi eMat ri x functions to work directly with a movie’s transformation matrix.
The Get Movi eDi spl ayBoundsRgn function determines a movie’s boundary region

at the current movie time. On the other hand, the

Get Movi eSegrent Di spl ayBoundsRgn function determines a movie’s boundary
region over a specified time segment. You can use the Get Movi eDi spl ayCd i pRgn and
Set Movi eDi spl ayd i pRgn functions to work with a movie’s display clipping region.

The Get TrackDi spl ayBoundsRgn and Get Tr ackSegnent Di spl ayBoundsRgn
functions determine a track’s final boundary region. You can use the Get Tr ackLayer
and Set Tr ackLayer functions to control the drawing order of tracks within a movie.

A number of functions affect a movie’s display boundaries before any display
transformations—these functions operate in the movie’s display coordinate system. You
can use the Get Movi ed i pRgn and Set Movi eCl i pRgn functions to work with a
movie’s clipping region—that is, the clipping region that is applied before the movie
display transformation. Use the Get Movi eBoundsRgn function to determine a movie’s
boundary region at the current movie time.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Use the Get Tr ackMbovi eBoundsRgn function to work with a track’s boundary region
after matrix transformations have placed the track into the movie’s display system. The
Set TrackMat ri x and Get Tr ackMat r i x functions let you define a track’s matrix
transformations.

The Movie Toolbox provides several functions that affect a track’s display boundaries—
these functions operate in the track’s display coordinate system before any other display
transformations are applied. The Get Tr ackDi nensi ons and Set Tr ackDi mensi ons
functions allow you to establish a track’s coordinate system and to establish a track’s
source rectangle.

Note

A track’s source rectangle defines the coordinate system of the track.
You specify the dimensions of the rectangle by providing the
coordinates of the lower-right corner of the rectangle. The Movie
Toolbox sets the upper-left corner to (0,0) in the track’s coordinate
system. u

You can use the Get Tr ackBoundsRgn function to determine a track’s boundary region.
The Get Trackd i pRgn and Set Tr ackCl i pRgn functions let you work with a track’s
clipping region. You can use the Get Tr ackMat t e and Set Tr ackMat t e functions to
establish a track’s matte. The Di sposeMat t e function allows you to dispose of a matte
once you are finished with it.

SetMovieGWorld

DESCRIPTION

The Set Movi eGWr | d function allows your application to establish a movie’s display
coordinate system by setting the graphics world for displaying a movie.

pascal void Set Movi eGWNrld (Mvie theMovie, CaafPtr port,
GDHandl e gdh);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

port Points to the movie’s graphics port structure or graphics world. Set this
parameter to ni | to use the current graphics port.

gdh Contains a handle to the movie’s graphics device structure. Set this
parameter to ni | to use the current device. If the port parameter
specifies a graphics world, set this parameter to ni | to use that graphics
world’s graphics device.

The default cover function provided by the Movie Toolbox uses the background color
and pattern from the movie’s graphics world during erase operations.

Movie Toolbox Reference 2-159

CHAPTER 2

Movie Toolbox

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

The Movie Toolbox automatically sets the graphics world when you create a new movie.
Be sure that your application’s graphics port is valid or that you specify a valid graphics
port with the port parameter. If you pass ni | for the port parameter, make sure the
current graphics world is valid.

When you use Set Movi eGWor | d, the Movie Toolbox remembers the current
background color and background pattern. These are used for erasing in the default
movie uncover function.

i nval i dMbvi e —-2010 This movie is corrupted or invalid

You can retrieve a movie’s graphics world by calling the Get Movi eGWor | d function,
which is described in the next section.

GetMovieGWorld

2-160

Your application can determine a movie’s graphics world by calling the
Get Movi eGWr | d function.

pascal void Get Movi eGMrld (Mvie theMvie, CGafPtr *port,
GDHandl e *gdh);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

port Contains a pointer to a field that is to receive a pointer to a graphics port
structure. The Movie Toolbox returns a pointer to the movie’s graphics
port structure. Set this parameter to ni | if you do not want this
information.

gdh Contains a pointer to a field that is to receive a handle to a graphics
device structure. The Movie Toolbox returns a handle to the movie’s
graphics device structure. Set this parameter to ni | if you do not want
this information.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

ERROR CODES
i nval i dMbvi e -2010 This movie is corrupted or invalid

SEE ALSO
You can set a movie’s graphics world by calling the Set Movi eGWr | d function, which
is described in the previous section.
SetMovieBox
The Set Movi eBox function sets a movie’s boundary rectangle, or movie box, which is a
rectangle that encompasses the spatial representation of all of the movie’s enabled tracks.
The movie box is in the display coordinate system.
pascal void Set Movi eBox (Myvie theMyvie, const Rect *boxRect);
t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).
boxRect Contains a pointer to a rectangle that contains the coordinates of the new
boundary rectangle.
DESCRIPTION

The Movie Toolbox changes the rectangle by modifying the translation and scale values
of the movie’s matrix to accommodate the new boundary rectangle.

The movie box might not have its upper-left corner set at (0,0) in its display window
when the movie is first loaded. Consequently, your application may need to adjust the
position of the movie box so that it appears in the appropriate location within your
application’s document window. If you don’t reset the movie position, the movie might
not be visible when it starts playing.

The following sample code demonstrates how to move the boundary rectangle.

Get Movi eBox (novi e, &novi eBox);
O fset Rect (&novi eBox, -novieBox.|eft, -novieBox.top);
Set Movi eBox (novi e, &novi eBox);

SPECIAL CONSIDERATIONS
The Set Movi eBox function does not call your cover functions.

Movie Toolbox Reference 2-161

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dvbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

You can modify the movie’s matrix directly by calling the Set Movi eMat ri x function,
which is described on page 2-170. You can retrieve a movie’s boundary rectangle by
calling the Get Movi eBox function, which is described in the next section.

GetMovieBox

ERROR CODES

SEE ALSO

2-162

The Get Movi eBox function returns a movie’s boundary rectangle, which is a rectangle
that encompasses all of the movie’s enabled tracks. The movie box is in the coordinate
system of the movie’s graphics world and defines the movie’s boundaries over the entire
duration of the movie. The movie’s boundary rectangle defines the size and shape of the
movie before the Movie Toolbox applies the display clipping region.

pascal void Get Movi eBox (Myvie theMvie, Rect *boxRect);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

boxRect Contains a pointer to a rectangle. The Get Movi eBox function returns the
coordinates of the movie’s boundary rectangle into the structure referred
to by this parameter.

i nval i dMbvi e -2010 This movie is corrupted or invalid

Memory Manager errors

You can use the Set Movi eBox function, which is described in the previous section, to
change the coordinates of a movie’s boundary rectangle.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMovieDisplayBoundsRgn

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Movi eDi spl ayBoundsRgn function allows your application to determine a
movie’s display boundary region. The display boundary region encloses all of a movie’s
enabled tracks after the track matrix, track clip, movie matrix, and movie clip have been
applied to all of the movie’s tracks. This region is in the display coordinate system of the
movie’s graphics world. The movie’s boundary rectangle encloses this region. For more
on boundary regions and matrices for movies and tracks, see “Spatial Properties,” which
begins on page 2-20.

pascal RgnHandl e Get Movi eDi spl ayBoundsRgn (Movi e theMvi e);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Movie Toolbox derives the display boundary region only from enabled tracks, and
only from those tracks that are used in the current display mode (that is, movie, poster,
or preview). The display boundary region is valid for the current movie time.

The Get Movi eDi spl ayBoundsRgn function allocates the region and returns a handle
to the region. Your application must dispose of this handle when you are done with it.
If the movie does not have a spatial representation at the current movie time, the
function returns an empty region. If the function could not satisfy your request, it sets
the returned handle toni | .

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

If you want to determine the boundary region that applies to a time segment of a movie,
you can use the Get Movi eSegrent Di spl ayBoundsRegi on function, which is
described in the next section.

Movie Toolbox Reference 2-163

CHAPTER 2

Movie Toolbox

GetMovieSegmentDisplayBoundsRgn

DESCRIPTION

ERROR CODES

2-164

The Get Movi eSegnent Di spl ayBoundsRgn function allows your application to
determine a movie’s display boundary region during a specified segment. The display
boundary region encloses all of a movie’s enabled tracks after the track matrix, track clip,
movie matrix, and movie clip have been applied to all of the movie’s tracks. This region
is in the display coordinate system. The movie’s boundary encloses this region. For more
on boundary regions and matrices for movies and tracks, see “Spatial Properties,” which
begins on page 2-20.

pascal RgnHandl e Get Movi eSegnent Di spl ayBoundsRgn (Movi e t heMvi e,
Ti meVal ue tine,
Ti meVal ue
duration);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

time Specifies the starting time of the movie segment to consider. This time
value must be expressed in the movie’s time coordinate system. The
dur at i on parameter specifies the length of the segment.

duration Specifies the length of the segment to consider. Set this parameter to 0
to specify an instant in time.

The Movie Toolbox derives the display boundary region only from enabled tracks and
only from those tracks that are used in the current display mode (that is, movie, poster,
or preview). If you want to determine the boundary region that applies to the current
movie time, you can use Get Movi eDi spl ayBoundsRegi on, which is described in the
previous section.

The Get Movi eSegmnent Di spl ayBoundsRgn function allocates the region and returns
a handle to the region. Your application must dispose of this region when you are done
with it. If the movie does not have a spatial representation during the specified segment,
the function returns an empty region. If the function could not satisfy your request, it
sets the returned handle to ni | .

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

Memory Manager errors

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SetMovieDisplayClipRgn

DESCRIPTION

The Set Movi eDi spl ayd i pRgn function allows your application to establish a
movie’s current display clipping region.

pascal void Set MovieDi splayd i pRgn (Mvie theMvi e,
RgnHandl e thed i p);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, NewMbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

thedip Contains a handle to the movie’s display clipping region. Note that the
Movie Toolbox makes a copy of this region. Your application must
dispose of the region referred to by this parameter when you are done
with it. Set this parameter to ni | to disable a movie’s clipping region.

The display clipping region defines any final clipping that is applied to the movie before
it is displayed, and it is valid for the entire duration of the movie. You must use this
region to clip a movie because the Movie Toolbox ignores the clip region of the movie’s
graphics world during display processing.

Note that the display clipping region is not saved with the movie.

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

Do not use the Set Movi eDi spl ayd i pRgn function when you are using a movie
controller component—use the movie controller component function MCSet d i p
instead. For details on the MCSet Cl i p function, see the chapter “Movie Controller
Components” in Inside Macintosh: QuickTime Components.

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

You can retrieve the display clipping region by calling the Get Movi eDi spl ayd i pRgn
function, which is described in the next section.

Movie Toolbox Reference 2-165

CHAPTER 2

Movie Toolbox

GetMovieDisplayClipRgn

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Movi eDi spl ayd i pRgn function allows your application to determine a
movie’s current display clipping region.

pascal RgnHandl e Get Movi eDi spl ayd i pRgn (Mvi e t heMovi e);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The display clipping region defines the final clipping that is applied to the movie before
it is displayed. The display clipping region is valid for the entire duration of the movie.

Note that the display clipping region is not saved with the movie.

The Get Movi eDi spl ayd i pRgn function allocates the region and returns a handle to
the region. Your application must dispose of this region when you are done with it. If the
function could not satisfy your request or if there is no display clipping region defined
for the movie, the function sets the returned handle to ni | .

i nval i dMbvi e -2010 This movie is corrupted or invalid

Memory Manager errors

You can set the display clipping region by calling the Set Movi eDi spl ayd i pRgn
function, which is described in the previous section.

GetTrackDisplayBoundsRgn

2-166

The Get Tr ackDi spl ayBoundsRgn function allows your application to determine the
region a track occupies in a movie’s graphics world.

pascal RgnHandl e Get TrackDi spl ayBoundsRgn (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as Newivbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

This region is in the display coordinate system. This region, when intersected with the
movie’s display clipping region, describes which pixels in the movie’s graphics world
display information from the specified track. This region is valid for the current movie
time.

The Get Tr ackDi spl ayBoundsRgn function allocates the region and returns a
handle to the region. Your application must dispose of this region when you are done
with it. If the track does not have a spatial representation at the current movie time, the
function returns an empty region. If the function could not satisfy your request, it sets
the returned handle to ni | .

i nval i dTrack —2009 This track is corrupted or invalid

Memory Manager errors

If you want to determine the track’s boundary region over a specified time segment, you
can use the Get Tr ackSegnent Di spl ayBoundsRgn function, which is described in the
next section.

GetTrackSegmentDisplayBoundsRgn

The Get Tr ackSegmnent Di spl ayBoundsRgn function allows your application to
determine the region a track occupies in a movie’s graphics world during a specified
segment.

pascal RgnHandl e Get Tr ackSegnent Di spl ayBoundsRgn (Track t heTr ack,
Ti meVal ue ti ne,
Ti meVal ue duration);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

time Specifies the starting time of the track segment to consider. This time
value must be expressed in the movie’s time coordinate system. The
dur at i on parameter specifies the length of the segment.

duration Specifies the length of the segment to consider. Set this parameter to 0 to
consider an instant in time.

Movie Toolbox Reference 2-167

DESCRIPTION

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

This region is in the display coordinate system. When combined with the movie’s
display clipping region, this region describes which pixels in the movie’s graphics
world display information from the specified track.

This region is valid for the specified segment.

The Get Tr ackSegnent Di spl ayBoundsRgn function allocates the region and returns
a handle to the region. Your application must dispose of this region when you are done
with it. If the track does not have a spatial representation during the specified segment,
the function returns an empty region. If the function could not satisfy your request, it
sets the returned handle toni | .

i nval i dTrack —2009 This track is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi me -2015 This time value is invalid

Memory Manager errors

If you want to determine the track’s boundary region for the current movie time, you can
use the Get Tr ackDi spl ayBoundsRgn function, which is described in the previous
section.

SetTrackLayer

DESCRIPTION

2-168

The Set Tr ackLayer function allows your application to set a track’s layer.
pascal void SetTrackLayer (Track theTrack, short |ayer);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

| ayer Specifies the track’s layer number. Layers are numbered from -32,768

through 32,767. When you create a new track, the Movie Toolbox sets its
track number to 0.

Track layers are numbered from -32,768 through 32,767. You can use layers to control
how tracks are combined to create a movie. The Movie Toolbox displays layers by layer
number. That is, the Movie Toolbox displays higher-numbered layers first, placing
lower-numbered layers on top of them. If your movie has more than one track in the

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

same layer, the Movie Toolbox displays those layers in order by track index value,

displaying higher-numbered tracks first.

i nval i dTr ack —2009 This track is corrupted or invalid

You can retrieve a track’s layer number by calling the Get Tr ackLayer function, which
is described in the next section.

GetTrackLayer

DESCRIPTION

ERROR CODES

SEE ALSO

The Get TrackLayer function allows your application to retrieve a track’s layer.
pascal short GetTrackLayer (Track theTrack);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get TrackLayer function returns an integer that contains the track’s layer number.
Tracks are numbered from —32,768 through 32,767. You can use layers to control

how tracks are combined to create a movie. The Movie Toolbox displays layers by layer
number. That is, the Movie Toolbox displays higher-numbered layers first, placing
lower-numbered layers on top of them. If your movie has more than one track in the
same layer, the Movie Toolbox displays those layers in order by track index value,
displaying higher-numbered tracks first.

i nval i dTr ack —2009 This track is corrupted or invalid

You can set a track’s layer number by calling the Set Tr ackLayer function, which is
described in the previous section.

Movie Toolbox Reference 2-169

CHAPTER 2

Movie Toolbox

SetMovieMatrix

The Set Movi eMat ri x function allows your application to set a movie’s transformation
matrix. The Movie Toolbox uses a movie’s matrix to map a movie from its display
coordinate system to its graphics world. You can retrieve a movie’s matrix with the

Get Movi eMat ri x function, which is described in the next section.

pascal void SetMvieMatrix (Mvie theMvie,
const MatrixRecord *matrix);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

mat ri x Contains a pointer to the matrix structure for the movie. If you set this
parameter to ni | , the Movie Toolbox uses the identity matrix.

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

The Set Movi eMat ri x function does not call your cover functions.

i nval i dvbvi e -2010 This movie is corrupted or invalid

The Movie Toolbox provides a number of functions that allow you to manipulate movie
matrices. See “Matrix Functions,” which begins on page 2-341, for information about
these functions.

GetMovieMatrix

2-170

The Get Movi eMat ri x function allows your application to retrieve a movie’s
transformation matrix.

pascal void Get MovieMatrix (Mvie theMvie, MtrixRecord *matrix);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

mat ri x Contains a pointer to a matrix structure. The Get Movi eMat r i x function
returns the movie’s matrix into the structure referred to by this parameter.

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

The Movie Toolbox uses a movie’s matrix to map a movie from its coordinate system to
the display coordinate system.

i nval i dvbvi e -2010 This movie is corrupted or invalid

You can set a movie’s matrix with the Set Movi eMat ri x function, which is described in
the previous section.

The Movie Toolbox provides a number of functions that allow you to manipulate movie
matrices. See “Matrix Functions,” which begins on page 2-341, for information about
these functions.

GetMovieBoundsRgn

DESCRIPTION

The Get Movi eBoundsRgn function allows your application to determine a movie’s
boundary region.

pascal RgnHandl e Get Movi eBoundsRgn (Movi e t heMovi e) ;

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The movie boundary region encloses all of a movie’s tracks after the union of the track
clip and the track matrix has been applied to all the movie’s tracks (but not to the movie
itself). This region is in the movie’s display coordinate system.

The Movie Toolbox derives the boundary region only from enabled tracks, and only
from those tracks that are used in the current display mode (that is, movie or preview).
The boundary region is valid for the current movie time.

The Get Movi eBoundsRgn function allocates the region and returns a handle to the
region. Your application must dispose of this region when you are done with it. If the
movie does not have a spatial representation at the current time, the function returns an
empty region. If the function could not satisfy your request, it sets the returned handle
tonil.

Movie Toolbox Reference 2-171

ERROR CODES

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

GetTrackMovieBoundsRgn

DESCRIPTION

ERROR CODES

The Get Tr ackMovi eBoundsRgn function allows your application to determine the
region the track occupies in a movie’s boundary region. This region is in the display
coordinate system of the movie. The Movie Toolbox determines this region by applying
the track’s clipping region and matrix. This region is valid only for the current movie
time.

pascal RgnHandl e Get Tr ackMovi eBoundsRgn (Track theTrack);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get TrackMovi eBoundsRgn function allocates the region and returns a handle
to the region. Your application must dispose of this region when you are done with it. If
the track does not have a spatial representation at the current movie time, the

function returns an empty region. If the function could not satisfy your request, it sets
the returned handle to ni | .

i nval i dTr ack —2009 This track is corrupted or invalid

SetMovieClipRgn

2-172

The Set Movi ed i pRgn function allows your application to establish a movie’s clipping
region.

pascal void SetMovied ipRgn (Mvie theMvie, RgnHandle thedip);
t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and

NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

thedip Contains a handle to the movie’s clipping region. Note that the Movie
Toolbox makes a copy of this region. Your application must dispose of the
region referred to by this parameter when you are done with it. Set this
parameter to ni | to disable clipping for the movie.

The clipping region defines any clipping that is applied to the movie before it is mapped
to its graphics world by applying the movie’s matrix. The clipping region is in the
movie’s display coordinate system.

The clipping region is saved with the movie.

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

You can retrieve the clipping region by calling the Get Movi ed i pRgn function, which
is described in the next section.

GetMovieClipRgn

DESCRIPTION

The Get Movi eC i pRgn function allows your application to determine a movie’s
clipping region.

pascal RgnHandl e Get Movi ed i pRgn (Movi e t helMvi e);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The clipping region defines any clipping that is applied to the movie before it is mapped
to its graphics world by applying the movie’s matrix. The clipping region is in the
movie’s display coordinate system and is valid for the entire duration of the movie.

The Get Movi ed i pRgn function allocates the region and returns a handle to the region.
Your application must dispose of this region when you are done with it. If the function
could not satisfy your request or if there is no clipping region defined for the movie, it
sets the returned handle toni | .

The clipping region is saved with the movie when your application saves the movie.

Movie Toolbox Reference 2-173

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

You can set the clipping region by calling the Set Movi ed i pRgn function, which is
described in the previous section.

SetTrackMatrix

DESCRIPTION

ERROR CODES

SEE ALSO

2-174

The Set Tr ackMat ri x function allows your application to establish a track’s
transformation matrix.

pascal void SetTrackMatrix (Track theTrack,
const MatrixRecord *matrix);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

matri x Contains a pointer to a matrix structure that contains the track’s new
matrix. If you set this parameter to ni | , the Movie Toolbox uses the
identity matrix.

The Movie Toolbox uses a track’s matrix to map a track from its own coordinate system
into a movie’s display coordinate system.

i nval i dTrack —-2009 This track is corrupted or invalid

You can get a track’s matrix with the Get Tr ackMat ri x function, which is described in
the next section.

The Movie Toolbox provides a number of functions that allow you to manipulate track
matrices. See “Matrix Functions” beginning on page 2-341 for information about these
functions.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetTrackMatrix

DESCRIPTION

ERROR CODES

The Get TrackMat ri x function allows your application to retrieve a track’s
transformation matrix.

pascal void GetTrackMatrix (Track theTrack, MatrixRecord *matrix);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

mat ri x Contains a pointer to a matrix structure. The Get Tr ackMat r i x function
returns the track’s matrix into the structure referred to by this parameter.

The Movie Toolbox uses a track’s matrix to map a track from its own coordinate system
into a movie’s display coordinate system.

i nval i dTrack -2009 This track is corrupted or invalid

SEE ALSO
You can set a track’s matrix with the Set Tr ackMat r i x function, which is described in
the previous section.
The Movie Toolbox provides a number of functions that allow you to manipulate track
matrices. See “Matrix Functions” on page 2-341 for information about these functions.
GetTrackBoundsRgn

The Get Tr ackBoundsRgn function allows the media to limit the size of the track
boundary rectangle. Therefore, the region returned by Get Tr ackBoundsRgn may not
be rectangular and may be smaller than the track boundary region.

pascal RgnHandl e Get TrackBoundsRgn (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

Movie Toolbox Reference 2-175

DESCRIPTION

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

The Get Tr ackBoundsRgn function allocates the region and returns a handle to the
region. Your application must dispose of this region when you are done with it. If the
track does not have a spatial representation during the specified segment, the
function returns an empty region. If the function could not satisfy your request, it sets
the returned handle toni | .

i nval i dTrack —2009 This track is corrupted or invalid
Memory Manager errors

See the description of the base media handler component’s Medi aGet Sr cRgn function
in Inside Macintosh: QuickTime Components for details on how the media limits the size of
the track boundary region.

SetTrackDimensions

DESCRIPTION

2-176

The Set TrackDi nensi ons function allows your application to establish a track’s
source, or display, rectangle.

pascal void SetTrackDi nensions (Track theTrack, Fixed w dth,
Fi xed hei ght);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

wi dt h Contains a fixed-point number that specifies the width, in pixels, of the

track’s rectangle. This value corresponds to the x coordinate of the
lower-right corner of the track’s rectangle.

hei ght Contains a fixed-point number that specifies the height, in pixels, of the
track’s rectangle. This value corresponds to the y coordinate of the
lower-right corner of the track’s rectangle.

A track’s source rectangle defines the coordinate system of the track. You specify the
dimensions of the rectangle by providing the coordinates of the lower-right corner of the
rectangle. The Movie Toolbox sets the upper-left corner to (0,0) in the track’s coordinate
system.

If you change the dimensions of an existing track, the media data is scaled to fit into the
new rectangle.

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dTrack —-2009 This track is corrupted or invalid

You can use the Get Tr ackDi mensi ons function, which is described in the next section,
to retrieve a track’s rectangle.

GetTrackDimensions

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Tr ackDi nensi ons function allows your application to determine a track’s
source, or display, rectangle.

pascal void Get TrackDi nensi ons (Track theTrack, Fixed *w dth,
Fi xed *hei ght);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

wi dt h Contains a pointer to a fixed-point number. The Movie Toolbox returns
the width, in pixels, of the track’s rectangle. This value corresponds to the
x coordinate of the lower-right corner of the track’s rectangle.

hei ght Contains a pointer to a fixed-point number. The Movie Toolbox returns
the height, in pixels, of the track’s rectangle. This value corresponds to the
y coordinate of the lower-right corner of the track’s rectangle.

A track’s source rectangle defines the coordinate system of the track. You specify the
dimensions of the rectangle by providing the coordinates of the lower-right corner of the
rectangle. The Movie Toolbox sets the upper-left corner to (0,0) in the track’s coordinate
system.

i nval i dTrack -2009 This track is corrupted or invalid

You can use the Set Tr ackDi nensi ons function, which is described in the previous
section, to set a track’s rectangle.

Movie Toolbox Reference 2-177

CHAPTER 2

Movie Toolbox

SetTrackClipRgn

DESCRIPTION

ERROR CODES

SEE ALSO

The Set Trackd i pRgn function allows your application to set the clipping region of a
track.

pascal void SetTrackd ipRgn (Track theTrack, RgnHandle thedip);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

thedip Contains a handle to the track’s clipping region. Note that the Movie
Toolbox makes a copy of this region. Your application must dispose of the
region referred to by this parameter when you are done with it. Set this
parameter to ni | to disable clipping for the track.

The clipping region is in the track’s coordinate system. The Movie Toolbox applies the
clipping region to a track before it applies the track’s matrix.

i nval i dTrack —-2009 This track is corrupted or invalid
Memory Manager errors

You can get a track’s clipping region by calling the Get Tr ackC i pRgn function, which
is described in the next section.

GetTrackClipRgn

2-178

The Get Trackd i pRgn function allows your application to determine the clipping
region of a track.

pascal RgnHandl e Get Trackd i pRgn (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

DESCRIPTION

The clipping region is in the track’s coordinate system. The Movie Toolbox applies the
clipping region to a track before it applies the track’s matrix. This region is valid for the
entire duration of the track.

The Get Tr ackd i pRgn function allocates the region and returns a handle to the region.
Your application must dispose of this region when you are done with it. If the function
could not satisfy your request or if there is no clipping region defined for the track, it sets
the returned handle to ni | .

ERROR CODES
i nval i dTr ack —2009 This track is corrupted or invalid
Memory Manager errors

SEE ALSO

You can establish a track’s clipping region by calling the Set Tr ackd i pRgn function,
which is described in the previous section.

SetTrackMatte

The Set Tr ackMat t e function allows your application to set a track’s matte. The matte
defines which of the track’s pixels are displayed in a movie. You must specify the matte
in a pixel map structure.

pascal void SetTrackMatte (Track theTrack, PixMapHandl e theMatte);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

theMatte Contains a handle to the matte. The Movie Toolbox makes a copy of the
matte, including its color table and pixels. Consequently, your application
must dispose of the matte when you are done with it. Set this parameter
toni | toremove the track’s matte.

DESCRIPTION

The Movie Toolbox displays the weighted average of the track and its destination based
on the corresponding pixel in the matte (this feature is fully functional in System 7 and is
approximated in System 6).

SPECIAL CONSIDERATIONS
Note that the track matte must have its boundaries defined by the track rectangle.

Movie Toolbox Reference 2-179

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dTrack —-2009 This track is corrupted or invalid

Memory Manager errors

You can retrieve a track’s matte by calling the Get Tr ackMat t e function, which is
described in the next section. Listing 2-15 on page 2-73 shows how to use the
Set TrackMat t e and Get Tr ackMat t e functions to create a track matte.

GetTrackMatte

DESCRIPTION

ERROR CODES

SEE ALSO

2-180

The Get Tr ackMat t e function allows your application to retrieve a copy of a track’s
matte. The matte defines which of the track’s pixels are displayed in a movie, and it is
valid for the entire duration of the movie. This function returns the matte in a pixel map
structure. You may use QuickDraw functions to manipulate the returned matte.
However, you should use the Movie Toolbox’s Di sposeMat t e function (described in
the next section) to dispose of the matte when you are finished with it.

pascal Pi xMapHandl e Get TrackMatte (Track theTrack);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get Tr ackMat t e function returns a handle to the matte. Your application must
dispose of this handle when you are done with it—you must use the Di sposeMatt e
function, which is described in the next section, to dispose of the matte. If the function
could not satisfy your request, it sets the returned handle toni | .

i nval i dTr ack —2009 This track is corrupted or invalid
Memory Manager errors

You can establish a track’s matte by calling the Set Tr ackMat t e function, which is
described in the previous section. Listing 2-15 on page 2-73 shows how to use the
Set TrackMat t e and Get Tr ackMat t e functions to create a track matte.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

DisposeMatte

The Di sposeMat t e function disposes of a matte that you obtained from the
Get Tr ackMat t e function, which is described in the previous section.

pascal void Di sposeMatte (Pi xMapHandl e theMatte);

theMatte Handle to the matte to be disposed. Your application obtains this handle
from the Get Tr ackMat t e function.

SPECIAL CONSIDERATIONS

You should not use this function to dispose of mattes or pixel maps that you obtain
through other means.

ERROR CODES
None

Working With Sound Volume

The Movie Toolbox allows you to set the sound volume of movies and tracks. Track
volumes allow tracks within a movie to have different volumes. A track’s volume is
scaled by the movie’s volume to produce the track’s final volume. Furthermore, the
movie’s volume is scaled by the sound volume that is returned by the Sound Manager’s
Get SoundVol routine. Thus, the user can control the overall volume from the Sound
control panel.

Volume values range from —1.0 to 1.0. Higher values translate to louder volume.
Negative values indicate muted volume. That is, the Movie Toolbox does not play any
sound for movies or tracks with negative volume settings, but the original volume level
is retained as the absolute value of the volume setting. Therefore, if you want to toggle
the current state of the volume, you can invert the sign of the current volume setting, as
shown here:

Set Movi eVol une (theMovi e, - Get Movi eVol une (theMvie));

You can use the Get Mbvi eVol une and Set Movi eVol une functions to work with a
movie’s volume.

The Get Tr ackVol ume and Set Tr ack Vol une functions allow you to work with a
track’s volume.

Movie Toolbox Reference 2-181

CHAPTER 2

Movie Toolbox

SetMovieVolume

The Set Movi eVol urre function allows your application to set a movie’s current volume.
pascal void Set Movi eVol unme (Mvie theMvie, short vol une);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewVbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

vol ume Specifies the current volume setting of the movie represented as a 16-bit,
fixed-point number. The high-order 8 bits contain the integer part of the
value; the low-order 8 bits contain the fractional part. Volume values
range from -1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting.

kFul | Vol ure
Sets the movie to full volume (constant value is 1.0).

kNoVol une
Sets the movie to no volume (constant value is 0.0).

ERROR CODES
i nval i dvbvi e —-2010 This movie is corrupted or invalid

SEE ALSO

Your application can obtain the current volume setting by calling the Get Movi eVol une
function, which is described in the next section.

GetMovieVolume

The Get Movi eVol urre function returns a movie’s current volume setting.
pascal short Get Movi eVol une (Mvie theMyvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The Get Movi eVol urre function returns an integer that contains the movie’s current
volume represented as a 16-bit, fixed-point number. The high-order 8 bits contain the
integer part of the value; the low-order 8 bits contain the fractional part. Volume values

2-182 Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

range from -1.0 to 1.0. Negative values play no sound but preserve the absolute value of

the volume setting.

i nval i dMbvi e —-2010 This movie is corrupted or invalid

You can change a movie’s current volume by calling the Set Movi eVol une function,
which is described in the previous section.

SetTrackVolume

DESCRIPTION

ERROR CODES

SEE ALSO

The Set Tr ackVol une function allows your application to set a track’s current volume.
pascal void SetTrackVol une (Track theTrack, short vol une);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

vol unme Specifies the current volume setting of the track represented as a 16-bit,
fixed-point number. The high-order 8 bits contain the integer part of the
value; the low-order 8 bits contain the fractional part. Volume values
range from -1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting.

kFul | Vol ure
Sets the track to full volume (constant value is 1.0).

kNoVol une Sets the track to no volume (constant value is 0.0).

Note that, when the track is played, the track’s volume is scaled by the volume setting of
the movie that contains the track.

i nval i dTrack —2009 This track is corrupted or invalid

Your application can obtain the current volume setting by calling the Get Tr ackVol une
function, which is described in the next section.

Movie Toolbox Reference 2-183

CHAPTER 2

Movie Toolbox

GetTrackVolume

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Tr ackVol une function returns a track’s current volume setting.
pascal short GetTrackVol ume (Track theTrack);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get Tr ackVol urre function returns an integer that contains the track’s current
volume represented as a 16-bit, fixed-point number. The high-order 8 bits contain the
integer part of the value; the low-order 8 bits contain the fractional part. Volume values
range from -1.0 to 1.0. Negative values play no sound but preserve the absolute value of
the volume setting.

i nval i dTrack —2009 This track is corrupted or invalid

You can change a track’s current volume by calling the Set Tr ack Vol urre function,
which is described in the previous section.

Working with Movie Time

2-184

Every QuickTime movie has its own time base. A movie’s time base allows all the tracks
that make up the movie to be synchronized when the movie is played. The Movie
Toolbox provides a number of functions that allow your application to determine and
establish the time parameters of a movie. This section discusses those functions. Later
sections in this chapter discuss the Movie Toolbox functions that allow you to work with
the time parameters of tracks and media structures. For a complete discussion of the
relationships between movie, track, and media time parameters, see “Introduction to
Movies” beginning on page 2-5. For information about more functions that work with
time, see “Time Base Functions” beginning on page 2-315.

You can use the Get Movi eTi neBase function to retrieve the time base for a movie.

You can work with a movie’s current time by calling the Get Movi eTi ne,
Set Movi eTi e, and Set Movi eTi meVal ue functions.

You can work with a movie’s time scale by calling the Get Movi eTi neScal e and
Set Movi eTi neScal e functions.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

The Movie Toolbox can calculate the total duration of a movie. You can use the
Cet Movi eDur at i on function to retrieve a movie’s duration.

Your application can call the Get Movi eRat e and Set Movi eRat e to work with a
movie’s playback rate.

GetMovieDuration

DESCRIPTION

ERROR CODES

The Get Movi eDur at i on function returns the duration of a movie. The Movie Toolbox
examines the durations of all the tracks of the movie to determine this value.

pascal Ti nmeVal ue Get Movi eDuration (Mvie theMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi eDur at i on function returns a time value. This time value indicates the
movie’s duration, and it is expressed in the movie’s time scale.

You cannot set movie direction explicitly because it is calculated as being the maximum
durations of all the tracks in the movie.

i nval i dvbvi e -2010 This movie is corrupted or invalid

SetMovieTimeValue

The Set Movi eTi meVal ue function allows your application to set a movie’s time value.
You specify the new time as a time value, rather than in a time structure. You must
ensure that the time value is in the movie’s time scale.

pascal void Set Movi eTi neVal ue (Mvi e thelMvie, TinmeValue newTi ne);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference 2-185

ERROR CODES

CHAPTER 2

Movie Toolbox

newTi me Specifies the movie’s new time value. The Movie Toolbox interprets this
time value relative to the movie’s time scale. If you specify a value that is
outside the duration of the movie, the Movie Toolbox sets the movie time
to the beginning or end of the movie, as appropriate.

i nval i dMbvi e -2010 This movie is corrupted or invalid

SEE ALSO
You can also set a movie’s current time by calling the Set Movi eTi me function, which is
described in the next section. This function requires that you specify the new time value
in a time structure.

SetMovieTime

ERROR CODES

SEE ALSO

2-186

The Set Movi eTi nme function allows your application to change a movie’s current time.
You must specify the new time in a time structure. The Movie Toolbox saves the movie’s
current time when you save the movie.

pascal void SetMyvieTime (Mvie thelMvie,
const Ti meRecord *newTi ne);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

newTi me Contains a pointer to a time structure. If you specify a value that is
outside the duration of the movie, the Movie Toolbox sets the movie time
to the beginning or end of the movie, as appropriate.

i nval i dMbvi e -2010 This movie is corrupted or invalid

You can use the Set Movi eTi neVal ue function, described in the previous section, to
change a movie’s current time without specifying a time structure.

You can retrieve a movie’s current time value by calling the Get Movi eTi ne function,
which is described in the next section.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMovieTime

DESCRIPTION

ERROR CODES

The Get Movi eTi ne function returns a movie’s current time. This function returns the
time in two formats: as a time value and in a time structure.

pascal Ti neVal ue Get Movi eTi ne (Movi e thelMvi e,
Ti meRecord *currentTi ne);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, NewMbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

current Ti ne
Contains a pointer to a time structure. The Get Movi eTi ne function
updates this time structure to contain the movie’s current time. If you do
not want this information, set this parameter to ni | .

The Get Movi eTi e function returns a time value. This time value indicates the movie’s
current time, and it is expressed in the movie’s time scale.

i nval i dvbvi e —-2010 This movie is corrupted or invalid

SEE ALSO
You can set a movie’s current time by calling the Set Movi eTi ne or
Set Movi eTi neVal ue functions, which are described on page 2-186 and page 2-185,
respectively.

SetMovieRate

The Set Movi eRat e function sets a movie’s playback rate.
pascal void Set Movi eRate (Movie theMvie, Fixed rate);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

rate Specifies the new movie rate as a 32-bit, fixed-point number. Positive
integers indicate forward rates and negative integers indicate reverse
rates.

Movie Toolbox Reference 2-187

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid

Your application can retrieve a movie’s current playback rate by calling the

Get Movi eRat e function, which is described in the next section. To play a movie at the
movie’s preferred rate from a position stored within the movie, you can use the

St ar t Movi e function (described on page 2-111).

GetMovieRate

DESCRIPTION

ERROR CODES

SEE ALSO

2-188

The Get Movi eRat e function returns a movie’s playback rate.

pascal Fi xed Get Movi eRate (Movi e theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and

NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi eRat e function returns the movie rate as a 32-bit, fixed-point number.
Positive integers indicate forward rates and negative integers indicate reverse rates.

i nval i dMbvi e —-2010 This movie is corrupted or invalid

Your application can set the movie’s playback rate by calling the Set Movi eRat e
function, which is described in the previous section.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SetMovieTimeScale

DESCRIPTION

The Set Movi eTi neScal e function establishes a movie’s time scale.

pascal void Set Movi eTi neScal e (Movi e thelMvi e,
Ti meScal e ti meScal e) ;

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

ti meScal e Specifies the movie’s new time scale.

In response to this request, the Movie Toolbox adjusts the edit list of the movie’s tracks
so that movie playback is unaffected. If you change a movie’s time scale by setting it to a
smaller value (thereby losing precision in the movie’s time values), the Movie Toolbox
may edit information from the movie. In general, you should only increase the time scale
value, and you should try to use integer multiples of the existing time scale.

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

Do not call Set Movi eTi meScal e if you have edited your movie. This function
gquantizes the beginning and the end of the edits to the new units. Therefore, if you do
not use an integral multiple, the position of your edits may change.

i nval i dMbvi e -2010 This movie is corrupted or invalid

You can retrieve a movie’s time scale by calling the Get Movi eTi neScal e function,
which is described in the next section.

Movie Toolbox Reference 2-189

CHAPTER 2

Movie Toolbox

GetMovieTimeScale

DESCRIPTION

ERROR CODES

SEE ALSO

The Get Movi eTi meScal e function returns the time scale of a movie.
pascal Ti meScal e Get Movi eTi neScal e (Mvi e theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewVbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The default QuickTime movie time scale is 600 units per second; however, this number
may change in the future. The default time scale was chosen because it is convenient for
working with common video frame rates of 30, 25, 24, 15, 12, 10, and 8.

i nval i dvbvi e —-2010 This movie is corrupted or invalid

You can set a movie’s time scale by calling the Set Movi eTi neScal e function, which is
described in the previous section.

GetMovieTimeBase

DESCRIPTION

2-190

The Get Movi eTi neBase function returns a movie’s time base.
pascal Ti meBase Get Movi eTi neBase (Movi e thelMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

You cannot use the returned time base value with the Movie Toolbox’s

Set Ti mreBaseMast er Ti neBase and Set Ti meBaseMast er Cl ock functions
(described on page 2-320 and page 2-318, respectively). Use the

Set Movi eMast er Ti mreBase and Set Movi eMast er G ock functions (described on
page 2-318 and page 2-317, respectively) instead.

The Movie Toolbox disposes of a movie’s time base when you dispose of the movie.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SPECIAL CONSIDERATIONS

Do not dispose of the Ti meBase result returned by the Get Movi eTi meBase function as
it is owned by the movie.

ERROR CODES
i nval i dvbvi e -2010 This movie is corrupted or invalid

Working With Track Time

The Movie Toolbox provides several functions that allow your application to determine
and establish a track’s time parameters. A track uses the time base of the movie that
contains the track; therefore there are no functions that work with a track’s time base or
time scale. However, you can determine a track’s duration and its offset from the start of
a movie.

All of the tracks in a movie use the movie’s time coordinate system. That is, the movie’s
time scale defines the basic time unit for each of the movie’s tracks. Each track begins at
the beginning of the movie, but the track’s data might not begin until some time value
other than 0. This intervening time is represented by blank space—in an audio track the
blank space translates to silence; in a video track the blank space generates no visual
image. This blank space is the track offset. Each track has its own duration. This
duration need not correspond to the duration of the movie. A movie duration always
equals the maximum track duration. See Figure 2-6 on page 2-12 for a visual
representation of track duration and track offset.

You can use the Get Tr ackDur at i on function to determine a track’s duration.

The Set TrackOf f set and Get Tr ackCf f set functions enable you to work with a
track’s offset from the start of the movie that contains it.

The TrackTi meToMedi aTi ne function lets you translate a track’s time to the
corresponding time value of a media in the track.

GetTrackDuration

The Get Tr ackDur at i on function returns the duration of a track. The duration
corresponds to the ending time of the track in the movie’s time coordinate system
(remember that all tracks start at movie time 0).

pascal Ti meVal ue Get TrackDuration (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as Newibvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

Movie Toolbox Reference 2-191

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Get TrackDur at i on function returns a time value. This time value indicates the
track’s duration, and it is expressed in the time scale of the movie that contains the track.

i nval i dTrack —-2009 This track is corrupted or invalid

SetTrackOffset

ERROR CODES

SEE ALSO

2-192

The Set TrackOf f set function modifies the duration of the empty space that lies at the
beginning of the track, thus changing the duration of the entire track. You specify this
time offset as a time value in the movie’s time scale. See Figure 2-6 on page 2-12 for an
illustration of a track offset in a movie.

pascal void SetTrackOfset (Track theTrack,
Ti meVal ue novi e f set Ti ne) ;

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

nmovi el f set Ti e
Specifies the track’s offset from the start of the movie, and must be
expressed in the time scale of the movie that contains the track.

i nval i dTrack —2009 This track is corrupted or invalid

You can determine a track’s time offset by calling the Get Tr ackf f set function, which
is described in the next section.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetTrackOffset

DESCRIPTION

ERROR CODES

SEE ALSO

The Get TrackOf f set function allows your application to determine the time
difference between the start of a track and the start of the movie that contains the track.

pascal TineVal ue Get TrackOffset (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get Tr ackOf f set function returns a time value. This time value indicates the
track’s offset from the start of the movie, and it is expressed in the time scale of the
movie that contains the track.

i nval i dTrack —2009 This track is corrupted or invalid

You can set a track’s offset by calling the Set Tr ackOf f set function, which is described
in the previous section.

TrackTimeToMediaTime

The TrackTi meToMedi aTi ne function allows your application to convert a track’s
time value to a time value that is appropriate to the track’s media using the track’s edit
list. You specify the track’s time in the movie’s time coordinate system.

pascal Ti nmeVal ue TrackTi neToMedi aTi me (Ti neVal ue val ue,
Track theTrack);

val ue Specifies the track’s time value; must be expressed in the time scale of the
movie that contains the track.

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

Movie Toolbox Reference 2-193

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Movie Toolbox returns a value that is in the media’s time coordinate system.

You can use the Tr ackTi meToMedi aTi ne function to determine whether a specified
track edit is empty. If the track time corresponds to empty space, this function returns a
value of -1.

The Tr ackTi meToMedi aTi ne function maps the track time through the track’s edit list
to come up with the media time. This time value contains the track’s time value
according to the media’s time coordinate system. If the time you specified lies outside of
the movie’s active segment or corresponds to empty space in the track, the

TrackTi meToMedi aTi me function returns a value of —1.

i nval i dTrack —2009 This track is corrupted or invalid

Working With Media Time

The Movie Toolbox provides functions that allow your application to work with the time
parameters of a media.

You can use the Get Medi aDur at i on function to determine a media’s duration.

The Get Medi aTi neScal e and Set Medi aTi neScal e let you determine or establish a
media’s time scale.

GetMediaDuration

DESCRIPTION

ERROR CODES

2-194

The Get Medi abur at i on function returns the duration of a media.
pascal Ti nmeVal ue Get Medi aDuration (Media theMedia);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

The Get Medi aDur at i on function returns a time value. This time value indicates the
media’s duration, and it is expressed in the time scale of the media.

i nval i dvedi a —2008 This media is corrupted or invalid

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SetMediaTimeScale

The Set Medi aTi neScal e function allows your application to set a media’s time scale.

pascal void Set Medi aTi neScal e (Medi a t heMedi a,
Ti meScal e ti meScal e) ;

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

ti meScal e Specifies the media’s new time scale.

DESCRIPTION

In response to this request, the Movie Toolbox attempts to adjust the edit list of the
appropriate track so that movie playback is unaffected. If you change a media’s time
scale by setting it to a smaller value, you may lose precision in media time values. In
general, you should only increase the time scale value, and you should try to use integer
multiples of the existing time scale.

SPECIAL CONSIDERATIONS

Do not use Set Medi aTi neScal e as a general rule. If you call this function with a
number that is not an integer multiple, the duration of the samples vary unpredictably,
and their start times tend to drift.

ERROR CODES
i nval i dvedi a —-2008 This media is corrupted or invalid

GetMediaTimeScale

The Get Medi aTi neScal e function allows your application to determine a media’s
time scale.

pascal Ti neScal e Get Medi aTi neScal e (Medi a t heMedi a) ;
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

Movie Toolbox Reference 2-195

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Get Medi aTi neScal e function returns the media’s time scale.

i nval i dMedi a —2008 This media is corrupted or invalid

Finding Interesting Times

2-196

The Movie Toolbox provides a set of functions that help you locate samples in movies,
tracks, and media structures. These functions are based on the concept of “interesting
times.” An interesting time refers to a time value in a movie, track, or media that meets
certain search criteria. You specify the search criteria to the Movie Toolbox. The Movie
Toolbox then scans the movie, track, or media, and locates time values that meet those
search criteria.

You can use these functions to search through image sequences. For example, you may
want to locate each frame in an image sequence. Or you may be more interested in key
frames, especially if you are trying to optimize display performance. In image data, sync
samples are referred to as key frames. For more information on key frames, see the
chapter “Image Compression Manager” in this book. An easy way to determine whether
a movie has been edited is to look for track edits in the movie data. You may also be
interested in searching for samples in a movie’s media. If you set the appropriate search
criteria, the Movie Toolbox locates the appropriate frames for you. You need the
functions described in this section because QuickTime doesn’t have a fixed rate. Each
frame can have its own duration.

The Movie Toolbox identifies an interesting time by specifying its starting time and
duration. The starting time indicates the time in the movie, track, or media where the
search criteria are met. The duration indicates the length of time during which the search
criteria remain in effect. For example, if you are looking for samples in a media, the start
time would indicate the beginning of the sample, and the duration would indicate the
length of time to the next sample. In this case, you could find the next media sample by
adding the duration to the start time. These duration values are always positive—you
determine the direction of the search by setting the sign of the rate value you supply to
the functions.

Note that movie interesting times are defined in the scope of the movie as a whole. As a
result, one interesting time ends when another interesting time starts in any track in the
movie. For example, if you are looking for key frames in a movie, the duration value
from one interesting time tells you when the next key frame starts. However, that second
key frame may be in a different track in the movie. Therefore, the duration of the
interesting time does not necessarily correspond to the duration of the key frame.

You can use the Get Movi eNext | nt er est i ngTi me function to locate times of interest
in a movie. The Get Tr ackNext | nt er est i ngTi me function lets you work with tracks.
Use the Get Medi aNext | nt er est i ngTi ne function to locate samples in a media.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMovieNextInterestingTime

The Get Movi eNext | nt er esti ngTi me function searches for times of interest in a
movie. This function examines only the movie’s enabled tracks.

pascal void

t heMovi e

i nteresting

Get Movi eNext I nterestingTi ne (Movi e theMvi e,
short interestingTi neFl ags,
short numvkedi aTypes,
const OSType *whi chMedi aTypes,
Ti meVal ue time, Fixed rate,
Ti meVal ue *interestingTi ne,
Ti reVal ue *interestingDuration);

Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and

page 2-90, respectively).

Ti meFl ags

Specifies the search criteria. Note that you may set only one of

the next Ti meMedi aSanpl e, next Ti meMedi aEdi t,

next Ti meTrackEdi t and next Ti meSyncSanpl e flags to 1. The
following flags are available (set unused flags to 0):

next Ti meMedi aSanpl e
Searches for the next sample in the movie’s media. Set this
flag to 1 to search for the next sample.

next Ti meMedi aEdi t
Searches for the next group of samples in the movie’s
media. Set this flag to 1 to search for the next group of
samples.

next Ti meTr ackEdi t
Searches for the media sample that corresponds to the next
entry in a track’s media edit list. The end of the track is
considered an empty edit. Set this flag to 1 to search for the
next track edit.

next Ti meSyncSanpl e
Searches for the next sync sample in the movie’s media. Set
this flag to 1 to search for the next sync sample.

Sync samples do not rely on preceding frames for content.
Some compression algorithms conserve space by
eliminating duplication between consecutive frames in a
sample.

Movie Toolbox Reference 2-197

2-198

CHAPTER 2

Movie Toolbox

next Ti meEdgeOK
Instructs the Movie Toolbox that you are willing to receive
information about elements that begin or end at the time
specified by the t i me parameter. Set this flag to 1 to accept
this information.

This flag is especially useful at the beginning or end of a
movie. The function returns valid information about the
beginning and end of the movie.

next Ti mel gnor eAct i veSegnent
Instructs the Movie Toolbox to look outside of the active
segment for samples that meet the search criteria. Set this
flag to 1 to search outside of the active segment.

nunmvedi aTypes

Specifies the number of media types in the table referred to by the
whi chMedi aType parameter. Set this parameter to 0 to search all media

types.

whi chMedi aTypes

tinme

rate

i nteresting

i nteresting

Contains a pointer to an array of media types. You can use this parameter
to limit the search to a specified set of media types. Each entry in the table
referred to by this parameter identifies a media type to be included in the
search. You use the nunmvedi aTypes parameter to indicate the number of
entries in the table. Set this parameter to ni | to search all media types.

Vi sual Medi aCharacteristic 'eyes'
Instructs the Movie Toolbox to search all tracks that have
spatial bounds.

Audi oMedi aCharacteristic 'ears'
Instructs the Movie Toolbox to search all tracks that play
sound.

Specifies a time value that establishes the starting point for the search.
This time value must be expressed in the movie’s time scale.

Contains the search direction. Negative values cause the Movie Toolbox
to search backward from the starting point specified in the ti ne
parameter. Other values cause a forward search.

Ti me

Contains a pointer to a time value. The Movie Toolbox returns the first
time value it finds that meets the search criteria specified in the f | ags
parameter. This time value is in the movie’s time scale.

If there are no times that meet the search criteria you specify, the Movie
Toolbox sets this value to -1.

If you are not interested in this information, set this parameter to ni | .

Dur ati on

Contains a pointer to a time value. The Movie Toolbox returns the
duration of the interesting time. This time value is in the movie’s time
coordinate system. Set this parameter to ni | if you do not want this
information—in this case, the function works more quickly.

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

You can use the Get Movi eNext | nt er est i ngTi me function to step through the frames
of a movie one by one. If no tracks match the media types, the i nval i dMedi a error is
returned.

i nval i dvedi a —-2008 This media is corrupted or invalid

i nval i dTrack —2009 This track is corrupted or invalid
i nval i dvbvi e -2010 This movie is corrupted or invalid
i nval i dTi me -2015 This time value is invalid

GetTrackNextInterestingTime

The Get Tr ackNext | nt er est i ngTi me function searches for times of interest in a track.

pascal void GetTrackNextlnterestingTime (Track theTrack,
short interestingTi neFl ags,
Ti neVal ue tine, Fixed rate,
Ti meVal ue *interestingTine,
Ti meVal ue *interestingDuration);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

i nt erestingTi meFl ags
Specifies the search criteria. Note that you may set only one of
the next Ti meMedi aSanpl e, next Ti neMedi aEdi t,
next Ti meTr ackEdi t and next Ti meSyncSanpl e flags to 1. The
following flags are available (set unused flags to 0):

next Ti mreMedi aSanpl e
Searches for the next sample in the track’s media. Set this
flag to 1 to search for the next sample.

next Ti meMedi aEdi t
Searches for the next group of samples in the track’s media.
Set this flag to 1 to search for the next group of samples.

next Ti meTr ackEdi t
Searches for the media sample that corresponds to the next
entry in a track’s media edit list. The end of the track is
considered an empty edit. Set this flag to 1 to search for the
next track edit.

Movie Toolbox Reference 2-199

ERROR CODES

2-200

CHAPTER 2

Movie Toolbox

next Ti meSyncSanpl e
Searches for the next sync sample in the track’s media. Set
this flag to 1 to search for the next sync sample.

Sync samples do not rely on preceding frames for content.
Some compression algorithms conserve space by
eliminating duplication between consecutive frames in a
sample.

next Ti meEdgeOK
Instructs the Movie Toolbox that you are willing to receive
information about elements that begin or end at the time
specified by the t i me parameter. Set this flag to 1 to accept
this information.

This flag is especially useful at the beginning or end of a
track. The function returns valid information about the
beginning and end of the track.

next Ti el gnor eAct i veSegnent
Instructs the Movie Toolbox to look outside of the active
segment for samples that meet the search criteria. Set this
flag to 1 to search outside of the active segment.

time Specifies a time value that establishes the starting point for the search.
This time value must be expressed in the movie’s time scale.

rate Contains the search direction. Negative values cause the Movie Toolbox
to search backward from the starting point specified in the t i ne
parameter. Other values cause a forward search.

i nterestingTinme
Contains a pointer to a time value. The Movie Toolbox returns the first
time value it finds that meets the search criteria specified in the f | ags
parameter. This time value is in the movie’s time scale.

If there are no times that meet the search criteria you specify, the Movie
Toolbox sets this value to -1.

Set this parameter to ni | if you are not interested in this information.

i nterestingbDuration
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the interesting time. This time value is in the movie’s time
coordinate system. Set this parameter to ni | if you do not want this
information—in this case, the function works more quickly.

i nval i dTrack —2009 This track is corrupted or invalid
i nval i dTi ne -2015 This time value is invalid

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMediaNextInterestingTime

The Get Medi aNext | nt er est i ngTi me function searches for times of interest in a

media.

pascal void

t heMedi a

i nteresting

tinme

rate

Get Medi aNext I nterestingTi ne (Medi a t heMedi a,
short interestingTi neFl ags,
Ti meVal ue tinme, Fixed rate,
Ti reVal ue *interestingTine,
Ti meVal ue *interestingDuration);

Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

Ti meFl ags

Specifies the search criteria. Note that you may set only one of

the next Ti meMedi aSanpl e, next Ti neMedi aEdi t and

next Ti meSyncSanpl e flags to 1. The following flags are available (set
unused flags to 0):

next Ti meMedi aSanpl e
Searches for the next sample in the media. Set this flag to 1
to search for the next sample.

next Ti meMedi aEdi t
Searches for the next group of samples in the media. Set
this flag to 1 to search for the next group of samples.

next Ti meSyncSanpl e
Searches for the next sync sample in the media. Set this flag
to 1 to search for the next sync sample.

Sync samples do not rely on preceding frames for content.
Some compression algorithms conserve space by
eliminating duplication between consecutive frames in a
sample.

next Ti meEdgeOK
Instructs the Movie Toolbox that you are willing to receive
information about elements that begin or end at the time
specified by the t i me parameter. Set this flag to 1 to accept
this information.

This flag is especially useful at the beginning or end of a
media. The function returns valid information about the
beginning and end of the media.

Specifies a time value that establishes the starting point for the search.
This time value must be expressed in the media’s time scale.

Contains the search direction. Negative values cause the Movie Toolbox
to search backward from the starting point specified in the t i ne
parameter. Other values cause a forward search.

Movie Toolbox Reference 2-201

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

i nterestingTime
Contains a pointer to a time value. The Movie Toolbox returns the first
time value it finds that meets the search criteria specified in the f | ags
parameter. This time value is in the media’s time scale.

If there are no times that meet the search criteria you specify, the Movie
Toolbox sets this value to -1.

Set this parameter to ni | if you are not interested in this information.

i nterestingbDuration
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the interesting time. This time value is in the media’s time
coordinate system. Set this parameter to ni | if you do not want this
information—in this case, the function works more quickly.

Get Medi aNext I nt er esti ngTi ne ignores all the edits that are defined in a movie’s
tracks.

i nval i dMedi a —-2008 This media is corrupted or invalid
i nval i dTi ne -2015 This time value is invalid

Locating a Movie’s Tracks and Media Structures

2-202

The Movie Toolbox provides a set of functions that help your application locate a
movie’s tracks and media structures. This section describes these functions.

The Movie Toolbox identifies a movie’s tracks in two ways. First, every track in a movie
has a unique ID value. This ID value is unique throughout the life of a movie, even after
it has been saved. That is, no two tracks of a movie ever have the same ID, and no

ID value is ever reused. Second, a movie’s current tracks may be identified by their index
value. Index values always range from 1 to the number of tracks in the movie. Track
indexes provide a convenient way to access each track of a movie.

There are several functions that allow you to find a movie’s tracks. You can use the

Get Movi eTr ackCount function to determine the number of tracks in a movie. Use

the Get Movi eTr ack function to obtain the track identifier for a specific track, given its
ID. The Get Movi el ndTr ack function lets you obtain a track’s identifier, given its track
index.

You can obtain a track’s ID value given its track identifier by calling the Get Tr ackl D
function.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

You can determine the movie that contains a track by calling the Get Tr ackMovi e
function.

The Get Tr ackMedi a function enables you to find a track’s media. Conversely, you can
find the track that uses a media by calling the Get Medi aTr ack function.

GetMovieTrackCount

ERROR CODES

The Get Movi eTr ackCount function returns the number of tracks in a movie.

pascal |ong Get Movi eTrackCount (Movi e theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and

NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

i nval i dvbvi e -2010 This movie is corrupted or invalid

GetMovielndTrack

DESCRIPTION

The Get Movi el ndTr ack function allows your application to determine the track
identifier of a track given the track’s index value. The index value identifies the track
among all current tracks in a movie. Index values range from 1 to the number of tracks in
the movie.

pascal Track Get Movi el ndTrack (Movi e theMyvie, |ong index);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

i ndex Specifies the index value of the track for this operation.

The Get Movi el ndTr ack function returns the track identifier that is appropriate to the
specified track. If the function cannot locate the track, it sets this returned value to ni | .

Movie Toolbox Reference 2-203

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

badTr ackl ndex -2028 This track index value is not valid
i nval i dvbvi e -2010 This movie is corrupted or invalid

You can determine the number of tracks in a movie by calling the
Get Movi eTr ackCount function, which is described in the previous section.

GetMovieTrack

DESCRIPTION

ERROR CODES

SEE ALSO

2-204

The Get Movi eTr ack function allows your application to determine the track identifier
of a track given the track’s ID value.

pascal Track Get MovieTrack (Mvie theMvie, |ong tracklD);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

trackl D Specifies the ID value of the track for this operation.

The Get Movi eTr ack function returns the track identifier that is appropriate to the
specified track. If the function cannot locate the track, it sets this returned value toni | .

i nval i dvbvi e -2010 This movie is corrupted or invalid
t r ackl DNot Found -2029 Cannot locate a track with this ID value

You can obtain a track’s ID value by calling the Get Tr ackl D function, which is
described in the next section. You can use a track’s index value to obtain its track
identifier by calling the Get Movi el ndTr ack function, which is described in the
previous section.

Movie Toolbox Reference

GetTracklD

CHAPTER 2

Movie Toolbox

DESCRIPTION

ERROR CODES

The Get Tr ackl Dfunction allows your application to determine a track’s unique track
ID value. This ID value remains unique throughout the life of the movie.

pascal |ong GetTrackl D (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get Tr ackl D function returns the track’s ID value. If the function could not
determine the ID value, it sets this returned value to 0.

i nval i dTr ack —2009 This track is corrupted or invalid

GetTrackMovie

DESCRIPTION

ERROR CODES

The Get Tr ackMovi e function allows you to determine the movie that contains a
specified track.

pascal Myvie Get TrackMovie (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as Newibvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get Tr ackMovi e function returns the movie identifier that corresponds to the
movie that contains the track. If the function could not locate the movie, it sets this
returned value toni | .

i nval i dTrack -2009 This track is corrupted or invalid

Movie Toolbox Reference 2-205

CHAPTER 2

Movie Toolbox

GetTrackMedia

DESCRIPTION

ERROR CODES

The Get Tr ackMedi a function allows you to determine the media that contains a track’s
sample data.

pascal Media Get TrackMedi a (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get Tr ackMedi a function returns the media identifier that corresponds to the
media that specifies the track’s sample data. If the function could not locate the media, it
sets this returned value toni | .

i nval i dTrack —2009 This track is corrupted or invalid

GetMediaTrack

DESCRIPTION

ERROR CODES

2-206

The Get Medi aTr ack function allows you to determine the track that uses a specified
media.

pascal Track Get Medi aTrack (Media theMedia);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

The Get Medi aTr ack function returns the track identifier of the track that uses the
media. If the function cannot determine the track that uses the media, it sets this
value to ni | .

i nval i dvedi a —2008 This media is corrupted or invalid

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Working With Alternate Tracks

The Movie Toolbox allows you to define alternate tracks in a movie. You can use
alternate tracks to support multiple languages or to present different levels of visual
quality in the movie. You collect alternate tracks into groups. Alternate track groups are
collections of tracks that conceptually represent some data but are appropriate for use in
different play environments. For example, you might have some 4-bit data in one track
and some 8-bit data in another. Working with alternate tracks allows you to set up
alternatives from which the Movie Toolbox can choose.

The Movie Toolbox selects one track from each alternate group when it plays the movie.
For example, you could create a movie that has three separate audio tracks: one in
English, one in French, and one in Spanish. You would collect these audio tracks into an
alternate group. When the user plays the movie, the Movie Toolbox selects the track
from this group that corresponds to the current language setting for the movie.

Similarly, you can use alternate tracks to store data of different quality. When the user
plays the movie, the Movie Toolbox selects the track that best suits the capabilities of the
Macintosh computer on which the movie is being played. In this manner, you can create
a single movie that can accommodate the playback characteristics of a number of
different computer configurations.

The Movie Toolbox allows you to store quality information for media structures that are
assigned to either sound or video tracks. For all tracks, the Movie Toolbox uses bits 6 and
7 of the quality setting. These bits encode a relative quality value. These values range
from 0 to 3. You can use higher quality values to indicate larger sample sizes. For
example, consider a movie that has two sound tracks that are alternates for each other—
one contains 8-bit sound while the other contains 16-bit sound. You could assign a
quality value of medi aQual i t yNor mal to the 8-bit media and a value of

medi aQual i t yBet t er to the 16-bit media. The Movie Toolbox would only play the
16-bit media if the Macintosh configuration could handle 16-bit sound. Otherwise, the
Movie Toolbox would use the 8-bit media. The sound media handler determines the
sample size for each sound media for the Movie Toolbox by examining the media’s
sound description structure.

In addition, the Movie Toolbox also uses bits 0 through 5 (the low-order bits) of the
quality setting. You use these bits to indicate the pixel depths at which the media should
be played. Each bit corresponds to a single depth value, ranging from 1-bit pixels to
32-bit pixels. You may use these bits to control the playback of both video and

sound tracks.

As an example, consider a movie that contains three video tracks with the following
characteristics:

Track A 1-bit video data, no compression
Track B Compressed using the Apple Video Compressor
Track C Compressed using the Joint Photographic Experts Group (JPEG) compressor

Movie Toolbox Reference 2-207

CHAPTER 2

Movie Toolbox

You could assign the following quality values to these track’s media structures:

Track A medi aQual i t yDr af t + 1-bit depth + 2-bit depth (quality value is 0x0003:
0x0000 + 0x0003)

Track B nmedi aQual i t yNor mal + 4-bit depth + 8-bit depth + 16-bit depth + 32-bit
depth (quality value is 0x007C: 0x0040 + 0x003C)

Track C medi aQual i t yBet t er + 4-bit depth + 8-bit depth + 16-bit depth + 32-bit
depth (quality value is 0x00BC: 0x0080 + 0x003C)

The Movie Toolbox would always use Track A when playing the movie on 1-bit and 2-bit
displays. At the other pixel depths, the video media handler determines which track to
use by examining the availability and performance of the specified decompressors. If the
JPEG decompressor can play back at full frame rate, the Movie Toolbox would use

Track C. Otherwise, the Toolbox uses Track B. The video media handler determines the
compressor that is appropriate for each media by examining the media’s image
description structure.

You set a movie’s language by calling the Set Movi eLanguage function.

To establish alternate groups of tracks, you can use the Set Tr ackAl t er nat e and
Get Tr ackAl t er nat e functions.

You can work with the language and quality characteristics of media by calling
the Get Medi aLanguage, Set Medi aLanguage, Get Medi aQual i ty, and
Set Medi aQual i ty functions.

By default, the Movie Toolbox automatically selects the appropriate tracks to play
according to a movie’s quality and language settings, as well as the capabilities of the
Macintosh computer. Whenever your application calls the Set Movi eGMr | d,

Set Movi eBox, Updat eMovi e, or Set Movi eMat ri x function (described on page 2-159,
page 2-161, page 2-126, and page 2-170, respectively), the Movie Toolbox checks each
alternate group for an appropriate track. However, you can control this selection process.
Use the Set Aut oTr ackAl t er nat esEnabl ed function to enable or disable automatic
track selection. The Sel ect Movi eAl t er nat es function instructs the Movie Toolbox to
select appropriate tracks immediately. If no tracks in an alternate track group are
enabled, then the Movie Toolbox does not activate any track from that group during
automatic track selection.

SetMovielLanguage

2-208

The Set Movi eLanguage function allows your application to specify a movie’s
language. You specify the language by supplying the appropriate language or region
code (see Inside Macintosh: Text for more information on language and region codes).

pascal void Set Movi eLanguage (Myvi e theMvie, |ong | anguage);

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

| anguage Specifies the movie’s language or region code.

The Movie Toolbox examines the movie’s alternate groups and selects and enables
appropriate tracks. If the Movie Toolbox cannot find an appropriate track, it does not
change the movie’s language.

i nval i dvbvi e -2010 This movie is corrupted or invalid

SelectMovieAlternates

DESCRIPTION

ERROR CODES

The Sel ect Movi eAl t er nat es function allows your application to instruct the Movie
Toolbox to select appropriate tracks immediately.

pascal void Sel ect MovieAlternates (Mvie theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

You can call the Sel ect Movi eAl t er nat es function even if you have disabled
automatic track selection with the Set Aut oTr ackAl t er nat esEnabl ed
function (which is described in the next section) or by setting the

newMbvi eDont Aut oAl t er nat e flag when you created the movie (see page 2-91
for details on this flag).

i nval i dvbvi e -2010 This movie is corrupted or invalid

Movie Toolbox Reference 2-209

CHAPTER 2

Movie Toolbox

SetAutoTrackAlternatesEnabled

DESCRIPTION

ERROR CODES

SEE ALSO

The Set Aut oTr ackAl t er nat esEnabl ed function allows your application to enable
and disable automatic track selection by the Movie Toolbox.

pascal void Set Aut oTrackAl t er nat esEnabl ed (Movi e t heMvi e,
Bool ean enabl e);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovi e, Newbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

enabl e Controls automatic track selection. Set this parameter tot r ue to
enable automatic track selection. Set this parameter to f al se to disable
automatic track selection.

If automatic track selection is enabled, the Movie Toolbox selects appropriate tracks
whenever your application calls the Set Movi eGMr | d, Set Movi eBox, Updat eMovi e,
or Set Movi eMat ri x functions (described on page 2-159, page 2-161, page 2-126, and
page 2-170, respectively). When you enable automatic track selection, the Movie Toolbox
immediately selects enabled tracks for the movie. This overrides the setting of the
newiMbvi eDont Aut oAl t er nat e flag (see page 2-91 for details on this flag).

i nval i dMbvi e -2010 This movie is corrupted or invalid

You can instruct the Movie Toolbox to select appropriate tracks immediately by calling
the Sel ect Movi eAl t er nat es function, which is described in the previous section.

SetTrackAlternate

2-210

The Set Tr ackAl t er nat e function allows your application to add tracks to or remove
tracks from alternate groups.

pascal void SetTrackAl ternate (Track theTrack, Track alternateT);
t heTr ack Specifies the track and group for this operation. Your application obtains

this track identifier from such Movie Toolbox functions as
NewMovi eTr ack and Get Movi eTr ack (described on page 2-151 and

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

page 2-204, respectively). The Set Tr ackAl t er nat e function changes
this track’s group affiliation based on the value of the al t er nat eT
parameter.

alternateT
Controls whether the function adds the track to a group or removes it
from a group. If the al t er nat eT parameter contains a valid track
identifier, the Movie Toolbox adds this track to the group that contains the
track specified by the parameter t heTr ack. Note that if the track
identified by the parameter al t er nat eTr ack already belongs to a
group, the Movie Toolbox combines the two groups into a single group.

Set this parameter to ni | to remove the track specified by the t heTr ack
parameter from its group.

i nval i dTr ack —2009 This track is corrupted or invalid

You can determine all the tracks in a group by calling the Get Tr ackAl t er nat e
function, which is described in the next section.

GetTrackAlternate

DESCRIPTION

The Get Tr ackAl t er nat e function allows your application to determine all the tracks
in an alternate group. You specify the group by identifying a track in the group. The
group list is circular, so you must specify a different track in the group each time you call
this function.

pascal Track GetTrackAl ternate (Track theTrack);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get Tr ackAl t er nat e function returns the track identifier of the next track in the
group. If the track you specify does not belong to a group, the function returns the same
identifier you supply. Because the alternate group list is circular, you have retrieved

all the tracks in the group when the function returns the track identifier that you
supplied the first time you called the Get Tr ackAl t er nat e function. If there is only one
track in an alternate group, this function returns the track identifier you supply.

Movie Toolbox Reference 2-211

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dTrack —-2009 This track is corrupted or invalid

You can add a track to a group by calling the Set Tr ackAl t er nat e function, which is
described in the previous section.

SetMedialLanguage

ERROR CODES

SEE ALSO

The Set Medi aLanguage function sets a media’s language or region code. You should
call this function only when you are creating a new media. See Inside Macintosh: Text for
more information on language and region codes.

pascal void Set Medi aLanguage (Medi a theMedi a, short | anguage);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-151 and page 2-204, respectively).

| anguage Specifies the media’s language or region code.

i nval i dMedi a -2008 This media is corrupted or invalid

You can retrieve a media’s language or region code by calling the Get Medi aLanguage
function, which is described in the next section.

GetMediaLanguage

2-212

The Get Medi aLanguage function returns a media’s language or region code. See Inside
Macintosh: Text for more information on language and region codes.

pascal short Get Medi aLanguage (Medi a theMedi a);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dvedi a —-2008 This media is corrupted or invalid

You can set a media’s language or region code by calling the Set Medi aLanguage
function, which is described in the previous section.

SetMediaQuality

The Set Medi aQual i t y function sets a media’s quality level value. The Movie Toolbox
uses this quality value to determine which track it selects to play on a given Macintosh
computer. You should set this value only when you are creating a new media.

pascal void SetMediaQuality (Media theMedia, short quality);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

quality Specifies the media’s quality value. The quality value indicates the pixel
depths at which the media can be played. This even applies to sound
media. The low-order 6 bits of the quality value correspond to specific
pixel depths. If a bit is set to 1, the media can be played at the
corresponding depth. More than one of these bits may be set to 1. The
following bits are defined:

Bit 0 1 bit per pixel
Bit1 2 bits per pixel
Bit 2 4 bits per pixel
Bit 3 8 bits per pixel
Bit 4 16 bits per pixel
Bit5 32 bits per pixel

In addition, bits 6 and 7 define the media’s quality level. A value of 0
corresponds to the lowest quality level; a value of 3 corresponds to the
highest quality level. The following constants define these values:

medi aQual i tyDraft
Specifies the lowest quality level. This constant sets bits
6 and 7 to a value of 0.
medi aQual i t yNor nal
Specifies an acceptable quality level. This constant sets bits
6 and 7 to a value of 1.

medi aQual i tyBetter
Specifies a higher quality level. This constant sets bits
6 and 7 to a value of 2.

Movie Toolbox Reference 2-213

ERROR CODES

CHAPTER 2

Movie Toolbox

medi aQual i t yBest
Specifies the highest quality level. This constant sets bits 6
and 7 to a value of 3.

i nval i dvedi a —-2008 This media is corrupted or invalid

SEE ALSO
You can retrieve the quality value of a media by calling the Get Medi aQual ity
function, which is described in the next section.
GetMediaQuality
The Get Medi aQual i ty function returns a media’s quality level value. The Movie
Toolbox uses this quality value to influence which track it selects to play on a given
Macintosh computer.
pascal short GetMedi aQuality (Media theMedia);
theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).
DESCRIPTION
The Get Medi aQual i ty function returns the media’s quality value. The quality value
indicates the pixel depths at which the media can be played. This even applies to sound
media. The low-order 6 bits of the quality value correspond to specific pixel depths. If a
bit is set to 1, the media can be played at the corresponding depth. More than one of
these bits may be set to 1. The following bits are defined:
Bit 0 1 bit per pixel
Bit1 2 bits per pixel
Bit 2 4 bits per pixel
Bit 3 8 bits per pixel
Bit 4 16 bits per pixel
Bit 5 32 bits per pixel
In addition, bits 6 and 7 define the media’s quality level. A value of 0 corresponds to the
lowest quality level; a value of 3 corresponds to the highest quality level.
medi aQual i tyDraft
Specifies the lowest quality level. This constant sets bits 6 and 7 to a
value of 0.
2-214 Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

medi aQual i t yNor nal
Specifies an acceptable quality level. This constant sets bits 6 and 7 to a
value of 1.

medi aQual i tyBetter
Specifies a higher quality level. This constant sets bits 6 and 7 to a
value of 2.

medi aQual i t yBest
Specifies the highest quality level. This constant sets bits 6 and 7 to a
value of 3.

i nval i dvedi a —2008 This media is corrupted or invalid

You can set the quality value of a media by calling the Set Medi aQual i t y function,
which is described in the previous section.

Working With Data References

Media structures identify how and where to find their sample data by means of data
references. For sound and video media, data references identify files that contain

media data; the media data is stored in the data forks of these files. Media handlers use
these data references in order to manipulate media data. A single media may contain one
or more data references.

Each data reference contains type information that identifies how the reference is
specified. Most QuickTime data references use alias information to locate the
corresponding files (see Inside Macintosh: Files for more information about aliases and the
Alias Manager). The type value for data references that use aliases is' al i s' . Note that
the Movie Toolbox uses aliases even on Macintosh computers that do not have System 7
installed—your application can use Alias Manager routines if the Movie Toolbox

is installed. See “The Movie Toolbox and System 6 on page 2-63 for more information.

The Movie Toolbox identifies a media’s data references with an index value. Index
values always range from 1 to the number of references in the media. Data reference
indexes provide a convenient way to access each reference in a media.

The Movie Toolbox provides a set of functions that allow you to work with data
references. This section describes those functions.

You can use the Get Medi aDat aRef function to retrieve information about a media’s
data reference. You can add a data reference to a media by calling the

AddMedi aDat aRef function. The Set Medi aRef function lets you change which file a
specified media associates with its data storage.

Your application can determine the number of data references in a media by calling the
Get Medi aDat aRef Count function.

Movie Toolbox Reference 2-215

CHAPTER 2

Movie Toolbox

AddMediaDataRef

ERROR CODES

The AddMedi aDat aRef function adds a data reference to a media.

pascal OSErr AddMedi aDat aRef (Media theMedia, short *index,
Handl e dat aRef,
OSType dat aRef Type);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

i ndex Contains a pointer to a short integer. The Movie Toolbox returns the index
value that is assigned to the new data reference. Your application can use
this index to identify the reference to other Movie Toolbox functions, such
as Get Medi aDat aRef (described on page 2-217). If the Movie Toolbox
cannot add the data reference to the media, it sets the returned index
value to 0.

dat aRef Specifies the data reference. This parameter contains a handle to the
information that identifies the file that contains this media’s data. The
type of information stored in that handle depends upon the value of the
dat aRef Type parameter.

dat aRef Type
Specifies the type of data reference. If the data reference is an alias, you
must set this parametertor Al i asType ('alis'), indicating that the
reference is an alias. See Inside Macintosh: Files for more information about
aliases and the Alias Manager.

i nval i dMedi a —-2008 This media is corrupted or invalid

SetMediaDataRef

2-216

The Set Medi aDat aRef function changes the file that the specified media identifies as
the location for its data storage.

pascal OSErr Set Medi aDat aRef (Medi a thenedia, short index,
Handl e dataRef, OSType dat aRef Type);

thenedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

i ndex Contains a pointer to a short integer. The Movie Toolbox returns the index
value that is assigned to the new data reference. Your application can use
this index to identify the reference to other Movie Toolbox functions, such

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

dat aRef

dat aRef Type

SPECIAL CONSIDERATIONS

as Get Medi aDat aRef (described on page 2-217). As with all data
reference functions, the index starts with 1. If the Movie Toolbox cannot
add the data reference to the media, it sets the returned index value to 0.

Specifies the data reference. This parameter contains a handle to the
information that identifies the file that contains this media’s data. The
type of information stored in that handle depends upon the value of the
dat aRef Type parameter.

Specifies the type of data reference. If the data reference is an alias, you
must set this parametertor Al i asType ('alis'), indicating that the
reference is an alias. See Inside Macintosh: Files for more information about
aliases and the Alias Manager.

Don’t call this function unless you have a really good reason. However, if you want to
resolve your own missing data references, or you are developing a special-purpose kind
of application, Set Medi aDat aRef may be quite useful.

GetMediaDataRef

The Get Medi aDat aRef function returns a copy of a specified data reference. Your
application identifies the data reference with the appropriate data reference index.

pascal OSErr Get Medi aDat aRef (Media theMedi a, short index,

t heMedi a

i ndex

dat aRef

Handl e *dat aRef,
OSType *dat aRef Type,
| ong *dataRefattri butes);

Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

Identifies the data reference. You provide the index value that
corresponds to the data reference. It must be less than or equal to the
value that is returned by the Get Medi aDat aRef Count function,
described in the previous section.

Contains a pointer to a field that is to receive a handle to the data
reference. The media handler returns a handle to information that
identifies the file that contains this media’s data. The type of information
stored in that handle depends upon the value of the dat aRef Type
parameter. If the function cannot locate the specified data reference, the
handler sets this returned value to ni | . Set the dat aRef parameter to
ni | if you are not interested in this information.

Movie Toolbox Reference 2-217

DESCRIPTION

ERROR CODES

SEE ALSO

2-218

CHAPTER 2

Movie Toolbox

dat aRef Type
Contains a pointer to a field that is to receive the type of data reference. If
the data reference is an alias, the media handler sets this valueto ' al i s',
indicating that the reference is an alias. Set the dat aRef Type parameter
to ni | if you are not interested in this information.

dat aRef attri butes
Contains a pointer to a field that is to receive the reference’s attribute
flags. The following flags are available (unused flags are set to 0):

dat aRef Sel f Ref erence
Indicates whether the data reference refers to the movie
resource’s data file. If this flag is set to 1, the data reference
identifies media data that is stored in the same file as the
movie resource.

dat aRef VAsNot Resol ved
Indicates whether the Movie Toolbox resolved the data
reference. If this flag is set to 1, the Movie Toolbox could
not resolve the data reference. For example, the toolbox
may be unable to resolve data references because the
required storage device is unavailable at the time a movie
is loaded. If the data reference is unresolved, the Movie
Toolbox disables the corresponding track.

Set the dat aRef At t ri but es parameter to ni | if you are not interested
in this information.

You can use Get Medi aDat aRef function to retrieve information about a data reference.
For example, you might want to verify the condition of a movie’s data references after
loading the movie from its movie file. You could use this function to check each data
reference.

i nval i dMedi a —-2008 This media is corrupted or invalid

You can add a data reference to a media by calling the AddMedi aDat aRef function,
which is described on page 2-216. You must dispose of a media’s data references yourself
by disposing of its handle. You can determine the number of data references in a

media by calling the Get Medi aDat aRef Count function, which is described in the
previous section.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMediaDataRefCount

DESCRIPTION

ERROR CODES

The Get Medi aDat aRef Count function allows your application to determine the
number of data references in a media.

pascal OSErr Get Medi aDat aRef Count (Medi a theMedia, short *count);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

count Contains a pointer to a field that is to receive the number of data
references in the media.

The count of references in a media corresponds to the maximum index value of any
reference in the media. You can use this value to control a loop in which you retrieve all
of a media’s data references, using the Get Medi aDat aRef function, which is described
in the next section.

i nval i dvedi a —2008 This media is corrupted or invalid

Determining Movie Creation and Modification Time

The Movie Toolbox maintains two timestamps in every movie, track, and media. One
timestamp, the creation date, indicates the date and time when the item was created.
The other, the modification date, contains the date and time when the item was last
changed and saved. The timestamp value is in the same format as Macintosh file system
creation and modification times; that is, the timestamp indicates the number of seconds
since midnight, January 1, 1904.

The Movie Toolbox provides a number of functions that allow your application to
retrieve the creation and modification date information from movies, tracks, and media
structures. This section describes those functions.

You can use the Get Movi eCr eat i onTi ne and Get Movi eModi fi cati onTi me
functions to work with movie creation and modification dates.

You can use the Get Tr ackCr eat i onTi ne and Get TrackModi fi cati onTi me
functions to retrieve a track’s creation and modification dates.

Your application can call the Get Medi aCr eat i onTi ne and
Get Medi aModi fi cati onTi ne functions to get a media’s creation and
modification dates.

Movie Toolbox Reference 2-219

CHAPTER 2

Movie Toolbox

GetMovieCreationTime

The Get Movi eCr eat i onTi ne function returns a long integer that contains the movie’s
creation date and time information.

pascal unsigned | ong Get Movi eCreati onTi me (Myvie theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onmHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

ERROR CODES
i nval i dvbvi e -2010 This movie is corrupted or invalid

GetMovieModificationTime

The Get Movi eModi fi cati onTi me function returns a movie’s modification date.
pascal unsigned | ong Get Movi eModificationTime (Mvie thelMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The Get Movi eModi fi cati onTi e function returns a long integer that contains the
movie’s modification date and time information.

ERROR CODES

i nval i dMbvi e -2010 This movie is corrupted or invalid

GetTrackCreationTime

The Get Tr ackCr eat i onTi me function returns a track’s creation date.

pascal unsigned |ong Get TrackCreati onTinme (Track theTrack);

2-220 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The Get TrackCr eat i onTi ne function returns a long integer that contains the track’s
creation date and time information.

ERROR CODES
i nval i dTrack —-2009 This track is corrupted or invalid

GetTrackModificationTime

The Get TrackModi fi cati onTi me function returns a track’s modification date.
pascal unsigned | ong Get TrackModificationTine (Track theTrack);
t heTr ack Specifies the track for this operation. Your application obtains this track

identifier from such Movie Toolbox functions as Newibvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The Get TrackModi fi cat i onTi e function returns a long integer that contains the
track’s modification date and time information.

ERROR CODES
i nval i dTrack —-2009 This track is corrupted or invalid

GetMediaCreationTime

The Get Medi aCr eat i onTi me function returns the creation date stored in the media.
pascal unsigned | ong Get Medi aCreati onTi me (Media theMedi a);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

Movie Toolbox Reference 2-221

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Get Medi aCr eat i onTi ne function returns a long integer that contains the media’s
creation date and time information.

i nval i dMedi a —-2008 This media is corrupted or invalid

GetMediaModificationTime

DESCRIPTION

ERROR CODES

The Get Medi aMbdi fi cati onTi ne function returns a media’s modification date.
pascal unsigned | ong Get Medi aModi ficationTi me (Media theMedia);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

The Get Medi aModi fi cati onTi ne function returns a long integer that contains the
media’s modification date and time information.

i nval i dMedi a —-2008 This media is corrupted or invalid

Working With Media Samples

2-222

The Movie Toolbox provides a number of functions that allow applications to determine
information about a movie’s sample data. This section discusses these functions. Refer to
“Adding Samples to Media Structures” beginning on page 2-271 for information about
functions that allow you to retrieve sample data from a media.

Your application can use the Get Movi eDat aSi ze, Get Tr ackDat aSi ze, and
Get Medi aDat aSi ze functions to determine the size, in bytes, of the data stored in a
media, movie, or track.

You can use the Get Medi aSanpl eDescri pti onCount and

Get Medi aSanpl eDescri pti on functions to retrieve a media’s sample descriptions.
The Set Medi aSanpl eDescr i pti on function enables you to change the contents of a
particular sample description associated with a media. The Get Medi aSanpl eCount
function determines the number of samples in a media. The Sanpl eNumToMedi aTi e
and Medi aTi neToSanpl eNumfunctions allow you to convert from a time value to a
sample number and vice versa. You can use the functions described in “Finding
Interesting Times” beginning on page 2-196 to locate specific samples in a media.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMovieDataSize

DESCRIPTION

ERROR CODES

The Get Movi eDat aSi ze function allows your application to determine the size, in
bytes, of the sample data in a segment of a movie.

pascal | ong Get Movi eDat aSi ze (Mvi e theMvi e, Ti meVal ue startTi ne,
Ti meVal ue duration);

t heMbvi e Specifies the movie for this operation. You obtain this movie identifier
from such functions as Newivbvi e, Newbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

start Ti me Contains a time value specifying the starting point of the segment.

duration Contains a time value that specifies the duration of the segment.

The Get Movi eDat aSi ze function returns a long integer that contains the size, in bytes,
of the movie’s sample data that lies in the specified segment. Get Movi eDat aSi ze
counts each use of a sample. That is, if a movie uses a given sample more than once, the
size of that sample is included in the returned size value one time for each use.
Consequently, the returned size is greater than or equal to the actual size of the movie’s
sample data, and corresponds to the amount of movie data that will be retrieved when
you call the Fl at t enMovi e function or Fl at t enMbvi eDat a function (described on
page 2-105 and page 2-107, respectively).

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

GetTrackDataSize

The Get Tr ackDat aSi ze function allows your application to determine the size, in
bytes, of the sample data in a segment of a track.

pascal |ong Get TrackDataSi ze (Track theTrack, TineValue startTi ne,
Ti meVal ue duration);
t heTr ack Specifies the track for this operation. You obtain this track identifier from

such Movie Toolbox functions as Newivbvi eTr ack and Get Movi eTr ack
(described on page 2-151 and page 2-204, respectively).

Movie Toolbox Reference 2-223

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

start Ti me Contains a time value specifying the starting point of the segment.
duration Contains a time value that specifies the duration of the segment.

The Get Tr ackDat aSi ze function returns a long integer that contains the size, in bytes,
of the track’s sample data that lies in the specified segment.

This function counts each use of a sample. That is, if a track uses a given sample more
than once, the size of that sample is included in the returned size value one time for each
use. Consequently, the returned size is greater than or equal to the actual size of the
track’s sample data.

i nval i dTrack —-2009 This track is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

GetMediaDataSize

DESCRIPTION

ERROR CODES

2-224

The Get Medi aDat aSi ze function allows your application to determine the size, in
bytes, of the sample data in a media segment.

pascal |ong Get Medi aDat aSi ze (Medi a theMedi a, TineValue startTine,
Ti nreVal ue duration);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

start Ti me Contains a time value specifying the starting point of the segment.
duration Contains a time value that specifies the duration of the segment.

The Get Medi aDat aSi ze function returns a long integer that contains the size, in bytes,
of the media’s sample data that lies in the specified segment. Note that this number does
not necessarily correspond to the amount of sample data used in the track that contains
the media. Some samples in the media may not be used in the track, and others may be
used more than once.

i nval i dvedi a —2008 This media is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi me -2015 This time value is invalid

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMediaSampleCount

DESCRIPTION

ERROR CODES

The Get Medi aSanpl eCount function allows you to determine the number of samples
in a media.

pascal |ong Get Medi aSanpl eCount (Media theMedia);

theMedi a Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

The Get Medi aSanpl eCount function returns a long integer that contains the number
of samples in the specified media. Note that this number does not necessarily correspond
to the number of samples used in the track that contains the media. Some samples in the
media may not be used in the track, and others may be used more than once.

i nval i dvedi a —-2008 This media is corrupted or invalid

GetMediaSampleDescriptionCount

DESCRIPTION

The Get Medi aSanpl eDescri pti onCount function returns the number of sample
descriptions in a media.

pascal |ong Get Medi aSanpl eDescri pti onCount (Medi a theMedi a);

theMedi a Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

The Movie Toolbox identifies a media’s sample descriptions with an index value.
Index values always range from 1 to the number of sample descriptions in the
media. Sample description indexes provide a convenient way to access each sample
description in a media.

The format of sample descriptions differs by media type. Sample descriptions for image
data are defined by image description structures, which are discussed in the chapter
“Image Compression Manager” in this book. Sample descriptions for sound are defined
by sound description structures, which are discussed in “The Sound Description
Structure” beginning on page 2-79. Sample descriptions for text are defined by text

Movie Toolbox Reference 2-225

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

description structures, which are described in “Text Media Handler Functions”
beginning on page 2-290.

i nval i dvedi a —2008 This media is corrupted or invalid

You can use the value returned by this function to control a loop in which you retrieve
each sample description in a media by calling the Get Medi aSanpl eDescri ption
function, which is described in the next section.

GetMediaSampleDescription

DESCRIPTION

2-226

The Get Medi aSanpl eDescri pti on function allows you to retrieve a sample
description from a media.

pascal void Get Medi aSanpl eDescri ption (Medi a theMedi a, | ong index,
Sanpl eDescri pti onHandl e descH);

theMedi a Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).
i ndex Specifies the index of the sample description to retrieve. This index
corresponds to the sample description itself, not the samples in the media.

descH Specifies a handle that is to receive the sample description. The Movie
Toolbox correctly resizes this handle for the returned sample description.
If there is no description for the specified index, the function returns
this handle unchanged. Your application must allocate and dispose of this
handle.

This function provides a convenient way to retrieve information that describes a sample.
For example, you can use this function to retrieve an image media’s color lookup table.

The format of sample descriptions differs by media type. Sample descriptions for image
data are defined by image description structures, which are discussed in the chapter
“Image Compression Manager” in this book. Sample descriptions for sound are defined
by sound description structures, which are discussed earlier in this chapter. Sample
descriptions for text are defined by text description data structures, which are described
in “Text Media Handler Functions” beginning on page 2-290.

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

The Movie Toolbox identifies a media’s sample descriptions with an index value. Index
values always range from 1 to the number of sample descriptions in the media. Sample
description indexes provide a convenient way to access each sample description

in a media.

i nval i dvedi a —-2008 This media is corrupted or invalid
badDat aRef | ndex -2050 Data reference index value is invalid

Memory Manager errors

You can determine the number of sample descriptions in a media by calling the
Get Medi aSanpl eDescri pti onCount function, which is described in the
previous section.

SetMediaSampleDescription

DESCRIPTION

The Set Medi aSanpl eDescr i pti on function lets you change the contents of a
particular sample description of a specified media.

pascal OSErr Set Medi aSanpl eDescription (Media theMedi a,
| ong i ndex,
Sanpl eDescri pti onHandl e descH);

theMedi a Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

i ndex Specifies the index of the sample description to be changed. This index
corresponds to the sample description itself, not the samples in the media.
This long integer must be between 1 and the largest sample description
index.

descH Specifies the handle to the sample description. If there is no description
for the specified index, the function returns this handle unchanged.

The Set Medi aSanpl eDescr i pti on function can be useful in the case of a media
handler, such as a text media handler, that stores playback information in its sample
description, as opposed to just data format information (as in the case of the video media
handler). For more on media handlers, see Inside Macintosh: QuickTime Components.

Movie Toolbox Reference 2-227

CHAPTER 2

Movie Toolbox

SPECIAL CONSIDERATIONS

Because a sample description structure may define the format of the data, you should
not assume the description describes the data. You should use this function only on an
inactive track.

MediaTimeToSampleNum

DESCRIPTION

2-228

The Medi aTi meToSanpl eNumfunction allows you to find the sample that contains the
data for a specified time. You indicate the time in the media’s time scale.

pascal void MediaTi meToSanpl eNum (Medi a t heMedi a, Ti neVal ue tine,
| ong *sanpl eNum
Ti reVal ue *sanpl eTi ne,
Ti meVal ue *sanpl eDurati on);

theMedi a Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

time Specifies the time for which you are retrieving sample information. You
must specify this value in the media’s time scale.

sanmpl eNum Contains a pointer to a long integer that is to receive the sample number.
The Movie Toolbox returns the sample number that identifies the sample
that contains data for the time specified by the t i me parameter.

sampl eTi e
Contains a pointer to a time value. The Medi aTi mreToSanpl eNum
function updates this time value to indicate the starting time of the
sample that contains data for the time specified by the t i me parameter.
This time value is expressed in the media’s time scale. Set this parameter
to ni | if you do not want this information.

sanpl eDur ati on
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the sample that contains data for the time specified by the
t i me parameter. This time value is expressed in the media’s time scale.
Set this parameter to ni | if you do not want this information.

The Movie Toolbox returns information about the sample that contains data for that
time, including its starting time, duration, and sample number.

The Medi aTi meToSanpl eNumfunction does not account for edits applied to the media
by a movie’s tracks. If you want to work with edits, use the functions that allow you to
look for interesting times. These functions are described in “Finding Interesting Times,”
beginning on page 2-196.

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

i nval i dMedi a —-2008 This media is corrupted or invalid

You can convert a sample number into a time in a media’s time scale by calling the
Sanpl eNumlroMedi aTi e function, which is described in the next section.

SampleNumToMediaTime

ERROR CODES

SEE ALSO

The Sanpl eNunToMedi aTi me function allows you to find the time at which a specified
sample plays. This time is expressed in the media’s time scale.

pascal void Sanpl eNunToMedi aTi ne (Medi a t heMedi a,
| ong | ogi cal Sanpl eNum
Ti meVal ue *sanpl eTi ne,
Ti meVal ue *sanpl eDurati on);

theMedi a Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

| ogi cal Sanpl eNum
Specifies the sample number.

sanpl eTi e
Contains a pointer to a time value. The Medi aTi neToSanpl eNum
function updates this time value to indicate the starting time of the
sample specified by the | ogi cal Sanpl eNumparameter. This time value
is expressed in the media’s time scale. Set this parameter to ni | ifyoudo
not want this information.

sanpl eDur ati on
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the sample specified by the | ogi cal Sanpl eNumparameter.
This time value is expressed in the media’s time scale. Set this parameter
toni | if you do not want this information.

i nval i dvedi a —2008 This media is corrupted or invalid

You can find the sample for a specified time by calling the Medi aTi neToSanpl eNum
function, which is described in the previous section.

Movie Toolbox Reference 2-229

CHAPTER 2

Movie Toolbox

Working With Movie User Data

2-230

Each movie, track, and media can contain a user data list, which your application can
use in any way you want. A user data list contains all the user data for a movie, track, or
media. Each user data list may contain one or more user data items. All QuickTime user
data items share several attributes.

First, each user data item carries a type identifier. This type is similar to a Resource
Manager resource type, and is stored in a long integer. Apple has reserved all lowercase
user data type values. You are free to create user data type values using uppercase
letters. Apple recommends using type values that begin with the © character (Option-G)
to specify user data items that store text data.

The following user data types are currently defined:

" ©nam Movie’s name

' Ccpy' Copyright statement

' ©day' Date the movie content was created

‘edir! Name of movie’s director

'Cedl' to '©ed9’ Edit dates and descriptions

"Of nt! Indication of movie format (computer-generated, digitized,
and so on)

" © nf' Information about the movie

" ©prd' Name of movie’s producer

" Cprf’ Names of performers

"Creq' Special hardware and software requirements

"©Csrc' Credits for those who provided movie source content

"Owrt' Name of movie’s writer

User data items of these types must contain text data only.

Second, the Movie Toolbox allows you to create more than one user data item in a user
data list. Therefore, each user data item is identified by a unique index. Index values are
assigned sequentially within a user data type and start at 1.

Finally, you may create alternate text for a given user data text item. For example, you
may want to support multiple languages and may therefore want to create different text
for each language. The Movie Toolbox allows you to specify different versions of the text
of a single user data item. These versions are distinguished by their region code values.

The Movie Toolbox provides a number of functions that allow you to work with user
data. Before you can work with the contents of a user data list, you must obtain a
reference to the list. The Get Movi eUser Dat a, Get Tr ackUser Dat a, or

Get Medi aUser Dat a functions allow you to get a reference to a user data list. You can
then use the Get User Dat a, AddUser Dat a, and RenoveUser Dat a functions to work
with the items contained in the user data list. If your user data items contain text data,
you can use the AddUser Dat aText , Get User Dat aText , and RenbveUser Dat aText
functions to work with the text of a user data item. Note that a single user data item can
store either text or other data, but not both.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

You can count the number of user data items of a specified type in a movie, track, or
media by calling the Count User Dat aType function. You can use the

Get Next User Dat aType function to scan all the types of user data in a specified user
data list.

The Movie Toolbox also supplies a number of functions for the manipulation of user
data. The Set User Dat al t emand Get User Dat al t emfunctions allow easy access

to data stored in user data items. The NewUser Dat a and Di sposeUser Dat a functions
provide for the use of user data outside of the immediate context of QuickTime movies.
Your applications and components can also create user data structures. The

Put User Dat al nt oHandl e and the Newser Dat aFr onHandl e functions permit user
data to be stored and retrieved in a manner similar to public movies (also called atoms).
See the chapter “Movie Resource Formats” in this book for details on atoms.

GetMovieUserData

DESCRIPTION

ERROR CODES

The Get Movi eUser Dat a function allows your application to obtain access to a movie’s
user data list. You can then use the Get User Dat a, AddUser Dat a, and

RenoveUser Dat a functions (described on page 2-235, page 2-235, and page 2-236,
respectively) to manipulate the contents of the user data list. If the data list contains text
data, you can use the Get User Dat aText , AddUser Dat aText , and

RenoveUser Dat aText functions (described on page 2-237, page 2-236, and page 2-238,
respectively) to work with its contents.

pascal UserData Get Movi eUserData (Movie thelMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Get Movi eUser Dat a function returns a reference to the movie’s user data list. This
reference is valid until you dispose of the movie. When you save the movie, the Movie
Toolbox saves the user data as well. If the function could not locate the movie’s user
data, it sets this returned value to ni | .

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

Movie Toolbox Reference 2-231

SEE ALSO

CHAPTER 2

Movie Toolbox

You can use the Get Medi aUser Dat a function (described on page 2-233) to gain access
to a media’s user data. Similarly, you can use the Get Tr ackUser Dat a function
(described in the next section) to work with a track’s user data.

GetTrackUserData

DESCRIPTION

ERROR CODES

SEE ALSO

2-232

The Get Tr ackUser Dat a function allows your application to obtain access to a track’s
user data list. You can then use the Get User Dat a, AddUser Dat a, and

RenoveUser Dat a functions (described on page 2-235, page 2-235, and page 2-236,
respectively) to manipulate the contents of the user data list. If the data list contains text
data, you can use the Get User Dat aText , AddUser Dat aText , and

RenoveUser Dat aText functions (described on page 2-237, page 2-236, and page 2-238,
respectively) to work with its contents.

pascal UserData Get TrackUserData (Track theTrack);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The Get TrackUser Dat a function returns a reference to the track’s user data list. This
reference is valid until you dispose of the track. When you save the track, the Movie
Toolbox saves the user data as well. If the function could not locate the track’s user data,
it sets this returned value toni | .

i nval i dTrack -2009 This track is corrupted or invalid
Memory Manager errors

You can use the Get Medi aUser Dat a function to gain access to a media’s user
data (described on page 2-233). Similarly, you can use the Get Movi eUser Dat a function
(described on page 2-231) to work with a movie’s user data.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMediaUserData

DESCRIPTION

ERROR CODES

The Get Medi aUser Dat a function allows your application to obtain access to a media’s
user data list. You can then use the Get User Dat a, AddUser Dat a, and

RenoveUser Dat a functions (described on page 2-235, page 2-235, and page 2-236,
respectively) to manipulate the contents of the user data list. If the data list contains text
data, you can use the Get User Dat aText , AddUser Dat aText , and

RenoveUser Dat aText functions (described on page 2-237, page 2-236, and page 2-238,
respectively) to work with its contents.

pascal UserData Get Medi aUserData (Medi a theMedi a);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

The Get Medi aUser Dat a function returns a reference to the media’s user data list. This
reference is valid until you dispose of the media. When you save the media, the Movie
Toolbox saves the user data as well. If the function could not locate the media’s user
data, it sets this returned value toni | .

i nval i dvedi a —2008 This media is corrupted or invalid

Memory Manager errors

SEE ALSO
You can use the Get Movi eUser Dat a function to gain access to a movie’s user
data (described on page 2-231). Similarly, you can use the Get Tr ackUser Dat a function
(described in the previous section) to work with a track’s user data.
GetNextUserDataType

The Get Next User Dat aType function allows you to retrieve the next user data type in a
specified user data list. You can use this function to scan all the user data types in a user
data list.

pascal |ong Get Next User Dat aType (UserData theUser Dat a,
OSType udType);

Movie Toolbox Reference 2-233

CHAPTER 2

Movie Toolbox

t heUser Dat a
Specifies the user data list for this operation. You obtain this list reference
by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

udType Specifies a user data type. Set this parameter to 0 to retrieve the first user
data type in the user data list. On subsequent requests, use the previous
value returned by this function.

DESCRIPTION

The Get Next User Dat aType function returns an operating-system data type containing
the next user data type value in the specified user data list. When you reach the end

of the user data list, this function sets the returned value to 0. You can use this value to
stop your scanning loop.

ERROR CODES
None

CountUserDataType

The Count User Dat aType function allows you to determine the number of items of a
given type in a user data list.

pascal short Count User Dat aType (UserData theUser Dat a,
OSType udType);

t heUser Dat a
Specifies the user data list for this operation. You obtain this list reference
by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

udType Specifies the type. The Movie Toolbox determines the number of items of
this type in the user data list.

DESCRIPTION

The Count User Dat aType function returns a short integer that contains the number of
items of the specified type in the user data list.

ERROR CODES
None

2-234 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

AddUserData

The AddUser Dat a function allows your application to add an item to a user data list.
You specify the user data list, the data to be added, and the data’s type value.

pascal OSErr AddUserData (UserData theUserData,
Handl e data, OSType udType);

t heUser Dat a
Specifies the user data list for this operation. You obtain this item
reference by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

dat a Contains a handle to the data to be added to the user data list.
udType Specifies the type that is to be assigned to the new item.

DESCRIPTION

The Movie Toolbox places the specified data into the user data and assigns an index
value that identifies the new item.

ERROR CODES
Memory Manager errors

GetUserData

The Get User Dat a function returns a specified user data item.

pascal OSErr GetUserData (UserData theUserData, Handl e data,
OSType udType, long index);

t heUser Dat a
Specifies the user data list for this operation. You obtain this list reference
by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

dat a Contains a handle that is to receive the data from the specified item. The
Get User Dat a function resizes this handle as appropriate to
accommodate the item. Your application is responsible for releasing this
handle when you are done with it. Set this parameter to ni | if you do not
want to retrieve the user data item. This can be useful if you want to
verify that a user data item exists, but you do not need to work with the
item’s contents.

udType Specifies the item’s type value.

Movie Toolbox Reference 2-235

ERROR CODES

CHAPTER 2

Movie Toolbox

i ndex Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter t heUser Dat a.

user Dat al t enNot Found -2026 Cannot locate this user data item
Memory Manager errors

RemoveUserData

ERROR CODES

The RenpveUser Dat a function removes an item from a user data list. After the Movie
Toolbox removes the item, it renumbers the remaining items of that type so that the
index values are sequential and start at 1.

pascal OSErr RenoveUserData (UserData theUserData, OSType udType,
| ong index);

t heUser Dat a
Specifies the user data list for this operation. You obtain this list reference
by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

udType Specifies the item’s type value.

i ndex Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter t heUser Dat a.

user Dat al t emNot Found -2026 Cannot locate this user data item
Memory Manager errors

AddUserDataText

2-236

The AddUser Dat aText function allows your application to place language-tagged text
into an item in a user data list. You specify the user data list and item, the data to be
added, the data’s type value, and the language code of the data.

pascal OSErr AddUser Dat aText (UserData theUserData, Handl e data,
OSType udType, |ong index,
short itl Regi onTag);

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

t heUser Dat a
Specifies the user data list for this operation. You obtain this list reference
by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

dat a Contains a handle to the data to be added to the user data list.

udType Specifies the type that is to be assigned to the new item.

i ndex Specifies the item to which the text is to be added. This parameter
must specify an item in the user data list identified by the parameter
t heUser Dat a.

i t] Regi onTag

Specifies the region code of the text to be added. If there is already text
with this region code in the item, the function replaces the existing

text with the data specified by the dat a parameter. See Inside Macintosh:
Text for more information about language and region codes.

The Movie Toolbox places the specified data into the user data item. If the item does not
exist when you call this function, the Movie Toolbox creates a new item for you (this is
true only if the item you are adding is the first item in the list; otherwise, you must create
the item yourself).

user Dat al t emNot Found -2026 Cannot locate this user data item

Memory Manager errors

GetUserDataText

The Get User Dat aText function allows your application to retrieve language-tagged
text from an item in a user data list. You specify the user data list and item, and the
item’s type value and language code. The Movie Toolbox retrieves the specified text
from the user data item.

pascal OSErr GetUserDataText (UserData theUserData, Handl e data,
OSType udType, |ong index,
short itl Regi onTag);

t heUser Dat a
Specifies the user data list for this operation. You obtain this list reference
by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

Movie Toolbox Reference 2-237

ERROR CODES

CHAPTER 2

Movie Toolbox

dat a Contains a handle that is to receive the data. The Get User Dat aText
function resizes this handle as appropriate. Your application must dispose
of the handle when you are done with it.

udType Specifies the item’s type value.

i ndex Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter t heUser Dat a.

i t] Regi onTag
Specifies the language code of the text to be retrieved. See Inside
Macintosh: Text for more information about language and region codes.

user Dat al t enNot Found -2026 Cannot locate this user data item
Memory Manager errors

RemoveUserDataText

ERROR CODES

2-238

The RenoveUser Dat aText function allows your application to remove
language-tagged text from an item in a user data list. You specify the user data list and
item, and the item’s type value and language code. The Movie Toolbox removes the
specified text from the user data item.

pascal OSErr RenpveUser Dat aText (UserData theUserDat a,
OSType udType, |ong index,
short itl Regi onTag);

t heUser Dat a
Specifies the user data list for this operation. You obtain this list reference
by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

udType Specifies the item’s type value.

i ndex Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter t heUser Dat a.

i t] Regi onTag
Specifies the language code of the text to be removed. See Inside
Macintosh: Text for more information about language and region codes.

user Dat al t emNot Found -2026 Cannot locate this user data item

Memory Manager errors

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SetUserDataltem

The Set User Dat al t emallows your application to set an item in a user data list. You
specify the user data list, the data to be set, the size of the data to be set, and the data’s
type value.

pascal OSErr Set UserDataltem (UserData theUserDat a,
void *data, |long size, |ong udType,
| ong index);

t heUser Dat a
Specifies the user data list for this operation. You obtain this item
reference by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

dat a Contains a pointer to the data item to be set in a user data list.

si ze Specifies the size of the information pointed to by the dat a parameter.
udType Specifies the type value assigned to the new item.

i ndex Specifies the item’s index value. This parameter must specify an item in

the user data list identified by the parameter t heUser Dat a. An index
value of 0 or 1 implies the first item, which is created if it doesn’t
already exist.

DESCRIPTION

You must provide the size of the information specified in the dat a parameter because
the data may be embedded inside a larger data structure or may be on the stack.

SPECIAL CONSIDERATIONS
The data pointer must be locked, since Set User Dat al t emmay move memory.

SEE ALSO

The Set User Dat al t emfunction is a pointer-based version of AddUser Dat a, which is
described on page 2-235.

ERROR CODES
Memory Manager errors

Movie Toolbox Reference 2-239

CHAPTER 2

Movie Toolbox

GetUserDataltem

DESCRIPTION

ERROR CODES

The Get User Dat al t emfunction returns a specified user data item. Get User Dat al t em
is a pointer-based version of the Get User Dat a function, which is described on
page 2-235.

pascal OSErr Get UserDataltem (UserData theUserDat a,
void *data, |ong size,
OSType udType, |ong index);

t heUser Dat a
Specifies the user data list for this operation. You obtain this list reference
by calling the Get Movi eUser Dat a, Get Tr ackUser Dat a, or
Get Medi aUser Dat a function (described on page 2-231, page 2-232, and
page 2-233, respectively).

dat a Contains a pointer that is to receive the data from the specified item.

si ze Specifies the size of the item.

udType Specifies the item’s type value.

i ndex Specifies the item’s index value. This parameter must specify an item in

the user data list identified by the parameter t heUser Dat a.

If the si ze field provided doesn’t match the exact size of the actual user data item, an
error is returned. In this case, you should use Get User Dat a instead.

Get User Dat al t emis useful for retrieving small, fixed-size pieces of user data without
having to create a handle. You can pass 0 or 1 for the i ndex parameter to indicate the
first item.

user Dat al t emNot Found -2026 Cannot locate this user data item

Memory Manager errors

NewUserData

2-240

The NewUser Dat a function creates a new user data structure.
pascal OSErr NewUserData (UserData *theUserDat a);

t heUser Dat a
Contains a pointer to the user data structure.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

DESCRIPTION

You can manipulate the user data structure with any of the standard user data functions
described in “Working With Movie User Data” beginning on page 2-230. If the
NewUser Dat a function fails, the parameter t heUser Dat aissettoni | .

ERROR CODES
menful | Err -108 Not enough room in heap zone

DisposeUserData

The Di sposeUser Dat a function disposes of a user data structure created by the
NewUser Dat a function.

pascal OSErr D sposeUserData (UserData theUserData);

t heUser Dat a
Specifies the user data structure that is to be disposed of. It is acceptable
but unnecessary to pass ni | in the parameter t heUser Dat a.

DESCRIPTION

You should call Di sposeUser Dat a only on a user data structure that you
have allocated.

SPECIAL CONSIDERATIONS

Don’t dispose of user data references obtained from the Movie Toolbox function
Get Movi eUser Dat a, Get Tr ackUser Dat a, or Get Medi aUser Dat a (described on
page 2-231, page 2-232, and page 2-233, respectively).

PutUserDatalntoHandle

The Put User Dat al nt oHandl e function takes a specified user data structure and
replaces the contents of the handle with a publicly parseable form of the user data.

pascal OSErr Put User Dat al nt oHandl e (User Data t heUser Dat a,

Handl e h);
t heUser Dat a
Specifies the user data structure that is to be disposed of.
h Contains a handler to the user data structure specified in the parameter
t heUser Dat a.

Movie Toolbox Reference 2-241

CHAPTER 2

Movie Toolbox

DESCRIPTION

The contents of the h parameter are appropriate for storage as an atom, much like a
public movie. See the chapter “Movie Resource Formats” in this book for details on the
QuickTime atoms.

NewUserDataFromHandle

The NewUser Dat aFr omHandl e function creates a new user data structure from a
handle.

pascal OSErr NewUser Dat aFr omHandl e (Handl e h,
UserData *theUserDat a) ;

h Contains a handle to the data structure specified in the parameter
t heUser Dat a.

t heUser Dat a
Contains a pointer to a new user data structure.

DESCRIPTION

The handle specified in the h parameter must be in the standard user data storage format
(that is, as an atom, just like a public movie). Usually the handle will have been created
by calling Put User Dat al nt oHandl| e (described in the previous section).

ERROR CODES
mentul | Err -108 Not enough room in heap zone

Functions for Editing Movies

The Movie Toolbox provides a number of functions that allow applications to edit
existing movies or create the contents of new movies. This section describes those
functions. It has been divided into the following topics:

“Editing Movies” describes a number of functions that work with the current movie
selection, supporting such user operations as cut, copy, and paste

n “Undo for Movies” discusses the functions that your application can use to support
an undo capability for movie editing

n “Low-Level Movie-Editing Functions™ discusses several functions that allow your
application to perform detailed editing on movies

n “Editing Tracks” describes functions that your application can use to edit the contents
of tracks

2-242 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

n “Undo for Tracks” discusses the functions that your application can use to support an
undo capability for track editing

n “Adding Samples to Media Structures” describes the Movie Toolbox functions that
allow you to edit media

Editing Movies

The Movie Toolbox provides a set of high-level functions that allow you to edit movies.
This section describes these high-level editing functions. These functions work with a
movie’s current selection. The current selection is defined by a starting time and a
duration.

The Movie Toolbox also provides functions that allow you to edit movie segments. Those
functions are described in “Low-Level Movie-Editing Functions” beginning on
page 2-257.

The movies created by these functions contain references to the data in the source movie.
Because the new movies contain references and not data, they are small and easily
moved to and from the scrap. If you delete the movie that contains the data, the data
references in the new movies are no longer valid and the new movies cannot be played.
Therefore, before you delete the original movie, you should call the Fl at t enMovi e
function (described on page 2-105) for each of the new movies. This function copies the
data into each of the new movies, eliminating the data references.

Note that the Movie Toolbox does not always copy empty tracks from the source movie
to the movies that are created by these functions. Specifically, the Movie Toolbox
preserves the empty tracks until you paste or add the selection into the destination
movie. At that time, the Movie Toolbox removes the empty tracks from the selection. In
addition, if a track in the source movie has trailing empty space, the Movie Toolbox
removes that empty space from the track when it is copied into the new movie.
Therefore, if you want to add a segment beyond the end of a movie, you insert the space
when you insert the new segment using the | nser t Movi eSegnent function (described
on page 2-257).

The Movie Toolbox allows you to paste different data types into a movie. For example,
QuickDraw pictures and standard sound data can be pasted directly into a movie. If you
are using the movie controller component, you do not need to use these functions to
paste different data types into a movie. (For details on the movie controller component,
see Inside Macintosh: QuickTime Components.) If you are calling the Movie Toolbox directly
to do editing, you should use the functions described in this section.

To get and change a movie’s current selection, your application can call the
Get Movi eSel ecti on and Set Movi eSel ect i on functions.

Your application can work with a movie’s current selection by calling the
Cut Movi eSel ecti on, CopyMovi eSel ecti on, Past eMovi eSel ecti on,
Cl ear Movi eSel ect i on, and AddMbvi eSel ect i on functions.

The Put Movi eOnScr ap and NewMovi eFr onScr ap functions enable your application
to work with movies that are on the scrap.

Movie Toolbox Reference 2-243

CHAPTER 2

Movie Toolbox

The | sScr apMvi e function examines the system scrap to determine whether it can
translate any of the data into a movie. The Past eHandl el nt oMovi e takes the contents
of a specified handle, together with its type, and pastes it into a movie.

Put Movi el nt oTypedHandl| e takes a movie (or a single track from within a movie) and
converts it into a handle.

PutMovieOnScrap

ERROR CODES

2-244

The Put Movi eOnScr ap function allows your application to place a movie onto the
scrap.

pascal OSErr Put Movi eOnScrap (Myvie theMvi e,
| ong novi eScr apFl ags) ;

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

movi eScr apFl ags
Flags that control the operation. The following flags are available (set
unused flags to 0):

nmovi eScr apDont Zer oScr ap
Controls whether the Movie Toolbox clears the scrap before
putting the movie on the scrap. If you set this flag to 1,
the Movie Toolbox does not clear the scrap before placing
your movie onto this scrap, thus adding your movie to the
previous contents of the scrap. If you set this flag to 0, the
function clears the scrap, then places your movie
on the scrap.

nmovi eScr apOnl yPut Movi e
Controls whether the Movie Toolbox places other items on
the scrap along with your movie. If you set this flag to 1,
the Movie Toolbox only places your movie on the scrap. If
you set this flag to 0, the Movie Toolbox places an image
from the current movie time (including but not limited to a
PICT) on the scrap along with your movie. The picture is
intended for use by applications that cannot work
with movies.

i nval i dvbvi e —-2010 This movie is corrupted or invalid

Image Compression Manager errors
Memory Manager errors

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

NewMovieFromScrap

The NewMovi eFr onScr ap function allows your application to create a movie from the
contents of the scrap, if this is possible. If there is no movie data on the scrap, the Movie
Toolbox does not create a new movie.

pascal Mvi e NewMovi eFrontcrap (| ong newMbvi eFl ags) ;

newMbvi eFl ags
Controls the operation of the Newbvi eFr onfscr ap function. The
following flags are available (set unused flags to 0):

newMbvi eActi ve
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. A movie that does not have
any tracks can still be active. When the Movie Toolbox tries
to play the movie, no images are displayed, because there
is no movie data. Unless you set this flag, you should call
the Set Movi eAct i ve function (described on page 2-145)
to play a movie.

newibvi eDont Resol veDat aRef s
Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only
looks in the specified file.

If the Movie Toolbox cannot completely resolve all the data
references, it still returns a valid movie identifier. In this
case, the Movie Toolbox also sets the current error value to
coul dNot Resol veDat aRef .

newMbvi eDont AskUnr esol vedDat aRef s
Controls whether the Movie Toolbox asks the user to locate
files. If you set this flag to 0, the Movie Toolbox asks the
user to locate files that it cannot find on available volumes.
If the Movie Toolbox cannot locate a file even with the
user’s help, the function returns a valid movie identifier
and sets the current error value to
coul dNot Resol veDat aRef .

newibvi eDont Aut oAl t er nat e
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

DESCRIPTION

The NewMovi eFr onScr ap function returns the new movie’s identifier. If the function
cannot load the movie, the returned identifier issettoni | .

Movie Toolbox Reference 2-245

ERROR CODES

CHAPTER 2

Movie Toolbox

coul dNot Resol veDat aRef -2000 Cannot use this data reference
cant Fi ndHandl er -2003 Cannot locate a handler

cant OpenHandl er —2004 Cannot open a handler

i nval i dvedi a —2008 This media is corrupted or invalid

File Manager errors
Memory Manager errors

SetMovieSelection

DESCRIPTION

ERROR CODES

SEE ALSO

2-246

The Set Movi eSel ect i on function sets a movie’s current selection.

pascal void Set Movi eSel ecti on (Mvie thelvie,
Ti meVal ue sel ecti onTi ne,
Ti reVal ue sel ectionDuration);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).
sel ectionTi e
Contains a time value specifying the starting point of the current selection.
sel ecti onDurati on
Contains a time value that specifies the duration of the current selection.

If you set the sel ecti onDur at i on parameter to a value greater than the movie’s
duration, Set Movi eSel ect i on automatically adjusts the duration of the selection to
correspond to the difference between the value specified in the sel ecti onTi e
parameter and the end of the movie.

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dTi me -2015 This time value is invalid

You can use the Get Movi eSel ect i on function, described in the next section, to obtain
information about a movie’s current selection.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

GetMovieSelection

ERROR CODES

SEE ALSO

The Get Movi eSel ect i on function returns information about a movie’s current
selection.

pascal void Get Movi eSel ecti on (Mvie thelMvi e,
Ti meVal ue *sel ecti onTi e,
Ti meVal ue *sel ectionbDuration);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

sel ectionTi me
Contains a pointer to a time value. The Get Movi eSel ect i on function
places the starting time of the current selection into the field referred to by

this parameter. Set this parameter to ni | if you do not want this
information.

sel ectionbDuration
Contains a pointer to a time value. The Get Movi eSel ect i on function
places the duration of the current selection into the field referred to by
this parameter. Set this parameter to ni | if you do not want this
information.

i nval i dvbvi e -2010 This movie is corrupted or invalid

Your application can set the current selection by calling the Set Movi eSel ecti on
function, which is described in the previous section.

CutMovieSelection

The Cut Movi eSel ect i on function creates a new movie that contains the original
movie’s current selection. This function then removes the current selection from the
original movie. After the current selection has been removed from the original movie,
the duration of the current selection is 0. The starting time of the current selection is not
affected.

pascal Movi e Cut Movi eSel ection (Mvie theMvie);

Movie Toolbox Reference 2-247

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The Cut Movi eSel ect i on function returns a movie identifier. If the function could not
create the new movie, it sets this returned identifier toni | .

Your application must dispose of the new movie once you are done with it. You can use
the Di sposeMbvi e function (described on page 2-96) to dispose of the new movie.

If you have assigned a progress function to the source movie, the Movie Toolbox calls
that progress function during long cut operations. (For details on progress functions, see
“Progress Functions” beginning on page 2-354.)

i nval i dvbvi e —-2010 This movie is corrupted or invalid
progr essProcAborted -2019 Your progress function returned an error

Memory Manager errors

CopyMovieSelection

DESCRIPTION

2-248

The CopyMovi eSel ecti on function creates a new movie that contains the original
movie’s current selection. This function does not change the original movie or the
current selection.

pascal Mvie CopyMyvi eSel ection (Mvie theMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The CopyMovi eSel ect i on function returns a movie identifier. If the function could not
create the new movie, it sets this returned identifier toni | .

Your application must dispose of the new movie once you are done with it. You can use
the Di sposeMbvi e function (described on page 2-96) to dispose of the new movie.

If you have assigned a progress function to the source movie, the Movie Toolbox calls
that progress function during long copy operations. (For details on progress functions,
see “Progress Functions” beginning on page 2-354.)

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid
progressProcAbort ed —2019 Your progress function returned an error

Memory Manager errors

PasteMovieSelection

DESCRIPTION

The Past eMovi eSel ect i on function places the tracks from one movie into another
movie.

pascal void PasteMvieSel ection (Mvie theMwvie, Myvie src);

t heMovi e Specifies the destination movie for this operation. Your application
obtains this movie identifier from such functions as NewiVovi e,
NewMovi eFr onti | e, and Newbvi eFr onHandl e (described on
page 2-92, page 2-88, and page 2-90, respectively).

src Specifies the source movie for this operation. The
Past eMbvi eSel ect i on function places the tracks from this movie in
the destination movie.

All of the tracks from the source movie are placed in the destination movie. If the
duration of the destination movie’s current selection is 0, the source movie is inserted at
the starting time of the current selection. If the current selection duration is nonzero, the
function clears the current selection and then inserts the tracks from the source movie.
After the paste operation, the current selection time is unchanged, and the selection
duration is set to the source movie’s duration.

Whenever possible, the Movie Toolbox uses existing tracks to store the data to be pasted.
Before adding a track to the destination movie, the toolbox looks in the destination
movie for tracks that have the same characteristics as the tracks in the source movie. The
toolbox considers the following characteristics when searching for an appropriate track:

n track spatial dimensions
n track matrix

n track clipping region

n track matte

n alternate group affiliation
n media time scale

n media type

n media language

n data reference (that is, the two tracks must refer to the same file)

Movie Toolbox Reference 2-249

CHAPTER 2

Movie Toolbox

If the Movie Toolbox cannot find an appropriate track in the destination movie, it creates
a track with the proper characteristics.

The Movie Toolbox removes any empty tracks from the destination movie after the
paste operation.

If you have assigned a progress function to the destination movie, the Movie Toolbox
calls that progress function during long paste operations. (For details on progress
functions, see “Progress Functions” beginning on page 2-354.)

SPECIAL CONSIDERATIONS

ERROR CODES

The entire source movie is used regardless of the selection in the source movie.

i nval i dvbvi e -2010 This movie is corrupted or invalid
progr essProcAborted -2019 Your progress function returned an error

Memory Manager errors

SEE ALSO
If you want to insert only a part of the source movie, use the | nsert Movi eSegnent
function, which is described on page 2-257.

AddMovieSelection

2-250

The AddMovi eSel ect i on function adds one or more tracks to a movie. This function
scales the source movie so that it fits into the destination selection. If the current selection
in the destination movie has a 0 duration, the Movie Toolbox adds the segment at the
beginning of the current selection.

pascal void AddMovi eSel ecti on (Mvie theMvie, Myvie src);

t heMovi e Specifies the destination movie for this operation. Your application
obtains this movie identifier from such functions as NewMbvi e,
NewMovi eFr onti | e, and New\bvi eFr onHandl e (described on
page 2-92, page 2-88, and page 2-90, respectively).

src Specifies the source movie for this operation. The AddMbvi eSel ecti on
function adds the tracks from this movie to the destination movie.
The function adds these tracks at the time specified by the current
selection in the destination movie.

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The AddMovi eSel ect i on function is similar to Past eMovi eSel ect i on, which is
described in the previous section. However, the Past eMovi eSel ect i on function
inserts empty space into a movie’s existing tracks and then adds the new track data. The
AddMbvi eSel ect i on function does not insert empty space into the existing tracks.
This function simply adds the tracks in parallel from the source movie to the destination
movie. This can be useful for adding a track to an existing movie, such as adding sound
to a silent movie.

The Movie Toolbox removes any empty tracks from the destination movie after the
add operation.

If you have assigned a progress function to the destination movie, the Movie Toolbox
calls that progress function during long add operations. (For details, see “Progress
Functions” beginning on page 2-354.)

The entire source movie is used regardless of the selection in the source movie.

i nval i dMbvi e -2010 This movie is corrupted or invalid
progressProcAbort ed —2019 Your progress function returned an error

Memory Manager errors

ClearMovieSelection

DESCRIPTION

ERROR CODES

The C ear Movi eSel ect i on function removes the segment of the movie that is defined
by the current selection.

pascal void C earMyvieSel ection (Myvie theMvie);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

After removing the segment, the Movie Toolbox sets the duration of the movie’s current
selection to 0 and the selection time remains unchanged. This function removes empty
tracks from the resulting movie.

i nval i dvbvi e -2010 This movie is corrupted or invalid

Movie Toolbox Reference 2-251

CHAPTER 2

Movie Toolbox

IsScrapMovie

DESCRIPTION

The | sScr apMvi e function looks on the system scrap to find out if it can translate any
of the data into a movie.

pascal Conponent |sScrapMvie (Track targetTrack);

target Track
Specifies the location of the potential target movie for the data on the
system scrap.

If | sScr apMovi e finds an appropriate type, it returns a movie import component that
can translate the scrap. Otherwise, it returns 0. For details on movie import components,
see Inside Macintosh: QuickTime Components.

PasteHandlelntoMovie

2-252

The Past eHandl el nt oMbvi e function takes the contents of a specified handle,
together with its type, and pastes it into a specified movie.

pascal OSErr Past eHandl el nt oMbvi e (Handl e h, OSType handl eType,
Movi e theMovie, long flags,
Conponent | nst ance user Conp) ;

h Specifies the handle to be pasted into the movie indicated by the
handl eType parameter.

handl eType
Indicates the data type of the handle specified in the h parameter.

t heMbvi e Specifies the destination movie for this operation. Your application
obtains this movie identifier from such functions as NewVbvi e,
NewMbvi eFr onti | e, and Newbvi eFr onHandl e (described on
page 2-92, page 2-88, and page 2-90, respectively).

flags Specifies a constant that further refines conditions of the paste operation.

past el nParal | el
Changes the function so that it takes the contents of the
specified handle along with its type and adds (rather than
inserts) it to the specified movie in an operation analogous
to that of the AddMbvi eSel ect i on function. This
operation does not affect the duration of existing tracks. It
does not necessarily create a new track; rather, it uses a
piece of an existing track, if possible.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

user Conp Specifies the component or an instance of the component that is to
perform the conversion of the data into a QuickTime movie. If you want a
particular movie import component to perform the conversion, you may
pass the component or an instance of that component. Otherwise set this
parameter to 0 to allow the Movie Toolbox to determine the appropriate
component. If you pass in a component instance, it will be used by
Past eHandl el nt oMbvi e. This allows you to communicate directly
with the component before using this function to establish any conversion
parameters. If you pass in a component ID, an instance is created and
closed within this function.

DESCRIPTION

If the handle is set to 0, Past eHandl el nt oMovi e searches the scrap for a field of the
type handl eType. If both the h parameter and the handl eType parameter are ni |,
Past eHandl el nt oMbvi e uses the first available data from the scrap.

If you are just pasting in data from the scrap, it is best to allow

Past eHandl el nt oMbvi e to retrieve the data from the scrap, rather than doing it
yourself. In this way, the function is able to obtain supplemental data from the scrap, if
necessary (for example, ' styl ' resources for' TEXT').

Past eHandl el nt oMbvi e pastes into the current selection according to the
following rules:

n If the selection is empty (for example, duration = 0), Past eHandl| el nt oMovi e adds
the data with the appropriate duration.

n If the selection is not empty, the data is added and then scaled to fit into the duration
of the selection. The current selection is deleted, unless you set the
past el nParal | el flag.

PutMovielntoTypedHandle

The Put Movi el nt oTypedHandl e function takes a movie (or a single track from within
that movie) and converts it into a handle of a specified type.

pascal OSErr Put Movi el nt oTypedHandl e (Mvi e t heMvi e,
Track target Track,
OSType handl eType,
Handl e publi cMvi e,
Ti meVal ue start,
Ti meVal ue dur,
I ong fl ags,
Conponent | nst ance user Conp) ;

Movie Toolbox Reference 2-253

CHAPTER 2

Movie Toolbox

t heMbvi e Specifies the movie to convert.

target Track
Specifies the track to convert.

handl eType
Indicates the type of the new data.

publ i cMovi e
Contains the actual handle in which to place the new data.

start Specifies the start time of the segment of the movie or track
to be converted.

dur Specifies the duration of the segment of the movie or track
to be converted.

flags Indicates condition of the conversion. Set this parameter to 0.

user Conp Indicates a component or component instance of the movie export
component you want to perform the conversion. Otherwise, set this
parameter to 0 for the Movie Toolbox to choose the appropriate
component. If you pass in a component instance, it will be used by
Put Movi el nt oTypedHandl e. This allows you to communicate directly
with the component before using this function to establish any conversion
parameters. If you pass in a component ID, an instance is created and
closed within this function. For details on movie export components, see
Inside Macintosh: QuickTime Components.

Undo for Movies

2-254

The Movie Toolbox provides functions that allow you to capture and restore the edit
state of a movie. An edit state contains information that completely defines a movie’s
content at the time you create the edit state. It is, in essence, a checkpoint in the edit
session. You can manage a movie’s edit states in order to implement an undo capability
for editing movies. For example, you can capture a movie’s edit state before performing
an editing operation, such as a cut, and later restore the old state. You can have several
movie edit states obtained at different times during an editing session, and restore to any
one of them at any time. In this manner, you can provide a multilevel undo capability.
This section describes the Movie Toolbox functions that work with edit states.

Note that a movie’s edit state does not save everything about a movie. Most important,
the edit state does not contain information about the movie’s spatial characteristics. For
example, the edit state does not store the current boundary rectangle or clipping region.
Consequently, edit states are best suited to supporting undo operations involving movie
content, including track creation and removal. You can use other Movie Toolbox
functions to support undo operations for movie characteristics. See “Functions That
Modify Movie Properties” beginning on page 2-157 to learn more about these functions.

You can use the Newbvi eEdi t St at e function to capture a movie’s edit state. Use the
UseMbvi eEdi t St at e to restore the movie to its condition according to a previous edit
state. Your application must dispose of an edit state by calling the

Di sposeMbvi eEdi t St at e function. You must dispose of a movie’s edit states before
you dispose of the movie.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

NewMovieEditState

DESCRIPTION

ERROR CODES

You can create an edit state by calling the NewiVbvi eEdi t St at e function. This function
creates an edit state that contains all the information describing a movie’s content,
including the current selection, the movie’s tracks, and the media data associated with
those tracks.

Note

You must dispose of a movie’s edit states before you dispose of the movie
itself. Use the Di sposeMvi eEdi t St at e function (described on
page 2-256) to dispose of an edit state. u

pascal MvieEdit State NewMbvi eEdit State (Mvie theMvie);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

The NewMovi eEdi t St at e function returns a movie edit state identifier. You can use
this identifier with other Movie Toolbox edit state functions, such as

UseMovi eEdi t St at e (described in the next section). If this function could not create
the edit state, it sets this returned identifier to ni | .

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

UseMovieEditState

Your application can use the UseMovi eEdi t St at e function to return a movie to its
condition according to an edit state you created previously.

pascal OSErr UseMovi eEditState (Mvie theMuvie,
Movi eEdit State toState);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

Movie Toolbox Reference 2-255

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

toState Specifies the edit state for this operation. Your application obtains this
edit state identifier when you create the edit state by calling the
NewMbvi eEdi t St at e function (described in the previous section).

The UseMovi eEdi t St at e function uses the information stored in the edit state to
update the movie’s contents. This may change the contents of some of the movie’s tracks,
or it may even add tracks to the movie or remove tracks from the movie. Consequently,
the movie’s time and spatial characteristics, especially the duration, may change as a
result of restoring the saved edit state. Your application creates an edit state by calling
the Newibvi eEdi t St at e function, which is described in the previous section.

i nval i dvbvi e -2010 This movie is corrupted or invalid
inval i dEdit State -2023 This edit state is invalid

nonMat chi ngEdi t St at e -2024 This edit state is not valid for this movie
stal eEdit State -2025 Movie or track has been disposed

DisposeMovieEditState

ERROR CODES

SEE ALSO

2-256

The Di sposeMovi eEdi t St at e function disposes of an edit state. Your application
must dispose of any edit states you create.

Note

You must dispose of a movie’s edit states before you dispose

of the movie itself. u

pascal OSErr DisposeMyvieEditState (MvieEditState state);
state Specifies the edit state for this operation. Your application obtains this

edit state identifier when you create the edit state by calling the
NewMbvi eEdi t St at e function.

invali dEdit State -2023 This edit state is invalid
stal eEdit State -2025 Movie or track has been disposed

You create an edit state by calling the Newibvi eEdi t St at e function, which is
discussed on page 2-255.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Low-Level Movie-Editing Functions

The Movie Toolbox provides a number of functions that allow your application to
perform low-level editing operations on movies. These functions work with movie
segments—pieces of a movie that are defined by a starting time and duration—and
therefore give you a great deal of control over the editing process. These functions never
copy the movie data; rather, they work with references to the movie’s data. “Editing
Movies,” which begins on page 2-243, discusses the Movie Toolbox functions that allow
you to edit movies by working with the current selection.

You can use the CopyMovi eSet t i ngs function to copy certain important settings from
one movie to another.

You can use the | nsert Movi eSegnent function to copy a segment from one movie to
another. Use the | nser t Movi eEnpt ySegnent function to insert an empty segment
into a movie.

Your application can delete a segment from a movie by calling the
Del et eMovi eSegment function.

You can change a segment’s duration by calling the Scal eMovi eSegnent function.
This function stretches or shrinks the segment to accommodate a specified duration.

InsertMovieSegment

The I nsert Movi eSegnent function copies part of one movie to another. You specify
the starting time and duration of the source segment and the time in the destination
movie at which to place the information.

pascal OSErr InsertMvieSegnent (Myvie srcMvie, Myvie dstMvie,
Ti meVal ue srcln,
Ti neVal ue srcDurati on,
Ti meVal ue dstln);

srchovi e Specifies the source movie for this operation. Your application obtains this
movie identifier from such functions as Newibvi e, Newibvi eFr onFi | e,
and NewMbvi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively). The | nsert Movi eSegnent function obtains the
movie segment from the source movie specified in this parameter.

dst Movi e Specifies the destination movie for this operation. The
I nsert Movi eSegnent function places a copy of the segment, which is
obtained from the source movie, into this destination movie. The dst I n
parameter specifies where the segment is inserted.

srcln Specifies the start of the segment in the source movie. The srcDur ati on
parameter specifies the segment’s duration. This time value must be
expressed in the source movie’s time scale.

Movie Toolbox Reference 2-257

DESCRIPTION

2-258

CHAPTER 2

Movie Toolbox

srcDuration
Specifies the duration of the segment in the source movie. This time value
must be expressed in the source movie’s time scale.

dstln Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the destination movie’s time scale.

The | nser t Movi eSegnent function does not change the source movie. However, the
duration of the destination movie is extended to accommodate the inserted segment. You
can use this function to add a segment beyond the end of the destination movie—the
Movie Toolbox inserts empty space as appropriate.

You can use the | nsert Movi eSegnent function to copy data within a single movie.
If you are not copying data from one location in a movie to a different point in the same
movie, the function may create new tracks, as appropriate.

Whenever possible, the Movie Toolbox uses existing tracks to store the data to be
inserted. Before adding a track to the destination movie, the toolbox looks in the
destination movie for tracks that have the same characteristics as the tracks in the source
movie. The toolbox considers the following characteristics when searching for an
appropriate track:

n track spatial dimensions

n track matrix

n track clipping region

n track matte

n alternate group affiliation

n media time scale

n media type

n media language

n data reference (that is, the two tracks must refer to the same file)

If the Movie Toolbox cannot find an appropriate track in the destination movie, it creates
a track with the proper characteristics.

If you have assigned a progress function to the destination movie, the Movie Toolbox
calls that progress function during long copy operations. For details on
application-defined progress functions, see “Progress Functions” beginning on

page 2-354.

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid

i nval i dDur ati on -2014 This duration value is invalid

i nval i dTi me -2015 This time value is invalid

progr essProcAborted -2019 Your progress function returned an error

Memory Manager errors

InsertEmptyMovieSegment

DESCRIPTION

ERROR CODES

The | nsert Enpt yMovi eSegnent function adds an empty segment to a movie. You
specify the starting time and duration of the empty segment to be added. These times
must be expressed in the movie’s time scale.

pascal CSErr |nsertEnptyMyvi eSegrment (Mvie dst Movi e,
Ti meVal ue dstln,
Ti meVal ue dstDuration);

dst Movi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

dstln Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the movie’s time scale.

dst Duration
Contains a time value that specifies the duration of the segment
to be added.

The | nsert Enpt yMovi eSegnent function then inserts the appropriate amount of
empty time into each of the movie’s tracks. The exact meaning of the term empty time
depends upon the type of track. For example, empty time in a sound track is silent.

You cannot add empty space to the end of a movie. If you want to insert a segment
beyond the end of a movie, use thel nsert Movi eSegrent function, which is described
in the previous section.

i nval i dvbvi e -2010 This movie is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi me -2015 This time value is invalid

Memory Manager errors

Movie Toolbox Reference 2-259

CHAPTER 2

Movie Toolbox

DeleteMovieSegment

ERROR CODES

The Del et eMovi eSegment function removes a specified segment from a movie. You
identify the segment to remove by specifying its starting time and duration.

pascal OSErr Del et eMovi eSegrment (Movi e theMovie, TineVal ue in,
Ti meVal ue duration);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

in Contains a time value specifying the starting point of the segment
to be deleted.

duration Contains a time value that specifies the duration of the segment
to be deleted.

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

ScaleMovieSegment

2-260

The Scal eMovi eSegnent function changes the duration of a segment of a movie. The
Movie Toolbox scales the segment to accommodate the new duration.

pascal OSErr Scal eMovi eSegnent (Movi e theMvie, TineValue in,
Ti meVal ue ol dDur ati on,
Ti meVal ue newbur ati on);

t heMovi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

in Specifies the start of the segment. The ol dDur at i on parameter specifies
the segment’s duration. This time value must be expressed in the movie’s
time scale.

ol dDurati on
Specifies the duration of the segment in the source movie. This time value
must be expressed in the movie’s time scale.

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

newDur at i on

Specifies the new duration of the segment. This time value must be
expressed in the movie’s time scale. The function alters the segment to
accommodate the new duration.

i nval i dMbvi e -2010 This movie is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

Memory Manager errors

CopyMovieSettings

DESCRIPTION

The CopyMovi eSet ti ngs function copies many settings from one movie to another,
overwriting the destination settings in the process.

pascal OSErr CopyMovi eSettings (Mvie srchMvie, Mvie dstMuvie);

srchMovi e Specifies the source movie for this operation. Your application obtains this

movie identifier from such functions as Newibvi e, NewMovi eFr onfFi | e,
and NewMbvi eFr onHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

dst Movi e Specifies the destination movie for this operation. The

CopyMvi eSet t i ngs function uses the settings from the source movie,
which is specified by the sr cMovi e parameter, to replace the current
settings of this movie.

The CopyMovi eSet ti ngs function copies the

n

n

n

n

preferred rate and volume
source clipping region
matrix information

user data

If you want to work with specific characteristics, you can use the Movie Toolbox
functions that allow you to manipulate movie settings individually. These functions are
described in “Functions That Modify Movie Properties” beginning on page 2-157.

This function does not copy the movie’s contents. To work with movie contents, you
should use the segment editing functions described in “Low-Level Movie-Editing
Functions” beginning on page 2-257.

Movie Toolbox Reference 2-261

ERROR CODES

CHAPTER 2

Movie Toolbox

i nval i dMbvi e -2010 This movie is corrupted or invalid
Memory Manager errors

Editing Tracks

The Movie Toolbox provides a number of functions that allow your application to
perform editing operations on tracks. These functions work with track segments—pieces
of a track that are defined by a starting time and duration—and therefore give you a
great deal of control over the editing process. These functions are similar to the low-level
editing functions for movies that were described earlier in this chapter. However, these
functions may copy movie data, if required by the operation.

When you edit a track you may change the duration of the movie that contains that track.

The CopyTrackSet ti ngs function lets you copy certain important settings from one
track to another.

You can use the | nsert TrackSegnent function to copy a segment from one track to
another. The | nsert Tr ackEnpt ySegnent function allows you to insert an empty
segment into a track.

You can use the | nsert Medi al nt oTr ack function to insert a media into a track.

Your application can delete a segment from a track by calling the
Del et eTr ackSegment function.

You can change a segment’s duration by calling the Scal eTr ackSegnent function.
This function stretches or shrinks the segment to accommodate a specified duration.

You canusethe Get Tr ackEdi t Rat e function to determine the rate of the track edit of a
specified track at an indicated time.

InsertTrackSegment

2-262

The I nsert TrackSegnent function copies part of one track to another. You specify the
starting time and duration of the source segment and the time in the destination track at
which to place the information.

pascal OSErr InsertTrackSegnment (Track srcTrack, Track dstTrack,
Ti nreVal ue srcln,
Ti neVal ue srcDurati on,
Ti meVal ue dstln);

srcTrack Specifies the source track for this operation. Your application obtains this
track identifier from such Movie Toolbox functions as Newivbvi eTr ack
and Get Movi eTr ack (described on page 2-151 and page 2-204,
respectively).

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

dst Track Specifies the destination track for this operation. The
I nsert TrackSegment function places a copy of the segment, which is
obtained from the source track, into this destination track. Thei n
parameter specifies where the segment is inserted.

srcln Specifies the start of the segment in the source track. The srcDur at i on
parameter specifies the segment’s duration. This time value must be
expressed in the time scale of the movie that contains the source track.

srcDuration
Specifies the duration of the segment in the source track. This time
value must be expressed in the time scale of the movie that contains the
source track.

dstln Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the time scale of the movie that contains
the destination track.

The I nsert TrackSegnent function does not change the source track. However, the
duration of the destination track is extended to accommodate the inserted segment. This
may also change the duration of the movie that contains the destination track.

You can use this function to copy data within a single track. If you are not copying data
from one location in a track to a different point in the same track, make sure that the two
tracks are of the same type. For example, you cannot copy a segment from a sound track
into a video track.

In addition, if the source and destination tracks are associated with different media data
files, this function copies samples from the source to the destination using the

AddMedi aSanpl e function. Therefore, the Movie Toolbox must be able to write to the
destination media. In this case, your application must call the Begi nMedi aEdi t s
function before calling | nsert Tr ackSegmnent . At the end of the editing session, your
application must call the EndMedi aEdi t s function. See “Adding Samples to Media
Structures” beginning on page 2-271 for more information about these functions.

If you have assigned a progress function to the movie that contains the destination track,
the Movie Toolbox calls that progress function during long copy operations.

i nval i dTrack —2009 This track is corrupted or invalid
medi aTypesDont Mat ch -2018 These media structures don’t match
progr essProcAborted -2019 Your progress function returned an error

File Manager errors

Movie Toolbox Reference 2-263

CHAPTER 2

Movie Toolbox

InsertEmptyTrackSegment

The | nsert Enpt yTr ackSegmnent function adds an empty segment to a track. You
specify the starting time and duration of the empty segment to be added. These times
must be expressed in the movie’s time scale. This function then inserts the appropriate
amount of empty time into the track. The exact meaning of the term empty time depends
upon the type of track. For example, empty time in a sound track is silent.

pascal OCSErr InsertEnptyTrackSegnment (Track dst Track,
Ti meVal ue dstln,
Ti meVal ue dstDuration);

dst Track Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

dstln Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the time scale of the movie that contains
the destination track.

dst Duration
Contains a time value that specifies the duration of the segment to be
added. This time value must be expressed in the time scale of the movie
that contains the destination track.

DESCRIPTION

Note that you cannot add empty space to the end of a movie or to the end of a track. If
you try to add an empty segment beyond the end of a track, this function does not add
the empty segment and returns a result code of i nval i dTi ne.

ERROR CODES

i nval i dTrack —-2009 This track is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

Memory Manager errors

2-264 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

InsertMedialntoTrack

DESCRIPTION

ERROR CODES

The | nsert Medi al nt oTr ack function inserts a reference to a media segment into a
track. You specify the segment in the media by providing a starting time and duration.
You specify the point in the destination track by providing a time in the track.

pascal OSEr

t heTr ack

trackStart

medi aTi ne

medi aDur at i

medi aRat e

r InsertMedialntoTrack (Track theTrack,
Ti meVal ue trackStart,
Ti reVal ue nedi aTi e,
Ti nreVal ue nedi abDur ati on,
Fi xed medi aRat e) ;

Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewiVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the movie’s time scale. If you set this
parameter to -1, the media data is added to the end of the track.

Contains a time value specifying the starting point of the segment in the
media. This time value must be expressed in the media’s time scale.

on
Contains a time value specifying the duration of the media’s segment.
This time value must be expressed in the media’s time scale.

Specifies the media’s rate. A value of 1.0 indicates the media’s natural
playback rate. This value should be a positive, nonzero rate.

The | nsert Medi al nt oTr ack function inserts the media segment into the track at the

specified locati
track based on

You use this fu

on. The Movie Toolbox determines the duration of the segment in the
the media rate and duration information you provide.

nction after you have added samples to a media using the functions

described in “Adding Samples to Media Structures” beginning on page 2-271.

If you play the
media data.

i nval i dTr ac

track before you call this function, the track does not contain the new

k -2009 This track is corrupted or invalid

i nval i dDur ati on -2014 This duration value is invalid

i nval i dTi ne

Movie Toolbox R

-2015 This time value is invalid

eference 2-265

CHAPTER 2

Movie Toolbox

DeleteTrackSegment

ERROR CODES

SEE ALSO

The Del et eTr ackSegment function removes a specified segment from a track. You
identify the segment to remove by specifying its starting time and duration.

pascal OSErr Del eteTrackSegnment (Track theTrack, TineValue in,
Ti meVal ue duration);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

in Contains a time value specifying the starting point of the segment to be
deleted. This time value must be expressed in the time scale of the movie
that contains the source track.

duration Contains a time value that specifies the duration of the segment to be
deleted. This time value must be expressed in the time scale of the movie
that contains the source track.

i nval i dTrack —-2009 This track is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

To dispose of a track, call the Di sposeMovi eTr ack function, described on page 2-152.

ScaleTrackSegment

2-266

The Scal eTr ackSegnent function changes the duration of a segment of a track. This
may change the duration of the movie that contains the track. However, this function
does not cause the Movie Toolbox to add data to or remove data from the movie.

pascal OSErr Scal eTrackSegnment (Track theTrack, TineValue in,
Ti meVal ue ol dDur ati on,
Ti meVal ue newbDur ati on);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

in Specifies the start of the segment. The ol dDur at i on parameter specifies
the segment’s duration. This time value must be expressed in the time
scale of the movie that contains the track.

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

ol dDur ati on
Specifies the duration of the segment. This time value must be expressed
in the time scale of the movie that contains the track.

newDur at i on
Specifies the new duration of the segment. This time value must be
expressed in the time scale of the movie that contains the track. The
function alters the segment to accommodate the new duration.

i nval i dTrack —2009 This track is corrupted or invalid
i nval i dDur ati on -2014 This duration value is invalid
i nval i dTi ne -2015 This time value is invalid

Memory Manager errors

CopyTrackSettings

DESCRIPTION

The CopyTrackSet ti ngs function copies many settings from one track to another,
overwriting the destination settings.

pascal OSErr CopyTrackSettings (Track srcTrack, Track dstTrack);

srcTrack Specifies the source track for this operation. Your application
obtains this track identifier from such Movie Toolbox functions as
NewMbvi eTr ack and Get Movi eTr ack (described on page 2-151 and
page 2-204, respectively).

dst Tr ack Specifies the destination track for this operation. The
CopyTr ackSet t i ngs function uses the settings from the source track,
which you specify with the sr cTr ack parameter, to replace the current
settings of this track.

The CopyTrackSet ti ngs function copies the

n matrix information

n track volume

n clipping region

n user data

n matte information

n media language, quality, and user data

n other media-specific settings (such as sound balance and video graphics mode)
This function does not copy any alternate group information pertaining to the track.

Movie Toolbox Reference 2-267

ERROR CODES

CHAPTER 2

Movie Toolbox

If you want to work with specific characteristics, you can use the Movie Toolbox
functions that allow you to manipulate track settings individually. These functions are
described in “Functions That Modify Movie Properties,” which begins on page 2-157.

This function does not copy the track’s contents. To work with track contents, you
should use the segment-editing functions described in “Editing Tracks” beginning on
page 2-262.

i nval i dTrack —-2009 This track is corrupted or invalid
Memory Manager errors

GetTrackEditRate

DESCRIPTION

The Get Tr ackEdi t Rat e function returns the rate of the track edit of a specified track at
an indicated time.

pascal Fi xed Get TrackEditRate (Track theTrack, TineValue atTine);

t heTr ack Specifies the track identifier for which the rate of a track edit (at the time
given in the at Ti me parameter) is to be determined.

at Ti me Indicates a time value at which the rate of a track edit (of a track
identified in the parameter t heTr ack) is to be determined.

If an invalid time or track is passed, the returned value is 0.0. The track edit rate is
typically 1.0, unless either the Scal eMbvi eSegnent or Scal eTr ackSegnent function
has been called. (For more on the Scal eMovi eSegnent and Scal eTr ackSegmnent
functions, see page 2-260 and page 2-266, respectively.)

The Get Tr ackEdi t Rat e function is relevant if you are stepping through track edits
directly in your application or if you are a client of the base media handler. (See Inside
Macintosh: QuickTime Components for details on media handlers.)

Undo for Tracks

2-268

The Movie Toolbox provides functions that allow you to capture and restore the edit
state of a track. As with the functions that manipulate a movie’s edit state, you can
manage a track’s edit states in order to implement an undo capability for track editing.
For example, you can capture a track’s edit state before performing an editing operation,
such as a cut, and later restore the old state. You can have several track edit states
obtained at different times during an editing session, and you can restore to any one of

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

them at any time. In this manner, you can provide a multilevel undo capability. This
section describes the Movie Toolbox functions that work with track edit states.

Note that a track’s edit state does not save everything about the track. Most important,
the edit state does not contain information about track spatial characteristics. For
example, the edit state does not store the current clipping region. Consequently, edit
states are best suited to supporting undo operations involving track content. You can use
other Movie Toolbox functions to support undo operations for track characteristics. See
“Functions That Modify Movie Properties,” which begins on page 2-157, to learn more
about these functions.

You can use the NewTr ackEdi t St at e function to capture a track’s edit state. Use the
UseTr ackEdi t St at e function to restore the track to its condition according to a
previous edit state. Your application can dispose of an edit state by calling the

Di sposeTrackEdi t St at e function.

NewTrackEditState

DESCRIPTION

ERROR CODES

You can create an edit state by calling the NewTr ackEdi t St at e function. This function
creates an edit state that contains all the information describing a track’s content,
including the identity of the media data associated with the track and all the track’s

edit lists.

Note

You must dispose of a movie’s track edit states before disposing of the
track or of the movie that contains the track. Use the

Di sposeTrackEdi t St at e function, which is described on page 2-270,
to dispose of an edit state. u

pascal TrackEditState NewlrackEditState (Track theTrack);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewVbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

The NewTr ackEdi t St at e function returns a track edit state identifier. You can use this
identifier with other Movie Toolbox edit state functions, such as UseTr ackEdi t St at e
(described in the next section). If this function could not create the edit state, it sets this
returned identifiertoni | .

i nval i dTrack —-2009 This track is corrupted or invalid

Memory Manager errors

Movie Toolbox Reference 2-269

CHAPTER 2

Movie Toolbox

UseTrackEditState

DESCRIPTION

Your application can use the UseTr ackEdi t St at e function to return a track to its
condition according to an edit state you created previously.

pascal OSErr UseTrackEditState (Track theTrack,
TrackEdit State state);

t heTr ack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newvbvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

state Specifies the edit state for this operation. Your application obtains this
edit state identifier when you create the edit state by calling the
NewTr ackEdi t St at e function, which is described in the previous
section.

The UseTr ackEdi t St at e function uses the information stored in the edit state to
update the track’s contents. This may change the contents of some of the track.
Consequently, the time characteristics of the movie that contains the track, especially the
duration, may change as a result of restoring the saved edit state. Your application
creates an edit state by calling the NewTr ackEdi t St at e function.

SPECIAL CONSIDERATIONS

ERROR CODES

You can use the UseTr ackEdi t St at e function only with tracks that currently belong
to a movie. A track may be detached from its movie as a result of edit processing—you
cannot use this function with such a track.

i nval i dTrack —-2009 This track is corrupted or invalid
inval i dEdit St at e -2023 This edit state is invalid
nonMat chi ngEdi t St at e -2024 This edit state is not valid for this movie

DisposeTrackEditState

2-270

The Di sposeTrackEdi t St at e function disposes of a track edit state. Your application
must dispose of any edit states you create. You create an edit state by calling the
NewTr ackEdi t St at e function, which is discussed on page 2-269.

Note

You must dispose of a movie’s track edit states before you dispose
of the track or the movie. u

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

pascal OSErr DisposeTrackEditState (TrackEditState state);

state Specifies the edit state for this operation. Your application obtains this
edit state identifier when you create the edit state by calling the
NewTr ackEdi t St at e function (described on page 2-269).

ERROR CODES

i nval i dTrack —-2009 This track is corrupted or invalid
invali dEdit State -2023 This edit state is invalid
stal eEdit State -2025 Movie or track has been disposed

Adding Samples to Media Structures

This section describes Movie Toolbox functions that directly manipulate media
samples. These functions are used only by applications that create movies or add data to
existing movies.

You add samples to a media by calling the AddMedi aSanpl e function. You can indicate
that the sample to be added is not a sync sample. Sync samples do not rely on preceding
frames for content. Some compression algorithms conserve space by eliminating
duplication between consecutive frames in a sample. In image data, sync samples are
referred to as key frames. For more information on key frames, see the chapter “Image
Compression Manager” in this book.

You can obtain the data in a media sample by calling the Get Medi aSanpl e function.
If you are going to add samples to a media, you must do so within a media-editing
session. You start a media-editing session by calling the Begi nMedi aEdi t s function.
Once you have finished adding samples to the media, you end the editing session by
calling the EndMedi aEdi t s function.

Once you have added samples to a media, you can work with references to those
samples by calling the AddMedi aSanpl eRef er ence and

Get Medi aSanpl eRef er ence functions. You do not have to be in a media-editing
session to use these functions.

BeginMediaEdits

The Begi nMedi aEdi t s function starts a media-editing session.
pascal OSErr Begi nMedi akEdits (Media theMedi a);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

Movie Toolbox Reference 2-271

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

You use the Begi nMedi aEdi t s function to notify the Movie Toolbox that you are going
to add sample data to a media. In response, the Movie Toolbox determines whether the
media can be updated. For example, if the media data are stored on disk, the Movie
Toolbox opens the disk file with write permissions. If the media is stored on a read-only
storage medium, such as a CD-ROM disc, the Movie Toolbox does not start an editing
session and returns an error.

Use the EndMedi aEdi t s function, which is described in the next section, to end a
media-editing session.

You must call Begi nMedi aEdi t s before you add samples to a media with the
AddMedi aSanpl e function (described on page 2-273). Under some circumstances, you
must start a media-editing session before calling the | nser t Tr ackSegnent function
(described on page 2-262).

i nval i dMedi a —-2008 This media is corrupted or invalid
File system errors

EndMediaEdits

DESCRIPTION

ERROR CODES

2-272

The EndMedi aEdi t s function ends a media-editing session.
pascal OSErr EndMedi akEdits (Media theMedia);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

You use the EndMedi aEdi t s function to tell the Movie Toolbox that you are done
adding samples to a movie data file. The Movie Toolbox then performs the appropriate
processing. For example, for disk-based media, the Movie Toolbox relinquishes
write-access to the disk file. You should call EndMedi aEdi t s only if you successfully
started a media-editing session with the Begi nMedi aEdi t s function, which is
described in the previous section.

i nval i dMedi a —-2008 This media is corrupted or invalid

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

AddMediaSample

The AddMedi aSanpl e function adds sample data and a description to a media. Your
application specifies the sample and the media for the operation. The AddMedi aSanpl e
function updates the media so that it contains the sample data. One call to this function
can add several samples to a media—however, all the samples must be the same size.
Samples are always appended to the end of the media. Furthermore, each time a sample
is added, the media duration is extended.

pascal CSEr

t heMedi a

dataln

i nOf f set

si ze

dur at i onPer

sanpl eDescr

r AddMedi aSanpl e (Medi a theMedi a, Handl e datal n,
Il ong i nOfset, unsigned |long size,
Ti meVal ue durati onPer Sanpl e,
Sanpl eDescri pti onHandl e sanpl eDescri pti onH,
| ong nunber Of Sanpl es, short sanpl eFl ags,
Ti reVal ue *sanpl eTi ne);

Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

Contains a handle to the sample data. The AddMedi aSanpl e function
adds this data to the media specified by the parameter t heMedi a. You
specify the number of bytes of sample data with the si ze parameter. You
can use thei nOf f set parameter to specify a byte offset into the data
referred to by this handle.

Specifies an offset into the data referred to by the handle contained in the
dat al n parameter. Set this parameter to 0 if there is no offset.

Specifies the number of bytes of sample data to be added to the media.
This parameter indicates the total number of bytes in the sample data to
be added to the media, not the number of bytes per sample. Use the
nunber O Sanpl es parameter to indicate the number of samples that are
contained in the sample data.

Sanpl e

Specifies the duration of each sample to be added. You must specify this
parameter in the media’s time scale. For example, if you are adding sound
that was sampled at 22 kHz to a media that contains a sound track with
the same time scale, you would set the dur at i onPer Sanpl e parameter
to 1. Similarly, if you are adding video that was recorded at 10 frames per
second to a video media that has a time scale of 600, you would set this
parameter to 60 to add a single sample.

i ptionH

Contains a handle to a sample description. Some media structures may
require sample descriptions. There are different sample descriptions for
different types of samples. For example, a media that contains
compressed video requires that you supply an image description (see the
chapter “Image Compression Manager” in this book for more information
about image description structures). A media that contains sound requires

Movie Toolbox Reference 2-273

DESCRIPTION

2-274

CHAPTER 2

Movie Toolbox

that you supply a sound description structure (see “The Sound
Description Structure” on page 2-79 for more information about sound
description structures).

If the media does not require a sample description, set this
parameter to ni | .

nunber Of Sanpl es

sanpl eFl ags

sanpl eTi e

Specifies the number of samples contained in the sample data to be added
to the media.

This parameter determines the size of each sample. The Movie Toolbox
considers the value of this parameter as well as the value of the si ze
parameter when it determines the size of each sample that it adds to the
media. You should set the value of this parameter so that the resulting
sample size represents a reasonable compromise between total data
retrieval time and the overhead associated with input and output (1/70).
You should also consider the speed of the data storage device—CD-ROM
devices are much slower than hard disks, for example, and should
therefore have a smaller sample size.

For a video media, set a sample size that corresponds to the size of a
frame. For a sound media, choose a number of samples that corresponds
to between 0.5 and 1.0 seconds of sound. In general, you should not create
groups of sound samples that are less than 2 KB in size or greater than

15 KB. Typically, a sample size of about 8 KB is reasonable for most
storage devices.

Contains flags that control the add operation. The following flag is
available (set unused flags to 0):

medi aSanpl eNot Sync
Indicates that the sample to be added is not a sync sample.
Set this flag to 1 if the sample is not a sync sample. Set this
flag to O if the sample is a sync sample.

Contains a pointer to a time value. After adding the sample data to the
media, the AddMedi aSanpl e function returns the time where the sample
was inserted in the time value referred to by this parameter. If you do not
want to receive this information, set this parameter toni | .

The AddMedi aSanpl e function updates the file or device that contains the movie data
file as part of the add operation. Consequently, your application must have started a
media-editing session before calling this function. You start a media-editing session with

the Begi nMed

i aEdi t s function, which is described on page 2-271. If you want to work

with samples that have already been added to a movie data file, use the
AddMedi aSanpl eRef er ence function, which is described in the next section.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

ERROR CODES

i nval i dMedi a —-2008 This media is corrupted or invalid

File Manager errors
Memory Manager errors

AddMediaSampleReference

The AddMedi aSanpl eRef er ence function allows your application to work with
samples that have already been added to a movie data file. Instead of actually writing
out samples to disk, this function writes out references to existing samples, which you
specify in the dat aOf f set andsi ze parameters.

pascal OSErr AddMedi aSanpl eRef erence (Media theMedi a,

t heMedi a

dat aOf f set

si ze

| ong dataOf f set,

unsi gned | ong si ze,

Ti meVal ue durati onPer Sanpl e,

Sanpl eDescri pti onHandl e sanpl eDescri pti onH,
| ong nunber O Sanpl es, short sanpl eFl ags,

Ti meVal ue *sanpl eTi ne);

Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

Specifies the offset into the movie data file. This parameter is used
differently by each data handler. For example, for the standard HFS data
handler, this parameter specifies the offset into the file. This parameter
contains either data you add yourself or the data offset returned by the
Get Medi aSanpl eRef er ence function (described on page 2-279).

Specifies the number of bytes of sample data to be identified by the
reference. This parameter indicates the total number of bytes in the
sample data, not the number of bytes per sample. Use the

nunber Of Sanpl es parameter to indicate the number of samples that are
contained in the reference.

dur at i onPer Sanpl e

Specifies the duration of each sample in the reference. You must specify
this parameter in the media’s time scale. For example, if you are referring
to sound that was sampled at 22 kHz in a media that contains a sound
track with the same time scale, to add a reference to a single sample you
would set the dur at i onPer Sanpl e parameter to 1. Similarly, if you are
referring to video that was recorded at 10 frames per second in a video
media that has a time scale of 60, you would set this parameter to 6 to add
a reference to a single sample.

Movie Toolbox Reference 2-275

CHAPTER 2

Movie Toolbox

sanpl eDescri pti onH
Contains a handle to a sample description. Some media structures may
require sample descriptions. There are different sample descriptions for
different types of samples. For example, a media that contains
compressed video requires that you supply an image description (see the
chapter “Image Compression Manager” in this book for more information
about image description structures). A media that contains sound requires
that you supply a sound description structure (see “The Sound
Description Structure” on page 2-79 for more information about
sound description structures).

If the media does not require a sample description, set this
parameter to ni | .

nunber Of Sanpl es
Specifies the number of samples contained in the reference. For details,
see the AddMedi aSanpl e function description beginning on page 2-273.
sampl eFl ags
Contains flags that control the operation. The following flag is available
(set unused flags to 0):

medi aSanpl eNot Sync
Indicates that the sample to be added is not a sync sample.
Set this flag to 1 if the sample is not a sync sample. Set this
flag to 0 if the sample is a sync sample.

sanpl eTi e

Contains a pointer to a time value. After adding the reference to the

media, the AddMedi aSanpl eRef er ence function returns the time

where the reference was inserted in the time value referred to by

this parameter. If you do not want to receive this information, set this

parameter toni | .

DESCRIPTION

The AddMedi aSanpl eRef er ence function does not add sample data to the file or
device that contains a media. Rather, it defines references to sample data that you
previously added to a movie data file. As with the AddMedi aSanpl e function
(described in the previous section), your application specifies the media for the
operation. Note that one reference may refer to more than one sample—all the samples
described by a reference must be the same size. This function does not update the movie
data file as part of the add operation. Therefore, your application does not have to call
the Begi nMedi aEdi t s function (described on page 2-271) before calling

AddMedi aSanpl eRef er ence.

ERROR CODES
i nval i dvedi a —2008 This media is corrupted or invalid
Memory Manager errors

2-276 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

SEE ALSO

If you want to add new samples to a media data file, use the AddMedi aSanpl e
function, which is described in the previous section.

GetMediaSample

The Get Medi aSanpl e function returns a sample from a movie data file. You add
samples to movie data files with the AddMedi aSanpl e function (described on

page 2-273).

pascal OSErr Get Medi aSanpl e (Medi a theMedi a, Handl e dat aCut,

t heMedi a

dat aQut

| ong maxSi zeToG ow, |ong *si ze,

Ti reVal ue tine, TinmeValue *sanpl eTi ne,

Ti meVal ue *durati onPer Sanpl e,

Sanpl eDescri pti onHandl e sanpl eDescri pti onH,
| ong *sanpl eDescri pti onl ndex,

| ong maxNunber Of Sanpl es,

| ong *number OF Sanpl es,

short *sanpl eFl ags) ;

Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

Contains a handle. The Get Medi aSanpl e function returns the sample
data into this handle. The function increases the size of this handle, if
necessary. You can specify the handle’s maximum size with the

maxSi zeToG ow parameter.

maxSi zeToG ow

si ze

tine

Specifies the maximum number of bytes of sample data to be returned.
The Get Medi aSanpl e function does not increase the handle specified by
the dat aCut parameter to a size greater than you specify with this
parameter. Set this value to 0 to enforce no limit on the number of bytes to
be returned.

Contains a pointer to a long integer. The Get Medi aSanpl e function
updates the field referred to by the si ze parameter with the number of
bytes of sample data returned in the handle specified by the dat aQut
parameter. Set this parameter to ni | if you are not interested in this
information.

Specifies the starting time of the sample to be retrieved. You must specify
this value in the media’s time scale.

Movie Toolbox Reference 2-277

CHAPTER 2

Movie Toolbox

sampl eTi e
Contains a pointer to a time value. The Get Medi aSanpl e function
updates this time value to indicate the actual time of the returned
sample data. If you are not interested in this information, set this
parameter toni | .

The returned time may differ from the time you specified with the ti ne
parameter. This will occur if the time you specified falls in the middle of a
sample.

dur at i onPer Sanpl e
Contains a pointer to a time value. The Movie Toolbox returns the
duration of each sample in the media. This time value is expressed in the
media’s time scale. Set this parameter to 0 if you do not want this
information.

sampl eDescri pti onH
Contains a handle to a sample description. The Get Medi aSanpl e
function returns the sample description corresponding to the returned
sample data. The function resizes this handle as appropriate. If you do
not want the sample description, set this parameter toni | .

sanpl eDescri pti onl ndex
Contains a pointer to a long integer. The Get Medi aSanpl e function
returns an index value to the sample description that corresponds to
the returned sample data. If you do not want this information, set this
parameter to ni | .

You can use this index to retrieve the sample description by calling the
Get Medi aSanpl eDescri pti on function, which is described on
page 2-226.

You can retrieve the sample description itself by using the
sanpl eDescri pti onHparameter.

maxNunber OF Sanpl es
Specifies the maximum number of samples to be returned. The Movie
Toolbox does not return more samples than you specify with this
parameter.

If you set this parameter to 0, the Movie Toolbox uses a value that is
appropriate for the media, and returns that value in the field referenced
by the nunber Of Sanpl es parameter.

nunber Of Sanpl es
Contains a pointer to a long integer. The Get Medi aSanpl e function
updates the field referred to by this parameter with the number of
samples it actually returns. If you do not want this information, set this
parameter toni | .

2-278 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

sampl eFl ags
Contains a pointer to a short integer. The Get Medi aSanpl e function
returns flags that describe the sample. The following flag is available (set
unused flags to 0):

medi aSanpl eNot Sync
Indicates that the sample that is returned is not a sync
sample. Set this flag to 1 if the sample is not a sync sample.
Set this flag to 0 if the sample is a sync sample.

If you do not want this information, set this
parameter toni | .

ERROR CODES
i nval i dvedi a —2008 This media is corrupted or invalid

File Manager errors
Memory Manager errors

GetMediaSampleReference

The Get Medi aSanpl eRef er ence function allows your application to obtain reference
information about samples that are stored in a movie data file.

pascal OSErr Get Medi aSanpl eRef erence (Media theMedi a,
| ong *dataOfset,long *size, TineValue tine,
Ti reVal ue *sanpl eTi ne,
Ti meVal ue *durati onPer Sanpl e,
Sanpl eDescri pti onHandl e sanpl eDescri pti onH,
| ong *sampl eDescri pti onl ndex,
I ong maxNumber Of Sanpl es,
| ong *nunber O Sanpl es, short *sanpl eFl ags) ;

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

dat aO>f f set
Contains a pointer to a long integer. The Get Medi aSanpl eRef er ence
function updates the field referred to by this parameter with the offset to
the sample data.

This parameter is used differently by each media handler. For example,
the hierarchical file system (HFS) media handler returns an offset into the
file that contains the media data.

Movie Toolbox Reference 2-279

CHAPTER 2

Movie Toolbox

si ze Contains a pointer to a long integer. The Get Medi aSanpl eRef er ence
function updates the field referred to by the si ze parameter with the
number of bytes of sample data referred to by the reference. Set this
parameter to ni | if you are not interested in this information.

time Specifies the starting time of the sample reference to be retrieved. You
must specify this value in the media’s time scale.

sanpl eTi e
Contains a pointer to a time value. The Get Medi aSanpl eRef er ence
function updates this time value to indicate the actual time of the
returned sample data. If you are not interested in this information, set this
parameter toni | .

The returned time may differ from the time you specified with the ti me
parameter. This will occur if the time you specified falls in the middle of a
sample.

dur at i onPer Sanpl e
Contains a pointer to a time value. The Movie Toolbox returns the
duration of each sample in the media. This time value is expressed in the
media’s time scale. Set this parameter to 0 if you do not want this
information.

sanpl eDescri ptionH
Contains a handle to a sample description. The
Get Medi aSanpl eRef er ence function returns the sample description
corresponding to the returned sample data. The function resizes this
handle as appropriate. If you do not want the sample description, set this
parameter toni | .

sanpl eDescri pti onl ndex
Contains a pointer to a long integer. The Get Medi aSanpl eRef er ence
function returns an index value to the sample description that
corresponds to the returned sample data. You can use this index to
retrieve the media sample description with the
Get Medi aSanpl eDescr i pti on function, which is described on
page 2-226. If you do not want this information, set this parameter to ni | .

You can retrieve the sample description itself by using the
sanpl eDescri pti onHparameter.

maxNunber OF Sanpl es
Specifies the maximum number of samples to be returned. The Movie
Toolbox does not return a reference that refers to more samples than you
specify with this parameter.

If you set this parameter to 0, the Movie Toolbox uses a value that is
appropriate for the media and returns that value in the field referenced by
the number OF Sanpl es parameter.

nunber Of Sanpl es
Contains a pointer to a long integer. The Get Medi aSanpl eRef er ence
function updates the field referred to by this parameter with the number
of samples referred to by the returned reference. If you do not want this
information, set this parameter toni | .

2-280 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

sampl eFl ags
Contains a pointer to a short integer. The Get Medi aSanpl eRef er ence
function returns flags that describe the samples referred to by the
reference. The following flag is available (unused flags are set to 0):

medi aSanpl eNot Sync
Indicates the sample that is returned is not a sync sample.
Set this flag to 1 if the sample is not a sync sample. Set this
flag to 0 if the sample is a sync sample.

If you do not want this information, set this
parameter toni | .

DESCRIPTION

The Get Medi aSanpl eRef er ence function is similar to Get Medi aSanpl e, except that
it does not return the sample data.

ERROR CODES
i nval i dMedi a -2008 This media is corrupted or invalid
Memory Manager errors

Media Functions

The Movie Toolbox does not contain any support for specific media types. Rather, it
delegates this work to media handler components. The Movie Toolbox provides a
number of functions that allow your application to interact with media handlers. This
section describes those functions. It has been divided into the following topics:

n “Selecting Media Handlers” describes the functions that you can use to gain access to
a media handler

n “Video Media Handler Functions” describes the functions that allow your application
to interact with video media handlers

n “Sound Media Handler Functions” describes the functions that allow your application
to interact with sound media handlers

n “Text Media Handler Functions” describes the functions that allow your application
to interact with text media handlers

Movie Toolbox Reference 2-281

CHAPTER 2

Movie Toolbox

Selecting Media Handlers

Media handler components are responsible for interpreting and manipulating a media’s
sample data. Each type of media has its own media handler, which deals with the
specific characteristics of the media data. The Movie Toolbox provides a set of functions
that allow you to gather information about a media handler and assign a particular
media handler to a media. This section discusses those functions.

Each media handler has an associated data handler for each data reference. The data
handler is responsible for fetching, storing, and caching the data that the media handler
uses. The Movie Toolbox provides functions that allow you to get information about data
handlers and to assign a particular data handler to a media.

The Get Medi aHandl er and Get Medi aHandl er Descri pt i on functions allow you to
retrieve information about a media handler.

You can use the Set Medi aHand!| er function to assign a media handler to a media.

The Get Medi aDat aHandl er and Get Medi aDat aHandl er Descri pt i on functions
enable you to retrieve information about a data handler. Use the
Set Medi aDat aHandl er function to assign a data handler to a media.

GetMediaHandlerDescription

2-282

The Get Medi aHandl er Descri pti on function allows your application to retrieve
information about a media handler. You specify the media.

pascal void Get Medi aHandl er Descri ption (Media theMedi a,
OSType *medi aType,
Str255 creat or Nane,
OSType *creat or Manuf acturer);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

medi aType Contains a pointer to a field of data type OSType. The Movie Toolbox
returns the media type identifier. This value indicates the type of media
supported by this media handler. This value also corresponds to the
component subtype specified for the media handler component. If you do
not want to receive this information, set the medi aType parameter to
ni | . The following values are available:

Vi deoMedi aType Video media
SoundMedi aType Sound media
Text Medi aType Text media

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

creat or Nane
Points to a string. The Movie Toolbox returns the name of the media
handler’s creator. If you do not want to receive this information, set this
parameter toni | .

creat or Manuf act ur er
Contains a pointer to a long integer. The Movie Toolbox returns the 4-byte
value that identifies the manufacturer of the component. If you do not
want to retrieve this information, set this parameter to ni | .

The Movie Toolbox returns information about that media’s media handler. This
information describes the media handler that created the media, not the handler that is
currently assigned to the media.

i nval i dvedi a —-2008 This media is corrupted or invalid

GetMediaHandler

DESCRIPTION

ERROR CODES

The Get Medi aHandl er function allows you to obtain a reference to a media handler
component.

You can use this reference to call the media handler directly. See “Video Media Handler
Functions,” which begins on page 2-287, and “Sound Media Handler Functions,” which
begins on page 2-288, for information about the functions that are supported by video
and sound media handlers.

pascal Medi aHandl er Get Medi aHandl er (Medi a t heMedi a);
theMedi a Specifies the media for this operation. Your application obtains this media

identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

The Get Medi aHandl er function returns a reference to the media’s media handler. If the
function could not locate the media handler, it sets this reference to ni | . You can use this
reference to call the media handler.

i nval i dMedi a —-2008 This media is corrupted or invalid

Movie Toolbox Reference 2-283

CHAPTER 2

Movie Toolbox

SetMediaHandler

ERROR CODES

The Set Medi aHandl er function allows you to assign a specific media handler to a
track. The Movie Toolbox closes the track’s previous media handler and then opens the
new one. It is your responsibility to ensure that the media handler you specify can
handle the data in the track.

pascal OSErr Set Medi aHandl er (Media theMedi a,
Medi aHandl er Conponent nH) ;

theMedi a Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as Newibvi eTr ack and
Get Movi eTr ack (described on page 2-151 and page 2-204, respectively).

mH Contains a reference to a media handler component. You obtain this

reference from the Get Medi aHandl| er function, which is described in the
previous section.

Note

Your application should not need to call the Set Medi aHandl| er
function. The Movie Toolbox assigns a media handler to each track
when you load a movie. u

i nval i dHandl er -2013 This handler is invalid

GetMediaDataHandlerDescription

2-284

The Get Medi aDat aHandl| er Descri pti on function allows your application to retrieve
information about a media’s data handler. You specify the media.

pascal void Get Medi aDat aHandl er Descri pti on (Medi a t heMedi a,
short index, OSType *dhType,
Str255 creat or Nane,
OSType *creator Manuf acturer);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get Tr ackMedi a (described on page 2-153 and page 2-206, respectively).

i ndex Identifies the data reference. You provide the index value that
corresponds to the data reference for which you want to retrieve the data
handler description. You must set this parameter to 1.

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

dhType Contains a pointer to a field of data type OSType. The Movie Toolbox
returns the data handler type identifier. This value indicates the type of
data reference supported by this data handler. This value also
corresponds to the component subtype specified for the data handler
component. All QuickTime data references have a type valueof " al i s' .
If you do not want to receive this information, set the dhType parameter
tonil.

creat or Nane
Points to a string. The Movie Toolbox returns the name of the data
handler’s creator. If you do not want to receive this information, set this
parameter to ni | .

cr eat or Manuf act ur er
Contains a pointer to a long integer. The Movie Toolbox returns the 4-byte
value that identifies the manufacturer of the component. If you do not
want to retrieve this information, set this parameter to ni | .

The Movie Toolbox returns information about that media’s data handler. This
information describes the data handler that created the media data, not the handler that
is currently assigned to the media.

i nval i dvedi a —2008 This media is corrupted or invalid

GetMediaDataHandler

The Get Medi aDat aHandl er function allows you to determine a media’s data handler.

pascal DataHandl er Get Medi aDat aHandl er (Medi a t heMedi a,
short index);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

i ndex Identifies the data reference. You provide the index value that
corresponds to the data reference for which you want to retrieve the data
handler. You must set this parameter to 1.

Movie Toolbox Reference 2-285

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Get Medi aDat aHandl er function returns a data handler identifier. This identifier is
a component instance that specifies a connection to a data handler component (see the
chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox for more
information about components). If the Movie Toolbox cannot determine the data handler
for the media you specify, the function sets this returned value toni I .

Note
Your application should not need to call this function. u

i nval i dvedi a —2008 This media is corrupted or invalid

SetMediaDataHandler

DESCRIPTION

2-286

The Set Medi aDat aHandl er function allows you to assign a data handler to a media.

pascal OSErr Set Medi aDat aHandl er (Medi a theMedi a, short index,
Dat aHandl er Component dat aHandl er);

theMedi a Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTr ackMedi a and
Get TrackMedi a (described on page 2-153 and page 2-206, respectively).

i ndex Identifies the data reference for this data handler. You provide the
index value that corresponds to the data reference. You must set this
parameter to 1.

dat aHandl er
Specifies the data handler for the media. This identifier is a component
instance that specifies a connection to a data handler component (see the
chapter “Component Manager” in Inside Macintosh: More Macintosh
Toolbox for more information about components). If the data handler you
specify cannot work with the data stored in the media, the function does
not change the media’s data handler.

When you create a new media or load an existing media into memory, the media handler
assigns an appropriate data handler to the track’s media.

Note

Your application should not call the Set Medi aDat aHandl er
function. The Movie Toolbox assigns a data handler to each media when
you load a movie. u

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

badConponent Type —-2005 Component cannot accommodate this data
i nval i dMedi a —-2008 This media is corrupted or invalid

Video Media Handler Functions

Video media handlers are responsible for interpreting and manipulating video data.
These media handlers allow you to call them directly to work with some graphics
settings. This section describes the functions supported by video media handlers.

Video media handlers maintain a graphics mode and color value that affect the display
of video data. You can use the Set Vi deoMedi aG aphi csMbde and

Get Vi deoMedi aGr aphi csMode functions to work with these characteristics. See Inside
Macintosh: Imaging for more information about setting color values for use with the
addPi n, subPi n, bl end, andt r anspar ent drawing modes.

Sample descriptions for video media are stored in image description structures. For a
complete discussion of the format and content of the image description structure, see the
chapter “Image Compression Manager” in this book.

SetVideoMediaGraphicsMode

ERROR CODES

The Set Vi deoMedi aGr aphi csMde function allows you to set the graphics mode and
blend color of a video media.

pascal Handl erError SetVi deoMedi aG aphi csMbde (Medi aHandl er mh,
| ong graphi csMbde,
const RGBCol or *opCol or);

mH Contains a reference to a media handler. You obtain this reference from
the Get Medi aHandl er function, which is described on page 2-283.

gr aphi csMode
Specifies the graphics mode of the media handler. This is a QuickDraw
transfer mode value.

opCol or Contains a pointer to the color for use in blending and transparent
operations. The media handler passes this color to QuickDraw as
appropriate when you draw in addPi n, subPi n, bl end, or
t ranspar ent mode.

Component Manager errors

Movie Toolbox Reference 2-287

SEE ALSO

CHAPTER 2

Movie Toolbox

You can retrieve the graphics mode and blend color currently in use by a video media
handler by calling the Get Vi deoMedi aG aphi csMbde function, which is described in
the next section.

GetVideoMediaGraphicsMode

ERROR CODES

SEE ALSO

The Get Vi deoMedi aGr aphi csMode function allows you to obtain the graphics mode
and blend color values currently in use by a video media handler.

pascal Handl erError GCetVi deoMedi aG aphi csMbde (Medi aHandl er mh,
| ong *graphi cshbde,
RGBCol or *opCol or);

mH Contains a reference to a media handler. You obtain this reference from
the Get Medi aHandl er function, which is described on page 2-283.

gr aphi csMode
Contains a pointer to a long integer. The media handler returns the
graphics mode currently in use by the media handler. This is a
QuickDraw transfer mode value.

opCol or Contains a pointer to an RGB color structure. The Movie Toolbox returns
the color currently in use by the media handler. This is the blend value for
blends and the transparent color for transparent operations. The Movie
Toolbox supplies this value to QuickDraw when you draw in addPi n,
subPi n, bl end, ort r anspar ent mode.

Component Manager errors

You can set the graphics mode and blend color of a video media handler by calling the
Set Vi deoMedi aGr aphi csMode function, which is described in the previous section.

Sound Media Handler Functions

2-288

Sound media handlers are responsible for interpreting and manipulating sound data.
These media handlers allow you to call them directly to work with some audio settings.
This section describes the functions supported by sound media handlers.

Sound media handlers maintain balance information for their audio data. You can use
the Set SoundMedi aBal ance and Get SoundMedi aBal ance functions to work with a
handler’s balance setting.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Sample descriptions for sound media are stored in sound description structures. See
“The Sound Description Structure” on page 2-79 for a discussion of the format and
content of the sound description structure.

SetSoundMediaBalance

The Set SoundMedi aBal ance function sets the balance of a sound media.

pascal Handl er Error Set SoundMedi aBal ance (Medi aHandl er mh,
short bal ance);

mH Contains a reference to a media handler. You obtain this reference from
the Get Medi aHand! er function, which is described on page 2-283.
bal ance Specifies the balance setting of the media handler as a 16-bit, fixed-point

value. The high-order 8 bits contain the integer part of the value; the
low-order 8 bits contain the fractional part. VValid balance values range
from -1.0 to 1.0. Negative values emphasize the left sound channel, and
positive values emphasize the right sound channel; a value of 0 specifies
neutral balance.

ERROR CODES
Component Manager errors

GetSoundMediaBalance

The Get SoundMedi aBal ance function returns the balance of a sound media.

pascal Handl er Error Get SoundMedi aBal ance (Medi aHandl er nh,
short *bal ance);

mH Contains a reference to a media handler. You obtain this reference from
the Get Medi aHandl er function, which is described on page 2-283.
bal ance Contains a pointer to an integer. The Movie Toolbox returns the current

balance setting of the media handler as a 16-bit, fixed-point value. The
high-order 8 bits contain the integer part of the value; the low-order 8 bits
contain the fractional part. Valid balance values range from —1.0 to 1.0.
Negative values emphasize the left sound channel, and positive values
emphasize the right sound channel; a value of 0 specifies neutral balance.

ERROR CODES
Component Manager errors

Movie Toolbox Reference 2-289

CHAPTER 2

Movie Toolbox

Text Media Handler Functions

2-290

This section describes the functions and structure associated with the text media handler,
which allows you to display text in movies. You can use text media handlers to

n add plain or styled text samples to a movie

n indicate scrolling and highlighting properties for the text
n search for text

n highlight specified text

A particular text sample has a default font, size, typeface, and color as well as a location
(text box) within the track bounds to be drawn. The data format allows you to include
style run information for the text. You can set flags to clip the display to the text box,
inhibit automatic scaling of text as the track bounds are scaled, scroll the text, and
specify if text is to be displayed at all.

The Movie Toolbox provides functions to help you add text samples to a track. You can
use the AddText Sanpl e function to add text to a media. The AddTESanpl e function
allows you to specify a TextEdit handle (which may have multiple style runs) to be
added to a media. The AddHi | i t eSanpl e function allows you to indicate highlighting
for text that has just been added with the AddText Sanpl e or AddTESanpl e function.
For more information on styled text, style runs, and TextEdit, see Inside Macintosh: Text.

The format of the text data that is added to the media is a 16-bit length word followed by
the text. The length word specifies the number of bytes in the text. Optionally, one or
more atoms of additional data may follow. An atom is structured as a 32-bit length word
followed by a 32-bit type followed by some data. The length word includes the size of
the data as well as the length and type fields (in other words, the size of the data plus 8).

Text atom types include the style atom (* st yl '), the shrunken text box atom (' t box"),
the highlighting atom (' hl i t '), the scroll delay atom (* dl ay'), and the highlight color
atom (" hclr").

The format of the style atom is the same as TextEdit’s St Scr pRec data type. A
St Scr pRec data type is a short integer specifying the number of style runs followed by
that number of Scr pSTEI enrent data types, each specifying a different style run.

The shrunken text box atom is added when you set the df Shri nkText BoxToFi t
display flag (in the AddText Sanpl e or AddTESanpl e function). Its format is simply
the rectangle of the shrunken box (16 bytes total, including length and type).

The highlighting atom is added if the hi I i t eSt art andhi | i t eEnd parameters are set
appropriately in the AddText Sanpl e or AddTESanpl e function. When

AddHi |'i t eSanpl e is called, an empty text sample (the first 2 bytes are 0) with a
highlighting atom is added to the media. The format is two long integers indicating the
start and end of the highlighting (16 bytes total).

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

The scroll delay atom specifies the scroll delay for a sample. It is a long value that
specifies the delay time. It consists of 12 bytes, including the length and type fields.

The highlight color atom specifies the highlight color for a sample. Its format is an
RGBCol or data type (that is, 2 bytes red, 2 bytes green, and 2 bytes blue). It consists of
14 bytes, including the length and type fields.

The text description structure is defined as follows:

typedef struct TextDescription {

| ong si ze; /* total size of this text
description structure */
| ong type; /* type of data in this
structure such as
"text' */
| ong resvdil; /* reserved for use by
Appl e--set to 0 */
| ong resvd; /* reserved for use by
Appl e--set to 0 */
short dat aRef | ndex; /* index to data references */
| ong di spl ayFl ags; /* display flags for text */
| ong textJustification
[* text justification flags */
RGBCol or gCol or; /* background col or */
Rect def aul t Text Box; /* location of the text within

track bounds */
Scr pSTEl enent defaul t Styl e;
[* default style--
TextEdit structure */
} TextDescription, *TextDescriptionPtr, **TextDescriptionHandl e;

Field descriptions

si ze Defines the total size of this text description structure.
type Indicates the type (data type ' t ext ").

resvdl Reserved for use by Apple. This field must be set to 0.
resvd2 Reserved for use by Apple. This field must be set to 0.

di spl ayFl ags Contains the flags that specify how the text is to be displayed.

textJustification
Contains the constant that specifies how the text is to be aligned.

bgCol or Specifies the background color for the text display.

def aul t Text Box
Indicates the location of the text within track boundaries.

defaultStyle Provides a TextEdit data structure (defined by the Scr pSTElI enent
data type) that specifies the default style for the text display.

Movie Toolbox Reference 2-291

2-292

CHAPTER 2

Movie Toolbox

The AddText Sanpl e, AddTESanpl e, and AddHi | i t eSanpl e functions described in
the sections that follow convert text into the text media format and add it to the media.
To use these functions, you need to

n

n

n

n

n

create a text track and media
call the Begi nMedi aEdi t s function

call the AddText Sanpl e, AddTESanpl e, or AddHi | i t eSanpl e function, as
appropriate

call the EndMedi aEdi t s function

call the I nsert Medi al nt oTr ack function

The movie import and export components help to get common data types (such as
"PICT'" or'snd ') intoand out of movies easily. The text import component allows
you to get text into a movie using the following principles:

n

If you try to paste text, the text is inserted at the current position. The text import
component tries to find an existing text track that fits the text.

If no text tracks exist and there is an insertion operation, the newly created text track
has the same position and size as the movie box.

If there is an addition operation (using the Shift key), the new track is added below
the movie at a height that fits the text.

If a text track exists but the text does not fit, a new text track with sufficient height to
accommodate the text is created in the same location as the existing one.

If you hold down the Option key when you paste, the text is added in parallel at some
default duration.

If you hold down both the Option and Shift keys, the duration of the text is
determined by the length of the current selection.

If style information is on the Clipboard, it is used; otherwise, the text appears in the
default 12-point application font, centered, in white on a black background.

If you want more control over how the text is added (for example, if you want to set
some display flags or a new track position), your application must

1.
2.

intercept the text paste

instantiate its own text import component using the component type ' eat ' and

component subtype ' TEXT'

. use functions including Movi el nport Set Sanpl eDur ati on,

Movi el mpor t Set Sanpl eDescri ption, Movi el nport Set Di mensi ons,
and Movi el nport Set Auxi | | i aryDat a (with' styl' and a St Scr pHandl e
data type)

. call the Movi el mpor t Handl e function with the text data

. adjust the location of the track, if desired (since the text import component may place

it below the movie box)

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

For details on the movie import and export components, see Inside Macintosh: QuickTime
Components.

The Movie Toolbox provides functions that allow you to search for and highlight text.
You can use the Fi ndNext Text function to search for text in a text track, and the
Hi | i t eText Sanpl e function to highlight specified text in a text track.

You can use the Set Text Pr oc function (also described in this section) to specify a
customized function whenever a new text sample is added to a movie. The
application-defined text function My Text Pr oc is described in “Text Functions” on
page 2-364.

AddTextSample

The AddText Sanpl e function adds a single block of styled text to an existing media.

pascal Conponent Result AddText Sanpl e (Medi aHandl er mh, Ptr text,
unsi gned | ong si ze,
short font Num
short fontSize,
Styl e textFace,
RGBCol or *text Col or,
RGBCol or *backCol or,
short textJustification,
Rect *t ext Box,
| ong di spl ayFl ags,
Ti meVal ue scrol | Del ay,
short hiliteStart,
short hiliteEnd,
RGBCol or *rgbHiliteCol or,
Ti meVal ue durati on,
Ti meVal ue *sanpl eTi ne);

nmh Specifies the media handler for the text media obtained by the
Get Medi aHandl er function.

t ext Contains a pointer to a block of text.

si ze Indicates the size of the text block (in bytes).

f ont Num Indicates the number for the font in which to display the text.

fontSi ze Indicates the size of the font.
t ext Face Indicates the typeface or style of the text (that is, bold, italic, and so on).

Movie Toolbox Reference 2-293

CHAPTER 2

Movie Toolbox

t ext Col or Contains a pointer to an RGB color structure specifying the color of the
text.

backCol or Contains a pointer to an RGB color structure specifying the text
background color.

textJustification
Indicates the justification of the text. The following constants are
available: t eFl ushDef aul t,t eCent er,t eFl ushRi ght, or
t eFl ushLef t. See Inside Macintosh: Text for details on these constants
and on text alignment.

t ext Box Contains a pointer to the box within which the text is to be displayed. The
box is relative to the track bounds.

di spl ayFl ags
Contains the text display flags.

df Dont Di spl ay
Does not display the specified sample.

df Dont Aut oScal e
Does not scale the text if the track bounds increase.

df C i pToText Box
Clips to just the text box. (This is useful if the text overlays
the video.)

df Shri nkText BoxToFi t
Recalculates size of the t ext Box parameter to just fit the
given text and stores this rectangle with the text data.

df ScrollIn
Scrolls the text in until the last of the text is in view. This
flag is associated with the scr ol | Del ay parameter.

df Scrol | Qut
Scrolls text out until the last of the text is out of view. This
flag is associated with the scr ol | Del ay parameter. If both
df Scrol I nanddf Scrol | Qut are set, the text is scrolled
in, then out.

df Hori zScr ol |
Scrolls a single line of text horizontally. If the
df Hori zScr ol | flag is not set, then the scrolling is
vertical.

df Rever seScrol |
If set, scrolls vertically down, rather than up. If not set,
horizontal scrolling proceeds toward the left rather than
toward the right.

scrol | Del ay
Indicates the delay in scrolling associated with setting the df Scrol | I n
and df Scr ol | Qut display flags. If the value of the scr ol | Del ay
parameter is greater than 0 and the df Scr ol | | n flag is set, the text
pauses when it has scrolled all the way in for the amount of time specified

2-294 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

by scrol | Del ay. If the df Scr ol | Qut flag is set, the pause occurs first
before the text scrolls out. If both these flags are set, the pause occurs at
the midpoint between scrolling in and scrolling out.

hiliteStart
Specifies the beginning of the text to be highlited.

hiliteEnd Specifies the end of the text to be highlighted. If the hi | i t eEnd
parameter is greater than the hi | i t eSt art parameter, then the text is
highlighted from the selection specified by hi | it eStart tohi | i t eEnd.
To specify additional highlighting, you can use the AddHi | i t eSanpl e
function, described on page 2-297.

rgbHi it eCol or
Contains a pointer to the RGB color for highlighting. If this parameter is
notni |, then the specified color is used when highlighting the text
indicated by the hiliteStart andhi | it eEnd parameters. Otherwise,
the default system highlighting is used.

duration Specifies how long the text sample should last. This duration is expressed
in the media’s time base.

sanpl eTi e
Contains a pointer to a Ti neVal ue structure. The actual media time at
which the sample was added is returned here.

ERROR CODES
i nval i dvedi a —2008 This media is corrupted or invalid

File Manager errors
Memory Manager errors

AddTESample

The AddTESanpl e function allows you to specify a TextEdit handle (which may contain
multiple style runs) to be added to the specified media.

pascal Conponent Result AddTESanpl e (Medi aHandl er nmh, TEHandl e hTE,
RGBCol or *backCol or,
short textJustification,
Rect *t ext Box,
| ong di spl ayFl ags,
Ti meVal ue scrol | Del ay,
short hiliteStart,
short hiliteEnd,
RGBCol or *rgbHiliteCol or,
Ti meVal ue durati on,
Ti reVal ue *sanpl eTi ne);

Movie Toolbox Reference 2-295

CHAPTER 2

Movie Toolbox

mh Specifies the media handler for the text media obtained by the
Get Medi aHandl er function.
hTE A handle to a styled TextEdit structure.

backCol or Contains a pointer to an RGB color structure specifying the text
background color.

textJustification
Indicates the justification of the text. The following constants are
available: t eFl ushDef aul t,t eCent er, t eFl ushRi ght , or
t eFl ushLef t . See Inside Macintosh: Text for details on these constants
and on text alignment.

t ext Box Contains a pointer to the box within which the text is to be displayed. The
box is relative to the track bounds.

di spl ayFl ags
Contains the text display flags.

df Dont Di spl ay
Does not display the specified sample.

df Dont Aut oScal e
Does not scale the text if the track bounds increase.

df d i pToText Box
Clips to the text box only. (This is useful if the text overlays
the video.)

df Shri nkText BoxToFi t
Recalculates size of the t ext Box parameter to just fit the
given text and stores this rectangle with the text data.

df Scrol I I n
Scrolls the text in until the last of the text is in view.

df Scr ol | Qut
Scrolls text out until the last of the text is out of view. If
both df Scrol | | nanddf Scrol | Qut are set, the text is
scrolled in, then out.

df Hori zScr ol |
Scrolls a single line of text horizontally. If the
df Hori zScr ol | flag is not set, then the scrolling is
vertical.

df Rever seScrol |
If set, scrolls vertically down, rather than up. If not set,
horizontal scrolling proceeds toward the left rather than
toward the right.

scrol | Del ay
Indicates the delay in scrolling associated with the setting of the
df Scrol I I nanddf Scrol | Qut display flags. If the value of the
scrol | Del ay parameter is greater than 0 and the df Scrol | | n flag is
set, the text pauses when it has scrolled all the way in for the amount of
time specified by scr ol | Del ay. If the df Scrol | Qut flag is set, the
pause occurs first before the text scrolls out. If both these flags are set,
the pause occurs at the midpoint between scrolling in and scrolling out.

2-296 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

hiliteStart

hiliteEnd

Specifies the beginning of the text to be highlighted.

Specifies the end of the text to be highlighted. If the hi | i t eEnd
parameter is greater than the hi | i t eSt art parameter, then the text is
highlighted from the selection specified by hi liteStart tohi | i t eEnd.
To specify additional highlighting, you can use the AddHi | i t eSanpl e
function, described in the next section.

rgbHi 1iteCol or

dur ati on

sanpl eTi e

ERROR CODES
i nval i dMedi

Contains a pointer to the RGB color for highlighting. If this parameter is
notni | , then the specified color is used when highlighting the text
indicated by the hiliteStart andhiliteEnd parameters. Otherwise,
the default system highlight color is used.

Specifies how long the text sample should last. This duration is expressed
in the media’s time base.

Contains a pointer to a Ti meVal ue structure. The actual media time at
which the sample was added is returned here.

a —2008 This media is corrupted or invalid

File Manager errors
Memory Manager errors

AddHiliteSample

The AddHi | i t eSanpl e function provides dynamic highlighting of text.

pascal Conponent Result AddHi|iteSanpl e (Medi aHandl er mh,

mh
hiliteStart
hiliteEnd

short hiliteStart,

short hiliteEnd,

RGBCol or *rgbHiliteCol or,
Ti neVal ue durati on,

Ti meVal ue *sanpl eTi ne)

Specifies the media handler for the text media obtained by the
Get Medi aHandl er function.

Indicates the beginnning of the text to be highlighted.

Indicates the ending of the text to be highlighted. If the value of the
hiliteStart parameter equals that of the hi | i t eEnd parameter, then
no text is highlighted (that is, highlighting is turned off for the duration of
the specified sample).

Movie Toolbox Reference 2-297

CHAPTER 2

Movie Toolbox

rgbHi it eCol or
Contains a pointer to the RGB color for highlighting. If this parameter is
notni |, then the specified color is used when highlighting the text
indicated by the hiliteStart andhi | it eEnd parameters. Otherwise,
the default system highlight color is used.

duration Specifies how long the text sample should last. This duration is expressed
in the media’s time base.

sanpl eTi e
Contains a pointer to a Ti neVal ue structure. The actual media time at
which the sample was added is returned here.

DESCRIPTION

The AddHi | i t eSanpl e function essentially extends the duration of the text that has
just been added, using the highlighting indicated by the hi l i teStart andhi |l i t eEnd
parameters. You must call the AddHi | i t eSanpl e function after calling

AddText Sanpl e or AddTESanpl e. Since AddHi | i t eSanpl e uses the concept of
difference frames, the highlighted samples must immediately follow their associated text
samples.

ERROR CODES
i nval i dMedi a —-2008 This media is corrupted or invalid

File Manager errors
Memory Manager errors

FindNextText

The Fi ndNext Text function searches for text with a specified media handler starting at
a given time.

pascal Conponent Result Fi ndNext Text (Medi aHandl er nh,
Ptr text, long size,
short fi ndFl ags,
Ti meVal ue startTi ne,
Ti meVal ue *foundTi ne,
Ti meVal ue *foundDurati on,
| ong *of fset);

2-298 Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

mh
t ext

si ze
fi ndFl ags

start Ti ne
f oundTi e

f oundDur at i

of f set

Specifies the media handler for the text media obtained by the
Get Medi aHandl er function.

Points to the text to be found.
Specifies the length of the text to be found.
Specifies the conditions of the search. The following flags are available:

fi ndText EdgeXK
Finds sample at the given start time.

fi ndText CaseSensitive
Conducts a case-sensitive search for the text.

fi ndText Rever seSear ch
Searches backward for the text.

findText UseOX f set
Searches beginning from the value pointed to by the
of f set parameter.

fi ndText W apAr ound
Conducts a wraparound search when the end or the
beginning of the text is reached.

Indicates the time (expressed in the movie time scale) at which to begin
the search.

Contains a pointer to the movie time at which the text sample is found if
the search is successful. Otherwise, it returns 1.

on
Contains a pointer to the duration of the sample (in the movie time scale)
that is found if the search is successful.

Contains a pointer to the offset of the found text from the beginning of the
text portion of the sample.

If the text sample is found, Fi ndNext Text returns the movie time at which it was
located, the duration of the text sample, and its offset from the beginning of the text
portion of the media sample.

i nval i dMedi

a —-2008 This media is corrupted or invalid

File Manager errors
Memory Manager errors

Movie Toolbox Reference 2-299

CHAPTER 2

Movie Toolbox

HiliteTextSample

DESCRIPTION

ERROR CODES

SEE ALSO

2-300

When you call the Hi | i t eText Sanpl e function with a given text media handler, your
application can specify selected text to be highlighted.

pascal ConponentRResult HiliteText Sanpl e (Medi aHandl er mh,
Ti meVal ue sanpl eTi e,
short hiliteStart,
short hiliteEnd
RGBCol or *rgbHiliteCol or);

mh Specifies the media handler for the text media obtained by the
Get Medi aHandl er function.
sanpl eTi e
Indicates a sample time (in the movie time scale) for the text to be
highlighted. To turn off the highlighting in the text, pass a value of -1.
hiliteStart
Specifies the beginning of the text to be highlighted.

hiliteEnd Specifies the end of the text to be highlighted.

rgbHi i teCol or
Contains a pointer to the RGB color for highlighting. If this parameter is
notni | , then the specified color is used when highlighting the text
indicated by the hiliteStart andhi |l it eEnd parameters. Otherwise,
the default system highlight color is used.

The Hi | i t eText Sanpl e function overrides any highlighting information that may
already be in the specified text.

None

The Hi | i t eText Sanpl e function is useful when used in conjunction with the
Fi ndNext Text function, described in the previous section.

Movie Toolbox Reference

SetTextProc

CHAPTER 2

Movie Toolbox

ERROR CODES

Your application can use the Set Text Pr oc function to specify a customized function
that is to be called whenever a text sample is displayed in a movie.

pascal Conponent Result Set TextProc (Medi aHandl er mh,
Text Medi aProcPtr Text Proc,
I ong refcon);

mh Indicates the media handler for the text media obtained by the
Get Medi aHandl er function.

Text Proc Points to the address of your customized function.

refcon Indicates a reference constant that will be passed to your function. Set this
parameter to 0 if you don’t need it.

The format of your customized text function is

pascal OCSErr MyText Proc (Handl e theText,
Movi e t heMovi e,
short *di spl ayFl ag,
I ong refcon);

See “Text Functions” on page 2-364 for details on the parameters.

None

Functions for Creating File Previews

The Movie Toolbox provides two functions that allow you to create file previews. File
previews contain information that gives the user an idea of a file’s contents without
opening the file. Typically, a file’s preview is a small PICT image (called a thumbnail), but
previews may also contain other types of information that is appropriate to the type of
file being considered. For example, a text file’s preview might tell the user when the file
was created and what it discusses. For more information about file previews and how to
display them, see “Previewing Files” on page 2-65.

Note

The MakeFi | ePr evi ewand AddFi | ePr evi ewfunctions documented
in this section are not listed in the MPW Movi es. h interface file; rather,
they appear in the MPW | mageConpr essi on. h interface file. u

You can use the MakeFi | ePr evi ewfunction to create a preview for a file. The
AddFi | ePr evi ewfunction allows you to add a preview that you have created to a file.

Movie Toolbox Reference 2-301

CHAPTER 2

Movie Toolbox

MakeFilePreview

DESCRIPTION

ERROR CODES

2-302

The MakeFi | ePr evi ewfunction creates a preview for a file. You should create a
preview whenever you save a movie. You specify the file by supplying a reference to its
resource file. You must have opened this resource file with write permission.

pascal OSErr MakeFil ePrevi ew (short resRef Num
Pr ogressProcRecordPtr progress);

resRef Num Specifies the resource file for this operation. You must have opened this
resource file with write permission. If there is a preview in the specified
file, the Movie Toolbox replaces that preview with a new one.

progress Points to a progress function. During the process of creating the preview,
the Movie Toolbox may occasionally call a function you provide in order

to report its progress. You can then use this information to keep the user
informed.

Set this parameter to —1 to use the default progress function. If you
specify a progress function, it must comply with the interface defined for
Image Compression Manager progress functions (see the chapter “Image
Compression Manager” in this book for more information). Set this
parameter to ni | to prevent the Movie Toolbox from calling a progress
function. (For details on application-defined progress functions, see
“Progress Functions,” which begins on page 2-354.)

If there is a preview in the specified file, the Movie Toolbox replaces that preview with a
new one.

par ankrr -50 Invalid parameter specified

File Manager errors
Memory Manager errors
Resource Manager errors

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

AddFilePreview

DESCRIPTION

ERROR CODES

SEE ALSO

The AddFi | ePr evi ewfunction allows you to add a preview to a file. You must have
created the preview data yourself. If the specified file already has a preview defined, the
AddFi | ePr evi ewfunction replaces it with the new preview.

pascal OSErr AddFil ePrevi ew (short resRef Num OSType previ ewlype,
Handl e previ ewDat a) ;

resRef Num Specifies the resource file for this operation. You must have opened this
resource file with write permission. If there is a preview in the specified
file, the Movie Toolbox replaces that preview with a new one.

previ ewlType
Specifies the resource type to be assigned to the preview. This type should
correspond to the type of data stored in the preview. For example, if you
have created a QuickDraw picture that you want to use as a preview for a
file, you should set the pr evi ewType parameter to PICT.

previ ewbDat a
Contains a handle to the preview data. For example, if the preview data is
a picture, you would provide a picture handle.

If you pass 0 for the pr evi ewType and pr evi ewDat a parameters, the file preview is
removed.

File Manager errors
Memory Manager errors
Resource Manager errors

You can use the MakeFi | ePr evi ewfunction, described in the previous section, to create
a new preview for a file.

Movie Toolbox Reference 2-303

CHAPTER 2

Movie Toolbox

Functions for Displaying File Previews

The following section describes four functions that let you display file previews.

The Movie Toolbox provides two functions that allow you to display file previews in an
Open dialog box in System 6 using standard file reply structures: SFGet Fi | ePr evi ew
and SFPGet Fi | ePr evi ew The Movie Toolbox also supplies two new functions that
allow you to display file previews in an Open dialog box in System 7 using standard file
reply structures: St andar dGet Fi | ePr evi ewand Cust ontzet Fi | ePr evi ew

n The SFGet Fi | ePr evi ewfunction corresponds to the File Manager’'s SFGet Fi | e
routine. This function is the preferred function for creating a file preview and works
with either System 7 or System 6.

n The SFPGet Fi | ePr evi ewfunction corresponds to the File Manager’s SFPGet Fi | e
routine.

n The St andar dGet Fi | ePr evi ewfunction corresponds to the File Manager’s
St andar dGet Fi | e routine.

n The Cust onGet Fi | ePr evi ewfunction corresponds to the File Manager’s
Cust ontet Fi | e routine. This function is available only in System 7.

All of these functions take the same parameters as their existing counterparts with the
addition of a wher e parameter that allows you to specify the location of the upper-left
corner of the dialog box. See Inside Macintosh: Files for information on the SFGet Fi | e,
SFPGet Fi | e, St andar dGet Fi | e, and Cust onGet Fi | e routines.

The SFCet Fi | ePr evi ew SFPCet Fi | ePrevi ew St andar dGet Fi | ePr evi ew and
Cust ontet Fi | ePr evi ewfunctions allow the user to automatically convert files to
movies if your application requests movies. If there is a file that can be converted into

a movie file using a movie import component, then the file is shown in the Standard File
dialog box in addition to any movies. When the user selects the file, the Open button
changes to a Convert button. Figure 2-41 provides an example of this dialog box.

Figure 2-41 Dialog box showing automatic file-to-movie conversion option

2-304

— walker ¥ — walker

Preview
Digital Film
discipline
Dumpster

o
0o
j 0o
Eq))) O EarthSpin
D Elvis (AIFF)
o
D
D
|

Desktop

Cancel

Is anystereon?

Is anystereo?(fast) Lonvert...

[l

for doug
Drsain

Show Preview

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Choosing Convert displays a dialog box that allows the user to choose where the
converted file should be saved. Figure 2-42 shows this dialog box.

Figure 2-42 Dialog box for saving a movie converted from a file

=l gqrabs v =— transylvania
k iy imut
0% Brdue e
T dnstrnyg Desktop

1 Hemes

iE OEEa
mivint aaxl
EEER TR
sy funingd

Gptiong...

Cancel

E

Save converted file as:
[Elis (RIFF) Movie | [save

O
—

When conversion is complete, the converted file is returned to the calling application as
the movie that the user chose. If you want to disable automatic file conversion in your
application, you must write a file filter function and pass it to the file preview display
function you are using. Your file filter function must call the File Manager's

FSpGet Fi | el nf o function on each file that is passed to it to determine its actual file
type. If the File System parameter block pointer passed to your file filter function
indicates that the file type is ' MooV , and the actual type returned by FSpGet Fi | el nf o
isnot' MooV , then the file filter function will convert this file. If you do not wish a file
to be displayed as a candidate for conversion, your file filter function should return a
value of t r ue when it is called for that file.

See “File Filter Functions” beginning on page 2-360 for comprehensive details on the
interaction of application-defined file filter functions with the file preview display
functions. For information of FSpGet Fi | el nf o, see Inside Macintosh: Files.

Note

The functions described in this section do not appear in the MPW
interface file Movi es. h; rather, they are listed in
I mgeConpr essi on. h. u

Movie Toolbox Reference 2-305

CHAPTER 2

Movie Toolbox

SFGetFilePreview

2-306

The SFCet Fi |

ePr evi ewfunction allows you to display file previews in an Open dialog

box using a standard file reply structure. This is the preferred function for displaying a
file preview and it works with either System 7 or System 6.

pascal void

wher e

pr onpt
fileFilter

numlypes

SFGet Fi | ePrevi ew (Poi nt where,
Const St r 255Par am pr onpt ,
FileFilterProcPtr fileFilter,
short numlypes, SFTypelList typelist,
D gHookProcPtr dl gHook,
SFReply *reply);

Specifies the location of the upper-left corner of the dialog box in global
coordinates. If you set this point to (-1, -1), the Movie Toolbox centers the
dialog box on the main screen. If you set this point to (-2, —-2), the Movie
Toolbox centers the dialog box on the screen that has the best display
characteristics.

This parameter is ignored; it is included for historical reasons only.

Points to a function that filters the files that are displayed to the user in
the dialog box. This is an optional function provided by your application;
if you do not want to supply a filter function, set this parameter toni | .
The SFGet Fi | ePr evi ewfunction uses this parameter along with the
nuniTypes andt ypelLi st parameters to determine which files appear in
the dialog box.

If this parameter is not ni | , SFCGet Fi | ePr evi ewcalls the function for
each file to determine whether to display the file to the user. The

SFCet Fi | ePr evi ewfunction supplies you with the information it
receives from the File Manager’s Get Fi | el nf o routine (see Inside
Macintosh: Files for more information). Your function returns a Boolean
value indicating whether to display the file. Set the Boolean value to

f al se to cause the file to be displayed.

Your function must provide the following interface:
pascal Bool ean MyFileFilter (ParnBl kPtr parnBl ock);

See “File Filter Functions” on page 2-360 for details.

Specifies the number of file types in the array specified by the t ypelLi st
parameter (a number between 1 and 4). Set this parameter to -1 to display
all files.

Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

t ypeli st Specifies an array of file types to be displayed to the user. The
SFGet Fi | ePr evi ewfunction only displays files whose type matches an
entry in this array (unless you set the nunilypes parameter to —-1; in this
case, the function displays all files to the user). The SFTypeLi st data
type is defined as follows:

typedef OSType SFTypelist][4];

dl gHook Specifies a pointer to a custom dialog function. You can use this
parameter to support a custom dialog box function you have supplied. If
you are not supplying a custom dialog box function, set this parameter to
ni | . Your custom dialog function must present the following interface:

pascal short MyD gHook (short item
Di al ogPtr theDi al og,
Ptr nyDataPtr);

For more information about using custom dialog box functions with the
SFGet Fi | ePr evi ewfunction, see “Custom Dialog Functions” on
page 2-360.

reply Contains a pointer to a standard file reply structure that is to receive
information about the user’s selection. See Inside Macintosh: Files for
more information about reply structures.

The SFCet Fi | ePr evi ewfunction presents an Open dialog box to the user and

allows the user to view file previews during the dialog. This function corresponds to the
File Manager’s SFGet Fi | e routine. See Inside Macintosh: Files for a complete description
of the SFGet Fi | e routine.

The SFCet Fi | ePr evi ew function takes the same parameters as its existing counterpart
with the addition of a wher e parameter that allows you to specify the location of the
dialog box.

The SFGet Fi | ePr evi ewfunction automatically converts files to movies if your
application requests movies. If a file could be converted into a movie file using a movie
import component, then the file is shown in the Standard File dialog box. See Figure 2-41
on page 2-304 for the dialog box with an automatic file-to-movie conversion option and
Figure 2-42 on page 2-305 for the dialog box for saving a movie converted from a file.

Note

The SFGet Fi | ePr evi ewfunction does not appear in the MPW
interface file Movi es. h; rather, it’s listed in | mageConpressi on. h. u

Movie Toolbox Reference 2-307

CHAPTER 2

Movie Toolbox

SFPGetFilePreview

2-308

The SFPGet Fi

| ePr evi ewfunction allows you to display file previews in an Open

dialog box using a standard file reply structure. This function differs from

SFGet Fi | ePr

evi ewin that you can provide a custom dialog box with any resource

type and you can specify a modal-dialog filter function that allows you to gain greater

control over th

pascal void

wher e

pr onpt
fileFilter

e user interface.

SFPGet Fi | ePrevi ew (Poi nt where,
Const St r 255Par am pr onpt ,
FileFilterProcPtr fileFilter,
short numlypes,
SFTypelLi st typelLi st,
Dl gHookProcPtr dl gHook,
SFReply *reply, short dlglD,
Modal FilterProcPtr filterProc);

Specifies the location of the upper-left corner of the dialog box in global
coordinates. If you set this point to (-1, -1), the Movie Toolbox centers the
dialog box on the main screen. If you set this point to (-2, —2), the Movie
Toolbox centers the dialog box on the screen that has the best display
characteristics.

This parameter is ignored; it is included for historical reasons only.

Points to a function that filters the files that are displayed to the user in
the dialog box. This is an optional function provided by your application;
if you do not want to supply a filter function, set this parameter toni | .
The SFGet Fi | ePr evi ewfunction uses this parameter along with the
nuniTypes andt ypelLi st parameters to determine which files appear in
the dialog box.

If this parameter is not ni | , SFPGet Fi | ePr evi ewcalls the function for
each file to determine whether to display the file to the user. The

SFPGet Fi | ePr evi ewfunction supplies you with the information it
receives from the File Manager’s Get Fi | el nf o routine (see Inside
Macintosh: Files for more information). Your function returns a Boolean
value indicating whether to display the file. Set the Boolean value to

f al se to cause the file to be displayed. See “File Filter Functions,” which
begins on page 2-360, for details on file filter functions.

Your function must provide the following interface:

pascal Bool ean MyFileFilter (ParnBl kPtr parnBl ock);

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

numlypes

t ypeli st

dl gHook

reply

dl gl D

filterProc

Specifies the number of file types in the array specified by the t ypelLi st
parameter. Specify a number between 1 and 4. Set this parameter to -1 to
display all files.

Specifies an array of file types to be displayed to the user. The

SFGet Fi | ePr evi ewfunction only displays files whose type matches an
entry in this array (unless you set the nunilypes parameter to -1; in this
case, the function displays all files to the user). The SFTypeLi st data
type is defined as follows:

typedef OSType SFTypelist][4];

Points to a custom dialog box function. You can use this parameter to
support a custom dialog box function you have supplied by specifying a
dialog template resource in your resource file (the dialog template’s
resource type must be setto' DLOG ; you must also supply an item list in
a' DI TL' resource). You specify the dialog template’s resource 1D with
the dl gl D parameter. If you are not supplying a custom dialog function
in this manner, set this parameter toni | .

Your custom dialog box function must present the following interface:

pascal short MyD gHook (short item
Di al ogPtr thebDi al og,
Ptr nyDataPtr);

See “Custom Dialog Functions” on page 2-360 for more information on
using custom dialog functions with the SFPCGet Fi | ePr evi ewfunction.

Contains a pointer to a standard file reply structure that is to receive
information about the user’s selection. See Inside Macintosh: Files for

more information about reply structures.

Specifies the resource ID of your custom dialog template. You can use this
parameter to specify a custom dialog template resource that has a
resource type that differs from the standard value. Set this parameter to 0
to use the standard template.

Points to your modal-dialog filter function. This function gives you
greater control over the interface presented to the user. Your modal-dialog
filter function must present the following interface:

pascal Bool ean MyMbdal Filter (DialogPtr thebDi al og,
Event Recor d* t heEvent,
short itenHit,
Ptr nyDataPtr);

See “Modal-Dialog Filter Functions” beginning on page 2-362 for details.

Movie Toolbox Reference 2-309

DESCRIPTION

CHAPTER 2

Movie Toolbox

The SFPGet Fi | ePr evi ewfunction presents an Open dialog box to the user and allows
the user to view file previews during the dialog. This function corresponds to the File
Manager’s SFPGet Fi | e routine. The SFPGet Fi | ePr evi ewfunction takes the same
parameters as its existing counterpart with the addition of a wher e parameter that
allows you to specify the location of the dialog box. See Inside Macintosh: Files for a
complete description of the SFPCGet Fi | e routine and for more information about the
parameters to this function.

The SFPGet Fi | ePr evi ewfunction automatically converts files to movies if your
application requests movies. If a file could be converted into a movie file using a movie
import component, then the file is shown in the Standard File dialog box. See Figure 2-41
on page 2-304 for the dialog box with an automatic file-to-movie conversion option and
Figure 2-42 on page 2-305 for the dialog box for saving a movie converted from a file.

Note

The SFPGet Fi | ePr evi ewfunction does not appear in the MPW
interface file Movi es. h; rather, it’s listed in | mageConpressi on. h. u

StandardGetFilePreview

2-310

The SFPGet Fi | ePr evi ewfunction allows you to display file previews in an Open
dialog box using a standard file reply structure.

pascal void StandardGetFilePreview (FileFilterProcPtr fileFilter,
short numTlypes,
SFTypelLi st typelLi st,
St andardFi |l eReply *reply);

fileFilter
Points to a function that filters the files that are displayed to the user in
the dialog box. This is an optional function provided by your application;
if you do not want to supply a filter function, set this parameter toni | .
The St andar dGet Fi | ePr evi ewfunction uses this parameter along
with the nunifypes andt ypelLi st parameters to determine which files
appear in the dialog box.

If this parameter is not ni | , St andar dGet Fi | ePr evi ewcalls the
function for each file to determine whether to display the file to the user.
The St andar dGet Fi | ePr evi ewfunction supplies you with
information identifying the file (see Inside Macintosh: Files for

Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

more information about the format of this parameter data). Your function
returns a Boolean value indicating whether to display the file. Set the
Boolean value to f al se to cause the file to be displayed.

Your function must provide the following interface:
pascal Boolean MyFileFilter (ParnBl kPtr parnBl ock);

nuniTypes Specifies the number of file types in the array specified by the t ypelLi st
parameter (a number between 1 and 4). Set this parameter to -1 to display
all files.

t ypeli st Specifies an array of file types to be displayed to the user. The
St andar dGet Fi | ePr evi ewfunction only displays files whose type
matches an entry in this array (unless you set the nunilypes parameter
to -1, in this case, the function displays all files to the user). The
SFTypeli st data type is defined as follows:

typedef OSType SFTypelist[4];

reply Contains a pointer to a reply structure that is to receive information about
the user’s selection. See Inside Macintosh: Files for more information about
reply structures.

The St andar dGet Fi | ePr evi ewfunction presents an Open dialog box to the user and
allows the user to view file previews. This function corresponds to the File Manager’s
St andar dGet Fi | e routine. See Inside Macintosh: Files for a comprehensive description
of that routine and for more information about the parameters to this function. The

St andar dGet Fi | ePr evi ewfunction takes the same parameters as its existing
counterpart with the addition of a wher e parameter that allows you to specify the
location of the dialog box.

The St andar dGet Fi | ePr evi ewfunction automatically converts files to movies if your
application requests movies. If a file could be converted into a movie file using a movie
import component, then the file is shown in the Standard File dialog box. See Figure 2-41
on page 2-304 for the dialog box with an automatic file-to-movie conversion option and
Figure 2-42 on page 2-305 for the dialog box for saving a movie converted from a file.

Note

The St andar dGet Fi | ePr evi ewfunction does not appear in the MPW
interface file Movi es. h; rather, it’s listed in | nrageConpr essi on. h. u

Movie Toolbox Reference 2-311

CHAPTER 2

Movie Toolbox

CustomGetFilePreview

2-312

The Cust ontzet Fi | ePr evi ewfunction presents an Open dialog box to the user and
allows the user to view file previews. This function differs from

St andar dGet Fi | ePr evi ewin that you can provide a custom dialog template and
functions to support your template.

Note
The Cust ontGet Fi | ePr evi ew function is available only in System 7. u

pascal void CustonetFilePreview (FileFilterYDProcPtr fileFilter,

short numlypes, SFTypeli st
typelLi st, StandardFil eReply
*reply, short dlglD,

Poi nt wher e,

Dl gHook YDPr ocPtr dl gHook,

Modal Fi |l ter YDProcPtr filterProc,

short *acti veli st,

ActivateYDProcPtr activateProc,

void *yourDataPtr);

fileFilter
Points to a function that filters the files that are displayed to the user in
the dialog box. This is an optional function provided by your application;
if you do not want to supply a filter function, set this parameter to ni | .
The Cust ontet Fi | ePr evi ewfunction uses this parameter along
with the nunilfypes andt ypelLi st parameters to determine which files
appear in the dialog box.

If this parameter is not ni | , Cust onGet Fi | ePr evi ewcalls the function
for each file to determine whether to display the file to the user. The

Cust ontet Fi | ePr evi ewfunction supplies you with information
identifying the file (see Inside Macintosh: Files for more information about
the format of this parameter data). Your function returns a Boolean value
indicating whether to display the file. Set the Boolean value to f al se to
cause the file to be displayed.

Your function must provide the following interface:
pascal Bool ean MyFileFilter (ParnBl kPtr parnBl ock);

nunirypes Specifies the number of file types in the array specified by the t ypelLi st
parameter (a number between 1 and 4). Set this parameter to -1 to display
all files.

typeli st Specifies an array of file types to be displayed to the user. The
Cust ontet Fi | ePr evi ewfunction only displays files whose type
matches an entry in this array (unless you set the nunilypes parameter

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

reply

dl gl D

wher e

dl gHook

filterProc

to -1, in this case, the function displays all files to the user). The
SFTypeli st data type is defined as follows:

typedef OSType SFTypelist][4];

Contains a pointer to a reply structure that is to receive information about
the user’s selection. See Inside Macintosh: Files for more information about
reply structures.

Specifies the resource ID of your custom dialog template. You can use this
parameter to specify a custom dialog template resource that has a
resource type that differs from the standard value. Set this parameter to 0
to use the standard template.

Specifies the location of the upper-left corner of the dialog box in global
coordinates. If you set this point to (-1, -1), the Movie Toolbox centers the
dialog box on the main screen. If you set this point to (-2, -2), the Movie
Toolbox centers the dialog box on the screen that has the best display
characteristics.

Points to a custom dialog function. You can use this parameter to support
a custom dialog box function you have supplied by specifying a dialog
template resource in your resource file. You specify the dialog template’s
resource ID with the dl gl D parameter. If you are not supplying a custom
dialog function, set this parameter to ni | . For more information about
using custom dialog functions with the Cust onmCGet Fi | e routine, see
Inside Macintosh: Files. For details on the parameters of the custom dialog
box function, see “Custom Dialog Functions” on page 2-360.

Your dialog hook function must present the following interface:

pascal short MyD gHook (short item DialogPtr
theDi al og, Ptr nyDataPtr);

Points to your modal-dialog filter function. This function gives you
greater control over the interface presented to the user. See Inside
Macintosh: Files for more information about using modal-dialog filter
functions with Cust onCGet Fi | e.

Your modal-dialog filter function must present the following interface.

pascal Bool ean MyMbdal Filter (DialogPtr thebDi al og,
Event Record* theEvent,
short itenHit,
Ptr nyDataPtr);

For details on the application-defined modal-dialog filter, see
“Modal-Dialog Filter Functions” beginning on page 2-362.

Movie Toolbox Reference 2-313

DESCRIPTION

2-314

CHAPTER 2

Movie Toolbox

activeli st

Contains a pointer to a list of all items in the dialog box that can be
activated—that is, made the target of keyboard input. The list is stored as
an array of integers. The first integer must contain the number of items
in the array (not including this count value). The remaining array entries
must contain item numbers that specify valid targets of keyboard input,
in the order in which the items are to be activated. Set this parameter to
ni | to direct all keyboard input to the displayed list of filenames.

acti vat eProc

your Dat aPtr

Points to your activation function, which controls the highlighting of any
items whose shape is known only by your application. See Inside
Macintosh: Files for more information about standard file activation
functions.

Your function must present the following interface:

pascal void MyActivateProc (D al ogPtr theDi al og,
short itenm\o,
Bool ean acti vati ng,
Ptr nyDataPtr);

Contains a pointer to optional data that is supplied by your application to
your callback functions. When the Cust onGet Fi | ePr evi ewfunction
calls any of your callback functions, it places this data on the stack,
making it available to your functions. Set this parameter to ni | if you are
not supplying any optional data.

The Cust ontet Fi | ePr evi ewfunction is available only if the value of the Gestalt
selector gest al t St andar dFi | eAttr istrue. (See Inside Macintosh: Overview for more
information about this selector.) This function corresponds to the File Manager’s

Cust onCet Fi | e routine. The Cust ontGet Fi | ePr evi ewfunction takes the same
parameters as its existing counterpart with the addition of a wher e parameter that
allows you to specify the location of the dialog box. See Inside Macintosh: Files for a
complete description of the Cust onet Fi | e routine and for more information about
the parameters to this function.

The Cust ontet Fi | ePr evi ewfunction automatically converts files to movies if your
application requests movies. If a file could be converted into a movie file using a movie
import component, then the file is shown in the Standard File dialog box. See Figure 2-41
on page 2-304 for the dialog box with an automatic file-to-movie conversion option and
Figure 2-42 on page 2-305 for the dialog box for saving a movie converted from a file.

Note

The Cust ontzet Fi | ePr evi ewfunction does not appear in the MPW
interface file Movi es. h; rather, it’s listed in | nageConpr essi on. h. u

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

Time Base Functions

The Movie Toolbox provides a number of functions that allow you to work with time
bases. A QuickTime time base defines the time coordinate system of a movie. However,
you can also use QuickTime time bases to provide general timing services. This section
describes the functions that allow your application to work with time bases. For a
complete description of QuickTime time bases, see “Introduction to Movies” beginning
on page 2-5.

This section has been divided into the following topics:

n “Creating and Disposing of Time Bases” describes how to create and dispose of time
bases and how to assign a time base to a movie

n “Working With Time Base Values” discusses functions that allow your application to
work with the contents of a time base

n “Working With Times” describes a number of functions that allow you to convert
times between time bases and to perform simple arithmetic on time values

n “Time Base Callback Functions” describes the functions your application may use to
condition a time base to invoke functions your application provides

Note

Time base functions do not change the value of the Movie Toolbox sticky
error value. u

Creating and Disposing of Time Bases

This section discusses the Movie Toolbox functions your application can use to create
and dispose of time bases.

The NewTi neBase function lets you create a new time base. You can use the
Di sposeTi neBase function to dispose of a time base once you are finished with it.

Time bases rely on either a clock component or another time base for their time source.
You can use the Set Ti mneBaseMast er Ti meBase function to cause one time base to be
based on another time base. The Get Ti neBaseMast er Ti neBase allows you to
determine the master time base of a given time base.

You can assign a clock component to a time base; that clock then acts as the master clock
for the time base. You can use the Set Ti neBaseMast er Cl ock function to assign a
clock component to a time base. The Get Ti meBaseMast er C ock function enables you
to determine the clock component that is assigned to a time base. You can change the
offset between a time base and its time source by calling the Set Ti neBaseZer o
function.

You can set the time source of a movie by calling the Set Movi eMast er Ti nreBase and
Set Movi eMast er O ock functions.

Movie Toolbox Reference 2-315

CHAPTER 2

Movie Toolbox

Note

Although most time base functions can be used at interrupt time, several
of the Movie Toolbox functions cannot. These functions are noted in the
sections that follow. u

NewTimeBase

DESCRIPTION

The NewTi neBase function allows your application to obtain a new time base. This
function returns a reference to the new time base. Your application must use that
reference with other time base functions.

pascal Ti neBase NewTi neBase (void);

The NewTi neBase function returns a reference to the new time base.

This function sets the rate of the time base to 0, the start time to its minimum value, the
time value to 0, and the stop time to its maximum value.

This function assigns the default clock component to the new time base. If you want to
assign a different clock component or a master time base to the new time base, use the
Set Ti meBaseMast er O ock or Set Ti mneBaseMast er Ti meBase functions, which are
described on page 2-318 and page 2-320, respectively.

SPECIAL CONSIDERATIONS

ERROR CODES

The NewTi neBase function uses the Memory Manager, so your application must not
call it at interrupt time.

None

DisposeTimeBase

2-316

The Di sposeTi neBase function allows your application to dispose of a time base once
you are finished with it.

pascal void Di sposeTi meBase (Ti neBase tb);
tb Specifies the time base for this operation. Your application obtains this

time base identifier from the NewTi neBase function described in the
previous section.

Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

The Di sposeTi neBase function cancels and disposes of any pending callback events
that are associated with the time base.

SPECIAL CONSIDERATIONS

ERROR CODES

SetMovieMasterClock

Note that the Di sposeTi meBase function uses the Memory Manager; therefore, you
should not call this function at interrupt time.

None

ERROR CODES

You can use the Set Movi eMast er C ock function to assign a clock component to a
movie. Do not use the Set Ti nreBaseMast er C ock function to assign a clock
component to a movie.

pascal void Set Movi eMast erCl ock (Mvie theMvi e,

t heMbvi e

Conponent cl ockMei ster,
const Ti meRecord *sl aveZero);

Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMovi eFr onHandl e (described on page 2-92, page 2-88, and

page 2-90, respectively).

cl ockMei ster

sl aveZero

None

Specifies the clock component to be assigned to this movie. Your
application can obtain this component identifier from the Component
Manager’s Fi ndNext Conponent routine (see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for
more information about this routine).

Contains a pointer to the time, in the clock’s time scale, that corresponds
to a 0 time value for the movie. This parameter allows you to set an offset
between the clock component and the time base of the movie. Set this
parameter to ni | if there is no offset.

Movie Toolbox Reference 2-317

CHAPTER 2

Movie Toolbox

SetMovieMasterTimeBase

You can use the Set Movi eMast er Ti neBase function to assign a master time base to a
movie. Do not use the Set Ti neBaseMast er Ti neBase function (described on
page 2-320) to assign a time base to a movie.

pascal void Set Movi eMast er Ti neBase (Myvie theMvie, TineBase tb,
const Ti meRecord *sl aveZero);

t heMbvi e Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as Newvbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr omHandl e (described on page 2-92, page 2-88, and
page 2-90, respectively).

th Specifies the master time base to be assigned to this movie. Your
application obtains this time base identifier from the NewTi neBase
function (described on page 2-316).

sl aveZer o Contains a pointer to the time, in the time scale of the master time base,
that corresponds to a 0 time value for the movie. This parameter allows
you to set an offset between the movie and the master time base. Set this
parameter to ni | if there is no offset.

SPECIAL CONSIDERATIONS

ERROR CODES

The Set Movi eMast er Ti meBase function cannot be called at interrupt time.

None

SetTimeBaseMasterClock

2-318

You can use the Set Ti neBaseMast er O ock function to assign a clock component to
a time base. A time base derives its time from either a clock component or from another
time base. Do not use this function to assign a clock to a movie’s time base.

pascal void Set Ti neBaseMast erCl ock (Ti neBase sl ave,
Conponent cl ockMei ster,
const TinmeRecord *sl aveZero);

sl ave Specifies the time base for this operation. Your application obtains this

time base identifier from the NewTi neBase function (described on
page 2-316).

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

cl ockMei st er
Specifies the clock component to be assigned to this time base. Your
application can obtain this component identifier from the Component
Manager’s Fi ndNext Conponent routine (see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox
for more information about this routine).

sl aveZer o Contains a pointer to the time, in the clock’s time scale, that corresponds
to a 0 time value for the slave time base. This parameter allows you to set
an offset between the time base and the clock component. Set this
parameter to ni | if there is no offset.

SPECIAL CONSIDERATIONS

ERROR CODES

SEE ALSO

The Set Ti neBaseMast er C ock function cannot be called at interrupt time.

i nval i dMbvi e —-2010 This movie is corrupted or invalid

You can use the Get Ti neBaseMast er C ock function, which is described in the next
section, to determine the clock component that is assigned to a time base.

GetTimeBaseMasterClock

DESCRIPTION

You can use the Get Ti meBaseMast er Gl ock function to determine the clock
component that is assigned to a time base. A time base derives its time from either

a clock component or from another time base. If a time base derives its time from a

clock component, you can use this function to obtain the component instance of the clock
component.

pascal Conponent| nstance Get Ti neBaseMast er Cl ock (Ti neBase tb);
th Specifies the time base for this operation. Your application obtains this

time base identifier from the NewTi neBase function (described on
page 2-316).

The Get Ti neBaseMast er Cl ock function returns a reference to a component instance
of the clock component that provides a time source to this time base.

Movie Toolbox Reference 2-319

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

Note

The Component Manager allows a single component to serve multiple
client applications at the same time. Each client application has a unique
access path to the component. These access paths are called connections.
You identify a component connection by specifying acomponent
instance. The Component Manager provides this component instance to
your application when you open a connection to a component. The
component maintains separate status information for each open
connection. u

Do not close this connection—the time base is using the connection to maintain its time
source. If a clock component is not assigned to the time base, this function sets the
returned reference to ni | . In this case, the time base relies on another time base for its
time source. Use the Get Ti meBaseMast er Ti meBase function, which is described on
page 2-321, to obtain the time base reference to that master time base.

None

You can use the Set Ti neBaseMast er O ock function, which is described on
page 2-318, to assign a clock component to a time base.

SetTimeBaseMasterTimeBase

2-320

You can use the Set Ti neBaseMast er Ti meBase function to assign a master time base
to a time base. A time base derives its time from either a clock component or another
time base. Do not use this function to assign a master time base to a movie’s time base.

pascal void Set Ti neBaseMast er Ti neBase (Ti neBase sl ave,
Ti neBase mmast er,
const TinmeRecord *sl aveZero);

sl ave Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

mast er Specifies the master time base to be assigned to this time base. Your
application obtains this time base identifier from the NewTi neBase
function.

Movie Toolbox Reference

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

sl aveZer o Contains a pointer to the time, in the time scale of the master time base,
that corresponds to a 0 time value for the slave time scale. This parameter
allows you to set an offset between the time base and the master time
base. Set this parameter to ni | if there is no offset.

None

You can use the Get Ti neBaseMast er Ti meBase function, which is described in the
next section, to determine the master time base that is assigned to a time base.

GetTimeBaseMasterTimeBase

DESCRIPTION

ERROR CODES

SEE ALSO

You can use the Get Ti neBaseMast er Ti neBase function to determine the master time
base that is assigned to a time base. A time base derives its time from either a clock
component or from another time base. If a time base derives its time from another time
base, you can use this function to obtain the identifier for that master time base.

pascal Ti meBase Get Ti meBaseMast er Ti mneBase (Ti neBase tb);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

The Get Ti neBaseMast er Ti meBase function returns a reference to the master time
base that provides a time source to this time base. If a master time base is not assigned to
the time base, this function sets the returned reference to ni | . In this case, the time base
relies on a clock component for its time source. Use the Get Ti neBaseMast er O ock
function, which is described on page 2-319, to obtain the component instance reference
to that clock component.

None

You can use the Set Ti neBaseMast er Ti meBase function, which is described in the
previous section, to assign a master time base to a time base.

Movie Toolbox Reference 2-321

CHAPTER 2

Movie Toolbox

SetTimeBaseZero

ERROR CODES

SEE ALSO

You can use the Set Ti neBaseZer o function to change the offset from a time base to
either its master time base or its clock component. You establish the initial offset when
you assign the time base to its time source.

pascal void SetTi neBaseZero (Ti meBase tb, TimeRecord *zero);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

zero Contains a pointer to the time that corresponds to a 0 time value for the

slave time scale. This parameter allows you to set an offset between the
time base and its time source. Set this parameter to ni | if there is no
offset.

None

You can use the Set Ti neBaseMast er O ock function (described on page 2-318) to
assign a time base to a clock component.

You can use the Set Ti neBaseMast er Ti neBase function (described on page 2-320) to
assign a time base to a master time base.

Working With Time Base Values

2-322

Every time base contains a rate, a start time, a stop time, a current time, and some status
information. The Movie Toolbox provides a number of functions that allow your
application to work with the contents of a time base. This section describes those
functions.

The Get Ti neBaseTi ne function lets you retrieve the current time value of a time base.
You can set the current time value by calling the Set Ti nreBaseTi ne function—this
function requires you to provide a time structure. Alternatively, you can set the current
time based on a time value by calling the Set Ti meBaseVal ue function.

You can determine the rate of a time base by calling the Get Ti mreBaseRat e

function. You can set the rate of a time base by calling the Set Ti neBaseRat e function.
You can determine the effective rate of a specified time base (relative to the master time
base to which it is subordinate) by calling the Get Ti nreBaseEf f ect i veRat e function.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

You can retrieve the start time of a time base by calling the Get Ti mreBaseSt art Ti me
function. You can set the start time of a time base by calling the

Set Ti meBaseSt art Ti ne function. Similarly, you can use

the Get Ti neBaseSt opTi ne and Set Ti neBaseSt opTi ne functions to work with the
stop time of a time base.

The Movie Toolbox provides functions that allow you to work with the status
information of a time base. The Get Ti neBaseSt at us function allows you to read the
current status of a time base. The Get Ti meBaseF| ags function helps you obtain the
control flags of a time base. You can set these flags by calling the Set Ti neBaseF| ags
function.

SetTimeBaseTime

DESCRIPTION

ERROR CODES

SEE ALSO

The Set Ti neBaseTi ne function allows your application to set the current time of a
time base. You must specify the new time in a time structure.

pascal void SetTi neBaseTi ne (Ti neBase tb, const TineRecord *tr);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

tr Contains a pointer to a time structure that contains the current time value.

If you set the current time of a time base that is the master time base for other time bases,
the current times in all the dependent time bases are changed appropriately. If you
change the current time in a time base that relies on a master time base, the Movie
Toolbox changes the offset between the time base and the master time base—the master
time base is not affected.

None

You can set the current time of a time base from a time value by calling the
Set Ti meBaseVal ue function, which is described in the next section.

Movie Toolbox Reference 2-323

CHAPTER 2

Movie Toolbox

SetTimeBaseValue

The Set Ti neBaseVal ue function allows your application to set the current time of a
time base. You must specify the new time as a time value.

pascal void SetTi neBaseVal ue (TineBase tb, TineValue t,
Ti meScal e s);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

t Specifies the new time value.

s Specifies the time scale of the new time value.

DESCRIPTION

If you set the current time of a time base that is the master time base for other time bases,
the current times in all the dependent time bases are changed appropriately. If you
change the current time in a time base that relies on a master time base, the Movie
Toolbox changes the offset between the time base and the master time base—the master
time base is not affected.

ERROR CODES
None

SEE ALSO

You can set the current time of a time base from a time structure by calling the
Set Ti meBaseTi me function, which is described in the previous section.

GetTimeBaseTime

Your application can use the Get Ti neBaseTi ne function to obtain the current time
value from a time base. You can specify the time scale in which to return the time value.

pascal Ti neVal ue Get Ti neBaseTi ne (Ti neBase tb, TineScal e s,
Ti mreRecord *tr);

th Specifies the time base for this operation. Your application obtains this

time base identifier from the NewTi neBase function (described on
page 2-316).

2-324 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

s Specifies the time scale in which to return the current time value. Set this
parameter to 0 to retrieve the time in the preferred time scale of the time
base.

tr Contains a pointer to a time structure that is to receive the current time

value. This is an optional parameter. If you do not want the time value
represented in a time structure, set this parameter to ni | .

DESCRIPTION

The Get Ti neBaseTi ne function returns a time value that contains the current time
from the specified time base in the specified time scale. The function returns this value
even if you specify a time structure with the t r parameter.

ERROR CODES
None

SEE ALSO
You can set the current time of a time base by calling either the Set Ti mreBaseTi e or
Set Ti meBaseVal ue functions, which are described on page 2-323 and page 2-324,
respectively.

SetTimeBaseRate

The Set Ti neBaseRat e function allows your application to set the rate of a time base.

pascal void SetTi neBaseRate (Ti neBase tb, Fixed r);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

r Specifies the rate of the time base.

DESCRIPTION

You can determine the number of time units that pass each second for a time base by
multiplying its rate by the time scale of its time coordinate system. For example, if you
set the rate of a time base to 2 and the time base has a time scale of 2, that time base
passes through 4 units of its time each second.

Rates may be set to negative values. Negative rates cause time to move backward for the
time base.

Movie Toolbox Reference 2-325

CHAPTER 2

Movie Toolbox

ERROR CODES
None

SEE ALSO

You can retrieve the rate of a time base by calling the Get Ti neBaseRat e function,
which is described in the next section.

GetTimeBaseRate

The Get Ti neBaseRat e function allows your application to retrieve the rate of a time
base.

Rates may be set to negative values. Negative rates cause time to move backward for the
time base.

pascal Fi xed Get Ti neBaseRate (Ti neBase th);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

DESCRIPTION

The Get Ti neBaseRat e function returns the current rate of the time base as a
fixed-point number. This rate value may be nonzero even if the time base has stopped,
because it has reached its stop time.

ERROR CODES
None

GetTimeBaseEffectiveRate

The Get Ti mreBaseEf f ect i veRat e function returns the effective rate at which the
specified time base is moving, relative to its master clock.

pascal Fi xed Get Ti neBaseEf fecti veRate (Ti neBase tbh);

2-326 Movie Toolbox Reference

DESCRIPTION

CHAPTER 2

Movie Toolbox

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

The Get Ti neBaseEf f ect i veRat e function is useful when you need to make
scheduling decisions based on the rate of a time base—for example, when you are
writing a media handler. (For more on media handlers, see Inside Macintosh: QuickTime
Components.) By calling Get Ti meBaseEf f ect i veRat e rather than the

Get Ti meBaseRat e function (described in the previous section), you can easily take into
account any time base subordination that may be in effect.

SetTimeBaseStartTime

DESCRIPTION

ERROR CODES

SEE ALSO

You can set the start time of a time base by calling the Set Ti neBaseSt art Ti ne
function. The start time defines the time base’s minimum time value. You must specify
the new start time in a time structure.

pascal void SetTi neBaseStartTi ne (Ti mneBase tb,
const TimeRecord *tr);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

tr Contains a pointer to a time structure that contains the start time value.

Do not use this function to restrict the Movie Toolbox to a portion of a movie—use the
Set Movi eAct i veSegnent function (described on page 2-136) instead.

None

You can determine the start time of a time base by calling the Get Ti mreBaseSt art Ti nme
function, which is described in the next section.

Movie Toolbox Reference 2-327

CHAPTER 2

Movie Toolbox

GetTimeBaseStartTime

You can determine the start time of a time base by calling the Get Ti reBaseSt art Ti ne
function.

pascal TinmeVal ue GetTi neBaseStartTime (Ti neBase tb, TineScale s,
Ti meRecord *tr);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

S Specifies the time scale in which to return the start time.

tr Contains a pointer to a time structure that is to receive the start time. This

is an optional parameter. If you do not want the time value represented in
a time structure, set this parameter toni | .

DESCRIPTION

The Get Ti meBaseSt art Ti me returns a time value that contains the start time
from the specified time base in the specified time scale. The function returns this value
even if you specify a time structure with the t r parameter.

ERROR CODES
None

SEE ALSO
You can set the start time of a time base by calling the Set Ti neBaseSt art Ti ne
function, which is described in the previous section.

SetTimeBaseStopTime

You can set the stop time of a time base by calling the Set Ti neBaseSt opTi ne
function. The stop time defines the time base’s maximum time value. You must specify
the new stop time in a time structure.

pascal void Set Ti neBaseSt opTi me (Ti neBase tb,
const TinmeRecord *tr);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

tr Contains a pointer to a time structure that contains the stop time value.

2-328 Movie Toolbox Reference

DESCRIPTION

ERROR CODES

SEE ALSO

CHAPTER 2

Movie Toolbox

Do not use the Set Ti mneBaseSt opTi ne function to restrict the Movie Toolbox to a
portion of a movie—use the Set Movi eAct i veSegnent function (described on
page 2-136) instead.

None

You can determine the stop time of a time base by calling the Get Ti neBaseSt opTi e
function, which is described in the next section.

GetTimeBaseStopTime

DESCRIPTION

ERROR CODES

SEE ALSO

You can determine the stop time of a time base by calling the Get Ti neBaseSt opTi e
function.

pascal TineVal ue Get Ti neBaseSt opTime (Ti neBase tb, TineScale s,
Ti meRecord *tr);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

S Specifies the time scale in which to return the stop time.

tr Contains a pointer to a time structure that is to receive the stop time. This
is an optional parameter. If you do not want the time value represented in
a time structure, set this parameter toni | .

The Get Ti neBaseSt opTi e returns a time value that contains the stop time
from the specified time base in the specified time scale. The function returns this value
even if you specify a time structure with the out parameter.

None

You can set the stop time of a time base by calling the Set Ti neBaseSt opTi e
function, which is described in the previous section.

Movie Toolbox Reference 2-329

CHAPTER 2

Movie Toolbox

SetTimeBaseFlags

The Set Ti neBaseFl ags function allows your application to set the contents of the
control flags of a time base.

pascal void SetTi neBaseFl ags (Ti neBase tb, |ong tinmeBaseFl ags);

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

ti meBaseFl ags
Specifies the control flags for this time base. The following flags are
defined. You may set only one flag to 1 (be sure to set unused flags to 0):

| oopTi neBase
Indicates whether the time base loops. If you set this
flag to 1 and the rate is positive, the time base loops back
and restarts from its start time when it reaches its stop
time. If you set this flag to 1 and the rate is negative, the
time base loops to its stop time. If you set the flag to 0, the
movie stops when it reaches the end.

pal i ndr oneLoopTi neBase
Indicates whether the time base loops in a palindrome
fashion. Palindrome looping causes a time base to move
alternately forward and backward. Set this flag to 1 to
cause the time base to loop in this manner.

ERROR CODES
None

SEE ALSO
You can retrieve the control flags of a time base by calling the Get Ti neBaseFI ags
function, which is described in the next section.

GetTimeBaseFlags

The Get Ti neBaseFl ags function allows your application to obtain the contents of the
control flags of a time base.

pascal |ong Get Ti neBaseFl ags (Ti neBase tbh);
th Specifies the time base for this operation. Your application obtains this

time base identifier from the NewTi neBase function (described on
page 2-316).

2-330 Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Get Ti meBaseF| ags function returns the control flags of a time base. The following
flags are defined (unused flags are set to 0):

| oopTi neBase
Indicates whether the time base loops. If this flag is set to 1 and the rate is
positive, the time base loops back and restarts from its start time when it
reaches its stop time. If this flag is set to 1 and the rate is negative, the
time base loops to its stop time. If the flag is set to 0, the movie stops
when it reaches the end.

pal i ndr omeLoopTi neBase
Indicates whether the time base loops in a palindrome fashion.
Palindrome looping causes a time base to move alternately forward and
backward. If this flag is set to 1, the time base is palindrome looping.

None

SEE ALSO
You can set the control flags of a time base by calling the Set Ti nreBaseFI| ags function,
which is described in the previous section.

GetTimeBaseStatus

Your application can retrieve status information from a time base by calling the

Get Ti meBaseSt at us function. This status information allows you to determine when
the current time of a time base would fall outside of the range of values specified by the
start and stop times of the time base. This can happen when a time base relies on a
master time base or when its time has reached the stop time.

pascal |ong Get Ti neBaseStatus (Ti neBase tb,
Ti mreRecord *unpi nnedTi ne) ;

th Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTi neBase function (described on
page 2-316).

unpi nnedTi ne
Contains a pointer to a time structure that is to receive the current time of
the time base. Note that this time value may be outside the range of
values specified by the start and stop times of the time base.

Movie Toolbox Reference 2-331

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Get Ti neBaseSt at us function returns flags that indicate whether the returned
time value is outside the range of values specified by the start and stop times of the time
base. The following flags are defined (unused flags are set to 0):

ti meBaseBeforeStart Ti ne
Indicates that the time value represented by the contents of the time
structure referred to by the unpi nnedTi ne parameter lies before the
start time of the time base. The Movie Toolbox sets this flag to 1 if the
current time is before the start time of the time base.

ti meBaseAfter StopTi e
Indicates that the time value represented by the contents of the time
structure referred to by the unpi nnedTi e parameter lies after the
stop time of the time base. The Movie Toolbox sets this flag to 1 if the
current time is after the stop time of the time base.

None

Working With Times

AddTime

The Movie Toolbox provides a number of functions that allow you to work with time
structures. This section describes those functions.

All of these functions work with time structures (see “The Time Structure” on page 2-77
for a complete discussion of the time structure). You can use time structures to represent
either time values or durations. Time values specify a point in time, relative to a given
time base. Durations specify a span of time, relative to a given time scale. Durations are
represented by time structures that have the time base set to 0 (that is, the base field in
the time structure isset to ni |).

You can use the Convert Ti e function to convert a time you obtain from one time base
into a time that is relative to another time base. Similarly, you can use the
Convert Ti meScal e function to convert a time from one time scale to another.

You can add two times by calling the AddTi ne function; you can subtract two times
with the Subt r act Ti ne function.

2-332

The AddTi ne function adds two times. You must specify the times in time structures.
pascal void AddTi ne (Ti neRecord *dst, const TineRecord *src);
dst Contains a pointer to a time structure. This time structure contains one of

the operands for the addition. The AddTi ne function returns the result
of the addition into this time structure.

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

src Contains a pointer to a time structure. The Movie Toolbox adds this value

to the time or duration specified by the dst parameter.

If these times are relative to different time scales or time bases, the AddTi me function
converts the times as appropriate to yield reasonable results. However, the time bases for
both time values must rely on the same time source.

The result value is formatted based on the operands as follows:

dst src Result
Duration Duration Duration
Time value Duration Time value
None

SubtractTime

DESCRIPTION

The Subt r act Ti ne function subtracts one time from another. You must specify the
times in time structures.

pascal void SubtractTinme (TineRecord *dst, const TineRecord *src);
dst Contains a pointer to a time structure. This time structure contains one
of the operands for the subtraction. The Subt r act Ti ne function returns
the result of the subtraction into this time structure.
src Contains a pointer to a time structure. The Movie Toolbox subtracts this

value from the time or duration specified by the dst parameter.

If these times are relative to different time scales or time bases, the Subt r act Ti ne
function converts the times as appropriate to yield reasonable results. However, the time
bases for both time values must rely on the same time source.

The result value is formatted based on the operands as follows:

dst src Result

Time value Duration Duration
Duration Duration Duration
Time value Time value Duration

Movie Toolbox Reference 2-333

ERROR CODES

CHAPTER 2

Movie Toolbox

None

ConvertTime

DESCRIPTION

ERROR CODES

You can convert a time you obtain from one time base into a time that is relative to
another time base by calling the Convert Ti ne function. Both time bases must rely on
the same time source. You must specify the time to be converted in a time structure.

pascal void ConvertTime (TinmeRecord *inout, TineBase newBase);

i nout Contains a pointer to a time structure that contains the time value to be
converted. The Convert Ti me function replaces the contents of this time
structure with the time value relative to the specified time base.

newBase Specifies the time base for this operation. Your application obtains this

time base identifier from the NewTi neBase function (described on
page 2-316).

The Convert Ti me function includes the rate associated with each time value in the
conversion; therefore, you should use this function when you want to convert time
values. Use the Convert Ti neScal e function (described in the next section) to convert
durations.

None

ConvertTimeScale

2-334

You can convert a time from one time scale into a time that is relative to another time
base by calling the Convert Ti meScal e function. You must specify the time to be
converted in a time structure.

pascal void ConvertTi meScal e (Ti meRecord *i nout,
Ti meScal e newScal e) ;

i nout Contains a pointer to a time structure that contains the time value to be
converted. The Convert Ti meScal e function replaces the contents of
this time structure with the time value relative to the specified time scale.

newScal e Specifies the time scale for this operation.

Movie Toolbox Reference

DESCRIPTION

ERROR CODES

CHAPTER 2

Movie Toolbox

The Convert Ti meScal e function does not include the rate associated with the time
value in the conversion; therefore, you should use this function when you want to
convert time durations, but not when converting time values. Use the Convert Ti ne
function (described in the previous section) to convert time values.

None

Time Base Callback Functions

If your application uses QuickTime time bases, it may define callback functions that are
associated with a specific time base. Your application can then use these callback
functions to perform activities that are triggered by temporal events, such as a certain
time being reached or a specified rate being achieved. The time base functions of the
Movie Toolbox interact with clock components to schedule the invocation of these
callback functions—clock components are responsible for invoking the callback function
at its scheduled time. Your application can use the functions described in this section to
establish your own callback function and to schedule callback events.

You can define three types of callback events. These types are distinguished by the
nature of the temporal event that triggers the Movie Toolbox to call your function. The
three types are

n events that are triggered at a specified time
n events that are triggered when the rate reaches a specified value

n events that are triggered when the time value of a time base changes by an amount
different from the time base’s rate

You specify a callback event’s type when you define the callback event, using the
NewCal | Back function.

You specify whether your event can occur at interrupt time when you define the
callback event, using the NewCal | Back function. Your function is called closer to the
triggering event at interrupt time, but it is subject to all the restrictions of interrupt
functions (for example, your callback function cannot cause memory to be moved). If
your function is not called at interrupt time, you are free of these restrictions—but your
function may be called later, because the invocation is delayed to avoid interrupt time.

The NewCal | Back function allocates the memory to support a callback event.
When you are done with the callback event, you dispose of it by calling the
Di sposeCal | Back function.

You schedule a callback event by calling the Cal | MeWhen function. Call
Cancel Cal | Back function to unschedule a callback event.

You can retrieve the time base of a callback event by calling the
Get Cal | BackTi meBase function. You can obtain the type of a callback event by calling
the Get Cal | BackType function.

Movie Toolbox Reference 2-335

CHAPTER 2

Movie Toolbox

NewCallBack

DESCRIPTION

2-336

The NewCal | back function creates a new callback event. The callback event created at
this time is not active until you schedule it by calling the Cal | MeWhen function, which is
described in the next section.

WARNING
You must not call this function at interrupt time. s

pascal QTCal | Back NewCal | Back (Ti neBase tb, short cbType);

th Specifies the callback event’s time base. You obtain this identifier from the
NewTi meBase function (described on page 2-316).

cbType Specifies when the callback event is to be invoked. The value of this field
governs how the Movie Toolbox interprets the data supplied in the
par ani, par an2, and par an8 parameters to the Cal | MeWhen function,
which is described in the next section. The following values are valid for
this parameter:

cal | BackAt Ti e
Indicates that the event is to be invoked at a specified time.

cal | BackAt Rat e
Indicates that the event is to be invoked when the rate for
the time base reaches a specified value.

cal | BackAt Ti meJunp
Indicates that the event is to be invoked when the time
base’s time value changes by an amount that differs from
its rate.

cal | BackAt Ext r enes

Indicates that the event is to be invoked when the time base
reaches its start time or its stop time. If the start or stop
time of the time base changes, the call back is automatically
rescheduled. This is very useful for looping or determining
when a movie is complete. You determine when the
callback is to be fired with thet ri gger At St art and

tri gger At St op constants. Both flags may be set.

In addition, if the high-order bit of the cbType parameter is set to 1 (this
bit is defined by the cal | BackAt | nt er r upt flag), the event can be
invoked at interrupt time.

The NewCal | Back function returns a reference to the new callback event. You must
provide this reference to other Movie Toolbox functions described in this section. If the
Movie Toolbox cannot create the callback event, this function returns ni | .

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

ERROR CODES
None

CallMeWhen

You schedule a callback event by calling the Cal | MeWhen function. You can call this
function from your callback function.

pascal OCSErr Cal | MeWhen (QTCal | Back cb,
QrcCal | BackProc cal | BackProc,
| ong refcon, |ong parant,
| ong paran®, |ong paranB);

cb Specifies the callback event for the operation. You obtain this identifier
from the NewCal | Back function, which is described in the previous
section.

cal | BackProc
Points to your callback function.

Your callback function must have the following form:

pascal void MyCall BackProc (QrCall Back cb,
I ong refcon);

See “Callback Event Functions” on page 2-364 for details.
refcon Contains a reference constant value for your callback function.

par aml Contains scheduling information. The Movie Toolbox interprets this
parameter based on the value of the cbType parameter to the
NewCal | Back function, described in the previous section.

If cbType issettocal | BackAt Ti ne, the par aml parameter contains
flags indicating when to invoke your callback function for this callback
event. The following values are defined (be sure to set unused flags to 0):

trigger Ti meFwd
Indicates that your callback function should be called at the
time specified by par an? only when time is moving
forward (positive rate). The value of this flag is 0x0001.

trigger Ti meBwd
Indicates that your callback function should be called at the
time specified by par an® only when time is moving
backward (negative rate). The value of this flag is 0x0002.

triggerTi neEither
Indicates that your callback function should be called at the
time specified by par an® without regard to direction, but
the rate must be nonzero. The value of this flag is 0x0003.

Movie Toolbox Reference 2-337

2-338

CHAPTER 2

Movie Toolbox

par ang

par an8

If the cbType parameter is set to cal | BackAt Rat e, par aml contains
flags indicating when to invoke your callback function for this event. The
following values are defined (be sure to set unused flags to 0):

tri gger Rat eChange
Indicates that your callback function should be called
whenever the rate changes. The value of this flag is 0x0000.

triggerRatelLT
Indicates that your callback function should be called when
the rate changes to a value less than that specified by
par an®. The value of this flag is 0x0004.

trigger Rat eGT
Indicates that your callback function should be called when
the rate changes to a value greater than that specified by
par an®. The value of this flag is 0x0008.

tri gger Rat eEqual
Indicates that your callback function should be called when
the rate changes to a value equal to that specified by
par an®. The value of this flag is 0x0010.

triggerRatelLTE
Indicates that your callback function should be called when
the rate changes to a value that is less than or equal to that
specified by par an®. The value of this flag is 0x0014.

trigger Rat eGTE
Indicates that your callback function should be called when
the rate changes to a value that is less than or equal to that
specified by par an®. The value of this flag is 0x0018.

tri gger Rat eNot Equal
Indicates that your callback function should be called when
the rate changes to a value that is not equal to that specified
by par an2. The value of this flag is 0x001C.

Contains scheduling information. The Movie Toolbox interprets this
parameter based on the value of the cbType parameter to the
NewCal | Back function, described in the previous section.

If cbType issettocal | BackAt Ti ne, the par an® parameter contains
the time value at which your callback function is to be invoked for this
event. The par aml parameter contains flags affecting when the Movie
Toolbox calls your function.

If cbType issettocal | BackAt Rat e, the par anR parameter contains
the rate value at which your callback function is to be invoked for this
event. The par anil parameter contains flags affecting when the Movie
Toolbox calls your function.

Contains the time scale in which to interpret the time value that is stored
inparanB if cbType issetto cal | BackAt Ti ne.

Movie Toolbox Reference

ERROR CODES

CHAPTER 2

Movie Toolbox

None

CancelCallBack

DESCRIPTION

ERROR CODES

You use the Cancel Cal | Back function to cancel a callback event before it executes.
pascal void Cancel Cal | Back (QTCal | Back ch);

cb Specifies the callback event for this operation. You obtain this value from
the NewCal | Back function (described on page 2-336).

The Cancel Cal | Back function removes the callback event from the list of callback
events maintained by the Movie Toolbox. The Movie Toolbox calls this function
automatically when it invokes your callback function. In order for a callback event to be
scheduled, you must call the Cal | MeWhen function, which is described in the previous
section.

None

DisposeCallBack

ERROR CODES

The Di sposeCal | Back function disposes of the memory associated with the specified
callback event and cancels the event if it is pending. You should call this function when
you are done with each callback event.

WARNING
You must not call this function at interrupt time. s

pascal void Di sposeCal |l Back (QrcCal | Back cb);

cb Specifies the callback event for the operation. You obtain this value from
the NewCal | Back function (described on page 2-336).

None

Movie Toolbox Reference 2-339

CHAPTER 2

Movie Toolbox

GetCallBackTimeBase

DESCRIPTION

ERROR CODES

You can retrieve the time base of a callback event by calling the
Get Cal | BackTi meBase function. Your application specifies the callback event’s time
base by calling the NewCal | Back function, which is described on page 2-336.

pascal Ti neBase Get Cal | BackTi neBase (QrCal | Back cbh);

cb Specifies the callback event for the operation. You obtain this value from
the NewCal | Back function.

The Get Cal | BackTi meBase function returns a reference to the callback event’s time
base.

None

GetCallBackType

DESCRIPTION

2-340

You can retrieve a callback event’s type by calling the Get Cal | BackType function. You
specify the type value when you call the NewCal | Back function (described on
page 2-336).

pascal short GetCall BackType (QTCal |l Back ch);

cb Specifies the callback event for the operation. You obtain this value from
the NewCal | Back function.

The Get Cal | BackTi neBase function returns the callback event’s type value. The
following values are valid:

cal | BackAt Ti e
Indicates that the event is to be invoked at a specified time.

cal | BackAt Rat e
Indicates that the event is to be invoked when the rate for the time base
reaches a specified value.

Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

cal | BackAt Ti meJunp
Indicates that the event is to be invoked when the time base’s time value
changes by an amount that differs from its rate.

In addition, if the high-order bit of the returned value is set to 1 (this bit is defined by the
cal | BackAt | nt errupt flag), the event can be invoked at interrupt time.

ERROR CODES
None

Matrix Functions

The Movie Toolbox provides a number of functions that allow you to work with
transformation matrices. This section describes those functions. For more information
about transformation matrices, see “The Transformation Matrix™ on page 2-26. For
descriptions of fixed-point and fixed-rectangle structures, see “The Fixed-Point and
Fixed-Rectangle Structures” on page 2-78.

Note

The functions described in this section do not appear in the MPW
interface file Movi es. h; rather, they appear in the
| mageConpr essi on. h interface file. u

SetldentityMatrix

The Set I denti t yMat ri x function allows your application to set the contents of a
matrix so that it performs no transformation. Such matrices are referred to as identity
matrices.

pascal void SetldentityMatrix (MatrixRecord *matrix);
mat ri X Contains a pointer to a matrix structure. The Set I denti tyMatri x

function updates the contents of this matrix so that the matrix describes
the identity matrix.

ERROR CODES
None

Movie Toolbox Reference 2-341

CHAPTER 2

Movie Toolbox

GetMatrixType

The Get Mat ri xType function allows your application to obtain information about a
matrix. This information indicates the nature of the transformation defined by the matrix.

pascal short GetMatrixType (MatrixRecordPtr nj;

m Points to the matrix for this operation.

DESCRIPTION
The Get Mat ri xType function returns an integer that indicates the nature of the
transformation defined by the matrix. The following values are possible:
identityMatrixType
Indicates that the specified matrix is an identity matrix.

transl ateMatri xType
Indicates that the specified matrix defines a translation operation.

scal eMatri xType
Indicates that the specified matrix defines a scaling operation.

scal eTransl at eMatri xType
Indicates that the specified matrix defines both a translation operation
and a scaling operation.

| i near Matri xType
Indicates that the specified matrix defines a rotation, skew, or shear
operation.

|'i near Transl at eMatri xType
Indicates that the specified matrix defines both a translation operation
and a rotation, skew, or shear operation.

per spectiveMatri xType
Indicates that the specified matrix defines a perspective (nonlinear)
operation.

ERROR CODES
None

2-342 Movie Toolbox Reference

CHAPTER 2

Movie Toolbox

CopyMatrix

DESCRIPTION

ERROR CODES

The CopyMat ri x function copies the contents of one matrix into another matrix.
pascal void CopyMatrix (MatrixRecordPtr ml, MatrixRecord *nR);

il Specifies the source matrix for the copy operation.

(192 Contains a pointer to the destination matrix for the copy operation. The
CopyMat ri x function copies the values from the matrix specified by the
ml parameter into this matrix.

The CopyMat ri x function is a convenience function for copying the contents of one
matrix to another. You can achieve the same results by using the Memory Manager’s
Bl ockMbve routine, or