
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

QuickTime

Apple Computer, Inc.

© 1993, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
and MPW are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

QuickDraw, QuickTime, and System 7
are trademarks of Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

America Online is a service mark of
Quantum Computer Services, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Windows is a trademark of Microsoft
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62201-7
1 2 3 4 5 6 7 8 9-MU-9796959493
First Printing, March 1993

iii

Contents

Figures, Tables, and Listings xi

Preface About This Book xv

Format of a Typical Chapter xvi

Conventions Used in This Book xvii

Special Fonts xvii

Types of Notes xvii

Development Environment xvii

Chapter 1 Introduction to QuickTime 1-1

QuickTime Concepts 1-3

Movies and Media Data Structures 1-3

Components 1-3

Image Compression 1-4

Time 1-4

The QuickTime Architecture 1-5

The Movie Toolbox 1-6

The Image Compression Manager 1-6

The Component Manager 1-6

QuickTime Components 1-7

Using QuickTime 1-8

Playing Movies 1-8

Creating and Editing Movies 1-10

Movie-Editing Applications 1-12

Movie-Creating Applications 1-13

Chapter 2 Movie Toolbox 2-1

Introduction to Movies 2-5

Time and the Movie Toolbox 2-5

Time Coordinate Systems 2-6

Time Bases 2-8

Movies 2-9

Tracks 2-12

Media Structures 2-13

About Movies 2-14

Movie Characteristics 2-15

Track Characteristics 2-17

iv

Media Characteristics 2-18

Spatial Properties 2-20

The Transformation Matrix 2-26

Audio Properties 2-29

Sound Playback 2-29

Adding Sound to Video 2-30

Sound Data Formats 2-31

Data Interchange 2-32

Movies on the Clipboard 2-32

Movies in Files 2-32

Using the Movie Toolbox 2-32

Determining Whether the Movie Toolbox Is Installed 2-33

Getting Ready to Work With Movies 2-35

Getting a Movie From a File 2-35

Playing Movies With a Movie Controller 2-38

Playing a Movie 2-41

Movies and the Scrap 2-45

Creating a Movie 2-45

A Sample Program for Creating a Movie 2-46

A Sample Function for Creating and Opening a Movie File 2-47

A Sample Function for Creating a Video Track in a New Movie 2-48

A Sample Function for Adding Video Samples to a Media 2-50

A Sample Function for Creating Video Data for a Movie 2-52

A Sample Function for Creating a Sound Track 2-52

A Sample Function for Creating a Sound Description Structure 2-55

Parsing a Sound Resource 2-59

Saving Movies in Movie Files 2-61

Using Movies in Your Event Loop 2-62

The Movie Toolbox and System 6 2-63

The Alias Manager 2-64

The File Manager 2-64

Previewing Files 2-65

Previewing Files in System 6 Using Standard File Reply

Structures 2-65

Customizing Your Interface in System 6 2-67

Previewing Files in System 7 Using Standard File Reply

Structures 2-68

Customizing Your Interface in System 7 2-70

Using Application-Defined Functions 2-71

Working With Movie Spatial Characteristics 2-73

Movie Toolbox Reference 2-76

Data Types 2-76

Movie Identifiers 2-77

The Time Structure 2-77

The Fixed-Point and Fixed-Rectangle Structures 2-78

The Sound Description Structure 2-79

v

Functions for Getting and Playing Movies 2-81

Initializing the Movie Toolbox 2-82

Error Functions 2-84

Movie Functions 2-87

Saving Movies 2-100

Controlling Movie Playback 2-111

Movie Posters and Movie Previews 2-114

Movies and Your Event Loop 2-124

Preferred Movie Settings 2-130

Enhancing Movie Playback Performance 2-134

Disabling Movies and Tracks 2-145

Generating Pictures From Movies 2-148

Creating Tracks and Media Structures 2-150

Working With Progress and Cover Functions 2-155

Functions That Modify Movie Properties 2-157

Working With Movie Spatial Characteristics 2-158

Working With Sound Volume 2-181

Working with Movie Time 2-184

Working With Track Time 2-191

Working With Media Time 2-194

Finding Interesting Times 2-196

Locating a Movie’s Tracks and Media Structures 2-202

Working With Alternate Tracks 2-207

Working With Data References 2-215

Determining Movie Creation and Modification Time 2-219

Working With Media Samples 2-222

Working With Movie User Data 2-230

Functions for Editing Movies 2-242

Editing Movies 2-243

Undo for Movies 2-254

Low-Level Movie-Editing Functions 2-257

Editing Tracks 2-262

Undo for Tracks 2-268

Adding Samples to Media Structures 2-271

Media Functions 2-281

Selecting Media Handlers 2-282

Video Media Handler Functions 2-287

Sound Media Handler Functions 2-288

Text Media Handler Functions 2-290

Functions for Creating File Previews 2-301

Functions for Displaying File Previews 2-304

Time Base Functions 2-315

Creating and Disposing of Time Bases 2-315

Working With Time Base Values 2-322

Working With Times 2-332

Time Base Callback Functions 2-335

Matrix Functions 2-341

vi

Application-Defined Functions 2-354

Progress Functions 2-354

Cover Functions 2-357

Error-Notification Functions 2-358

Movie Callout Functions 2-359

File Filter Functions 2-360

Custom Dialog Functions 2-360

Modal-Dialog Filter Functions 2-362

Standard File Activation Functions 2-363

Callback Event Functions 2-364

Text Functions 2-364

Summary of the Movie Toolbox 2-366

C Summary 2-366

Constants 2-366

Data Types 2-369

Functions for Getting and Playing Movies 2-378

Functions That Modify Movie Properties 2-383

Functions for Editing Movies 2-389

Media Functions 2-392

Functions for Creating File Previews 2-394

Functions for Displaying File Previews 2-394

Time Base Functions 2-395

Matrix Functions 2-397

Application-Defined Functions 2-398

Pascal Summary 2-399

Constants 2-399

Data Types 2-404

Routines for Getting and Playing Movies 2-408

Routines That Modify Movie Properties 2-413

Routines for Editing Movies 2-418

Media Routines 2-421

Routines for Creating File Previews 2-423

Routines for Displaying File Previews 2-423

Time Base Routines 2-423

Matrix Routines 2-425

Application-Defined Routines 2-426

Result Codes 2-427

Chapter 3 Image Compression Manager 3-1

Introduction to the Image Compression Manager 3-5

Data That Is Suitable for Compression 3-6

Storing Images 3-8

About Image Compression 3-8

Image-Compression Characteristics 3-8

Compression Ratio 3-8

vii

Compression Speed 3-9

Image Quality 3-9

Compressors Supplied by Apple 3-9

The Photo Compressor 3-10

The Video Compressor 3-10

The Compact Video Compressor 3-11

The Animation Compressor 3-11

The Graphics Compressor 3-11

The Raw Compressor 3-12

Types of Images Suitable for Different Compressors 3-13

Using the Image Compression Manager 3-24

Getting Information About Compressors and Compressed Data 3-24

Working With Pictures 3-24

Compressing Images 3-27

Decompressing Images 3-30

Compressing Sequences 3-31

Decompressing Sequences 3-33

Decompressing Still Images From a Sequence 3-34

Using Screen Buffers and Image Buffers 3-34

A Sample Program for Compressing and Decompressing a Sequence of

Images 3-35

A Sample Function for Saving a Sequence of Images to a Disk

File 3-36

A Sample Function for Creating, Compressing, and Drawing a Sequence

of Images 3-38

A Sample Function for Decompressing and Playing Back a Sequence

From a Disk File 3-42

Spooling Compressed Data 3-44

Banding and Extending Images 3-45

Defining Key Frame Rates 3-47

Fast Dithering 3-47

Understanding Compressor Components 3-48

Image Compression Manager Reference 3-49

Data Types 3-49

The Image Description Structure 3-49

The Compressor Information Structure 3-52

The Compressor Name Structure 3-55

The Compressor Name List Structure 3-56

Compression Quality Constants 3-57

Image Compression Manager Function Control Flags 3-58

Image Compression Manager Functions 3-61

Getting Information About Compressor Components 3-62

Getting Information About Compressed Data 3-67

Working With Images 3-73

Working With Pictures and PICT Files 3-88

Making Thumbnail Pictures 3-103

Working With Sequences 3-106

viii

Changing Sequence-Compression Parameters 3-120

Constraining Compressed Data 3-127

Changing Sequence-Decompression Parameters 3-129

Working With the StdPix Function 3-137

Aligning Windows 3-142

Working With Graphics Devices and Graphics Worlds 3-147

Application-Defined Functions 3-148

Data-Loading Functions 3-149

Data-Unloading Functions 3-150

Progress Functions 3-152

Completion Functions 3-154

Alignment Functions 3-155

Summary of the Image Compression Manager 3-157

C Summary 3-157

Constants 3-157

Data Types 3-159

Image Compression Manager Functions 3-163

Application-Defined Functions 3-169

Pascal Summary 3-170

Constants 3-170

Data Types 3-172

Image Compression Manager Routines 3-175

Application-Defined Routines 3-181

Result Codes 3-182

Chapter 4 Movie Resource Formats 4-1

Introduction to Movie Resources 4-3

Storing Movies in Files 4-4

Atoms 4-5

Atom Types 4-6

The Layout of a QuickTime Atom 4-7

Overview of the Movie Resource Atom 4-8

Movie Atoms 4-10

Movie Header Atoms 4-11

Track Atoms 4-13

Track Header Atoms 4-14

Media Atoms 4-16

Media Header Atoms 4-17

Handler Reference Atoms 4-18

User-Defined Data Atoms 4-19

Clipping Atoms 4-22

Clipping Region Atoms 4-22

Track Matte Atoms 4-23

Compressed Matte Atoms 4-23

Edit Atoms 4-24

ix

Edit List Atoms 4-25

Media Information Atoms 4-26

Video Media Information Atoms 4-26

Video Media Information Header Atoms 4-27

Sound Media Information Atoms 4-28

Sound Media Information Header Atoms 4-29

Data Information Atoms 4-30

Data Reference Atoms 4-32

An Introduction to Samples 4-32

Sample Table Atoms 4-33

Sample Description Atoms 4-35

Time-to-Sample Atoms 4-36

Sync Sample Atoms 4-38

Sample-to-Chunk Atoms 4-39

Sample Size Atoms 4-41

Chunk Offset Atoms 4-42

Shadow Sync Atoms 4-44

Using Media Information Atoms 4-45

Finding a Sample 4-46

Finding a Key Frame 4-46

Glossary GL-1

Index IN-1

xi

Figures, Tables, and Listings

Chapter 1 Introduction to QuickTime 1-1

Figure 1-1 QuickTime playing a movie 1-5
Figure 1-2 A QuickTime movie with Apple’s movie controller 1-8
Figure 1-3 A QuickTime movie with an active selection rectangle 1-9
Figure 1-4 Capturing and playing back movies 1-11
Figure 1-5 Apple’s movie controller with a portion of the movie selected for

editing 1-12
Figure 1-6 A monitor window 1-13
Figure 1-7 Compression settings 1-14

Chapter 2 Movie Toolbox 2-1

Figure 2-1 Time scales 2-7
Figure 2-2 A time coordinate system and a time base 2-8
Figure 2-3 A movie’s time coordinate system 2-9
Figure 2-4 A movie containing several tracks 2-10
Figure 2-5 A movie, its preview, and its poster 2-11
Figure 2-6 A track in a movie 2-12
Figure 2-7 A track and its media 2-13
Figure 2-8 A media and its data 2-14
Figure 2-9 Movie characteristics 2-15
Figure 2-10 Track characteristics 2-17
Figure 2-11 Media characteristics 2-19
Figure 2-12 Spatial processing of a movie and its tracks 2-21
Figure 2-13 A track rectangle 2-22
Figure 2-14 Clipping a track’s image 2-23
Figure 2-15 A track transformed into a movie coordinate system 2-23
Figure 2-16 Clipping a movie’s image 2-24
Figure 2-17 A movie transformed to the display coordinate system 2-25
Figure 2-18 Clipping a movie for final display 2-25
Figure 2-19 A point transformed by a 3-by-3 matrix 2-26
Figure 2-20 The identity matrix 2-26
Figure 2-21 A matrix that describes a translation operation 2-27
Figure 2-22 A matrix that describes a scaling operation 2-27
Figure 2-23 A matrix that describes a rotation operation 2-28
Figure 2-24 A matrix that describes a scaling and translation operation 2-28
Figure 2-25 An alert box that tells the user that QuickTime is

unavailable 2-34
Figure 2-26 A dialog box used when searching for a movie’s data 2-36
Figure 2-27 A dialog box that informs the user the movie file cannot be

found 2-37
Figure 2-28 A dialog box that allows the user to specify a movie

file to try 2-37
Figure 2-29 An alert for an invalid movie file 2-38
Figure 2-30 An alert when QuickTime cannot be found 2-38

xii

Figure 2-31 A movie controller playing a movie 2-39
Figure 2-32 A sample movie Save As dialog box 2-62
Figure 2-33 SFGetFilePreview or SFPGetFilePreview dialog box without

preview 2-66
Figure 2-34 SFGetFilePreview or SFPGetFilePreview dialog box with

preview 2-66
Figure 2-35 Standard preview dialog box for SFGetFilePreview and

SFPGetFilePreview 2-67
Figure 2-36 StandardGetFilePreview or CustomGetFilePreview dialog box

without preview 2-68
Figure 2-37 StandardGetFilePreview or CustomGetFilePreview dialog box

with preview 2-69
Figure 2-38 Dialog box showing automatic file-to-movie conversion

option 2-69
Figure 2-39 Dialog box for saving a movie converted from a file 2-70
Figure 2-40 Standard preview dialog box for CustomGetFilePreview 2-71
Figure 2-41 Dialog box showing automatic file-to-movie conversion

option 2-304
Figure 2-42 Dialog box for saving a movie converted from a file 2-305
Figure 2-43 Transforming an image with the RectMatrix function 2-351
Figure 2-44 Matrix created as a result of calling the RectMatrix

function 2-352
Figure 2-45 Transforming an image with the MapMatrix function 2-353

Table 2-1 Common movie time scales 2-6

Listing 2-1 Using the Gestalt Manager with the Movie Toolbox 2-34
Listing 2-2 Getting a movie from a file 2-35
Listing 2-3 Playing a movie using a movie controller component 2-39
Listing 2-4 Playing a movie 2-42
Listing 2-5 Creating a movie: The main program 2-46
Listing 2-6 Creating and opening a movie file 2-47
Listing 2-7 Creating a video track 2-49
Listing 2-8 Adding video samples to a media 2-50
Listing 2-9 Creating video data 2-52
Listing 2-10 Creating a sound track 2-53
Listing 2-11 Creating a sound description 2-55
Listing 2-12 Parsing a sound resource 2-59
Listing 2-13 Handling movie update events 2-63
Listing 2-14 Two sample movie cover functions 2-72
Listing 2-15 Creating a track matte 2-73

Chapter 3 Image Compression Manager 3-1

Figure 3-1 24-bit photographic image 3-13
Figure 3-2 24-bit synthetic image 3-14
Figure 3-3 8-bit graphic image 3-15
Figure 3-4 8-bit photographic image 3-16
Figure 3-5 Compressor performance for a 921 KB, 24-bit, photographic

image 3-17
Figure 3-6 Compressor performance for a 502 KB, 24-bit, synthetic

image 3-19

xiii

Figure 3-7 Compressor performance for a 30 KB, 8-bit, graphic image 3-21
Figure 3-8 Compressor performance for a 302 KB, 8-bit, dithered,

photographic image 3-23
Figure 3-9 Image bands and their measurements 3-46
Figure 3-10 The operation of the DrawTrimmedPicture function 3-100

Table 3-1 Fields of the PICT opcode for compressed QuickTime
images 3-26

Table 3-2 Fields of the PICT opcode for uncompressed QuickTime
images 3-27

Table 3-3 Compressor type descriptors 3-64

Listing 3-1 Compressing and decompressing an image 3-28
Listing 3-2 Compressing and decompressing a sequence of images: The main

program 3-35
Listing 3-3 Compressing and decompressing a sequence of images: Saving a

sequence to a disk file 3-36
Listing 3-4 Compressing and decompressing a sequence of images: Drawing

one frame with QuickDraw 3-39
Listing 3-5 Compressing and decompressing a sequence of images:

Decompressing and playing back a sequence from a disk
file 3-42

Chapter 4 Movie Resource Formats 4-1

Figure 4-1 Movie files and single-fork movie files 4-4
Figure 4-2 The structure of a single-fork movie file 4-5
Figure 4-3 A sample QuickTime atom 4-7
Figure 4-4 Sample organization of a one-track video movie 4-9
Figure 4-5 The layout of a movie atom 4-10
Figure 4-6 The layout of a movie header atom 4-11
Figure 4-7 The layout of a track atom 4-13
Figure 4-8 The layout of a track header atom 4-14
Figure 4-9 The layout of a media atom 4-16
Figure 4-10 The layout of a media header atom 4-17
Figure 4-11 The layout of a handler reference atom 4-18
Figure 4-12 The layout of a user-defined data atom 4-20
Figure 4-13 The layout of a clipping atom 4-22
Figure 4-14 The layout of a track matte atom 4-23
Figure 4-15 The layout of an edit atom 4-24
Figure 4-16 The layout of an edit list table 4-25
Figure 4-17 The layout of a media information atom for video 4-26
Figure 4-18 The layout of a media information header atom for video 4-27
Figure 4-19 The layout of a media information atom for sound 4-28
Figure 4-20 The layout of a sound media information header atom 4-29
Figure 4-21 The layout of a data information atom 4-31
Figure 4-22 Samples in a media 4-33
Figure 4-23 The layout of a sample table atom 4-34
Figure 4-24 The layout of a sample description atom 4-35
Figure 4-25 The layout of a time-to-sample atom 4-36
Figure 4-26 The layout of a time-to-sample table 4-37

xiv

Figure 4-27 An example of a time-to-sample table 4-37
Figure 4-28 The layout of a sync sample atom 4-38
Figure 4-29 The layout of a sync sample table 4-39
Figure 4-30 The layout of a sample-to-chunk atom 4-39
Figure 4-31 The layout of a sample-to-chunk table 4-40
Figure 4-32 An example of a sample-to-chunk table 4-40
Figure 4-33 The layout of a sample size atom 4-41
Figure 4-34 An example of a sample size table 4-42
Figure 4-35 The layout of a chunk offset atom 4-43
Figure 4-36 An example of a chunk offset table 4-44
Figure 4-37 The layout of a shadow sync atom 4-44
Figure 4-38 The layout of a shadow sync table 4-45

Table 4-1 Apple-defined atom types 4-6

xv

P R E F A C E

About This Book

This book describes QuickTime, an extension of Macintosh system software

that enables you to integrate time-based data into mainstream Macintosh

applications. This book also provides a complete technical reference to the

Movie Toolbox, the Image Compression Manager, and the movie resources.

Time-based data types contain data that can be stored and retrieved as values

over time. Examples include sound, video, animation, data produced by

scientific instruments, and financial results. Time-based data can now be

manipulated in the same ways as other standard types of data in the

Macintosh environment. In QuickTime, a set of time-based data is referred to

as a movie. This book shows in detail how your application can allow users to

display, edit, cut, copy, and paste movies and movie data in the same way that

they can work with text and graphic elements today.

If you want your application to be able to handle time-based data, you should

first read the chapter “Introduction to QuickTime” for an introduction to the

QuickTime concepts, architecture, managers, and components.

If you want your application to be able to paste and run QuickTime movies,

to edit them, or to create new movies, you should read the chapter “Movie

Toolbox.” Your application may only need to paste a movie from the

Clipboard and play it—for example, a word processor might paste a movie as

it does a picture, and the user might use a movie controller to play the movie.

A more media-intensive application might add the ability to edit the movie

after it is pasted—for example, the user might cut a segment of the movie,

add a video segment, or add a different sound track. Full “mediagenic”

applications could create a movie from disparate sources such as CD tracks,

video clips, sounds, animation from graphics programs, or still images.

If you want your application to use the facilities of QuickTime to compress

and decompress still images, you should read the chapter “Image

Compression Manager.” These single images are not QuickTime movies—

they do not contain time-based data. Nevertheless, you can use the image

compression and decompression facilities of QuickTime for images that are

not stored in movies. The chapter describes the Image Compression Manager,

including compression and decompression algorithms, and the steps involved

in compressing and decompressing single images and sequences of images.

If you are going to play movies or compress images, you should be familiar

with QuickDraw and Color QuickDraw, described in Inside Macintosh:
Imaging. If you are going to create QuickTime movies, you should also be

familiar with the Sound Manager, described in Inside Macintosh: More
Macintosh Toolbox, and with the human interface guidelines as described

in Macintosh Human Interface Guidelines. If you are going to use QuickTime

xvi

P R E F A C E

components, you should be familiar with the Component Manager as

described in Inside Macintosh: More Macintosh Toolbox.

If your application imports or exports movies to other platforms, you should

read the chapter “Movie Resource Formats.” It presents details of the movie

file format used by QuickTime. Most applications do not need this

information.

The companion to this book, Inside Macintosh: QuickTime Components, includes

descriptions of the Apple-supplied QuickTime components: clock

components, compressor components, standard image-compression

dialog components, movie controller components, sequence grabber

components, sequence grabber channel components, sequence grabber

panel components, video digitizer components, media data-exchange

components, preview components, and media handler components.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the

chapter “Image Compression Manager” contains these sections:

■ “Introduction to the Image Compression Manager.” This section presents a
general introduction to image compression.

■ “About Image Compression.” This section provides an overview of the
features provided by the Image Compression Manager.

■ “Using the Image Compression Manager.” This section describes the tasks
you can accomplish using the Image Compression Manager. It describes
how to use the most common functions, gives related user interface
information, provides code samples, and supplies additional information.

■ “Image Compression Manager Reference.” This section provides a
complete reference to the Image Compression Manager by describing the
constants, data structures, and functions that it uses. Each function
description also follows a standard format, which gives the function
declaration and description of every parameter of the function. Some
function descriptions also give additional descriptive information, such as
assembly-language information or result codes.

■ “Summary of the Image Compression Manager.” This section provides the
Image Compression Manager’s C interface, as well as the Pascal interface,
for the constants, data structures, functions, and result codes associated
with the Image Compression Manager.

xvii

P R E F A C E

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain types

of information, such as parameter blocks, use special formats so that you can

scan them quickly.

Special Fonts
All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and functions are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts and are defined in

the glossary.

Types of Notes
There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-3.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 2-84.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 2-59.) ▲

Development Environment

The system software functions described in this book are available using C or

Pascal interfaces. How you access these functions depends on the

development environment you are using. This book shows system software

functions in their C interface using the Macintosh Programmer’s Workshop

(MPW) version 3.2.

xviii

P R E F A C E

All code listings in this book are shown in C. They show methods of using

various functions and illustrate techniques for accomplishing particular tasks.

All code listings have been compiled and, in most cases, tested. However,

Apple Computer, Inc., does not intend that you use these code samples in

your application.

In a few cases, the functions documented in one chapter may be listed in the

MPW interface files associated with another manager. An example is the

MakeFilePreview function, which is documented for conceptual

consistency in the chapter “Movie Toolbox.” This function does not appear in

the Movies.h MPW interface file; rather, it is listed in the

ImageCompression.h MPW interface file. When this occurs, the disparity is

noted in the function descriptions.

APDA, Apple’s source for developer tools, offers worldwide access to a broad

range of programming products, resources, and information for anyone

developing on Apple platforms. You’ll find the most current versions of

Apple and third-party development tools, debuggers, compilers, languages,

and technical references for all Apple platforms. To establish an APDA

account, obtain additional ordering information, or find out about site

licensing and developer training programs, contact

APDA

Apple Computer, Inc.

P. O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other

technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T

Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)

800-637-0029 (Canada)

716-871-6555 (International)

Fax: 716-871-6511

AppleLink: APDA

America Online: APDA

CompuServe: 76666,2405

Internet: APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Contents

Introduction to QuickTime

QuickTime Concepts 1-3

Movies and Media Data Structures 1-3

Components 1-3

Image Compression 1-4

Time 1-4

The QuickTime Architecture 1-5

The Movie Toolbox 1-6

The Image Compression Manager 1-6

The Component Manager 1-6

QuickTime Components 1-7

Using QuickTime 1-8

Playing Movies 1-8

Creating and Editing Movies 1-10

Movie-Editing Applications 1-12

Movie-Creating Applications 1-13

C H A P T E R 1

QuickTime Concepts 1-3

Introduction to QuickTime

This chapter introduces the concepts underlying QuickTime, a set of functions and data

structures that you can use in your application to control time-based data. In QuickTime,

a set of time-based data is referred to as a movie. Your application can allow users to

display, edit, cut, copy, and paste movies and movie data in the same way that they can

work with text and graphic elements today.

This chapter also introduces the QuickTime architecture, the managers, and the

components that constitute QuickTime. It will help you decide what level of QuickTime

support your application may need to incorporate.

QuickTime Concepts

To use QuickTime, you need to understand some concepts that are new to most

developers of Macintosh applications: movies, media data structures, components,

image compression, and time.

Movies and Media Data Structures
A traditional movie, whether stored on film, laser disk, or tape, is a continuous stream of

data. A QuickTime movie can be similarly constructed, but it need not be: a QuickTime

movie can consist of data in sequences from different forms, such as analog video and

CD-ROM. The movie is not the medium; it is the organizing principle.

A QuickTime movie may contain several tracks. Each track refers to a media that

contains references to the movie data, which may be stored as images or sound on hard

disks, floppy disks, compact discs, or other devices. The data references constitute the

track’s media. Each track has a single media data structure.

Note

Throughout this book, the term media is used to refer to a Movie Toolbox
data structure that contains information that describes the data for a
track in a movie. Note that a media does not contain its data; rather, a
media contains a reference to its data. If more than one media is being
discussed, the term media structures is used. ◆

Your application need never work directly with the movie data, as Movie Toolbox

functions allow you to manage movie content and characteristics. See the chapter

“Movie Toolbox” later in this book for a comprehensive reference to the Movie Toolbox.

Components
QuickTime provides components so that every application doesn’t need to know about

all possible types of audio, visual, and storage devices. A component is a code resource

that is registered by the Component Manager. The component’s code can be available as

a systemwide resource or in a resource that is local to a particular application. Each

QuickTime component supports a defined set of features and presents a specified

C H A P T E R 1

Introduction to QuickTime

1-4 QuickTime Concepts

functional interface to its client applications. Applications are thereby isolated from the

details of implementing and managing a given technology. For example, you could

create a component that supports a certain data encryption algorithm. Applications

could then use your algorithm by connecting to your component through the

Component Manager, rather than by implementing the algorithm over again. For

comprehensive reference to the QuickTime components supplied by Apple, see the book

Inside Macintosh: QuickTime Components.

Image Compression
Image data requires a large amount of storage space. Storing a single 640-by-480

pixel image in 32-bit color can require as much as 1.2 MB. Similarly, sequences of images,

like those that might be contained in a QuickTime movie, demand substantially more

storage than single images. This is true even for sequences that consist of fairly small

images, because the movie consists of a large number of those images. Consequently,

minimizing the storage requirements for image data is an important consideration for

any application that works with images or sequences of images.

The Image Compression Manager provides your application with an interface for

compressing and decompressing images and sequences of images that is independent of

devices and algorithms. See the chapter “Image Compression Manager” later in this

book for details.

Time
Image compression is difficult but worthwhile—images, not to mention long sequences

of images, take a lot of memory. Time management in QuickTime is equally essential.

You must understand time management to understand the QuickTime functions and

data structures.

Seemingly simple issues prove interesting—for example, determining the proper length

(duration) of a movie. For many movies, the proper duration is the time required to play

them in “real” time—that is, a rate in which human actions appear natural, and objects

fall to earth accelerating at 32 feet per second per second. But what is the length of a

movie that shows spreadsheet data charted over time, or a map of the earth that

recapitulates continental drift? Add to this the differing clock speeds of different

platforms, and the need to decompress in real time, and time proves, as ever, complex.

To manage these situations, QuickTime defines time coordinate systems, which anchor

movies and their media data structures to a common temporal reality, the second. A time

coordinate system contains a time scale that provides the translation between real time

and the time in a movie. Time scales are marked in time units. The number of units that

pass per second quantifies the scale—that is, a time scale of 26 means that 26 units pass

per second and each time unit is 1/26 of a second. A time coordinate system also

contains a duration, which is the length of a movie or a media in the number of time

units it contains. Particular points in a movie can be identified by a time value, the

number of time units elapsed to that point.

C H A P T E R 1

Introduction to QuickTime

The QuickTime Architecture 1-5

Each media has its own time coordinate system, which starts at time 0. The Movie

Toolbox maps each type of media data from the movie’s time coordinate system to the

media’s time coordinate system.

Time bases and time coordinate systems are described in the chapter “Movie Toolbox”

later in this book.

The QuickTime Architecture

QuickTime comprises two managers: the Movie Toolbox and the Image Compression

Manager. QuickTime also relies on the Component Manager, as well as a set of

predefined components. Figure 1-1 shows the relationships of these managers and an

application that is playing a movie.

Figure 1-1 QuickTime playing a movie

The following sections discuss these managers in more detail.

C H A P T E R 1

Introduction to QuickTime

1-6 The QuickTime Architecture

The Movie Toolbox
Your application gains access to the capabilities of QuickTime by calling functions in the

Movie Toolbox. The Movie Toolbox allows you to store, retrieve, and manipulate

time-based data that is stored in QuickTime movies. A single movie may contain several

types of data. For example, a movie that contains video information might include both

video data and the sound data that accompanies the video.

The Movie Toolbox also provides functions for editing movies. For example, there are

editing functions for shortening a movie by removing portions of the video and sound

tracks, and there are functions for extending it with the addition of new data from other

QuickTime movies.

The Movie Toolbox is described in the chapter “Movie Toolbox” later in this book. That

chapter includes code samples that show how to play movies.

The Image Compression Manager
The Image Compression Manager comprises a set of functions that compress and

decompress images or sequences of graphic images.

The Image Compression Manager provides a device-independent and

driver-independent means of compressing and decompressing images and sequences

of images. It also contains a simple interface for implementing software and hardware

image-compression algorithms. It provides system integration functions for storing

compressed images as part of PICT files, and it offers the ability to automatically

decompress compressed PICT files on any QuickTime-capable Macintosh computer.

In most cases, applications use the Image Compression Manager indirectly, by calling

Movie Toolbox functions or by displaying a compressed picture. However, if your

application compresses images or makes movies with compressed images, you will call

Image Compression Manager functions.

The Image Compression Manager is described in the chapter “Image Compression

Manager” later in this book. This chapter also includes code samples that show how to

compress images or make movies with compressed images.

The Component Manager
Applications gain access to components by calling the Component Manager. The

Component Manager allows you to define and register types of components and

communicate with components using a standard interface. A component is a code

resource that is registered by the Component Manager. The component’s code can be

stored in a systemwide resource or in a resource that is local to a particular application.

C H A P T E R 1

Introduction to QuickTime

The QuickTime Architecture 1-7

Once an application has connected to a component, it calls that component directly. If

you create your own component class, you define the function-level interface for the

component type that you have defined, and all components of that type must support

the interface and adhere to those definitions. In this manner, an application can freely

choose among components of a given type with absolute confidence that each will work.

The Component Manager is described in Inside Macintosh: More Macintosh Toolbox.

QuickTime Components
QuickTime includes several components that are provided by Apple. These components

provide essential services to your application and to the managers that make up the

QuickTime architecture. The following Apple-defined components are among those used

by QuickTime:

■ movie controller components, which allow applications to play movies using a
standard user interface

■ standard image-compression dialog components, which allow the user to specify the
parameters for a compression operation by supplying a dialog box or a similar
mechanism

■ image compressor components, which compress and decompress image data

■ sequence grabber components, which allow applications to preview and record video
and sound data as QuickTime movies

■ video digitizer components, which allow applications to control video digitization by
an external device

■ media data-exchange components, which allow applications to move various types of
data in and out of a QuickTime movie

■ derived media handler components, which allow QuickTime to support new types of
data in QuickTime movies

■ clock components, which provide timing services defined for QuickTime applications

■ preview components, which are used by the Movie Toolbox’s standard file preview
functions to display and create visual previews for files

■ sequence grabber components, which allow applications to obtain digitized data from
sources that are external to a Macintosh computer

■ sequence grabber channel components, which manipulate captured data for
a sequence grabber component

■ sequence grabber panel components, which allow sequence grabber components to
obtain configuration information from the user for a particular sequence grabber
channel component

These components and the interfaces they support are discussed in Inside Macintosh:
QuickTime Components.

C H A P T E R 1

Introduction to QuickTime

1-8 Using QuickTime

Using QuickTime

Applications that use QuickTime fall into two categories: applications that can play

existing movies, and applications that can create and edit movies. The following sections

describe how applications of both types use QuickTime.

Playing Movies
QuickTime provides a complete set of tools that allow you to play movies in your

application. You can also allow the user to position, resize, copy, and paste movies

within the documents that your application creates and manipulates.

The Movie Toolbox provides functions that enable you to get a movie into your

application; you can either get a movie from a file or from the scrap. Positioning the

movie within a document varies with the application. For example, in a text document

a movie might be repositioned with tab settings, whereas in a paint document the user

might position the movie by selecting and dragging the movie rectangle.

Once you have loaded the movie into your document, you can allow the user to play it

by calling the movie controller component provided by Apple. Figure 1-2 shows a

sample movie controller.

Figure 1-2 A QuickTime movie with Apple’s movie controller

C H A P T E R 1

Introduction to QuickTime

Using QuickTime 1-9

Resizing the movie’s rectangle is the same as resizing PICT rectangles within a text or

paint document. When the user selects the movie, a selection rectangle appears with

resizing handles at the corners of the rectangle, like those shown in Figure 1-3. The user

can drag the handles to resize the movie rectangle.

Figure 1-3 A QuickTime movie with an active selection rectangle

Changing the size of a movie window may affect the performance of the video during

playback as well as its appearance on the display.

C H A P T E R 1

Introduction to QuickTime

1-10 Using QuickTime

Creating and Editing Movies
More sophisticated applications allow the user to create new movies and edit existing

ones. An example of a movie-creating application is an electronic mail system that

supports the creation and transmission of video memos. Other examples are an

application that might be included in a video digitizer card package, an architectural

walk-through program, or an application that creates animation sequences that can be

saved as QuickTime movies.

Movie-creating applications fall into two categories:

■ those that use a sequence grabber component and the compression functions of the
Image Compression Manager to obtain movie data

■ those that make a movie and then use the Movie Toolbox and the decompression
functions of the Image Compression Manager to work with the movie data

If you are creating an application that creates or edits movies, you are going to use more

of the capabilities of the Movie Toolbox and the other managers that make up

QuickTime. Figure 1-4 shows some of these other elements in an expanded view of

the QuickTime architecture. For comprehensive information on the video digitizer

component, the sequence grabber channel component, the sequence grabber component,

and video and media handlers, see Inside Macintosh: QuickTime Components.

C H A P T E R 1

Introduction to QuickTime

Using QuickTime 1-11

Figure 1-4 Capturing and playing back movies

C H A P T E R 1

Introduction to QuickTime

1-12 Using QuickTime

Movie-Editing Applications

The Movie Toolbox includes functions that help your application provide movie-editing

capabilities to the user. The easiest way to allow the user to edit a movie is to use the

movie controller component provided by Apple.

Alternatively, you can use QuickTime’s editing functions to remove, copy, replace,

rearrange, or extend the content of movies. The user interface for editing is up to you, as

long as you observe the guidelines suggested by Apple (see the chapter “Movie Toolbox”

later in this book for more information on human interface guidelines for movie

applications).

To give a user some simple editing tools, you could use the movie controller

component to create a movie-editing window similar to the one shown in Figure 1-5.

Figure 1-5 Apple’s movie controller with a portion of the movie selected for editing

This window gives the user access to various viewing and editing controls. These

controls include a real-time position controller that allows random access over the length

of the movie, single-step controls in both forward and reverse directions, visual feedback

for selecting a sequence of frames in the movie, and a rectangular marker highlighting

the currently displayed frame.

C H A P T E R 1

Introduction to QuickTime

Using QuickTime 1-13

Movie-Creating Applications

Applications that create QuickTime movies can capture the movie’s data from an

external source and store it in a media. As with any movie, this data may be digitized

video, digitized sound, computer animation, MIDI (Musical Instrument Digital

Interface) data, external data such as an audio CD or videotape, and so on. Each type of

data in a movie has an associated movie track. Movie tracks contain an edit list that

sequences the data stored in the media.

The Movie Toolbox supplies functions that allow you to modify the edit list of the tracks

in a movie to rearrange, remove, and extend the playback display sequence of the data in

the movie. You can use these functions to create an application that captures external

video and creates movies.

Figure 1-6 shows a sample user interface for a video-capture application. Before the user

digitizes the data, the application displays an editing window (called a monitor window)

to help preview the information prior to capturing it.

Figure 1-6 A monitor window

C H A P T E R 1

Introduction to QuickTime

1-14 Using QuickTime

Figure 1-7 shows a dialog box that this application provides to allow the user to select

compression methods for video using the standard image-compression dialog

component.

Figure 1-7 Compression settings

The remainder of this book provides the technical reference you need to develop an

application that lets users display, edit, cut, copy, and paste movies and movie data in

the same way that they currently manipulate text and graphic elements.

Chapter 2 discusses the Movie Toolbox, the set of functions with which you can create

and modify movies and movie files.

Chapter 3 describes the Image Compression Manager, with which your application can

compress and decompress still images and video sequences.

Chapter 4 describes the format and content of movie resources and movie files.

This chapter is of interest only to developers of QuickTime components.

The book concludes with a glossary and an index.

Contents 2-1

C H A P T E R 2

Contents

Movie Toolbox

Introduction to Movies 2-5

Time and the Movie Toolbox 2-5

Time Coordinate Systems 2-6

Time Bases 2-8

Movies 2-9

Tracks 2-12

Media Structures 2-13

About Movies 2-14

Movie Characteristics 2-15

Track Characteristics 2-17

Media Characteristics 2-18

Spatial Properties 2-20

The Transformation Matrix 2-26

Audio Properties 2-29

Sound Playback 2-29

Adding Sound to Video 2-30

Sound Data Formats 2-31

Data Interchange 2-32

Movies on the Clipboard 2-32

Movies in Files 2-32

Using the Movie Toolbox 2-32

Determining Whether the Movie Toolbox Is Installed 2-33

Getting Ready to Work With Movies 2-35

Getting a Movie From a File 2-35

Playing Movies With a Movie Controller 2-38

Playing a Movie 2-41

Movies and the Scrap 2-45

Creating a Movie 2-45

A Sample Program for Creating a Movie 2-46

A Sample Function for Creating and Opening a Movie File 2-47

C H A P T E R 2

2-2 Contents

A Sample Function for Creating a Video Track in a New Movie 2-48

A Sample Function for Adding Video Samples to a Media 2-50

A Sample Function for Creating Video Data for a Movie 2-52

A Sample Function for Creating a Sound Track 2-52

A Sample Function for Creating a Sound Description Structure 2-55

Parsing a Sound Resource 2-59

Saving Movies in Movie Files 2-61

Using Movies in Your Event Loop 2-62

The Movie Toolbox and System 6 2-63

The Alias Manager 2-64

The File Manager 2-64

Previewing Files 2-65

Previewing Files in System 6 Using Standard File Reply
Structures 2-65

Customizing Your Interface in System 6 2-67

Previewing Files in System 7 Using Standard File Reply
Structures 2-68

Customizing Your Interface in System 7 2-70

Using Application-Defined Functions 2-71

Working With Movie Spatial Characteristics 2-73

Movie Toolbox Reference 2-76

Data Types 2-76

Movie Identifiers 2-77

The Time Structure 2-77

The Fixed-Point and Fixed-Rectangle Structures 2-78

The Sound Description Structure 2-79

Functions for Getting and Playing Movies 2-81

Initializing the Movie Toolbox 2-82

Error Functions 2-84

Movie Functions 2-87

Saving Movies 2-100

Controlling Movie Playback 2-111

Movie Posters and Movie Previews 2-114

Movies and Your Event Loop 2-124

Preferred Movie Settings 2-130

Enhancing Movie Playback Performance 2-134

Disabling Movies and Tracks 2-145

Generating Pictures From Movies 2-148

Creating Tracks and Media Structures 2-150

Working With Progress and Cover Functions 2-155

Functions That Modify Movie Properties 2-157

Working With Movie Spatial Characteristics 2-158

Working With Sound Volume 2-181

Working with Movie Time 2-184

Working With Track Time 2-191

Working With Media Time 2-194

Finding Interesting Times 2-196

C H A P T E R 2

Contents 2-3

Locating a Movie’s Tracks and Media Structures 2-202

Working With Alternate Tracks 2-207

Working With Data References 2-215

Determining Movie Creation and Modification Time 2-219

Working With Media Samples 2-222

Working With Movie User Data 2-230

Functions for Editing Movies 2-242

Editing Movies 2-243

Undo for Movies 2-254

Low-Level Movie-Editing Functions 2-257

Editing Tracks 2-262

Undo for Tracks 2-268

Adding Samples to Media Structures 2-271

Media Functions 2-281

Selecting Media Handlers 2-282

Video Media Handler Functions 2-287

Sound Media Handler Functions 2-288

Text Media Handler Functions 2-290

Functions for Creating File Previews 2-301

Functions for Displaying File Previews 2-304

Time Base Functions 2-315

Creating and Disposing of Time Bases 2-315

Working With Time Base Values 2-322

Working With Times 2-332

Time Base Callback Functions 2-335

Matrix Functions 2-341

Application-Defined Functions 2-354

Progress Functions 2-354

Cover Functions 2-357

Error-Notification Functions 2-358

Movie Callout Functions 2-359

File Filter Functions 2-360

Custom Dialog Functions 2-360

Modal-Dialog Filter Functions 2-362

Standard File Activation Functions 2-363

Callback Event Functions 2-364

Text Functions 2-364

Summary of the Movie Toolbox 2-366

C Summary 2-366

Constants 2-366

Data Types 2-369

Functions for Getting and Playing Movies 2-378

Functions That Modify Movie Properties 2-383

Functions for Editing Movies 2-389

Media Functions 2-392

Functions for Creating File Previews 2-394

Functions for Displaying File Previews 2-394

C H A P T E R 2

2-4 Contents

Time Base Functions 2-395

Matrix Functions 2-397

Application-Defined Functions 2-398

Pascal Summary 2-399

Constants 2-399

Data Types 2-404

Routines for Getting and Playing Movies 2-408

Routines That Modify Movie Properties 2-413

Routines for Editing Movies 2-418

Media Routines 2-421

Routines for Creating File Previews 2-423

Routines for Displaying File Previews 2-423

Time Base Routines 2-423

Matrix Routines 2-425

Application-Defined Routines 2-426

Result Codes 2-427

C H A P T E R 2

Introduction to Movies 2-5

Movie Toolbox

This chapter describes the Movie Toolbox and the key concepts that underlie QuickTime.

The Movie Toolbox allows your application to use the full range of features provided by

QuickTime. This toolbox provides functions that allow you to load, play, create, edit, and

store objects that contain time-based data. If you are developing an application that

works with time-based data, or if you are developing a component that will be used by

movie applications, you should be familiar with the capabilities of the Movie Toolbox

and the concepts discussed in this chapter.

This chapter is divided into the following major sections:

■ “Introduction to Movies” discusses many of the concepts that are key to
understanding how to use QuickTime, including time, movies, tracks, and media
structures

■ “About Movies” discusses the characteristics of QuickTime movies, tracks, and media
structures

■ “Using the Movie Toolbox” describes how you can use the Movie Toolbox to work
with movies

■ “Movie Toolbox Reference” describes the constants, data types, and functions
provided by the Movie Toolbox

■ “Summary of the Movie Toolbox” contains a condensed listing of the constants, data
types, and functions provided by the Movie Toolbox in C and in Pascal

Introduction to Movies

QuickTime allows you to manipulate time-based data such as video sequences, audio

sequences, financial results from an ongoing business operation, laboratory data

recorded over time, and so on. QuickTime uses the metaphor of a movie to describe

time-based data. Therefore, QuickTime stores time-based data in objects called movies.

Just as a cinematic movie can contain several tracks (for example, a video track and a

sound track), a single QuickTime movie can contain more than one stream of data.

Following the movie metaphor, each of these data streams is called a track. Tracks in

QuickTime movies do not actually contain the movie’s data. Rather, each track refers to a

single media that, in turn, contains references to the actual media data. The media data

may be stored on disks, CD-ROM volumes, videotape, or other appropriate storage

devices.

Underlying all this is the notion of time. The next section describes how time is

represented in QuickTime. Following that are sections that discuss how QuickTime

movies, tracks, and media structures relate to time and to one another.

Time and the Movie Toolbox
At the most basic level, the Movie Toolbox allows you to process time-based data. As

such, the Movie Toolbox must provide a description of the time basis of that data as well

as a definition of the context for evaluating that time basis. In QuickTime, a movie’s time

C H A P T E R 2

Movie Toolbox

2-6 Introduction to Movies

basis is referred to as its time base. Geometrically, you can think of the time base as a

vector that defines the direction and velocity of time for a movie. The context for a time

base is called its time coordinate system. Essentially, the time coordinate system defines

the axis on which the time base vector is plotted (see Figure 2-2 on page 2-8). The

smallest single unit of time marked on that axis is defined by the time scale as the units

per absolute second.

The following sections discuss each of these key concepts further.

Time Coordinate Systems

A movie’s time coordinate system provides the context for evaluating the passage of

time in the movie. If you think of the time coordinate system as defining an axis for

measuring time, it is only natural that this axis would be marked with a scale that

defines a basic unit of measurement. In QuickTime, that measurement system is called a

time scale.

A QuickTime time scale defines the number of time units that pass each second in a

given time coordinate system. A time coordinate system that has a time scale of 1

measures time in seconds. Similarly, a time coordinate system that has a time scale of 60

measures sixtieths of a second. In general, each time unit in a time coordinate system is

equal to (1/time scale) seconds. Some common time scales are listed in Table 2-1.

Figure 2-1 shows a duration of two seconds in absolute time and equivalent durations in

the common time scales listed in Table 2-1.

Table 2-1 Common movie time scales

Time scale Absolute time measured

1 Seconds

60 Sixtieths of a second (Macintosh ticks)

1000 Milliseconds

22254.54 Sound sampled at 22 kHz (kilohertz)

C H A P T E R 2

Movie Toolbox

Introduction to Movies 2-7

Figure 2-1 Time scales

A particular point in time in a time coordinate system is represented using a time value.
A time value is expressed in terms of the time scale of its time coordinate system.

Without an appropriate time scale, a time value is meaningless. For example, in a time

coordinate system with a time scale of 60, a time value of 180 translates to 3 seconds.

Because all time coordinate systems tie back to absolute time (that is, time as we measure

it in seconds), the Movie Toolbox can translate time values from one time coordinate

system into another.

Time coordinate systems have a finite maximum duration that defines the

maximum time value for a time coordinate system (the minimum time value is

always 0). Note that as a QuickTime movie is edited, the duration changes.

As the value of the time scale increases (as the time unit for a coordinate system gets

smaller in terms of absolute time), the maximum absolute time that can be represented in

a time coordinate system decreases. For example, if a time value were represented as an

unsigned 16-bit integer, its maximum value would be 65,535. In a time coordinate system

with a time scale of 1, the maximum time value would represent 65,535 seconds.

However, in a time coordinate system with a time scale of 5, the maximum time value

would correspond to 13,107 seconds. Hence, a time coordinate system’s duration is

limited by its time scale. QuickTime uses 32-bit and 64-bit quantities to represent time

values, so you only need to worry about attaining a maximum absolute time

in situations where a time coordinate system’s duration is very long or its time scale is

very large.

C H A P T E R 2

Movie Toolbox

2-8 Introduction to Movies

Time Bases

A movie’s time base defines its current time value and the rate at which time passes for

the movie. The rate specifies the speed and direction in which time travels in a movie.

Negative rate values cause you to move backward through a movie’s data; positive

values move forward. The time base also contains a reference to the clock that provides

timing for the time base. QuickTime clocks are implemented as components that are

managed by the Component Manager.

Time bases exist independently of any specific time coordinate system. However, time

values extracted from a time base are meaningless without a time scale. Therefore,

whenever you obtain a time value from a time base, you must specify the time scale of

the time value result. The Movie Toolbox translates the time base’s time value into a

value that is sensible in the specified time scale.

Note

A time base differs from a time coordinate system, which provides the
foundation for a time base. (A time coordinate system is the field of play
that defines the coordinate axis for a time base.) A time base operates in
the context of a time coordinate system. It has a rate, which implies a
direction as well as a speed through the movie. ◆

Figure 2-2 represents a time coordinate system and a time base geometrically. The

time coordinate system is represented by a coordinate axis. In this example, the time

coordinate system has a time scale of 2; that is, there are two time units in each second.

The duration of this time coordinate system is 2 seconds, which is equivalent to 4 time

units. An object’s time base is depicted by the large arrow under the axis that represents

the time coordinate system. This time base has a current time value of 3 and a rate of 1.

The starting time is a time value, expressed in the units of the time coordinate system.

Figure 2-2 A time coordinate system and a time base

C H A P T E R 2

Movie Toolbox

Introduction to Movies 2-9

Movies
QuickTime movies have a time dimension defined by a time scale and a duration, which

are specified by a time coordinate system. Figure 2-3 illustrates a movie’s time

coordinate system. A movie always starts at time 0. The time scale defines the unit of

measure for the movie’s time values. The duration specifies how long the movie lasts.

Figure 2-3 A movie’s time coordinate system

A movie can contain one or more tracks. Each track refers to media data that can be

interpreted within the movie’s time coordinate system. Each track begins at the

beginning of the movie. However, a track can end at any time. In addition, the actual

data in the track may be offset from the beginning of the movie. Tracks with data that

does not commence at the beginning of a movie contain empty space that precedes the

track data.

At any given point in time, one or more tracks may or may not be enabled.

Note

Throughout this book and its companion, Inside Macintosh: QuickTime
Components, the term enabled track denotes a track that may become
activated if the movie time intersects the track. An enabled track refers
to a media that in turn refers to media data. ◆

C H A P T E R 2

Movie Toolbox

2-10 Introduction to Movies

However, no single track needs to be enabled during the entire movie. As you move

through a movie, you gain access to the data that is described by each of the enabled

tracks. Figure 2-4 shows a movie that contains five tracks. The lighter shading in

each track represents the time offset between the beginning of the movie and the start of

the track’s data (this lighter shading corresponds to empty space at the beginning of

these tracks). When the movie’s time value is 6, there are three enabled tracks: Video 1

and Audio 1, and Video 2, which is just being enabled. The Other 1 track does not

become enabled until the time value reaches 8. The Audio 2 track becomes enabled at

time value 10.

A movie can contain one or more layers. Each layer contains one or more tracks that may

be related to one another. The Movie Toolbox builds up a movie’s visual representation

layer by layer. For example, in Figure 2-4, if the images contained in the Video 1 and

Video 2 tracks overlap spatially, the user sees the image that is stored in the front layer.

You assign individual tracks to movie layers using Movie Toolbox functions that are

described in “Working With Movie Spatial Characteristics” beginning on page 2-158.

Figure 2-4 A movie containing several tracks

The Movie Toolbox allows you to define both a movie preview and a movie poster for a

QuickTime movie. A movie preview is a short dynamic representation of a movie.

Movie previews typically last no more than 3 to 5 seconds, and they should give the user

some idea of what the movie contains. (An example of a movie preview is a narrative

track.) You define a movie preview by specifying its start time, its duration, and

its tracks. A movie may contain tracks that are used only in its preview.

C H A P T E R 2

Movie Toolbox

Introduction to Movies 2-11

A movie poster is a single visual image representing the movie. You specify a poster as a

point in time in the movie. As with the movie itself and the movie preview, you define

which tracks are enabled in the movie poster.

Figure 2-5 shows an example of a movie’s tracks. The video track is used for the movie,

the preview, and the poster. The movie audio track is used only for the movie. The

preview audio track is used only for the preview. The poster graphic track is used only

for the poster.

Figure 2-5 A movie, its preview, and its poster

C H A P T E R 2

Movie Toolbox

2-12 Introduction to Movies

Tracks
A movie can contain one or more tracks. Each track represents a single stream of data

in a movie and is associated with a single media. The media has control information that

refers to the actual movie data.

All of the tracks in a movie use the movie’s time coordinate system. That is, the movie’s

time scale defines the basic time unit for each of the movie’s tracks. Each track begins at

the beginning of the movie, but the track’s data might not begin until some time value

other than 0. This intervening time is represented by blank space—in an audio track the

blank space translates to silence; in a video track the blank space generates no visual

image. Each track has its own duration. This duration need not correspond to the

duration of the movie. Movie duration always equals the maximum duration of all the

tracks. An example of this is shown in Figure 2-6.

Figure 2-6 A track in a movie

A track is always associated with one media. The media contains control information

that refers to the data that constitutes the track. The track contains a list of references that

identify portions of the media that are used in the track. In essence, these references are

an edit list of the media. Consequently, a track can play the data in its media in any order

and any number of times. Figure 2-7 shows how a track maps data from a media into a

movie.

C H A P T E R 2

Movie Toolbox

Introduction to Movies 2-13

Figure 2-7 A track and its media

Media Structures
A media describes the data for a track. The data is not actually stored in the media.

Rather, the media contains references to its media data, which may be stored in disk files,

on CD-ROM discs, or other appropriate storage devices. Note that the data referred to by

one media may be used by more than one movie, though the media itself is not reused.

Each media has its own time coordinate system, which defines the media’s time scale

and duration. A media’s time coordinate system always starts at time 0, and it is

independent of the time coordinate system of the movie that uses its data. Tracks map

data from the movie’s time coordinate system to the media’s time coordinate system.

Figure 2-7 shows how tracks perform this mapping.

Each supported data type has its own media handler. The media handler interprets the

media’s data. The media handler must be able to randomly access the data and play

segments at rates specified by the movie. The track determines the order in which the

media is played in the movie and maps movie time values to media time values.

C H A P T E R 2

Movie Toolbox

2-14 About Movies

Figure 2-8 shows the final link to the data. The media in the figure references digital

video frames on a CD-ROM disc.

Figure 2-8 A media and its data

About Movies

This section discusses the characteristics that govern playing and storing movies, tracks,

and media structures. This section has been divided into the following topics:

■ “Movie Characteristics” discusses the time, display, and sound characteristics of a
QuickTime movie

■ “Track Characteristics” describes the characteristics of a movie track

C H A P T E R 2

Movie Toolbox

About Movies 2-15

■ “Media Characteristics” discusses the characteristics of a media

■ “Spatial Properties” describes how the Movie Toolbox displays a movie, including
how the data from each media is collected and transformed prior to display

■ “The Transformation Matrix” describes how matrix operations transform visual
elements prior to display

■ “Audio Properties” describes how the Movie Toolbox works with a movie’s sound
tracks

■ “Data Interchange” discusses how the format and content of a movie changes when it
is stored on the scrap or in a file

Movie Characteristics
A QuickTime movie is represented as a private data structure. Your application never

works with individual fields in that data structure. Rather, the Movie Toolbox provides

functions that allow you to work with a movie’s characteristics. Figure 2-9 shows some

of the characteristics of a QuickTime movie.

Figure 2-9 Movie characteristics

C H A P T E R 2

Movie Toolbox

2-16 About Movies

Every QuickTime movie has some state information, including a creation time and a

modification time. These times are expressed in standard Macintosh time format,

representing the number of seconds since midnight, January 1, 1904. The creation time

indicates when the movie was created. The modification time indicates when the movie

was last modified and saved.

Each movie has its own time coordinate system and time scale. Any time values that

relate to the movie must be defined using this time scale and must be between 0 and the

movie’s duration.

A movie’s preview is defined by its starting time and duration. Both of these time values

are expressed in terms of the movie’s time scale. A movie’s poster is defined by its time

value, which is in terms of the movie’s time scale. You assign tracks to the movie

preview and the movie poster by calling the Movie Toolbox functions that are described

later in this chapter.

Your current position in a movie is defined by the movie’s current time. If the movie is

currently playing, this time value is changing. When you save a movie in a movie file,

the Movie Toolbox updates the movie’s current time to reflect its current position. When

you load a movie from a movie file, the Movie Toolbox sets the movie’s current time to

the value found in the movie file.

The Movie Toolbox provides high-level editing functions that work with a movie’s

current selection. The current selection defines a segment of the movie by specifying a

start time, referred to as the selection time, and a duration, called the selection duration.
These time values are expressed using the movie’s time scale.

For each movie currently in use, the Movie Toolbox maintains an active movie segment.
The active movie segment is the part of the movie that your application is interested in

playing. By default, the active movie segment is set to be the entire movie. You may wish

to change this to be some segment of the movie—for example, if you wish to play a

user’s selection repeatedly. By setting the active movie segment, you guarantee that the

Movie Toolbox uses no samples from outside of that range while playing the movie. See

“Enhancing Movie Playback Performance,” which begins on page 2-134, for details on

functions that work with the active segment.

A movie’s display characteristics are specified by a number of elements. The movie has a

movie clipping region and a 3-by-3 transformation matrix. The Movie Toolbox uses these

elements to determine the spatial characteristics of the movie. See “Spatial Properties”

beginning on page 2-20 for a complete description of these elements and how they are

used by the Movie Toolbox.

When you save a movie, you can establish preferred settings for playback rate and

volume. The preferred playback rate is called the preferred rate. The preferred

playback volume is called the preferred volume. These settings represent the most

natural values for these movie characteristics. When the Movie Toolbox loads a movie

from a movie file, it sets the movie’s volume to this preferred value. When you start

playing the movie, the Movie Toolbox uses the preferred rate. You can then use Movie

Toolbox functions to change the rate and volume during playback.

Movies contain each of their tracks. See the next section for more information about

tracks and their characteristics.

C H A P T E R 2

Movie Toolbox

About Movies 2-17

The Movie Toolbox allows your application to store its own data along with a movie.

You define the format and content of these data objects. This application-specific data is

called user data. You can use these data objects to store both text and binary data. For

example, you can use text user data items to store a movie’s copyright and credit

information. The Movie Toolbox provides functions that allow you to set and retrieve a

movie’s user data. This data is saved with the movie when you save the movie.

Track Characteristics
A QuickTime track is represented as a private data structure. Your application never

works with individual fields in that data structure. Rather, the Movie Toolbox provides

functions that allow you to work with a track’s characteristics. Figure 2-10 shows the

characteristics of a QuickTime track.

Figure 2-10 Track characteristics

As with movies, each track has some state information, including a creation time and a

modification time. These times are expressed in standard Macintosh time format,

representing the number of seconds since midnight, January 1, 1904. The creation time

C H A P T E R 2

Movie Toolbox

2-18 About Movies

indicates when the track was created. The modification time indicates when the track

was last modified and saved.

Each track has its own duration value, which is expressed in the time scale of the movie

that contains the track.

As has been discussed, movies can contain more than one track. In fact, a movie can

contain more than one track of a given type. You might want to create a movie with

several sound tracks, each in a different language, and then activate the sound track that

is appropriate to the user’s native language. Your application can manage these

collections of tracks by assigning each track of a given type to an alternate group. You

can then choose one track from that group to be enabled at any given time. You can

select a track from an alternate group based on its language or its playback quality.
A track’s playback quality indicates its suitability for playback in a given environment.

All tracks in an alternate group should refer to the same type of data.

A track’s display characteristics are specified by a number of elements, including track

width, track height, a transformation matrix, and a clipping region. See “Spatial

Properties,” which begins on page 2-20, for a complete description of these elements and

how they are used by the Movie Toolbox.

Each track has a current volume setting. This value controls how loudly the track plays

relative to the movie volume.

Perhaps most important, tracks contain a media edit list. The edit list contains entries

that define how the track’s media is to be used in the movie that contains the track. Each

entry in the edit list indicates the starting time and duration of the media segment, along

with the playback rate for that segment.

Each track contains its associated media. See the next section for more information about

media structures and their characteristics.

The Movie Toolbox allows your application to store its own user data along with a track.

You define the format and content of these data objects. The Movie Toolbox provides

functions that allow you to set and retrieve a track’s user data. This data is saved with

the track when you save the movie.

Media Characteristics
As is the case with movies and tracks, a QuickTime media is represented as a private

data structure. Your application never works with individual fields in that data structure.

Rather, the Movie Toolbox provides functions that allow you to work with a media’s

characteristics. Figure 2-11 shows the characteristics of a QuickTime media.

C H A P T E R 2

Movie Toolbox

About Movies 2-19

Figure 2-11 Media characteristics

Each QuickTime media has some state information, including a creation time and a

modification time. These times are expressed in standard Macintosh time format,

representing the number of seconds since midnight, January 1, 1904. The creation time

indicates when the media was created. The modification time indicates when the media

was last modified and saved.

Each media has its own time coordinate system, which is defined by its time scale and

duration. Any time values that relate to the media must be defined in terms of this time

scale and must be between 0 and the media’s duration.

A media contains information that identifies its language and playback quality. These

values are used when selecting from among the tracks in an alternate group.

The media specifies a media handler, which is responsible for the details of loading,

storing, and playing media data. The media handler can store state information in the

media. This information is referred to as media information. The media information

identifies where the media’s data is stored and how to interpret that data. Typically, this

data is stored in a data reference, which identifies the file that contains the data and the

type of data that is stored in the file.

The Movie Toolbox allows your application to store its own user data along with a

media. You define the format and content of these data objects. The Movie Toolbox

provides functions that allow you to set and retrieve a media’s user data. This data is

saved with the media when you save the movie.

C H A P T E R 2

Movie Toolbox

2-20 About Movies

Spatial Properties
When you play a movie that contains visual data, the Movie Toolbox gathers the movie’s

data from the appropriate tracks and media structures, transforms the data as

appropriate, and displays the results in a window. The Movie Toolbox uses only those

tracks that

■ are not empty

■ contain media structures that reference data at a specified time

■ are enabled in the current movie mode (standard playback, poster mode, or preview
mode)

Consequently, the size, shape, and location of many of these regions may change during

movie playback. This process is quite complicated and involves several phases of

clipping and resizing.

The Movie Toolbox shields you from the intricacies of this process by providing two

high-level functions, GetMovieBox and SetMovieBox (described on page 2-162 and

page 2-161, respectively), which allow you to place a movie box at a specific location in

the display coordinate system. When you use these functions, the Movie Toolbox

automatically adjusts the contents of the movie’s matrix to satisfy your request.

Figure 2-12 provides an overview of the entire process of gathering, transforming, and

displaying visual data. Each track defines its own spatial characteristics, which are then

interpreted within the context of the movie’s spatial characteristics.

This section describes the process that the Movie Toolbox uses to display a movie. The

process begins with the movie data and ends with the final movie display. The phases,

which are described in detail in this section, include

1. the creation of a track rectangle (see Figure 2-13 on page 2-22)

2. the clipping of a track’s image (see Figure 2-14 on page 2-23)

3. the transformation of a track into the movie coordinate system (see Figure 2-15 on
page 2-23)

4. the clipping of a movie image (see Figure 2-16 on page 2-24)

5. the transformation of a movie into the display coordinate system (see Figure 2-17 on
page 2-25)

6. the clipping of a movie for final display (see Figure 2-18 on page 2-25)

Note

Throughout this book and in Inside Macintosh: QuickTime Components, the
term time coordinate system denotes QuickTime’s time-based system. All
other instances of the term coordinate system refer to QuickDraw’s
graphic coordinates. ◆

C H A P T E R 2

Movie Toolbox

About Movies 2-21

Figure 2-12 Spatial processing of a movie and its tracks

C H A P T E R 2

Movie Toolbox

2-22 About Movies

Each track defines a rectangle into which its media is displayed. This rectangle is

referred to as the track rectangle, and it is defined by the track width and track height
values assigned to the track. The upper-left corner of this rectangle defines the origin

point of the track’s coordinate system.

Note

Henceforth, the graphic coordinate system for a track is referred to
simply as its coordinate system. ◆

The media handler associated with the track’s media is responsible for displaying an

image into this rectangle. This process is shown in Figure 2-13.

Figure 2-13 A track rectangle

The Movie Toolbox next mattes the image in the track rectangle by applying the track

matte and the track clipping region. This does not affect the shape of the image—only

the display. Both the track matte and the track clipping region are optional.

A track matte provides a mechanism for mixing images. Mattes contain several bits per

pixel and are defined in the track’s coordinate system. The matte can be used to perform

a deep-mask operation on the image in the track rectangle. The Movie Toolbox displays

the weighted average of the track and its destination based on the corresponding pixel

value in the matte.

The track clipping region is a QuickDraw region that defines a portion of the track

rectangle to retain. The track clipping region is defined in the track’s coordinate system.

This clipping operation creates the track boundary region, which is the intersection of

the track rectangle and the track clipping region.

C H A P T E R 2

Movie Toolbox

About Movies 2-23

This process and its results are shown in Figure 2-14.

Figure 2-14 Clipping a track’s image

After clipping and matting the track’s image, the Movie Toolbox transforms the resulting

image into the movie’s coordinate system. The Movie Toolbox uses a 3-by-3

transformation matrix to accomplish this operation (see the next section,

“The Transformation Matrix,” for a complete discussion of matrix operations in the

Movie Toolbox). The image inside the track boundary region is transformed by

the track’s matrix into the movie coordinate system. The resulting area is bounded by the

track movie boundary region. Figure 2-15 shows the results of this transformation

operation.

Figure 2-15 A track transformed into a movie coordinate system

C H A P T E R 2

Movie Toolbox

2-24 About Movies

The Movie Toolbox performs this portion of the process for each track in the movie.

Once all of the movie’s tracks have been processed, the Movie Toolbox proceeds to

transform the complete movie image for display.

The union of all track movie boundary regions for a movie defines the movie’s movie
boundary region. The Movie Toolbox combines a movie’s tracks into this single region

where layers are applied. Therefore, tracks in back layers may be partially or completely

obscured by tracks in front layers. The Movie Toolbox clips this region to obtain the

clipped movie boundary region. The movie’s movie clipping region defines the portion

of the movie boundary region that is to be used. Figure 2-16 shows the process by which

a movie is clipped and the resulting clipped movie boundary region.

Figure 2-16 Clipping a movie’s image

After clipping the movie’s image, the Movie Toolbox transforms the resulting image into

the display coordinate system. The Movie Toolbox uses a 3-by-3 transformation matrix to

accomplish this operation (see the next section, “The Transformation Matrix,” for a

complete discussion of matrix operations in the Movie Toolbox). The image inside the

clipped movie boundary region is transformed by the movie’s matrix into the display

coordinate system. The resulting area is bounded by the movie display boundary region.

Figure 2-17 shows the results of this step.

C H A P T E R 2

Movie Toolbox

About Movies 2-25

Figure 2-17 A movie transformed to the display coordinate system

The rectangle that encloses the movie display boundary region is called the movie box,
as shown in Figure 2-18. You can control the location of a movie’s movie box by

adjusting the movie’s transformation matrix.

Figure 2-18 Clipping a movie for final display

Once the movie is in the display coordinate system (that is, the QuickDraw graphics

world), the Movie Toolbox performs a final clipping operation to generate the image that

is displayed. The movie is clipped with the movie display clipping region. When a

movie is displayed, the Movie Toolbox ignores the graphics port’s clipping region—this

is why there is a movie display clipping region. Figure 2-18 shows this operation.

C H A P T E R 2

Movie Toolbox

2-26 About Movies

The Transformation Matrix
The Movie Toolbox makes extensive use of transformation matrices to define graphical

operations that are performed on movies when they are displayed. A transformation
matrix defines how to map points from one coordinate space into another coordinate

space. By modifying the contents of a transformation matrix, you can perform several

standard graphical display operations, including translation, rotation, and scaling. The

Movie Toolbox provides a set of functions that make it easy for you to manipulate

translation matrices. Those functions are discussed in “Matrix Functions” which begins

on page 2-341. The remainder of this section provides an introduction to matrix

operations in a graphical environment.

The matrix used to accomplish two-dimensional transformations is described

mathematically by a 3-by-3 matrix. Figure 2-19 shows a sample 3-by-3 matrix. Note that

QuickTime assumes that the values of the matrix elements u and v are always 0.0, and

the value of matrix element w is always 1.0.

Figure 2-19 A point transformed by a 3-by-3 matrix

During display operations, the contents of a 3-by-3 matrix transform a point (x,y) into a

point (x',y') by means of the following equations:

x' = ax + cy + tx

y' = bx + dy + ty

For example, the matrix shown in Figure 2-20 performs no transformation. It is referred

to as the identity matrix.

Figure 2-20 The identity matrix

C H A P T E R 2

Movie Toolbox

About Movies 2-27

Using the formulas discussed earlier, you can see that this matrix would generate a new

point (x',y') that is the same as the old point (x,y):

x' = 1x + 0y + 0

y' = 0x + 1y + 0

x' = y and y' = y

In order to move an image by a specified displacement, you perform a translation

operation. This operation modifies the x and y coordinates of each point by a specified

amount. The matrix shown in Figure 2-21 describes a translation operation.

Figure 2-21 A matrix that describes a translation operation

You can stretch or shrink an image by performing a scaling operation. This operation

modifies the x and y coordinates by some factor. The magnitude of the x and y factors

governs whether the new image is larger or smaller than the original. In addition, by

making the x factor negative, you can flip the image about the x-axis; similarly, you can

flip the image horizontally, about the y-axis, by making the y factor negative. The matrix

shown in Figure 2-22 describes a scaling operation.

Figure 2-22 A matrix that describes a scaling operation

C H A P T E R 2

Movie Toolbox

2-28 About Movies

Finally, you can rotate an image by a specified angle by performing a rotation operation.

You specify the magnitude and direction of the rotation by specifying factors for both x

and y. The matrix shown in Figure 2-23 rotates an image counterclockwise by an angle θ.

Figure 2-23 A matrix that describes a rotation operation

You can combine matrices that define different transformations into a single matrix. The

resulting matrix retains the attributes of both transformations. For example, you can both

scale and translate an image by defining a matrix similar to that shown in Figure 2-24.

Figure 2-24 A matrix that describes a scaling and translation operation

You combine two matrices by concatenating them. Mathematically, the two matrices are

combined by matrix multiplication. Note that the order in which you concatenate

matrices is important—matrix operations are not commutative.

Transformation matrices used by the Movie Toolbox contain the following data types:

[0] [0]Fixed [1] [0]Fixed [2] [0]Fract

[0] [1]Fixed [1] [1]Fixed [2] [1]Fract

[0] [2]Fixed [1] [2]Fixed [2] [2]Fract

Each cell in this table represents the data type of the corresponding element of a 3-by-3

matrix. All of the elements in the first two columns of a matrix are represented by Fixed

values. Values in the third column are represented as Fract values. The Fract data

type specifies a 32-bit, fixed-point value that contains 2 integer bits and 30 fractional bits.

This data type is useful for accurately representing numbers in the range from –2 to 2.

For more information about the Fract data type, see Inside Macintosh: Imaging.

C H A P T E R 2

Movie Toolbox

About Movies 2-29

Audio Properties
This section discusses the sound capabilities of QuickTime and the Movie Toolbox. It has

been divided into the following topics:

■ “Sound Playback” discusses the playback capabilities of the Movie Toolbox

■ “Adding Sound to Video” discusses several issues you should consider when creating
movies that contain both sound and video

■ “Sound Data Formats” describes the formats the Movie Toolbox uses to store sound
information

Sound Playback

As is the case with video data, QuickTime movies store sound information in tracks.

QuickTime movies may have one or more sound tracks. The Movie Toolbox can play

more than one sound at a time by mixing the enabled sound tracks together during

playback. This allows you to put together movies with separate music and voice tracks.

You can then manipulate the tracks separately but play them together. You can also use

multiple sound tracks to store different languages.

There are two main attributes of sound in QuickTime movies: volume and balance. You

can control these attributes using the facilities of the Movie Toolbox.

Every QuickTime movie has a current volume setting. This volume setting controls the

loudness of the movie’s sound. You can adjust a movie’s current volume by calling the

SetMovieVolume function (described on page 2-182). In addition, you can set a

preferred volume setting for a movie. This value represents the best volume for the

movie. The Movie Toolbox saves this value when you store a movie into a movie file.

The value of the current volume is lost. You can set a movie’s preferred volume by

calling the SetMoviePreferredVolume function (described on page 2-132). When you

load a movie from a movie file, the Movie Toolbox sets the movie’s current volume to the

value of its preferred volume.

Each track in a movie also has a volume setting. A track’s volume governs its loudness

relative to other tracks in the movie. You can set a track’s volume by calling the

SetTrackVolume function (described on page 2-183).

In the Movie Toolbox, movie and track volumes are represented as 16-bit, fixed-point

numbers that range from –1.0 to +1.0. The high-order 8 bits contain the integer portion of

the value; the low-order 8 bits contain the fractional part. Positive values denote volume

settings, with 1.0 corresponding to the maximum volume on your computer. Negative

values are muted, but retain the magnitude of the volume setting so that, by toggling the

sign of a volume setting, you can turn off the sound and then turn it back on at the

previous level (something like pressing the mute button on a radio).

A track’s volume is scaled to a movie’s volume, and the movie’s volume is scaled to the

value the user specifies for speaker volume using the Sound control panel. That is, a

movie’s volume setting represents the maximum loudness of any track in the movie. If

you set a track’s volume to a value less than 1.0, that track plays proportionally quieter,

relative to the loudness of other tracks in the movie.

C H A P T E R 2

Movie Toolbox

2-30 About Movies

Each track in a movie has its own balance setting. The balance setting controls the mix of

sound between a computer’s two speakers. If the source sound is monaural, the balance

setting controls the relative loudness of each speaker. If the source sound is stereo, the

balance setting governs the mix of the right and left channels. You can set the balance for

a track’s media by calling the SetSoundMediaBalance function (described on

page 2-289). When you save the movie, the balance setting is stored in the movie file.

In the Movie Toolbox, balance values are represented as 16-bit, fixed-point numbers that

range from –1.0 to +1.0. The high-order 8 bits contain the integer portion of the value; the

low-order 8 bits contain the fractional part. Negative values weight the balance toward

the left speaker; positive values emphasize the left channel. Setting the balance to 0

corresponds to a neutral setting.

Adding Sound to Video

Most QuickTime movies contain both sound data and video data. If you are creating an

application that plays movies, you do not need to worry about the details of how sound

is stored in a movie. However, if you are developing an application that creates movies,

you need to consider how you store the sound and video data.

There are two ways to store sound data in a QuickTime movie. The simplest method is to

store the sound track as a continuous stream. When you play a movie that has its sound

in this form, the Movie Toolbox loads the entire sound track into memory, and then reads

the video frames when they are needed for display. While this technique is very efficient,

it requires a large amount of memory to store the entire sound, which limits the length of

the movie. This technique also requires a large amount of time to read in the entire

sound track before the movie can start playing. For this reason, this technique is only

recommended when the sound for a movie is fairly small (less than 64 KB).

For larger movies, a technique called interleaving must be used so that the sound and

video data may be alternated in small pieces, and the data can be read off disk as it is

needed. Interleaving allows for movies of almost any length with little delay on startup.

However, you must tune the storage parameters to avoid a lower video frame rate and

breaks in the sound that result when sound data is read from slow storage devices. In

general, the Movie Toolbox hides the details of interleaving from your application. The

FlattenMovie and FlattenMovieData functions (described on page 2-105 and

page 2-107, respectively) allow you to enable and disable interleaving when you create a

movie. These functions then interact with the appropriate media handler to correctly

interleave the sound and video data for your movie. For more information about

working with sound, see the chapter “Sound Manager” in Inside Macintosh: More
Macintosh Toolbox.

C H A P T E R 2

Movie Toolbox

About Movies 2-31

Sound Data Formats

The Movie Toolbox stores sound data in sound tracks as a series of digital samples. Each

sample specifies the amplitude of the sound at a given point in time, a format commonly

known as linear pulse-code modulation (linear PCM). The Movie Toolbox supports both

monaural and stereo sound. For monaural sounds, the samples are stored sequentially,

one after another. For stereo sounds, the samples are stored interleaved in a left/right/

left/right fashion.

In order to support a broad range of audio data formats, the Movie Toolbox can

accommodate a number of different sample encoding formats, sample sizes, sample

rates, and compression algorithms. The following paragraphs discuss the details of each

of these attributes of movie sound data.

The Movie Toolbox supports two techniques for encoding the amplitude values in a

sample: offset-binary and twos-complement. Offset-binary encoding represents the

range of amplitude values as an unsigned number, with the midpoint of the range

representing silence. For example, an 8-bit sample stored in offset-binary format would

contain sample values ranging from 0 to 255, with a value of 128 specifying silence (no

amplitude). Samples in Macintosh sound resources are stored in offset-binary form.

Twos-complement encoding stores the amplitude values as a signed number—in this

case silence is represented by a sample value of 0. Using the same 8-bit example,

twos-complement values would range from –128 to 127, with 0 meaning silence. The

Audio Interchange File Format (AIFF) used by the Sound Manager stores samples in

twos-complement form, so it is common to see this type of sound in QuickTime movies.

The Movie Toolbox allows you to store information about the sound data in the sound

description. See “The Sound Description Structure,” which begins on page 2-79, for

details on the sound description structure. Sample size indicates the number of bits used

to encode the amplitude value for each sample. The size of a sample determines the

quality of the sound, since more bits can represent more amplitude values. The basic

Macintosh sound hardware supports only 8-bit samples, but the Sound Manager also

supports 16-bit and 32-bit sample sizes. The Movie Toolbox plays these larger samples

on 8-bit Macintosh hardware by converting the samples to 8-bit format before playing

them.

Sample rate indicates the number of samples captured per second. The sample rate also

influences the sound quality, because higher rates can more accurately capture the

original sound waveform. The basic Macintosh hardware supports an output sampling

rate of 22.254 kHz. The Movie Toolbox can support any rate up to 65.535 kHz; as with

sample size, the Movie Toolbox converts higher sample rates to rates that can be

accommodated by the Macintosh hardware when it plays the sound.

In addition to these sample encoding formats, the Movie Toolbox also supports the

Macintosh Audio Compression and Expansion (MACE) capability of the Sound

Manager. This allows compression of the sound data at ratios of 3 to 1 or 6 to 1.

Compressing a movie’s sound can yield significant savings in storage and RAM space, at

the cost of somewhat lower quality and higher CPU overhead on playback.

C H A P T E R 2

Movie Toolbox

2-32 Using the Movie Toolbox

Data Interchange
This section discusses how you can exchange movies between applications on your

Macintosh computer or between your Macintosh and other computers.

Movies on the Clipboard

Working with QuickTime and applications that employ QuickTime, the user may cut,

copy, and paste movies just like any other type of data. When your application performs

a cut or a copy operation, the Movie Toolbox returns a movie. Use the Movie Toolbox’s

PutMovieOnScrap and NewMovieFromScrap functions (described on page 2-244 and

page 2-245, respectively) to work with movies on the scrap.

Because a movie contains only references to its media data, it is small enough to put onto

the scrap.

Movies in Files

A QuickTime movie file typically stores a movie in the resource fork of the file. The data

for this movie may reside in the data fork of the same file, or in other files. In fact, a

movie file may have no data fork at all—all the data for a movie may reside in other files.

This allows several movies to share the same data.

The data referenced by a media is always stored in the data fork of a file. Because a

movie can contain more than one media, and each media in a movie can refer to a

different data file, it follows that a single movie may refer to more than one data file.

The Movie Toolbox allows you to create a movie file that contains all of its movie data.

Such files are called self-contained movie files. Self-contained movie files can be used to

move a movie from one Macintosh computer to another.

The Movie Toolbox also accommodates operating systems that do not recognize files

with more than one fork. In this case, you can create a movie file that stores the movie

and all of its data in the data fork of the Macintosh file. You can then transfer that file to a

computer that runs another operating system. For more information, see the chapter

“Movie Resource Formats” later in this book.

Using the Movie Toolbox

The Movie Toolbox provides functions that allow applications to control all aspects of

movies in Macintosh computer applications. There are Movie Toolbox functions that

provide basic operations for opening and playing movies as well as more complex

functions for the creation and manipulation of the data that makes up the movie’s media.

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-33

This section discusses a number of the more common operations your application may

perform with the Movie Toolbox, and it has been divided into the following sections:

■ “Determining Whether the Movie Toolbox Is Installed” describes how to use the
Gestalt Manager to retrieve the version of the Movie Toolbox that is installed

■ “Getting Ready to Work With Movies” describes the steps you must take before you
can work with QuickTime movies

■ “Getting a Movie From a File” discusses how to load a movie from a movie file

■ “Playing Movies With a Movie Controller” shows how you can use a movie controller
component to simplify playing a movie

■ “Playing a Movie” describes how to play a movie using Movie Toolbox functions

■ “Movies and the Scrap” discusses how your application can place movies onto the
system scrap and retrieve movies from the scrap

■ “Creating a Movie” shows how you can create a new movie

■ “Saving Movies in Movie Files” describes how to save movies into movie files

■ “Using Movies in Your Event Loop” discusses how to grant time to the Movie Toolbox
to allow your movies to play

■ “The Movie Toolbox and System 6” discusses using the Movie Toolbox on Macintosh
computers that are running System 6

■ “Previewing Files” describes how to create and display file previews

■ “Using Application-Defined Functions” describes how your application can retrieve
information about long Movie Toolbox operations and perform custom display
processing

■ “Working With Movie Spatial Characteristics” shows how to create a track matte

Many of these sections include sample code that demonstrates how to use the Movie

Toolbox.

Determining Whether the Movie Toolbox Is Installed
Use the Gestalt Manager to determine whether the Movie Toolbox is present. (The

Gestalt Manager is fully described in Inside Macintosh: Overview.)

To determine whether the Movie Toolbox is available, use the Gestalt selector

gestaltQuickTime. This selector has a value of 'qtim'. If the Movie Toolbox is not

installed, the Gestalt Manager returns an error.

For a description of how the version number is formatted, see the description of the

numeric version part of the 'vers' resource in the chapter “Gestalt Manager” in Inside
Macintosh: Overview.

C H A P T E R 2

Movie Toolbox

2-34 Using the Movie Toolbox

The code in Listing 2-1 contains a function that demonstrates how your application can

call the Gestalt Manager.

Listing 2-1 Using the Gestalt Manager with the Movie Toolbox

#include <GestaltEqu.h>

#include <Movies.h>

Boolean IsQuickTimeInstalled (void)

{

short error;

long result;

error = Gestalt (gestaltQuickTime, &result);

return (error == noErr);

}

void main (void)

{

Boolean qtInstalled;

.

.

.

qtInstalled = IsQuickTimeInstalled ();

}

If you store movies inside your application document rather than just dealing with

movie files, you must account for the possibility that a user’s computer does not have

QuickTime installed. If the Movie Toolbox is not available on a computer, your

application can display a still-image representation of a movie in place of the movie

itself. For example, you can store a PICT image from the movie in the document file, in

addition to the movie itself. Your application can then display that image whenever the

Movie Toolbox is unavailable. If the user tries to play the movie, you should inform the

user that your application cannot play the movie by displaying an alert box like the one

shown in Figure 2-25.

Figure 2-25 An alert box that tells the user that QuickTime is unavailable

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-35

Getting Ready to Work With Movies
The Movie Toolbox maintains state information for every application using it. In order to

set up this information for your application, you must initialize the Movie Toolbox. You

initialize the Movie Toolbox by calling the EnterMovies function (described on

page 2-82).

You should call the EnterMovies function after you have initialized other Macintosh

managers. Before calling this function you should make sure that the Movie Toolbox is

available by calling the Gestalt Manager, as discussed in “Determining Whether the

Movie Toolbox Is Installed” on page 2-33.

If you are writing a standard application, you do not need to call the ExitMovies

function. Call the ExitToShell routine instead.

If you are writing a code resource, you may need to call the ExitMovies function

(described on page 2-83), which allows the Movie Toolbox to clean up after your

application has finished. After calling ExitMovies, you cannot make further calls to the

Movie Toolbox.

Getting a Movie From a File
Before your application can work with a movie, you must load the movie from its file.

Your application must open the movie file and create a new movie from the movie stored

in the file. You can then work with the movie. Use the OpenMovieFile function

(described on page 2-98) to open a movie file. Use the NewMovieFromFile

function (described on page 2-88) to load a movie from a movie file. The code in Listing

2-2 shows how you can use these functions.

Listing 2-2 Getting a movie from a file

Movie GetMovie (void)

{

OSErr err;

SFTypeList typeList = {MovieFileType,0,0,0};

StandardFileReply reply;

Movie aMovie = nil;

short movieResFile;

StandardGetFilePreview (nil, 1, typeList, &reply);

if (reply.sfGood)

{

err = OpenMovieFile (&reply.sfFile, &movieResFile,

fsRdPerm);

if (err == noErr)

{

short movieResID = 0; /* want first movie */

C H A P T E R 2

Movie Toolbox

2-36 Using the Movie Toolbox

Str255 movieName;

Boolean wasChanged;

err = NewMovieFromFile (&aMovie, movieResFile,

 &movieResID,

movieName,

newMovieActive, /* flags */

&wasChanged);

CloseMovieFile (movieResFile);

}

}

return aMovie;

}

QuickTime movies are stored in movie files. The Movie Toolbox uses the features of the

Alias Manager and the new File Manager functions to manage a movie’s references to its

data (see “The Movie Toolbox and System 6” which begins on page 2-63 for more

information about these features). A movie file does not necessarily contain the movie’s

data. The movie’s data may reside in other files, which are referred to by the movie file.

When your application instructs the Movie Toolbox to play a movie, the toolbox

attempts to collect the movie’s data. If the movie has become separated from its data, the

Movie Toolbox uses the features of the Alias Manager to locate the data files. During this

search, the Movie Toolbox automatically displays a dialog box similar to that shown in

Figure 2-26. The user can cancel the search by clicking the Stop button.

Figure 2-26 A dialog box used when searching for a movie’s data

The Movie Toolbox performs a number of tests to verify that the file selected by the user

is appropriate for the current movie. These tests include checking the creation date of the

found file against the expected date and checking the size of the found file. The Movie

Toolbox displays a dialog box similar to the one shown in Figure 2-27.

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-37

Figure 2-27 A dialog box that informs the user the movie file cannot be found

The user has two options:

■ by clicking Search, the user acknowledges the warning; the Movie Toolbox allows the
user to locate a different data file

■ by clicking Cancel, the user instructs the Movie Toolbox to ignore the current data
reference—the Movie Toolbox tries to play the movie without the corresponding
movie data

If the Movie Toolbox cannot locate a needed file, it displays a dialog box that allows the

user to specify a file to try. Figure 2-28 shows a sample dialog box.

Figure 2-28 A dialog box that allows the user to specify a movie file to try

C H A P T E R 2

Movie Toolbox

2-38 Using the Movie Toolbox

If the user chooses a file that is not a valid movie file, it displays an alert similar to the

one shown in Figure 2-29.

Figure 2-29 An alert for an invalid movie file

Figure 2-30 An alert when QuickTime cannot be found

Playing Movies With a Movie Controller
Movie controller components provide a simple method for displaying movies along with

associated play controls. Using a movie controller component is the easiest way to

incorporate a good movie player interface without having to write a substantial amount

of code. A typical movie controller component allows the user to play a movie, make the

movie pause, move forward and backward, and resize the movie’s display. Some movie

controllers may allow the user to edit the movie as well. Figure 2-31 shows Apple’s

movie controller.

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-39

Figure 2-31 A movie controller playing a movie

Listing 2-3 shows how to play a movie using a movie controller component. This

program uses the GetMovie function that is defined in Listing 2-2 on page 2-35. Refer to

Inside Macintosh: QuickTime Components for a complete description of movie controller

components and how to use them.

Listing 2-3 Playing a movie using a movie controller component

#include <Types.h>

#include <Memory.h>

#include <Traps.h>

#include <Menus.h>

#include <Fonts.h>

#include <Packages.h>

#include <GestaltEqu.h>

#include <StandardFile.h>

#include <QDOffscreen.h>

#include "Movies.h"

#include "ImageCompression.h"

#include "QuickTimeComponents.h"

void main (void)

{

C H A P T E R 2

Movie Toolbox

2-40 Using the Movie Toolbox

Movie Controller aController;

WindowPtr aWindow;

Rect aRect;

Movie aMovie;

Boolean done = false;

OSErr err;

EventRecord theEvent;

WindowPtr whichWindow;

short part;

InitGraf (&qd.thePort);

InitFonts ();

InitWindows ();

InitMenus ();

TEInit ();

InitDialogs (nil);

err = EnterMovies ();

i

SetRect (&aRect, 100, 100, 200, 200);

aWindow = NewCWindow (nil, &aRect, "\pMovie",

false, noGrowDocProc,

(WindowPtr)-1, true, 0);

SetPort (aWindow);

aMovie = GetMovie ();

if (aMovie == nil) return;

SetRect(&aRect, 0, 0, 100, 100);

aController = NewMovieController (aMovie, &aRect,

mcTopLeftMovie);

if (aController == nil) return;

err = MCGetControllerBoundsRect(aController, &aRect);

SizeWindow (aWindow, aRect.right,

aRect.bottom, true);

ShowWindow (aWindow);

err = MCDoAction (aController,

mcActionSetKeysEnabled, (Ptr) true);

while (!done)

{

WaitNextEvent(everyEvent, &theEvent, 0, nil);

if (!MCIsPlayerEvent(aController, &theEvent))

{

switch (theEvent.what)

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-41

{

case updateEvt:

whichWindow = (WindowPtr)theEvent.message;

BeginUpdate (whichWindow);

EraseRect (&whichWindow->portRect);

EndUpdate (whichWindow);

break;

case mouseDown:

part = FindWindow (theEvent.where,

&whichWindow);

if (whichWindow == aWindow)

{

switch (part)

{

case inGoAway:

done = TrackGoAway (whichWindow,

theEvent.where);

break;

case inDrag:

DragWindow (whichWindow,

theEvent.where,

&qd.screenBits.bounds);

break;

}

}

}

}

}

DisposeMovieController (aController);

DisposeMovie (aMovie);

DisposeWindow(aWindow);

}

Playing a Movie
The easiest way to play a movie is to use a movie controller component. See the previous

section for more information about using movie controller components. If you want to

create your own control for playing movies, you should observe the following guidelines:

■ Your application should allow the user to manipulate movies in the same way
that your application allows the user to work with static graphics—the user should be
able to select, resize, cut, copy, and paste movies.

■ Your application should save the current position of each movie in a document.

C H A P T E R 2

Movie Toolbox

2-42 Using the Movie Toolbox

■ Your application should not automatically play the movies in a document when the
user opens the document.

■ You should keep your movie controls simple and close to the movie.

■ You should be consistent in the way that you allow the user to play a movie. Do not
use single-clicking and double-clicking for the same thing. In general, use a single
click to select a movie and use a double click to play it.

■ When printing, your application should print each movie’s current frame. You may
choose to allow the user to select the frame for each movie, perhaps by means of a
special menu item. Be sure not to print any of the user controls.

Once you have loaded a movie, you can play the movie. Your application must perform

the following tasks:

1. Create a window for the movie to play in.

2. Position the movie in the window.

3. Start the movie.

4. Play the movie until it is done.

5. Dispose of the movie when it is done playing.

When you play a movie, the Movie Toolbox processes the movie’s data in the context of

the movie’s time coordinate system. If the movie contains video data, the Movie Toolbox

displays the resulting image in the display window you specify. If the movie contains

audio data, the Movie Toolbox plays that sound track at the volume you set.

You must call the MoviesTask function (described on page 2-124) repeatedly until the

movie is done playing. Each time you call the MoviesTask function, the Movie Toolbox

processes the movie you are playing, updates the display as appropriate, and uses the

Sound Manager to play the movie’s sound. You can use the IsMovieDone function

(described on page 2-125) to determine when the movie is finished playing.

The code in Listing 2-4 shows the steps your application must follow in order to play a

movie. This program retrieves a movie, sizes the window properly, plays the movie

forward, and exits. This program uses the GetMovie function, shown in Listing 2-2 on

page 2-35 to retrieve a movie from a movie file. The movie controller component

supplied by Apple also plays a movie. For more information, see the chapter “Movie

Controller Components” in Inside Macintosh: QuickTime Components.

Listing 2-4 Playing a movie

#include <Types.h>

#include <Traps.h>

#include <Menus.h>

#include <Fonts.h>

#include <Packages.h>

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-43

#include <GestaltEqu.h>

#include "Movies.h"

#include "ImageCompression.h"

/* #include "QuickTimeComponents.h" */

#define doTheRightThing 5000

void main (void)

{

WindowPtr aWindow;

Rect windowRect;

Rect movieBox;

Movie aMovie;

Boolean done = false;

OSErr err;

EventRecord theEvent;

WindowPtr whichWindow;

short part;

InitGraf (&qd.thePort);

InitFonts ();

InitWindows ();

InitMenus ();

TEInit ();

InitDialogs (nil);

err = EnterMovies ();

if (err) return;

SetRect (&windowRect, 100, 100, 200, 200);

aWindow = NewCWindow (nil, &windowRect, "\pMovie",

 false, noGrowDocProc, (WindowPtr)-1,

 true, 0);

SetPort (aWindow);

aMovie = GetMovie ();

if (aMovie == nil) return;

GetMovieBox (aMovie, &movieBox);

OffsetRect (&movieBox, -movieBox.left, -movieBox.top);

SetMovieBox (aMovie, &movieBox);

SizeWindow (aWindow, movieBox.right, movieBox.bottom, true);

ShowWindow (aWindow);

C H A P T E R 2

Movie Toolbox

2-44 Using the Movie Toolbox

SetMovieGWorld (aMovie, (CGrafPtr)aWindow, nil);

StartMovie (aMovie);

while (!IsMovieDone(aMovie) && !done)

{

if (WaitNextEvent (everyEvent, &theEvent, 0, nil))

{

switch (theEvent.what)

{

case updateEvt:

whichWindow = (WindowPtr)theEvent.message;

if (whichWindow == aWindow)

{

BeginUpdate (whichWindow);

UpdateMovie(aMovie);

SetPort (whichWindow);

EraseRect (&whichWindow->portRect);

EndUpdate (whichWindow);

}

break;

case mouseDown:

part = FindWindow (theEvent.where,

 &whichWindow);

if (whichWindow == aWindow)

{

switch (part)

{

case inGoAway:

done = TrackGoAway (whichWindow,

 theEvent.where);

break;

case inDrag:

DragWindow (whichWindow,

 theEvent.where,

 &qd.screenBits.bounds);

break;

}

}

break;

}

}

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-45

MoviesTask (aMovie, DoTheRightThing);

}

DisposeMovie (aMovie);

DisposeWindow (aWindow);

}

Movies and the Scrap
The Movie Toolbox makes it very easy for your application to deal with the scrap by

providing two high-level functions that handle the details for you. When you want to

put a movie onto the scrap, call the PutMovieOnScrap function (described on

page 2-244). When you want to get a movie from the scrap, use the

NewMovieFromScrap function (described on page 2-245).

When you use these functions, the Movie Toolbox takes care of all of the appropriate

resources. For example, when you call the PutMovieOnScrap function, the Movie

Toolbox creates a movie resource and a PICT image from the movie, and it places both

on the scrap. In the future, as QuickTime grows, Apple will maintain these functions so

that they continue to handle the appropriate resources.

Creating a Movie
Creating a movie involves several steps. You must first create and open the movie file

that is to contain the movie. You then create the tracks and media structures for the

movie. You then add samples to the media structures. Finally, you add the movie

resource to the movie file. The sample program in this section, CreateWayCoolMovie,

demonstrates this process.

This program has been divided into several segments. The main segment,

CreateMyCoolMovie, creates and opens the movie file, then invokes other functions

to create the movie itself. Once the data has been added to the movie, this function saves

the movie in its movie file and closes the file.

The CreateMyCoolMovie function uses the CreateMyVideoTrack

and CreateMySoundTrack functions to create the movie’s tracks. The

CreateMyVideoTrack function creates the video track and the media that contains the

track’s data. It then collects sample data in the media by calling the

AddVideoSamplesToMedia function. Note that this function uses the Image

Compression Manager. The CreateMySoundTrack function creates the sound track

and the media that contains the sound. It then collects sample data by calling the

AddSoundSamplesToMedia function.

Note

Throughout this volume, sound track refers to a QuickTime movie track
that contains sound—as opposed to a soundtrack, which denotes the
entire audio presentation of a movie as filmgoers know it. Consequently,
a soundtrack may be made up of one or more QuickTime sound
tracks. ◆

C H A P T E R 2

Movie Toolbox

2-46 Using the Movie Toolbox

A Sample Program for Creating a Movie

The CreateWayCoolMovie program consists of a number of segments, many of which

are not included in this sample. Omitted segments deal with general initialization logic

and other common aspects of Macintosh programming. The HandleEditMenu function,

shown in Listing 2-5, has been included here to show how to initialize the Movie Toolbox

with the EnterMovies function.

Listing 2-5 Creating a movie: The main program

#include <Types.h>

#include <Traps.h>

#include <Menus.h>

#include <Packages.h>

#include <Memory.h>

#include <Errors.h>

#include <Fonts.h>

#include <QuickDraw.h>

#include <Resources.h>

#include <GestaltEqu.h>

#include <FixMath.h>

#include <Sound.h>

#include <string.h>

#include "Movies.h"

#include "ImageCompression.h"

void CheckError(OSErr error, Str255 displayString)

{

if (error == noErr) return;

if (displayString[0] > 0)

DebugStr(displayString);

ExitToShell();

}

void InitMovieToolbox (void)

{

OSErr err;

InitGraf (&qd.thePort);

InitFonts ();

InitWindows ();

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-47

InitMenus ();

TEInit ();

InitDialogs (nil);

err = EnterMovies ();

CheckError (err, "\pEnterMovies");

}

void main(void)

{

InitMovieToolbox ();

CreateMyCoolMovie ();

}

A Sample Function for Creating and Opening a Movie File

The CreateMyCoolMovie function, shown in Listing 2-6, contains the main logic for

this program. This function creates and opens a movie file for the new movie. It then

establishes a data reference for the movie’s data (note that, if your movie’s data is stored

in the same file as the movie itself, you do not have to create a data reference—set the

data reference to 0). This function then calls two other functions,

CreateMyVideoTrack and CreateMySoundTrack, to create the tracks for the new

movie. Once the tracks have been created, CreateMyCoolMovie adds the new resource

to the movie file and closes the movie file.

Listing 2-6 Creating and opening a movie file

#define kMyCreatorType 'TVOD'

/*

Sample Player's creator type since it is the movie player

of choice. You can use your own creator type, of course.

*/

#define kPrompt "\pEnter movie file name:"

void CreateMyCoolMovie (void)

{

Point where = {100,100};

SFReply theSFReply;

Movie theMovie = nil;

FSSpec mySpec;

short resRefNum = 0;

short resId = 0;

OSErr err = noErr;

C H A P T E R 2

Movie Toolbox

2-48 Using the Movie Toolbox

SFPutFile (where, "\pEnter movie file name:",

"\pMovie File", nil, &theSFReply);

if (!theSFReply.good) return;

FSMakeFSSpec(theSFReply.vRefNum, 0,

 theSFReply.fName, &mySpec);

err = CreateMovieFile (&mySpec,

'TVOD',

smCurrentScript,

createMovieFileDeleteCurFile,

&resRefNum,

&theMovie);

CheckError(err, "\pCreateMovieFile");

CreateMyVideoTrack (theMovie);

CreateMySoundTrack (theMovie);

err = AddMovieResource (theMovie, resRefNum, &resId,

 theSFReply.fName);

CheckError(err, "\pAddMovieResource");

if (resRefNum) CloseMovieFile (resRefNum);

DisposeMovie (theMovie);

}

A Sample Function for Creating a Video Track in a New Movie

The CreateMyVideoTrack function, shown in Listing 2-7, creates a video track in the

new movie. This function creates the track and its media by calling the NewMovieTrack

and NewTrackMedia functions, respectively. This function then establishes a

media-editing session and adds the movie’s data to the media. The bulk of this work is

done by the AddVideoSamplesToMedia subroutine. Once the data has been added to

the media, this function adds the media to the track by calling the Movie Toolbox’s

InsertMediaIntoTrack function (described on page 2-265).

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-49

Listing 2-7 Creating a video track

#define kVideoTimeScale 600

#define kTrackStart 0

#define kMediaStart 0

#define kFix1 0x00010000

void CreateMyVideoTrack (Movie theMovie)

{

Track theTrack;

Media theMedia;

OSErr err = noErr;

Rect trackFrame = {0,0,100,320};

theTrack = NewMovieTrack (theMovie,

FixRatio(trackFrame.right,1),

FixRatio(trackFrame.bottom,1),

kNoVolume);

CheckError(GetMoviesError(), "\pNewMovieTrack");

theMedia = NewTrackMedia (theTrack, VideoMediaType,

600, // Video Time Scale

nil, 0);

CheckError(GetMoviesError(), "\pNewTrackMedia");

err = BeginMediaEdits (theMedia);

CheckError(err, "\pBeginMediaEdits");

AddVideoSamplesToMedia (theMedia, &trackFrame);

err = EndMediaEdits (theMedia);

CheckError(err, "\pEndMediaEdits");

err = InsertMediaIntoTrack (theTrack, 0,/* track start time */

0, /* media start time */

GetMediaDuration (theMedia),

kFix1);

CheckError(err, "\pInsertMediaIntoTrack");

}

C H A P T E R 2

Movie Toolbox

2-50 Using the Movie Toolbox

A Sample Function for Adding Video Samples to a Media

The AddVideoSamplesToMedia function, shown in Listing 2-8, creates video data

frames, compresses each frame, and adds the frames to the media. This function creates

its own video data by calling the DrawAFrame function. Note that this function does not

temporally compress the image sequence; rather, the function only spatially compresses

each frame individually.

Listing 2-8 Adding video samples to a media

#define kSampleDuration 240

/* video frames last 240 * 1/600th of a second */

#define kNumVideoFrames 29

#define kNoOffset 0

#define kMgrChoose 0

#define kSyncSample 0

#define kAddOneVideoSample 1

#define kPixelDepth 16

void AddVideoSamplesToMedia (Media theMedia,

const Rect *trackFrame)

{

long maxCompressedSize;

GWorldPtr theGWorld = nil;

long curSample;

Handle compressedData = nil;

Ptr compressedDataPtr;

ImageDescriptionHandle imageDesc = nil;

CGrafPtr oldPort;

GDHandle oldGDeviceH;

OSErr err = noErr;

err = NewGWorld (&theGWorld,

16, /* pixel depth */

trackFrame,

nil,

nil,

(GWorldFlags) 0);

CheckError (err, "\pNewGWorld");

LockPixels (theGWorld->portPixMap);

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-51

err = GetMaxCompressionSize (theGWorld->portPixMap,

trackFrame,

0, /* let ICM choose depth */

codecNormalQuality,

'rle ',

(CompressorComponent) anyCodec,

&maxCompressedSize);

CheckError (err, "\pGetMaxCompressionSize");

compressedData = NewHandle(maxCompressedSize);

CheckError(MemError(), "\pNewHandle");

MoveHHi(compressedData);

HLock(compressedData);

compressedDataPtr = StripAddress(*compressedData);

imageDesc = (ImageDescriptionHandle)NewHandle(4);

CheckError(MemError(), "\pNewHandle");

GetGWorld (&oldPort, &oldGDeviceH);

SetGWorld (theGWorld, nil);

for (curSample = 1; curSample < 30; curSample++)

{

EraseRect (trackFrame);

DrawFrame(trackFrame, curSample);

err = CompressImage (theGWorld->portPixMap,

trackFrame,

codecNormalQuality,

'rle ',

imageDesc,

compressedDataPtr);

CheckError(err, "\pCompressImage");

err = AddMediaSample(theMedia,

compressedData,

0, /* no offset in data */

(**imageDesc).dataSize,

60, /* frame duration = 1/10 sec */

(SampleDescriptionHandle)imageDesc,

1, /* one sample */

C H A P T E R 2

Movie Toolbox

2-52 Using the Movie Toolbox

0, /* self-contained samples */

nil);

CheckError(err, "\pAddMediaSample");

}

SetGWorld (oldPort, oldGDeviceH);

if (imageDesc) DisposeHandle ((Handle)imageDesc);

if (compressedData) DisposeHandle (compressedData);

if (theGWorld) DisposeGWorld (theGWorld);

}

A Sample Function for Creating Video Data for a Movie

The DrawAFrame function, shown in Listing 2-9, creates video data for this movie. This

function draws a different frame each time it is invoked, based on the sample number,

which is passed as a parameter.

Listing 2-9 Creating video data

void DrawFrame (const Rect *trackFrame, long curSample)

{

Str255 numStr;

ForeColor(redColor);

PaintRect(trackFrame);

ForeColor(blueColor);

NumToString (curSample, numStr);

MoveTo (trackFrame->right / 2, trackFrame->bottom / 2);

TextSize (trackFrame->bottom / 3);

DrawString (numStr);

}

A Sample Function for Creating a Sound Track

The CreateMySoundTrack function, shown in Listing 2-10, creates the movie’s sound

track. This sound track is not synchronized to the video frames of the movie—rather, it is

just a separate sound track that accompanies the video data. This function relies upon an

'snd ' resource for its source sound. The CreateMySoundTrack function uses the

CreateSoundDescription function to create the sound description structure for these

samples.

As with the CreateMyVideoTrack function discussed earlier, this function creates the

track and its media by calling the NewMovieTrack and NewTrackMedia functions,

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-53

respectively. This function then establishes a media-editing session and adds the movie’s

data to the media. This function adds the sound samples using a single invocation of the

AddMediaSample function. This is possible because all the sound samples are the same

size and rely on the same sample description (the SoundDescription structure). If you

use this approach, it is often advisable to break up the sound data in the movie, so that

the movie plays smoothly. After you create the movie, you can call the FlattenMovie

function (described on page 2-105) to create an interleaved version of the movie. Another

approach is to call AddMediaSample multiple times, breaking the sound into multiple

chunks at that point.

Once the data has been added to the media, this function adds the media to the track by

calling the Movie Toolbox’s InsertMediaIntoTrack function (described on

page 2-265).

Listing 2-10 Creating a sound track

#define kSoundSampleDuration 1

#define kSyncSample 0

#define kTrackStart 0

#define kMediaStart 0

#define kFix1 0x00010000

void CreateMySoundTrack (Movie theMovie)

{

Track theTrack;

Media theMedia;

Handle sndHandle = nil;

SoundDescriptionHandle sndDesc = nil;

long sndDataOffset;

long sndDataSize;

long numSamples;

OSErr err = noErr;

sndHandle = GetResource ('snd ', 128);

CheckError (ResError(), "\pGetResource");

if (sndHandle == nil) return;

sndDesc = (SoundDescriptionHandle) NewHandle(4);

CheckError (MemError(), "\pNewHandle");

CreateSoundDescription (sndHandle,

sndDesc,

C H A P T E R 2

Movie Toolbox

2-54 Using the Movie Toolbox

&sndDataOffset,

&numSamples,

&sndDataSize);

theTrack = NewMovieTrack (theMovie, 0, 0, kFullVolume);

CheckError (GetMoviesError(), "\pNewMovieTrack");

theMedia = NewTrackMedia (theTrack, SoundMediaType,

FixRound ((**sndDesc).sampleRate),

nil, 0);

CheckError (GetMoviesError(), "\pNewTrackMedia");

err = BeginMediaEdits (theMedia);

CheckError(err, "\pBeginMediaEdits");

err = AddMediaSample(theMedia,

sndHandle,

sndDataOffset, /* offset in data */

sndDataSize,

1, /* duration of each sound sample */

(SampleDescriptionHandle) sndDesc,

numSamples,

0, /* self-contained samples */

nil);

CheckError(err, "\pAddMediaSample");

err = EndMediaEdits (theMedia);

CheckError(err, "\pEndMediaEdits");

err = InsertMediaIntoTrack (theTrack,

0, /* track start time */

0, /* media start time */

GetMediaDuration (theMedia),

kFix1);

CheckError(err, "\pInsertMediaIntoTrack");

if (sndDesc != nil) DisposeHandle((Handle)sndDesc);

}

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-55

A Sample Function for Creating a Sound Description Structure

The CreateSoundDescription function, shown in Listing 2-11, creates a sound

description structure that correctly describes the sound samples obtained from the

'snd ' resource. This function can handle all the sound data formats that are possible

in the sound resource. This function uses the GetSndHdrOffset function to locate the

sound data in the sound resource.

Listing 2-11 Creating a sound description

/* Constant definitions */

/*

for the following constants, please consult the Macintosh

Audio Compression and Expansion Toolkit

*/

#define kMACEBeginningNumberOfBytes 6

#define kMACE31MonoPacketSize 2

#define kMACE31StereoPacketSize 4

#define kMACE61MonoPacketSize 1

#define kMACE61StereoPacketSize 2

void CreateSoundDescription (Handle sndHandle,

SoundDescriptionHandlesndDesc,

long *sndDataOffset,

long *numSamples,

long *sndDataSize)

{

long sndHdrOffset = 0;

long sampleDataOffset;

SoundHeaderPtr sndHdrPtr = nil;

long numFrames;

long samplesPerFrame;

long bytesPerFrame;

SignedByte sndHState;

SoundDescriptionPtr sndDescPtr;

*sndDataOffset = 0;

*numSamples = 0;

*sndDataSize = 0;

SetHandleSize((Handle)sndDesc, sizeof(SoundDescription));

CheckError(MemError(),"\pSetHandleSize");

C H A P T E R 2

Movie Toolbox

2-56 Using the Movie Toolbox

sndHdrOffset = GetSndHdrOffset (sndHandle);

if (sndHdrOffset == 0) CheckError(-1, "\pGetSndHdrOffset ");

/* we can use pointers since we don't move memory */

sndHdrPtr = (SoundHeaderPtr) (*sndHandle + sndHdrOffset);

sndDescPtr = *sndDesc;

sndDescPtr->descSize = sizeof (SoundDescription);

/* total size of sound description structure */

sndDescPtr->resvd1 = 0;

sndDescPtr->resvd2 = 0;

sndDescPtr->dataRefIndex = 1;

sndDescPtr->compressionID = 0;

sndDescPtr->packetSize = 0;

sndDescPtr->version = 0;

sndDescPtr->revlevel = 0;

sndDescPtr->vendor = 0;

switch (sndHdrPtr->encode)

{

case stdSH:

sndDescPtr->dataFormat = 'raw ';

/* uncompressed offset-binary data */

sndDescPtr->numChannels = 1;

/* number of channels of sound */

sndDescPtr->sampleSize = 8;

/* number of bits per sample */

sndDescPtr->sampleRate = sndHdrPtr->sampleRate;

/* sample rate */

*numSamples = sndHdrPtr->length;

*sndDataSize = *numSamples;

bytesPerFrame = 1;

samplesPerFrame = 1;

sampleDataOffset = (Ptr)&sndHdrPtr->sampleArea

- (Ptr)sndHdrPtr;

break;

case extSH:

{

ExtSoundHeaderPtr extSndHdrP;

extSndHdrP = (ExtSoundHeaderPtr)sndHdrPtr;

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-57

sndDescPtr->dataFormat = 'raw ';

/* uncompressed offset-binary data */

sndDescPtr->numChannels = extSndHdrP->numChannels;

/* number of channels of sound */

sndDescPtr->sampleSize = extSndHdrP->sampleSize;

/* number of bits per sample */

sndDescPtr->sampleRate = extSndHdrP->sampleRate;

/* sample rate */

numFrames = extSndHdrP->numFrames;

*numSamples = numFrames;

bytesPerFrame = extSndHdrP->numChannels *

(extSndHdrP->sampleSize / 8);

samplesPerFrame = 1;

*sndDataSize = numFrames * bytesPerFrame;

sampleDataOffset = (Ptr)(&extSndHdrP->sampleArea)

 - (Ptr)extSndHdrP;

}

break;

case cmpSH:

{

CmpSoundHeaderPtr cmpSndHdrP;

cmpSndHdrP = (CmpSoundHeaderPtr)sndHdrPtr;

sndDescPtr->numChannels = cmpSndHdrP->numChannels;

/* number of channels of sound */

sndDescPtr->sampleSize = cmpSndHdrP->sampleSize;

/* number of bits per sample before compression */

sndDescPtr->sampleRate = cmpSndHdrP->sampleRate;

/* sample rate */

numFrames = cmpSndHdrP->numFrames;

sampleDataOffset =(Ptr)(&cmpSndHdrP->sampleArea)

- (Ptr)cmpSndHdrP;

switch (cmpSndHdrP->compressionID)

{

case threeToOne:

sndDescPtr->dataFormat = 'MAC3';

/* compressed 3:1 data */

samplesPerFrame = kMACEBeginningNumberOfBytes;

*numSamples = numFrames * samplesPerFrame;

switch (cmpSndHdrP->numChannels)

{

case 1:

C H A P T E R 2

Movie Toolbox

2-58 Using the Movie Toolbox

bytesPerFrame = cmpSndHdrP->numChannels

* kMACE31MonoPacketSize;

break;

case 2:

bytesPerFrame = cmpSndHdrP->numChannels

* kMACE31StereoPacketSize;

break;

default:

CheckError(-1, "\pCorrupt sound data");

break;

}

*sndDataSize = numFrames * bytesPerFrame;

break;

case sixToOne:

sndDescPtr->dataFormat = 'MAC6';

/* compressed 6:1 data */

samplesPerFrame = kMACEBeginningNumberOfBytes;

*numSamples = numFrames * samplesPerFrame;

switch (cmpSndHdrP->numChannels)

{

case 1:

bytesPerFrame = cmpSndHdrP->numChannels

* kMACE61MonoPacketSize;

break;

case 2:

bytesPerFrame = cmpSndHdrP->numChannels

* kMACE61StereoPacketSize;

break;

default:

CheckError(-1, "\pCorrupt sound data");

break;

}

*sndDataSize = (*numSamples) * bytesPerFrame;

break;

default:

CheckError(-1, "\pCorrupt sound data");

break;

}

} /* switch cmpSndHdrP->compressionID:*/

break; /* of cmpSH: */

default:

CheckError(-1, "\pCorrupt sound data");

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-59

break;

} /* switch sndHdrPtr->encode */

*sndDataOffset = sndHdrOffset + sampleDataOffset;

}

Parsing a Sound Resource

The GetSndHdrOffset function, shown in Listing 2-12, parses the specified sound

resource and locates the sound data stored in the resource. The GetSndHdrOffset

function cruises through a specified 'snd ' resource. It locates the sound data, if any,

and returns its type, offset, and size into the resource.

The GetSndHdrOffset function returns an offset instead of a pointer so that the data is

not locked in memory. By returning an offset, the calling function can decide when and if

it wants the resource locked down to access the sound data.

The first step in finding this data is to determine if the 'snd ' resource is format (type)

1 or format (type) 2. A type 2 is easy, but a type 1 requires that you find the number of

'snth' resource types specified and then skip over each one, including the init

option. Once you do this, you have a pointer to the number of commands in the 'snd '

resource. When the function finds the first one, it examines the command to find out if it

is a sound data command. Since it is a sound resource, the command also has its

dataPointerFlag parameter set to 1. When the function finds a sound data command,

it returns its offset and type, and exits.

▲ W A R N I N G

Do not send the GetSndHdrOffset function a nil handle; if you do,
your system will crash. ▲

Listing 2-12 Parsing a sound resource

typedef SndCommand *SndCmdPtr;

typedef struct

{

short format;

short numSynths;

} Snd1Header, *Snd1HdrPtr, **Snd1HdrHndl;

typedef struct

{

short format;

short refCount;

} Snd2Header, *Snd2HdrPtr, **Snd2HdrHndl;

C H A P T E R 2

Movie Toolbox

2-60 Using the Movie Toolbox

typedef struct

{

short synthID;

long initOption;

} SynthInfo, *SynthInfoPtr;

long GetSndHdrOffset (Handle sndHandle)

{

short howManyCmds;

long sndOffset = 0;

Ptr sndPtr;

if (sndHandle == nil) return 0;

sndPtr = *sndHandle;

if (sndPtr == nil) return 0;

if ((*(Snd1HdrPtr)sndPtr).format == firstSoundFormat)

{

short synths = ((Snd1HdrPtr)sndPtr)->numSynths;

sndPtr += sizeof(Snd1Header) + (sizeof(SynthInfo) * synths);

} else

{

sndPtr += sizeof(Snd2Header);

}

howManyCmds = *(short *)sndPtr;

sndPtr += sizeof(howManyCmds);

/*

sndPtr is now at the first sound command--cruise all

commands and find the first soundCmd or bufferCmd

*/

while (howManyCmds > 0)

{

switch (((SndCmdPtr)sndPtr)->cmd)

{

case (soundCmd + dataOffsetFlag):

case (bufferCmd + dataOffsetFlag):

sndOffset = ((SndCmdPtr)sndPtr)->param2;

howManyCmds = 0;/* done, get out of loop */

break;

default: /* catch any other type of commands */

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-61

sndPtr += sizeof(SndCommand);

howManyCmds--;

break;

}

} /* done with all commands */

return sndOffset;

} /* of GetSndHdrOffset */

Saving Movies in Movie Files
The Movie Toolbox allows you to save movies in movie files. Movie files have a file type

of 'MooV'. Typically, the movie itself is stored in the resource fork of the movie file. The

movie’s data may reside in the data fork of the movie file, or in other files.

When you create a new movie, you must create a file to contain the movie data. Use the

CreateMovieFile function (described on page 2-96) to create a new movie file. This

function returns a file system reference number that you must use to identify the file to

other Movie Toolbox functions. You can add your movie to the file by calling the

AddMovieResource function (described on page 2-102). When you are done with the

file, you close it by calling the CloseMovieFile function (described on page 2-99). Your

movie is now safely stored in the movie file.

If you are working with an existing movie, you must read that movie from a movie file

or choose a movie from the scrap. You first open the movie file by calling the

OpenMovieFile function (described on page 2-98). You then load the movie from that

file by calling the NewMovieFromFile function (described on page 2-88). Alternatively,

you can use the NewMovieFromHandle function (described on page 2-90). After you

have edited the movie, you must store it in your file if you want to save your changes. If

you want to replace the old movie, use the UpdateMovieResource function (described

on page 2-103). If you want to keep the old movie, create a new movie by calling the

AddMovieResource function described on page 2-102 (a movie file may contain more

than one movie resource). You should then close the movie file by calling the

CloseMovieFile function (described on page 2-99).

The Movie Toolbox maintains a changed flag for each movie your application loads. You

can use this flag to determine when to save your movie. The Movie Toolbox sets this flag

to true whenever you make a change to a movie that should be saved. You can read this

flag by calling the HasMovieChanged function (described on page 2-101). You can set

the flag to false by calling the ClearMovieChanged function (described on

page 2-102).

The Movie Toolbox provides two functions for deleting movies: DeleteMovieFile and

RemoveMovieResource. Use DeleteMovieFile (described on page 2-100) to delete a

movie file. Use RemoveMovieResource (described on page 2-104) to delete a movie

from a movie file. Don’t use the corresponding standard Macintosh Toolbox routines

(FSpDelete and RmveResource). The Movie Toolbox maintains movie references

between files correctly whereas these routines do not.

C H A P T E R 2

Movie Toolbox

2-62 Using the Movie Toolbox

The Movie Toolbox allows you to create movie files that contain all of their movie data,

rather than containing references to data in other files. This may be necessary when

creating a version of a movie that is to be moved to another computer system. The Movie

Toolbox also accommodates operating systems that do not recognize files that contain

more than one fork. In this case, you can use the FlattenMovie or

FlattenMovieData functions (described on page 2-105 and page 2-107, respectively)

to create a movie file that stores the movie and all of its data in the data fork of a

Macintosh file. You can then transfer that file to another operating system. Your

application may allow the user to decide how to save the movie. In this case, you can use

a Save As dialog box similar to the one shown in Figure 2-32. In this dialog box, the user

can elect to create a movie file that contains all of the data for a movie by clicking the

“Make movie self-contained” radio button.

Figure 2-32 A sample movie Save As dialog box

Using Movies in Your Event Loop
Your application needs to grant time to the Movie Toolbox to allow your movies to play.

To do this, you call the MoviesTask function from your main event loop. The

MoviesTask function (described on page 2-124) instructs the Movie Toolbox to service

all your active movies. Call MoviesTask regularly so that your movie can play

smoothly. You can use the UpdateMovie function to force your movie to be redrawn

after it has been uncovered. It will not be redrawn until the next call to MoviesTask.

Your application should call UpdateMovie between the Window Manager’s

BeginUpdate and EndUpdate functions. (For details on BeginUpdate and

EndUpdate, see Inside Macintosh: Macintosh Toolbox Essentials.) Do not call MoviesTask

at this time. You will observe better display behavior if you call MoviesTask at the end

of your update processing.

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-63

The code shown in Listing 2-13 demonstrates the use of the UpdateMovie function in a

Window Manager update sequence. For the Movie Toolbox to know that it has to display

(or update) a movie when MoviesTask is called, you must call UpdateMovie as

shown. If you are using the movie controller component and call the

MCIsPlayerEvent function, you do not need to call UpdateMovie in response to an

update event. (See the chapter “Movie Controller Component” in Inside Macintosh:
QuickTime Components, for details on MCIsPlayerEvent.)

Note

Contrary to normal update handling, where applications draw to the
window in between calls to BeginUpdate and EndUpdate, you should
not call MoviesTask. ◆

The UpdateMovie function tells the Movie Toolbox that a portion of the movie has been

invalidated. However, it is not redrawn until MoviesTask is called.

Listing 2-13 Handling movie update events

#include <Events.h>

#include <ToolUtils.h>

#include "Movies.h"

void DoUpdate (WindowPtr theWindow, Movie theMovie)

{

BeginUpdate (theWindow);

UpdateMovie (theMovie);

EndUpdate (theWindow);

} /* DoUpdate */

The Movie Toolbox and System 6
The Movie Toolbox makes extensive use of some of the facilities of System 7. In

particular, the toolbox uses the features of the Alias Manager and the new File Manager

routines that support the FSSpec data type. In order to allow you to use QuickTime on

Macintosh computers that are running System 6, QuickTime provides its own support

for these features.

This section discusses the details of the Movie Toolbox’s support. For a complete

description of the Alias Manager and File Manager features of System 7, refer to Inside
Macintosh: Files.

Note

Track mattes are approximated. The System 7 version of the Time
Manager is installed, but not its Gestalt selector. ◆

C H A P T E R 2

Movie Toolbox

2-64 Using the Movie Toolbox

The Alias Manager

When you run the Movie Toolbox on a Macintosh computer that is running System 6,

QuickTime installs a limited version of the Alias Manager. This version of the Alias

Manager supports most of the routines that are supported by the standard manager. In

addition, aliases you create in System 6 are completely compatible with those you create

in System 7. However, the limited version of the Alias Manager does not support relative

aliases, does not search multiple volumes, does not support exhaustive searches, and

does not mount network volumes.

The following list provides more detailed information about this limited version of the

Alias Manager.

■ The NewAlias function is supported and accepts a fromFile specification; however,
the function does not create relative aliases.

■ The NewAliasMinimalFromFullPath function is not supported.

■ The ResolveAlias function is supported and accepts a fromFile specification;
however, the function ignores this parameter.

■ The ResolveAliasFile function is not supported.

■ The MatchAlias function is supported, but it ignores the kARMSearchMore,
kARMSearchRelFirst, and kARMMultVols options of the rulesMask parameter.

■ The UpdateAlias function is supported and accepts a fromFile specification;
however, the function ignores this parameter.

Note

This limited version of the Alias Manager does not install the Alias
Manager’s Gestalt selector. If your application relies on more support
than this version supplies, be sure to examine the Alias Manager’s
Gestalt selector. ◆

The File Manager

The Movie Toolbox uses the File Manager functions that support the file system

specification structures (of type FSSpec). When you use QuickTime on Macintosh

computers that are running System 6, QuickTime installs support for most of the new

File Manager routines. These routines behave the same as they do in System 7.

Specifically, QuickTime provides support for the following File Manager functions that

use the FSSpec data type:

FSMakeFSSpec FSpOpenDF

FSpOpenRF FSpCreate

FSpDirCreate FSpDelete

FSpGetFInfo FSpSetFInfo

FSpSetFLock FSpRstFLock

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-65

QuickTime does not support the FSpExchangeFiles function.

Note

QuickTime does not install the File Manager’s Gestalt selector for the
functions that support the FSSpec data type. If QuickTime is installed,
you can assume that these File Manager functions are supported, even if
gestaltHasFSSpecCalls is not set. ◆

Previewing Files
QuickTime includes extensions to the Standard File Package that allow you to create and

display file previews—information that gives the user an idea of a file’s contents without

opening the file. Typically, a file’s preview is a small PICT image (called a thumbnail), but

previews may also contain other types of information that is appropriate to the type of

file being considered. For example, a text file’s preview might tell the user when the file

was created and what it discusses. You can use the Image Compression Manager to

create thumbnail images—see the chapter “Image Compression Manager” later in this

book for more information about thumbnail images.

QuickTime provides new standard file functions that your application can use to display

a file’s preview during the Open dialog box. These functions allow your application to

support previews automatically.

Note

Before using these new standard file functions, make sure that the Image
Compression Manager is installed. See the chapter “Image Compression
Manager” in this book for information about the Image
Compression Manager’s Gestalt selector. ◆

In addition, the Movie Toolbox includes two functions that allow you to create a preview

for a file.

Previewing Files in System 6 Using Standard File Reply Structures

The Movie Toolbox provides two new standard file functions that allow you to display

file previews in an Open dialog box in System 6 using standard file reply structures:

SFGetFilePreview and SFPGetFilePreview. The SFGetFilePreview function

(described on page 2-306) corresponds to the existing SFGetFile function;

the SFPGetFilePreview function (described on page 2-308) corresponds to the

existing SFPGetFile function. Both of these new functions take the same parameters as

their existing counterparts. For information about SFGetFile and SFPGetFile, see

Inside Macintosh: Files.

FSpRename FSpCatMove

FSpOpenResFile FSpCreateResFile

FSpGetCatInfo

C H A P T E R 2

Movie Toolbox

2-66 Using the Movie Toolbox

IMPORTANT

All the functions for previewing files are present in System 6 except the
CustomGetFilePreview function. The StandardGetFilePreview
function is preferable and will work on System 6. ▲

The SFGetFilePreview function uses the dialog box shown in Figure 2-33. The

SFPGetFilePreview function can also use this dialog box, if you do not supply

your own.

Figure 2-33 SFGetFilePreview or SFPGetFilePreview dialog box without preview

You use these new functions in place of the existing standard file functions to indicate

whether or not you want to allow the user to display previews during the Open dialog

box. The user displays a file’s preview by selecting a file in the dialog box and clicking

Show Preview. When the user does so, the functions display the preview for the file,

as shown in Figure 2-34.

Figure 2-34 SFGetFilePreview or SFPGetFilePreview dialog box with preview

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-67

The preview area of the dialog box is displayed whenever previewing is enabled.

Customizing Your Interface in System 6

If your application requires it, you can customize the user interface for identifying files.

The SFGetFilePreview function does not allow you to use a custom dialog box by

creating your own dialog template resource. However, the SFPGetFilePreview

function does let you access a custom dialog box of any resource type with the dlgID

parameter.

Figure 2-35 shows the standard dialog box used by SFPGetFilePreview and

SFGetFilePreview. Your dialog box and dialog filter function must support at least

these dialog items.

Note

Alter the dialog boxes only if necessary. Apple does not guarantee future
compatibility if you use a customized dialog box. ◆

Figure 2-35 Standard preview dialog box for SFGetFilePreview and SFPGetFilePreview

Items to the left of item 13 are visible only when previewing. If you want to define items

that are visible only during a file preview, place them to the left of item 13 in your

custom dialog box.

If your application defines a custom dialog box, be sure to include the following items in

your dialog box definition:

enum

{

/* dialog items to include in dialog box definition for use

 with SFPGetFilePreview function

*/

sfpItemPreviewAreaUser = 11, /* user preview area */

sfpItemPreviewStaticText = 12, /* static text preview */

C H A P T E R 2

Movie Toolbox

2-68 Using the Movie Toolbox

sfpItemPreviewDividerUser = 13, /* user divider preview */

sfpItemCreatePreviewButton = 14, /* create preview button */

sfpItemShowPreviewButton = 15 /* show preview button */

};

Previewing Files in System 7 Using Standard File Reply Structures

The Movie Toolbox provides two new standard file functions,

standardGetFilePreview and CustomGetFilePreview, that allow you to display

file previews in an Open dialog box in System 7 using standard file reply structures (of

type StandardFileReply). The StandardGetFilePreview function (described on

page 2-310) corresponds to the existing StandardGetFile function; the

CustomGetFilePreview function (described on page 2-312) corresponds to the

existing CustomGetFile function. Both of these new functions take the same

parameters as their existing counterparts. See Inside Macintosh: Files for information

about StandardGetFile and CustomGetFile.

The StandardGetFilePreview function uses the dialog box shown in

Figure 2-36. The CustomGetFilePreview function can also use this dialog box, if you

do not supply your own.

Figure 2-36 StandardGetFilePreview or CustomGetFilePreview dialog box without
preview

You use these new functions in place of the existing standard file functions

whenever you want to allow the user to display previews during the Open dialog box.

The user causes a file’s preview to be displayed by selecting a file in the dialog box and

clicking Show Preview. When the user does so, the functions display the preview for the

file, as shown in Figure 2-37.

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-69

Figure 2-37 StandardGetFilePreview or CustomGetFilePreview dialog box with preview

The preview portion of the dialog box is displayed only when the dialog box is showing

a file’s preview.

The SFGetFilePreview, SFPGetFilePreview, StandardGetFilePreview, and

CustomGetFilePreview functions allow the user to automatically convert files to

movies if your application requests movies. If there is a file that can be converted into

a movie file using a movie import component, then the file is shown in the Standard File

dialog box in addition to any movies. When the user selects the file, the Open button

changes to a Convert button. Figure 2-38 provides an example of this dialog box.

Figure 2-38 Dialog box showing automatic file-to-movie conversion option

C H A P T E R 2

Movie Toolbox

2-70 Using the Movie Toolbox

Choosing Convert displays a dialog box that allows the user to choose where the

converted file should be saved. Figure 2-39 shows this dialog box.

Figure 2-39 Dialog box for saving a movie converted from a file

When conversion is complete, the converted file is returned to the calling application as

the movie that the user chose. If you want to disable automatic file conversion in your

application, you must write a file filter function and pass it to the file preview display

function you are using. Your file filter function must call the File Manager's

FSpGetFileInfo function on each file that is passed to it to determine its actual file

type. If the File System parameter block pointer passed to your file filter function

indicates that the file type is 'MooV', and the actual type returned by FSpGetFileInfo

is not 'MooV', then the file filter function will convert this file. If you do not wish a file

to be displayed as a candidate for conversion, your file filter function should return a

value of true when it is called for that file.

See “File Filter Functions” beginning on page 2-360 for comprehensive details on the

interaction of application-defined file filter functions with the file preview display

functions. For information on FSpGetFileInfo, see Inside Macintosh: Files.

Customizing Your Interface in System 7

If your application requires it, you can customize the user interface for identifying files.

The CustomGetFilePreview function allows you to specify a custom dialog box of

any resource type with the dlgID parameter.

Figure 2-40 shows the standard dialog box used by CustomGetFilePreview. Your

dialog box and dialog filter function must support at least these dialog items.

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-71

Note
Alter the dialog boxes only if necessary. Apple does not guarantee future
compatibility if you use a customized dialog box. ◆

Figure 2-40 Standard preview dialog box for CustomGetFilePreview

Items to the left of item 13 are visible only when previewing. If you want to define items

that are visible only during a file preview, place them to the left of item 13 in your

custom dialog box.

If your application defines a custom dialog box, be sure to include the following items in

your dialog box definition:

enum

{

/* dialog items to include in dialog box definition */

sfpItemPreviewAreaUser = 11, /* user preview area */

sfpItemPreviewStaticText = 12, /* static text preview */

sfpItemPreviewDividerUser = 13, /* user divider preview */

sfpItemCreatePreviewButton = 14, /* create preview button */

sfpItemShowPreviewButton = 15 /* show preview button */

};

Using Application-Defined Functions
The Movie Toolbox allows your application to define functions that are invoked during

specific operations. You can create a progress function that monitors the Movie

Toolbox’s progress on long operations, and you can create a cover function that allows

your application to perform custom display processing.

See “Application-Defined Functions,” which begins on page 2-354, for comprehensive

details on these two types of functions.

C H A P T E R 2

Movie Toolbox

2-72 Using the Movie Toolbox

Listing 2-14 shows two sample cover functions. Whenever a movie covers a portion of a

window, the MyCoverProc function removes the covered region from the window’s

clipping region. When a movie uncovers a screen region, the MyUncoverProc function

invalidates the region and adds it to the window’s clipping region. By invalidating the

region, this function causes the application to receive an update event, informing the

application to redraw its window. The InitCoverProcs function initializes the

window’s clipping region and installs these cover functions.

Listing 2-14 Two sample movie cover functions

pascal OSErr MyCoverProc (Movie aMovie, RgnHandle changedRgn,

long refcon)

{

CGrafPtr mPort;

GDHandle mGD;

GetMovieGWorld (aMovie, &mPort, &mGD);

DiffRgn (mPort->clipRgn, changedRgn, mPort->clipRgn);

return noErr;

}

pascal OSErr MyUnCoverProc (Movie aMovie, RgnHandle changedRgn,

 long refcon)

{

CGrafPtr mPort, curPort;

GDHandle mGD, curGD;

GetMovieGWorld (aMovie, &mPort, &mGD);

GetGWorld (&curPort, &curGD);

SetGWorld (mPort, mGD);

InvalRgn (changedRgn);

UnionRgn (mPort->clipRgn, changedRgn, mPort->clipRgn);

SetGWorld (curPort, curGD);

return noErr;

}

void InitCoverProcs (WindowPtr aWindow, Movie aMovie)

{

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-73

RgnHandle displayBounds;

GrafPtr curPort;

displayBounds = GetMovieDisplayBoundsRgn (aMovie);

if (displayBounds == nil) return;

GetPort (&curPort);

SetPort (aWindow);

ClipRect (&aWindow->portRect);

DiffRgn (aWindow->clipRgn, displayBounds, aWindow->clipRgn);

DisposeRgn(displayBounds);

SetPort (curPort);

SetMovieCoverProcs (aMovie, &MyUnCoverProc, &MyCoverProc, 0);

}

Working With Movie Spatial Characteristics
The following section provides an example of how to create a track matte.

Listing 2-15 provides an example of how to create a track matte. The

CreateTrackMatte function adds an uninitialized, 8-bit-deep, grayscale matte to a

track. The UpdateTrackMatte function draws a gray ramp rectangle around the edge

of the matte and fills the center of the matte with black. (A ramp rectangle shades

gradually from light to dark in smooth increments.)

Listing 2-15 Creating a track matte

void CreateTrackMatte (Track theTrack)

{

QDErr err;

GWorldPtr aGW;

Rect trackBox;

Fixed trackHeight;

Fixed trackWidth;

CTabHandle grayCTab;

GetTrackDimensions (theTrack, &trackWidth, &trackHeight);

SetRect (&trackBox, 0, 0, FixRound (trackWidth),

 FixRound (trackHeight));

C H A P T E R 2

Movie Toolbox

2-74 Using the Movie Toolbox

grayCTab = GetCTable(40); /* 8 bit + 32 = 8 bit gray */

err = NewGWorld (&aGW, 8, &trackBox, grayCTab,

 (GDHandle) nil, 0);

DisposeCTable (grayCTab);

if (!err && (aGW != nil))

{

SetTrackMatte (theTrack, aGW->portPixMap);

DisposeGWorld (aGW);

}

}

void UpdateTrackMatte (Track theTrack)

{

OSErr err;

PixMapHandle trackMatte;

PixMapHandle savePortPix;

Movie theMovie;

GWorldPtr tempGW;

CGrafPtr savePort;

GDHandle saveGDevice;

Rect matteBox;

short i;

theMovie = GetTrackMovie (theTrack);

trackMatte = GetTrackMatte (theTrack);

if (trackMatte == nil)

{

/* track doesn't have a matte, so give it one */

CreateTrackMatte (theTrack);

trackMatte = GetTrackMatte (theTrack);

if (trackMatte == nil)

return;

}

C H A P T E R 2

Movie Toolbox

Using the Movie Toolbox 2-75

GetGWorld (&savePort, &saveGDevice);

matteBox = (**trackMatte).bounds;

err = NewGWorld(&tempGW,

(**trackMatte).pixelSize, &matteBox,

(**trackMatte).pmTable, (GDHandle) nil, 0);

if (err || (tempGW == nil)) return;

SetGWorld (tempGW, nil);

savePortPix = tempGW->portPixMap;

LockPixels (trackMatte);

SetPortPix (trackMatte);

/* draw a gray ramp rectangle around the edge of the matte */

for (i = 0; i < 35; i++)

{

RGBColor aColor;

long tempLong;

tempLong = 65536 - ((65536 / 35) * (long)i);

aColor.red = aColor.green = aColor.blue = tempLong;

RGBForeColor(&aColor);

FrameRect (&matteBox);

InsetRect (&matteBox, 1, 1);

}

/* fill the center of the matte with black */

ForeColor (blackColor);

PaintRect (&matteBox);

SetPortPix (savePortPix);

SetGWorld (savePort, saveGDevice);

DisposeGWorld (tempGW);

UnlockPixels (trackMatte);

SetTrackMatte (theTrack, trackMatte);

DisposeMatte (trackMatte);

}

2-76 Movie Toolbox Reference

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference

This section describes all the Movie Toolbox data types and functions. The Movie

Toolbox provides a rich and varied set of functions that allow your application to work

with QuickTime movies. This discussion has been divided into the following sections:

■ “Data Types” identifies the data types used by your application when interacting with
the Movie Toolbox

■ “Functions for Getting and Playing Movies” describes the functions that applications
can use to create, get, and play movies

■ “Functions That Modify Movie Properties” describes functions that allow you to
change the display, time, and sound characteristics of a movie

■ “Functions for Editing Movies” discusses the functions that you can use to edit the
contents of movies

■ “Media Functions” discusses the functions that allow you to communicate with media
handlers

■ “Functions for Creating File Previews” describes the functions provided by the Movie
Toolbox that allow you to create file previews

■ “Functions for Displaying File Previews” describes the Movie Toolbox functions that
let you display file previews

■ “Time Base Functions” discusses the various Movie Toolbox functions that work
with time bases

■ “Matrix Functions” describes the Movie Toolbox functions that allow you to
manipulate transformation matrices

■ “Application-Defined Functions” describes the functions your application can provide
when interacting with the Movie Toolbox

If you are developing a QuickTime-aware application that plays existing movies, you

should read “Functions for Getting and Playing Movies,” which begins on page 2-81.

If you are developing an application that allows the user to create and edit movies, you

should also read “Functions for Editing Movies,” which begins on page 2-242. More

advanced display and editing applications may use some of the functions described in

“Functions That Modify Movie Properties,” which begins on page 2-157.

Data Types

Most Movie Toolbox data structures are private data structures. Your application never

modifies the contents of these structures directly. Rather, the Movie Toolbox provides a

number of functions that allow you to work with these data structures.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-77

Movie Identifiers

You identify a data structure to the Movie Toolbox by means of a data type that is

supplied by the Movie Toolbox. The following data types are currently defined:

Media Specifies the media for an operation. Your application obtains a media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

Movie Specifies the movie for an operation. Your application obtains a movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

MovieEditState
Specifies the movie edit state for an operation. Your application obtains a
movie edit state identifier when you create the edit state by calling the
NewMovieEditState function (described on page 2-255).

QTCallBack
Specifies the callback for an operation. You obtain a callback identifier
from the NewCallBack function (described on page 2-336).

TimeBase Specifies the time base for an operation. Your application obtains a time
base identifier from the NewTimeBase or GetMovieTimeBase functions
(described on page 2-316 and page 2-190, respectively).

Track Specifies the track for an operation. Your application obtains a track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

TrackEditState
Specifies the track edit state for an operation. Your application obtains a
track edit state identifier when you create the edit state by calling the
NewTrackEditState function (described on page 2-269).

UserData Specifies the user data list for an operation. You obtain a user data list
identifier by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData functions (described on page 2-231, page 2-232, and
page 2-233, respectively).

The Time Structure

The Movie Toolbox provides a number of functions that allow you to work with time

specifications. These functions are described in “Time Base Functions” beginning on

page 2-315. Many of these functions require that you place a time specification in a data

structure called a time structure. The time structure allows you to fully describe a time

specification. The TimeRecord data type defines the format of a time structure.

struct TimeRecord

{

CompTimeValue value; /* time value (duration or absolute) */

TimeScale scale; /* units per second */

C H A P T E R 2

Movie Toolbox

2-78 Movie Toolbox Reference

TimeBase base; /* reference to the time base */

};

typedef struct TimeRecord TimeRecord;

Field descriptions

value Contains the time value. The time value defines either a duration or
an absolute time by specifying the corresponding number of units
of time. For durations, this is the number of time units in the period.
For an absolute time, this is the number of time units since the
beginning of the time coordinate system. The unit for this value is
defined by the scale field.

The time value is expressed as a CompTimeValue data type, which
is a 64-bit integer quantity. This 64-bit quantity consists of two
32-bit integers, and it is defined by the Int64 data type, which is
described next in this section.

scale Contains the time scale. This field specifies the number of units of
time that pass each second. If you specify a value of 0, the time base
uses its natural time scale.

base Contains a reference to the time base. You obtain a time base by
calling the Movie Toolbox’s GetMovieTimeBase or NewTimeBase
functions (described on page 2-190 and page 2-316, respectively).

If the time structure defines a duration, set this field to nil.
Otherwise, this field must refer to a valid time base.

You specify the time value in a time structure in a 64-bit integer value as follows:

typedef Int64 CompTimeValue;

The Movie Toolbox uses this format so that extremely large time values can be

represented. The Int64 data type defines the format of these signed 64-bit integers.

struct Int64

{

long hi; /* high-order 32 bits-value field in time structure */

long lo; /* low-order 32 bits-value field in time structure */

};

typedef struct Int64 Int64;

Field descriptions

hi Contains the high-order 32 bits of the value. The high-order bit
represents the sign of the 64-bit integer.

lo Contains the low-order 32 bits of the value.

The Fixed-Point and Fixed-Rectangle Structures

The Movie Toolbox matrix functions provide two mechanisms for specifying points and

rectangles. Some of the functions work with standard QuickDraw points and rectangles,

which use integer values to identify coordinates. Others, such as the

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-79

TransformFixedRect function (described on page 2-349), work with points and

rectangles whose coordinates are expressed as fixed-point numbers. By using fixed-point

numbers in these points and rectangles, the Movie Toolbox can support a greater degree

of precision when defining graphic objects.

The FixedPoint data type defines a fixed point. The FixedRect data type defines a

fixed rectangle. Note that both of these structures define the x coordinate before the y

coordinate. This is different from the standard QuickDraw structures.

struct FixedPoint

{

Fixed x; /* point's x coordinate as fixed-point number */

Fixed y; /* point's y coordinate as fixed-point number */

};

typedef struct FixedPoint FixedPoint;

Field descriptions

x Defines the point’s x coordinate as a fixed-point number.

y Defines the point’s y coordinate as a fixed-point number.

struct FixedRect

{

Fixed left; /* x coordinate of upper-left corner */

Fixed top; /* y coordinate of upper-left corner */

Fixed right; /* x coordinate of lower-right corner */

Fixed bottom; /* y coordinate of lower-right corner */

};

typedef struct FixedRect FixedRect;

Field descriptions

left Defines the x coordinate of the upper-left corner of the rectangle as
a fixed-point number.

top Defines the y coordinate of the upper-left corner of the rectangle as
a fixed-point number.

right Defines the x coordinate of the lower-right corner of the rectangle as
a fixed-point number.

bottom Defines the y coordinate of the lower-right corner of the rectangle as
a fixed-point number.

The Sound Description Structure

A sound description structure contains information that defines the characteristics of one

or more sound samples. Data in the sound description structure indicates the type of

compression that was used, the sample size, the rate at which samples were obtained,

and so on. Sound media handlers use the information in the sound description structure

when they process the sound samples.

C H A P T E R 2

Movie Toolbox

2-80 Movie Toolbox Reference

See the chapter “Image Compression Manager” for a description of the image

description structure, which contains information that defines the characteristics of an

image.

The SoundDescription data type defines the layout of a sound description structure.

See “Media Functions,” which begins on page 2-281, for more information about sound

media handlers.

struct SoundDescription

{

long descSize; /* number of bytes in this structure */

long dataFormat; /* format of the sound data */

long resvd1; /* reserved--set to 0 */

short resvd2; /* reserved--set to 0 */

short dataRefIndex; /* reserved--set to 1 */

short version; /* reserved--set to 0 */

short revlevel; /* reserved--set to 0 */

long vendor; /* reserved--set to 0 */

short numChannels; /* number of channels used by sample */

short sampleSize; /* number of bits in each sample */

short compressionID; /* reserved--set to 0 */

short packetSize; /* reserved--set to 0 */

Fixed sampleRate; /* rate at which samples were obtained */

};

Field descriptions

descSize Defines the total size, in bytes, of this sound description structure.

dataFormat Describes the format of the sound data. Possible values include:

Some older movie files sometimes have a zero value in this field.
You should assume that this is the same as the 'raw ' value.

resvd1 Reserved for Apple. Set this field to 0 in any sound description
structures you create.

resvd2 Reserved for Apple. Set this field to 0 in any sound description
structures you create.

'raw ' Sound samples are stored uncompressed, in
offset-binary format (that is, sample data values range
from 0 to 255).

'twos' Sound samples are stored uncompressed, in
twos-complement format (that is, sample data values
range from –128 to 127). The Sound Manager uses this
format when it creates sound files in Audio Interchange
File Format (AIFF).

'MAC3' Sound samples have been compressed by the Sound
Manager at a ratio of 3:1.

'MAC6' Sound samples have been compressed by the Sound
Manager at a ratio of 6:1.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-81

dataRefIndex Reserved for Apple. Set this field to 0 in any sound description
structures you create.

version Reserved for Apple. Set this field to 0 in any sound description
structures you create.

revLevel Reserved for Apple. Set this field to 0 in any sound description
structures you create.

vendor Reserved for Apple. Set this field to 0 in any sound description
structures you create.

numChannels Indicates the number of sound channels used by the sound sample.
Set this field to 1 for monaural sounds; set it to 2 for stereo sounds.

sampleSize Specifies the number of bits in each sound sample. Set this field to 8
for 8-bit sound; set it to 16 for 16-bit sound.

compressionID Reserved for Apple. Set this field to 0 in any sound description
structures you create.

packetSize Reserved for Apple. Set this field to 0 in any sound description
structures you create.

sampleRate Indicates the rate at which the sound samples were obtained. Sound
media handlers use this value to influence the natural playback
speed of the sound described by this sound description structure.
This field contains an unsigned, fixed-point number that specifies
the number of samples collected per second. Some common values
include:

Functions for Getting and Playing Movies

The Movie Toolbox provides a number of functions that allow applications to get and

play movies. There are also a number of functions that allow you to create new movies.

This section describes those functions and has been divided into the following topics:

■ “Initializing the Movie Toolbox” discusses the functions that your application must
use to gain access to the Movie Toolbox

■ “Error Functions” discusses the Movie Toolbox functions that allow you to work
with error codes returned by Movie Toolbox functions

■ “Movie Functions” describes functions that your application can use to create and
access movie resources and movie files

0x15BBA2E8 Specifies a sample rate of 5563.6363 samples per
second.

0x1CFA2E8B Specifies a sample rate of 7418.1818 samples per
second.

0x2B7745D1 Specifies a sample rate of 11127.2727 samples per
second.

0x56EE8BA3 Specifies a sample rate of 22254.5454 samples per
second.

0xAC440000 Specifies a sample rate of 44100.0000 samples per
second.

C H A P T E R 2

Movie Toolbox

2-82 Movie Toolbox Reference

■ “Saving Movies” describes the Movie Toolbox functions that allow you to save movies

■ “Controlling Movie Playback” describes the functions that you can use to control
movie playback

■ “Movie Posters and Movie Previews” discusses the functions that allow applications
to work with movie posters and movie previews

■ “Movies and Your Event Loop” discusses the Movie Toolbox functions that your
application must call from its main event loop

■ “Preferred Movie Settings” describes functions your application can use to set
the preferred playback settings of a movie

■ “Enhancing Movie Playback Performance” discusses several techniques for
improving movie playback performance

■ “Disabling Movies and Tracks” describes the functions that allow your application
to disable movies and tracks

■ “Generating Pictures From Movies” discusses the Movie Toolbox functions that allow
your application to create pictures from movie data

■ “Creating Tracks and Media Structures” describes the functions your application must
use to create new data for a movie

■ “Working With Progress and Cover Functions” describes the functions that allow you
to specify a custom function that is called during movie playback

Initializing the Movie Toolbox

The Movie Toolbox maintains state information for every application that is currently

using the toolbox. The toolbox uses this information to keep track of the application’s

movies. Before calling any other Movie Toolbox functions, your application must

establish this working environment by calling the EnterMovies function. When your

application is finished with the Movie Toolbox, you can release this storage by calling the

ExitMovies function.

EnterMovies

Before you call any Movie Toolbox functions, you must initialize the toolbox. Use the

EnterMovies function to initialize the Movie Toolbox. When your application calls this

function, the Movie Toolbox creates its private storage area for your application.

You should initialize any other Macintosh managers your application uses before calling

the EnterMovies function.

pascal OSErr EnterMovies (void);

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-83

DESCRIPTION

If the EnterMovies function fails, it returns an error value—be sure to check the value

returned by this function before using any other facilities of the Movie Toolbox.

In addition, you should use the Gestalt Manager to determine whether the Movie

Toolbox is installed (see “Determining Whether the Movie Toolbox Is Installed”

beginning on page 2-33 for more information).

Your application may call the EnterMovies function multiple times for a given A5

world, as long as you balance each invocation of EnterMovies with an invocation of

ExitMovies.

SPECIAL CONSIDERATIONS

The Movie Toolbox identifies an application by the value in the A5 register. If you are

writing a stand-alone code resource, you must ensure that A5 is the same whenever you

call any Movie Toolbox functions.

ERROR CODES

Memory Manager errors

SEE ALSO

Listing 2-3 on page 2-39 provides an example of the EnterMovies function.

ExitMovies

QuickTime calls the ExitMovies function automatically when your application quits—

you only need to call this function if you finish with the Movie Toolbox long before your

application is ready to quit. As a general rule, your application should not use this

function.

pascal void ExitMovies (void);

DESCRIPTION

When you call the ExitMovies function, the Movie Toolbox releases the private storage

(which may be significant) that was allocated when you called the EnterMovies

function, which is described in the previous section.

C H A P T E R 2

Movie Toolbox

2-84 Movie Toolbox Reference

SPECIAL CONSIDERATIONS

Before calling the ExitMovies function, be sure that you have closed your connections

to any components that use the Movie Toolbox (such as movie controllers, sequence

grabbers, and so on).

ERROR CODES

None

Error Functions

The Movie Toolbox provides a number of functions that allow your application to

examine result codes generated by toolbox functions. In addition, the Movie Toolbox

allows your application to provide a function that performs custom error notification.

This section discusses these error functions.

IMPORTANT

The Movie Toolbox introduces an additional error-reporting mechanism.
In addition to returning errors as function results, the Movie Toolbox
functions return error indications to calling applications by setting one
of two values that are private to the Movie Toolbox: a current error value
or a sticky error value. Your application can retrieve these values by
calling the GetMoviesError or GetMoviesStickyError functions
described in this section. To let you know whether there is an error
indication, the heading “ERROR CODES” may appear with the entry
“None” in function descriptions throughout this chapter. ▲

The Movie Toolbox maintains two error values for your application: the current error

and the sticky error. The current error value contains the result code from the last Movie

Toolbox function. The toolbox updates the current error value each time your application

calls a Movie Toolbox function. Your application may call the GetMoviesError

function to obtain the current error value after calling any Movie Toolbox function.

Many Movie Toolbox functions do not return an error as a function result—you must use

the GetMoviesError function to obtain the result code. Even if a function explicitly

returns an error as a function result, that result is also available using the

GetMoviesError function.

The Movie Toolbox saves a result code in the sticky error value. Your application clears

the sticky error value by calling the ClearMoviesStickyError function. The Movie

Toolbox then places the first nonzero result code from any toolbox function used by your

application into the sticky error value. The Movie Toolbox does not replace the value

in the sticky error value until your application clears the value again. Your application

uses the GetMoviesStickyError function to obtain the result code stored in the sticky

error value. In this manner, you can preserve and retrieve important result code

information.

Your application uses the SetMoviesErrorProc function to designate an error

function. The Movie Toolbox calls this error function each time there is an error.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-85

GetMoviesError

The GetMoviesError function returns the contents of the current error value and

resets the current error value to 0.

pascal OSErr GetMoviesError (void);

DESCRIPTION

The current error value contains the result code from the previous Movie Toolbox

function. Most Movie Toolbox functions do not return an error as a function result—you

must use the GetMoviesError function to obtain the result code. Even if a function

explicitly returns an error as a function result, that result is also available using the

GetMoviesError function.

ERROR CODES

Any Movie Toolbox result code (see “Summary of the Movie Toolbox” at the end of this

chapter)

GetMoviesStickyError

The GetMoviesStickyError function returns the contents of the sticky error

value. The sticky error value contains the first nonzero result code from any Movie

Toolbox function that you called after having cleared the sticky error with the

ClearMoviesStickyError function.

pascal OSErr GetMoviesStickyError (void);

DESCRIPTION

The Movie Toolbox does not clear the sticky error value when you call the

GetMoviesStickyError function. Your application clears the sticky error value by

calling the ClearMoviesStickyError function, which is described in the next section.

ERROR CODES

Any Movie Toolbox result code (see “Summary of the Movie Toolbox” at the end of this

chapter)

C H A P T E R 2

Movie Toolbox

2-86 Movie Toolbox Reference

ClearMoviesStickyError

The ClearMoviesStickyError function clears the sticky error value.

pascal void ClearMoviesStickyError (void);

DESCRIPTION

The Movie Toolbox does not place a result code into the sticky error value until the field

has been cleared. Your application should clear the sticky error value to ensure that it

does not contain a stale result code.

ERROR CODES

None

SetMoviesErrorProc

The Movie Toolbox allows applications to perform custom error notification. Your

application must identify its custom error-notification function to the Movie Toolbox.

The SetMoviesErrorProc function allows you to identify your application’s

error-notification function. Error-notification functions can be especially useful when

you are debugging your program.

pascal void SetMoviesErrorProc (ErrorProcPtr errProc,

long refcon);

errProcPtr
Points to your error-notification function, MyErrProc.

The entry point to your error-notification function must take the
following form:

pascal void MyErrProc (OSErr theErr, long refCon);

See “Application-Defined Functions” beginning on page 2-354 for details
on the parameters.

refcon Contains a reference constant value. The Movie Toolbox passes this
reference constant to your error-notification function each time it calls
your function.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-87

DESCRIPTION

Once you have identified an error-notification function, the Movie Toolbox calls your

function each time the current error value is to be set to a nonzero value. The Movie

Toolbox manages the sticky error value. The Movie Toolbox calls your error-notification

function only in response to errors generated by the Movie Toolbox.

SPECIAL CONSIDERATIONS

The SetMoviesErrorProc function is just for debugging.

ERROR CODES

None

Movie Functions

The Movie Toolbox provides a set of functions that allow your application to create,

access, and convert movie files. Movie files contain data for QuickTime movies. You can

also use the Movie Toolbox to load movies into memory, in preparation for working with

the movie. These functions differ based on where the movie is stored.

Before your application can play a movie, you must first open the file that contains the

movie. Your application can use the OpenMovieFile function (described on page 2-98)

to open a movie file. Once you are done with the file, your application releases the file by

calling the CloseMovieFile function. Your application can create and open a new

movie file by calling the CreateMovieFile function. Your application can delete

a movie file by calling the DeleteMovieFile function.

You can use the NewMovie function to create a new empty movie. If your application is

loading a movie from an existing file, use either the NewMovieFromFile function or the

NewMovieFromDataFork function. The NewMovieFromFile function works with the

file reference number you obtain from the OpenMovieFile function. The

NewMovieFromDataFork function works with movies stored in your document file’s

data fork. Your application can then use the functions described in “Saving Movies,”

which begins on page 2-100, to load and store movies.

You can use the ConvertFileToMovieFile function to specify an input file and

convert it to a movie file. The ConvertMovieToFile takes a specified movie (or a

single track within that movie) and converts it into an output file.

Once you are finished working with a movie, you should release the resources used by

the movie by calling the DisposeMovie function.

C H A P T E R 2

Movie Toolbox

2-88 Movie Toolbox Reference

NewMovieFromFile

The NewMovieFromFile function creates a movie in memory from a resource that is

stored in a movie file. Your application specifies the movie file with the file reference

number that was returned by the OpenMovieFile function, which is described on

page 2-98. Your application can use the NewMovieFromHandle function, described in

the next section, to load a movie from a handle. Once you have opened a movie file and

loaded a movie, your application can proceed to work with the movie.

pascal OSErr NewMovieFromFile (Movie *theMovie, short resRefNum,

short *resId,

StringPtr resName,

short newMovieFlags,

Boolean *dataRefWasChanged);

theMovie Contains a pointer to a field that is to receive the new movie’s identifier. If
the function cannot load the movie, the returned identifier is set to nil.

resRefNum Identifies the movie file from which the movie is to be loaded. Your
application obtains this value from the OpenMovieFile function,
described on page 2-98.

resId Contains a pointer to a field that specifies the resource containing the
movie data that is to be loaded. If the field referred to by the resId
parameter is set to 0, the Movie Toolbox loads the first movie resource it
finds in the specified file. The toolbox then returns the movie’s resource
ID number in the field referred to by the resId parameter. The following
enumerated constant is available:

movieInDataForkResID
Forces the movie to come out of the data fork. If the
resource was stored in the file’s data fork, the Movie
Toolbox sets the returned value to
movieInDataForkResID (–1). In this case, you cannot
add a movie resource to the file unless you create a
resource fork in the movie file.

If the resId parameter is set to nil, the Movie Toolbox loads the first
movie resource it finds in the specified file and does not return that
resource’s ID number.

resName Points to a character string that is to receive the name of the movie
resource that is loaded. If you set the resName parameter to nil, the
toolbox does not return the resource name.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-89

newMovieFlags
Controls the operation of the NewMovieFromFile function. The
following flags are available (be sure to set unused flags to 0):

newMovieActive
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. You can make a movie
active or inactive by calling the SetMovieActive
function, which is described on page 2-145.

newMovieDontResolveDataRefs
Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on multiple
volumes. If you set this flag to 1, the Movie Toolbox only
looks in the specified file.

If the Movie Toolbox cannot completely resolve all the data
references, it still returns a valid movie identifier. In this
case, the Movie Toolbox also sets the current error value to
couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs
Controls whether the Movie Toolbox asks the user to locate
files. If you set this flag to 0, the Movie Toolbox asks the
user to locate files that it cannot find. If the Movie Toolbox
cannot locate a file even with the user’s help, the function
returns a valid movie identifier and sets the current error
value to couldNotResolveDataRef.

newMovieDontAutoAlternate
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

dataRefWasChanged
Contains a pointer to a Boolean value. The Movie Toolbox sets the
Boolean to indicate whether it had to change any data references while
resolving them. The toolbox sets the Boolean value to true if any
references were changed. Use the UpdateMovieResource function
(described on page 2-103) to preserve these changes.

Set the dataRefWasChanged parameter to nil if you do not want to
receive this information. See “Creating Tracks and Media Structures”
beginning on page 2-150 for more information about data references.

C H A P T E R 2

Movie Toolbox

2-90 Movie Toolbox Reference

DESCRIPTION

The Movie Toolbox sets many movie characteristics to default values. If you want to

change these defaults, your application must call other Movie Toolbox functions. For

example, the Movie Toolbox sets the movie’s graphics world to the one that is active

when you call NewMovieFromFile. To change the graphics world for the new movie,

your application should use the SetMovieGWorld function, which is described on

page 2-159.

SPECIAL CONSIDERATIONS

The Movie Toolbox automatically sets the movie’s graphics world based upon the

current graphics port. Be sure that your application’s graphics world is valid before you

call this function.

ERROR CODES

File Manager errors

Memory Manager errors

Resource Manager errors

NewMovieFromHandle

The NewMovieFromHandle function creates a movie in memory from a movie resource

or a handle you obtained from the PutMovieIntoHandle function.

pascal OSErr NewMovieFromHandle (Movie *theMovie, Handle h,

short newMovieFlags,

Boolean *dataRefWasChanged);

theMovie Contains a pointer to a field that is to receive the new movie’s identifier. If
the function cannot load the movie, the returned identifier is set to nil.

h Contains a handle to the movie resource from which the movie is to be
loaded.

newMovieFlags
Controls the operation of the NewMovieFromHandle function. The
following flags are available (be sure to set unused flags to 0):

newMovieActive
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. You can make a movie
active or inactive by calling the SetMovieActive
function, which is described on page 2-145.

badImageDescription –2001 Problem with an image description
badPublicMovieAtom –2002 Movie file corrupted
cantFindHandler –2003 Cannot locate a handler
cantOpenHandler –2004 Cannot open a handler

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-91

newMovieDontResolveDataRefs
Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only
looks in the specified file.

If the Movie Toolbox cannot completely resolve all the data
references, it still returns a valid movie identifier. In this
case, the Movie Toolbox also sets the current error value to
couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs
Controls whether the Movie Toolbox asks the user to locate
files. If you set this flag to 0, the Movie Toolbox asks the
user to locate files that it cannot find on available volumes.
If the Movie Toolbox cannot locate a file even with the
user’s help, the function returns a valid movie identifier
and sets the current error value to
couldNotResolveDataRef.

newMovieDontAutoAlternate
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

dataRefWasChanged
Contains a pointer to a Boolean value. The Movie Toolbox sets the
Boolean value to indicate whether it had to change any data references in
order to resolve them. The toolbox sets the Boolean value to true if any
references were changed. Set the dataRefWasChanged parameter to
nil if you do not want to receive this information.

DESCRIPTION

The NewMovieFromHandle function returns the new movie’s identifier. If the function

cannot create the movie, the function sets the returned identifier to nil.

Your application can use the NewMovieFromFile function, described in the previous

section, to load a movie from a movie file that was opened with the

OpenMovieFile function. If you are loading a movie from a resource, use the

NewMovieFromFile function instead. The Movie Toolbox uses information about the

resource file when it resolves data references in the movie.

The Movie Toolbox sets many movie characteristics to default values. If you want to

change these defaults, your application must call other Movie Toolbox functions. For

example, the Movie Toolbox sets the movie’s graphics world to the one that is active

when you call NewMovieFromHandle. To change the graphics world for the new

movie, your application should use the SetMovieGWorld function, which is described

on page 2-159.

C H A P T E R 2

Movie Toolbox

2-92 Movie Toolbox Reference

SPECIAL CONSIDERATIONS

The Movie Toolbox automatically sets the movie’s graphics world based upon the

current graphics port. Be sure that your application’s graphics world is valid before you

call this function.

ERROR CODES

File Manager errors

Memory Manager errors

Resource Manager errors

NewMovie

The NewMovie function creates a new movie in memory. The Movie Toolbox

initializes the data structures for the new movie, which contains no tracks. Your

application assigns the data to the movie by calling the functions that are described later

in “Creating Tracks and Media Structures” beginning on page 2-150.

pascal Movie NewMovie (long newMovieFlags);

newMovieFlags
Specifies control information for the new movie. The following flags are
available (be sure to set unused flags to 0):

newMovieActive
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. A movie that does not have
any tracks can still be active. When the Movie Toolbox tries
to play the movie, no images are displayed, because there
is no movie data. You can make a movie active or inactive
by calling the SetMovieActive function, which is
described on page 2-145.

newMovieDontAutoAlternate
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

DESCRIPTION

The NewMovie function returns the identifier for the new movie. If the function fails, the

returned identifier is set to nil. Use the GetMoviesError function (described on

page 2-85) to obtain the result code.

badImageDescription –2001 Problem with an image description
badPublicMovieAtom –2002 Movie file corrupted
cantFindHandler –2003 Cannot locate a handler
cantOpenHandler –2004 Cannot open a handler

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-93

The Movie Toolbox sets many movie characteristics to default values. If you want to

change these defaults, your application must call other Movie Toolbox functions. For

example, the Movie Toolbox sets the movie’s graphics world to the one that is active

when you call NewMovie. To change the graphics world for the new movie, your

application should use the SetMovieGWorld function, which is described on

page 2-159.

The default QuickTime movie time scale is 600 units per second; however, this number

may change in the future. The default time scale was chosen because it is convenient for

working with common video frame rates of 30, 25, 24, 15, 12, 10, and 8.

You should use the NewMovie function only if you have not created a new movie and

movie file by calling the CreateMovieFile function.

▲ W A R N I N G

The Movie Toolbox automatically sets the movie’s graphics world based
upon the current graphics port. Be sure that your application’s graphics
port is valid before you call this function. ▲

ERROR CODES

Memory Manager errors

ConvertFileToMovieFile

The ConvertFileToMovieFile takes a specified file and converts it to a movie file.

pascal OSErr ConvertFileToMovieFile (const FSSpec *inputFile,

 const FSSpec *outputFile,

 OSType creator,

 ScriptCode scriptTag,

 short *resID, long flags,

 ComponentInstance userComp,

 MovieProgressProcPtr proc,

 long refCon);

inputFile Contains a pointer to the file system specification for the file to be
converted into a movie file.

outputFile
Contains a pointer to the file specification for the destination movie file.

creator Specifies the creator value for the file if it is a new one.

movieToolboxUninitialized –2020 You haven’t initialized the Movie
Toolbox

C H A P T E R 2

Movie Toolbox

2-94 Movie Toolbox Reference

scriptTag Specifies the script in which the movie file should be converted. Use the
Script Manager constant smSystemScript to use the system script; use
the smCurrentScript constant to use the current script. See Inside
Macintosh: Text for more information about scripts and script tags.

resID Contains a pointer to a field that is to receive the resource ID of the file to
be converted. If you don’t want to receive the resource ID, set this
parameter to nil.

flags Controls movie file conversion flags. The following value is valid:

createMovieFileDeleteCurFile
Indicates whether to delete an existing file. If you set this
flag to 1, the Movie Toolbox deletes the file (if it exists)
before converting the new movie file. If you set this flag
to 0 and the file specified by the fileSpec parameter
already exists, the Movie Toolbox uses the existing file. In
this case, the toolbox ensures that the file has both a data
and a resource fork.

userComp Indicates a component or component instance of the movie export
component you want to perform the conversion. Otherwise, set this
parameter to 0 for the Movie Toolbox to choose the appropriate
component. If you pass in a component instance, it will be used by
ConvertFileToMovieFile. This allows you to communicate directly
with the component before using this function to establish any conversion
parameters. If you pass in a component ID, an instance is created and
closed within this function. For details on movie export components, see
Inside Macintosh: QuickTime Components.

proc Points to your progress function. To remove a movie’s progress function,
set this parameter to nil. Set this parameter to –1 for the Movie Toolbox
to provide a default progress function. See “Progress Functions,” which
begins on page 2-354, for the interface your progress function must
support.

refCon Specifies a reference constant. The Movie Toolbox passes this value to
your progress function.

DESCRIPTION

Because some conversions may take a nontrivial amount of time, you can pass a

standard movie progress function in the proc and refCon parameters.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-95

ConvertMovieToFile

The ConvertMovieToFile function takes a specified movie (or a single track within

that movie) and converts it into a specified file and type.

pascal OSErr ConvertMovieToFile(Movie theMovie, Track onlyTrack,

 const FSSpec *outputFile,

 OSType fileType, OSType creator,

 ScriptCode scriptTag,

 short *resID, long flags,

 ComponentInstance userComp);

theMovie Specifies the source movie for this conversion operation. Your application
obtains this movie identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle (described on
page 2-92, page 2-88, and page 2-90, respectively).

onlyTrack Specifies the track within the source movie for this conversion operation.
To specify all tracks, set the value of this parameter to 0.

outputFile
Contains a pointer to the file specification for the destination file.

fileType Specifies the data type of the destination file for the movie specified in the
parameter theMovie.

creator Specifies the creator value for the output file if it is a new one.

scriptTag Specifies the script into which the movie should be converted if the
output file is a new one. Use the Script Manager constant
smSystemScript to use the system script; use the smCurrentScript
constant to use the current script. See Inside Macintosh: Text for more
information about scripts and script tags.

resID Contains a pointer to a field that is to receive the resource ID of the open
movie. If you don’t want to receive this information, set the resID
parameter to nil.

flags Set this parameter to 0.

userComp If you want a particular movie export component to perform the
conversion, you may pass the component or an instance of that
component in this parameter. Otherwise, set it to 0 to allow the Movie
Toolbox to use the appropriate component. If you pass in a component
instance, it is used by ConvertMovieToFile. This allows you to
communicate directly with the component before making this call to
establish any conversion parameters. If you pass in a component ID, an
instance is created and closed within this call.

C H A P T E R 2

Movie Toolbox

2-96 Movie Toolbox Reference

DisposeMovie

The DisposeMovie function frees any memory being used by a movie, including the

memory used by the movie’s tracks and media structures. Your application should call

this function when it is done working with a movie.

pascal void DisposeMovie (Movie theMovie);

theMovie Identifies the movie to be freed. Your application obtains this
movie identifier from such functions as NewMovie, NewMovieFromFile,
or NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

SPECIAL CONSIDERATIONS

Do not dispose of a movie if it has any special clients—for example, if it has an attached

movie controller component. Only dispose of the movie after any clients are done with it.

ERROR CODES

CreateMovieFile

The CreateMovieFile function creates an open movie file, opens the movie file,

creates an empty movie which references the file, and opens the movie file with write

permission.

pascal OSErr CreateMovieFile (const FSSpec *fileSpec,

OSType creator,

ScriptCode scriptTag,

long createMovieFileFlags,

short *resRefNum,

Movie *newMovie);

fileSpec Contains a pointer to the file system specification for the movie file to be
created.

creator Specifies the creator value for the new file.

scriptTag Specifies the script in which the movie file should be created. Use the
Script Manager constant smSystemScript to use the system script; use
the smCurrentScript constant to use the current script. See Inside
Macintosh: Text for more information about scripts and script tags.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-97

createMovieFileFlags
Controls movie-file creation flags. The following flags are available:

createMovieFileDeleteCurFile
Indicates whether to delete an existing file. If you set this
flag to 1, the Movie Toolbox deletes the file (if it exists)
before creating the new movie file. If you set this flag to 0
and the file specified by the fileSpec parameter already
exists, the Movie Toolbox uses the existing file. In this case,
the toolbox ensures that the file has both a data and a
resource fork.

createMovieFileDontCreateMovie
Controls whether the CreateMovieFile function creates
a new movie in the movie file. If you set this flag to 1, the
Movie Toolbox does not create a movie in the new movie
file. In this case, the function ignores the newMovie
parameter. If you set this flag to 0, the Movie Toolbox
creates a movie and returns the movie identifier in the field
referred to by the newMovie parameter.

createMovieFileDontOpenFile
Controls whether the CreateMovieFile function opens
the new movie file. If you set this flag to 1, the Movie
Toolbox does not open the new movie file. In this case, the
function ignores the resRefNum parameter. If you set this
flag to 0, the Movie Toolbox opens the new movie file and
returns its reference number into the field referred to by the
resRefNum parameter.

newMovieActive
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. A movie that does not have
any tracks can still be active. When the Movie Toolbox tries
to play the movie, no images are displayed, because there
is no movie data. You can make a movie active or inactive
by calling the SetMovieActive function, which is
described on page 2-145.

newMovieDontAutoAlternate
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

resRefNum Contains a pointer to a field that is to receive the file reference number for
the opened movie file. Your application must use this value when calling
other Movie Toolbox functions that work with movie files. If you set this
parameter to nil, the Movie Toolbox creates the movie file but does not
open the file.

C H A P T E R 2

Movie Toolbox

2-98 Movie Toolbox Reference

newMovie Contains a pointer to a field that is to receive the identifier of the new
movie. The CreateMovieFile function returns the identifier of the
new movie. If the function could not create a new movie, it sets this
returned value to nil. If you set this parameter to nil, the Movie
Toolbox does not create a movie.

ERROR CODES

File Manager errors

Memory Manager errors

SEE ALSO

You can delete a movie file by calling the DeleteMovieFile function, which is

described on page 2-100.

Your application can use the functions described in “Creating Tracks and Media

Structures,” which begins on page 2-150, to place movie data into the new movie file.

OpenMovieFile

The OpenMovieFile function opens a specified movie file. Your application identifies

the movie file with a file system specification.

pascal OSErr OpenMovieFile (const FSSpec *fileSpec,

short *resRefNum, char perms);

fileSpec Contains a pointer to the file system specification for the movie file to be
opened.

resRefNum Contains a pointer to a field that is to receive the file reference number for
the opened movie file. Your application must use this value when calling
other Movie Toolbox functions that work with movie files. This reference
number refers to the file fork that contains the movie resource—if the
movie is stored in the data fork of the file, the returned reference number
corresponds to the data fork.

perms Specifies the permission level for the file. If your application is only going
to play the movie that is stored in the file, you can open the file with read
permission. If you plan to add data to the file or change data in the file,
you should open the file with write permission. Supply a valid File
Manager permission value. See Inside Macintosh: Files for valid values.

movieToolboxUninitialized –2020 You haven’t initialized the Movie
Toolbox

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-99

DESCRIPTION

Your application must open a movie file before reading movie data from it or writing

movie data to it. You can open a movie file more than once—be sure to call

CloseMovieFile (described in the next section) once for each time you call

OpenMovieFile.

Note that opening the movie file with write permission does not prevent other

applications from reading data from the movie file.

If the specified file has a resource fork, the OpenMovieFile function opens the resource

fork and returns a file reference number to the resource fork. If the movie file does not

have a resource fork (that is, it is a single-fork movie file—see the chapter “Movie

Resource Formats” in this book for more information), the OpenMovieFile function

opens the data fork instead. In this case, your application cannot use the

AddMovieResource function (described on page 2-102) with the movie file.

ERROR CODES

File Manager errors

Memory Manager errors

CloseMovieFile

The CloseMovieFile function closes an open movie file.

pascal OSErr CloseMovieFile (short resRefNum);

resRefNum Specifies the movie file to close. Your application obtains this reference
number from the OpenMovieFile function, which is described in the
previous section.

DESCRIPTION

Your application should call this function when you are done working with a movie

file. You must call this function once each time you open a movie file. You can still use

the movie. If you are not editing the movie, it is advisable to close it.

ERROR CODES

File Manager errors

movieToolboxUninitialized –2020 You haven’t initialized the Movie
Toolbox

C H A P T E R 2

Movie Toolbox

2-100 Movie Toolbox Reference

DeleteMovieFile

The DeleteMovieFile function deletes a movie file.

pascal OSErr DeleteMovieFile (const FSSpec *fileSpec);

fileSpec Contains a pointer to the file system specification for the movie file to be
deleted.

DESCRIPTION

Do not use the file system to delete movie files. The Movie Toolbox maintains references

between files.

ERROR CODES

File Manager errors

Saving Movies

The Movie Toolbox provides a set of high-level functions for storing movies within files.

These files have a file type of 'MooV' and a resource type of 'moov'. Your application

can gain access to existing movies with either the NewMovieFromFile function or the

NewMovieFromDataFork function (described on page 2-88 and page 2-109,

respectively). Once you have loaded the movie, your application uses the functions that

are described in this section to save any changes you have made to the movie.

You can use the AddMovieResource function to add a new movie resource to a movie

file. Your application can use this function to save a movie that it created using the

functions described in “Functions for Editing Movies” beginning on page 2-242. You can

use the UpdateMovieResource function to replace an existing movie resource in a

movie file. You can remove a movie resource by calling the RemoveMovieResource

function.

The movie resources that your application creates with the AddMovieResource and

UpdateMovieResource functions may contain references to movie data. These

references identify the data that constitute the movie. However, the movie data can be

stored outside of the movie file. If you want to create a movie file that contains all of its

movie data, use the FlattenMovie function. If you want to create a single-fork movie

file, use the FlattenMovieData function.

The PutMovieIntoHandle function places a QuickTime movie into a handle. You can

then convert the movie into specialized data formats.

The HasMovieChanged and ClearMovieChanged functions allow your application to

work with the movie changed flag that is maintained by the Movie Toolbox. You can use

this flag to determine whether a movie has been changed.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-101

The movie changed flag indicates whether you have changed the movie. Such actions as

editing the movie, adding samples to a media, or changing a data reference cause the

flag to indicate that the movie has changed. There are several operations that the movie

changed flag does not reflect, including changing the volume, rate, or time settings for

the movie. These settings change frequently when a movie is played. Your application

must monitor these settings itself.

The Movie Toolbox also supplies functions for storing and retrieving movies that are

stored in the data fork of a file. These functions provide robust data reference resolution

and improve low memory performance. The NewMovieFromDataFork function

enables you to retrieve a movie that is stored anywhere in the data fork of a file. You can

use the PutMovieIntoDataFork function to store an atom version of a specified movie

in the data fork of a file.

HasMovieChanged

The HasMovieChanged function allows your application to determine whether a movie

has changed and needs to be saved.

pascal Boolean HasMovieChanged (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The HasMovieChanged function returns a Boolean value that reflects the contents of the

movie changed flag. The function sets the returned value to true if the movie has been

changed in such a way that it should be saved. Otherwise, the returned value is set to

false.

Your application can clear the movie changed flag, indicating that the movie has not

changed, by calling the ClearMovieChanged function, which is described in the next

section.

ERROR CODES

SEE ALSO

Both the AddMovieResource function (described on page 2-102) and the

UpdateMovieResource function (described on page 2-103) update the movie file and

clear the movie changed flag, indicating that the movie has not been changed.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-102 Movie Toolbox Reference

ClearMovieChanged

The ClearMovieChanged function sets the movie changed flag to indicate that the

movie has not been changed.

pascal void ClearMovieChanged (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

ERROR CODES

SEE ALSO

Your application can read the contents of the movie changed flag by calling the

HasMovieChanged function, which is described in the previous section. Both the

AddMovieResource and UpdateMovieResource functions also clear the movie

changed flag.

AddMovieResource

The AddMovieResource function adds a movie resource to a specified resource file.

Your application identifies the movie to be added to the movie file.

pascal OSErr AddMovieResource (Movie theMovie, short resRefNum,

short *resId,

const StringPtr resName);

theMovie Specifies the movie you wish to add to the movie file. Your application
obtains this movie identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle (described on
page 2-92, page 2-88, and page 2-90, respectively).

resRefNum Identifies the movie file to which the resource is to be added. Your
application obtains this value from the OpenMovieFile function,
described on page 2-98. The movie file specified by this parameter cannot
be a single-fork movie file.

resId Contains a pointer to a field that contains the resource ID number for the
new resource. If the field referred to by the resId parameter is set to 0,
the Movie Toolbox assigns a unique resource ID number to the new
resource. The toolbox then returns the movie’s resource ID number in the
field referred to by the resId parameter. The AddMovieResource

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-103

function assigns resource ID numbers sequentially, starting at 128. If the
resId parameter is set to nil, the Movie Toolbox assigns a unique
resource ID number to the new resource and does not return
that resource’s ID value.

resName Points to a character string that contains the name of the movie resource.
If you set the resName parameter to nil, the toolbox creates an unnamed
resource.

DESCRIPTION

The AddMovieResource function adds the movie to the file, effectively saving any

changes you have made to the movie. This function does not work with single-fork

movie files.

After updating the movie file, AddMovieResource clears the movie changed flag,

indicating that the movie has not been changed.

ERROR CODES

File Manager errors

Memory Manager errors

Resource Manager errors

UpdateMovieResource

The UpdateMovieResource function replaces the contents of a movie resource in a

specified movie file. You specify the movie that is to be placed into the resource.

This function can accommodate single-fork movie files.

pascal OSErr UpdateMovieResource (Movie theMovie, short resRefNum,

short resId,

const StringPtr resName);

theMovie Specifies the movie you wish to place in the movie file. Your application
obtains this movie identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle (described on
page 2-92, page 2-88, and page 2-90, respectively).

resRefNum Identifies the movie file that contains the resource to be changed. Your
application obtains this value from the OpenMovieFile function,
described on page 2-98. If this parameter specifies a single-fork movie file
using the movieInDataForResID(–1) constant, the Movie Toolbox
places the movie resource into the file’s data fork.

resId Specifies the resource to be changed.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-104 Movie Toolbox Reference

resName Points to a new name for the resource. If you do not want to change the
resource’s name, set this parameter to nil.

DESCRIPTION

After updating the movie file, the UpdateMovieResource function clears the movie

changed flag, indicating that the movie has not been changed.

ERROR CODES

File Manager errors

Memory Manager errors

Resource Manager errors

RemoveMovieResource

The RemoveMovieResource function removes a movie resource from a specified

movie file.

pascal OSErr RemoveMovieResource (short resRefNum, short resId);

resRefNum Identifies the movie file that contains the movie resource. Your
application obtains this value from the OpenMovieFile function,
described on page 2-98.

resId Specifies the resource to be removed.

ERROR CODES

File Manager errors

Resource Manager errors

PutMovieIntoHandle

The PutMovieIntoHandle function creates a new movie resource for you. You can use

this handle to store a QuickTime movie in a specialized storage format.

pascal OSErr PutMovieIntoHandle (Movie theMovie,

Handle publicMovie);

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-105

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

publicMovie
Contains the handle that is to receive the new movie resource. The
PutMovieIntoHandle function places the new movie resource into this
handle. The function resizes the handle if necessary.

DESCRIPTION

Note that you cannot use this new movie with other Movie Toolbox functions, except for

the NewMovieFromHandle function. You can use the NewMovieFromHandle function,

described on page 2-90, to load a movie from a handle.

SPECIAL CONSIDERATIONS

Movies saved using PutMovieIntoHandle contain less robust data references than

those created using the AddMovieResource or PutMovieIntoDataFork functions

(described on page 2-102 and page 2-110, respectively).

ERROR CODES

Memory Manager errors

FlattenMovie

The FlattenMovie function creates a new movie file containing a specified movie. This

file also contains all the data for the movie—that is, the Movie Toolbox resolves any data

references and includes the corresponding movie data in the new movie file.

pascal void FlattenMovie (Movie theMovie, long movieFlattenFlags,

const FSSpec *theFile,

OSType creator, ScriptCode scriptTag,

long createMovieFileFlags,

short *resId, const StringPtr resName);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-106 Movie Toolbox Reference

movieFlattenFlags
Controls the process of adding movie data to the new movie file. The
following flags are available (be sure to set unused flags to 0):

flattenAddMovieToDataFork
Causes the movie to be placed in the data fork of the new
movie file, as well as in the resource fork. You may use this
flag to create movie files that are more easily moved to
other computer systems from your Macintosh.

flattenDontInterleaveFlatten
Allows you to disable the Movie Toolbox’s data storage
optimizations. By default, the Movie Toolbox stores movie
data in a format that is optimized for playback. Set this flag
to 1 to disable these optimizations.

flattenActiveTracksOnly
Causes the Movie Toolbox to add only enabled movie
tracks to the new movie file. You can use the
SetTrackEnabled function, described on page 2-147, to
enable and disable movie tracks.

theFile Contains a pointer to the file system specification for the movie file to be
created.

creator Specifies the creator value for the new file.

scriptTag Specifies the script in which the movie file should be created. Set this
parameter to the Script Manager constant smSystemScript to use the
system script; set it to smCurrentScript to use the current script. See
Inside Macintosh: Text for more information about scripts and script tags.

createMovieFileFlags
Controls file creation options. The following flag is available:

createMovieFileDeleteCurFile
Indicates whether to delete an existing file. If you set this
flag to 1, the Movie Toolbox deletes the file (if it exists)
before creating the new movie file. If this flag is set to 0 and
the file specified by the fileSpec parameter already
exists, the Movie Toolbox uses the existing file. In this case,
the toolbox ensures that the file has both a data and a
resource fork. If this flag is not set, the data is appended to
the file.

resId Contains a pointer to a field that contains the resource ID number for the
new resource. If the field referred to by the resId parameter is set to 0,
the Movie Toolbox assigns a unique resource ID number to the new
resource. The toolbox then returns the movie’s resource ID number in the
field referred to by the resId parameter. The Movie Toolbox assigns
resource ID numbers sequentially, starting at 128. If the resId parameter
is set to nil, the Movie Toolbox assigns a unique resource ID number to
the new resource and does not return that resource’s ID value.

resName Points to a character string with the name of the movie resource. If you
set the resName parameter to nil, the toolbox creates an unnamed
resource.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-107

DESCRIPTION

The toolbox places the movie resource into the resource fork of the movie file. The Movie

Toolbox does not alter the source movie.

The Movie Toolbox calls your progress function during long operations.

ERROR CODES

File Manager errors

Memory Manager errors

Resource Manager errors

FlattenMovieData

The FlattenMovieData function creates a new movie file and creates a new movie

that contains all of its movie data. However, unlike the FlattenMovie function

described in the previous section, this function does not add the new movie resource to

the new movie file. Instead, the FlattenMovieData function returns the new movie to

your application. Your application must dispose of the returned movie.

pascal Movie FlattenMovieData (Movie theMovie,

long movieFlattenFlags,

const FSSpec *theFile,

OSType creator,

ScriptCode scriptTag,

long createMovieFileFlags);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

movieFlattenFlags
Controls the process of adding movie data to the new movie file. These
flags affect how the toolbox adds movies to the new movie file later. The
following flags are available (be sure to set unused flags to 0):

flattenAddMovieToDataFork
Causes the movie to be placed in the data fork of the new
movie file. You may use this flag to create single-fork movie
files, which can be more easily moved to other computer
systems from your Macintosh.

invalidMovie –2010 This movie is corrupted or invalid
progressProcAborted –2019 Your progress function returned an error
cantCreateSingleForkFile –2022 Error trying to create a single-fork file

C H A P T E R 2

Movie Toolbox

2-108 Movie Toolbox Reference

flattenDontInterleaveFlatten
Allows you to disable the Movie Toolbox’s data storage
optimizations. By default, the Movie Toolbox stores movie
data in a format that is optimized for the storage device. Set
this flag to 1 to disable these optimizations.

flattenActiveTracksOnly
Causes the Movie Toolbox to add only enabled movie
tracks to the new movie file. You can use the
SetTrackEnabled function, which is described on
page 2-147, to enable and disable movie tracks.

theFile Contains a pointer to the file system specification for the movie file to be
created.

creator Specifies the creator value for the new file.

scriptTag Specifies the script in which the movie file should be created. Set this
parameter to smSystemScript to use the system script; set it to
smCurrentScript to use the current script. See Inside Macintosh: Text for
more information about scripts and script tags.

creationFlags
Controls file creation options. The following flag is available:

createMovieFileDeleteCurFile
Indicates whether to delete an existing file. If you set this
flag to 1, the Movie Toolbox deletes the file (if it exists)
before creating the new movie file. If this flag is set to 0 and
the file specified by the fileSpec parameter already
exists, the Movie Toolbox uses the existing file. In this case,
the toolbox ensures that the file has both a data and a
resource fork. If this flag isn’t set, the data is appended to
the file.

DESCRIPTION

The FlattenMovieData function returns the movie identifier of the new movie. If the

function could not create the movie, it sets this returned identifier to nil.

You can also use this function to create a single-fork movie file. Set the

flattenAddMovieToDataFork flag in the movieFlattenFlags parameter to 1. The

Movie Toolbox then places the movie into the data fork of the movie file.

The Movie Toolbox calls your progress function during long operations.

The Movie Toolbox does not alter the source movie.

ERROR CODES

File Manager errors

Memory Manager errors

invalidMovie –2010 This movie is corrupted or invalid
progressProcAborted –2019 Your progress function returned an error
cantCreateSingleForkFile –2022 Error trying to create a single-fork file

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-109

NewMovieFromDataFork

The NewMovieFromDataFork function enables you to retrieve a movie that is stored

anywhere in the data fork of a specified file.

pascal OSErr NewMovieFromDataFork (Movie *theMovie,

short fRefNum,

long fileOffset,

short newMovieFlags,

Boolean *dataRefWasChanged);

theMovie Contains a pointer to the movie identifier for the movie to be retrieved.
Your application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle
(described on page 2-92, page 2-88, and page 2-90, respectively).

fRefNum Contains a file reference number to a file that is already open.

fileOffset
Specifies the starting file offset of the atom in the data fork of the
file specified by the fRefNum parameter.

newMovieFlags
Contains the standard flags in the newMovie enumeration.

newMovieActive
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. A movie that does not have
any tracks can still be active. When the Movie Toolbox tries
to play the movie, no images are displayed, because there
is no movie data. You can make a movie active or inactive
by calling the SetMovieActive function, which is
described on page 2-145.

newMovieDontAutoAlternate
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

newMovieDontResolveDataRefs
Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only
looks in the specified file.

If the Movie Toolbox cannot completely resolve all the data
references, it still returns a valid movie identifier. In this
case, the Movie Toolbox also sets the current error value to
couldNotResolveDataRef.

C H A P T E R 2

Movie Toolbox

2-110 Movie Toolbox Reference

newMovieDontAskUnresolvedDataRefs
Controls whether the Movie Toolbox asks the user to locate
files. If you set this flag to 0, the Movie Toolbox asks the
user to locate files that it cannot find on available volumes.
If the Movie Toolbox cannot locate a file even with the
user’s help, the function returns a valid movie identifier
and sets the current error value to
couldNotResolveDataRef.

dataRefWasChanged
Contains a pointer to a Boolean value. The Movie Toolbox sets the
Boolean to indicate whether it had to change any data references while
resolving them. The toolbox sets the Boolean value to true if any
references were changed. Use the UpdateMovieResource function
(described on page 2-103) to preserve these changes.

Set the dataRefWasChanged parameter to nil if you do not want to
receive this information. See the “Creating Tracks and Media Structures”
beginning on page 2-150 for more information about data references.

ERROR CODES

File Manager errors

Memory Manager errors

PutMovieIntoDataFork

The PutMovieIntoDataFork function allows you to store a movie in the data fork of a

given file.

pascal OSErr PutMovieIntoDataFork (Movie theMovie, short fRefNum,

 long offset, long maxSize);

theMovie Identifies the movie to be stored in the data fork of an atom. Your
application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle
(described on page 2-92, page 2-88, and page 2-90, respectively).

fRefNum Contains a file reference number for the data fork of the given file. You
pass in an open write path in the fRefNum parameter.

offset Indicates where the movie should be written.

maxSize Indicates the largest number of bytes that may be written.

badImageDescription –2001 Problem with an image description
badPublicMovieAtom –2002 Movie file corrupted
cantFindHandler –2003 Cannot locate a handler
cantOpenHandler –2004 Cannot open a handler

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-111

DESCRIPTION

If necessary, the file will be extended. If there is insufficient space to write the movie,

either due to a lack of disk space or because of the limit specified in the maxSize

parameter, this function returns a dskFullErr error code. If there is no limit on how

much space the movie may take up in the file, pass 0 in the maxSize parameter.

ERROR CODES

Memory Manager errors

File Manager errors

Controlling Movie Playback

This section describes a number of high-level functions provided by the Movie Toolbox

that allow your application to play movies. For information about how to control a

movie’s playback rate, see “Working with Movie Time” beginning on page 2-184.

You can use the StartMovie and StopMovie functions to start and stop movies.

The Movie Toolbox provides functions that can be used to control your position within a

movie. You can use two functions, GoToBeginningOfMovie and GoToEndOfMovie, to

set the position at either the beginning or the end of a movie. These functions are

described in this section. Functions that work with time bases, such as

SetMovieTimeValue and GetMovieTimeScale, can be used to control the current

position anywhere within a movie. These advanced functions are described in

“Functions That Modify Movie Properties” beginning on page 2-157.

StartMovie

The StartMovie function starts the movie playing from the current movie time, which

is where the movie last stopped playing. Before playing the movie, the Movie Toolbox

makes the movie active, prerolls the movie, and sets the movie to its preferred playback

rate. You can use the SetMoviePreferredRate function (described on page 2-130) to

change this setting.

pascal void StartMovie (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-112 Movie Toolbox Reference

DESCRIPTION

Note that a movie’s current time is saved when a movie is stored in a movie file.

Therefore, your application should appropriately position a movie before playing the

movie—use the GoToBeginningOfMovie function (described on page 2-113) to set

a movie to play from its start.

You are not required to call StartMovie to start a movie. This function is included

merely for convenience.

ERROR CODES

Memory Manager errors

SEE ALSO

You can also start a movie playing by calling the SetMovieRate function (described on

page 2-187) and setting the movie’s rate to a nonzero value.

StopMovie

The StopMovie function stops the playback of a movie.

pascal void StopMovie (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

ERROR CODES

SEE ALSO

You can use the StartMovie function described in the previous section to resume

playing.

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-113

GoToBeginningOfMovie

The GoToBeginningOfMovie function repositions a movie to play from its start.

pascal void GoToBeginningOfMovie (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

If you have defined an active movie segment, the GoToBeginningOfMovie function

repositions to the start of the active segment. The active movie segment is the part of the

movie that your application is interested in playing. By default, the active movie

segment is set to be the entire movie. You may wish to change this to be some segment of

the movie—for example, if you wish to play a user’s selection repeatedly. By setting the

active movie segment, you guarantee that the Movie Toolbox uses no samples from

outside of that range while playing the movie.

If the movie is in preview mode, the function goes to the start of the preview segment of

the movie. In all other cases, this function moves you to the start of the movie, where the

movie time value is 0.

SPECIAL CONSIDERATIONS

Movies need not be at the start position when they are saved. The Movie Toolbox stores

a movie’s time position in the movie when it is saved. If you want to play a movie from

the beginning, your application should call the GoToBeginningOfMovie function

before playing a movie you have loaded from a movie file.

ERROR CODES

SEE ALSO

You can use the SetMovieActiveSegment and GetMovieActiveSegment functions

to work with the active segment. For details, see “Enhancing Movie Playback

Performance” beginning on page 2-134.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-114 Movie Toolbox Reference

GoToEndOfMovie

The GoToEndOfMovie function repositions a movie to play from its end.

pascal void GoToEndOfMovie (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

If you have defined an active movie segment, the GoToEndOfMovie function

repositions the movie to the end of the active segment. If the movie is in preview mode,

the function goes to the end of the preview segment of the movie. In all other cases, this

function moves you to the end of the movie.

ERROR CODES

SEE ALSO

You can use the SetMovieActiveSegment and GetMovieActiveSegment functions

to work with the active segment. For details, see “Enhancing Movie Playback

Performance” beginning on page 2-134.

Movie Posters and Movie Previews

A QuickTime movie may contain a preview and a poster. A movie preview is a very

short version of a movie, typically less than five seconds in duration. The preview is

intended to give the user an idea of a movie’s contents.

A movie poster is a still frame representing the movie.

This section describes the Movie Toolbox functions that allow your application to work

with movie previews and movie posters.

Use the PlayMoviePreview function to display a movie’s preview. The

PlayMoviePreview function sets the movie into preview mode, plays the movie

preview, sets the movie back to normal playback mode, and returns to your application.

Alternatively, your application can control the playback of a movie’s preview. Use the

SetMoviePreviewMode function to place a movie into preview mode. You can then

use the StartMovie and StopMovie functions to control movie playback—these

functions are described on page 2-111 and page 2-112, respectively. Your application can

find out if a movie is in preview mode by calling the GetMoviePreviewMode function.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-115

Your application can specify the starting time and duration of the movie preview with

the SetMoviePreviewTime and GetMoviePreviewTime functions.

Use the ShowMoviePoster function to display a movie’s poster. You can work with the

poster’s boundary rectangle using the SetPosterBox and GetPosterBox functions.

Your application can work with the starting time of the poster with the

SetMoviePosterTime and GetMoviePosterTime functions. Posters always have no

duration.

Tracks may be specified for use in the movie, its preview, its poster, or any combination

of the three. So, for example, when the Movie Toolbox plays the movie preview it uses

only those tracks that are assigned to the preview. Your application controls the use of a

movie’s tracks with the SetTrackUsage function. You can find out how a track is used

by calling the GetTrackUsage function.

SetTrackUsage

The SetTrackUsage function allows your application to specify whether a track is

used in a movie, its preview, its poster, or a combination of these.

pascal void SetTrackUsage (Track theTrack, long usage);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

usage Contains flags that specify how the track is to be used. The following flags
are defined (be sure to set unused flags to 0):

trackUsageInMovie
The track is used in the movie. If this flag is set to 1, the
track is used in the movie.

trackUsageInPreview
The track is used in the preview. If this flag is set to 1, the
track is used in the preview.

trackUsageInPoster
The track is used in the poster. If this flag is set to 1, the
track is used in the poster.

ERROR CODES

SEE ALSO

Your application can determine how a track is used by calling the GetTrackUsage

function, which is described in the next section.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-116 Movie Toolbox Reference

GetTrackUsage

The GetTrackUsage function allows your application to determine whether a track is

used in a movie, its preview, its poster, or a combination of these. Your application can

specify how a track is used by calling the SetTrackUsage function, which is described

in the previous section.

pascal long GetTrackUsage (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackUsage function returns a long integer that contains flags indicating the

track’s usage. The following flags are defined (unused flags are set to 0):

trackUsageInMovie
The track is used in the movie. If this flag is set to 1, the track is used in
the movie.

trackUsageInPreview
The track is used in the movie preview. If this flag is set to 1, the track is
used in the preview.

trackUsageInPoster
The track is used in the movie poster. If this flag is set to 1, the track is
used in the poster.

ERROR CODES

ShowMoviePoster

You can use the ShowMoviePoster function to display a movie’s poster. The movie

poster uses the movie’s matrix and display clipping characteristics.

pascal void ShowMoviePoster (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-117

DESCRIPTION

The Movie Toolbox draws the movie poster once, in the movie’s graphics world. This

function works on active and inactive movies.

ERROR CODES

SEE ALSO

You can set the poster’s starting time with the SetMoviePosterTime function

(described on page 2-118). You can set the position and size of the poster by calling the

SetPosterBox function (described in the next section).

SetPosterBox

You can use the SetPosterBox function to set a poster’s boundary rectangle. You

define the poster’s image by specifying a time in the movie (use the

SetMoviePosterTime function, described on page 2-118). You specify the size and

position of the poster image with this function.

pascal void SetPosterBox (Movie theMovie, const Rect *boxRect);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

boxRect Contains a pointer to a rectangle. The Movie Toolbox sets the poster’s
boundary rectangle to the coordinates specified in the structure referred
to by this parameter.

DESCRIPTION

If you do not specify a boundary rectangle for the poster, the Movie Toolbox uses the

movie’s matrix when it displays the poster.

ERROR CODES

SEE ALSO

Your application can retrieve a poster’s boundary rectangle by calling the

GetPosterBox function, which is described in the next section.

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid
invalidRect –2036 Specified rectangle has invalid coordinates

C H A P T E R 2

Movie Toolbox

2-118 Movie Toolbox Reference

GetPosterBox

The GetPosterBox function allows you to obtain a poster’s boundary rectangle.

pascal void GetPosterBox (Movie theMovie, Rect *boxRect);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

boxRect Contains a pointer to a rectangle. The Movie Toolbox returns the poster’s
boundary rectangle into the structure referred to by this parameter.

DESCRIPTION

When you call GetPosterBox without having called SetPosterBox, the current

movie matrix is applied to the poster tracks to determine the poster box.

ERROR CODES

SEE ALSO

You set the poster’s boundary rectangle by calling the SetPosterBox function, which is

described in the previous section.

SetMoviePosterTime

The SetMoviePosterTime function sets the poster time for the movie. Since a movie

poster is a still frame, it is defined by a point in time within the movie. The poster’s time

is expressed in the movie’s time coordinate system. Your application can retrieve a

poster’s time by calling the GetMoviePosterTime function, which is described in the

next section.

pascal void SetMoviePosterTime (Movie theMovie,

TimeValue posterTime);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-119

posterTime
Contains the starting time for the movie frame that contains the poster
image.

ERROR CODES

SEE ALSO

Your application can set the poster’s boundary rectangle by calling the SetPosterBox

function, which is described on page 2-117.

GetMoviePosterTime

The GetMoviePosterTime function returns the poster’s time in the movie. Since a

movie poster has no duration, a poster is defined by a point in time within the movie.

The time value returned is in the time coordinate system of the movie.

pascal TimeValue GetMoviePosterTime (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMoviePosterTime function returns a time value. This time value contains the

starting time for the movie frame that contains the movie poster image.

ERROR CODES

SEE ALSO

Your application can set a poster’s time by calling the SetMoviePosterTime function,

which is described in the previous section.

invalidMovie –2010 This movie is corrupted or invalid
invalidTime –2015 This time value is invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-120 Movie Toolbox Reference

PlayMoviePreview

The PlayMoviePreview function plays a movie’s preview.

pascal void PlayMoviePreview (Movie theMovie,

MoviePreviewCallOutProc callOutProc,

long refcon);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

callOutProc
Contains a pointer to a movie callout function in your application. The
Movie Toolbox calls this function repeatedly while the movie preview is
playing. You can use this function to stop the preview. If you do not want
to assign a function, set this parameter to nil.

Your function should have the following form:

pascal Boolean MyCallOutProc (long refcon);

The refCon parameter contains the reference constant you specified
when you called the PlayMoviePreview function.

Your function returns a Boolean value. The Movie Toolbox examines this
value before continuing. If your function sets this value to false, the
Movie Toolbox stops the preview and returns to your application. For
details, see “Movie Callout Functions” on page 2-359.

Note that if you call the GetMovieActiveSegment function (described
on page 2-137) from within your movie callout function, the Movie
Toolbox will have changed the active movie segment to be the preview
segment of the movie. The Movie Toolbox restores the active segment
when the preview is done playing.

refcon Contains a reference constant for your function. The Movie Toolbox
passes this value to your function.

DESCRIPTION

The PlayMoviePreview function sets the movie into preview mode, plays the movie

preview, sets the movie back to normal playback mode, and returns to your application.

The Movie Toolbox plays the preview in the movie’s graphics world.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-121

ERROR CODES

SEE ALSO

Use the SetMoviePreviewTime function, described on page 2-122, to define the

starting time and duration of the movie preview.

SetMoviePreviewMode

The SetMoviePreviewMode function allows your application to place a movie into

and out of preview mode. When a movie is in preview mode, only those tracks identified

as preview tracks are serviced. You specify how a track is used by calling the

SetTrackUsage function, which is described on page 2-115.

pascal void SetMoviePreviewMode (Movie theMovie,

Boolean usePreview);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

usePreview
Specifies the movie’s mode. Set this parameter to true to place the movie
into preview mode. Set this parameter to false to place the movie into
normal playback mode.

DESCRIPTION

When you place a movie into preview mode, the Movie Toolbox sets the active movie

segment to be the preview segment of the movie. When you take a movie out of

preview mode and place it back in normal playback mode, the toolbox sets the active

movie segment to be the entire movie. For information about working with active movie

segments, see “Enhancing Movie Playback Performance” beginning on page 2-134.

ERROR CODES

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-122 Movie Toolbox Reference

GetMoviePreviewMode

The GetMoviePreviewMode function allows your application to determine whether a

movie is in preview mode. If a movie is in preview mode, only the movie’s preview can

be displayed. Your application can place a movie into and out of preview mode by

calling the SetMoviePreviewMode function, which is described in the previous section.

pascal Boolean GetMoviePreviewMode (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMoviePreviewMode function returns a Boolean value. If the movie is in

preview mode, the function sets this return value to true. If the movie is in normal

playback mode, the function sets this value to false.

ERROR CODES

SetMoviePreviewTime

The SetMoviePreviewTime function allows your application to define the starting

time and duration of the movie’s preview. These time values are in the movie’s time

coordinate system.

pascal void SetMoviePreviewTime (Movie theMovie,

TimeValue previewTime,

TimeValue previewDuration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

previewTime
Contains a time value that specifies the preview’s starting time.

previewDuration
Contains a time value that specifies the preview’s duration.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-123

ERROR CODES

SEE ALSO

Your application can retrieve the starting time and duration of the preview with the

GetMoviePreviewTime function, which is described in the next section.

GetMoviePreviewTime

The GetMoviePreviewTime function returns the starting time and duration of the

movie’s preview. These time values are expressed in the movie’s time coordinate system.

pascal void GetMoviePreviewTime (Movie theMovie,

TimeValue *previewTime,

TimeValue *previewDuration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

previewTime
Contains a pointer to a time value. The Movie Toolbox places the
preview’s starting time into the field referred to by this parameter. If the
movie does not have a preview, the Movie Toolbox sets this returned
value to 0.

previewDuration
Contains a pointer to a time value. The Movie Toolbox places the
preview’s duration into the field referred to by this parameter. If the
movie does not have a preview, the Movie Toolbox sets this returned
value to 0.

ERROR CODES

SEE ALSO

Your application sets the starting time and duration of the movie preview with the

SetMoviePreviewTime function, which is described in the previous section.

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-124 Movie Toolbox Reference

Movies and Your Event Loop

In order for your movies to play, your application must grant time to the Movie Toolbox.

You do this by calling the MoviesTask function from your main event loop. The

MoviesTask function causes the Movie Toolbox to service all your active movies. You

should call this function regularly so that your movie can play smoothly. You can use the

UpdateMovie function to force your movie to be redrawn after it has been uncovered.

You may want your application to take a particular action when a movie is done playing.

The Movie Toolbox provides the IsMovieDone function, which allows you to determine

whether a movie is done playing. The Movie Toolbox also provides more sophisticated

callback mechanisms, which are discussed in “Time Base Functions” beginning on

page 2-315.

The Movie Toolbox provides two functions that allow your application to determine

whether a specified point lies in either a movie or a track. Use the PtInMovie function

with movies; use the PtInTrack function with tracks.

Your application can retrieve some status information about movies and tracks. Use the

GetMovieStatus function to retrieve movie status; use the GetTrackStatus function

to get track status.

MoviesTask

The MoviesTask function services active movies.

pascal void MoviesTask (Movie theMovie, long maxMilliSecToUse);

theMovie Specifies the movie for this operation. If you set this parameter to nil, the
Movie Toolbox services all of your active movies. Your application obtains
this movie identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle (described on
page 2-92, page 2-88, and page 2-90, respectively).

maxMilliSecToUse
Determines the maximum number of milliseconds that MoviesTask can
work before returning. If this parameter is 0, MoviesTask services every
active movie exactly once and then returns. If the parameter is nonzero,
MoviesTask services as many movies as it can in the allotted time before
returning.

Once the MoviesTask function starts servicing a movie, it cannot stop
until it has completely met the requirements of the movie. Consequently,
the MoviesTask function may execute for a longer time than that
specified in maxMilliSecToUse. However, the function does not start
servicing a new movie if the time specified by maxMilliSecToUse has
elapsed.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-125

The preferred way to use MoviesTask is to set the maxMilliSecToUse
parameter to 0; however, if you just want to play one movie, you can call
MoviesTask on that one.

If your rate is 0, MoviesTask draws that frame and no other.

DESCRIPTION

When servicing a movie, the Movie Toolbox performs the processing that is appropriate

for the movie—displaying frames, playing sound, reading data from disk, or other tasks.

The only time the Movie Toolbox actually draws a movie is during the operation of the

MoviesTask function.

You should call MoviesTask as often as possible from your application’s main event

loop. Note that you should call this function after you have performed your own event

processing.

The MoviesTask function services only active movies, and only enabled tracks within

those active movies. Use the SetMovieActive function (described on page 2-145) and

the SetTrackEnabled function (described on page 2-147) to enable and disable movies

and tracks.

SPECIAL CONSIDERATIONS

Note that the MoviesTask function services only your movies. Your application must

call the Event Manager’s WaitNextEvent routine (or the Event Manager’s

GetNextEvent routine and the SystemTask routine) to give other applications the

opportunity to call MoviesTask for their movies. For details on WaitNextEvent,

GetNextEvent, and SystemTask, see Inside Macintosh: Macintosh Toolbox Essentials.

ERROR CODES

IsMovieDone

Your application may wish to take a particular action when a movie is done playing. The

IsMovieDone function allows you to determine if a particular movie has completely

finished playing.

pascal Boolean IsMovieDone (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-126 Movie Toolbox Reference

DESCRIPTION

The IsMovieDone function returns true if the specified movie has finished playing;

otherwise it returns false. A movie with a positive rate (playing forward) is considered

done when its movie time reaches the movie end time. Conversely, a movie with a

negative rate (playing backward) is considered done when its movie time reaches the

movie start time.

If your application has changed the movie’s active segment, the status returned by the

IsMovieDone function is relative to the active segment, rather than to the entire movie.

You can use the SetMovieActiveSegment function (described on page 2-136) to

change a movie’s active segment.

ERROR CODES

UpdateMovie

The UpdateMovie function allows your application to ensure that the Movie Toolbox

properly displays your movie after it has been uncovered.

Your application should call this function between the Window Manager’s

BeginUpdate and EndUpdate functions. (For details, see Inside Macintosh: Macintosh
Toolbox Essentials.) Do not call MoviesTask at this time. You will observe better display

behavior if you call MoviesTask at the end of your update processing.

pascal OSErr UpdateMovie (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The UpdateMovie function does not actually update the movie’s graphics world.

Rather, the function invalidates the movie’s display state so that the Movie Toolbox

redraws the movie the next time you call the MoviesTask function. If you need to force

a movie to be redrawn outside of a Window Manager update sequence, your application

can call UpdateMovie and then call the MoviesTask function (described on

page 2-124) to service the movie.

The Movie Toolbox determines the portion of the screen to update by examining the

graphics port’s visible region.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-127

ERROR CODES

SEE ALSO

For sample code that uses the UpdateMovie function in a Window Manager update

sequence, see Listing 2-13 on page 2-63.

PtInMovie

The PtInMovie function allows your application to determine whether a specified point

lies in the region defined by a movie’s final display boundary region after it has been

clipped by the movie’s display clipping region. This function is accurate at the current

movie time.

pascal Boolean PtInMovie (Movie theMovie, Point pt);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

pt Specifies the point to be checked. This point must be expressed in the
movie’s local display coordinate system.

DESCRIPTION

The PtInMovie function returns a Boolean value. The function sets this value to true if

the point lies in the movie’s display space.

SPECIAL CONSIDERATIONS

The region that PtInMovie checks for is different from the movie box.

ERROR CODES

SEE ALSO

To find out if a point lies in the region defined by a track’s display boundary region after

it has been clipped by a movie’s final display clipping region, you use the PtInTrack

function. See the next section for details.

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-128 Movie Toolbox Reference

PtInTrack

The PtInTrack function allows your application to determine whether a specified point

lies in the region defined by a track’s display boundary region after it has been clipped

by the movie’s final display clipping region. This function is accurate at the current

movie time.

pascal Boolean PtInTrack (Track theTrack, Point pt);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

pt Specifies the point to be checked. This point must be expressed in the
local display coordinate system of the movie that contains the track.

DESCRIPTION

The PtInTrack function returns a Boolean value. The function sets this value to true if

the point lies in the track’s display space.

SPECIAL CONSIDERATIONS

The region that PtInTrack checks for is different from the movie box.

ERROR CODES

SEE ALSO

To find out if a point lies within the region defined by a movie’s final display boundary

region after it has been clipped by the movie’s display clipping region, you can use the

PtInMovie function, which is described in the previous section.

GetMovieStatus

The GetMovieStatus function searches for errors in all the enabled tracks of the

movie. This function returns information about errors that are encountered during the

processing associated with the MoviesTask function (described on page 2-124). These

errors typically reflect playback problems, such as low-memory conditions.

pascal ComponentResult GetMovieStatus (Movie theMovie,

Track *firstProblemTrack);

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-129

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

firstProblemTrack
Contains a pointer to a track identifier. The Movie Toolbox places the
identifier for the first track that is found to contain an error into the field
referred to by this parameter. If you do not want to receive the track
identifier, set this parameter to nil.

DESCRIPTION

The GetMovieStatus function returns the error from the first problem track. If the

component does not find any errors, the result is set to noErr.

ERROR CODES

Any Movie Toolbox result code (see “Summary of the Movie Toolbox” at the end of this

chapter)

GetTrackStatus

The GetTrackStatus function returns the value of the last error the media

encountered while playing a specified track. This function returns information about

errors that are encountered during the processing associated with the MoviesTask

function (described on page 2-124). These errors typically reflect playback problems,

such as low-memory conditions.

The media clears this error code when it detects that the error has been corrected.

pascal ComponentResult GetTrackStatus (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from the GetMovieStatus function, described in the previous
section.

DESCRIPTION

The GetTrackStatus function returns the last error encountered for the specified

track. If the component does not find any errors, the result is set to noErr.

ERROR CODES

Any Movie Toolbox result code (see “Summary of the Movie Toolbox” at the end of this

chapter)

C H A P T E R 2

Movie Toolbox

2-130 Movie Toolbox Reference

Preferred Movie Settings

Every movie has default, or preferred, settings for playback rate and volume. These

settings are stored with the movie in its movie file. The Movie Toolbox provides

functions that allow your application to manipulate these default settings.

You can use the GetMoviePreferredRate and SetMoviePreferredRate functions

to work with a movie’s default playback rate. You can use the

GetMoviePreferredVolume and SetMoviePreferredVolume functions to work

with the default sound volume of a movie.

You can use the SetMovieRate function to change a movie’s playback rate—see

“Working with Movie Time” beginning on page 2-184 for a complete description of this

function. The Movie Toolbox also provides a number of functions that allow you to

change other settings when you play a movie. These functions are discussed in

“Functions That Modify Movie Properties” beginning on page 2-157.

SetMoviePreferredRate

The SetMoviePreferredRate function allows your application to specify a movie’s

default playback rate.

pascal void SetMoviePreferredRate (Movie theMovie, Fixed rate);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

rate Specifies the new movie rate as a 32-bit, fixed-point number. Positive
integers indicate forward rates and negative integers indicate reverse
rates.

DESCRIPTION

The default playback rate is the rate that the StartMovie function (described on

page 2-111) uses when it starts playing a movie. The default preferred rate of a movie is

set to 1.0 (the kFix1 constant) when the movie is created.

SPECIAL CONSIDERATIONS

Do not set the preferred rate to 0.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-131

ERROR CODES

SEE ALSO

Your application can obtain the preferred playback rate by calling the

GetMoviePreferredRate function, which is described in the next section.

You can set the current playback rate of a movie by calling the SetMovieRate function,

which is described on page 2-187.

GetMoviePreferredRate

The GetMoviePreferredRate function returns a movie’s default playback rate. This is

the rate that the StartMovie function uses when it starts playing a movie.

pascal Fixed GetMoviePreferredRate (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMoviePreferredRate function returns the default movie rate as a 32-bit,

fixed-point number. Positive integers indicate forward rates and negative integers

indicate reverse rates.

ERROR CODES

SEE ALSO

Your application can change the preferred playback rate by calling the

SetMoviePreferredRate function, which is described in the previous section. You

can change the current playback rate of a movie by calling the SetMovieRate function,

which is described on page 2-187.

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-132 Movie Toolbox Reference

SetMoviePreferredVolume

The SetMoviePreferredVolume function allows your application to set a movie’s

preferred volume setting.

pascal void SetMoviePreferredVolume (Movie theMovie,

 short volume);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

volume Specifies the preferred volume setting of the movie. The volume
parameter must contain a 16-bit, fixed-point number that contains the
movie’s default volume. The high-order 8 bits contain the integer part of
the value; the low-order 8 bits contain the fractional part. Volume values
range from –1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting. You may find the following
constants useful:

kFullVolume
Sets the movie to full volume (constant value is 1.0).

kNoVolume
Sets the movie to no volume (constant value is 0.0).

DESCRIPTION

Your application can obtain the preferred volume setting by calling the

GetMoviePreferredVolume function, which is described in the next section. You can

change a movie’s current volume by calling the SetMovieVolume function, which is

described on page 2-182.

A movie’s tracks may have their own volume settings. Use the SetTrackVolume

function, described on page 2-183, to set the volume of an individual track. A track’s

volume is scaled by the movie’s volume to produce the track’s final volume.

Furthermore, the movie’s volume is scaled by the sound volume that is returned by the

Operating System’s GetSoundVol routine (described in Inside Macintosh: More
Macintosh Toolbox). Thus, the user can control the overall volume from the Sound control

panel.

ERROR CODES

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-133

SEE ALSO

When a movie is loaded, the current setting is set to preferred volume. The StartMovie

function (described on page 2-111) uses this volume setting when it starts playing a

movie.

GetMoviePreferredVolume

The GetMoviePreferredVolume function returns a movie’s preferred volume setting.

pascal short GetMoviePreferredVolume (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMoviePreferredVolume function returns a 16-bit, fixed-point number that

contains the movie’s default volume. The high-order 8 bits contain the integer part of the

value; the low-order 8 bits contain the fractional part. Volume values range from 0.0

to 1.0.

You can change a movie’s current volume by calling the SetMovieVolume function,

which is described on page 2-182.

A movie’s tracks have their own volume settings. Use the SetTrackVolume function,

described on page 2-183, to set the volume of an individual track. A track’s volume is

scaled by the movie’s volume to produce the track’s final volume. Furthermore, the

movie’s volume is scaled by the sound volume that is returned by the Operating

System’s GetSoundVol routine (described in Inside Macintosh: More Macintosh Toolbox).

Thus, the user can control the overall volume from the Sound control panel.

ERROR CODES

SEE ALSO

When a movie is loaded, the current setting is set to preferred volume. The StartMovie

function (described on page 2-111) uses this volume setting when it starts playing a

movie.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-134 Movie Toolbox Reference

Enhancing Movie Playback Performance

There are circumstances in which an application needs to optimize the performance of a

movie or a portion of a movie. The Movie Toolbox provides several functions to help in

this process.

The first step you can take to enhance movie playback performance is to allow the Movie

Toolbox to preroll the movie. When the toolbox prerolls a movie, it informs the media

handlers that the movie is about to play. The media handlers can then load the

appropriate movie data. In this manner, the movie can play smoothly from the start. Use

the PrerollMovie function to preroll a movie.

The next performance enhancement technique is to load portions of a movie, track, or

media into memory, thus reducing or eliminating disk access during playback. Loading

the movie into RAM provides most noticeable performance improvements when there is

a lot of random access involved in the playback process and the entire movie fits into

available memory. Use the LoadMovieIntoRam, LoadTrackIntoRam, and

LoadMediaIntoRam functions to copy all or part of a movie into memory.

Note

The LoadMovieIntoRam, LoadTrackIntoRam, and
LoadMediaIntoRam functions load tracks into memory in a time-slice
order so that, if a function fails because it is out of memory, all tracks are
left loaded to about the same point in time. ◆

You can influence the temporal accuracy, and therefore the speed, with which the Movie

Toolbox tries to display a movie by calling either the SetMoviePlayHints or

SetMediaPlayHints function.

For each movie currently in use, the Movie Toolbox maintains an active movie segment.

The active movie segment is the part of the movie that your application is interested in

playing. By default, the active movie segment is set to be the entire movie. You may wish

to change this to be some segment of the movie—for example, if you wish to play a

user’s selection repeatedly. By setting the active movie segment you guarantee that the

Movie Toolbox uses no samples from outside of that range while playing the movie. Use

the SetMovieActiveSegment and GetMovieActiveSegment functions to work

with the active segment.

Some movies contain very few key frames and a great number of frame differences.

These movies play back very well because they have a lower data rate. Unfortunately,

this makes random access operations, such as scrubbing, on a movie difficult. In such

movies, random access is difficult.

To improve random access performance of movies with few key frames and many frame

differences, shadow sync samples may be added. Shadow sync samples are

self-contained samples that are alternates for already existing frame difference samples.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-135

During certain random access operations, a shadow sync sample is used instead of a

normal key frame, which may be very far away from the desired frame.

The Movie Toolbox provides two functions to let you create just such an association

between a frame difference sample and a sync sample. SetMediaShadowSync

establishes a shadow sync sample for a media. You can use GetMediaShadowSync to

find out if a particular frame difference sample has a shadow sync sample.

PrerollMovie

The PrerollMovie function allows your application to prepare a portion of a movie for

playback.

pascal OSErr PrerollMovie (Movie theMovie, TimeValue time,

Fixed Rate);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

time Contains the starting time of the movie segment to play.

Rate Specifies the rate at which you anticipate playing the movie. You specify
the movie rate as a 32-bit, fixed-point number. Positive integers indicate
forward rates and negative integers indicate reverse rates.

DESCRIPTION

When your application calls the PrerollMovie function, the Movie Toolbox tells the

appropriate media handlers to prepare to play the movie. The media handlers may then

load the movie data and perform any other necessary preparations to play the movie,

such as allocating sound channels and starting up image-decompression sequences. In

this manner, you can eliminate playback stutter when the movie starts playing.

ERROR CODES

invalidMovie –2010 This movie is corrupted or invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

2-136 Movie Toolbox Reference

SetMovieActiveSegment

You can use the SetMovieActiveSegment function to define a movie’s active

segment. Your application defines the active segment by specifying the starting time and

duration of the segment. These values must be expressed in the movie’s time coordinate

system. By default, the entire movie is active.

pascal void SetMovieActiveSegment (Movie theMovie,

TimeValue startTime,

TimeValue duration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

startTime Contains a time value specifying the starting point of the active segment.
Set this parameter to –1 to make the entire movie active. In this case, the
SetMovieActiveSegment function ignores the duration parameter.

duration Contains a time value that specifies the duration of the active segment. If
you are making the entire movie active (by setting the startTime
parameter to –1), the Movie Toolbox ignores this parameter.

DESCRIPTION

Your application can retrieve the information that defines a movie’s active segment by

calling the GetMovieActiveSegment function, which is described in the next section.

SPECIAL CONSIDERATIONS

Note that placing a movie into preview mode destroys the movie’s active segment. You

use the SetMoviePreviewMode function, described on page 2-121, to control preview

mode.

ERROR CODES

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-137

GetMovieActiveSegment

Use the GetMovieActiveSegment function to determine what portion of a movie is

currently active for playing.

pascal void GetMovieActiveSegment (Movie theMovie,

TimeValue *startTime,

TimeValue *duration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

startTime Contains a pointer to a time value. The GetMovieActiveSegment
function places the starting time of the active segment into the field
referred to by this parameter. If the returned time value is set to –1, the
entire movie is active. In this case, the Movie Toolbox does not return any
duration information via the duration parameter.

duration Contains a pointer to a time value. The GetMovieActiveSegment
function places the duration of the active movie segment into the field
referred to by this parameter. If the entire movie is active (the returned
starting time is set to –1), the Movie Toolbox does not return any duration
information.

DESCRIPTION

Your application can set the active segment by calling the SetMovieActiveSegment

function, which is described in the previous section.

ERROR CODES

SetMoviePlayHints

The SetMoviePlayHints function allows your application to provide information to

the Movie Toolbox that can influence movie playback. This function accepts a flag in

which you specify optimizations that the Movie Toolbox can use during movie playback.

These optimizations apply to all of the media structures used by the movie.

pascal void SetMoviePlayHints (Movie theMovie, long flags,

long flagsMask);

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-138 Movie Toolbox Reference

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

flags Specifies the optimizations that can be used with this movie. Each bit in
the flags parameter corresponds to a specific optimization. The
following flag is defined (be sure to set unused flags to 0):

hintsScrubMode
Indicates that the Movie Toolbox can prefer to display key
frames when the movie is repositioned. This optimization
is used only when a movie’s rate is set to 0. If you set this
flag to 1, the Movie Toolbox is free to display the nearest
key frame when you set the movie’s current time; the
Movie Toolbox then moves to the appropriate frame as
time permits. If you set this flag to 0, the Movie Toolbox
displays the frame that corresponds to the new current
time, even if that frame is not a key frame.

By displaying key frames first, the Movie Toolbox can
display data from temporally compressed movies much
more quickly in response to changes to the movie’s current
time. This, in turn, can improve the liveliness of a movie
control. For example, if the user is positioning in a stopped
movie, the Movie Toolbox can display a key frame that
corresponds to the new position without having to build
up the image offscreen. In this manner, the user gets
quicker feedback from your application.

hintsUseSoundInterp
Turns on sound interpolation—that is, tells the Sound
Manager to use sound interpolation when playing back
sound. In certain situations, this improves the sound
quality to 11 kHz.

hintsAllowInterlace
Tells the Image Compression Manager to use the interlace
option for image compressor and decompressor
components. For more information, see Inside Macintosh:
QuickTime Components.

flagsMask Indicates which flags in the flags parameter are to be considered in this
operation. For each bit in the flags parameter that you want the Movie
Toolbox to consider, you must set the corresponding bit in the
flagsMask parameter to 1. Set unused flags to 0. This allows you to
work with a single optimization without altering the settings of other
flags.

ERROR CODES

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-139

SetMediaPlayHints

The SetMediaPlayHints function allows your application to provide information to

the Movie Toolbox that can influence playback of a single media. This function accepts a

flag in which you specify optimizations that the Movie Toolbox can use during movie

playback. These optimizations apply to only the specified media.

pascal void SetMediaPlayHints (Media theMedia, long flags,

long flagsMask);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

flags Specifies the optimizations that can be used with this media. Each bit in
the flags parameter corresponds to a specific optimization. The
following flag is defined (be sure to set unused flags to 0):

hintsScrubMode
Indicates that the Movie Toolbox can prefer to display key
frames when the movie that uses this media is
repositioned. This optimization is used only when a
movie’s rate is set to 0. If you set this flag to 1, the Movie
Toolbox is free to display the nearest key frame when you
set the movie’s current time; the Movie Toolbox then
moves to the appropriate frame as time permits. If you set
this flag to 0, the Movie Toolbox displays the frame that
corresponds to the new current time, even if that frame is
not a key frame.

By displaying key frames first, the Movie Toolbox can
display data from temporally compressed movies much
more quickly in response to changes to the movie’s current
time. This, in turn, can improve the liveliness of a movie
control. For example, if the user is positioning in a stopped
movie, the Movie Toolbox can display a key frame that
corresponds to the new position without having to build
up the image offscreen. In this manner, the user gets
quicker feedback from your application.

hintsUseSoundInterp
Turns on sound interpolation—that is, tells the Sound
Manager to use sound interpolation when playing back
sound. In certain situations, this improves the sound
quality to 11 kHz.

hintsAllowInterlace
Tells the Image Compression Manager to use the interlace
option for image compressor and decompressor
components. For more information, see Inside Macintosh:
QuickTime Components.

C H A P T E R 2

Movie Toolbox

2-140 Movie Toolbox Reference

flagsMask Indicates which flags in the flags parameter are to be considered in this
operation. For each bit in the flags parameter that you want the Movie
Toolbox to consider, you must set the corresponding bit in the
flagsMask parameter to 1. Set unused flags to 0. This allows you to
work with a single optimization without altering the settings of other
flags.

ERROR CODES

SEE ALSO

To set optimizations for all of a movie’s media structures, use the SetMoviePlayHints

function, which is described in the previous section.

LoadMovieIntoRam

The LoadMovieIntoRam function loads a movie’s data into memory. If the movie does

not fit, the function returns an error.

pascal OSErr LoadMovieIntoRam (Movie theMovie, TimeValue time,

TimeValue duration,

long flags);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

time Allows you to specify a portion of the movie to load. The time parameter
contains the starting time of the movie segment to load. The duration
parameter specifies the length of the segment to load.

duration Allows you to specify a portion of the movie to load. The time parameter
contains the starting time of the movie segment to load. The duration
parameter specifies the length of the segment to load. You can use the
GetMovieDuration function (described on page 2-185) to determine the
length of the entire movie. Note that the Movie Toolbox may load more
data than you specify due to the way the data is loaded.

flags Gives you explicit control over what is loaded into memory and how long
to keep it around. The following constants are provided. You can set these
flags in any combination that makes sense for you.

keepInRam
Renders all data loaded with this flag set as nonpurgeable.
Nonpurgeable data is not released from memory until you
request it explicitly. This practice can fill up your heap very
quickly. Exercise caution.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-141

unkeepInRam
Renders all indicated data purgeable. The data is not
necessarily released from memory immediately, however.
Information about whether a chunk can be purged is
maintained internally by a single bit. This means there is no
counter. Therefore, if you care very much about the data,
you have to work very hard and use the edit list
meticulously.

flushFromRam
Purges all indicated data from memory, unless it is
currently in use by a media handler (for example, if it is
still drawing frames from the requested times). This flag
makes the memory available for purging, and then
performs the purge. You may want to use this option if you
are particularly low on memory.

loadForwardTrackEdits
In some cases, an edited movie plays back much more
smoothly if the data around edits is already in RAM. By
setting either this flag or the lookBackwardTrackEdits
flag, you can load only the data around edits. The Movie
Toolbox walks through the edits and decides the right
amount of data to load for you. If you are going to play the
movie forward, set only the loadForwardTrackEdits
flag. If you are going to play in both directions, or you
don’t know which direction, set both flags.

loadBackwardTrackEdits
In some cases, an edited movie plays back much more
smoothly if the data around edits is already in RAM. By
setting either this flag or lookForwardTrackEdits, you
can load only the data around edits. The Movie Toolbox
walks through the edits and decides the right amount of
data to load for you. If you are going to play the movie
only backward, set the loadBackwardTrackEdits flag.
If you are going to play in both directions, or you don’t
know which direction, set both flags.

DESCRIPTION

If LoadMovieIntoRam fails because it was out of memory, no data is purged.

ERROR CODES

File Manager errors

Memory Manager errors

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid
progressProcAborted –2019 Your progress function returned an error

C H A P T E R 2

Movie Toolbox

2-142 Movie Toolbox Reference

LoadTrackIntoRam

The LoadTrackIntoRam function loads a track’s data into memory. If the track does

not fit, the function returns an error.

pascal OSErr LoadTrackIntoRam (Track theTrack, TimeValue time,

 TimeValue duration, long flags);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

time Allows you to specify a portion of the track to load. The time parameter
contains the starting time of the track segment to load. The duration
parameter specifies the length of the segment to load. You must specify
this time value in the movie’s time coordinate system.

duration Allows you to specify a portion of the track to load. The time parameter
contains the starting time of the track segment to load. The duration
parameter specifies the length of the segment to load. You can use the
GetTrackDuration function (described on page 2-191) to determine the
length of the entire movie. Note that the media handler may load more
data than you specify.

flags Gives you explicit control over what is loaded into memory and how long
to keep it around. The following constants are provided:

enum

{

keepInRam = 1<<0,

unkeepInRam = 1<<1,

flushFromRam = 1<<2,

loadForwardTrackEdits = 1<<3,

loadBackwardTrackEdits = 1<<4

};

You can set these flags in any combination that makes sense. For
descriptions of the individual flag constants, see the description of the
LoadMovieIntoRam function on page 2-140.

ERROR CODES

File Manager errors

Memory Manager errors

invalidTrack –2009 This track is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid
progressProcAborted –2019 Your progress function returned an error

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-143

LoadMediaIntoRam

The LoadMediaIntoRam function loads a media’s data into memory.

The exact behavior of LoadMediaIntoRam is dependent on the media handler.

pascal OSErr LoadMediaIntoRam (Media theMedia, TimeValue time,

 TimeValue duration, long flags);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

time Allows you to specify a portion of the media to load. The time parameter
contains the starting time of the media segment to load. The duration
parameter specifies the length of the segment to load. This time value
must be expressed in the media’s time coordinate system.

duration Allows you to specify a portion of the media to load. The time parameter
contains the starting time of the media segment to load. The duration
parameter specifies the length of the segment to load. You can use the
GetMediaDuration function (described on page 2-194) to determine the
length of the entire media. Note that the media handler may load more
data than you specify if the media data was added in larger pieces.

flags Gives you explicit control over what is loaded into memory and how long
to keep it around. The following constants are provided:

enum

{

keepInRam = 1<<0,

unkeepInRam = 1<<1,

flushFromRam = 1<<2,

};

You can set these flags in any combination that makes sense. For
descriptions of the individual flag constants, see the description of the
LoadMovieIntoRam function on page 2-140.

DESCRIPTION

If the LoadMediaIntoRam function fails because it is out of memory, no data is purged.

ERROR CODES

File Manager errors

Memory Manager errors

invalidMedia –2008 This media is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid
progressProcAborted –2019 Your progress function returned an error

C H A P T E R 2

Movie Toolbox

2-144 Movie Toolbox Reference

SetMediaShadowSync

The SetMediaShadowSync function creates an association between the indicated frame

difference sample and a specified self-contained sample in a given media. This

association makes the self-contained sample a shadow sync sample for the frame

difference sample.

pascal OSErr SetMediaShadowSync (Media theMedia,

long frameDiffSampleNum,

long syncSampleNum);

theMedia The media in which the shadow sync is to be created.

frameDiffSampleNum
Specifies a frame difference sample. The sample number is obtained from
the MediaTimeToSampleNum function.

syncSampleNum
Specifies a shadow sync sample. The sample number is obtained from the
MediaTimeToSampleNum function.

DESCRIPTION

Note that the association established is between sample numbers—not sample times.

SPECIAL CONSIDERATIONS

Shadow sync samples should not be part of a track. You should not call

InsertMediaIntoTrack on these media samples. Typically, you add shadow sync

samples after a media is completely created. Shadow sync samples are not maintained

when editing or flattening movies.

ERROR CODES

Memory Manager errors

GetMediaShadowSync

The GetMediaShadowSync function returns the sample number of the shadow sync

associated with a given frame difference sample number.

pascal OSErr GetMediaShadowSync (Media theMedia,

long frameDiffSampleNum,

long *syncSampleNum);

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-145

theMedia Indicates the media in which the shadow sync sample has been
established and the shadow sync number is to be obtained.

frameDiffSampleNum
Specifies the frame difference sample number associated with the desired
shadow sync sample number.

syncSampleNum
Contains a pointer to the sample number of the shadow sync. If the
frameDiffSample parameter does not have a shadow sync, 0 is
returned in the syncSampleNum parameter.

ERROR CODES

Memory Manager errors

Disabling Movies and Tracks

The Movie Toolbox services only movies and tracks that are active. This section describes

functions that allow your application to enable and disable tracks and movies.

You can use the SetMovieActive function to activate and deactivate a movie. Use the

GetMovieActive function to determine whether a movie is active.

Similarly, your application can use the SetTrackEnabled function to enable and

disable a track. Use the GetTrackEnabled function to determine whether a track is

enabled. The Movie Toolbox also allows you to assign alternate tracks based on language

or quality criteria. Functions that work with alternate tracks are discussed in “Working

With Alternate Tracks” beginning on page 2-207.

SetMovieActive

The SetMovieActive function allows your application to activate and deactivate a

movie.

pascal void SetMovieActive (Movie theMovie, Boolean active);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

active Activates or deactivates the movie. Set this parameter to true to activate
the movie; set this parameter to false to deactivate the movie.

C H A P T E R 2

Movie Toolbox

2-146 Movie Toolbox Reference

SPECIAL CONSIDERATIONS

The Movie Toolbox services only active movies. When you deactivate a movie, the

Movie Toolbox may release system resources required by the movie, such as sound

hardware, open files, and allocated memory. Unless you set the newMovieActive flag

when creating a movie, you should call SetMovieActive before playing a movie.

ERROR CODES

SEE ALSO

You can determine whether a movie is active by calling the GetMovieActive function,

which is described in the next section.

GetMovieActive

The GetMovieActive function allows your application to determine whether a movie

is currently active. The Movie Toolbox services only active movies.

pascal Boolean GetMovieActive (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMovieActive function returns a Boolean value. The function sets this value to

true if the movie is active and false if the movie is not active.

ERROR CODES

SEE ALSO

You can make a movie active by calling the SetMovieActive function, which is

described in the previous section.

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-147

SetTrackEnabled

The SetTrackEnabled function allows your application to enable and disable a

track. The Movie Toolbox services only enabled tracks.

pascal void SetTrackEnabled (Track theTrack, Boolean isEnabled);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

isEnabled Enables or disables the track. Set this parameter to true to enable the
track. Set this parameter to false to disable the track.

SPECIAL CONSIDERATIONS

When you disable a track, the Movie Toolbox may release system resources that are used

by the track, including allocated memory.

ERROR CODES

SEE ALSO

You can determine whether a track is enabled by calling the GetTrackEnabled

function, which is described in the next section.

GetTrackEnabled

The GetTrackEnabled function allows your application to determine whether a track

is currently enabled. The Movie Toolbox services only enabled tracks.

pascal Boolean GetTrackEnabled (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackEnabled function returns a Boolean value. The function sets this value to

true if the track is enabled and false if the track is disabled.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-148 Movie Toolbox Reference

ERROR CODES

SEE ALSO

You can enable a track by calling the SetTrackEnabled function, which is described in

the previous section.

Generating Pictures From Movies

The Movie Toolbox provides a set of functions that allow your application to create

QuickDraw pictures from movies, tracks, and posters. This section discusses those

functions.

You can use the GetMoviePict function to create a picture from a movie or its

preview; you can use the GetTrackPict function to create a picture from a track. The

GetMoviePosterPict function lets you create a picture that contains a movie’s poster.

If a movie or track has no spatial representation, the returned picture is empty—that is,

the upper-left and lower-right coordinates are equal.

GetMoviePict

The GetMoviePict function creates a picture from the specified movie at the specified

time. This function uses only those movie tracks that are currently enabled and would

therefore be used in playback. Your application may call this function even if the movie

is inactive.

pascal PicHandle GetMoviePict (Movie theMovie, TimeValue time);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

time Specifies the movie image for the picture. The time parameter contains
the time from which the image is taken.

DESCRIPTION

The GetMoviePict function returns a handle to the picture. Your application must

dispose of this picture handle by calling QuickDraw’s KillPicture routine. If the

function could not create the picture, the returned handle is set to nil.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-149

SPECIAL CONSIDERATIONS

You can use the GetMoviePict function to create a picture. If the movie contains

compressed data, the picture created by this function may also contain compressed data

that cannot be displayed without QuickTime.

ERROR CODES

Image Compression Manager errors

Memory Manager errors

SEE ALSO

If you want to create a picture from a movie’s preview, put the movie into preview mode

by calling the SetMoviePreviewMode function (described on page 2-121), and then call

the GetMoviePict function.

GetMoviePosterPict

The GetMoviePosterPict function creates a picture that contains a movie’s poster.

pascal PicHandle GetMoviePosterPict (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMoviePosterPict function returns a handle to the picture. Your application

must dispose of this picture handle by calling QuickDraw’s KillPicture routine. If the

function could not create the picture, the returned handle is set to nil.

SPECIAL CONSIDERATIONS

If you have not assigned a poster time for the movie, the Movie Toolbox creates the

poster from the movie image that corresponds to a time value of 0.

ERROR CODES

Image Compression Manager errors

Memory Manager errors

invalidMovie –2010 This movie is corrupted or invalid
invalidTime –2015 This time value is invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-150 Movie Toolbox Reference

GetTrackPict

The GetTrackPict function creates a QuickDraw picture from the specified track at the

specified time. This function is similar to the GetMoviePict function (described on

page 2-148), except that GetTrackPict uses only the specified track to create the

picture.

pascal PicHandle GetTrackPict (Track theTrack, TimeValue time);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

time Specifies the track image for the picture. The time parameter contains the
time from which the image is taken.

DESCRIPTION

The GetTrackPict function returns a handle to the picture. Your application must

dispose of this picture handle by calling QuickDraw’s KillPicture routine. If the

function could not create the picture, the returned handle is set to nil.

SPECIAL CONSIDERATIONS

You can specify a disabled track. If the track contains compressed data, the picture

created by this function may also contain compressed data that cannot be displayed

without QuickTime.

ERROR CODES

Image Compression Manager errors

Memory Manager errors

Creating Tracks and Media Structures

The Movie Toolbox provides several functions that allow your application to create new

movie tracks and media structures and to dispose of existing tracks and media

structures. You use these functions when you are creating a new movie or when you are

editing an existing movie.

You can use the NewMovieTrack function to create a new track for a specified movie.

Conversely, you can use the DisposeMovieTrack function to dispose of an existing

track.

invalidTrack –2009 This track is corrupted or invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-151

Your application can create a new media for a track by calling the NewTrackMedia

function. You can use the DisposeTrackMedia function to dispose of an existing

media.

NewMovieTrack

You can create movie tracks by calling the NewMovieTrack function. Immediately after

creating a new track, you should call the NewTrackMedia function to create a media for

the track—a track without a media is of no use.

Note that when you add a track to a movie, the Movie Toolbox automatically adjusts the

display rectangle of the movie. You may want to detect these changes by calling the

GetMovieBox function (described on page 2-162) so that you can adjust the size of the

movie’s display window.

pascal Track NewMovieTrack (Movie theMovie, Fixed width,

Fixed height, short trackVolume);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

width Specifies a fixed number denoting the display width of the track, in
pixels. Along with the height parameter, this parameter defines the
track’s display rectangle.

height Specifies a fixed number denoting the display height of the track, in pixels.

Together, the height and width parameters define the track’s display
rectangle. The upper-left corner of this rectangle lies at (0,0) in the
movie’s rectangle. The height and width parameters therefore establish
the lower-right corner of the track’s display rectangle. If you are creating
a track that is not displayed, such as a sound track, set the height and
width parameters to 0.

trackVolume
Specifies the volume setting of the track as a 16-bit, fixed-point number.
The high-order 8 bits specify the integer portion; the low-order 8 bits
specify the fractional part. Volume values range from –1.0 to 1.0. Negative
values play no sound but preserve the absolute value of the volume
setting. Set this parameter to kFullVolume to play the track at its full,
natural volume. Set this parameter to kNoVolume to set the volume to 0.

kFullVolume
Sets the track to full volume (constant value is 1.0).

kNoVolume
Sets the track to no volume (constant value is 0.0).

C H A P T E R 2

Movie Toolbox

2-152 Movie Toolbox Reference

DESCRIPTION

The NewMovieTrack function returns a track identifier. If the function cannot create the

track, it sets the returned identifier to nil.

ERROR CODES

Memory Manager errors

DisposeMovieTrack

The DisposeMovieTrack function removes a track from a movie.

pascal void DisposeMovieTrack (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

When you remove a track from a movie, the Movie Toolbox also removes the

corresponding media from the movie.

SPECIAL CONSIDERATIONS

Your application should not call this function as part of the process of disposing of a

movie. When you dispose of a movie by calling the DisposeMovie function (described

on page 2-96), the Movie Toolbox disposes of all the movie’s tracks and their associated

media structures.

ERROR CODES

invalidMovie –2010 This movie is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid
trackNotInMovie –2030 This track is not in this movie

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-153

NewTrackMedia

After you have created a new track, you can create a media for the track by calling the

NewTrackMedia function. The media refers to the actual data samples used by the track.

pascal Media NewTrackMedia (Track theTrack, OSType mediaType,

 TimeScale timeScale, Handle dataRef,

 OSType dataRefType);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack
(described on page 2-151).

mediaType Specifies the type of media to create. The Movie Toolbox uses this value to
find the correct media handler for the new media. If the toolbox cannot
locate an appropriate media handler, it returns an error. The following
types are available:

timeScale Defines the media’s time coordinate system.

dataRef Specifies the data reference. This parameter contains a handle to the
information that identifies the file that contains this media’s data. The
type of information stored in that handle depends upon the value of the
dataRefType parameter.

If you are creating a new media that refers to existing media data, you
can use the GetMediaDataRef function (described on page 2-217) to
obtain information about the existing data reference. You can then supply
information about that reference to this function.

Set this parameter to nil to use the file that is associated with the movie
or if the movie does not have a movie file. For example, if you have
created the movie using the CreateMovieFile function (described on
page 2-96) or the NewMovieFromFile function (described on page 2-88),
the Movie Toolbox assumes that the movie’s data resides in the file
specified at that time. If you have created the movie using the
NewMovieFromScrap or NewMovie functions (described on page 2-245
and page 2-92, respectively), the movie does not have a movie file.

dataRefType
Specifies the type of data reference. If the data reference is an alias, you
must set this parameter to rAliasType ('alis'), indicating that the
reference is an alias. See Inside Macintosh: Files for more information about
aliases and the Alias Manager.

If you are creating a new media that refers to existing media data, you
can use the GetMediaDataRef function (described on page 2-217) to
obtain information about the existing data reference. You can then supply
information about that reference to this function.

VideoMediaType Video media

SoundMediaType Sound media

TextMediaType Text media

C H A P T E R 2

Movie Toolbox

2-154 Movie Toolbox Reference

Set this parameter to nil to use the file that is associated with the movie
or if the movie does not have a movie file. For example, if you have
created the movie using the CreateMovieFile function (described on
page 2-96) or the NewMovieFromFile function (described on page 2-88),
the Movie Toolbox assumes that the movie’s data resides in the file
specified at that time. If you have created the movie using the
NewMovieFromScrap or NewMovie functions (described on page 2-245
and page 2-92, respectively), the movie does not have a movie file.

DESCRIPTION

The NewTrackMedia function returns a media identifier. If the function cannot create

the new media, it sets this returned value to nil.

ERROR CODES

Memory Manager errors

DisposeTrackMedia

The DisposeTrackMedia function removes a media from a track. This function does

not remove the track from its movie.

pascal void DisposeTrackMedia (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

SPECIAL CONSIDERATIONS

Your application should not call the DisposeTrackMedia function as part of the

process of disposing of a movie. When you dispose of a movie by calling

DisposeMovie, the Movie Toolbox disposes of all the movie’s tracks and their

associated media structures.

ERROR CODES

cantFindHandler –2003 Cannot locate a handler
cantOpenHandler –2004 Cannot open a handler
noMediaHandler –2006 Media has no media handler
invalidTrack –2009 This track is corrupted or invalid
invalidTime –2015 This time value is invalid

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-155

Working With Progress and Cover Functions

The Movie Toolbox allows your application to assign two types of custom functions:

progress functions and cover functions. These functions allow you to perform special

processing under certain circumstances.

Some Movie Toolbox functions can take a long time to execute. For example, if you call

the FlattenMovie function and specify a large movie, the Movie Toolbox must read

and write all the sample data for the movie. During such operations you may wish to

display some kind of progress indicator to the user.

A progress function is an application-defined function that you can use to track the

progress of time-consuming activities, and thereby keep the user informed about

that progress.

The Movie Toolbox allows your application to perform custom processing whenever one

of your movie’s tracks covers a screen region or reveals a region that was previously

covered. You perform this processing in cover functions.

There are two types of cover functions: those that are called when your movie covers a

screen region, and those that are called when your movie uncovers a screen region that

was previously covered. Cover functions that are called when your movie covers a

screen region are responsible for erasing the region—you may choose to save the hidden

region in an offscreen buffer. Cover functions that are called when your movie reveals a

hidden screen region must redisplay the hidden region.

Note

The Movie Toolbox does not call your cover function in response to
changes to the movie’s transformation matrix (for example, changing
the matrix by calling the SetMovieBox function, which is described on
page 2-161, does not cause your cover function to be invoked). ◆

For a complete discussion of progress and cover functions, see “Application-Defined

Functions,” which begins on page 2-354.

The SetMovieProgressProc function helps your application work with progress

functions and the SetMovieCoverProcs function helps your application work with

cover functions.

SetMovieProgressProc

The SetMovieProgressProc function allows you to attach a progress function to each

movie. The function will be called whenever a long operation is underway. The Movie

Toolbox indicates the progress of the operation to your progress function.

C H A P T E R 2

Movie Toolbox

2-156 Movie Toolbox Reference

The Movie Toolbox ensures that your progress function is called regularly, but not too

often. In addition, the toolbox calls your function only during long operations.

pascal void SetMovieProgressProc (Movie theMovie,

 MovieProgressProcPtr p,

 long refCon);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

p Points to your progress function. To remove a movie’s progress function,
set this parameter to nil. Set this parameter to –1 for the Movie Toolbox
to provide a default progress function. See “Progress Functions”
beginning on page 2-354 for the interface your progress function must
support.

refCon Specifies a reference constant. The Movie Toolbox passes this value to
your progress function.

DESCRIPTION

The following Movie Toolbox functions use progress functions:

ConvertFileToMovieFile (described on page 2-93), CutMovieSelection

(described on page 2-247), CopyMovieSelection (described on page 2-248),

AddMovieSelection (described on page 2-250), and InsertMovieSegment

(described on page 2-257).

ERROR CODES

SetMovieCoverProcs

The SetMovieCoverProcs function allows you to set both types of cover functions.

pascal void SetMovieCoverProcs (Movie theMovie,

MovieRgnCoverProc uncoverProc,

MovieRgnCoverProc coverProc,

long refcon);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-157

uncoverProc
Points to a cover function. This function is called whenever one of your
movie’s tracks is removed from the screen or resized, revealing a
previously hidden screen region. If you want to remove the cover
function, set this parameter to nil. When the uncoverProc parameter is
nil, SetMovieCoverProcs uses the default cover or uncover function.
The default cover function does nothing. The default uncover function
erases the uncovered area. See “Cover Functions” beginning on
page 2-357 for the interface your cover function must support.

coverProc Points to a cover function. The Movie Toolbox calls this function
whenever one of your movies covers a portion of the screen. If you want
to remove the cover function, set this parameter to nil. See “Cover
Functions” beginning on page 2-357 for the interface your cover function
must support.

refcon Specifies a reference constant. The Movie Toolbox passes this value to
your cover functions.

ERROR CODES

Functions That Modify Movie Properties

The Movie Toolbox provides a number of functions that allow applications to edit

existing movies or to create the contents of new movies. This section describes those

functions. It has been divided into the following topics:

■ “Working With Movie Spatial Characteristics” describes a number of functions that
allow you to work with the display characteristics of movies

■ “Working With Sound Volume” discusses the functions that your application can use
to work with the sound volume of a movie or a track

■ “Working with Movie Time” discusses several functions that allow your application
to change the time characteristics of movies

■ “Working With Track Time” describes functions that your application can use to
change the time characteristics of individual tracks within a movie

■ “Working With Media Time” discusses the functions that your application can use to
change the time characteristics of a media

■ “Finding Interesting Times” describes the Movie Toolbox functions that allow you to
retrieve information about when key events occur in movies, tracks, and media
structures

■ “Locating a Movie’s Tracks and Media Structures” describes the functions that allow
your application to find tracks that are associated with a movie

■ “Working With Alternate Tracks” discusses the Movie Toolbox functions that allow
you to define and use alternate tracks in a movie

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-158 Movie Toolbox Reference

■ “Working With Data References” describes the Movie Toolbox functions that allow
you to work with a movie’s data references

■ “Determining Movie Creation and Modification Time”discusses the functions that
you can use to determine when a movie was created or last changed

■ “Working With Media Samples” describes several functions that allow you to get and
set detailed information about sample data in a media

■ “Working With Movie User Data” discusses the functions that you can use to get and
set the user data that is associated with a movie

Working With Movie Spatial Characteristics

The Movie Toolbox provides a number of functions that allow your application to

determine and change the display characteristics of movies and tracks. These functions

are discussed in the following sections. Before using any of these functions, you should

be familiar with the way in which the Movie Toolbox displays movies. See the discussion

of spatial properties in “About Movies” on page 2-14.

You can use the SetMovieGWorld and GetMovieGWorld functions to work with a

movie’s graphics world. See Inside Macintosh: Imaging for more information about

graphics worlds.

Your application can work with a movie’s matrix by calling the GetMovieMatrix

and SetMovieMatrix functions, and it can work with a track’s matrix with the

GetTrackMatrix and SetTrackMatrix functions. Then you can perform operations

on matrices with the Movie Toolbox’s matrix functions described in “Matrix Functions”

beginning on page 2-341.

The following functions affect the displayed movie and its tracks in the final display

coordinate system. The SetMovieGWorld and GetMovieGWorld functions let you

work with a movie’s display destination. The GetMovieBox and SetMovieBox

functions allow you to work with a movie’s boundary rectangle and its associated

transformations. Alternatively, you can use the GetMovieMatrix and

SetMovieMatrix functions to work directly with a movie’s transformation matrix.

The GetMovieDisplayBoundsRgn function determines a movie’s boundary region

at the current movie time. On the other hand, the

GetMovieSegmentDisplayBoundsRgn function determines a movie’s boundary

region over a specified time segment. You can use the GetMovieDisplayClipRgn and

SetMovieDisplayClipRgn functions to work with a movie’s display clipping region.

The GetTrackDisplayBoundsRgn and GetTrackSegmentDisplayBoundsRgn

functions determine a track’s final boundary region. You can use the GetTrackLayer

and SetTrackLayer functions to control the drawing order of tracks within a movie.

A number of functions affect a movie’s display boundaries before any display

transformations—these functions operate in the movie’s display coordinate system. You

can use the GetMovieClipRgn and SetMovieClipRgn functions to work with a

movie’s clipping region—that is, the clipping region that is applied before the movie

display transformation. Use the GetMovieBoundsRgn function to determine a movie’s

boundary region at the current movie time.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-159

Use the GetTrackMovieBoundsRgn function to work with a track’s boundary region

after matrix transformations have placed the track into the movie’s display system. The

SetTrackMatrix and GetTrackMatrix functions let you define a track’s matrix

transformations.

The Movie Toolbox provides several functions that affect a track’s display boundaries—

these functions operate in the track’s display coordinate system before any other display

transformations are applied. The GetTrackDimensions and SetTrackDimensions

functions allow you to establish a track’s coordinate system and to establish a track’s

source rectangle.

Note

A track’s source rectangle defines the coordinate system of the track.
You specify the dimensions of the rectangle by providing the
coordinates of the lower-right corner of the rectangle. The Movie
Toolbox sets the upper-left corner to (0,0) in the track’s coordinate
system. ◆

You can use the GetTrackBoundsRgn function to determine a track’s boundary region.

The GetTrackClipRgn and SetTrackClipRgn functions let you work with a track’s

clipping region. You can use the GetTrackMatte and SetTrackMatte functions to

establish a track’s matte. The DisposeMatte function allows you to dispose of a matte

once you are finished with it.

SetMovieGWorld

The SetMovieGWorld function allows your application to establish a movie’s display

coordinate system by setting the graphics world for displaying a movie.

pascal void SetMovieGWorld (Movie theMovie, CGrafPtr port,

 GDHandle gdh);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

port Points to the movie’s graphics port structure or graphics world. Set this
parameter to nil to use the current graphics port.

gdh Contains a handle to the movie’s graphics device structure. Set this
parameter to nil to use the current device. If the port parameter
specifies a graphics world, set this parameter to nil to use that graphics
world’s graphics device.

DESCRIPTION

The default cover function provided by the Movie Toolbox uses the background color

and pattern from the movie’s graphics world during erase operations.

C H A P T E R 2

Movie Toolbox

2-160 Movie Toolbox Reference

SPECIAL CONSIDERATIONS

The Movie Toolbox automatically sets the graphics world when you create a new movie.

Be sure that your application’s graphics port is valid or that you specify a valid graphics

port with the port parameter. If you pass nil for the port parameter, make sure the

current graphics world is valid.

When you use SetMovieGWorld, the Movie Toolbox remembers the current

background color and background pattern. These are used for erasing in the default

movie uncover function.

ERROR CODES

SEE ALSO

You can retrieve a movie’s graphics world by calling the GetMovieGWorld function,

which is described in the next section.

GetMovieGWorld

Your application can determine a movie’s graphics world by calling the

GetMovieGWorld function.

pascal void GetMovieGWorld (Movie theMovie, CGrafPtr *port,

GDHandle *gdh);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

port Contains a pointer to a field that is to receive a pointer to a graphics port
structure. The Movie Toolbox returns a pointer to the movie’s graphics
port structure. Set this parameter to nil if you do not want this
information.

gdh Contains a pointer to a field that is to receive a handle to a graphics
device structure. The Movie Toolbox returns a handle to the movie’s
graphics device structure. Set this parameter to nil if you do not want
this information.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-161

ERROR CODES

SEE ALSO

You can set a movie’s graphics world by calling the SetMovieGWorld function, which

is described in the previous section.

SetMovieBox

The SetMovieBox function sets a movie’s boundary rectangle, or movie box, which is a

rectangle that encompasses the spatial representation of all of the movie’s enabled tracks.

The movie box is in the display coordinate system.

pascal void SetMovieBox (Movie theMovie, const Rect *boxRect);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

boxRect Contains a pointer to a rectangle that contains the coordinates of the new
boundary rectangle.

DESCRIPTION

The Movie Toolbox changes the rectangle by modifying the translation and scale values

of the movie’s matrix to accommodate the new boundary rectangle.

The movie box might not have its upper-left corner set at (0,0) in its display window

when the movie is first loaded. Consequently, your application may need to adjust the

position of the movie box so that it appears in the appropriate location within your

application’s document window. If you don’t reset the movie position, the movie might

not be visible when it starts playing.

The following sample code demonstrates how to move the boundary rectangle.

GetMovieBox (movie, &movieBox);

OffsetRect (&movieBox, -movieBox.left, -movieBox.top);

SetMovieBox (movie, &movieBox);

SPECIAL CONSIDERATIONS

The SetMovieBox function does not call your cover functions.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-162 Movie Toolbox Reference

ERROR CODES

Memory Manager errors

SEE ALSO

You can modify the movie’s matrix directly by calling the SetMovieMatrix function,

which is described on page 2-170. You can retrieve a movie’s boundary rectangle by

calling the GetMovieBox function, which is described in the next section.

GetMovieBox

The GetMovieBox function returns a movie’s boundary rectangle, which is a rectangle

that encompasses all of the movie’s enabled tracks. The movie box is in the coordinate

system of the movie’s graphics world and defines the movie’s boundaries over the entire

duration of the movie. The movie’s boundary rectangle defines the size and shape of the

movie before the Movie Toolbox applies the display clipping region.

pascal void GetMovieBox (Movie theMovie, Rect *boxRect);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

boxRect Contains a pointer to a rectangle. The GetMovieBox function returns the
coordinates of the movie’s boundary rectangle into the structure referred
to by this parameter.

ERROR CODES

Memory Manager errors

SEE ALSO

You can use the SetMovieBox function, which is described in the previous section, to

change the coordinates of a movie’s boundary rectangle.

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-163

GetMovieDisplayBoundsRgn

The GetMovieDisplayBoundsRgn function allows your application to determine a

movie’s display boundary region. The display boundary region encloses all of a movie’s

enabled tracks after the track matrix, track clip, movie matrix, and movie clip have been

applied to all of the movie’s tracks. This region is in the display coordinate system of the

movie’s graphics world. The movie’s boundary rectangle encloses this region. For more

on boundary regions and matrices for movies and tracks, see “Spatial Properties,” which

begins on page 2-20.

pascal RgnHandle GetMovieDisplayBoundsRgn (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The Movie Toolbox derives the display boundary region only from enabled tracks, and

only from those tracks that are used in the current display mode (that is, movie, poster,

or preview). The display boundary region is valid for the current movie time.

The GetMovieDisplayBoundsRgn function allocates the region and returns a handle

to the region. Your application must dispose of this handle when you are done with it.

If the movie does not have a spatial representation at the current movie time, the

function returns an empty region. If the function could not satisfy your request, it sets

the returned handle to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

If you want to determine the boundary region that applies to a time segment of a movie,

you can use the GetMovieSegmentDisplayBoundsRegion function, which is

described in the next section.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-164 Movie Toolbox Reference

GetMovieSegmentDisplayBoundsRgn

The GetMovieSegmentDisplayBoundsRgn function allows your application to

determine a movie’s display boundary region during a specified segment. The display

boundary region encloses all of a movie’s enabled tracks after the track matrix, track clip,

movie matrix, and movie clip have been applied to all of the movie’s tracks. This region

is in the display coordinate system. The movie’s boundary encloses this region. For more

on boundary regions and matrices for movies and tracks, see “Spatial Properties,” which

begins on page 2-20.

pascal RgnHandle GetMovieSegmentDisplayBoundsRgn (Movie theMovie,

TimeValue time,

TimeValue

duration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

time Specifies the starting time of the movie segment to consider. This time
value must be expressed in the movie’s time coordinate system. The
duration parameter specifies the length of the segment.

duration Specifies the length of the segment to consider. Set this parameter to 0
to specify an instant in time.

DESCRIPTION

The Movie Toolbox derives the display boundary region only from enabled tracks and

only from those tracks that are used in the current display mode (that is, movie, poster,

or preview). If you want to determine the boundary region that applies to the current

movie time, you can use GetMovieDisplayBoundsRegion, which is described in the

previous section.

The GetMovieSegmentDisplayBoundsRgn function allocates the region and returns

a handle to the region. Your application must dispose of this region when you are done

with it. If the movie does not have a spatial representation during the specified segment,

the function returns an empty region. If the function could not satisfy your request, it

sets the returned handle to nil.

ERROR CODES

Memory Manager errors

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-165

SetMovieDisplayClipRgn

The SetMovieDisplayClipRgn function allows your application to establish a

movie’s current display clipping region.

pascal void SetMovieDisplayClipRgn (Movie theMovie,

RgnHandle theClip);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

theClip Contains a handle to the movie’s display clipping region. Note that the
Movie Toolbox makes a copy of this region. Your application must
dispose of the region referred to by this parameter when you are done
with it. Set this parameter to nil to disable a movie’s clipping region.

DESCRIPTION

The display clipping region defines any final clipping that is applied to the movie before

it is displayed, and it is valid for the entire duration of the movie. You must use this

region to clip a movie because the Movie Toolbox ignores the clip region of the movie’s

graphics world during display processing.

Note that the display clipping region is not saved with the movie.

SPECIAL CONSIDERATIONS

Do not use the SetMovieDisplayClipRgn function when you are using a movie

controller component—use the movie controller component function MCSetClip

instead. For details on the MCSetClip function, see the chapter “Movie Controller

Components” in Inside Macintosh: QuickTime Components.

ERROR CODES

Memory Manager errors

SEE ALSO

You can retrieve the display clipping region by calling the GetMovieDisplayClipRgn

function, which is described in the next section.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-166 Movie Toolbox Reference

GetMovieDisplayClipRgn

The GetMovieDisplayClipRgn function allows your application to determine a

movie’s current display clipping region.

pascal RgnHandle GetMovieDisplayClipRgn (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The display clipping region defines the final clipping that is applied to the movie before

it is displayed. The display clipping region is valid for the entire duration of the movie.

Note that the display clipping region is not saved with the movie.

The GetMovieDisplayClipRgn function allocates the region and returns a handle to

the region. Your application must dispose of this region when you are done with it. If the

function could not satisfy your request or if there is no display clipping region defined

for the movie, the function sets the returned handle to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

You can set the display clipping region by calling the SetMovieDisplayClipRgn

function, which is described in the previous section.

GetTrackDisplayBoundsRgn

The GetTrackDisplayBoundsRgn function allows your application to determine the

region a track occupies in a movie’s graphics world.

pascal RgnHandle GetTrackDisplayBoundsRgn (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-167

DESCRIPTION

This region is in the display coordinate system. This region, when intersected with the

movie’s display clipping region, describes which pixels in the movie’s graphics world

display information from the specified track. This region is valid for the current movie

time.

The GetTrackDisplayBoundsRgn function allocates the region and returns a

handle to the region. Your application must dispose of this region when you are done

with it. If the track does not have a spatial representation at the current movie time, the

function returns an empty region. If the function could not satisfy your request, it sets

the returned handle to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

If you want to determine the track’s boundary region over a specified time segment, you

can use the GetTrackSegmentDisplayBoundsRgn function, which is described in the

next section.

GetTrackSegmentDisplayBoundsRgn

The GetTrackSegmentDisplayBoundsRgn function allows your application to

determine the region a track occupies in a movie’s graphics world during a specified

segment.

pascal RgnHandle GetTrackSegmentDisplayBoundsRgn (Track theTrack,

TimeValue time,

TimeValue duration);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

time Specifies the starting time of the track segment to consider. This time
value must be expressed in the movie’s time coordinate system. The
duration parameter specifies the length of the segment.

duration Specifies the length of the segment to consider. Set this parameter to 0 to
consider an instant in time.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-168 Movie Toolbox Reference

DESCRIPTION

This region is in the display coordinate system. When combined with the movie’s

display clipping region, this region describes which pixels in the movie’s graphics

world display information from the specified track.

This region is valid for the specified segment.

The GetTrackSegmentDisplayBoundsRgn function allocates the region and returns

a handle to the region. Your application must dispose of this region when you are done

with it. If the track does not have a spatial representation during the specified segment,

the function returns an empty region. If the function could not satisfy your request, it

sets the returned handle to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

If you want to determine the track’s boundary region for the current movie time, you can

use the GetTrackDisplayBoundsRgn function, which is described in the previous

section.

SetTrackLayer

The SetTrackLayer function allows your application to set a track’s layer.

pascal void SetTrackLayer (Track theTrack, short layer);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

layer Specifies the track’s layer number. Layers are numbered from –32,768
through 32,767. When you create a new track, the Movie Toolbox sets its
track number to 0.

DESCRIPTION

Track layers are numbered from –32,768 through 32,767. You can use layers to control

how tracks are combined to create a movie. The Movie Toolbox displays layers by layer

number. That is, the Movie Toolbox displays higher-numbered layers first, placing

lower-numbered layers on top of them. If your movie has more than one track in the

invalidTrack –2009 This track is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-169

same layer, the Movie Toolbox displays those layers in order by track index value,

displaying higher-numbered tracks first.

ERROR CODES

SEE ALSO

You can retrieve a track’s layer number by calling the GetTrackLayer function, which

is described in the next section.

GetTrackLayer

The GetTrackLayer function allows your application to retrieve a track’s layer.

pascal short GetTrackLayer (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackLayer function returns an integer that contains the track’s layer number.

Tracks are numbered from –32,768 through 32,767. You can use layers to control

how tracks are combined to create a movie. The Movie Toolbox displays layers by layer

number. That is, the Movie Toolbox displays higher-numbered layers first, placing

lower-numbered layers on top of them. If your movie has more than one track in the

same layer, the Movie Toolbox displays those layers in order by track index value,

displaying higher-numbered tracks first.

ERROR CODES

SEE ALSO

You can set a track’s layer number by calling the SetTrackLayer function, which is

described in the previous section.

invalidTrack –2009 This track is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-170 Movie Toolbox Reference

SetMovieMatrix

The SetMovieMatrix function allows your application to set a movie’s transformation

matrix. The Movie Toolbox uses a movie’s matrix to map a movie from its display

coordinate system to its graphics world. You can retrieve a movie’s matrix with the

GetMovieMatrix function, which is described in the next section.

pascal void SetMovieMatrix (Movie theMovie,

const MatrixRecord *matrix);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

matrix Contains a pointer to the matrix structure for the movie. If you set this
parameter to nil, the Movie Toolbox uses the identity matrix.

SPECIAL CONSIDERATIONS

The SetMovieMatrix function does not call your cover functions.

ERROR CODES

SEE ALSO

The Movie Toolbox provides a number of functions that allow you to manipulate movie

matrices. See “Matrix Functions,” which begins on page 2-341, for information about

these functions.

GetMovieMatrix

The GetMovieMatrix function allows your application to retrieve a movie’s

transformation matrix.

pascal void GetMovieMatrix (Movie theMovie, MatrixRecord *matrix);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

matrix Contains a pointer to a matrix structure. The GetMovieMatrix function
returns the movie’s matrix into the structure referred to by this parameter.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-171

DESCRIPTION

The Movie Toolbox uses a movie’s matrix to map a movie from its coordinate system to

the display coordinate system.

ERROR CODES

SEE ALSO

You can set a movie’s matrix with the SetMovieMatrix function, which is described in

the previous section.

The Movie Toolbox provides a number of functions that allow you to manipulate movie

matrices. See “Matrix Functions,” which begins on page 2-341, for information about

these functions.

GetMovieBoundsRgn

The GetMovieBoundsRgn function allows your application to determine a movie’s

boundary region.

pascal RgnHandle GetMovieBoundsRgn (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The movie boundary region encloses all of a movie’s tracks after the union of the track

clip and the track matrix has been applied to all the movie’s tracks (but not to the movie

itself). This region is in the movie’s display coordinate system.

The Movie Toolbox derives the boundary region only from enabled tracks, and only

from those tracks that are used in the current display mode (that is, movie or preview).

The boundary region is valid for the current movie time.

The GetMovieBoundsRgn function allocates the region and returns a handle to the

region. Your application must dispose of this region when you are done with it. If the

movie does not have a spatial representation at the current time, the function returns an

empty region. If the function could not satisfy your request, it sets the returned handle

to nil.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-172 Movie Toolbox Reference

ERROR CODES

Memory Manager errors

GetTrackMovieBoundsRgn

The GetTrackMovieBoundsRgn function allows your application to determine the

region the track occupies in a movie’s boundary region. This region is in the display

coordinate system of the movie. The Movie Toolbox determines this region by applying

the track’s clipping region and matrix. This region is valid only for the current movie

time.

pascal RgnHandle GetTrackMovieBoundsRgn (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackMovieBoundsRgn function allocates the region and returns a handle

to the region. Your application must dispose of this region when you are done with it. If

the track does not have a spatial representation at the current movie time, the

function returns an empty region. If the function could not satisfy your request, it sets

the returned handle to nil.

ERROR CODES

SetMovieClipRgn

The SetMovieClipRgn function allows your application to establish a movie’s clipping

region.

pascal void SetMovieClipRgn (Movie theMovie, RgnHandle theClip);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidMovie –2010 This movie is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-173

theClip Contains a handle to the movie’s clipping region. Note that the Movie
Toolbox makes a copy of this region. Your application must dispose of the
region referred to by this parameter when you are done with it. Set this
parameter to nil to disable clipping for the movie.

DESCRIPTION

The clipping region defines any clipping that is applied to the movie before it is mapped

to its graphics world by applying the movie’s matrix. The clipping region is in the

movie’s display coordinate system.

The clipping region is saved with the movie.

ERROR CODES

Memory Manager errors

SEE ALSO

You can retrieve the clipping region by calling the GetMovieClipRgn function, which

is described in the next section.

GetMovieClipRgn

The GetMovieClipRgn function allows your application to determine a movie’s

clipping region.

pascal RgnHandle GetMovieClipRgn (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The clipping region defines any clipping that is applied to the movie before it is mapped

to its graphics world by applying the movie’s matrix. The clipping region is in the

movie’s display coordinate system and is valid for the entire duration of the movie.

The GetMovieClipRgn function allocates the region and returns a handle to the region.

Your application must dispose of this region when you are done with it. If the function

could not satisfy your request or if there is no clipping region defined for the movie, it

sets the returned handle to nil.

The clipping region is saved with the movie when your application saves the movie.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-174 Movie Toolbox Reference

ERROR CODES

Memory Manager errors

SEE ALSO

You can set the clipping region by calling the SetMovieClipRgn function, which is

described in the previous section.

SetTrackMatrix

The SetTrackMatrix function allows your application to establish a track’s

transformation matrix.

pascal void SetTrackMatrix (Track theTrack,

const MatrixRecord *matrix);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

matrix Contains a pointer to a matrix structure that contains the track’s new
matrix. If you set this parameter to nil, the Movie Toolbox uses the
identity matrix.

DESCRIPTION

The Movie Toolbox uses a track’s matrix to map a track from its own coordinate system

into a movie’s display coordinate system.

ERROR CODES

SEE ALSO

You can get a track’s matrix with the GetTrackMatrix function, which is described in

the next section.

The Movie Toolbox provides a number of functions that allow you to manipulate track

matrices. See “Matrix Functions” beginning on page 2-341 for information about these

functions.

invalidMovie –2010 This movie is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-175

GetTrackMatrix

The GetTrackMatrix function allows your application to retrieve a track’s

transformation matrix.

pascal void GetTrackMatrix (Track theTrack, MatrixRecord *matrix);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

matrix Contains a pointer to a matrix structure. The GetTrackMatrix function
returns the track’s matrix into the structure referred to by this parameter.

DESCRIPTION

The Movie Toolbox uses a track’s matrix to map a track from its own coordinate system

into a movie’s display coordinate system.

ERROR CODES

SEE ALSO

You can set a track’s matrix with the SetTrackMatrix function, which is described in

the previous section.

The Movie Toolbox provides a number of functions that allow you to manipulate track

matrices. See “Matrix Functions” on page 2-341 for information about these functions.

GetTrackBoundsRgn

The GetTrackBoundsRgn function allows the media to limit the size of the track

boundary rectangle. Therefore, the region returned by GetTrackBoundsRgn may not

be rectangular and may be smaller than the track boundary region.

pascal RgnHandle GetTrackBoundsRgn (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-176 Movie Toolbox Reference

DESCRIPTION

The GetTrackBoundsRgn function allocates the region and returns a handle to the

region. Your application must dispose of this region when you are done with it. If the

track does not have a spatial representation during the specified segment, the

function returns an empty region. If the function could not satisfy your request, it sets

the returned handle to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

See the description of the base media handler component’s MediaGetSrcRgn function

in Inside Macintosh: QuickTime Components for details on how the media limits the size of

the track boundary region.

SetTrackDimensions

The SetTrackDimensions function allows your application to establish a track’s

source, or display, rectangle.

pascal void SetTrackDimensions (Track theTrack, Fixed width,

Fixed height);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

width Contains a fixed-point number that specifies the width, in pixels, of the
track’s rectangle. This value corresponds to the x coordinate of the
lower-right corner of the track’s rectangle.

height Contains a fixed-point number that specifies the height, in pixels, of the
track’s rectangle. This value corresponds to the y coordinate of the
lower-right corner of the track’s rectangle.

DESCRIPTION

A track’s source rectangle defines the coordinate system of the track. You specify the

dimensions of the rectangle by providing the coordinates of the lower-right corner of the

rectangle. The Movie Toolbox sets the upper-left corner to (0,0) in the track’s coordinate

system.

If you change the dimensions of an existing track, the media data is scaled to fit into the

new rectangle.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-177

ERROR CODES

SEE ALSO

You can use the GetTrackDimensions function, which is described in the next section,

to retrieve a track’s rectangle.

GetTrackDimensions

The GetTrackDimensions function allows your application to determine a track’s

source, or display, rectangle.

pascal void GetTrackDimensions (Track theTrack, Fixed *width,

Fixed *height);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

width Contains a pointer to a fixed-point number. The Movie Toolbox returns
the width, in pixels, of the track’s rectangle. This value corresponds to the
x coordinate of the lower-right corner of the track’s rectangle.

height Contains a pointer to a fixed-point number. The Movie Toolbox returns
the height, in pixels, of the track’s rectangle. This value corresponds to the
y coordinate of the lower-right corner of the track’s rectangle.

DESCRIPTION

A track’s source rectangle defines the coordinate system of the track. You specify the

dimensions of the rectangle by providing the coordinates of the lower-right corner of the

rectangle. The Movie Toolbox sets the upper-left corner to (0,0) in the track’s coordinate

system.

ERROR CODES

SEE ALSO

You can use the SetTrackDimensions function, which is described in the previous

section, to set a track’s rectangle.

invalidTrack –2009 This track is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-178 Movie Toolbox Reference

SetTrackClipRgn

The SetTrackClipRgn function allows your application to set the clipping region of a

track.

pascal void SetTrackClipRgn (Track theTrack, RgnHandle theClip);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

theClip Contains a handle to the track’s clipping region. Note that the Movie
Toolbox makes a copy of this region. Your application must dispose of the
region referred to by this parameter when you are done with it. Set this
parameter to nil to disable clipping for the track.

DESCRIPTION

The clipping region is in the track’s coordinate system. The Movie Toolbox applies the

clipping region to a track before it applies the track’s matrix.

ERROR CODES

Memory Manager errors

SEE ALSO

You can get a track’s clipping region by calling the GetTrackClipRgn function, which

is described in the next section.

GetTrackClipRgn

The GetTrackClipRgn function allows your application to determine the clipping

region of a track.

pascal RgnHandle GetTrackClipRgn (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-179

DESCRIPTION

The clipping region is in the track’s coordinate system. The Movie Toolbox applies the

clipping region to a track before it applies the track’s matrix. This region is valid for the

entire duration of the track.

The GetTrackClipRgn function allocates the region and returns a handle to the region.

Your application must dispose of this region when you are done with it. If the function

could not satisfy your request or if there is no clipping region defined for the track, it sets

the returned handle to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

You can establish a track’s clipping region by calling the SetTrackClipRgn function,

which is described in the previous section.

SetTrackMatte

The SetTrackMatte function allows your application to set a track’s matte. The matte

defines which of the track’s pixels are displayed in a movie. You must specify the matte

in a pixel map structure.

pascal void SetTrackMatte (Track theTrack, PixMapHandle theMatte);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

theMatte Contains a handle to the matte. The Movie Toolbox makes a copy of the
matte, including its color table and pixels. Consequently, your application
must dispose of the matte when you are done with it. Set this parameter
to nil to remove the track’s matte.

DESCRIPTION

The Movie Toolbox displays the weighted average of the track and its destination based

on the corresponding pixel in the matte (this feature is fully functional in System 7 and is

approximated in System 6).

SPECIAL CONSIDERATIONS

Note that the track matte must have its boundaries defined by the track rectangle.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-180 Movie Toolbox Reference

ERROR CODES

Memory Manager errors

SEE ALSO

You can retrieve a track’s matte by calling the GetTrackMatte function, which is

described in the next section. Listing 2-15 on page 2-73 shows how to use the

SetTrackMatte and GetTrackMatte functions to create a track matte.

GetTrackMatte

The GetTrackMatte function allows your application to retrieve a copy of a track’s

matte. The matte defines which of the track’s pixels are displayed in a movie, and it is

valid for the entire duration of the movie. This function returns the matte in a pixel map

structure. You may use QuickDraw functions to manipulate the returned matte.

However, you should use the Movie Toolbox’s DisposeMatte function (described in

the next section) to dispose of the matte when you are finished with it.

pascal PixMapHandle GetTrackMatte (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackMatte function returns a handle to the matte. Your application must

dispose of this handle when you are done with it—you must use the DisposeMatte

function, which is described in the next section, to dispose of the matte. If the function

could not satisfy your request, it sets the returned handle to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

You can establish a track’s matte by calling the SetTrackMatte function, which is

described in the previous section. Listing 2-15 on page 2-73 shows how to use the

SetTrackMatte and GetTrackMatte functions to create a track matte.

invalidTrack –2009 This track is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-181

DisposeMatte

The DisposeMatte function disposes of a matte that you obtained from the

GetTrackMatte function, which is described in the previous section.

pascal void DisposeMatte (PixMapHandle theMatte);

theMatte Handle to the matte to be disposed. Your application obtains this handle
from the GetTrackMatte function.

SPECIAL CONSIDERATIONS

You should not use this function to dispose of mattes or pixel maps that you obtain

through other means.

ERROR CODES

None

Working With Sound Volume

The Movie Toolbox allows you to set the sound volume of movies and tracks. Track

volumes allow tracks within a movie to have different volumes. A track’s volume is

scaled by the movie’s volume to produce the track’s final volume. Furthermore, the

movie’s volume is scaled by the sound volume that is returned by the Sound Manager’s

GetSoundVol routine. Thus, the user can control the overall volume from the Sound

control panel.

Volume values range from –1.0 to 1.0. Higher values translate to louder volume.

Negative values indicate muted volume. That is, the Movie Toolbox does not play any

sound for movies or tracks with negative volume settings, but the original volume level

is retained as the absolute value of the volume setting. Therefore, if you want to toggle

the current state of the volume, you can invert the sign of the current volume setting, as

shown here:

SetMovieVolume (theMovie, -GetMovieVolume (theMovie));

You can use the GetMovieVolume and SetMovieVolume functions to work with a

movie’s volume.

The GetTrackVolume and SetTrackVolume functions allow you to work with a

track’s volume.

C H A P T E R 2

Movie Toolbox

2-182 Movie Toolbox Reference

SetMovieVolume

The SetMovieVolume function allows your application to set a movie’s current volume.

pascal void SetMovieVolume (Movie theMovie, short volume);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

volume Specifies the current volume setting of the movie represented as a 16-bit,
fixed-point number. The high-order 8 bits contain the integer part of the
value; the low-order 8 bits contain the fractional part. Volume values
range from –1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting.

kFullVolume
Sets the movie to full volume (constant value is 1.0).

kNoVolume
Sets the movie to no volume (constant value is 0.0).

ERROR CODES

SEE ALSO

Your application can obtain the current volume setting by calling the GetMovieVolume

function, which is described in the next section.

GetMovieVolume

The GetMovieVolume function returns a movie’s current volume setting.

pascal short GetMovieVolume (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMovieVolume function returns an integer that contains the movie’s current

volume represented as a 16-bit, fixed-point number. The high-order 8 bits contain the

integer part of the value; the low-order 8 bits contain the fractional part. Volume values

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-183

range from –1.0 to 1.0. Negative values play no sound but preserve the absolute value of

the volume setting.

ERROR CODES

SEE ALSO

You can change a movie’s current volume by calling the SetMovieVolume function,

which is described in the previous section.

SetTrackVolume

The SetTrackVolume function allows your application to set a track’s current volume.

pascal void SetTrackVolume (Track theTrack, short volume);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

volume Specifies the current volume setting of the track represented as a 16-bit,
fixed-point number. The high-order 8 bits contain the integer part of the
value; the low-order 8 bits contain the fractional part. Volume values
range from –1.0 to 1.0. Negative values play no sound but preserve the
absolute value of the volume setting.

kFullVolume
Sets the track to full volume (constant value is 1.0).

kNoVolume Sets the track to no volume (constant value is 0.0).

DESCRIPTION

Note that, when the track is played, the track’s volume is scaled by the volume setting of

the movie that contains the track.

ERROR CODES

SEE ALSO

Your application can obtain the current volume setting by calling the GetTrackVolume

function, which is described in the next section.

invalidMovie –2010 This movie is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-184 Movie Toolbox Reference

GetTrackVolume

The GetTrackVolume function returns a track’s current volume setting.

pascal short GetTrackVolume (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackVolume function returns an integer that contains the track’s current

volume represented as a 16-bit, fixed-point number. The high-order 8 bits contain the

integer part of the value; the low-order 8 bits contain the fractional part. Volume values

range from –1.0 to 1.0. Negative values play no sound but preserve the absolute value of

the volume setting.

ERROR CODES

SEE ALSO

You can change a track’s current volume by calling the SetTrackVolume function,

which is described in the previous section.

Working with Movie Time

Every QuickTime movie has its own time base. A movie’s time base allows all the tracks

that make up the movie to be synchronized when the movie is played. The Movie

Toolbox provides a number of functions that allow your application to determine and

establish the time parameters of a movie. This section discusses those functions. Later

sections in this chapter discuss the Movie Toolbox functions that allow you to work with

the time parameters of tracks and media structures. For a complete discussion of the

relationships between movie, track, and media time parameters, see “Introduction to

Movies” beginning on page 2-5. For information about more functions that work with

time, see “Time Base Functions” beginning on page 2-315.

You can use the GetMovieTimeBase function to retrieve the time base for a movie.

You can work with a movie’s current time by calling the GetMovieTime,

SetMovieTime, and SetMovieTimeValue functions.

You can work with a movie’s time scale by calling the GetMovieTimeScale and

SetMovieTimeScale functions.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-185

The Movie Toolbox can calculate the total duration of a movie. You can use the

GetMovieDuration function to retrieve a movie’s duration.

Your application can call the GetMovieRate and SetMovieRate to work with a

movie’s playback rate.

GetMovieDuration

The GetMovieDuration function returns the duration of a movie. The Movie Toolbox

examines the durations of all the tracks of the movie to determine this value.

pascal TimeValue GetMovieDuration (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMovieDuration function returns a time value. This time value indicates the

movie’s duration, and it is expressed in the movie’s time scale.

You cannot set movie direction explicitly because it is calculated as being the maximum

durations of all the tracks in the movie.

ERROR CODES

SetMovieTimeValue

The SetMovieTimeValue function allows your application to set a movie’s time value.

You specify the new time as a time value, rather than in a time structure. You must

ensure that the time value is in the movie’s time scale.

pascal void SetMovieTimeValue (Movie theMovie, TimeValue newTime);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-186 Movie Toolbox Reference

newTime Specifies the movie’s new time value. The Movie Toolbox interprets this
time value relative to the movie’s time scale. If you specify a value that is
outside the duration of the movie, the Movie Toolbox sets the movie time
to the beginning or end of the movie, as appropriate.

ERROR CODES

SEE ALSO

You can also set a movie’s current time by calling the SetMovieTime function, which is

described in the next section. This function requires that you specify the new time value

in a time structure.

SetMovieTime

The SetMovieTime function allows your application to change a movie’s current time.

You must specify the new time in a time structure. The Movie Toolbox saves the movie’s

current time when you save the movie.

pascal void SetMovieTime (Movie theMovie,

const TimeRecord *newTime);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

newTime Contains a pointer to a time structure. If you specify a value that is
outside the duration of the movie, the Movie Toolbox sets the movie time
to the beginning or end of the movie, as appropriate.

ERROR CODES

SEE ALSO

You can use the SetMovieTimeValue function, described in the previous section, to

change a movie’s current time without specifying a time structure.

You can retrieve a movie’s current time value by calling the GetMovieTime function,

which is described in the next section.

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-187

GetMovieTime

The GetMovieTime function returns a movie’s current time. This function returns the

time in two formats: as a time value and in a time structure.

pascal TimeValue GetMovieTime (Movie theMovie,

 TimeRecord *currentTime);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

currentTime
Contains a pointer to a time structure. The GetMovieTime function
updates this time structure to contain the movie’s current time. If you do
not want this information, set this parameter to nil.

DESCRIPTION

The GetMovieTime function returns a time value. This time value indicates the movie’s

current time, and it is expressed in the movie’s time scale.

ERROR CODES

SEE ALSO

You can set a movie’s current time by calling the SetMovieTime or

SetMovieTimeValue functions, which are described on page 2-186 and page 2-185,

respectively.

SetMovieRate

The SetMovieRate function sets a movie’s playback rate.

pascal void SetMovieRate (Movie theMovie, Fixed rate);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

rate Specifies the new movie rate as a 32-bit, fixed-point number. Positive
integers indicate forward rates and negative integers indicate reverse
rates.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-188 Movie Toolbox Reference

ERROR CODES

SEE ALSO

Your application can retrieve a movie’s current playback rate by calling the

GetMovieRate function, which is described in the next section. To play a movie at the

movie’s preferred rate from a position stored within the movie, you can use the

StartMovie function (described on page 2-111).

GetMovieRate

The GetMovieRate function returns a movie’s playback rate.

pascal Fixed GetMovieRate (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMovieRate function returns the movie rate as a 32-bit, fixed-point number.

Positive integers indicate forward rates and negative integers indicate reverse rates.

ERROR CODES

SEE ALSO

Your application can set the movie’s playback rate by calling the SetMovieRate

function, which is described in the previous section.

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-189

SetMovieTimeScale

The SetMovieTimeScale function establishes a movie’s time scale.

pascal void SetMovieTimeScale (Movie theMovie,

TimeScale timeScale);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

timeScale Specifies the movie’s new time scale.

DESCRIPTION

In response to this request, the Movie Toolbox adjusts the edit list of the movie’s tracks

so that movie playback is unaffected. If you change a movie’s time scale by setting it to a

smaller value (thereby losing precision in the movie’s time values), the Movie Toolbox

may edit information from the movie. In general, you should only increase the time scale

value, and you should try to use integer multiples of the existing time scale.

SPECIAL CONSIDERATIONS

Do not call SetMovieTimeScale if you have edited your movie. This function

quantizes the beginning and the end of the edits to the new units. Therefore, if you do

not use an integral multiple, the position of your edits may change.

ERROR CODES

SEE ALSO

You can retrieve a movie’s time scale by calling the GetMovieTimeScale function,

which is described in the next section.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-190 Movie Toolbox Reference

GetMovieTimeScale

The GetMovieTimeScale function returns the time scale of a movie.

pascal TimeScale GetMovieTimeScale (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The default QuickTime movie time scale is 600 units per second; however, this number

may change in the future. The default time scale was chosen because it is convenient for

working with common video frame rates of 30, 25, 24, 15, 12, 10, and 8.

ERROR CODES

SEE ALSO

You can set a movie’s time scale by calling the SetMovieTimeScale function, which is

described in the previous section.

GetMovieTimeBase

The GetMovieTimeBase function returns a movie’s time base.

pascal TimeBase GetMovieTimeBase (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

You cannot use the returned time base value with the Movie Toolbox’s

SetTimeBaseMasterTimeBase and SetTimeBaseMasterClock functions

(described on page 2-320 and page 2-318, respectively). Use the

SetMovieMasterTimeBase and SetMovieMasterClock functions (described on

page 2-318 and page 2-317, respectively) instead.

The Movie Toolbox disposes of a movie’s time base when you dispose of the movie.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-191

SPECIAL CONSIDERATIONS

Do not dispose of the TimeBase result returned by the GetMovieTimeBase function as

it is owned by the movie.

ERROR CODES

Working With Track Time

The Movie Toolbox provides several functions that allow your application to determine

and establish a track’s time parameters. A track uses the time base of the movie that

contains the track; therefore there are no functions that work with a track’s time base or

time scale. However, you can determine a track’s duration and its offset from the start of

a movie.

All of the tracks in a movie use the movie’s time coordinate system. That is, the movie’s

time scale defines the basic time unit for each of the movie’s tracks. Each track begins at

the beginning of the movie, but the track’s data might not begin until some time value

other than 0. This intervening time is represented by blank space—in an audio track the

blank space translates to silence; in a video track the blank space generates no visual

image. This blank space is the track offset. Each track has its own duration. This

duration need not correspond to the duration of the movie. A movie duration always

equals the maximum track duration. See Figure 2-6 on page 2-12 for a visual

representation of track duration and track offset.

You can use the GetTrackDuration function to determine a track’s duration.

The SetTrackOffset and GetTrackOffset functions enable you to work with a

track’s offset from the start of the movie that contains it.

The TrackTimeToMediaTime function lets you translate a track’s time to the

corresponding time value of a media in the track.

GetTrackDuration

The GetTrackDuration function returns the duration of a track. The duration

corresponds to the ending time of the track in the movie’s time coordinate system

(remember that all tracks start at movie time 0).

pascal TimeValue GetTrackDuration (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-192 Movie Toolbox Reference

DESCRIPTION

The GetTrackDuration function returns a time value. This time value indicates the

track’s duration, and it is expressed in the time scale of the movie that contains the track.

ERROR CODES

SetTrackOffset

The SetTrackOffset function modifies the duration of the empty space that lies at the

beginning of the track, thus changing the duration of the entire track. You specify this

time offset as a time value in the movie’s time scale. See Figure 2-6 on page 2-12 for an

illustration of a track offset in a movie.

pascal void SetTrackOffset (Track theTrack,

 TimeValue movieOffsetTime);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

movieOffsetTime
Specifies the track’s offset from the start of the movie, and must be
expressed in the time scale of the movie that contains the track.

ERROR CODES

SEE ALSO

You can determine a track’s time offset by calling the GetTrackOffset function, which

is described in the next section.

invalidTrack –2009 This track is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-193

GetTrackOffset

The GetTrackOffset function allows your application to determine the time

difference between the start of a track and the start of the movie that contains the track.

pascal TimeValue GetTrackOffset (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackOffset function returns a time value. This time value indicates the

track’s offset from the start of the movie, and it is expressed in the time scale of the

movie that contains the track.

ERROR CODES

SEE ALSO

You can set a track’s offset by calling the SetTrackOffset function, which is described

in the previous section.

TrackTimeToMediaTime

The TrackTimeToMediaTime function allows your application to convert a track’s

time value to a time value that is appropriate to the track’s media using the track’s edit

list. You specify the track’s time in the movie’s time coordinate system.

pascal TimeValue TrackTimeToMediaTime (TimeValue value,

Track theTrack);

value Specifies the track’s time value; must be expressed in the time scale of the
movie that contains the track.

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-194 Movie Toolbox Reference

DESCRIPTION

The Movie Toolbox returns a value that is in the media’s time coordinate system.

You can use the TrackTimeToMediaTime function to determine whether a specified

track edit is empty. If the track time corresponds to empty space, this function returns a

value of –1.

The TrackTimeToMediaTime function maps the track time through the track’s edit list

to come up with the media time. This time value contains the track’s time value

according to the media’s time coordinate system. If the time you specified lies outside of

the movie’s active segment or corresponds to empty space in the track, the

TrackTimeToMediaTime function returns a value of –1.

ERROR CODES

Working With Media Time

The Movie Toolbox provides functions that allow your application to work with the time

parameters of a media.

You can use the GetMediaDuration function to determine a media’s duration.

The GetMediaTimeScale and SetMediaTimeScale let you determine or establish a

media’s time scale.

GetMediaDuration

The GetMediaDuration function returns the duration of a media.

pascal TimeValue GetMediaDuration (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

The GetMediaDuration function returns a time value. This time value indicates the

media’s duration, and it is expressed in the time scale of the media.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-195

SetMediaTimeScale

The SetMediaTimeScale function allows your application to set a media’s time scale.

pascal void SetMediaTimeScale (Media theMedia,

 TimeScale timeScale);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

timeScale Specifies the media’s new time scale.

DESCRIPTION

In response to this request, the Movie Toolbox attempts to adjust the edit list of the

appropriate track so that movie playback is unaffected. If you change a media’s time

scale by setting it to a smaller value, you may lose precision in media time values. In

general, you should only increase the time scale value, and you should try to use integer

multiples of the existing time scale.

SPECIAL CONSIDERATIONS

Do not use SetMediaTimeScale as a general rule. If you call this function with a

number that is not an integer multiple, the duration of the samples vary unpredictably,

and their start times tend to drift.

ERROR CODES

GetMediaTimeScale

The GetMediaTimeScale function allows your application to determine a media’s

time scale.

pascal TimeScale GetMediaTimeScale (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-196 Movie Toolbox Reference

DESCRIPTION

The GetMediaTimeScale function returns the media’s time scale.

ERROR CODES

Finding Interesting Times

The Movie Toolbox provides a set of functions that help you locate samples in movies,

tracks, and media structures. These functions are based on the concept of “interesting

times.” An interesting time refers to a time value in a movie, track, or media that meets

certain search criteria. You specify the search criteria to the Movie Toolbox. The Movie

Toolbox then scans the movie, track, or media, and locates time values that meet those

search criteria.

You can use these functions to search through image sequences. For example, you may

want to locate each frame in an image sequence. Or you may be more interested in key

frames, especially if you are trying to optimize display performance. In image data, sync

samples are referred to as key frames. For more information on key frames, see the

chapter “Image Compression Manager” in this book. An easy way to determine whether

a movie has been edited is to look for track edits in the movie data. You may also be

interested in searching for samples in a movie’s media. If you set the appropriate search

criteria, the Movie Toolbox locates the appropriate frames for you. You need the

functions described in this section because QuickTime doesn’t have a fixed rate. Each

frame can have its own duration.

The Movie Toolbox identifies an interesting time by specifying its starting time and

duration. The starting time indicates the time in the movie, track, or media where the

search criteria are met. The duration indicates the length of time during which the search

criteria remain in effect. For example, if you are looking for samples in a media, the start

time would indicate the beginning of the sample, and the duration would indicate the

length of time to the next sample. In this case, you could find the next media sample by

adding the duration to the start time. These duration values are always positive—you

determine the direction of the search by setting the sign of the rate value you supply to

the functions.

Note that movie interesting times are defined in the scope of the movie as a whole. As a

result, one interesting time ends when another interesting time starts in any track in the

movie. For example, if you are looking for key frames in a movie, the duration value

from one interesting time tells you when the next key frame starts. However, that second

key frame may be in a different track in the movie. Therefore, the duration of the

interesting time does not necessarily correspond to the duration of the key frame.

You can use the GetMovieNextInterestingTime function to locate times of interest

in a movie. The GetTrackNextInterestingTime function lets you work with tracks.

Use the GetMediaNextInterestingTime function to locate samples in a media.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-197

GetMovieNextInterestingTime

The GetMovieNextInterestingTime function searches for times of interest in a

movie. This function examines only the movie’s enabled tracks.

pascal void GetMovieNextInterestingTime (Movie theMovie,

short interestingTimeFlags,

short numMediaTypes,

const OSType *whichMediaTypes,

TimeValue time, Fixed rate,

TimeValue *interestingTime,

TimeValue *interestingDuration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

interestingTimeFlags
Specifies the search criteria. Note that you may set only one of
the nextTimeMediaSample, nextTimeMediaEdit,
nextTimeTrackEdit and nextTimeSyncSample flags to 1. The
following flags are available (set unused flags to 0):

nextTimeMediaSample
Searches for the next sample in the movie’s media. Set this
flag to 1 to search for the next sample.

nextTimeMediaEdit
Searches for the next group of samples in the movie’s
media. Set this flag to 1 to search for the next group of
samples.

nextTimeTrackEdit
Searches for the media sample that corresponds to the next
entry in a track’s media edit list. The end of the track is
considered an empty edit. Set this flag to 1 to search for the
next track edit.

nextTimeSyncSample
Searches for the next sync sample in the movie’s media. Set
this flag to 1 to search for the next sync sample.

Sync samples do not rely on preceding frames for content.
Some compression algorithms conserve space by
eliminating duplication between consecutive frames in a
sample.

C H A P T E R 2

Movie Toolbox

2-198 Movie Toolbox Reference

nextTimeEdgeOK
Instructs the Movie Toolbox that you are willing to receive
information about elements that begin or end at the time
specified by the time parameter. Set this flag to 1 to accept
this information.

This flag is especially useful at the beginning or end of a
movie. The function returns valid information about the
beginning and end of the movie.

nextTimeIgnoreActiveSegment
Instructs the Movie Toolbox to look outside of the active
segment for samples that meet the search criteria. Set this
flag to 1 to search outside of the active segment.

numMediaTypes
Specifies the number of media types in the table referred to by the
whichMediaType parameter. Set this parameter to 0 to search all media
types.

whichMediaTypes
Contains a pointer to an array of media types. You can use this parameter
to limit the search to a specified set of media types. Each entry in the table
referred to by this parameter identifies a media type to be included in the
search. You use the numMediaTypes parameter to indicate the number of
entries in the table. Set this parameter to nil to search all media types.

VisualMediaCharacteristic 'eyes'
Instructs the Movie Toolbox to search all tracks that have
spatial bounds.

AudioMediaCharacteristic 'ears'
Instructs the Movie Toolbox to search all tracks that play
sound.

time Specifies a time value that establishes the starting point for the search.
This time value must be expressed in the movie’s time scale.

rate Contains the search direction. Negative values cause the Movie Toolbox
to search backward from the starting point specified in the time
parameter. Other values cause a forward search.

interestingTime
Contains a pointer to a time value. The Movie Toolbox returns the first
time value it finds that meets the search criteria specified in the flags
parameter. This time value is in the movie’s time scale.

If there are no times that meet the search criteria you specify, the Movie
Toolbox sets this value to –1.

If you are not interested in this information, set this parameter to nil.

interestingDuration
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the interesting time. This time value is in the movie’s time
coordinate system. Set this parameter to nil if you do not want this
information—in this case, the function works more quickly.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-199

DESCRIPTION

You can use the GetMovieNextInterestingTime function to step through the frames

of a movie one by one. If no tracks match the media types, the invalidMedia error is

returned.

ERROR CODES

GetTrackNextInterestingTime

The GetTrackNextInterestingTime function searches for times of interest in a track.

pascal void GetTrackNextInterestingTime (Track theTrack,

short interestingTimeFlags,

TimeValue time, Fixed rate,

TimeValue *interestingTime,

TimeValue *interestingDuration);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

interestingTimeFlags
Specifies the search criteria. Note that you may set only one of
the nextTimeMediaSample, nextTimeMediaEdit,
nextTimeTrackEdit and nextTimeSyncSample flags to 1. The
following flags are available (set unused flags to 0):

nextTimeMediaSample
Searches for the next sample in the track’s media. Set this
flag to 1 to search for the next sample.

nextTimeMediaEdit
Searches for the next group of samples in the track’s media.
Set this flag to 1 to search for the next group of samples.

nextTimeTrackEdit
Searches for the media sample that corresponds to the next
entry in a track’s media edit list. The end of the track is
considered an empty edit. Set this flag to 1 to search for the
next track edit.

invalidMedia –2008 This media is corrupted or invalid
invalidTrack –2009 This track is corrupted or invalid
invalidMovie –2010 This movie is corrupted or invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

2-200 Movie Toolbox Reference

nextTimeSyncSample
Searches for the next sync sample in the track’s media. Set
this flag to 1 to search for the next sync sample.

Sync samples do not rely on preceding frames for content.
Some compression algorithms conserve space by
eliminating duplication between consecutive frames in a
sample.

nextTimeEdgeOK
Instructs the Movie Toolbox that you are willing to receive
information about elements that begin or end at the time
specified by the time parameter. Set this flag to 1 to accept
this information.

This flag is especially useful at the beginning or end of a
track. The function returns valid information about the
beginning and end of the track.

nextTimeIgnoreActiveSegment
Instructs the Movie Toolbox to look outside of the active
segment for samples that meet the search criteria. Set this
flag to 1 to search outside of the active segment.

time Specifies a time value that establishes the starting point for the search.
This time value must be expressed in the movie’s time scale.

rate Contains the search direction. Negative values cause the Movie Toolbox
to search backward from the starting point specified in the time
parameter. Other values cause a forward search.

interestingTime
Contains a pointer to a time value. The Movie Toolbox returns the first
time value it finds that meets the search criteria specified in the flags
parameter. This time value is in the movie’s time scale.

If there are no times that meet the search criteria you specify, the Movie
Toolbox sets this value to –1.

Set this parameter to nil if you are not interested in this information.

interestingDuration
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the interesting time. This time value is in the movie’s time
coordinate system. Set this parameter to nil if you do not want this
information—in this case, the function works more quickly.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-201

GetMediaNextInterestingTime

The GetMediaNextInterestingTime function searches for times of interest in a

media.

pascal void GetMediaNextInterestingTime (Media theMedia,

short interestingTimeFlags,

TimeValue time, Fixed rate,

TimeValue *interestingTime,

TimeValue *interestingDuration);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

interestingTimeFlags
Specifies the search criteria. Note that you may set only one of
the nextTimeMediaSample, nextTimeMediaEdit and
nextTimeSyncSample flags to 1. The following flags are available (set
unused flags to 0):

nextTimeMediaSample
Searches for the next sample in the media. Set this flag to 1
to search for the next sample.

nextTimeMediaEdit
Searches for the next group of samples in the media. Set
this flag to 1 to search for the next group of samples.

nextTimeSyncSample
Searches for the next sync sample in the media. Set this flag
to 1 to search for the next sync sample.

Sync samples do not rely on preceding frames for content.
Some compression algorithms conserve space by
eliminating duplication between consecutive frames in a
sample.

nextTimeEdgeOK
Instructs the Movie Toolbox that you are willing to receive
information about elements that begin or end at the time
specified by the time parameter. Set this flag to 1 to accept
this information.

This flag is especially useful at the beginning or end of a
media. The function returns valid information about the
beginning and end of the media.

time Specifies a time value that establishes the starting point for the search.
This time value must be expressed in the media’s time scale.

rate Contains the search direction. Negative values cause the Movie Toolbox
to search backward from the starting point specified in the time
parameter. Other values cause a forward search.

C H A P T E R 2

Movie Toolbox

2-202 Movie Toolbox Reference

interestingTime
Contains a pointer to a time value. The Movie Toolbox returns the first
time value it finds that meets the search criteria specified in the flags
parameter. This time value is in the media’s time scale.

If there are no times that meet the search criteria you specify, the Movie
Toolbox sets this value to –1.

Set this parameter to nil if you are not interested in this information.

interestingDuration
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the interesting time. This time value is in the media’s time
coordinate system. Set this parameter to nil if you do not want this
information—in this case, the function works more quickly.

DESCRIPTION

GetMediaNextInterestingTime ignores all the edits that are defined in a movie’s

tracks.

ERROR CODES

Locating a Movie’s Tracks and Media Structures

The Movie Toolbox provides a set of functions that help your application locate a

movie’s tracks and media structures. This section describes these functions.

The Movie Toolbox identifies a movie’s tracks in two ways. First, every track in a movie

has a unique ID value. This ID value is unique throughout the life of a movie, even after

it has been saved. That is, no two tracks of a movie ever have the same ID, and no

ID value is ever reused. Second, a movie’s current tracks may be identified by their index

value. Index values always range from 1 to the number of tracks in the movie. Track

indexes provide a convenient way to access each track of a movie.

There are several functions that allow you to find a movie’s tracks. You can use the

GetMovieTrackCount function to determine the number of tracks in a movie. Use

the GetMovieTrack function to obtain the track identifier for a specific track, given its

ID. The GetMovieIndTrack function lets you obtain a track’s identifier, given its track

index.

You can obtain a track’s ID value given its track identifier by calling the GetTrackID

function.

invalidMedia –2008 This media is corrupted or invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-203

You can determine the movie that contains a track by calling the GetTrackMovie

function.

The GetTrackMedia function enables you to find a track’s media. Conversely, you can

find the track that uses a media by calling the GetMediaTrack function.

GetMovieTrackCount

The GetMovieTrackCount function returns the number of tracks in a movie.

pascal long GetMovieTrackCount (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

ERROR CODES

GetMovieIndTrack

The GetMovieIndTrack function allows your application to determine the track

identifier of a track given the track’s index value. The index value identifies the track

among all current tracks in a movie. Index values range from 1 to the number of tracks in

the movie.

pascal Track GetMovieIndTrack (Movie theMovie, long index);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

index Specifies the index value of the track for this operation.

DESCRIPTION

The GetMovieIndTrack function returns the track identifier that is appropriate to the

specified track. If the function cannot locate the track, it sets this returned value to nil.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-204 Movie Toolbox Reference

ERROR CODES

SEE ALSO

You can determine the number of tracks in a movie by calling the

GetMovieTrackCount function, which is described in the previous section.

GetMovieTrack

The GetMovieTrack function allows your application to determine the track identifier

of a track given the track’s ID value.

pascal Track GetMovieTrack (Movie theMovie, long trackID);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

trackID Specifies the ID value of the track for this operation.

DESCRIPTION

The GetMovieTrack function returns the track identifier that is appropriate to the

specified track. If the function cannot locate the track, it sets this returned value to nil.

ERROR CODES

SEE ALSO

You can obtain a track’s ID value by calling the GetTrackID function, which is

described in the next section. You can use a track’s index value to obtain its track

identifier by calling the GetMovieIndTrack function, which is described in the

previous section.

badTrackIndex –2028 This track index value is not valid
invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid
trackIDNotFound –2029 Cannot locate a track with this ID value

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-205

GetTrackID

The GetTrackID function allows your application to determine a track’s unique track

ID value. This ID value remains unique throughout the life of the movie.

pascal long GetTrackID (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackID function returns the track’s ID value. If the function could not

determine the ID value, it sets this returned value to 0.

ERROR CODES

GetTrackMovie

The GetTrackMovie function allows you to determine the movie that contains a

specified track.

pascal Movie GetTrackMovie (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackMovie function returns the movie identifier that corresponds to the

movie that contains the track. If the function could not locate the movie, it sets this

returned value to nil.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

2-206 Movie Toolbox Reference

C H A P T E R 2

Movie Toolbox

GetTrackMedia

The GetTrackMedia function allows you to determine the media that contains a track’s

sample data.

pascal Media GetTrackMedia (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackMedia function returns the media identifier that corresponds to the

media that specifies the track’s sample data. If the function could not locate the media, it

sets this returned value to nil.

ERROR CODES

GetMediaTrack

The GetMediaTrack function allows you to determine the track that uses a specified

media.

pascal Track GetMediaTrack (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

The GetMediaTrack function returns the track identifier of the track that uses the

media. If the function cannot determine the track that uses the media, it sets this

value to nil.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-207

Working With Alternate Tracks

The Movie Toolbox allows you to define alternate tracks in a movie. You can use

alternate tracks to support multiple languages or to present different levels of visual

quality in the movie. You collect alternate tracks into groups. Alternate track groups are

collections of tracks that conceptually represent some data but are appropriate for use in

different play environments. For example, you might have some 4-bit data in one track

and some 8-bit data in another. Working with alternate tracks allows you to set up

alternatives from which the Movie Toolbox can choose.

The Movie Toolbox selects one track from each alternate group when it plays the movie.

For example, you could create a movie that has three separate audio tracks: one in

English, one in French, and one in Spanish. You would collect these audio tracks into an

alternate group. When the user plays the movie, the Movie Toolbox selects the track

from this group that corresponds to the current language setting for the movie.

Similarly, you can use alternate tracks to store data of different quality. When the user

plays the movie, the Movie Toolbox selects the track that best suits the capabilities of the

Macintosh computer on which the movie is being played. In this manner, you can create

a single movie that can accommodate the playback characteristics of a number of

different computer configurations.

The Movie Toolbox allows you to store quality information for media structures that are

assigned to either sound or video tracks. For all tracks, the Movie Toolbox uses bits 6 and

7 of the quality setting. These bits encode a relative quality value. These values range

from 0 to 3. You can use higher quality values to indicate larger sample sizes. For

example, consider a movie that has two sound tracks that are alternates for each other—

one contains 8-bit sound while the other contains 16-bit sound. You could assign a

quality value of mediaQualityNormal to the 8-bit media and a value of

mediaQualityBetter to the 16-bit media. The Movie Toolbox would only play the

16-bit media if the Macintosh configuration could handle 16-bit sound. Otherwise, the

Movie Toolbox would use the 8-bit media. The sound media handler determines the

sample size for each sound media for the Movie Toolbox by examining the media’s

sound description structure.

In addition, the Movie Toolbox also uses bits 0 through 5 (the low-order bits) of the

quality setting. You use these bits to indicate the pixel depths at which the media should

be played. Each bit corresponds to a single depth value, ranging from 1-bit pixels to

32-bit pixels. You may use these bits to control the playback of both video and

sound tracks.

As an example, consider a movie that contains three video tracks with the following

characteristics:

Track A 1-bit video data, no compression

Track B Compressed using the Apple Video Compressor

Track C Compressed using the Joint Photographic Experts Group (JPEG) compressor

C H A P T E R 2

Movie Toolbox

2-208 Movie Toolbox Reference

You could assign the following quality values to these track’s media structures:

The Movie Toolbox would always use Track A when playing the movie on 1-bit and 2-bit

displays. At the other pixel depths, the video media handler determines which track to

use by examining the availability and performance of the specified decompressors. If the

JPEG decompressor can play back at full frame rate, the Movie Toolbox would use

Track C. Otherwise, the Toolbox uses Track B. The video media handler determines the

compressor that is appropriate for each media by examining the media’s image

description structure.

You set a movie’s language by calling the SetMovieLanguage function.

To establish alternate groups of tracks, you can use the SetTrackAlternate and

GetTrackAlternate functions.

You can work with the language and quality characteristics of media by calling

the GetMediaLanguage, SetMediaLanguage, GetMediaQuality, and

SetMediaQuality functions.

By default, the Movie Toolbox automatically selects the appropriate tracks to play

according to a movie’s quality and language settings, as well as the capabilities of the

Macintosh computer. Whenever your application calls the SetMovieGWorld,

SetMovieBox, UpdateMovie, or SetMovieMatrix function (described on page 2-159,

page 2-161, page 2-126, and page 2-170, respectively), the Movie Toolbox checks each

alternate group for an appropriate track. However, you can control this selection process.

Use the SetAutoTrackAlternatesEnabled function to enable or disable automatic

track selection. The SelectMovieAlternates function instructs the Movie Toolbox to

select appropriate tracks immediately. If no tracks in an alternate track group are

enabled, then the Movie Toolbox does not activate any track from that group during

automatic track selection.

SetMovieLanguage

The SetMovieLanguage function allows your application to specify a movie’s

language. You specify the language by supplying the appropriate language or region

code (see Inside Macintosh: Text for more information on language and region codes).

pascal void SetMovieLanguage (Movie theMovie, long language);

Track A mediaQualityDraft + 1-bit depth + 2-bit depth (quality value is 0x0003:
0x0000 + 0x0003)

Track B mediaQualityNormal + 4-bit depth + 8-bit depth + 16-bit depth + 32-bit
depth (quality value is 0x007C: 0x0040 + 0x003C)

Track C mediaQualityBetter + 4-bit depth + 8-bit depth + 16-bit depth + 32-bit
depth (quality value is 0x00BC: 0x0080 + 0x003C)

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-209

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

language Specifies the movie’s language or region code.

DESCRIPTION

The Movie Toolbox examines the movie’s alternate groups and selects and enables

appropriate tracks. If the Movie Toolbox cannot find an appropriate track, it does not

change the movie’s language.

ERROR CODES

SelectMovieAlternates

The SelectMovieAlternates function allows your application to instruct the Movie

Toolbox to select appropriate tracks immediately.

pascal void SelectMovieAlternates (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

You can call the SelectMovieAlternates function even if you have disabled

automatic track selection with the SetAutoTrackAlternatesEnabled

function (which is described in the next section) or by setting the

newMovieDontAutoAlternate flag when you created the movie (see page 2-91

for details on this flag).

ERROR CODES

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-210 Movie Toolbox Reference

SetAutoTrackAlternatesEnabled

The SetAutoTrackAlternatesEnabled function allows your application to enable

and disable automatic track selection by the Movie Toolbox.

pascal void SetAutoTrackAlternatesEnabled (Movie theMovie,

Boolean enable);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

enable Controls automatic track selection. Set this parameter to true to
enable automatic track selection. Set this parameter to false to disable
automatic track selection.

DESCRIPTION

If automatic track selection is enabled, the Movie Toolbox selects appropriate tracks

whenever your application calls the SetMovieGWorld, SetMovieBox, UpdateMovie,

or SetMovieMatrix functions (described on page 2-159, page 2-161, page 2-126, and

page 2-170, respectively). When you enable automatic track selection, the Movie Toolbox

immediately selects enabled tracks for the movie. This overrides the setting of the

newMovieDontAutoAlternate flag (see page 2-91 for details on this flag).

ERROR CODES

SEE ALSO

You can instruct the Movie Toolbox to select appropriate tracks immediately by calling

the SelectMovieAlternates function, which is described in the previous section.

SetTrackAlternate

The SetTrackAlternate function allows your application to add tracks to or remove

tracks from alternate groups.

pascal void SetTrackAlternate (Track theTrack, Track alternateT);

theTrack Specifies the track and group for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack (described on page 2-151 and

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-211

page 2-204, respectively). The SetTrackAlternate function changes
this track’s group affiliation based on the value of the alternateT
parameter.

alternateT
Controls whether the function adds the track to a group or removes it
from a group. If the alternateT parameter contains a valid track
identifier, the Movie Toolbox adds this track to the group that contains the
track specified by the parameter theTrack. Note that if the track
identified by the parameter alternateTrack already belongs to a
group, the Movie Toolbox combines the two groups into a single group.

Set this parameter to nil to remove the track specified by the theTrack
parameter from its group.

ERROR CODES

SEE ALSO

You can determine all the tracks in a group by calling the GetTrackAlternate

function, which is described in the next section.

GetTrackAlternate

The GetTrackAlternate function allows your application to determine all the tracks

in an alternate group. You specify the group by identifying a track in the group. The

group list is circular, so you must specify a different track in the group each time you call

this function.

pascal Track GetTrackAlternate (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackAlternate function returns the track identifier of the next track in the

group. If the track you specify does not belong to a group, the function returns the same

identifier you supply. Because the alternate group list is circular, you have retrieved

all the tracks in the group when the function returns the track identifier that you

supplied the first time you called the GetTrackAlternate function. If there is only one

track in an alternate group, this function returns the track identifier you supply.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-212 Movie Toolbox Reference

ERROR CODES

SEE ALSO

You can add a track to a group by calling the SetTrackAlternate function, which is

described in the previous section.

SetMediaLanguage

The SetMediaLanguage function sets a media’s language or region code. You should

call this function only when you are creating a new media. See Inside Macintosh: Text for

more information on language and region codes.

pascal void SetMediaLanguage (Media theMedia, short language);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-151 and page 2-204, respectively).

language Specifies the media’s language or region code.

ERROR CODES

SEE ALSO

You can retrieve a media’s language or region code by calling the GetMediaLanguage

function, which is described in the next section.

GetMediaLanguage

The GetMediaLanguage function returns a media’s language or region code. See Inside
Macintosh: Text for more information on language and region codes.

pascal short GetMediaLanguage (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

invalidTrack –2009 This track is corrupted or invalid

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-213

ERROR CODES

SEE ALSO

You can set a media’s language or region code by calling the SetMediaLanguage

function, which is described in the previous section.

SetMediaQuality

The SetMediaQuality function sets a media’s quality level value. The Movie Toolbox

uses this quality value to determine which track it selects to play on a given Macintosh

computer. You should set this value only when you are creating a new media.

pascal void SetMediaQuality (Media theMedia, short quality);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

quality Specifies the media’s quality value. The quality value indicates the pixel
depths at which the media can be played. This even applies to sound
media. The low-order 6 bits of the quality value correspond to specific
pixel depths. If a bit is set to 1, the media can be played at the
corresponding depth. More than one of these bits may be set to 1. The
following bits are defined:

In addition, bits 6 and 7 define the media’s quality level. A value of 0
corresponds to the lowest quality level; a value of 3 corresponds to the
highest quality level. The following constants define these values:

mediaQualityDraft
Specifies the lowest quality level. This constant sets bits
6 and 7 to a value of 0.

mediaQualityNormal
Specifies an acceptable quality level. This constant sets bits
6 and 7 to a value of 1.

mediaQualityBetter
Specifies a higher quality level. This constant sets bits
6 and 7 to a value of 2.

invalidMedia –2008 This media is corrupted or invalid

Bit 0 1 bit per pixel

Bit 1 2 bits per pixel

Bit 2 4 bits per pixel

Bit 3 8 bits per pixel

Bit 4 16 bits per pixel

Bit 5 32 bits per pixel

C H A P T E R 2

Movie Toolbox

2-214 Movie Toolbox Reference

mediaQualityBest
Specifies the highest quality level. This constant sets bits 6
and 7 to a value of 3.

ERROR CODES

SEE ALSO

You can retrieve the quality value of a media by calling the GetMediaQuality

function, which is described in the next section.

GetMediaQuality

The GetMediaQuality function returns a media’s quality level value. The Movie

Toolbox uses this quality value to influence which track it selects to play on a given

Macintosh computer.

pascal short GetMediaQuality (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

The GetMediaQuality function returns the media’s quality value. The quality value

indicates the pixel depths at which the media can be played. This even applies to sound

media. The low-order 6 bits of the quality value correspond to specific pixel depths. If a

bit is set to 1, the media can be played at the corresponding depth. More than one of

these bits may be set to 1. The following bits are defined:

In addition, bits 6 and 7 define the media’s quality level. A value of 0 corresponds to the

lowest quality level; a value of 3 corresponds to the highest quality level.

mediaQualityDraft
Specifies the lowest quality level. This constant sets bits 6 and 7 to a
value of 0.

invalidMedia –2008 This media is corrupted or invalid

Bit 0 1 bit per pixel

Bit 1 2 bits per pixel

Bit 2 4 bits per pixel

Bit 3 8 bits per pixel

Bit 4 16 bits per pixel

Bit 5 32 bits per pixel

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-215

mediaQualityNormal
Specifies an acceptable quality level. This constant sets bits 6 and 7 to a
value of 1.

mediaQualityBetter
Specifies a higher quality level. This constant sets bits 6 and 7 to a
value of 2.

mediaQualityBest
Specifies the highest quality level. This constant sets bits 6 and 7 to a
value of 3.

ERROR CODES

SEE ALSO

You can set the quality value of a media by calling the SetMediaQuality function,

which is described in the previous section.

Working With Data References

Media structures identify how and where to find their sample data by means of data

references. For sound and video media, data references identify files that contain

media data; the media data is stored in the data forks of these files. Media handlers use

these data references in order to manipulate media data. A single media may contain one

or more data references.

Each data reference contains type information that identifies how the reference is

specified. Most QuickTime data references use alias information to locate the

corresponding files (see Inside Macintosh: Files for more information about aliases and the

Alias Manager). The type value for data references that use aliases is 'alis'. Note that

the Movie Toolbox uses aliases even on Macintosh computers that do not have System 7

installed—your application can use Alias Manager routines if the Movie Toolbox

is installed. See “The Movie Toolbox and System 6” on page 2-63 for more information.

The Movie Toolbox identifies a media’s data references with an index value. Index

values always range from 1 to the number of references in the media. Data reference

indexes provide a convenient way to access each reference in a media.

The Movie Toolbox provides a set of functions that allow you to work with data

references. This section describes those functions.

You can use the GetMediaDataRef function to retrieve information about a media’s

data reference. You can add a data reference to a media by calling the

AddMediaDataRef function. The SetMediaRef function lets you change which file a

specified media associates with its data storage.

Your application can determine the number of data references in a media by calling the

GetMediaDataRefCount function.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-216 Movie Toolbox Reference

AddMediaDataRef

The AddMediaDataRef function adds a data reference to a media.

pascal OSErr AddMediaDataRef (Media theMedia, short *index,

Handle dataRef,

OSType dataRefType);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

index Contains a pointer to a short integer. The Movie Toolbox returns the index
value that is assigned to the new data reference. Your application can use
this index to identify the reference to other Movie Toolbox functions, such
as GetMediaDataRef (described on page 2-217). If the Movie Toolbox
cannot add the data reference to the media, it sets the returned index
value to 0.

dataRef Specifies the data reference. This parameter contains a handle to the
information that identifies the file that contains this media’s data. The
type of information stored in that handle depends upon the value of the
dataRefType parameter.

dataRefType
Specifies the type of data reference. If the data reference is an alias, you
must set this parameter to rAliasType ('alis'), indicating that the
reference is an alias. See Inside Macintosh: Files for more information about
aliases and the Alias Manager.

ERROR CODES

SetMediaDataRef

The SetMediaDataRef function changes the file that the specified media identifies as

the location for its data storage.

pascal OSErr SetMediaDataRef (Media themedia, short index,

Handle dataRef, OSType dataRefType);

themedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

index Contains a pointer to a short integer. The Movie Toolbox returns the index
value that is assigned to the new data reference. Your application can use
this index to identify the reference to other Movie Toolbox functions, such

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-217

as GetMediaDataRef (described on page 2-217). As with all data
reference functions, the index starts with 1. If the Movie Toolbox cannot
add the data reference to the media, it sets the returned index value to 0.

dataRef Specifies the data reference. This parameter contains a handle to the
information that identifies the file that contains this media’s data. The
type of information stored in that handle depends upon the value of the
dataRefType parameter.

dataRefType
Specifies the type of data reference. If the data reference is an alias, you
must set this parameter to rAliasType ('alis'), indicating that the
reference is an alias. See Inside Macintosh: Files for more information about
aliases and the Alias Manager.

SPECIAL CONSIDERATIONS

Don’t call this function unless you have a really good reason. However, if you want to

resolve your own missing data references, or you are developing a special-purpose kind

of application, SetMediaDataRef may be quite useful.

GetMediaDataRef

The GetMediaDataRef function returns a copy of a specified data reference. Your

application identifies the data reference with the appropriate data reference index.

pascal OSErr GetMediaDataRef (Media theMedia, short index,

Handle *dataRef,

OSType *dataRefType,

long *dataRefattributes);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

index Identifies the data reference. You provide the index value that
corresponds to the data reference. It must be less than or equal to the
value that is returned by the GetMediaDataRefCount function,
described in the previous section.

dataRef Contains a pointer to a field that is to receive a handle to the data
reference. The media handler returns a handle to information that
identifies the file that contains this media’s data. The type of information
stored in that handle depends upon the value of the dataRefType
parameter. If the function cannot locate the specified data reference, the
handler sets this returned value to nil. Set the dataRef parameter to
nil if you are not interested in this information.

C H A P T E R 2

Movie Toolbox

2-218 Movie Toolbox Reference

dataRefType
Contains a pointer to a field that is to receive the type of data reference. If
the data reference is an alias, the media handler sets this value to 'alis',
indicating that the reference is an alias. Set the dataRefType parameter
to nil if you are not interested in this information.

dataRefattributes
Contains a pointer to a field that is to receive the reference’s attribute
flags. The following flags are available (unused flags are set to 0):

dataRefSelfReference
Indicates whether the data reference refers to the movie
resource’s data file. If this flag is set to 1, the data reference
identifies media data that is stored in the same file as the
movie resource.

dataRefWasNotResolved
Indicates whether the Movie Toolbox resolved the data
reference. If this flag is set to 1, the Movie Toolbox could
not resolve the data reference. For example, the toolbox
may be unable to resolve data references because the
required storage device is unavailable at the time a movie
is loaded. If the data reference is unresolved, the Movie
Toolbox disables the corresponding track.

Set the dataRefAttributes parameter to nil if you are not interested
in this information.

DESCRIPTION

You can use GetMediaDataRef function to retrieve information about a data reference.

For example, you might want to verify the condition of a movie’s data references after

loading the movie from its movie file. You could use this function to check each data

reference.

ERROR CODES

SEE ALSO

You can add a data reference to a media by calling the AddMediaDataRef function,

which is described on page 2-216. You must dispose of a media’s data references yourself

by disposing of its handle. You can determine the number of data references in a

media by calling the GetMediaDataRefCount function, which is described in the

previous section.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-219

GetMediaDataRefCount

The GetMediaDataRefCount function allows your application to determine the

number of data references in a media.

pascal OSErr GetMediaDataRefCount (Media theMedia, short *count);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

count Contains a pointer to a field that is to receive the number of data
references in the media.

DESCRIPTION

The count of references in a media corresponds to the maximum index value of any

reference in the media. You can use this value to control a loop in which you retrieve all

of a media’s data references, using the GetMediaDataRef function, which is described

in the next section.

ERROR CODES

Determining Movie Creation and Modification Time

The Movie Toolbox maintains two timestamps in every movie, track, and media. One

timestamp, the creation date, indicates the date and time when the item was created.

The other, the modification date, contains the date and time when the item was last

changed and saved. The timestamp value is in the same format as Macintosh file system

creation and modification times; that is, the timestamp indicates the number of seconds

since midnight, January 1, 1904.

The Movie Toolbox provides a number of functions that allow your application to

retrieve the creation and modification date information from movies, tracks, and media

structures. This section describes those functions.

You can use the GetMovieCreationTime and GetMovieModificationTime

functions to work with movie creation and modification dates.

You can use the GetTrackCreationTime and GetTrackModificationTime

functions to retrieve a track’s creation and modification dates.

Your application can call the GetMediaCreationTime and

GetMediaModificationTime functions to get a media’s creation and

modification dates.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-220 Movie Toolbox Reference

GetMovieCreationTime

The GetMovieCreationTime function returns a long integer that contains the movie’s

creation date and time information.

pascal unsigned long GetMovieCreationTime (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

ERROR CODES

GetMovieModificationTime

The GetMovieModificationTime function returns a movie’s modification date.

pascal unsigned long GetMovieModificationTime (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMovieModificationTime function returns a long integer that contains the

movie’s modification date and time information.

ERROR CODES

GetTrackCreationTime

The GetTrackCreationTime function returns a track’s creation date.

pascal unsigned long GetTrackCreationTime (Track theTrack);

invalidMovie –2010 This movie is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-221

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackCreationTime function returns a long integer that contains the track’s

creation date and time information.

ERROR CODES

GetTrackModificationTime

The GetTrackModificationTime function returns a track’s modification date.

pascal unsigned long GetTrackModificationTime (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackModificationTime function returns a long integer that contains the

track’s modification date and time information.

ERROR CODES

GetMediaCreationTime

The GetMediaCreationTime function returns the creation date stored in the media.

pascal unsigned long GetMediaCreationTime (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

invalidTrack –2009 This track is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-222 Movie Toolbox Reference

DESCRIPTION

The GetMediaCreationTime function returns a long integer that contains the media’s

creation date and time information.

ERROR CODES

GetMediaModificationTime

The GetMediaModificationTime function returns a media’s modification date.

pascal unsigned long GetMediaModificationTime (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

The GetMediaModificationTime function returns a long integer that contains the

media’s modification date and time information.

ERROR CODES

Working With Media Samples

The Movie Toolbox provides a number of functions that allow applications to determine

information about a movie’s sample data. This section discusses these functions. Refer to

“Adding Samples to Media Structures” beginning on page 2-271 for information about

functions that allow you to retrieve sample data from a media.

Your application can use the GetMovieDataSize, GetTrackDataSize, and

GetMediaDataSize functions to determine the size, in bytes, of the data stored in a

media, movie, or track.

You can use the GetMediaSampleDescriptionCount and

GetMediaSampleDescription functions to retrieve a media’s sample descriptions.

The SetMediaSampleDescription function enables you to change the contents of a

particular sample description associated with a media. The GetMediaSampleCount

function determines the number of samples in a media. The SampleNumToMediaTime

and MediaTimeToSampleNum functions allow you to convert from a time value to a

sample number and vice versa. You can use the functions described in “Finding

Interesting Times” beginning on page 2-196 to locate specific samples in a media.

invalidMedia –2008 This media is corrupted or invalid

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-223

GetMovieDataSize

The GetMovieDataSize function allows your application to determine the size, in

bytes, of the sample data in a segment of a movie.

pascal long GetMovieDataSize (Movie theMovie, TimeValue startTime,

TimeValue duration);

theMovie Specifies the movie for this operation. You obtain this movie identifier
from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

startTime Contains a time value specifying the starting point of the segment.

duration Contains a time value that specifies the duration of the segment.

DESCRIPTION

The GetMovieDataSize function returns a long integer that contains the size, in bytes,

of the movie’s sample data that lies in the specified segment. GetMovieDataSize

counts each use of a sample. That is, if a movie uses a given sample more than once, the

size of that sample is included in the returned size value one time for each use.

Consequently, the returned size is greater than or equal to the actual size of the movie’s

sample data, and corresponds to the amount of movie data that will be retrieved when

you call the FlattenMovie function or FlattenMovieData function (described on

page 2-105 and page 2-107, respectively).

ERROR CODES

GetTrackDataSize

The GetTrackDataSize function allows your application to determine the size, in

bytes, of the sample data in a segment of a track.

pascal long GetTrackDataSize (Track theTrack, TimeValue startTime,

TimeValue duration);

theTrack Specifies the track for this operation. You obtain this track identifier from
such Movie Toolbox functions as NewMovieTrack and GetMovieTrack
(described on page 2-151 and page 2-204, respectively).

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

2-224 Movie Toolbox Reference

startTime Contains a time value specifying the starting point of the segment.

duration Contains a time value that specifies the duration of the segment.

DESCRIPTION

The GetTrackDataSize function returns a long integer that contains the size, in bytes,

of the track’s sample data that lies in the specified segment.

This function counts each use of a sample. That is, if a track uses a given sample more

than once, the size of that sample is included in the returned size value one time for each

use. Consequently, the returned size is greater than or equal to the actual size of the

track’s sample data.

ERROR CODES

GetMediaDataSize

The GetMediaDataSize function allows your application to determine the size, in

bytes, of the sample data in a media segment.

pascal long GetMediaDataSize (Media theMedia, TimeValue startTime,

TimeValue duration);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

startTime Contains a time value specifying the starting point of the segment.

duration Contains a time value that specifies the duration of the segment.

DESCRIPTION

The GetMediaDataSize function returns a long integer that contains the size, in bytes,

of the media’s sample data that lies in the specified segment. Note that this number does

not necessarily correspond to the amount of sample data used in the track that contains

the media. Some samples in the media may not be used in the track, and others may be

used more than once.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

invalidMedia –2008 This media is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-225

GetMediaSampleCount

The GetMediaSampleCount function allows you to determine the number of samples

in a media.

pascal long GetMediaSampleCount (Media theMedia);

theMedia Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

The GetMediaSampleCount function returns a long integer that contains the number

of samples in the specified media. Note that this number does not necessarily correspond

to the number of samples used in the track that contains the media. Some samples in the

media may not be used in the track, and others may be used more than once.

ERROR CODES

GetMediaSampleDescriptionCount

The GetMediaSampleDescriptionCount function returns the number of sample

descriptions in a media.

pascal long GetMediaSampleDescriptionCount (Media theMedia);

theMedia Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

The Movie Toolbox identifies a media’s sample descriptions with an index value.

Index values always range from 1 to the number of sample descriptions in the

media. Sample description indexes provide a convenient way to access each sample

description in a media.

The format of sample descriptions differs by media type. Sample descriptions for image

data are defined by image description structures, which are discussed in the chapter

“Image Compression Manager” in this book. Sample descriptions for sound are defined

by sound description structures, which are discussed in “The Sound Description

Structure” beginning on page 2-79. Sample descriptions for text are defined by text

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-226 Movie Toolbox Reference

description structures, which are described in “Text Media Handler Functions”

beginning on page 2-290.

ERROR CODES

SEE ALSO

You can use the value returned by this function to control a loop in which you retrieve

each sample description in a media by calling the GetMediaSampleDescription

function, which is described in the next section.

GetMediaSampleDescription

The GetMediaSampleDescription function allows you to retrieve a sample

description from a media.

pascal void GetMediaSampleDescription (Media theMedia, long index,

SampleDescriptionHandle descH);

theMedia Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

index Specifies the index of the sample description to retrieve. This index
corresponds to the sample description itself, not the samples in the media.

descH Specifies a handle that is to receive the sample description. The Movie
Toolbox correctly resizes this handle for the returned sample description.
If there is no description for the specified index, the function returns
this handle unchanged. Your application must allocate and dispose of this
handle.

DESCRIPTION

This function provides a convenient way to retrieve information that describes a sample.

For example, you can use this function to retrieve an image media’s color lookup table.

The format of sample descriptions differs by media type. Sample descriptions for image

data are defined by image description structures, which are discussed in the chapter

“Image Compression Manager” in this book. Sample descriptions for sound are defined

by sound description structures, which are discussed earlier in this chapter. Sample

descriptions for text are defined by text description data structures, which are described

in “Text Media Handler Functions” beginning on page 2-290.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-227

The Movie Toolbox identifies a media’s sample descriptions with an index value. Index

values always range from 1 to the number of sample descriptions in the media. Sample

description indexes provide a convenient way to access each sample description

in a media.

ERROR CODES

Memory Manager errors

SEE ALSO

You can determine the number of sample descriptions in a media by calling the

GetMediaSampleDescriptionCount function, which is described in the

previous section.

SetMediaSampleDescription

The SetMediaSampleDescription function lets you change the contents of a

particular sample description of a specified media.

pascal OSErr SetMediaSampleDescription (Media theMedia,

 long index,

 SampleDescriptionHandle descH);

theMedia Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

index Specifies the index of the sample description to be changed. This index
corresponds to the sample description itself, not the samples in the media.
This long integer must be between 1 and the largest sample description
index.

descH Specifies the handle to the sample description. If there is no description
for the specified index, the function returns this handle unchanged.

DESCRIPTION

The SetMediaSampleDescription function can be useful in the case of a media

handler, such as a text media handler, that stores playback information in its sample

description, as opposed to just data format information (as in the case of the video media

handler). For more on media handlers, see Inside Macintosh: QuickTime Components.

invalidMedia –2008 This media is corrupted or invalid
badDataRefIndex –2050 Data reference index value is invalid

C H A P T E R 2

Movie Toolbox

2-228 Movie Toolbox Reference

SPECIAL CONSIDERATIONS

Because a sample description structure may define the format of the data, you should

not assume the description describes the data. You should use this function only on an

inactive track.

MediaTimeToSampleNum

The MediaTimeToSampleNum function allows you to find the sample that contains the

data for a specified time. You indicate the time in the media’s time scale.

pascal void MediaTimeToSampleNum (Media theMedia, TimeValue time,

long *sampleNum,

TimeValue *sampleTime,

TimeValue *sampleDuration);

theMedia Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

time Specifies the time for which you are retrieving sample information. You
must specify this value in the media’s time scale.

sampleNum Contains a pointer to a long integer that is to receive the sample number.
The Movie Toolbox returns the sample number that identifies the sample
that contains data for the time specified by the time parameter.

sampleTime
Contains a pointer to a time value. The MediaTimeToSampleNum
function updates this time value to indicate the starting time of the
sample that contains data for the time specified by the time parameter.
This time value is expressed in the media’s time scale. Set this parameter
to nil if you do not want this information.

sampleDuration
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the sample that contains data for the time specified by the
time parameter. This time value is expressed in the media’s time scale.
Set this parameter to nil if you do not want this information.

DESCRIPTION

The Movie Toolbox returns information about the sample that contains data for that

time, including its starting time, duration, and sample number.

The MediaTimeToSampleNum function does not account for edits applied to the media

by a movie’s tracks. If you want to work with edits, use the functions that allow you to

look for interesting times. These functions are described in “Finding Interesting Times,”

beginning on page 2-196.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-229

ERROR CODES

SEE ALSO

You can convert a sample number into a time in a media’s time scale by calling the

SampleNumToMediaTime function, which is described in the next section.

SampleNumToMediaTime

The SampleNumToMediaTime function allows you to find the time at which a specified

sample plays. This time is expressed in the media’s time scale.

pascal void SampleNumToMediaTime (Media theMedia,

long logicalSampleNum,

TimeValue *sampleTime,

TimeValue *sampleDuration);

theMedia Specifies the media for this operation. You obtain this media identifier
from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

logicalSampleNum
Specifies the sample number.

sampleTime
Contains a pointer to a time value. The MediaTimeToSampleNum
function updates this time value to indicate the starting time of the
sample specified by the logicalSampleNum parameter. This time value
is expressed in the media’s time scale. Set this parameter to nil if you do
not want this information.

sampleDuration
Contains a pointer to a time value. The Movie Toolbox returns the
duration of the sample specified by the logicalSampleNum parameter.
This time value is expressed in the media’s time scale. Set this parameter
to nil if you do not want this information.

ERROR CODES

SEE ALSO

You can find the sample for a specified time by calling the MediaTimeToSampleNum

function, which is described in the previous section.

invalidMedia –2008 This media is corrupted or invalid

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-230 Movie Toolbox Reference

Working With Movie User Data

Each movie, track, and media can contain a user data list, which your application can

use in any way you want. A user data list contains all the user data for a movie, track, or

media. Each user data list may contain one or more user data items. All QuickTime user

data items share several attributes.

First, each user data item carries a type identifier. This type is similar to a Resource

Manager resource type, and is stored in a long integer. Apple has reserved all lowercase

user data type values. You are free to create user data type values using uppercase

letters. Apple recommends using type values that begin with the © character (Option-G)

to specify user data items that store text data.

The following user data types are currently defined:

User data items of these types must contain text data only.

Second, the Movie Toolbox allows you to create more than one user data item in a user

data list. Therefore, each user data item is identified by a unique index. Index values are

assigned sequentially within a user data type and start at 1.

Finally, you may create alternate text for a given user data text item. For example, you

may want to support multiple languages and may therefore want to create different text

for each language. The Movie Toolbox allows you to specify different versions of the text

of a single user data item. These versions are distinguished by their region code values.

The Movie Toolbox provides a number of functions that allow you to work with user

data. Before you can work with the contents of a user data list, you must obtain a

reference to the list. The GetMovieUserData, GetTrackUserData, or

GetMediaUserData functions allow you to get a reference to a user data list. You can

then use the GetUserData, AddUserData, and RemoveUserData functions to work

with the items contained in the user data list. If your user data items contain text data,

you can use the AddUserDataText, GetUserDataText, and RemoveUserDataText

functions to work with the text of a user data item. Note that a single user data item can

store either text or other data, but not both.

'©nam' Movie’s name

'©cpy' Copyright statement

'©day' Date the movie content was created

'©dir' Name of movie’s director

'©ed1' to '©ed9' Edit dates and descriptions

'©fmt' Indication of movie format (computer-generated, digitized,
and so on)

'©inf' Information about the movie

'©prd' Name of movie’s producer

'©prf' Names of performers

'©req' Special hardware and software requirements

'©src' Credits for those who provided movie source content

'©wrt' Name of movie’s writer

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-231

You can count the number of user data items of a specified type in a movie, track, or

media by calling the CountUserDataType function. You can use the

GetNextUserDataType function to scan all the types of user data in a specified user

data list.

The Movie Toolbox also supplies a number of functions for the manipulation of user

data. The SetUserDataItem and GetUserDataItem functions allow easy access

to data stored in user data items. The NewUserData and DisposeUserData functions

provide for the use of user data outside of the immediate context of QuickTime movies.

Your applications and components can also create user data structures. The

PutUserDataIntoHandle and the NewUserDataFromHandle functions permit user

data to be stored and retrieved in a manner similar to public movies (also called atoms).

See the chapter “Movie Resource Formats” in this book for details on atoms.

GetMovieUserData

The GetMovieUserData function allows your application to obtain access to a movie’s

user data list. You can then use the GetUserData, AddUserData, and

RemoveUserData functions (described on page 2-235, page 2-235, and page 2-236,

respectively) to manipulate the contents of the user data list. If the data list contains text

data, you can use the GetUserDataText, AddUserDataText, and

RemoveUserDataText functions (described on page 2-237, page 2-236, and page 2-238,

respectively) to work with its contents.

pascal UserData GetMovieUserData (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The GetMovieUserData function returns a reference to the movie’s user data list. This

reference is valid until you dispose of the movie. When you save the movie, the Movie

Toolbox saves the user data as well. If the function could not locate the movie’s user

data, it sets this returned value to nil.

ERROR CODES

Memory Manager errors

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-232 Movie Toolbox Reference

SEE ALSO

You can use the GetMediaUserData function (described on page 2-233) to gain access

to a media’s user data. Similarly, you can use the GetTrackUserData function

(described in the next section) to work with a track’s user data.

GetTrackUserData

The GetTrackUserData function allows your application to obtain access to a track’s

user data list. You can then use the GetUserData, AddUserData, and

RemoveUserData functions (described on page 2-235, page 2-235, and page 2-236,

respectively) to manipulate the contents of the user data list. If the data list contains text

data, you can use the GetUserDataText, AddUserDataText, and

RemoveUserDataText functions (described on page 2-237, page 2-236, and page 2-238,

respectively) to work with its contents.

pascal UserData GetTrackUserData (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The GetTrackUserData function returns a reference to the track’s user data list. This

reference is valid until you dispose of the track. When you save the track, the Movie

Toolbox saves the user data as well. If the function could not locate the track’s user data,

it sets this returned value to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

You can use the GetMediaUserData function to gain access to a media’s user

data (described on page 2-233). Similarly, you can use the GetMovieUserData function

(described on page 2-231) to work with a movie’s user data.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-233

GetMediaUserData

The GetMediaUserData function allows your application to obtain access to a media’s

user data list. You can then use the GetUserData, AddUserData, and

RemoveUserData functions (described on page 2-235, page 2-235, and page 2-236,

respectively) to manipulate the contents of the user data list. If the data list contains text

data, you can use the GetUserDataText, AddUserDataText, and

RemoveUserDataText functions (described on page 2-237, page 2-236, and page 2-238,

respectively) to work with its contents.

pascal UserData GetMediaUserData (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

The GetMediaUserData function returns a reference to the media’s user data list. This

reference is valid until you dispose of the media. When you save the media, the Movie

Toolbox saves the user data as well. If the function could not locate the media’s user

data, it sets this returned value to nil.

ERROR CODES

Memory Manager errors

SEE ALSO

You can use the GetMovieUserData function to gain access to a movie’s user

data (described on page 2-231). Similarly, you can use the GetTrackUserData function

(described in the previous section) to work with a track’s user data.

GetNextUserDataType

The GetNextUserDataType function allows you to retrieve the next user data type in a

specified user data list. You can use this function to scan all the user data types in a user

data list.

pascal long GetNextUserDataType (UserData theUserData,

OSType udType);

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-234 Movie Toolbox Reference

theUserData
Specifies the user data list for this operation. You obtain this list reference
by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

udType Specifies a user data type. Set this parameter to 0 to retrieve the first user
data type in the user data list. On subsequent requests, use the previous
value returned by this function.

DESCRIPTION

The GetNextUserDataType function returns an operating-system data type containing

the next user data type value in the specified user data list. When you reach the end

of the user data list, this function sets the returned value to 0. You can use this value to

stop your scanning loop.

ERROR CODES

None

CountUserDataType

The CountUserDataType function allows you to determine the number of items of a

given type in a user data list.

pascal short CountUserDataType (UserData theUserData,

OSType udType);

theUserData
Specifies the user data list for this operation. You obtain this list reference
by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

udType Specifies the type. The Movie Toolbox determines the number of items of
this type in the user data list.

DESCRIPTION

The CountUserDataType function returns a short integer that contains the number of

items of the specified type in the user data list.

ERROR CODES

None

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-235

AddUserData

The AddUserData function allows your application to add an item to a user data list.

You specify the user data list, the data to be added, and the data’s type value.

pascal OSErr AddUserData (UserData theUserData,

Handle data, OSType udType);

theUserData
Specifies the user data list for this operation. You obtain this item
reference by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

data Contains a handle to the data to be added to the user data list.

udType Specifies the type that is to be assigned to the new item.

DESCRIPTION

The Movie Toolbox places the specified data into the user data and assigns an index

value that identifies the new item.

ERROR CODES

Memory Manager errors

GetUserData

The GetUserData function returns a specified user data item.

pascal OSErr GetUserData (UserData theUserData, Handle data,

OSType udType, long index);

theUserData
Specifies the user data list for this operation. You obtain this list reference
by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

data Contains a handle that is to receive the data from the specified item. The
GetUserData function resizes this handle as appropriate to
accommodate the item. Your application is responsible for releasing this
handle when you are done with it. Set this parameter to nil if you do not
want to retrieve the user data item. This can be useful if you want to
verify that a user data item exists, but you do not need to work with the
item’s contents.

udType Specifies the item’s type value.

C H A P T E R 2

Movie Toolbox

2-236 Movie Toolbox Reference

index Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter theUserData.

ERROR CODES

Memory Manager errors

RemoveUserData

The RemoveUserData function removes an item from a user data list. After the Movie

Toolbox removes the item, it renumbers the remaining items of that type so that the

index values are sequential and start at 1.

pascal OSErr RemoveUserData (UserData theUserData, OSType udType,

long index);

theUserData
Specifies the user data list for this operation. You obtain this list reference
by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

udType Specifies the item’s type value.

index Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter theUserData.

ERROR CODES

Memory Manager errors

AddUserDataText

The AddUserDataText function allows your application to place language-tagged text

into an item in a user data list. You specify the user data list and item, the data to be

added, the data’s type value, and the language code of the data.

pascal OSErr AddUserDataText (UserData theUserData, Handle data,

OSType udType, long index,

short itlRegionTag);

userDataItemNotFound –2026 Cannot locate this user data item

userDataItemNotFound –2026 Cannot locate this user data item

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-237

theUserData
Specifies the user data list for this operation. You obtain this list reference
by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

data Contains a handle to the data to be added to the user data list.

udType Specifies the type that is to be assigned to the new item.

index Specifies the item to which the text is to be added. This parameter
must specify an item in the user data list identified by the parameter
theUserData.

itlRegionTag
Specifies the region code of the text to be added. If there is already text
with this region code in the item, the function replaces the existing
text with the data specified by the data parameter. See Inside Macintosh:
Text for more information about language and region codes.

DESCRIPTION

The Movie Toolbox places the specified data into the user data item. If the item does not

exist when you call this function, the Movie Toolbox creates a new item for you (this is

true only if the item you are adding is the first item in the list; otherwise, you must create

the item yourself).

ERROR CODES

Memory Manager errors

GetUserDataText

The GetUserDataText function allows your application to retrieve language-tagged

text from an item in a user data list. You specify the user data list and item, and the

item’s type value and language code. The Movie Toolbox retrieves the specified text

from the user data item.

pascal OSErr GetUserDataText (UserData theUserData, Handle data,

OSType udType, long index,

short itlRegionTag);

theUserData
Specifies the user data list for this operation. You obtain this list reference
by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

userDataItemNotFound –2026 Cannot locate this user data item

C H A P T E R 2

Movie Toolbox

2-238 Movie Toolbox Reference

data Contains a handle that is to receive the data. The GetUserDataText
function resizes this handle as appropriate. Your application must dispose
of the handle when you are done with it.

udType Specifies the item’s type value.

index Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter theUserData.

itlRegionTag
Specifies the language code of the text to be retrieved. See Inside
Macintosh: Text for more information about language and region codes.

ERROR CODES

Memory Manager errors

RemoveUserDataText

The RemoveUserDataText function allows your application to remove

language-tagged text from an item in a user data list. You specify the user data list and

item, and the item’s type value and language code. The Movie Toolbox removes the

specified text from the user data item.

pascal OSErr RemoveUserDataText (UserData theUserData,

OSType udType, long index,

short itlRegionTag);

theUserData
Specifies the user data list for this operation. You obtain this list reference
by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

udType Specifies the item’s type value.

index Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter theUserData.

itlRegionTag
Specifies the language code of the text to be removed. See Inside
Macintosh: Text for more information about language and region codes.

ERROR CODES

Memory Manager errors

userDataItemNotFound –2026 Cannot locate this user data item

userDataItemNotFound –2026 Cannot locate this user data item

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-239

SetUserDataItem

The SetUserDataItem allows your application to set an item in a user data list. You

specify the user data list, the data to be set, the size of the data to be set, and the data’s

type value.

pascal OSErr SetUserDataItem (UserData theUserData,

void *data, long size, long udType,

long index);

theUserData

Specifies the user data list for this operation. You obtain this item

reference by calling the GetMovieUserData, GetTrackUserData, or

GetMediaUserData function (described on page 2-231, page 2-232, and

page 2-233, respectively).

data Contains a pointer to the data item to be set in a user data list.

size Specifies the size of the information pointed to by the data parameter.

udType Specifies the type value assigned to the new item.

index Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter theUserData. An index
value of 0 or 1 implies the first item, which is created if it doesn’t
already exist.

DESCRIPTION

You must provide the size of the information specified in the data parameter because

the data may be embedded inside a larger data structure or may be on the stack.

SPECIAL CONSIDERATIONS

The data pointer must be locked, since SetUserDataItem may move memory.

SEE ALSO

The SetUserDataItem function is a pointer-based version of AddUserData, which is

described on page 2-235.

ERROR CODES

Memory Manager errors

C H A P T E R 2

Movie Toolbox

2-240 Movie Toolbox Reference

GetUserDataItem

The GetUserDataItem function returns a specified user data item. GetUserDataItem

is a pointer-based version of the GetUserData function, which is described on

page 2-235.

pascal OSErr GetUserDataItem (UserData theUserData,

void *data, long size,

OSType udType, long index);

theUserData
Specifies the user data list for this operation. You obtain this list reference
by calling the GetMovieUserData, GetTrackUserData, or
GetMediaUserData function (described on page 2-231, page 2-232, and
page 2-233, respectively).

data Contains a pointer that is to receive the data from the specified item.

size Specifies the size of the item.

udType Specifies the item’s type value.

index Specifies the item’s index value. This parameter must specify an item in
the user data list identified by the parameter theUserData.

DESCRIPTION

If the size field provided doesn’t match the exact size of the actual user data item, an

error is returned. In this case, you should use GetUserData instead.

GetUserDataItem is useful for retrieving small, fixed-size pieces of user data without

having to create a handle. You can pass 0 or 1 for the index parameter to indicate the

first item.

ERROR CODES

Memory Manager errors

NewUserData

The NewUserData function creates a new user data structure.

pascal OSErr NewUserData (UserData *theUserData);

theUserData
Contains a pointer to the user data structure.

userDataItemNotFound –2026 Cannot locate this user data item

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-241

DESCRIPTION

You can manipulate the user data structure with any of the standard user data functions

described in “Working With Movie User Data” beginning on page 2-230. If the

NewUserData function fails, the parameter theUserData is set to nil.

ERROR CODES

DisposeUserData

The DisposeUserData function disposes of a user data structure created by the

NewUserData function.

pascal OSErr DisposeUserData (UserData theUserData);

theUserData
Specifies the user data structure that is to be disposed of. It is acceptable
but unnecessary to pass nil in the parameter theUserData.

DESCRIPTION

You should call DisposeUserData only on a user data structure that you

have allocated.

SPECIAL CONSIDERATIONS

Don’t dispose of user data references obtained from the Movie Toolbox function

GetMovieUserData, GetTrackUserData, or GetMediaUserData (described on

page 2-231, page 2-232, and page 2-233, respectively).

PutUserDataIntoHandle

The PutUserDataIntoHandle function takes a specified user data structure and

replaces the contents of the handle with a publicly parseable form of the user data.

pascal OSErr PutUserDataIntoHandle (UserData theUserData,

Handle h);

theUserData
Specifies the user data structure that is to be disposed of.

h Contains a handler to the user data structure specified in the parameter
theUserData.

memFullErr –108 Not enough room in heap zone

C H A P T E R 2

Movie Toolbox

2-242 Movie Toolbox Reference

DESCRIPTION

The contents of the h parameter are appropriate for storage as an atom, much like a

public movie. See the chapter “Movie Resource Formats” in this book for details on the

QuickTime atoms.

NewUserDataFromHandle

The NewUserDataFromHandle function creates a new user data structure from a

handle.

pascal OSErr NewUserDataFromHandle (Handle h,

UserData *theUserData);

h Contains a handle to the data structure specified in the parameter
theUserData.

theUserData
Contains a pointer to a new user data structure.

DESCRIPTION

The handle specified in the h parameter must be in the standard user data storage format

(that is, as an atom, just like a public movie). Usually the handle will have been created

by calling PutUserDataIntoHandle (described in the previous section).

ERROR CODES

Functions for Editing Movies

The Movie Toolbox provides a number of functions that allow applications to edit

existing movies or create the contents of new movies. This section describes those

functions. It has been divided into the following topics:

■ “Editing Movies” describes a number of functions that work with the current movie
selection, supporting such user operations as cut, copy, and paste

■ “Undo for Movies” discusses the functions that your application can use to support
an undo capability for movie editing

■ “Low-Level Movie-Editing Functions” discusses several functions that allow your
application to perform detailed editing on movies

■ “Editing Tracks” describes functions that your application can use to edit the contents
of tracks

memFullErr –108 Not enough room in heap zone

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-243

■ “Undo for Tracks” discusses the functions that your application can use to support an
undo capability for track editing

■ “Adding Samples to Media Structures” describes the Movie Toolbox functions that
allow you to edit media

Editing Movies

The Movie Toolbox provides a set of high-level functions that allow you to edit movies.

This section describes these high-level editing functions. These functions work with a

movie’s current selection. The current selection is defined by a starting time and a

duration.

The Movie Toolbox also provides functions that allow you to edit movie segments. Those

functions are described in “Low-Level Movie-Editing Functions” beginning on

page 2-257.

The movies created by these functions contain references to the data in the source movie.

Because the new movies contain references and not data, they are small and easily

moved to and from the scrap. If you delete the movie that contains the data, the data

references in the new movies are no longer valid and the new movies cannot be played.

Therefore, before you delete the original movie, you should call the FlattenMovie

function (described on page 2-105) for each of the new movies. This function copies the

data into each of the new movies, eliminating the data references.

Note that the Movie Toolbox does not always copy empty tracks from the source movie

to the movies that are created by these functions. Specifically, the Movie Toolbox

preserves the empty tracks until you paste or add the selection into the destination

movie. At that time, the Movie Toolbox removes the empty tracks from the selection. In

addition, if a track in the source movie has trailing empty space, the Movie Toolbox

removes that empty space from the track when it is copied into the new movie.

Therefore, if you want to add a segment beyond the end of a movie, you insert the space

when you insert the new segment using the InsertMovieSegment function (described

on page 2-257).

The Movie Toolbox allows you to paste different data types into a movie. For example,

QuickDraw pictures and standard sound data can be pasted directly into a movie. If you

are using the movie controller component, you do not need to use these functions to

paste different data types into a movie. (For details on the movie controller component,

see Inside Macintosh: QuickTime Components.) If you are calling the Movie Toolbox directly

to do editing, you should use the functions described in this section.

To get and change a movie’s current selection, your application can call the

GetMovieSelection and SetMovieSelection functions.

Your application can work with a movie’s current selection by calling the

CutMovieSelection, CopyMovieSelection, PasteMovieSelection,

ClearMovieSelection, and AddMovieSelection functions.

The PutMovieOnScrap and NewMovieFromScrap functions enable your application

to work with movies that are on the scrap.

C H A P T E R 2

Movie Toolbox

2-244 Movie Toolbox Reference

The IsScrapMovie function examines the system scrap to determine whether it can

translate any of the data into a movie. The PasteHandleIntoMovie takes the contents

of a specified handle, together with its type, and pastes it into a movie.

PutMovieIntoTypedHandle takes a movie (or a single track from within a movie) and

converts it into a handle.

PutMovieOnScrap

The PutMovieOnScrap function allows your application to place a movie onto the

scrap.

pascal OSErr PutMovieOnScrap (Movie theMovie,

long movieScrapFlags);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

movieScrapFlags
Flags that control the operation. The following flags are available (set
unused flags to 0):

movieScrapDontZeroScrap
Controls whether the Movie Toolbox clears the scrap before
putting the movie on the scrap. If you set this flag to 1,
the Movie Toolbox does not clear the scrap before placing
your movie onto this scrap, thus adding your movie to the
previous contents of the scrap. If you set this flag to 0, the
function clears the scrap, then places your movie
on the scrap.

movieScrapOnlyPutMovie
Controls whether the Movie Toolbox places other items on
the scrap along with your movie. If you set this flag to 1,
the Movie Toolbox only places your movie on the scrap. If
you set this flag to 0, the Movie Toolbox places an image
from the current movie time (including but not limited to a
PICT) on the scrap along with your movie. The picture is
intended for use by applications that cannot work
with movies.

ERROR CODES

Image Compression Manager errors

Memory Manager errors

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-245

NewMovieFromScrap

The NewMovieFromScrap function allows your application to create a movie from the

contents of the scrap, if this is possible. If there is no movie data on the scrap, the Movie

Toolbox does not create a new movie.

pascal Movie NewMovieFromScrap (long newMovieFlags);

newMovieFlags
Controls the operation of the NewMovieFromScrap function. The
following flags are available (set unused flags to 0):

newMovieActive
Controls whether the new movie is active. Set this flag to 1
to make the new movie active. A movie that does not have
any tracks can still be active. When the Movie Toolbox tries
to play the movie, no images are displayed, because there
is no movie data. Unless you set this flag, you should call
the SetMovieActive function (described on page 2-145)
to play a movie.

newMovieDontResolveDataRefs
Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only
looks in the specified file.

If the Movie Toolbox cannot completely resolve all the data
references, it still returns a valid movie identifier. In this
case, the Movie Toolbox also sets the current error value to
couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs
Controls whether the Movie Toolbox asks the user to locate
files. If you set this flag to 0, the Movie Toolbox asks the
user to locate files that it cannot find on available volumes.
If the Movie Toolbox cannot locate a file even with the
user’s help, the function returns a valid movie identifier
and sets the current error value to
couldNotResolveDataRef.

newMovieDontAutoAlternate
Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this
flag to 1, the Movie Toolbox does not automatically select
tracks for the movie—you must enable tracks yourself.

DESCRIPTION

The NewMovieFromScrap function returns the new movie’s identifier. If the function

cannot load the movie, the returned identifier is set to nil.

C H A P T E R 2

Movie Toolbox

2-246 Movie Toolbox Reference

ERROR CODES

File Manager errors

Memory Manager errors

SetMovieSelection

The SetMovieSelection function sets a movie’s current selection.

pascal void SetMovieSelection (Movie theMovie,

 TimeValue selectionTime,

 TimeValue selectionDuration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

selectionTime
Contains a time value specifying the starting point of the current selection.

selectionDuration
Contains a time value that specifies the duration of the current selection.

DESCRIPTION

If you set the selectionDuration parameter to a value greater than the movie’s

duration, SetMovieSelection automatically adjusts the duration of the selection to

correspond to the difference between the value specified in the selectionTime

parameter and the end of the movie.

ERROR CODES

SEE ALSO

You can use the GetMovieSelection function, described in the next section, to obtain

information about a movie’s current selection.

couldNotResolveDataRef –2000 Cannot use this data reference
cantFindHandler –2003 Cannot locate a handler
cantOpenHandler –2004 Cannot open a handler
invalidMedia –2008 This media is corrupted or invalid

invalidMovie –2010 This movie is corrupted or invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-247

GetMovieSelection

The GetMovieSelection function returns information about a movie’s current

selection.

pascal void GetMovieSelection (Movie theMovie,

 TimeValue *selectionTime,

 TimeValue *selectionDuration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

selectionTime
Contains a pointer to a time value. The GetMovieSelection function
places the starting time of the current selection into the field referred to by
this parameter. Set this parameter to nil if you do not want this
information.

selectionDuration
Contains a pointer to a time value. The GetMovieSelection function
places the duration of the current selection into the field referred to by
this parameter. Set this parameter to nil if you do not want this
information.

ERROR CODES

SEE ALSO

Your application can set the current selection by calling the SetMovieSelection

function, which is described in the previous section.

CutMovieSelection

The CutMovieSelection function creates a new movie that contains the original

movie’s current selection. This function then removes the current selection from the

original movie. After the current selection has been removed from the original movie,

the duration of the current selection is 0. The starting time of the current selection is not

affected.

pascal Movie CutMovieSelection (Movie theMovie);

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-248 Movie Toolbox Reference

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The CutMovieSelection function returns a movie identifier. If the function could not

create the new movie, it sets this returned identifier to nil.

Your application must dispose of the new movie once you are done with it. You can use

the DisposeMovie function (described on page 2-96) to dispose of the new movie.

If you have assigned a progress function to the source movie, the Movie Toolbox calls

that progress function during long cut operations. (For details on progress functions, see

“Progress Functions” beginning on page 2-354.)

ERROR CODES

Memory Manager errors

CopyMovieSelection

The CopyMovieSelection function creates a new movie that contains the original

movie’s current selection. This function does not change the original movie or the

current selection.

pascal Movie CopyMovieSelection (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The CopyMovieSelection function returns a movie identifier. If the function could not

create the new movie, it sets this returned identifier to nil.

Your application must dispose of the new movie once you are done with it. You can use

the DisposeMovie function (described on page 2-96) to dispose of the new movie.

If you have assigned a progress function to the source movie, the Movie Toolbox calls

that progress function during long copy operations. (For details on progress functions,

see “Progress Functions” beginning on page 2-354.)

invalidMovie –2010 This movie is corrupted or invalid
progressProcAborted –2019 Your progress function returned an error

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-249

ERROR CODES

Memory Manager errors

PasteMovieSelection

The PasteMovieSelection function places the tracks from one movie into another

movie.

pascal void PasteMovieSelection (Movie theMovie, Movie src);

theMovie Specifies the destination movie for this operation. Your application
obtains this movie identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle (described on
page 2-92, page 2-88, and page 2-90, respectively).

src Specifies the source movie for this operation. The
PasteMovieSelection function places the tracks from this movie in
the destination movie.

DESCRIPTION

All of the tracks from the source movie are placed in the destination movie. If the

duration of the destination movie’s current selection is 0, the source movie is inserted at

the starting time of the current selection. If the current selection duration is nonzero, the

function clears the current selection and then inserts the tracks from the source movie.

After the paste operation, the current selection time is unchanged, and the selection

duration is set to the source movie’s duration.

Whenever possible, the Movie Toolbox uses existing tracks to store the data to be pasted.

Before adding a track to the destination movie, the toolbox looks in the destination

movie for tracks that have the same characteristics as the tracks in the source movie. The

toolbox considers the following characteristics when searching for an appropriate track:

■ track spatial dimensions

■ track matrix

■ track clipping region

■ track matte

■ alternate group affiliation

■ media time scale

■ media type

■ media language

■ data reference (that is, the two tracks must refer to the same file)

invalidMovie –2010 This movie is corrupted or invalid
progressProcAborted –2019 Your progress function returned an error

C H A P T E R 2

Movie Toolbox

2-250 Movie Toolbox Reference

If the Movie Toolbox cannot find an appropriate track in the destination movie, it creates

a track with the proper characteristics.

The Movie Toolbox removes any empty tracks from the destination movie after the

paste operation.

If you have assigned a progress function to the destination movie, the Movie Toolbox

calls that progress function during long paste operations. (For details on progress

functions, see “Progress Functions” beginning on page 2-354.)

SPECIAL CONSIDERATIONS

The entire source movie is used regardless of the selection in the source movie.

ERROR CODES

Memory Manager errors

SEE ALSO

If you want to insert only a part of the source movie, use the InsertMovieSegment

function, which is described on page 2-257.

AddMovieSelection

The AddMovieSelection function adds one or more tracks to a movie. This function

scales the source movie so that it fits into the destination selection. If the current selection

in the destination movie has a 0 duration, the Movie Toolbox adds the segment at the

beginning of the current selection.

pascal void AddMovieSelection (Movie theMovie, Movie src);

theMovie Specifies the destination movie for this operation. Your application
obtains this movie identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle (described on
page 2-92, page 2-88, and page 2-90, respectively).

src Specifies the source movie for this operation. The AddMovieSelection
function adds the tracks from this movie to the destination movie.
The function adds these tracks at the time specified by the current
selection in the destination movie.

invalidMovie –2010 This movie is corrupted or invalid
progressProcAborted –2019 Your progress function returned an error

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-251

DESCRIPTION

The AddMovieSelection function is similar to PasteMovieSelection, which is

described in the previous section. However, the PasteMovieSelection function

inserts empty space into a movie’s existing tracks and then adds the new track data. The

AddMovieSelection function does not insert empty space into the existing tracks.

This function simply adds the tracks in parallel from the source movie to the destination

movie. This can be useful for adding a track to an existing movie, such as adding sound

to a silent movie.

The Movie Toolbox removes any empty tracks from the destination movie after the

add operation.

If you have assigned a progress function to the destination movie, the Movie Toolbox

calls that progress function during long add operations. (For details, see “Progress

Functions” beginning on page 2-354.)

The entire source movie is used regardless of the selection in the source movie.

ERROR CODES

Memory Manager errors

ClearMovieSelection

The ClearMovieSelection function removes the segment of the movie that is defined

by the current selection.

pascal void ClearMovieSelection (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

After removing the segment, the Movie Toolbox sets the duration of the movie’s current

selection to 0 and the selection time remains unchanged. This function removes empty

tracks from the resulting movie.

ERROR CODES

invalidMovie –2010 This movie is corrupted or invalid
progressProcAborted –2019 Your progress function returned an error

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-252 Movie Toolbox Reference

IsScrapMovie

The IsScrapMovie function looks on the system scrap to find out if it can translate any

of the data into a movie.

pascal Component IsScrapMovie (Track targetTrack);

targetTrack
Specifies the location of the potential target movie for the data on the
system scrap.

DESCRIPTION

If IsScrapMovie finds an appropriate type, it returns a movie import component that

can translate the scrap. Otherwise, it returns 0. For details on movie import components,

see Inside Macintosh: QuickTime Components.

PasteHandleIntoMovie

The PasteHandleIntoMovie function takes the contents of a specified handle,

together with its type, and pastes it into a specified movie.

pascal OSErr PasteHandleIntoMovie (Handle h, OSType handleType,

 Movie theMovie, long flags,

 ComponentInstance userComp);

h Specifies the handle to be pasted into the movie indicated by the
handleType parameter.

handleType
Indicates the data type of the handle specified in the h parameter.

theMovie Specifies the destination movie for this operation. Your application
obtains this movie identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle (described on
page 2-92, page 2-88, and page 2-90, respectively).

flags Specifies a constant that further refines conditions of the paste operation.

pasteInParallel
Changes the function so that it takes the contents of the
specified handle along with its type and adds (rather than
inserts) it to the specified movie in an operation analogous
to that of the AddMovieSelection function. This
operation does not affect the duration of existing tracks. It
does not necessarily create a new track; rather, it uses a
piece of an existing track, if possible.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-253

userComp Specifies the component or an instance of the component that is to
perform the conversion of the data into a QuickTime movie. If you want a
particular movie import component to perform the conversion, you may
pass the component or an instance of that component. Otherwise set this
parameter to 0 to allow the Movie Toolbox to determine the appropriate
component. If you pass in a component instance, it will be used by
PasteHandleIntoMovie. This allows you to communicate directly
with the component before using this function to establish any conversion
parameters. If you pass in a component ID, an instance is created and
closed within this function.

DESCRIPTION

If the handle is set to 0, PasteHandleIntoMovie searches the scrap for a field of the

type handleType. If both the h parameter and the handleType parameter are nil,

PasteHandleIntoMovie uses the first available data from the scrap.

If you are just pasting in data from the scrap, it is best to allow

PasteHandleIntoMovie to retrieve the data from the scrap, rather than doing it

yourself. In this way, the function is able to obtain supplemental data from the scrap, if

necessary (for example, 'styl' resources for 'TEXT').

PasteHandleIntoMovie pastes into the current selection according to the

following rules:

■ If the selection is empty (for example, duration = 0), PasteHandleIntoMovie adds
the data with the appropriate duration.

■ If the selection is not empty, the data is added and then scaled to fit into the duration
of the selection. The current selection is deleted, unless you set the
pasteInParallel flag.

PutMovieIntoTypedHandle

The PutMovieIntoTypedHandle function takes a movie (or a single track from within

that movie) and converts it into a handle of a specified type.

pascal OSErr PutMovieIntoTypedHandle (Movie theMovie,

Track targetTrack,

OSType handleType,

Handle publicMovie,

TimeValue start,

TimeValue dur,

long flags,

ComponentInstance userComp);

C H A P T E R 2

Movie Toolbox

2-254 Movie Toolbox Reference

theMovie Specifies the movie to convert.

targetTrack
Specifies the track to convert.

handleType
Indicates the type of the new data.

publicMovie
Contains the actual handle in which to place the new data.

start Specifies the start time of the segment of the movie or track
to be converted.

dur Specifies the duration of the segment of the movie or track
to be converted.

flags Indicates condition of the conversion. Set this parameter to 0.

userComp Indicates a component or component instance of the movie export
component you want to perform the conversion. Otherwise, set this
parameter to 0 for the Movie Toolbox to choose the appropriate
component. If you pass in a component instance, it will be used by
PutMovieIntoTypedHandle. This allows you to communicate directly
with the component before using this function to establish any conversion
parameters. If you pass in a component ID, an instance is created and
closed within this function. For details on movie export components, see
Inside Macintosh: QuickTime Components.

Undo for Movies

The Movie Toolbox provides functions that allow you to capture and restore the edit

state of a movie. An edit state contains information that completely defines a movie’s

content at the time you create the edit state. It is, in essence, a checkpoint in the edit

session. You can manage a movie’s edit states in order to implement an undo capability

for editing movies. For example, you can capture a movie’s edit state before performing

an editing operation, such as a cut, and later restore the old state. You can have several

movie edit states obtained at different times during an editing session, and restore to any

one of them at any time. In this manner, you can provide a multilevel undo capability.

This section describes the Movie Toolbox functions that work with edit states.

Note that a movie’s edit state does not save everything about a movie. Most important,

the edit state does not contain information about the movie’s spatial characteristics. For

example, the edit state does not store the current boundary rectangle or clipping region.

Consequently, edit states are best suited to supporting undo operations involving movie

content, including track creation and removal. You can use other Movie Toolbox

functions to support undo operations for movie characteristics. See “Functions That

Modify Movie Properties” beginning on page 2-157 to learn more about these functions.

You can use the NewMovieEditState function to capture a movie’s edit state. Use the

UseMovieEditState to restore the movie to its condition according to a previous edit

state. Your application must dispose of an edit state by calling the

DisposeMovieEditState function. You must dispose of a movie’s edit states before

you dispose of the movie.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-255

NewMovieEditState

You can create an edit state by calling the NewMovieEditState function. This function

creates an edit state that contains all the information describing a movie’s content,

including the current selection, the movie’s tracks, and the media data associated with

those tracks.

Note
You must dispose of a movie’s edit states before you dispose of the movie
itself. Use the DisposeMovieEditState function (described on
page 2-256) to dispose of an edit state. ◆

pascal MovieEditState NewMovieEditState (Movie theMovie);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

DESCRIPTION

The NewMovieEditState function returns a movie edit state identifier. You can use

this identifier with other Movie Toolbox edit state functions, such as

UseMovieEditState (described in the next section). If this function could not create

the edit state, it sets this returned identifier to nil.

ERROR CODES

Memory Manager errors

UseMovieEditState

Your application can use the UseMovieEditState function to return a movie to its

condition according to an edit state you created previously.

pascal OSErr UseMovieEditState (Movie theMovie,

MovieEditState toState);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-256 Movie Toolbox Reference

toState Specifies the edit state for this operation. Your application obtains this
edit state identifier when you create the edit state by calling the
NewMovieEditState function (described in the previous section).

DESCRIPTION

The UseMovieEditState function uses the information stored in the edit state to

update the movie’s contents. This may change the contents of some of the movie’s tracks,

or it may even add tracks to the movie or remove tracks from the movie. Consequently,

the movie’s time and spatial characteristics, especially the duration, may change as a

result of restoring the saved edit state. Your application creates an edit state by calling

the NewMovieEditState function, which is described in the previous section.

ERROR CODES

DisposeMovieEditState

The DisposeMovieEditState function disposes of an edit state. Your application

must dispose of any edit states you create.

Note
You must dispose of a movie’s edit states before you dispose
of the movie itself. ◆

pascal OSErr DisposeMovieEditState (MovieEditState state);

state Specifies the edit state for this operation. Your application obtains this
edit state identifier when you create the edit state by calling the
NewMovieEditState function.

ERROR CODES

SEE ALSO

You create an edit state by calling the NewMovieEditState function, which is

discussed on page 2-255.

invalidMovie –2010 This movie is corrupted or invalid
invalidEditState –2023 This edit state is invalid
nonMatchingEditState –2024 This edit state is not valid for this movie
staleEditState –2025 Movie or track has been disposed

invalidEditState –2023 This edit state is invalid
staleEditState –2025 Movie or track has been disposed

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-257

Low-Level Movie-Editing Functions

The Movie Toolbox provides a number of functions that allow your application to

perform low-level editing operations on movies. These functions work with movie

segments—pieces of a movie that are defined by a starting time and duration—and

therefore give you a great deal of control over the editing process. These functions never

copy the movie data; rather, they work with references to the movie’s data. “Editing

Movies,” which begins on page 2-243, discusses the Movie Toolbox functions that allow

you to edit movies by working with the current selection.

You can use the CopyMovieSettings function to copy certain important settings from

one movie to another.

You can use the InsertMovieSegment function to copy a segment from one movie to

another. Use the InsertMovieEmptySegment function to insert an empty segment

into a movie.

Your application can delete a segment from a movie by calling the

DeleteMovieSegment function.

You can change a segment’s duration by calling the ScaleMovieSegment function.

This function stretches or shrinks the segment to accommodate a specified duration.

InsertMovieSegment

The InsertMovieSegment function copies part of one movie to another. You specify

the starting time and duration of the source segment and the time in the destination

movie at which to place the information.

pascal OSErr InsertMovieSegment (Movie srcMovie, Movie dstMovie,

TimeValue srcIn,

TimeValue srcDuration,

TimeValue dstIn);

srcMovie Specifies the source movie for this operation. Your application obtains this
movie identifier from such functions as NewMovie, NewMovieFromFile,
and NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively). The InsertMovieSegment function obtains the
movie segment from the source movie specified in this parameter.

dstMovie Specifies the destination movie for this operation. The
InsertMovieSegment function places a copy of the segment, which is
obtained from the source movie, into this destination movie. The dstIn
parameter specifies where the segment is inserted.

srcIn Specifies the start of the segment in the source movie. The srcDuration
parameter specifies the segment’s duration. This time value must be
expressed in the source movie’s time scale.

C H A P T E R 2

Movie Toolbox

2-258 Movie Toolbox Reference

srcDuration
Specifies the duration of the segment in the source movie. This time value
must be expressed in the source movie’s time scale.

dstIn Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the destination movie’s time scale.

DESCRIPTION

The InsertMovieSegment function does not change the source movie. However, the

duration of the destination movie is extended to accommodate the inserted segment. You

can use this function to add a segment beyond the end of the destination movie—the

Movie Toolbox inserts empty space as appropriate.

You can use the InsertMovieSegment function to copy data within a single movie.

If you are not copying data from one location in a movie to a different point in the same

movie, the function may create new tracks, as appropriate.

Whenever possible, the Movie Toolbox uses existing tracks to store the data to be

inserted. Before adding a track to the destination movie, the toolbox looks in the

destination movie for tracks that have the same characteristics as the tracks in the source

movie. The toolbox considers the following characteristics when searching for an

appropriate track:

■ track spatial dimensions

■ track matrix

■ track clipping region

■ track matte

■ alternate group affiliation

■ media time scale

■ media type

■ media language

■ data reference (that is, the two tracks must refer to the same file)

If the Movie Toolbox cannot find an appropriate track in the destination movie, it creates

a track with the proper characteristics.

If you have assigned a progress function to the destination movie, the Movie Toolbox

calls that progress function during long copy operations. For details on

application-defined progress functions, see “Progress Functions” beginning on

page 2-354.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-259

ERROR CODES

Memory Manager errors

InsertEmptyMovieSegment

The InsertEmptyMovieSegment function adds an empty segment to a movie. You

specify the starting time and duration of the empty segment to be added. These times

must be expressed in the movie’s time scale.

pascal OSErr InsertEmptyMovieSegment (Movie dstMovie,

TimeValue dstIn,

TimeValue dstDuration);

dstMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

dstIn Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the movie’s time scale.

dstDuration
Contains a time value that specifies the duration of the segment
to be added.

DESCRIPTION

The InsertEmptyMovieSegment function then inserts the appropriate amount of

empty time into each of the movie’s tracks. The exact meaning of the term empty time

depends upon the type of track. For example, empty time in a sound track is silent.

You cannot add empty space to the end of a movie. If you want to insert a segment

beyond the end of a movie, use the InsertMovieSegment function, which is described

in the previous section.

ERROR CODES

Memory Manager errors

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid
progressProcAborted –2019 Your progress function returned an error

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

2-260 Movie Toolbox Reference

DeleteMovieSegment

The DeleteMovieSegment function removes a specified segment from a movie. You

identify the segment to remove by specifying its starting time and duration.

pascal OSErr DeleteMovieSegment (Movie theMovie, TimeValue in,

TimeValue duration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

in Contains a time value specifying the starting point of the segment
to be deleted.

duration Contains a time value that specifies the duration of the segment
to be deleted.

ERROR CODES

ScaleMovieSegment

The ScaleMovieSegment function changes the duration of a segment of a movie. The

Movie Toolbox scales the segment to accommodate the new duration.

pascal OSErr ScaleMovieSegment (Movie theMovie, TimeValue in,

TimeValue oldDuration,

TimeValue newDuration);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

in Specifies the start of the segment. The oldDuration parameter specifies
the segment’s duration. This time value must be expressed in the movie’s
time scale.

oldDuration
Specifies the duration of the segment in the source movie. This time value
must be expressed in the movie’s time scale.

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-261

newDuration
Specifies the new duration of the segment. This time value must be
expressed in the movie’s time scale. The function alters the segment to
accommodate the new duration.

ERROR CODES

Memory Manager errors

CopyMovieSettings

The CopyMovieSettings function copies many settings from one movie to another,

overwriting the destination settings in the process.

pascal OSErr CopyMovieSettings (Movie srcMovie, Movie dstMovie);

srcMovie Specifies the source movie for this operation. Your application obtains this
movie identifier from such functions as NewMovie, NewMovieFromFile,
and NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

dstMovie Specifies the destination movie for this operation. The
CopyMovieSettings function uses the settings from the source movie,
which is specified by the srcMovie parameter, to replace the current
settings of this movie.

DESCRIPTION

The CopyMovieSettings function copies the

■ preferred rate and volume

■ source clipping region

■ matrix information

■ user data

If you want to work with specific characteristics, you can use the Movie Toolbox

functions that allow you to manipulate movie settings individually. These functions are

described in “Functions That Modify Movie Properties” beginning on page 2-157.

This function does not copy the movie’s contents. To work with movie contents, you

should use the segment editing functions described in “Low-Level Movie-Editing

Functions” beginning on page 2-257.

invalidMovie –2010 This movie is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

2-262 Movie Toolbox Reference

ERROR CODES

Memory Manager errors

Editing Tracks

The Movie Toolbox provides a number of functions that allow your application to

perform editing operations on tracks. These functions work with track segments—pieces

of a track that are defined by a starting time and duration—and therefore give you a

great deal of control over the editing process. These functions are similar to the low-level

editing functions for movies that were described earlier in this chapter. However, these

functions may copy movie data, if required by the operation.

When you edit a track you may change the duration of the movie that contains that track.

The CopyTrackSettings function lets you copy certain important settings from one

track to another.

You can use the InsertTrackSegment function to copy a segment from one track to

another. The InsertTrackEmptySegment function allows you to insert an empty

segment into a track.

You can use the InsertMediaIntoTrack function to insert a media into a track.

Your application can delete a segment from a track by calling the

DeleteTrackSegment function.

You can change a segment’s duration by calling the ScaleTrackSegment function.

This function stretches or shrinks the segment to accommodate a specified duration.

You can use the GetTrackEditRate function to determine the rate of the track edit of a

specified track at an indicated time.

InsertTrackSegment

The InsertTrackSegment function copies part of one track to another. You specify the

starting time and duration of the source segment and the time in the destination track at

which to place the information.

pascal OSErr InsertTrackSegment (Track srcTrack, Track dstTrack,

TimeValue srcIn,

TimeValue srcDuration,

TimeValue dstIn);

srcTrack Specifies the source track for this operation. Your application obtains this
track identifier from such Movie Toolbox functions as NewMovieTrack
and GetMovieTrack (described on page 2-151 and page 2-204,
respectively).

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-263

dstTrack Specifies the destination track for this operation. The
InsertTrackSegment function places a copy of the segment, which is
obtained from the source track, into this destination track. The in
parameter specifies where the segment is inserted.

srcIn Specifies the start of the segment in the source track. The srcDuration
parameter specifies the segment’s duration. This time value must be
expressed in the time scale of the movie that contains the source track.

srcDuration
Specifies the duration of the segment in the source track. This time
value must be expressed in the time scale of the movie that contains the
source track.

dstIn Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the time scale of the movie that contains
the destination track.

DESCRIPTION

The InsertTrackSegment function does not change the source track. However, the

duration of the destination track is extended to accommodate the inserted segment. This

may also change the duration of the movie that contains the destination track.

You can use this function to copy data within a single track. If you are not copying data

from one location in a track to a different point in the same track, make sure that the two

tracks are of the same type. For example, you cannot copy a segment from a sound track

into a video track.

In addition, if the source and destination tracks are associated with different media data

files, this function copies samples from the source to the destination using the

AddMediaSample function. Therefore, the Movie Toolbox must be able to write to the

destination media. In this case, your application must call the BeginMediaEdits

function before calling InsertTrackSegment. At the end of the editing session, your

application must call the EndMediaEdits function. See “Adding Samples to Media

Structures” beginning on page 2-271 for more information about these functions.

If you have assigned a progress function to the movie that contains the destination track,

the Movie Toolbox calls that progress function during long copy operations.

ERROR CODES

File Manager errors

invalidTrack –2009 This track is corrupted or invalid
mediaTypesDontMatch –2018 These media structures don’t match
progressProcAborted –2019 Your progress function returned an error

C H A P T E R 2

Movie Toolbox

2-264 Movie Toolbox Reference

InsertEmptyTrackSegment

The InsertEmptyTrackSegment function adds an empty segment to a track. You

specify the starting time and duration of the empty segment to be added. These times

must be expressed in the movie’s time scale. This function then inserts the appropriate

amount of empty time into the track. The exact meaning of the term empty time depends

upon the type of track. For example, empty time in a sound track is silent.

pascal OSErr InsertEmptyTrackSegment (Track dstTrack,

TimeValue dstIn,

TimeValue dstDuration);

dstTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

dstIn Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the time scale of the movie that contains
the destination track.

dstDuration
Contains a time value that specifies the duration of the segment to be
added. This time value must be expressed in the time scale of the movie
that contains the destination track.

DESCRIPTION

Note that you cannot add empty space to the end of a movie or to the end of a track. If

you try to add an empty segment beyond the end of a track, this function does not add

the empty segment and returns a result code of invalidTime.

ERROR CODES

Memory Manager errors

invalidTrack –2009 This track is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-265

InsertMediaIntoTrack

The InsertMediaIntoTrack function inserts a reference to a media segment into a

track. You specify the segment in the media by providing a starting time and duration.

You specify the point in the destination track by providing a time in the track.

pascal OSErr InsertMediaIntoTrack (Track theTrack,

TimeValue trackStart,

TimeValue mediaTime,

TimeValue mediaDuration,

Fixed mediaRate);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

trackStart
Contains a time value specifying where the segment is to be inserted. This
time value must be expressed in the movie’s time scale. If you set this
parameter to –1, the media data is added to the end of the track.

mediaTime Contains a time value specifying the starting point of the segment in the
media. This time value must be expressed in the media’s time scale.

mediaDuration
Contains a time value specifying the duration of the media’s segment.
This time value must be expressed in the media’s time scale.

mediaRate Specifies the media’s rate. A value of 1.0 indicates the media’s natural
playback rate. This value should be a positive, nonzero rate.

DESCRIPTION

The InsertMediaIntoTrack function inserts the media segment into the track at the

specified location. The Movie Toolbox determines the duration of the segment in the

track based on the media rate and duration information you provide.

You use this function after you have added samples to a media using the functions

described in “Adding Samples to Media Structures” beginning on page 2-271.

If you play the track before you call this function, the track does not contain the new

media data.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

2-266 Movie Toolbox Reference

DeleteTrackSegment

The DeleteTrackSegment function removes a specified segment from a track. You

identify the segment to remove by specifying its starting time and duration.

pascal OSErr DeleteTrackSegment (Track theTrack, TimeValue in,

TimeValue duration);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

in Contains a time value specifying the starting point of the segment to be
deleted. This time value must be expressed in the time scale of the movie
that contains the source track.

duration Contains a time value that specifies the duration of the segment to be
deleted. This time value must be expressed in the time scale of the movie
that contains the source track.

ERROR CODES

SEE ALSO

To dispose of a track, call the DisposeMovieTrack function, described on page 2-152.

ScaleTrackSegment

The ScaleTrackSegment function changes the duration of a segment of a track. This

may change the duration of the movie that contains the track. However, this function

does not cause the Movie Toolbox to add data to or remove data from the movie.

pascal OSErr ScaleTrackSegment (Track theTrack, TimeValue in,

TimeValue oldDuration,

TimeValue newDuration);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

in Specifies the start of the segment. The oldDuration parameter specifies
the segment’s duration. This time value must be expressed in the time
scale of the movie that contains the track.

invalidTrack –2009 This track is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-267

oldDuration
Specifies the duration of the segment. This time value must be expressed
in the time scale of the movie that contains the track.

newDuration
Specifies the new duration of the segment. This time value must be
expressed in the time scale of the movie that contains the track. The
function alters the segment to accommodate the new duration.

ERROR CODES

Memory Manager errors

CopyTrackSettings

The CopyTrackSettings function copies many settings from one track to another,

overwriting the destination settings.

pascal OSErr CopyTrackSettings (Track srcTrack, Track dstTrack);

srcTrack Specifies the source track for this operation. Your application
obtains this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack (described on page 2-151 and
page 2-204, respectively).

dstTrack Specifies the destination track for this operation. The
CopyTrackSettings function uses the settings from the source track,
which you specify with the srcTrack parameter, to replace the current
settings of this track.

DESCRIPTION

The CopyTrackSettings function copies the

■ matrix information

■ track volume

■ clipping region

■ user data

■ matte information

■ media language, quality, and user data

■ other media-specific settings (such as sound balance and video graphics mode)

This function does not copy any alternate group information pertaining to the track.

invalidTrack –2009 This track is corrupted or invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid

C H A P T E R 2

Movie Toolbox

2-268 Movie Toolbox Reference

If you want to work with specific characteristics, you can use the Movie Toolbox

functions that allow you to manipulate track settings individually. These functions are

described in “Functions That Modify Movie Properties,” which begins on page 2-157.

This function does not copy the track’s contents. To work with track contents, you

should use the segment-editing functions described in “Editing Tracks” beginning on

page 2-262.

ERROR CODES

Memory Manager errors

GetTrackEditRate

The GetTrackEditRate function returns the rate of the track edit of a specified track at

an indicated time.

pascal Fixed GetTrackEditRate (Track theTrack, TimeValue atTime);

theTrack Specifies the track identifier for which the rate of a track edit (at the time
given in the atTime parameter) is to be determined.

atTime Indicates a time value at which the rate of a track edit (of a track
identified in the parameter theTrack) is to be determined.

DESCRIPTION

If an invalid time or track is passed, the returned value is 0.0. The track edit rate is

typically 1.0, unless either the ScaleMovieSegment or ScaleTrackSegment function

has been called. (For more on the ScaleMovieSegment and ScaleTrackSegment

functions, see page 2-260 and page 2-266, respectively.)

The GetTrackEditRate function is relevant if you are stepping through track edits

directly in your application or if you are a client of the base media handler. (See Inside
Macintosh: QuickTime Components for details on media handlers.)

Undo for Tracks

The Movie Toolbox provides functions that allow you to capture and restore the edit

state of a track. As with the functions that manipulate a movie’s edit state, you can

manage a track’s edit states in order to implement an undo capability for track editing.

For example, you can capture a track’s edit state before performing an editing operation,

such as a cut, and later restore the old state. You can have several track edit states

obtained at different times during an editing session, and you can restore to any one of

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-269

them at any time. In this manner, you can provide a multilevel undo capability. This

section describes the Movie Toolbox functions that work with track edit states.

Note that a track’s edit state does not save everything about the track. Most important,

the edit state does not contain information about track spatial characteristics. For

example, the edit state does not store the current clipping region. Consequently, edit

states are best suited to supporting undo operations involving track content. You can use

other Movie Toolbox functions to support undo operations for track characteristics. See

“Functions That Modify Movie Properties,” which begins on page 2-157, to learn more

about these functions.

You can use the NewTrackEditState function to capture a track’s edit state. Use the

UseTrackEditState function to restore the track to its condition according to a

previous edit state. Your application can dispose of an edit state by calling the

DisposeTrackEditState function.

NewTrackEditState

You can create an edit state by calling the NewTrackEditState function. This function

creates an edit state that contains all the information describing a track’s content,

including the identity of the media data associated with the track and all the track’s

edit lists.

Note
You must dispose of a movie’s track edit states before disposing of the
track or of the movie that contains the track. Use the
DisposeTrackEditState function, which is described on page 2-270,
to dispose of an edit state. ◆

pascal TrackEditState NewTrackEditState (Track theTrack);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

DESCRIPTION

The NewTrackEditState function returns a track edit state identifier. You can use this

identifier with other Movie Toolbox edit state functions, such as UseTrackEditState

(described in the next section). If this function could not create the edit state, it sets this

returned identifier to nil.

ERROR CODES

Memory Manager errors

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-270 Movie Toolbox Reference

UseTrackEditState

Your application can use the UseTrackEditState function to return a track to its

condition according to an edit state you created previously.

pascal OSErr UseTrackEditState (Track theTrack,

TrackEditState state);

theTrack Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

state Specifies the edit state for this operation. Your application obtains this
edit state identifier when you create the edit state by calling the
NewTrackEditState function, which is described in the previous
section.

DESCRIPTION

The UseTrackEditState function uses the information stored in the edit state to

update the track’s contents. This may change the contents of some of the track.

Consequently, the time characteristics of the movie that contains the track, especially the

duration, may change as a result of restoring the saved edit state. Your application

creates an edit state by calling the NewTrackEditState function.

SPECIAL CONSIDERATIONS

You can use the UseTrackEditState function only with tracks that currently belong

to a movie. A track may be detached from its movie as a result of edit processing—you

cannot use this function with such a track.

ERROR CODES

DisposeTrackEditState

The DisposeTrackEditState function disposes of a track edit state. Your application

must dispose of any edit states you create. You create an edit state by calling the

NewTrackEditState function, which is discussed on page 2-269.

Note

You must dispose of a movie’s track edit states before you dispose
of the track or the movie. ◆

invalidTrack –2009 This track is corrupted or invalid
invalidEditState –2023 This edit state is invalid
nonMatchingEditState –2024 This edit state is not valid for this movie

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-271

pascal OSErr DisposeTrackEditState (TrackEditState state);

state Specifies the edit state for this operation. Your application obtains this
edit state identifier when you create the edit state by calling the
NewTrackEditState function (described on page 2-269).

ERROR CODES

Adding Samples to Media Structures

This section describes Movie Toolbox functions that directly manipulate media

samples. These functions are used only by applications that create movies or add data to

existing movies.

You add samples to a media by calling the AddMediaSample function. You can indicate

that the sample to be added is not a sync sample. Sync samples do not rely on preceding

frames for content. Some compression algorithms conserve space by eliminating

duplication between consecutive frames in a sample. In image data, sync samples are

referred to as key frames. For more information on key frames, see the chapter “Image

Compression Manager” in this book.

You can obtain the data in a media sample by calling the GetMediaSample function.

If you are going to add samples to a media, you must do so within a media-editing

session. You start a media-editing session by calling the BeginMediaEdits function.

Once you have finished adding samples to the media, you end the editing session by

calling the EndMediaEdits function.

Once you have added samples to a media, you can work with references to those

samples by calling the AddMediaSampleReference and

GetMediaSampleReference functions. You do not have to be in a media-editing

session to use these functions.

BeginMediaEdits

The BeginMediaEdits function starts a media-editing session.

pascal OSErr BeginMediaEdits (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

invalidTrack –2009 This track is corrupted or invalid
invalidEditState –2023 This edit state is invalid
staleEditState –2025 Movie or track has been disposed

C H A P T E R 2

Movie Toolbox

2-272 Movie Toolbox Reference

DESCRIPTION

You use the BeginMediaEdits function to notify the Movie Toolbox that you are going

to add sample data to a media. In response, the Movie Toolbox determines whether the

media can be updated. For example, if the media data are stored on disk, the Movie

Toolbox opens the disk file with write permissions. If the media is stored on a read-only

storage medium, such as a CD-ROM disc, the Movie Toolbox does not start an editing

session and returns an error.

Use the EndMediaEdits function, which is described in the next section, to end a

media-editing session.

You must call BeginMediaEdits before you add samples to a media with the

AddMediaSample function (described on page 2-273). Under some circumstances, you

must start a media-editing session before calling the InsertTrackSegment function

(described on page 2-262).

ERROR CODES

File system errors

EndMediaEdits

The EndMediaEdits function ends a media-editing session.

pascal OSErr EndMediaEdits (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

You use the EndMediaEdits function to tell the Movie Toolbox that you are done

adding samples to a movie data file. The Movie Toolbox then performs the appropriate

processing. For example, for disk-based media, the Movie Toolbox relinquishes

write-access to the disk file. You should call EndMediaEdits only if you successfully

started a media-editing session with the BeginMediaEdits function, which is

described in the previous section.

ERROR CODES

invalidMedia –2008 This media is corrupted or invalid

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-273

AddMediaSample

The AddMediaSample function adds sample data and a description to a media. Your

application specifies the sample and the media for the operation. The AddMediaSample

function updates the media so that it contains the sample data. One call to this function

can add several samples to a media—however, all the samples must be the same size.

Samples are always appended to the end of the media. Furthermore, each time a sample

is added, the media duration is extended.

pascal OSErr AddMediaSample (Media theMedia, Handle dataIn,

long inOffset, unsigned long size,

TimeValue durationPerSample,

SampleDescriptionHandle sampleDescriptionH,

long numberOfSamples, short sampleFlags,

TimeValue *sampleTime);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

dataIn Contains a handle to the sample data. The AddMediaSample function
adds this data to the media specified by the parameter theMedia. You
specify the number of bytes of sample data with the size parameter. You
can use the inOffset parameter to specify a byte offset into the data
referred to by this handle.

inOffset Specifies an offset into the data referred to by the handle contained in the
dataIn parameter. Set this parameter to 0 if there is no offset.

size Specifies the number of bytes of sample data to be added to the media.
This parameter indicates the total number of bytes in the sample data to
be added to the media, not the number of bytes per sample. Use the
numberOfSamples parameter to indicate the number of samples that are
contained in the sample data.

durationPerSample
Specifies the duration of each sample to be added. You must specify this
parameter in the media’s time scale. For example, if you are adding sound
that was sampled at 22 kHz to a media that contains a sound track with
the same time scale, you would set the durationPerSample parameter
to 1. Similarly, if you are adding video that was recorded at 10 frames per
second to a video media that has a time scale of 600, you would set this
parameter to 60 to add a single sample.

sampleDescriptionH
Contains a handle to a sample description. Some media structures may
require sample descriptions. There are different sample descriptions for
different types of samples. For example, a media that contains
compressed video requires that you supply an image description (see the
chapter “Image Compression Manager” in this book for more information
about image description structures). A media that contains sound requires

C H A P T E R 2

Movie Toolbox

2-274 Movie Toolbox Reference

that you supply a sound description structure (see “The Sound
Description Structure” on page 2-79 for more information about sound
description structures).

If the media does not require a sample description, set this
parameter to nil.

numberOfSamples
Specifies the number of samples contained in the sample data to be added
to the media.

This parameter determines the size of each sample. The Movie Toolbox
considers the value of this parameter as well as the value of the size
parameter when it determines the size of each sample that it adds to the
media. You should set the value of this parameter so that the resulting
sample size represents a reasonable compromise between total data
retrieval time and the overhead associated with input and output (I/O).
You should also consider the speed of the data storage device—CD-ROM
devices are much slower than hard disks, for example, and should
therefore have a smaller sample size.

For a video media, set a sample size that corresponds to the size of a
frame. For a sound media, choose a number of samples that corresponds
to between 0.5 and 1.0 seconds of sound. In general, you should not create
groups of sound samples that are less than 2 KB in size or greater than
15 KB. Typically, a sample size of about 8 KB is reasonable for most
storage devices.

sampleFlags
Contains flags that control the add operation. The following flag is
available (set unused flags to 0):

mediaSampleNotSync
Indicates that the sample to be added is not a sync sample.
Set this flag to 1 if the sample is not a sync sample. Set this
flag to 0 if the sample is a sync sample.

sampleTime
Contains a pointer to a time value. After adding the sample data to the
media, the AddMediaSample function returns the time where the sample
was inserted in the time value referred to by this parameter. If you do not
want to receive this information, set this parameter to nil.

DESCRIPTION

The AddMediaSample function updates the file or device that contains the movie data

file as part of the add operation. Consequently, your application must have started a

media-editing session before calling this function. You start a media-editing session with

the BeginMediaEdits function, which is described on page 2-271. If you want to work

with samples that have already been added to a movie data file, use the

AddMediaSampleReference function, which is described in the next section.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-275

ERROR CODES

File Manager errors

Memory Manager errors

AddMediaSampleReference

The AddMediaSampleReference function allows your application to work with

samples that have already been added to a movie data file. Instead of actually writing

out samples to disk, this function writes out references to existing samples, which you

specify in the dataOffset and size parameters.

pascal OSErr AddMediaSampleReference (Media theMedia,

long dataOffset,

unsigned long size,

TimeValue durationPerSample,

SampleDescriptionHandle sampleDescriptionH,

long numberOfSamples, short sampleFlags,

TimeValue *sampleTime);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

dataOffset
Specifies the offset into the movie data file. This parameter is used
differently by each data handler. For example, for the standard HFS data
handler, this parameter specifies the offset into the file. This parameter
contains either data you add yourself or the data offset returned by the
GetMediaSampleReference function (described on page 2-279).

size Specifies the number of bytes of sample data to be identified by the
reference. This parameter indicates the total number of bytes in the
sample data, not the number of bytes per sample. Use the
numberOfSamples parameter to indicate the number of samples that are
contained in the reference.

durationPerSample
Specifies the duration of each sample in the reference. You must specify
this parameter in the media’s time scale. For example, if you are referring
to sound that was sampled at 22 kHz in a media that contains a sound
track with the same time scale, to add a reference to a single sample you
would set the durationPerSample parameter to 1. Similarly, if you are
referring to video that was recorded at 10 frames per second in a video
media that has a time scale of 60, you would set this parameter to 6 to add
a reference to a single sample.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-276 Movie Toolbox Reference

sampleDescriptionH
Contains a handle to a sample description. Some media structures may
require sample descriptions. There are different sample descriptions for
different types of samples. For example, a media that contains
compressed video requires that you supply an image description (see the
chapter “Image Compression Manager” in this book for more information
about image description structures). A media that contains sound requires
that you supply a sound description structure (see “The Sound
Description Structure” on page 2-79 for more information about
sound description structures).

If the media does not require a sample description, set this
parameter to nil.

numberOfSamples
Specifies the number of samples contained in the reference. For details,
see the AddMediaSample function description beginning on page 2-273.

sampleFlags
Contains flags that control the operation. The following flag is available
(set unused flags to 0):

mediaSampleNotSync
Indicates that the sample to be added is not a sync sample.
Set this flag to 1 if the sample is not a sync sample. Set this
flag to 0 if the sample is a sync sample.

sampleTime
Contains a pointer to a time value. After adding the reference to the
media, the AddMediaSampleReference function returns the time
where the reference was inserted in the time value referred to by
this parameter. If you do not want to receive this information, set this
parameter to nil.

DESCRIPTION

The AddMediaSampleReference function does not add sample data to the file or

device that contains a media. Rather, it defines references to sample data that you

previously added to a movie data file. As with the AddMediaSample function

(described in the previous section), your application specifies the media for the

operation. Note that one reference may refer to more than one sample—all the samples

described by a reference must be the same size. This function does not update the movie

data file as part of the add operation. Therefore, your application does not have to call

the BeginMediaEdits function (described on page 2-271) before calling

AddMediaSampleReference.

ERROR CODES

Memory Manager errors

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-277

SEE ALSO

If you want to add new samples to a media data file, use the AddMediaSample

function, which is described in the previous section.

GetMediaSample

The GetMediaSample function returns a sample from a movie data file. You add

samples to movie data files with the AddMediaSample function (described on

page 2-273).

pascal OSErr GetMediaSample (Media theMedia, Handle dataOut,

long maxSizeToGrow, long *size,

TimeValue time, TimeValue *sampleTime,

TimeValue *durationPerSample,

SampleDescriptionHandle sampleDescriptionH,

long *sampleDescriptionIndex,

long maxNumberOfSamples,

long *numberOfSamples,

short *sampleFlags);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

dataOut Contains a handle. The GetMediaSample function returns the sample
data into this handle. The function increases the size of this handle, if
necessary. You can specify the handle’s maximum size with the
maxSizeToGrow parameter.

maxSizeToGrow
Specifies the maximum number of bytes of sample data to be returned.
The GetMediaSample function does not increase the handle specified by
the dataOut parameter to a size greater than you specify with this
parameter. Set this value to 0 to enforce no limit on the number of bytes to
be returned.

size Contains a pointer to a long integer. The GetMediaSample function
updates the field referred to by the size parameter with the number of
bytes of sample data returned in the handle specified by the dataOut
parameter. Set this parameter to nil if you are not interested in this
information.

time Specifies the starting time of the sample to be retrieved. You must specify
this value in the media’s time scale.

C H A P T E R 2

Movie Toolbox

2-278 Movie Toolbox Reference

sampleTime
Contains a pointer to a time value. The GetMediaSample function
updates this time value to indicate the actual time of the returned
sample data. If you are not interested in this information, set this
parameter to nil.

The returned time may differ from the time you specified with the time
parameter. This will occur if the time you specified falls in the middle of a
sample.

durationPerSample
Contains a pointer to a time value. The Movie Toolbox returns the
duration of each sample in the media. This time value is expressed in the
media’s time scale. Set this parameter to 0 if you do not want this
information.

sampleDescriptionH
Contains a handle to a sample description. The GetMediaSample
function returns the sample description corresponding to the returned
sample data. The function resizes this handle as appropriate. If you do
not want the sample description, set this parameter to nil.

sampleDescriptionIndex
Contains a pointer to a long integer. The GetMediaSample function
returns an index value to the sample description that corresponds to
the returned sample data. If you do not want this information, set this
parameter to nil.

You can use this index to retrieve the sample description by calling the
GetMediaSampleDescription function, which is described on
page 2-226.

You can retrieve the sample description itself by using the
sampleDescriptionH parameter.

maxNumberOfSamples
Specifies the maximum number of samples to be returned. The Movie
Toolbox does not return more samples than you specify with this
parameter.

If you set this parameter to 0, the Movie Toolbox uses a value that is
appropriate for the media, and returns that value in the field referenced
by the numberOfSamples parameter.

numberOfSamples
Contains a pointer to a long integer. The GetMediaSample function
updates the field referred to by this parameter with the number of
samples it actually returns. If you do not want this information, set this
parameter to nil.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-279

sampleFlags
Contains a pointer to a short integer. The GetMediaSample function
returns flags that describe the sample. The following flag is available (set
unused flags to 0):

mediaSampleNotSync
Indicates that the sample that is returned is not a sync
sample. Set this flag to 1 if the sample is not a sync sample.
Set this flag to 0 if the sample is a sync sample.

If you do not want this information, set this
parameter to nil.

ERROR CODES

File Manager errors

Memory Manager errors

GetMediaSampleReference

The GetMediaSampleReference function allows your application to obtain reference

information about samples that are stored in a movie data file.

pascal OSErr GetMediaSampleReference (Media theMedia,

long *dataOffset,long *size, TimeValue time,

TimeValue *sampleTime,

TimeValue *durationPerSample,

SampleDescriptionHandle sampleDescriptionH,

long *sampleDescriptionIndex,

long maxNumberOfSamples,

long *numberOfSamples, short *sampleFlags);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

dataOffset
Contains a pointer to a long integer. The GetMediaSampleReference
function updates the field referred to by this parameter with the offset to
the sample data.

This parameter is used differently by each media handler. For example,
the hierarchical file system (HFS) media handler returns an offset into the
file that contains the media data.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-280 Movie Toolbox Reference

size Contains a pointer to a long integer. The GetMediaSampleReference
function updates the field referred to by the size parameter with the
number of bytes of sample data referred to by the reference. Set this
parameter to nil if you are not interested in this information.

time Specifies the starting time of the sample reference to be retrieved. You
must specify this value in the media’s time scale.

sampleTime
Contains a pointer to a time value. The GetMediaSampleReference
function updates this time value to indicate the actual time of the
returned sample data. If you are not interested in this information, set this
parameter to nil.

The returned time may differ from the time you specified with the time
parameter. This will occur if the time you specified falls in the middle of a
sample.

durationPerSample
Contains a pointer to a time value. The Movie Toolbox returns the
duration of each sample in the media. This time value is expressed in the
media’s time scale. Set this parameter to 0 if you do not want this
information.

sampleDescriptionH
Contains a handle to a sample description. The
GetMediaSampleReference function returns the sample description
corresponding to the returned sample data. The function resizes this
handle as appropriate. If you do not want the sample description, set this
parameter to nil.

sampleDescriptionIndex
Contains a pointer to a long integer. The GetMediaSampleReference
function returns an index value to the sample description that
corresponds to the returned sample data. You can use this index to
retrieve the media sample description with the
GetMediaSampleDescription function, which is described on
page 2-226. If you do not want this information, set this parameter to nil.

You can retrieve the sample description itself by using the
sampleDescriptionH parameter.

maxNumberOfSamples
Specifies the maximum number of samples to be returned. The Movie
Toolbox does not return a reference that refers to more samples than you
specify with this parameter.

If you set this parameter to 0, the Movie Toolbox uses a value that is
appropriate for the media and returns that value in the field referenced by
the numberOfSamples parameter.

numberOfSamples
Contains a pointer to a long integer. The GetMediaSampleReference
function updates the field referred to by this parameter with the number
of samples referred to by the returned reference. If you do not want this
information, set this parameter to nil.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-281

sampleFlags
Contains a pointer to a short integer. The GetMediaSampleReference
function returns flags that describe the samples referred to by the
reference. The following flag is available (unused flags are set to 0):

mediaSampleNotSync
Indicates the sample that is returned is not a sync sample.
Set this flag to 1 if the sample is not a sync sample. Set this
flag to 0 if the sample is a sync sample.

If you do not want this information, set this
parameter to nil.

DESCRIPTION

The GetMediaSampleReference function is similar to GetMediaSample, except that

it does not return the sample data.

ERROR CODES

Memory Manager errors

Media Functions

The Movie Toolbox does not contain any support for specific media types. Rather, it

delegates this work to media handler components. The Movie Toolbox provides a

number of functions that allow your application to interact with media handlers. This

section describes those functions. It has been divided into the following topics:

■ “Selecting Media Handlers” describes the functions that you can use to gain access to
a media handler

■ “Video Media Handler Functions” describes the functions that allow your application
to interact with video media handlers

■ “Sound Media Handler Functions” describes the functions that allow your application
to interact with sound media handlers

■ “Text Media Handler Functions” describes the functions that allow your application
to interact with text media handlers

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-282 Movie Toolbox Reference

Selecting Media Handlers

Media handler components are responsible for interpreting and manipulating a media’s

sample data. Each type of media has its own media handler, which deals with the

specific characteristics of the media data. The Movie Toolbox provides a set of functions

that allow you to gather information about a media handler and assign a particular

media handler to a media. This section discusses those functions.

Each media handler has an associated data handler for each data reference. The data

handler is responsible for fetching, storing, and caching the data that the media handler

uses. The Movie Toolbox provides functions that allow you to get information about data

handlers and to assign a particular data handler to a media.

The GetMediaHandler and GetMediaHandlerDescription functions allow you to

retrieve information about a media handler.

You can use the SetMediaHandler function to assign a media handler to a media.

The GetMediaDataHandler and GetMediaDataHandlerDescription functions

enable you to retrieve information about a data handler. Use the

SetMediaDataHandler function to assign a data handler to a media.

GetMediaHandlerDescription

The GetMediaHandlerDescription function allows your application to retrieve

information about a media handler. You specify the media.

pascal void GetMediaHandlerDescription (Media theMedia,

OSType *mediaType,

Str255 creatorName,

OSType *creatorManufacturer);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

mediaType Contains a pointer to a field of data type OSType. The Movie Toolbox
returns the media type identifier. This value indicates the type of media
supported by this media handler. This value also corresponds to the
component subtype specified for the media handler component. If you do
not want to receive this information, set the mediaType parameter to
nil. The following values are available:

VideoMediaType Video media

SoundMediaType Sound media

TextMediaType Text media

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-283

creatorName
Points to a string. The Movie Toolbox returns the name of the media
handler’s creator. If you do not want to receive this information, set this
parameter to nil.

creatorManufacturer
Contains a pointer to a long integer. The Movie Toolbox returns the 4-byte
value that identifies the manufacturer of the component. If you do not
want to retrieve this information, set this parameter to nil.

DESCRIPTION

The Movie Toolbox returns information about that media’s media handler. This

information describes the media handler that created the media, not the handler that is

currently assigned to the media.

ERROR CODES

GetMediaHandler

The GetMediaHandler function allows you to obtain a reference to a media handler

component.

You can use this reference to call the media handler directly. See “Video Media Handler

Functions,” which begins on page 2-287, and “Sound Media Handler Functions,” which

begins on page 2-288, for information about the functions that are supported by video

and sound media handlers.

pascal MediaHandler GetMediaHandler (Media theMedia);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

DESCRIPTION

The GetMediaHandler function returns a reference to the media’s media handler. If the

function could not locate the media handler, it sets this reference to nil. You can use this

reference to call the media handler.

ERROR CODES

invalidMedia –2008 This media is corrupted or invalid

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-284 Movie Toolbox Reference

SetMediaHandler

The SetMediaHandler function allows you to assign a specific media handler to a

track. The Movie Toolbox closes the track’s previous media handler and then opens the

new one. It is your responsibility to ensure that the media handler you specify can

handle the data in the track.

pascal OSErr SetMediaHandler (Media theMedia,

MediaHandlerComponent mH);

theMedia Specifies the track for this operation. Your application obtains this track
identifier from such Movie Toolbox functions as NewMovieTrack and
GetMovieTrack (described on page 2-151 and page 2-204, respectively).

mH Contains a reference to a media handler component. You obtain this
reference from the GetMediaHandler function, which is described in the
previous section.

Note
Your application should not need to call the SetMediaHandler
function. The Movie Toolbox assigns a media handler to each track
when you load a movie. ◆

ERROR CODES

GetMediaDataHandlerDescription

The GetMediaDataHandlerDescription function allows your application to retrieve

information about a media’s data handler. You specify the media.

pascal void GetMediaDataHandlerDescription (Media theMedia,

short index, OSType *dhType,

Str255 creatorName,

OSType *creatorManufacturer);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

index Identifies the data reference. You provide the index value that
corresponds to the data reference for which you want to retrieve the data
handler description. You must set this parameter to 1.

invalidHandler –2013 This handler is invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-285

dhType Contains a pointer to a field of data type OSType. The Movie Toolbox
returns the data handler type identifier. This value indicates the type of
data reference supported by this data handler. This value also
corresponds to the component subtype specified for the data handler
component. All QuickTime data references have a type value of 'alis'.
If you do not want to receive this information, set the dhType parameter
to nil.

creatorName
Points to a string. The Movie Toolbox returns the name of the data
handler’s creator. If you do not want to receive this information, set this
parameter to nil.

creatorManufacturer
Contains a pointer to a long integer. The Movie Toolbox returns the 4-byte
value that identifies the manufacturer of the component. If you do not
want to retrieve this information, set this parameter to nil.

DESCRIPTION

The Movie Toolbox returns information about that media’s data handler. This

information describes the data handler that created the media data, not the handler that

is currently assigned to the media.

 ERROR CODES

GetMediaDataHandler

The GetMediaDataHandler function allows you to determine a media’s data handler.

pascal DataHandler GetMediaDataHandler (Media theMedia,

short index);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

index Identifies the data reference. You provide the index value that
corresponds to the data reference for which you want to retrieve the data
handler. You must set this parameter to 1.

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-286 Movie Toolbox Reference

DESCRIPTION

The GetMediaDataHandler function returns a data handler identifier. This identifier is

a component instance that specifies a connection to a data handler component (see the

chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox for more

information about components). If the Movie Toolbox cannot determine the data handler

for the media you specify, the function sets this returned value to nil.

Note

Your application should not need to call this function. ◆

ERROR CODES

SetMediaDataHandler

The SetMediaDataHandler function allows you to assign a data handler to a media.

pascal OSErr SetMediaDataHandler (Media theMedia, short index,

DataHandlerComponent dataHandler);

theMedia Specifies the media for this operation. Your application obtains this media
identifier from such Movie Toolbox functions as NewTrackMedia and
GetTrackMedia (described on page 2-153 and page 2-206, respectively).

index Identifies the data reference for this data handler. You provide the
index value that corresponds to the data reference. You must set this
parameter to 1.

dataHandler
Specifies the data handler for the media. This identifier is a component
instance that specifies a connection to a data handler component (see the
chapter “Component Manager” in Inside Macintosh: More Macintosh
Toolbox for more information about components). If the data handler you
specify cannot work with the data stored in the media, the function does
not change the media’s data handler.

DESCRIPTION

When you create a new media or load an existing media into memory, the media handler

assigns an appropriate data handler to the track’s media.

Note
Your application should not call the SetMediaDataHandler
function. The Movie Toolbox assigns a data handler to each media when
you load a movie. ◆

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-287

ERROR CODES

Video Media Handler Functions

Video media handlers are responsible for interpreting and manipulating video data.

These media handlers allow you to call them directly to work with some graphics

settings. This section describes the functions supported by video media handlers.

Video media handlers maintain a graphics mode and color value that affect the display

of video data. You can use the SetVideoMediaGraphicsMode and

GetVideoMediaGraphicsMode functions to work with these characteristics. See Inside
Macintosh: Imaging for more information about setting color values for use with the

addPin, subPin, blend, and transparent drawing modes.

Sample descriptions for video media are stored in image description structures. For a

complete discussion of the format and content of the image description structure, see the

chapter “Image Compression Manager” in this book.

SetVideoMediaGraphicsMode

The SetVideoMediaGraphicsMode function allows you to set the graphics mode and

blend color of a video media.

pascal HandlerError SetVideoMediaGraphicsMode (MediaHandler mh,

long graphicsMode,

const RGBColor *opColor);

mH Contains a reference to a media handler. You obtain this reference from
the GetMediaHandler function, which is described on page 2-283.

graphicsMode
Specifies the graphics mode of the media handler. This is a QuickDraw
transfer mode value.

opColor Contains a pointer to the color for use in blending and transparent
operations. The media handler passes this color to QuickDraw as
appropriate when you draw in addPin, subPin, blend, or
transparent mode.

ERROR CODES

Component Manager errors

badComponentType –2005 Component cannot accommodate this data
invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-288 Movie Toolbox Reference

SEE ALSO

You can retrieve the graphics mode and blend color currently in use by a video media

handler by calling the GetVideoMediaGraphicsMode function, which is described in

the next section.

GetVideoMediaGraphicsMode

The GetVideoMediaGraphicsMode function allows you to obtain the graphics mode

and blend color values currently in use by a video media handler.

pascal HandlerError GetVideoMediaGraphicsMode (MediaHandler mh,

long *graphicsMode,

RGBColor *opColor);

mH Contains a reference to a media handler. You obtain this reference from
the GetMediaHandler function, which is described on page 2-283.

graphicsMode
Contains a pointer to a long integer. The media handler returns the
graphics mode currently in use by the media handler. This is a
QuickDraw transfer mode value.

opColor Contains a pointer to an RGB color structure. The Movie Toolbox returns
the color currently in use by the media handler. This is the blend value for
blends and the transparent color for transparent operations. The Movie
Toolbox supplies this value to QuickDraw when you draw in addPin,
subPin, blend, or transparent mode.

ERROR CODES

Component Manager errors

SEE ALSO

You can set the graphics mode and blend color of a video media handler by calling the

SetVideoMediaGraphicsMode function, which is described in the previous section.

Sound Media Handler Functions

Sound media handlers are responsible for interpreting and manipulating sound data.

These media handlers allow you to call them directly to work with some audio settings.

This section describes the functions supported by sound media handlers.

Sound media handlers maintain balance information for their audio data. You can use

the SetSoundMediaBalance and GetSoundMediaBalance functions to work with a

handler’s balance setting.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-289

Sample descriptions for sound media are stored in sound description structures. See

“The Sound Description Structure” on page 2-79 for a discussion of the format and

content of the sound description structure.

SetSoundMediaBalance

The SetSoundMediaBalance function sets the balance of a sound media.

pascal HandlerError SetSoundMediaBalance (MediaHandler mh,

short balance);

mH Contains a reference to a media handler. You obtain this reference from
the GetMediaHandler function, which is described on page 2-283.

balance Specifies the balance setting of the media handler as a 16-bit, fixed-point
value. The high-order 8 bits contain the integer part of the value; the
low-order 8 bits contain the fractional part. Valid balance values range
from –1.0 to 1.0. Negative values emphasize the left sound channel, and
positive values emphasize the right sound channel; a value of 0 specifies
neutral balance.

ERROR CODES

Component Manager errors

GetSoundMediaBalance

The GetSoundMediaBalance function returns the balance of a sound media.

pascal HandlerError GetSoundMediaBalance (MediaHandler mh,

short *balance);

mH Contains a reference to a media handler. You obtain this reference from
the GetMediaHandler function, which is described on page 2-283.

balance Contains a pointer to an integer. The Movie Toolbox returns the current
balance setting of the media handler as a 16-bit, fixed-point value. The
high-order 8 bits contain the integer part of the value; the low-order 8 bits
contain the fractional part. Valid balance values range from –1.0 to 1.0.
Negative values emphasize the left sound channel, and positive values
emphasize the right sound channel; a value of 0 specifies neutral balance.

ERROR CODES

Component Manager errors

2-290 Movie Toolbox Reference

C H A P T E R 2

Movie Toolbox

Text Media Handler Functions

This section describes the functions and structure associated with the text media handler,

which allows you to display text in movies. You can use text media handlers to

■ add plain or styled text samples to a movie

■ indicate scrolling and highlighting properties for the text

■ search for text

■ highlight specified text

A particular text sample has a default font, size, typeface, and color as well as a location

(text box) within the track bounds to be drawn. The data format allows you to include

style run information for the text. You can set flags to clip the display to the text box,

inhibit automatic scaling of text as the track bounds are scaled, scroll the text, and

specify if text is to be displayed at all.

The Movie Toolbox provides functions to help you add text samples to a track. You can

use the AddTextSample function to add text to a media. The AddTESample function

allows you to specify a TextEdit handle (which may have multiple style runs) to be

added to a media. The AddHiliteSample function allows you to indicate highlighting

for text that has just been added with the AddTextSample or AddTESample function.

For more information on styled text, style runs, and TextEdit, see Inside Macintosh: Text.

The format of the text data that is added to the media is a 16-bit length word followed by

the text. The length word specifies the number of bytes in the text. Optionally, one or

more atoms of additional data may follow. An atom is structured as a 32-bit length word

followed by a 32-bit type followed by some data. The length word includes the size of

the data as well as the length and type fields (in other words, the size of the data plus 8).

Text atom types include the style atom ('styl'), the shrunken text box atom ('tbox'),

the highlighting atom ('hlit'), the scroll delay atom ('dlay'), and the highlight color

atom ('hclr').

The format of the style atom is the same as TextEdit’s StScrpRec data type. A

StScrpRec data type is a short integer specifying the number of style runs followed by

that number of ScrpSTElement data types, each specifying a different style run.

The shrunken text box atom is added when you set the dfShrinkTextBoxToFit

display flag (in the AddTextSample or AddTESample function). Its format is simply

the rectangle of the shrunken box (16 bytes total, including length and type).

The highlighting atom is added if the hiliteStart and hiliteEnd parameters are set

appropriately in the AddTextSample or AddTESample function. When

AddHiliteSample is called, an empty text sample (the first 2 bytes are 0) with a

highlighting atom is added to the media. The format is two long integers indicating the

start and end of the highlighting (16 bytes total).

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-291

The scroll delay atom specifies the scroll delay for a sample. It is a long value that

specifies the delay time. It consists of 12 bytes, including the length and type fields.

The highlight color atom specifies the highlight color for a sample. Its format is an

RGBColor data type (that is, 2 bytes red, 2 bytes green, and 2 bytes blue). It consists of

14 bytes, including the length and type fields.

The text description structure is defined as follows:

typedef struct TextDescription {

long size; /* total size of this text

 description structure */

long type; /* type of data in this

 structure such as

 'text' */

long resvd1; /* reserved for use by

 Apple--set to 0 */

long resvd2; /* reserved for use by

 Apple--set to 0 */

short dataRefIndex; /* index to data references */

long displayFlags; /* display flags for text */

long textJustification;

/* text justification flags */

RGBColor gColor; /* background color */

Rect defaultTextBox; /* location of the text within

 track bounds */

ScrpSTElement defaultStyle;

/* default style--

 TextEdit structure */

} TextDescription, *TextDescriptionPtr, **TextDescriptionHandle;

Field descriptions

size Defines the total size of this text description structure.

type Indicates the type (data type 'text').

resvd1 Reserved for use by Apple. This field must be set to 0.

resvd2 Reserved for use by Apple. This field must be set to 0.

displayFlags Contains the flags that specify how the text is to be displayed.

textJustification
Contains the constant that specifies how the text is to be aligned.

bgColor Specifies the background color for the text display.

defaultTextBox
Indicates the location of the text within track boundaries.

defaultStyle Provides a TextEdit data structure (defined by the ScrpSTElement
data type) that specifies the default style for the text display.

C H A P T E R 2

Movie Toolbox

2-292 Movie Toolbox Reference

The AddTextSample, AddTESample, and AddHiliteSample functions described in

the sections that follow convert text into the text media format and add it to the media.

To use these functions, you need to

■ create a text track and media

■ call the BeginMediaEdits function

■ call the AddTextSample, AddTESample, or AddHiliteSample function, as
appropriate

■ call the EndMediaEdits function

■ call the InsertMediaIntoTrack function

The movie import and export components help to get common data types (such as

'PICT' or 'snd ') into and out of movies easily. The text import component allows

you to get text into a movie using the following principles:

■ If you try to paste text, the text is inserted at the current position. The text import
component tries to find an existing text track that fits the text.

■ If no text tracks exist and there is an insertion operation, the newly created text track
has the same position and size as the movie box.

■ If there is an addition operation (using the Shift key), the new track is added below
the movie at a height that fits the text.

■ If a text track exists but the text does not fit, a new text track with sufficient height to
accommodate the text is created in the same location as the existing one.

■ If you hold down the Option key when you paste, the text is added in parallel at some
default duration.

■ If you hold down both the Option and Shift keys, the duration of the text is
determined by the length of the current selection.

■ If style information is on the Clipboard, it is used; otherwise, the text appears in the
default 12-point application font, centered, in white on a black background.

If you want more control over how the text is added (for example, if you want to set

some display flags or a new track position), your application must

1. intercept the text paste

2. instantiate its own text import component using the component type 'eat ' and
component subtype 'TEXT'

3. use functions including MovieImportSetSampleDuration,
MovieImportSetSampleDescription, MovieImportSetDimensions,
and MovieImportSetAuxilliaryData (with 'styl' and a StScrpHandle
data type)

4. call the MovieImportHandle function with the text data

5. adjust the location of the track, if desired (since the text import component may place
it below the movie box)

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-293

For details on the movie import and export components, see Inside Macintosh: QuickTime
Components.

The Movie Toolbox provides functions that allow you to search for and highlight text.

You can use the FindNextText function to search for text in a text track, and the

HiliteTextSample function to highlight specified text in a text track.

You can use the SetTextProc function (also described in this section) to specify a

customized function whenever a new text sample is added to a movie. The

application-defined text function MyTextProc is described in “Text Functions” on

page 2-364.

AddTextSample

The AddTextSample function adds a single block of styled text to an existing media.

pascal ComponentResult AddTextSample (MediaHandler mh, Ptr text,

 unsigned long size,

 short fontNum,

 short fontSize,

 Style textFace,

 RGBColor *textColor,

 RGBColor *backColor,

 short textJustification,

 Rect *textBox,

 long displayFlags,

 TimeValue scrollDelay,

 short hiliteStart,

 short hiliteEnd,

 RGBColor *rgbHiliteColor,

 TimeValue duration,

 TimeValue *sampleTime);

mh Specifies the media handler for the text media obtained by the
GetMediaHandler function.

text Contains a pointer to a block of text.

size Indicates the size of the text block (in bytes).

fontNum Indicates the number for the font in which to display the text.

fontSize Indicates the size of the font.

textFace Indicates the typeface or style of the text (that is, bold, italic, and so on).

C H A P T E R 2

Movie Toolbox

2-294 Movie Toolbox Reference

textColor Contains a pointer to an RGB color structure specifying the color of the
text.

backColor Contains a pointer to an RGB color structure specifying the text
background color.

textJustification
Indicates the justification of the text. The following constants are
available: teFlushDefault, teCenter, teFlushRight, or
teFlushLeft. See Inside Macintosh: Text for details on these constants
and on text alignment.

textBox Contains a pointer to the box within which the text is to be displayed. The
box is relative to the track bounds.

displayFlags
Contains the text display flags.

dfDontDisplay
Does not display the specified sample.

dfDontAutoScale
Does not scale the text if the track bounds increase.

dfClipToTextBox
Clips to just the text box. (This is useful if the text overlays
the video.)

dfShrinkTextBoxToFit
Recalculates size of the textBox parameter to just fit the
given text and stores this rectangle with the text data.

dfScrollIn
Scrolls the text in until the last of the text is in view. This
flag is associated with the scrollDelay parameter.

dfScrollOut
Scrolls text out until the last of the text is out of view. This
flag is associated with the scrollDelay parameter. If both
dfScrollIn and dfScrollOut are set, the text is scrolled
in, then out.

dfHorizScroll
Scrolls a single line of text horizontally. If the
dfHorizScroll flag is not set, then the scrolling is
vertical.

dfReverseScroll
If set, scrolls vertically down, rather than up. If not set,
horizontal scrolling proceeds toward the left rather than
toward the right.

scrollDelay
Indicates the delay in scrolling associated with setting the dfScrollIn
and dfScrollOut display flags. If the value of the scrollDelay
parameter is greater than 0 and the dfScrollIn flag is set, the text
pauses when it has scrolled all the way in for the amount of time specified

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-295

by scrollDelay. If the dfScrollOut flag is set, the pause occurs first
before the text scrolls out. If both these flags are set, the pause occurs at
the midpoint between scrolling in and scrolling out.

hiliteStart
Specifies the beginning of the text to be highlited.

hiliteEnd Specifies the end of the text to be highlighted. If the hiliteEnd
parameter is greater than the hiliteStart parameter, then the text is
highlighted from the selection specified by hiliteStart to hiliteEnd.
To specify additional highlighting, you can use the AddHiliteSample
function, described on page 2-297.

rgbHiliteColor
Contains a pointer to the RGB color for highlighting. If this parameter is
not nil, then the specified color is used when highlighting the text
indicated by the hiliteStart and hiliteEnd parameters. Otherwise,
the default system highlighting is used.

duration Specifies how long the text sample should last. This duration is expressed
in the media’s time base.

sampleTime
Contains a pointer to a TimeValue structure. The actual media time at
which the sample was added is returned here.

ERROR CODES

File Manager errors

Memory Manager errors

AddTESample

The AddTESample function allows you to specify a TextEdit handle (which may contain

multiple style runs) to be added to the specified media.

pascal ComponentResult AddTESample (MediaHandler mh, TEHandle hTE,

 RGBColor *backColor,

short textJustification,

Rect *textBox,

long displayFlags,

TimeValue scrollDelay,

short hiliteStart,

short hiliteEnd,

RGBColor *rgbHiliteColor,

TimeValue duration,

TimeValue *sampleTime);

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-296 Movie Toolbox Reference

mh Specifies the media handler for the text media obtained by the
GetMediaHandler function.

hTE A handle to a styled TextEdit structure.

backColor Contains a pointer to an RGB color structure specifying the text
background color.

textJustification
Indicates the justification of the text. The following constants are
available: teFlushDefault, teCenter, teFlushRight, or
teFlushLeft. See Inside Macintosh: Text for details on these constants
and on text alignment.

textBox Contains a pointer to the box within which the text is to be displayed. The
box is relative to the track bounds.

displayFlags
Contains the text display flags.

dfDontDisplay
Does not display the specified sample.

dfDontAutoScale
Does not scale the text if the track bounds increase.

dfClipToTextBox
Clips to the text box only. (This is useful if the text overlays
the video.)

dfShrinkTextBoxToFit
Recalculates size of the textBox parameter to just fit the
given text and stores this rectangle with the text data.

dfScrollIn
Scrolls the text in until the last of the text is in view.

dfScrollOut
Scrolls text out until the last of the text is out of view. If
both dfScrollIn and dfScrollOut are set, the text is
scrolled in, then out.

dfHorizScroll
Scrolls a single line of text horizontally. If the
dfHorizScroll flag is not set, then the scrolling is
vertical.

dfReverseScroll
If set, scrolls vertically down, rather than up. If not set,
horizontal scrolling proceeds toward the left rather than
toward the right.

scrollDelay
Indicates the delay in scrolling associated with the setting of the
dfScrollIn and dfScrollOut display flags. If the value of the
scrollDelay parameter is greater than 0 and the dfScrollIn flag is
set, the text pauses when it has scrolled all the way in for the amount of
time specified by scrollDelay. If the dfScrollOut flag is set, the
pause occurs first before the text scrolls out. If both these flags are set,
the pause occurs at the midpoint between scrolling in and scrolling out.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-297

hiliteStart
Specifies the beginning of the text to be highlighted.

hiliteEnd Specifies the end of the text to be highlighted. If the hiliteEnd
parameter is greater than the hiliteStart parameter, then the text is
highlighted from the selection specified by hiliteStart to hiliteEnd.
To specify additional highlighting, you can use the AddHiliteSample
function, described in the next section.

rgbHiliteColor
Contains a pointer to the RGB color for highlighting. If this parameter is
not nil, then the specified color is used when highlighting the text
indicated by the hiliteStart and hiliteEnd parameters. Otherwise,
the default system highlight color is used.

duration Specifies how long the text sample should last. This duration is expressed
in the media’s time base.

sampleTime
Contains a pointer to a TimeValue structure. The actual media time at
which the sample was added is returned here.

ERROR CODES

File Manager errors

Memory Manager errors

AddHiliteSample

The AddHiliteSample function provides dynamic highlighting of text.

pascal ComponentResult AddHiliteSample (MediaHandler mh,

short hiliteStart,

short hiliteEnd,

RGBColor *rgbHiliteColor,

TimeValue duration,

TimeValue *sampleTime)

mh Specifies the media handler for the text media obtained by the
GetMediaHandler function.

hiliteStart
Indicates the beginnning of the text to be highlighted.

hiliteEnd Indicates the ending of the text to be highlighted. If the value of the
hiliteStart parameter equals that of the hiliteEnd parameter, then
no text is highlighted (that is, highlighting is turned off for the duration of
the specified sample).

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-298 Movie Toolbox Reference

rgbHiliteColor
Contains a pointer to the RGB color for highlighting. If this parameter is
not nil, then the specified color is used when highlighting the text
indicated by the hiliteStart and hiliteEnd parameters. Otherwise,
the default system highlight color is used.

duration Specifies how long the text sample should last. This duration is expressed
in the media’s time base.

sampleTime
Contains a pointer to a TimeValue structure. The actual media time at
which the sample was added is returned here.

DESCRIPTION

The AddHiliteSample function essentially extends the duration of the text that has

just been added, using the highlighting indicated by the hiliteStart and hiliteEnd

parameters. You must call the AddHiliteSample function after calling

AddTextSample or AddTESample. Since AddHiliteSample uses the concept of

difference frames, the highlighted samples must immediately follow their associated text

samples.

ERROR CODES

File Manager errors

Memory Manager errors

FindNextText

The FindNextText function searches for text with a specified media handler starting at

a given time.

pascal ComponentResult FindNextText (MediaHandler mh,

 Ptr text, long size,

short findFlags,

TimeValue startTime,

TimeValue *foundTime,

TimeValue *foundDuration,

long *offset);

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-299

mh Specifies the media handler for the text media obtained by the
GetMediaHandler function.

text Points to the text to be found.

size Specifies the length of the text to be found.

findFlags Specifies the conditions of the search. The following flags are available:

findTextEdgeOK
Finds sample at the given start time.

findTextCaseSensitive
Conducts a case-sensitive search for the text.

findTextReverseSearch
Searches backward for the text.

findTextUseOffset
Searches beginning from the value pointed to by the
offset parameter.

findTextWrapAround
Conducts a wraparound search when the end or the
beginning of the text is reached.

startTime Indicates the time (expressed in the movie time scale) at which to begin
the search.

foundTime Contains a pointer to the movie time at which the text sample is found if
the search is successful. Otherwise, it returns –1.

foundDuration
Contains a pointer to the duration of the sample (in the movie time scale)
that is found if the search is successful.

offset Contains a pointer to the offset of the found text from the beginning of the
text portion of the sample.

DESCRIPTION

If the text sample is found, FindNextText returns the movie time at which it was

located, the duration of the text sample, and its offset from the beginning of the text

portion of the media sample.

ERROR CODES

File Manager errors

Memory Manager errors

invalidMedia –2008 This media is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-300 Movie Toolbox Reference

HiliteTextSample

When you call the HiliteTextSample function with a given text media handler, your

application can specify selected text to be highlighted.

pascal ComponentResult HiliteTextSample (MediaHandler mh,

 TimeValue sampleTime,

 short hiliteStart,

 short hiliteEnd

 RGBColor *rgbHiliteColor);

mh Specifies the media handler for the text media obtained by the
GetMediaHandler function.

sampleTime
Indicates a sample time (in the movie time scale) for the text to be
highlighted. To turn off the highlighting in the text, pass a value of –1.

hiliteStart
Specifies the beginning of the text to be highlighted.

hiliteEnd Specifies the end of the text to be highlighted.

rgbHiliteColor
Contains a pointer to the RGB color for highlighting. If this parameter is
not nil, then the specified color is used when highlighting the text
indicated by the hiliteStart and hiliteEnd parameters. Otherwise,
the default system highlight color is used.

DESCRIPTION

The HiliteTextSample function overrides any highlighting information that may

already be in the specified text.

ERROR CODES

None

SEE ALSO

The HiliteTextSample function is useful when used in conjunction with the

FindNextText function, described in the previous section.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-301

SetTextProc

Your application can use the SetTextProc function to specify a customized function

that is to be called whenever a text sample is displayed in a movie.

pascal ComponentResult SetTextProc (MediaHandler mh,

 TextMediaProcPtr TextProc,

long refcon);

mh Indicates the media handler for the text media obtained by the
GetMediaHandler function.

TextProc Points to the address of your customized function.

refcon Indicates a reference constant that will be passed to your function. Set this
parameter to 0 if you don’t need it.

The format of your customized text function is

pascal OSErr MyTextProc (Handle theText,

 Movie theMovie,

 short *displayFlag,

 long refcon);

See “Text Functions” on page 2-364 for details on the parameters.

ERROR CODES

None

Functions for Creating File Previews

The Movie Toolbox provides two functions that allow you to create file previews. File

previews contain information that gives the user an idea of a file’s contents without

opening the file. Typically, a file’s preview is a small PICT image (called a thumbnail), but

previews may also contain other types of information that is appropriate to the type of

file being considered. For example, a text file’s preview might tell the user when the file

was created and what it discusses. For more information about file previews and how to

display them, see “Previewing Files” on page 2-65.

Note
The MakeFilePreview and AddFilePreview functions documented
in this section are not listed in the MPW Movies.h interface file; rather,
they appear in the MPW ImageCompression.h interface file. ◆

You can use the MakeFilePreview function to create a preview for a file. The

AddFilePreview function allows you to add a preview that you have created to a file.

C H A P T E R 2

Movie Toolbox

2-302 Movie Toolbox Reference

MakeFilePreview

The MakeFilePreview function creates a preview for a file. You should create a

preview whenever you save a movie. You specify the file by supplying a reference to its

resource file. You must have opened this resource file with write permission.

pascal OSErr MakeFilePreview (short resRefNum,

ProgressProcRecordPtr progress);

resRefNum Specifies the resource file for this operation. You must have opened this
resource file with write permission. If there is a preview in the specified
file, the Movie Toolbox replaces that preview with a new one.

progress Points to a progress function. During the process of creating the preview,
the Movie Toolbox may occasionally call a function you provide in order
to report its progress. You can then use this information to keep the user
informed.

Set this parameter to –1 to use the default progress function. If you
specify a progress function, it must comply with the interface defined for
Image Compression Manager progress functions (see the chapter “Image
Compression Manager” in this book for more information). Set this
parameter to nil to prevent the Movie Toolbox from calling a progress
function. (For details on application-defined progress functions, see
“Progress Functions,” which begins on page 2-354.)

DESCRIPTION

If there is a preview in the specified file, the Movie Toolbox replaces that preview with a

new one.

ERROR CODES

File Manager errors

Memory Manager errors

Resource Manager errors

paramErr –50 Invalid parameter specified

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-303

AddFilePreview

The AddFilePreview function allows you to add a preview to a file. You must have

created the preview data yourself. If the specified file already has a preview defined, the

AddFilePreview function replaces it with the new preview.

pascal OSErr AddFilePreview (short resRefNum, OSType previewType,

Handle previewData);

resRefNum Specifies the resource file for this operation. You must have opened this
resource file with write permission. If there is a preview in the specified
file, the Movie Toolbox replaces that preview with a new one.

previewType
Specifies the resource type to be assigned to the preview. This type should
correspond to the type of data stored in the preview. For example, if you
have created a QuickDraw picture that you want to use as a preview for a
file, you should set the previewType parameter to PICT.

previewData
Contains a handle to the preview data. For example, if the preview data is
a picture, you would provide a picture handle.

DESCRIPTION

If you pass 0 for the previewType and previewData parameters, the file preview is

removed.

ERROR CODES

File Manager errors

Memory Manager errors

Resource Manager errors

SEE ALSO

You can use the MakeFilePreview function, described in the previous section, to create

a new preview for a file.

C H A P T E R 2

Movie Toolbox

2-304 Movie Toolbox Reference

Functions for Displaying File Previews

The following section describes four functions that let you display file previews.

The Movie Toolbox provides two functions that allow you to display file previews in an

Open dialog box in System 6 using standard file reply structures: SFGetFilePreview

and SFPGetFilePreview. The Movie Toolbox also supplies two new functions that

allow you to display file previews in an Open dialog box in System 7 using standard file

reply structures: StandardGetFilePreview and CustomGetFilePreview.

■ The SFGetFilePreview function corresponds to the File Manager’s SFGetFile
routine. This function is the preferred function for creating a file preview and works
with either System 7 or System 6.

■ The SFPGetFilePreview function corresponds to the File Manager’s SFPGetFile
routine.

■ The StandardGetFilePreview function corresponds to the File Manager’s
StandardGetFile routine.

■ The CustomGetFilePreview function corresponds to the File Manager’s
CustomGetFile routine. This function is available only in System 7.

All of these functions take the same parameters as their existing counterparts with the

addition of a where parameter that allows you to specify the location of the upper-left

corner of the dialog box. See Inside Macintosh: Files for information on the SFGetFile,

SFPGetFile, StandardGetFile, and CustomGetFile routines.

The SFGetFilePreview, SFPGetFilePreview, StandardGetFilePreview, and

CustomGetFilePreview functions allow the user to automatically convert files to

movies if your application requests movies. If there is a file that can be converted into

a movie file using a movie import component, then the file is shown in the Standard File

dialog box in addition to any movies. When the user selects the file, the Open button

changes to a Convert button. Figure 2-41 provides an example of this dialog box.

Figure 2-41 Dialog box showing automatic file-to-movie conversion option

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-305

Choosing Convert displays a dialog box that allows the user to choose where the

converted file should be saved. Figure 2-42 shows this dialog box.

Figure 2-42 Dialog box for saving a movie converted from a file

When conversion is complete, the converted file is returned to the calling application as

the movie that the user chose. If you want to disable automatic file conversion in your

application, you must write a file filter function and pass it to the file preview display

function you are using. Your file filter function must call the File Manager's

FSpGetFileInfo function on each file that is passed to it to determine its actual file

type. If the File System parameter block pointer passed to your file filter function

indicates that the file type is 'MooV', and the actual type returned by FSpGetFileInfo

is not 'MooV', then the file filter function will convert this file. If you do not wish a file

to be displayed as a candidate for conversion, your file filter function should return a

value of true when it is called for that file.

See “File Filter Functions” beginning on page 2-360 for comprehensive details on the

interaction of application-defined file filter functions with the file preview display

functions. For information of FSpGetFileInfo, see Inside Macintosh: Files.

Note
The functions described in this section do not appear in the MPW
interface file Movies.h; rather, they are listed in
ImageCompression.h. ◆

C H A P T E R 2

Movie Toolbox

2-306 Movie Toolbox Reference

SFGetFilePreview

The SFGetFilePreview function allows you to display file previews in an Open dialog

box using a standard file reply structure. This is the preferred function for displaying a

file preview and it works with either System 7 or System 6.

pascal void SFGetFilePreview (Point where,

ConstStr255Param prompt,

FileFilterProcPtr fileFilter,

short numTypes, SFTypeList typeList,

DlgHookProcPtr dlgHook,

SFReply *reply);

where Specifies the location of the upper-left corner of the dialog box in global
coordinates. If you set this point to (–1, –1), the Movie Toolbox centers the
dialog box on the main screen. If you set this point to (–2, –2), the Movie
Toolbox centers the dialog box on the screen that has the best display
characteristics.

prompt This parameter is ignored; it is included for historical reasons only.

fileFilter
Points to a function that filters the files that are displayed to the user in
the dialog box. This is an optional function provided by your application;
if you do not want to supply a filter function, set this parameter to nil.
The SFGetFilePreview function uses this parameter along with the
numTypes and typeList parameters to determine which files appear in
the dialog box.

If this parameter is not nil, SFGetFilePreview calls the function for
each file to determine whether to display the file to the user. The
SFGetFilePreview function supplies you with the information it
receives from the File Manager’s GetFileInfo routine (see Inside
Macintosh: Files for more information). Your function returns a Boolean
value indicating whether to display the file. Set the Boolean value to
false to cause the file to be displayed.

Your function must provide the following interface:

pascal Boolean MyFileFilter (ParmBlkPtr parmBlock);

See “File Filter Functions” on page 2-360 for details.

numTypes Specifies the number of file types in the array specified by the typeList
parameter (a number between 1 and 4). Set this parameter to –1 to display
all files.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-307

typeList Specifies an array of file types to be displayed to the user. The
SFGetFilePreview function only displays files whose type matches an
entry in this array (unless you set the numTypes parameter to –1; in this
case, the function displays all files to the user). The SFTypeList data
type is defined as follows:

typedef OSType SFTypeList[4];

dlgHook Specifies a pointer to a custom dialog function. You can use this
parameter to support a custom dialog box function you have supplied. If
you are not supplying a custom dialog box function, set this parameter to
nil. Your custom dialog function must present the following interface:

pascal short MyDlgHook (short item,

DialogPtr theDialog,

Ptr myDataPtr);

For more information about using custom dialog box functions with the
SFGetFilePreview function, see “Custom Dialog Functions” on
page 2-360.

reply Contains a pointer to a standard file reply structure that is to receive
information about the user’s selection. See Inside Macintosh: Files for
more information about reply structures.

DESCRIPTION

The SFGetFilePreview function presents an Open dialog box to the user and

allows the user to view file previews during the dialog. This function corresponds to the

File Manager’s SFGetFile routine. See Inside Macintosh: Files for a complete description

of the SFGetFile routine.

The SFGetFilePreview function takes the same parameters as its existing counterpart

with the addition of a where parameter that allows you to specify the location of the

dialog box.

The SFGetFilePreview function automatically converts files to movies if your

application requests movies. If a file could be converted into a movie file using a movie

import component, then the file is shown in the Standard File dialog box. See Figure 2-41

on page 2-304 for the dialog box with an automatic file-to-movie conversion option and

Figure 2-42 on page 2-305 for the dialog box for saving a movie converted from a file.

Note

The SFGetFilePreview function does not appear in the MPW
interface file Movies.h; rather, it’s listed in ImageCompression.h. ◆

C H A P T E R 2

Movie Toolbox

2-308 Movie Toolbox Reference

SFPGetFilePreview

The SFPGetFilePreview function allows you to display file previews in an Open

dialog box using a standard file reply structure. This function differs from

SFGetFilePreview in that you can provide a custom dialog box with any resource

type and you can specify a modal-dialog filter function that allows you to gain greater

control over the user interface.

pascal void SFPGetFilePreview (Point where,

 ConstStr255Param prompt,

 FileFilterProcPtr fileFilter,

 short numTypes,

 SFTypeList typeList,

 DlgHookProcPtr dlgHook,

 SFReply *reply, short dlgID,

 ModalFilterProcPtr filterProc);

where Specifies the location of the upper-left corner of the dialog box in global
coordinates. If you set this point to (–1, –1), the Movie Toolbox centers the
dialog box on the main screen. If you set this point to (–2, –2), the Movie
Toolbox centers the dialog box on the screen that has the best display
characteristics.

prompt This parameter is ignored; it is included for historical reasons only.

fileFilter
Points to a function that filters the files that are displayed to the user in
the dialog box. This is an optional function provided by your application;
if you do not want to supply a filter function, set this parameter to nil.
The SFGetFilePreview function uses this parameter along with the
numTypes and typeList parameters to determine which files appear in
the dialog box.

If this parameter is not nil, SFPGetFilePreview calls the function for
each file to determine whether to display the file to the user. The
SFPGetFilePreview function supplies you with the information it
receives from the File Manager’s GetFileInfo routine (see Inside
Macintosh: Files for more information). Your function returns a Boolean
value indicating whether to display the file. Set the Boolean value to
false to cause the file to be displayed. See “File Filter Functions,” which
begins on page 2-360, for details on file filter functions.

Your function must provide the following interface:

pascal Boolean MyFileFilter (ParmBlkPtr parmBlock);

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-309

numTypes Specifies the number of file types in the array specified by the typeList
parameter. Specify a number between 1 and 4. Set this parameter to –1 to
display all files.

typeList Specifies an array of file types to be displayed to the user. The
SFGetFilePreview function only displays files whose type matches an
entry in this array (unless you set the numTypes parameter to –1; in this
case, the function displays all files to the user). The SFTypeList data
type is defined as follows:

typedef OSType SFTypeList[4];

dlgHook Points to a custom dialog box function. You can use this parameter to
support a custom dialog box function you have supplied by specifying a
dialog template resource in your resource file (the dialog template’s
resource type must be set to 'DLOG'; you must also supply an item list in
a 'DITL' resource). You specify the dialog template’s resource ID with
the dlgID parameter. If you are not supplying a custom dialog function
in this manner, set this parameter to nil.

Your custom dialog box function must present the following interface:

pascal short MyDlgHook (short item,

DialogPtr theDialog,

Ptr myDataPtr);

See “Custom Dialog Functions” on page 2-360 for more information on
using custom dialog functions with the SFPGetFilePreview function.

reply Contains a pointer to a standard file reply structure that is to receive
information about the user’s selection. See Inside Macintosh: Files for
more information about reply structures.

dlgID Specifies the resource ID of your custom dialog template. You can use this
parameter to specify a custom dialog template resource that has a
resource type that differs from the standard value. Set this parameter to 0
to use the standard template.

filterProc
Points to your modal-dialog filter function. This function gives you
greater control over the interface presented to the user. Your modal-dialog
filter function must present the following interface:

pascal Boolean MyModalFilter (DialogPtr theDialog,

EventRecord* theEvent,

short itemHit,

Ptr myDataPtr);

See “Modal-Dialog Filter Functions” beginning on page 2-362 for details.

C H A P T E R 2

Movie Toolbox

2-310 Movie Toolbox Reference

DESCRIPTION

The SFPGetFilePreview function presents an Open dialog box to the user and allows

the user to view file previews during the dialog. This function corresponds to the File

Manager’s SFPGetFile routine. The SFPGetFilePreview function takes the same

parameters as its existing counterpart with the addition of a where parameter that

allows you to specify the location of the dialog box. See Inside Macintosh: Files for a

complete description of the SFPGetFile routine and for more information about the

parameters to this function.

The SFPGetFilePreview function automatically converts files to movies if your

application requests movies. If a file could be converted into a movie file using a movie

import component, then the file is shown in the Standard File dialog box. See Figure 2-41

on page 2-304 for the dialog box with an automatic file-to-movie conversion option and

Figure 2-42 on page 2-305 for the dialog box for saving a movie converted from a file.

Note

The SFPGetFilePreview function does not appear in the MPW
interface file Movies.h; rather, it’s listed in ImageCompression.h. ◆

StandardGetFilePreview

The SFPGetFilePreview function allows you to display file previews in an Open

dialog box using a standard file reply structure.

pascal void StandardGetFilePreview (FileFilterProcPtr fileFilter,

short numTypes,

SFTypeList typeList,

StandardFileReply *reply);

fileFilter
Points to a function that filters the files that are displayed to the user in
the dialog box. This is an optional function provided by your application;
if you do not want to supply a filter function, set this parameter to nil.
The StandardGetFilePreview function uses this parameter along
with the numTypes and typeList parameters to determine which files
appear in the dialog box.

If this parameter is not nil, StandardGetFilePreview calls the
function for each file to determine whether to display the file to the user.
The StandardGetFilePreview function supplies you with
information identifying the file (see Inside Macintosh: Files for

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-311

more information about the format of this parameter data). Your function
returns a Boolean value indicating whether to display the file. Set the
Boolean value to false to cause the file to be displayed.

Your function must provide the following interface:

pascal Boolean MyFileFilter (ParmBlkPtr parmBlock);

numTypes Specifies the number of file types in the array specified by the typeList
parameter (a number between 1 and 4). Set this parameter to –1 to display
all files.

typeList Specifies an array of file types to be displayed to the user. The
StandardGetFilePreview function only displays files whose type
matches an entry in this array (unless you set the numTypes parameter
to –1; in this case, the function displays all files to the user). The
SFTypeList data type is defined as follows:

typedef OSType SFTypeList[4];

reply Contains a pointer to a reply structure that is to receive information about
the user’s selection. See Inside Macintosh: Files for more information about
reply structures.

DESCRIPTION

The StandardGetFilePreview function presents an Open dialog box to the user and

allows the user to view file previews. This function corresponds to the File Manager’s

StandardGetFile routine. See Inside Macintosh: Files for a comprehensive description

of that routine and for more information about the parameters to this function. The

StandardGetFilePreview function takes the same parameters as its existing

counterpart with the addition of a where parameter that allows you to specify the

location of the dialog box.

The StandardGetFilePreview function automatically converts files to movies if your

application requests movies. If a file could be converted into a movie file using a movie

import component, then the file is shown in the Standard File dialog box. See Figure 2-41

on page 2-304 for the dialog box with an automatic file-to-movie conversion option and

Figure 2-42 on page 2-305 for the dialog box for saving a movie converted from a file.

Note

The StandardGetFilePreview function does not appear in the MPW
interface file Movies.h; rather, it’s listed in ImageCompression.h. ◆

C H A P T E R 2

Movie Toolbox

2-312 Movie Toolbox Reference

CustomGetFilePreview

The CustomGetFilePreview function presents an Open dialog box to the user and

allows the user to view file previews. This function differs from

StandardGetFilePreview in that you can provide a custom dialog template and

functions to support your template.

Note
The CustomGetFilePreview function is available only in System 7. ◆

pascal void CustomGetFilePreview (FileFilterYDProcPtr fileFilter,

 short numTypes, SFTypeList

 typeList, StandardFileReply

 *reply, short dlgID,

Point where,

DlgHookYDProcPtr dlgHook,

ModalFilterYDProcPtr filterProc,

short *activeList,

ActivateYDProcPtr activateProc,

void *yourDataPtr);

fileFilter
Points to a function that filters the files that are displayed to the user in
the dialog box. This is an optional function provided by your application;
if you do not want to supply a filter function, set this parameter to nil.
The CustomGetFilePreview function uses this parameter along
with the numTypes and typeList parameters to determine which files
appear in the dialog box.

If this parameter is not nil, CustomGetFilePreview calls the function
for each file to determine whether to display the file to the user. The
CustomGetFilePreview function supplies you with information
identifying the file (see Inside Macintosh: Files for more information about
the format of this parameter data). Your function returns a Boolean value
indicating whether to display the file. Set the Boolean value to false to
cause the file to be displayed.

Your function must provide the following interface:

pascal Boolean MyFileFilter (ParmBlkPtr parmBlock);

numTypes Specifies the number of file types in the array specified by the typeList
parameter (a number between 1 and 4). Set this parameter to –1 to display
all files.

typeList Specifies an array of file types to be displayed to the user. The
CustomGetFilePreview function only displays files whose type
matches an entry in this array (unless you set the numTypes parameter

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-313

to –1; in this case, the function displays all files to the user). The
SFTypeList data type is defined as follows:

typedef OSType SFTypeList[4];

reply Contains a pointer to a reply structure that is to receive information about
the user’s selection. See Inside Macintosh: Files for more information about
reply structures.

dlgID Specifies the resource ID of your custom dialog template. You can use this
parameter to specify a custom dialog template resource that has a
resource type that differs from the standard value. Set this parameter to 0
to use the standard template.

where Specifies the location of the upper-left corner of the dialog box in global
coordinates. If you set this point to (–1, –1), the Movie Toolbox centers the
dialog box on the main screen. If you set this point to (–2, –2), the Movie
Toolbox centers the dialog box on the screen that has the best display
characteristics.

dlgHook Points to a custom dialog function. You can use this parameter to support
a custom dialog box function you have supplied by specifying a dialog
template resource in your resource file. You specify the dialog template’s
resource ID with the dlgID parameter. If you are not supplying a custom
dialog function, set this parameter to nil. For more information about
using custom dialog functions with the CustomGetFile routine, see
Inside Macintosh: Files. For details on the parameters of the custom dialog
box function, see “Custom Dialog Functions” on page 2-360.

Your dialog hook function must present the following interface:

pascal short MyDlgHook (short item, DialogPtr

theDialog, Ptr myDataPtr);

filterProc
Points to your modal-dialog filter function. This function gives you
greater control over the interface presented to the user. See Inside
Macintosh: Files for more information about using modal-dialog filter
functions with CustomGetFile.

Your modal-dialog filter function must present the following interface.

pascal Boolean MyModalFilter (DialogPtr theDialog,

EventRecord* theEvent,

 short itemHit,

Ptr myDataPtr);

For details on the application-defined modal-dialog filter, see
“Modal-Dialog Filter Functions” beginning on page 2-362.

C H A P T E R 2

Movie Toolbox

2-314 Movie Toolbox Reference

activeList
Contains a pointer to a list of all items in the dialog box that can be
activated—that is, made the target of keyboard input. The list is stored as
an array of integers. The first integer must contain the number of items
in the array (not including this count value). The remaining array entries
must contain item numbers that specify valid targets of keyboard input,
in the order in which the items are to be activated. Set this parameter to
nil to direct all keyboard input to the displayed list of filenames.

activateProc
Points to your activation function, which controls the highlighting of any
items whose shape is known only by your application. See Inside
Macintosh: Files for more information about standard file activation
functions.

Your function must present the following interface:

pascal void MyActivateProc (DialogPtr theDialog,

 short itemNo,

 Boolean activating,

 Ptr myDataPtr);

yourDataPtr
Contains a pointer to optional data that is supplied by your application to
your callback functions. When the CustomGetFilePreview function
calls any of your callback functions, it places this data on the stack,
making it available to your functions. Set this parameter to nil if you are
not supplying any optional data.

DESCRIPTION

The CustomGetFilePreview function is available only if the value of the Gestalt

selector gestaltStandardFileAttr is true. (See Inside Macintosh: Overview for more

information about this selector.) This function corresponds to the File Manager’s

CustomGetFile routine. The CustomGetFilePreview function takes the same

parameters as its existing counterpart with the addition of a where parameter that

allows you to specify the location of the dialog box. See Inside Macintosh: Files for a

complete description of the CustomGetFile routine and for more information about

the parameters to this function.

The CustomGetFilePreview function automatically converts files to movies if your

application requests movies. If a file could be converted into a movie file using a movie

import component, then the file is shown in the Standard File dialog box. See Figure 2-41

on page 2-304 for the dialog box with an automatic file-to-movie conversion option and

Figure 2-42 on page 2-305 for the dialog box for saving a movie converted from a file.

Note

The CustomGetFilePreview function does not appear in the MPW
interface file Movies.h; rather, it’s listed in ImageCompression.h. ◆

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-315

Time Base Functions

The Movie Toolbox provides a number of functions that allow you to work with time

bases. A QuickTime time base defines the time coordinate system of a movie. However,

you can also use QuickTime time bases to provide general timing services. This section

describes the functions that allow your application to work with time bases. For a

complete description of QuickTime time bases, see “Introduction to Movies” beginning

on page 2-5.

This section has been divided into the following topics:

■ “Creating and Disposing of Time Bases” describes how to create and dispose of time
bases and how to assign a time base to a movie

■ “Working With Time Base Values” discusses functions that allow your application to
work with the contents of a time base

■ “Working With Times” describes a number of functions that allow you to convert
times between time bases and to perform simple arithmetic on time values

■ “Time Base Callback Functions” describes the functions your application may use to
condition a time base to invoke functions your application provides

Note

Time base functions do not change the value of the Movie Toolbox sticky
error value. ◆

Creating and Disposing of Time Bases

This section discusses the Movie Toolbox functions your application can use to create

and dispose of time bases.

The NewTimeBase function lets you create a new time base. You can use the

DisposeTimeBase function to dispose of a time base once you are finished with it.

Time bases rely on either a clock component or another time base for their time source.

You can use the SetTimeBaseMasterTimeBase function to cause one time base to be

based on another time base. The GetTimeBaseMasterTimeBase allows you to

determine the master time base of a given time base.

You can assign a clock component to a time base; that clock then acts as the master clock

for the time base. You can use the SetTimeBaseMasterClock function to assign a

clock component to a time base. The GetTimeBaseMasterClock function enables you

to determine the clock component that is assigned to a time base. You can change the

offset between a time base and its time source by calling the SetTimeBaseZero

function.

You can set the time source of a movie by calling the SetMovieMasterTimeBase and

SetMovieMasterClock functions.

C H A P T E R 2

Movie Toolbox

2-316 Movie Toolbox Reference

Note
Although most time base functions can be used at interrupt time, several
of the Movie Toolbox functions cannot. These functions are noted in the
sections that follow. ◆

NewTimeBase

The NewTimeBase function allows your application to obtain a new time base. This

function returns a reference to the new time base. Your application must use that

reference with other time base functions.

pascal TimeBase NewTimeBase (void);

DESCRIPTION

The NewTimeBase function returns a reference to the new time base.

This function sets the rate of the time base to 0, the start time to its minimum value, the

time value to 0, and the stop time to its maximum value.

This function assigns the default clock component to the new time base. If you want to

assign a different clock component or a master time base to the new time base, use the

SetTimeBaseMasterClock or SetTimeBaseMasterTimeBase functions, which are

described on page 2-318 and page 2-320, respectively.

SPECIAL CONSIDERATIONS

The NewTimeBase function uses the Memory Manager, so your application must not

call it at interrupt time.

ERROR CODES

None

DisposeTimeBase

The DisposeTimeBase function allows your application to dispose of a time base once

you are finished with it.

pascal void DisposeTimeBase (TimeBase tb);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function described in the
previous section.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-317

DESCRIPTION

The DisposeTimeBase function cancels and disposes of any pending callback events

that are associated with the time base.

SPECIAL CONSIDERATIONS

Note that the DisposeTimeBase function uses the Memory Manager; therefore, you

should not call this function at interrupt time.

ERROR CODES

None

SetMovieMasterClock

You can use the SetMovieMasterClock function to assign a clock component to a

movie. Do not use the SetTimeBaseMasterClock function to assign a clock

component to a movie.

pascal void SetMovieMasterClock (Movie theMovie,

Component clockMeister,

const TimeRecord *slaveZero);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

clockMeister
Specifies the clock component to be assigned to this movie. Your
application can obtain this component identifier from the Component
Manager’s FindNextComponent routine (see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for
more information about this routine).

slaveZero Contains a pointer to the time, in the clock’s time scale, that corresponds
to a 0 time value for the movie. This parameter allows you to set an offset
between the clock component and the time base of the movie. Set this
parameter to nil if there is no offset.

ERROR CODES

None

C H A P T E R 2

Movie Toolbox

2-318 Movie Toolbox Reference

SetMovieMasterTimeBase

You can use the SetMovieMasterTimeBase function to assign a master time base to a

movie. Do not use the SetTimeBaseMasterTimeBase function (described on

page 2-320) to assign a time base to a movie.

pascal void SetMovieMasterTimeBase (Movie theMovie, TimeBase tb,

const TimeRecord *slaveZero);

theMovie Specifies the movie for this operation. Your application obtains this movie
identifier from such functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle (described on page 2-92, page 2-88, and
page 2-90, respectively).

tb Specifies the master time base to be assigned to this movie. Your
application obtains this time base identifier from the NewTimeBase
function (described on page 2-316).

slaveZero Contains a pointer to the time, in the time scale of the master time base,
that corresponds to a 0 time value for the movie. This parameter allows
you to set an offset between the movie and the master time base. Set this
parameter to nil if there is no offset.

SPECIAL CONSIDERATIONS

The SetMovieMasterTimeBase function cannot be called at interrupt time.

ERROR CODES

None

SetTimeBaseMasterClock

You can use the SetTimeBaseMasterClock function to assign a clock component to

a time base. A time base derives its time from either a clock component or from another

time base. Do not use this function to assign a clock to a movie’s time base.

pascal void SetTimeBaseMasterClock (TimeBase slave,

Component clockMeister,

const TimeRecord *slaveZero);

slave Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-319

clockMeister
Specifies the clock component to be assigned to this time base. Your
application can obtain this component identifier from the Component
Manager’s FindNextComponent routine (see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox
for more information about this routine).

slaveZero Contains a pointer to the time, in the clock’s time scale, that corresponds
to a 0 time value for the slave time base. This parameter allows you to set
an offset between the time base and the clock component. Set this
parameter to nil if there is no offset.

SPECIAL CONSIDERATIONS

The SetTimeBaseMasterClock function cannot be called at interrupt time.

ERROR CODES

SEE ALSO

You can use the GetTimeBaseMasterClock function, which is described in the next

section, to determine the clock component that is assigned to a time base.

GetTimeBaseMasterClock

You can use the GetTimeBaseMasterClock function to determine the clock

component that is assigned to a time base. A time base derives its time from either

a clock component or from another time base. If a time base derives its time from a

clock component, you can use this function to obtain the component instance of the clock

component.

pascal ComponentInstance GetTimeBaseMasterClock (TimeBase tb);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

DESCRIPTION

The GetTimeBaseMasterClock function returns a reference to a component instance

of the clock component that provides a time source to this time base.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 2

Movie Toolbox

2-320 Movie Toolbox Reference

Note
The Component Manager allows a single component to serve multiple
client applications at the same time. Each client application has a unique
access path to the component. These access paths are called connections.
You identify a component connection by specifying a component
instance. The Component Manager provides this component instance to
your application when you open a connection to a component. The
component maintains separate status information for each open
connection. ◆

Do not close this connection—the time base is using the connection to maintain its time

source. If a clock component is not assigned to the time base, this function sets the

returned reference to nil. In this case, the time base relies on another time base for its

time source. Use the GetTimeBaseMasterTimeBase function, which is described on

page 2-321, to obtain the time base reference to that master time base.

ERROR CODES

None

SEE ALSO

You can use the SetTimeBaseMasterClock function, which is described on

page 2-318, to assign a clock component to a time base.

SetTimeBaseMasterTimeBase

You can use the SetTimeBaseMasterTimeBase function to assign a master time base

to a time base. A time base derives its time from either a clock component or another

time base. Do not use this function to assign a master time base to a movie’s time base.

pascal void SetTimeBaseMasterTimeBase (TimeBase slave,

TimeBase master,

const TimeRecord *slaveZero);

slave Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

master Specifies the master time base to be assigned to this time base. Your
application obtains this time base identifier from the NewTimeBase
function.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-321

slaveZero Contains a pointer to the time, in the time scale of the master time base,
that corresponds to a 0 time value for the slave time scale. This parameter
allows you to set an offset between the time base and the master time
base. Set this parameter to nil if there is no offset.

ERROR CODES

None

SEE ALSO

You can use the GetTimeBaseMasterTimeBase function, which is described in the

next section, to determine the master time base that is assigned to a time base.

GetTimeBaseMasterTimeBase

You can use the GetTimeBaseMasterTimeBase function to determine the master time

base that is assigned to a time base. A time base derives its time from either a clock

component or from another time base. If a time base derives its time from another time

base, you can use this function to obtain the identifier for that master time base.

pascal TimeBase GetTimeBaseMasterTimeBase (TimeBase tb);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

DESCRIPTION

The GetTimeBaseMasterTimeBase function returns a reference to the master time

base that provides a time source to this time base. If a master time base is not assigned to

the time base, this function sets the returned reference to nil. In this case, the time base

relies on a clock component for its time source. Use the GetTimeBaseMasterClock

function, which is described on page 2-319, to obtain the component instance reference

to that clock component.

ERROR CODES

None

SEE ALSO

You can use the SetTimeBaseMasterTimeBase function, which is described in the

previous section, to assign a master time base to a time base.

C H A P T E R 2

Movie Toolbox

2-322 Movie Toolbox Reference

SetTimeBaseZero

You can use the SetTimeBaseZero function to change the offset from a time base to

either its master time base or its clock component. You establish the initial offset when

you assign the time base to its time source.

pascal void SetTimeBaseZero (TimeBase tb, TimeRecord *zero);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

zero Contains a pointer to the time that corresponds to a 0 time value for the
slave time scale. This parameter allows you to set an offset between the
time base and its time source. Set this parameter to nil if there is no
offset.

ERROR CODES

None

SEE ALSO

You can use the SetTimeBaseMasterClock function (described on page 2-318) to

assign a time base to a clock component.

You can use the SetTimeBaseMasterTimeBase function (described on page 2-320) to

assign a time base to a master time base.

Working With Time Base Values

Every time base contains a rate, a start time, a stop time, a current time, and some status

information. The Movie Toolbox provides a number of functions that allow your

application to work with the contents of a time base. This section describes those

functions.

The GetTimeBaseTime function lets you retrieve the current time value of a time base.

You can set the current time value by calling the SetTimeBaseTime function—this

function requires you to provide a time structure. Alternatively, you can set the current

time based on a time value by calling the SetTimeBaseValue function.

You can determine the rate of a time base by calling the GetTimeBaseRate

function. You can set the rate of a time base by calling the SetTimeBaseRate function.

You can determine the effective rate of a specified time base (relative to the master time

base to which it is subordinate) by calling the GetTimeBaseEffectiveRate function.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-323

You can retrieve the start time of a time base by calling the GetTimeBaseStartTime

function. You can set the start time of a time base by calling the

SetTimeBaseStartTime function. Similarly, you can use

the GetTimeBaseStopTime and SetTimeBaseStopTime functions to work with the

stop time of a time base.

The Movie Toolbox provides functions that allow you to work with the status

information of a time base. The GetTimeBaseStatus function allows you to read the

current status of a time base. The GetTimeBaseFlags function helps you obtain the

control flags of a time base. You can set these flags by calling the SetTimeBaseFlags

function.

SetTimeBaseTime

The SetTimeBaseTime function allows your application to set the current time of a

time base. You must specify the new time in a time structure.

pascal void SetTimeBaseTime (TimeBase tb, const TimeRecord *tr);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

tr Contains a pointer to a time structure that contains the current time value.

DESCRIPTION

If you set the current time of a time base that is the master time base for other time bases,

the current times in all the dependent time bases are changed appropriately. If you

change the current time in a time base that relies on a master time base, the Movie

Toolbox changes the offset between the time base and the master time base—the master

time base is not affected.

ERROR CODES

None

SEE ALSO

You can set the current time of a time base from a time value by calling the

SetTimeBaseValue function, which is described in the next section.

C H A P T E R 2

Movie Toolbox

2-324 Movie Toolbox Reference

SetTimeBaseValue

The SetTimeBaseValue function allows your application to set the current time of a

time base. You must specify the new time as a time value.

pascal void SetTimeBaseValue (TimeBase tb, TimeValue t,

 TimeScale s);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

t Specifies the new time value.

s Specifies the time scale of the new time value.

DESCRIPTION

If you set the current time of a time base that is the master time base for other time bases,

the current times in all the dependent time bases are changed appropriately. If you

change the current time in a time base that relies on a master time base, the Movie

Toolbox changes the offset between the time base and the master time base—the master

time base is not affected.

ERROR CODES

None

SEE ALSO

You can set the current time of a time base from a time structure by calling the

SetTimeBaseTime function, which is described in the previous section.

GetTimeBaseTime

Your application can use the GetTimeBaseTime function to obtain the current time

value from a time base. You can specify the time scale in which to return the time value.

pascal TimeValue GetTimeBaseTime (TimeBase tb, TimeScale s,

 TimeRecord *tr);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-325

s Specifies the time scale in which to return the current time value. Set this
parameter to 0 to retrieve the time in the preferred time scale of the time
base.

tr Contains a pointer to a time structure that is to receive the current time
value. This is an optional parameter. If you do not want the time value
represented in a time structure, set this parameter to nil.

DESCRIPTION

The GetTimeBaseTime function returns a time value that contains the current time

from the specified time base in the specified time scale. The function returns this value

even if you specify a time structure with the tr parameter.

ERROR CODES

None

SEE ALSO

You can set the current time of a time base by calling either the SetTimeBaseTime or

SetTimeBaseValue functions, which are described on page 2-323 and page 2-324,

respectively.

SetTimeBaseRate

The SetTimeBaseRate function allows your application to set the rate of a time base.

pascal void SetTimeBaseRate (TimeBase tb, Fixed r);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

r Specifies the rate of the time base.

DESCRIPTION

You can determine the number of time units that pass each second for a time base by

multiplying its rate by the time scale of its time coordinate system. For example, if you

set the rate of a time base to 2 and the time base has a time scale of 2, that time base

passes through 4 units of its time each second.

Rates may be set to negative values. Negative rates cause time to move backward for the

time base.

C H A P T E R 2

Movie Toolbox

2-326 Movie Toolbox Reference

ERROR CODES

None

SEE ALSO

You can retrieve the rate of a time base by calling the GetTimeBaseRate function,

which is described in the next section.

GetTimeBaseRate

The GetTimeBaseRate function allows your application to retrieve the rate of a time

base.

Rates may be set to negative values. Negative rates cause time to move backward for the

time base.

pascal Fixed GetTimeBaseRate (TimeBase tb);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

DESCRIPTION

The GetTimeBaseRate function returns the current rate of the time base as a

fixed-point number. This rate value may be nonzero even if the time base has stopped,

because it has reached its stop time.

ERROR CODES

None

GetTimeBaseEffectiveRate

The GetTimeBaseEffectiveRate function returns the effective rate at which the

specified time base is moving, relative to its master clock.

pascal Fixed GetTimeBaseEffectiveRate (TimeBase tb);

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-327

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

DESCRIPTION

The GetTimeBaseEffectiveRate function is useful when you need to make

scheduling decisions based on the rate of a time base—for example, when you are

writing a media handler. (For more on media handlers, see Inside Macintosh: QuickTime
Components.) By calling GetTimeBaseEffectiveRate rather than the

GetTimeBaseRate function (described in the previous section), you can easily take into

account any time base subordination that may be in effect.

SetTimeBaseStartTime

You can set the start time of a time base by calling the SetTimeBaseStartTime

function. The start time defines the time base’s minimum time value. You must specify

the new start time in a time structure.

pascal void SetTimeBaseStartTime (TimeBase tb,

const TimeRecord *tr);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

tr Contains a pointer to a time structure that contains the start time value.

DESCRIPTION

Do not use this function to restrict the Movie Toolbox to a portion of a movie—use the

SetMovieActiveSegment function (described on page 2-136) instead.

ERROR CODES

None

SEE ALSO

You can determine the start time of a time base by calling the GetTimeBaseStartTime

function, which is described in the next section.

C H A P T E R 2

Movie Toolbox

2-328 Movie Toolbox Reference

GetTimeBaseStartTime

You can determine the start time of a time base by calling the GetTimeBaseStartTime

function.

pascal TimeValue GetTimeBaseStartTime (TimeBase tb, TimeScale s,

 TimeRecord *tr);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

s Specifies the time scale in which to return the start time.

tr Contains a pointer to a time structure that is to receive the start time. This
is an optional parameter. If you do not want the time value represented in
a time structure, set this parameter to nil.

DESCRIPTION

The GetTimeBaseStartTime returns a time value that contains the start time

from the specified time base in the specified time scale. The function returns this value

even if you specify a time structure with the tr parameter.

ERROR CODES

None

SEE ALSO

You can set the start time of a time base by calling the SetTimeBaseStartTime

function, which is described in the previous section.

SetTimeBaseStopTime

You can set the stop time of a time base by calling the SetTimeBaseStopTime

function. The stop time defines the time base’s maximum time value. You must specify

the new stop time in a time structure.

pascal void SetTimeBaseStopTime (TimeBase tb,

const TimeRecord *tr);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

tr Contains a pointer to a time structure that contains the stop time value.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-329

DESCRIPTION

Do not use the SetTimeBaseStopTime function to restrict the Movie Toolbox to a

portion of a movie—use the SetMovieActiveSegment function (described on

page 2-136) instead.

ERROR CODES

None

SEE ALSO

You can determine the stop time of a time base by calling the GetTimeBaseStopTime

function, which is described in the next section.

GetTimeBaseStopTime

You can determine the stop time of a time base by calling the GetTimeBaseStopTime

function.

pascal TimeValue GetTimeBaseStopTime (TimeBase tb, TimeScale s,

 TimeRecord *tr);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

s Specifies the time scale in which to return the stop time.

tr Contains a pointer to a time structure that is to receive the stop time. This
is an optional parameter. If you do not want the time value represented in
a time structure, set this parameter to nil.

DESCRIPTION

The GetTimeBaseStopTime returns a time value that contains the stop time

from the specified time base in the specified time scale. The function returns this value

even if you specify a time structure with the out parameter.

ERROR CODES

None

SEE ALSO

You can set the stop time of a time base by calling the SetTimeBaseStopTime

function, which is described in the previous section.

C H A P T E R 2

Movie Toolbox

2-330 Movie Toolbox Reference

SetTimeBaseFlags

The SetTimeBaseFlags function allows your application to set the contents of the

control flags of a time base.

pascal void SetTimeBaseFlags (TimeBase tb, long timeBaseFlags);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

timeBaseFlags
Specifies the control flags for this time base. The following flags are
defined. You may set only one flag to 1 (be sure to set unused flags to 0):

loopTimeBase
Indicates whether the time base loops. If you set this
flag to 1 and the rate is positive, the time base loops back
and restarts from its start time when it reaches its stop
time. If you set this flag to 1 and the rate is negative, the
time base loops to its stop time. If you set the flag to 0, the
movie stops when it reaches the end.

palindromeLoopTimeBase
Indicates whether the time base loops in a palindrome
fashion. Palindrome looping causes a time base to move
alternately forward and backward. Set this flag to 1 to
cause the time base to loop in this manner.

ERROR CODES

None

SEE ALSO

You can retrieve the control flags of a time base by calling the GetTimeBaseFlags

function, which is described in the next section.

GetTimeBaseFlags

The GetTimeBaseFlags function allows your application to obtain the contents of the

control flags of a time base.

pascal long GetTimeBaseFlags (TimeBase tb);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-331

DESCRIPTION

The GetTimeBaseFlags function returns the control flags of a time base. The following

flags are defined (unused flags are set to 0):

loopTimeBase
Indicates whether the time base loops. If this flag is set to 1 and the rate is
positive, the time base loops back and restarts from its start time when it
reaches its stop time. If this flag is set to 1 and the rate is negative, the
time base loops to its stop time. If the flag is set to 0, the movie stops
when it reaches the end.

palindromeLoopTimeBase
Indicates whether the time base loops in a palindrome fashion.
Palindrome looping causes a time base to move alternately forward and
backward. If this flag is set to 1, the time base is palindrome looping.

ERROR CODES

None

SEE ALSO

You can set the control flags of a time base by calling the SetTimeBaseFlags function,

which is described in the previous section.

GetTimeBaseStatus

Your application can retrieve status information from a time base by calling the

GetTimeBaseStatus function. This status information allows you to determine when

the current time of a time base would fall outside of the range of values specified by the

start and stop times of the time base. This can happen when a time base relies on a

master time base or when its time has reached the stop time.

pascal long GetTimeBaseStatus (TimeBase tb,

TimeRecord *unpinnedTime);

tb Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

unpinnedTime
Contains a pointer to a time structure that is to receive the current time of
the time base. Note that this time value may be outside the range of
values specified by the start and stop times of the time base.

C H A P T E R 2

Movie Toolbox

2-332 Movie Toolbox Reference

DESCRIPTION

The GetTimeBaseStatus function returns flags that indicate whether the returned

time value is outside the range of values specified by the start and stop times of the time

base. The following flags are defined (unused flags are set to 0):

timeBaseBeforeStartTime
Indicates that the time value represented by the contents of the time
structure referred to by the unpinnedTime parameter lies before the
start time of the time base. The Movie Toolbox sets this flag to 1 if the
current time is before the start time of the time base.

timeBaseAfterStopTime
Indicates that the time value represented by the contents of the time
structure referred to by the unpinnedTime parameter lies after the
stop time of the time base. The Movie Toolbox sets this flag to 1 if the
current time is after the stop time of the time base.

ERROR CODES

None

Working With Times

The Movie Toolbox provides a number of functions that allow you to work with time

structures. This section describes those functions.

All of these functions work with time structures (see “The Time Structure” on page 2-77

for a complete discussion of the time structure). You can use time structures to represent

either time values or durations. Time values specify a point in time, relative to a given

time base. Durations specify a span of time, relative to a given time scale. Durations are

represented by time structures that have the time base set to 0 (that is, the base field in

the time structure is set to nil).

You can use the ConvertTime function to convert a time you obtain from one time base

into a time that is relative to another time base. Similarly, you can use the

ConvertTimeScale function to convert a time from one time scale to another.

You can add two times by calling the AddTime function; you can subtract two times

with the SubtractTime function.

AddTime

The AddTime function adds two times. You must specify the times in time structures.

pascal void AddTime (TimeRecord *dst, const TimeRecord *src);

dst Contains a pointer to a time structure. This time structure contains one of
the operands for the addition. The AddTime function returns the result
of the addition into this time structure.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-333

src Contains a pointer to a time structure. The Movie Toolbox adds this value
to the time or duration specified by the dst parameter.

DESCRIPTION

If these times are relative to different time scales or time bases, the AddTime function

converts the times as appropriate to yield reasonable results. However, the time bases for

both time values must rely on the same time source.

The result value is formatted based on the operands as follows:

ERROR CODES

None

SubtractTime

The SubtractTime function subtracts one time from another. You must specify the

times in time structures.

pascal void SubtractTime (TimeRecord *dst, const TimeRecord *src);

dst Contains a pointer to a time structure. This time structure contains one
of the operands for the subtraction. The SubtractTime function returns
the result of the subtraction into this time structure.

src Contains a pointer to a time structure. The Movie Toolbox subtracts this
value from the time or duration specified by the dst parameter.

DESCRIPTION

If these times are relative to different time scales or time bases, the SubtractTime

function converts the times as appropriate to yield reasonable results. However, the time

bases for both time values must rely on the same time source.

The result value is formatted based on the operands as follows:

dst src Result

Duration Duration Duration

Time value Duration Time value

dst src Result

Time value Duration Duration

Duration Duration Duration

Time value Time value Duration

C H A P T E R 2

Movie Toolbox

2-334 Movie Toolbox Reference

ERROR CODES

None

ConvertTime

You can convert a time you obtain from one time base into a time that is relative to

another time base by calling the ConvertTime function. Both time bases must rely on

the same time source. You must specify the time to be converted in a time structure.

pascal void ConvertTime (TimeRecord *inout, TimeBase newBase);

inout Contains a pointer to a time structure that contains the time value to be
converted. The ConvertTime function replaces the contents of this time
structure with the time value relative to the specified time base.

newBase Specifies the time base for this operation. Your application obtains this
time base identifier from the NewTimeBase function (described on
page 2-316).

DESCRIPTION

The ConvertTime function includes the rate associated with each time value in the

conversion; therefore, you should use this function when you want to convert time

values. Use the ConvertTimeScale function (described in the next section) to convert

durations.

ERROR CODES

None

ConvertTimeScale

You can convert a time from one time scale into a time that is relative to another time

base by calling the ConvertTimeScale function. You must specify the time to be

converted in a time structure.

pascal void ConvertTimeScale (TimeRecord *inout,

TimeScale newScale);

inout Contains a pointer to a time structure that contains the time value to be
converted. The ConvertTimeScale function replaces the contents of
this time structure with the time value relative to the specified time scale.

newScale Specifies the time scale for this operation.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-335

DESCRIPTION

The ConvertTimeScale function does not include the rate associated with the time

value in the conversion; therefore, you should use this function when you want to

convert time durations, but not when converting time values. Use the ConvertTime

function (described in the previous section) to convert time values.

ERROR CODES

None

Time Base Callback Functions

If your application uses QuickTime time bases, it may define callback functions that are

associated with a specific time base. Your application can then use these callback

functions to perform activities that are triggered by temporal events, such as a certain

time being reached or a specified rate being achieved. The time base functions of the

Movie Toolbox interact with clock components to schedule the invocation of these

callback functions—clock components are responsible for invoking the callback function

at its scheduled time. Your application can use the functions described in this section to

establish your own callback function and to schedule callback events.

You can define three types of callback events. These types are distinguished by the

nature of the temporal event that triggers the Movie Toolbox to call your function. The

three types are

■ events that are triggered at a specified time

■ events that are triggered when the rate reaches a specified value

■ events that are triggered when the time value of a time base changes by an amount
different from the time base’s rate

You specify a callback event’s type when you define the callback event, using the

NewCallBack function.

You specify whether your event can occur at interrupt time when you define the

callback event, using the NewCallBack function. Your function is called closer to the

triggering event at interrupt time, but it is subject to all the restrictions of interrupt

functions (for example, your callback function cannot cause memory to be moved). If

your function is not called at interrupt time, you are free of these restrictions—but your

function may be called later, because the invocation is delayed to avoid interrupt time.

The NewCallBack function allocates the memory to support a callback event.

When you are done with the callback event, you dispose of it by calling the

DisposeCallBack function.

You schedule a callback event by calling the CallMeWhen function. Call

CancelCallBack function to unschedule a callback event.

You can retrieve the time base of a callback event by calling the

GetCallBackTimeBase function. You can obtain the type of a callback event by calling

the GetCallBackType function.

C H A P T E R 2

Movie Toolbox

2-336 Movie Toolbox Reference

NewCallBack

The NewCallback function creates a new callback event. The callback event created at

this time is not active until you schedule it by calling the CallMeWhen function, which is

described in the next section.

▲ W A R N I N G

You must not call this function at interrupt time. ▲

pascal QTCallBack NewCallBack (TimeBase tb, short cbType);

tb Specifies the callback event’s time base. You obtain this identifier from the
NewTimeBase function (described on page 2-316).

cbType Specifies when the callback event is to be invoked. The value of this field
governs how the Movie Toolbox interprets the data supplied in the
param1, param2, and param3 parameters to the CallMeWhen function,
which is described in the next section. The following values are valid for
this parameter:

callBackAtTime
Indicates that the event is to be invoked at a specified time.

callBackAtRate
Indicates that the event is to be invoked when the rate for
the time base reaches a specified value.

callBackAtTimeJump
Indicates that the event is to be invoked when the time
base’s time value changes by an amount that differs from
its rate.

callBackAtExtremes
Indicates that the event is to be invoked when the time base
reaches its start time or its stop time. If the start or stop
time of the time base changes, the call back is automatically
rescheduled. This is very useful for looping or determining
when a movie is complete. You determine when the
callback is to be fired with the triggerAtStart and
triggerAtStop constants. Both flags may be set.

In addition, if the high-order bit of the cbType parameter is set to 1 (this
bit is defined by the callBackAtInterrupt flag), the event can be
invoked at interrupt time.

DESCRIPTION

The NewCallBack function returns a reference to the new callback event. You must

provide this reference to other Movie Toolbox functions described in this section. If the

Movie Toolbox cannot create the callback event, this function returns nil.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-337

ERROR CODES

None

CallMeWhen

You schedule a callback event by calling the CallMeWhen function. You can call this

function from your callback function.

pascal OSErr CallMeWhen (QTCallBack cb,

QTCallBackProc callBackProc,

long refcon, long param1,

long param2, long param3);

cb Specifies the callback event for the operation. You obtain this identifier
from the NewCallBack function, which is described in the previous
section.

callBackProc
Points to your callback function.

Your callback function must have the following form:

pascal void MyCallBackProc (QTCallBack cb,

long refcon);

See “Callback Event Functions” on page 2-364 for details.

refcon Contains a reference constant value for your callback function.

param1 Contains scheduling information. The Movie Toolbox interprets this
parameter based on the value of the cbType parameter to the
NewCallBack function, described in the previous section.

If cbType is set to callBackAtTime, the param1 parameter contains
flags indicating when to invoke your callback function for this callback
event. The following values are defined (be sure to set unused flags to 0):

triggerTimeFwd
Indicates that your callback function should be called at the
time specified by param2 only when time is moving
forward (positive rate). The value of this flag is 0x0001.

triggerTimeBwd
Indicates that your callback function should be called at the
time specified by param2 only when time is moving
backward (negative rate). The value of this flag is 0x0002.

triggerTimeEither
Indicates that your callback function should be called at the
time specified by param2 without regard to direction, but
the rate must be nonzero. The value of this flag is 0x0003.

C H A P T E R 2

Movie Toolbox

2-338 Movie Toolbox Reference

If the cbType parameter is set to callBackAtRate, param1 contains
flags indicating when to invoke your callback function for this event. The
following values are defined (be sure to set unused flags to 0):

triggerRateChange
Indicates that your callback function should be called
whenever the rate changes. The value of this flag is 0x0000.

triggerRateLT
Indicates that your callback function should be called when
the rate changes to a value less than that specified by
param2. The value of this flag is 0x0004.

triggerRateGT
Indicates that your callback function should be called when
the rate changes to a value greater than that specified by
param2. The value of this flag is 0x0008.

triggerRateEqual
Indicates that your callback function should be called when
the rate changes to a value equal to that specified by
param2. The value of this flag is 0x0010.

triggerRateLTE
Indicates that your callback function should be called when
the rate changes to a value that is less than or equal to that
specified by param2. The value of this flag is 0x0014.

triggerRateGTE
Indicates that your callback function should be called when
the rate changes to a value that is less than or equal to that
specified by param2. The value of this flag is 0x0018.

triggerRateNotEqual
Indicates that your callback function should be called when
the rate changes to a value that is not equal to that specified
by param2. The value of this flag is 0x001C.

param2 Contains scheduling information. The Movie Toolbox interprets this
parameter based on the value of the cbType parameter to the
NewCallBack function, described in the previous section.

If cbType is set to callBackAtTime, the param2 parameter contains
the time value at which your callback function is to be invoked for this
event. The param1 parameter contains flags affecting when the Movie
Toolbox calls your function.

If cbType is set to callBackAtRate, the param2 parameter contains
the rate value at which your callback function is to be invoked for this
event. The param1 parameter contains flags affecting when the Movie
Toolbox calls your function.

param3 Contains the time scale in which to interpret the time value that is stored
in param3 if cbType is set to callBackAtTime.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-339

ERROR CODES

None

CancelCallBack

You use the CancelCallBack function to cancel a callback event before it executes.

pascal void CancelCallBack (QTCallBack cb);

cb Specifies the callback event for this operation. You obtain this value from
the NewCallBack function (described on page 2-336).

DESCRIPTION

The CancelCallBack function removes the callback event from the list of callback

events maintained by the Movie Toolbox. The Movie Toolbox calls this function

automatically when it invokes your callback function. In order for a callback event to be

scheduled, you must call the CallMeWhen function, which is described in the previous

section.

ERROR CODES

None

DisposeCallBack

The DisposeCallBack function disposes of the memory associated with the specified

callback event and cancels the event if it is pending. You should call this function when

you are done with each callback event.

▲ W A R N I N G

You must not call this function at interrupt time. ▲

pascal void DisposeCallBack (QTCallBack cb);

cb Specifies the callback event for the operation. You obtain this value from
the NewCallBack function (described on page 2-336).

ERROR CODES

None

C H A P T E R 2

Movie Toolbox

2-340 Movie Toolbox Reference

GetCallBackTimeBase

You can retrieve the time base of a callback event by calling the

GetCallBackTimeBase function. Your application specifies the callback event’s time

base by calling the NewCallBack function, which is described on page 2-336.

pascal TimeBase GetCallBackTimeBase (QTCallBack cb);

cb Specifies the callback event for the operation. You obtain this value from
the NewCallBack function.

DESCRIPTION

The GetCallBackTimeBase function returns a reference to the callback event’s time

base.

ERROR CODES

None

GetCallBackType

You can retrieve a callback event’s type by calling the GetCallBackType function. You

specify the type value when you call the NewCallBack function (described on

page 2-336).

pascal short GetCallBackType (QTCallBack cb);

cb Specifies the callback event for the operation. You obtain this value from
the NewCallBack function.

DESCRIPTION

The GetCallBackTimeBase function returns the callback event’s type value. The

following values are valid:

callBackAtTime
Indicates that the event is to be invoked at a specified time.

callBackAtRate
Indicates that the event is to be invoked when the rate for the time base
reaches a specified value.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-341

callBackAtTimeJump
Indicates that the event is to be invoked when the time base’s time value
changes by an amount that differs from its rate.

In addition, if the high-order bit of the returned value is set to 1 (this bit is defined by the

callBackAtInterrupt flag), the event can be invoked at interrupt time.

ERROR CODES

None

Matrix Functions

The Movie Toolbox provides a number of functions that allow you to work with

transformation matrices. This section describes those functions. For more information

about transformation matrices, see “The Transformation Matrix” on page 2-26. For

descriptions of fixed-point and fixed-rectangle structures, see “The Fixed-Point and

Fixed-Rectangle Structures” on page 2-78.

Note

The functions described in this section do not appear in the MPW
interface file Movies.h; rather, they appear in the
ImageCompression.h interface file. ◆

SetIdentityMatrix

The SetIdentityMatrix function allows your application to set the contents of a

matrix so that it performs no transformation. Such matrices are referred to as identity
matrices.

pascal void SetIdentityMatrix (MatrixRecord *matrix);

matrix Contains a pointer to a matrix structure. The SetIdentityMatrix
function updates the contents of this matrix so that the matrix describes
the identity matrix.

ERROR CODES

None

C H A P T E R 2

Movie Toolbox

2-342 Movie Toolbox Reference

GetMatrixType

The GetMatrixType function allows your application to obtain information about a

matrix. This information indicates the nature of the transformation defined by the matrix.

pascal short GetMatrixType (MatrixRecordPtr m);

m Points to the matrix for this operation.

DESCRIPTION

The GetMatrixType function returns an integer that indicates the nature of the

transformation defined by the matrix. The following values are possible:

identityMatrixType
Indicates that the specified matrix is an identity matrix.

translateMatrixType
Indicates that the specified matrix defines a translation operation.

scaleMatrixType
Indicates that the specified matrix defines a scaling operation.

scaleTranslateMatrixType
Indicates that the specified matrix defines both a translation operation
and a scaling operation.

linearMatrixType
Indicates that the specified matrix defines a rotation, skew, or shear
operation.

linearTranslateMatrixType
Indicates that the specified matrix defines both a translation operation
and a rotation, skew, or shear operation.

perspectiveMatrixType
Indicates that the specified matrix defines a perspective (nonlinear)
operation.

ERROR CODES

None

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-343

CopyMatrix

The CopyMatrix function copies the contents of one matrix into another matrix.

pascal void CopyMatrix (MatrixRecordPtr m1, MatrixRecord *m2);

m1 Specifies the source matrix for the copy operation.

m2 Contains a pointer to the destination matrix for the copy operation. The
CopyMatrix function copies the values from the matrix specified by the
m1 parameter into this matrix.

DESCRIPTION

The CopyMatrix function is a convenience function for copying the contents of one

matrix to another. You can achieve the same results by using the Memory Manager’s

BlockMove routine, or by assigning the contents of one matrix record to another directly.

ERROR CODES

None

EqualMatrix

The EqualMatrix function compares two matrices and returns a result that indicates

whether the matrices are equal.

pascal Boolean EqualMatrix (const MatrixRecord *m1,

const MatrixRecord *m2);

m1 Contains a pointer to one matrix for the compare operation.

m2 Contains a pointer to the other matrix for the compare operation.

DESCRIPTION

The EqualMatrix function returns a Boolean value that indicates whether the specified

matrices are equal. If the matrices are equal, the function sets this returned value to

true. Otherwise, it sets the returned value to false.

ERROR CODES

None

C H A P T E R 2

Movie Toolbox

2-344 Movie Toolbox Reference

TranslateMatrix

The TranslateMatrix function allows your application to add a translation value to a

specified matrix.

pascal void TranslateMatrix (MatrixRecord *m,

Fixed deltaH, Fixed deltaV);

m Contains a pointer to the matrix structure for this operation.

deltaH Specifies the value to be added to the x coordinate translation value.

deltaV Specifies the value to be added to the y coordinate translation value.

ERROR CODES

None

ScaleMatrix

The ScaleMatrix function allows your application to modify the contents of a matrix

so that it defines a scaling operation.

pascal void ScaleMatrix (MatrixRecord *m, Fixed scaleX,

Fixed scaleY, Fixed aboutX, Fixed aboutY);

m Contains a pointer to a matrix structure. The ScaleMatrix function
updates the contents of this matrix so that the matrix describes a scaling
operation—that is, it concatenates the respective transformations onto
whatever was initially in the matrix structure. You specify the magnitude
of the scaling operation with the scaleX and scaleY parameters. You
specify the anchor point with the aboutX and aboutY parameters.

scaleX Specifies the scaling factor applied to x coordinates.

scaleY Specifies the scaling factor applied to y coordinates.

aboutX Specifies the x coordinate of the anchor point.

aboutY Specifies the y coordinate of the anchor point.

ERROR CODES

None

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-345

RotateMatrix

The RotateMatrix function allows your application to modify the contents of a matrix

so that it defines a rotation operation.

pascal void RotateMatrix (MatrixRecord *m, Fixed degrees,

Fixed aboutX, Fixed aboutY);

m Contains a pointer to a matrix structure. The RotateMatrix function
updates the contents of this matrix so that the matrix describes a rotation
operation—that is, it concatenates the rotation transformations onto
whatever was initially in the matrix structure. You specify the direction
and amount of rotation with the degrees parameter. You specify the
point of rotation with the aboutX and aboutY parameters.

degrees Specifies the number of degrees of rotation.

aboutX Specifies the x coordinate of the anchor point of rotation.

aboutY Specifies the y coordinate of the anchor point of rotation.

ERROR CODES

None

SkewMatrix

The SkewMatrix function allows your application to modify the contents of a matrix so

that it defines a skew transformation. A skew operation alters the display of an element

along one dimension—for example, converting a rectangle into a parallelogram is a skew

operation.

pascal void SkewMatrix (MatrixRecord *m, Fixed skewX, Fixed skewY,

Fixed aboutX, Fixed aboutY);

m Contains a pointer to the matrix for this operation. The SkewMatrix
function updates the contents of this matrix so that it defines a skew
operation—that is, it concatenates the respective transformations onto
whatever was initially in the matrix structure. You specify the magnitude
and direction of the skew operation with the skewX and skewY
parameters. You specify an anchor point with the aboutX and
aboutY parameters.

skewX Specifies the skew value to be applied to x coordinates.

C H A P T E R 2

Movie Toolbox

2-346 Movie Toolbox Reference

skewY Specifies the skew value to be applied to y coordinates.

aboutX Specifies the x coordinate of the anchor point.

aboutY Specifies the y coordinate of the anchor point.

ConcatMatrix

The ConcatMatrix function concatenates two matrices, combining the transformations

described by both matrices into a single matrix.

pascal void ConcatMatrix (MatrixRecord *a, MatrixRecord *b);

a Contains a pointer to the source matrix.

b Contains a pointer to the destination matrix. The ConcatMatrix
function performs a matrix multiplication operation, combining the two
matrices, and leaves the result in the matrix specified by this parameter.

DESCRIPTION

The form of the operation that the ConcatMatrix function performs is shown by the

following formula:

[B] = [B] x [A]

This is a matrix multiplication operation. Note that matrix multiplication is not

commutative.

ERROR CODES

None

InverseMatrix

The InverseMatrix function creates a new matrix that is the inverse of a specified

matrix.

pascal Boolean InverseMatrix (MatrixRecord *m,

MatrixRecord *im);

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-347

m Contains a pointer to the source matrix for the operation.

im Contains a pointer to a matrix structure that is to receive the new matrix.
The InverseMatrix function updates this structure so that it contains a
matrix that is the inverse of that specified by the m parameter.

DESCRIPTION

The InverseMatrix function returns a Boolean value that indicates whether it could

create an inverse matrix. If the function could create an inverse matrix, it sets this

returned value to true. Otherwise, the function sets the returned value to false.

ERROR CODES

None

TransformPoints

The TransformPoints function allows your application to transform a set of

QuickDraw points through a specified matrix.

pascal OSErr TransformPoints (MatrixRecord *mp, Point *pt1,

long count);

mp Contains a pointer to the transformation matrix for this operation.

pt1 Contains a pointer to the first QuickDraw point to be transformed.

count Specifies the number of QuickDraw points to be transformed. These
points must be stored immediately following the point specified by the
pt1 parameter.

ERROR CODES

None

SEE ALSO

You can transform a set of QuickDraw points that are made up of fixed values by calling

the TransformFixedPoints function, which is described in the next section.

C H A P T E R 2

Movie Toolbox

2-348 Movie Toolbox Reference

TransformFixedPoints

The TransformFixedPoints function allows your application to transform a set of

fixed points through a specified matrix.

pascal OSErr TransformFixedPoints (MatrixRecord *m,

FixedPoint *fpt, long count);

m Contains a pointer to the transformation matrix for this operation.

fpt Contains a pointer to the first fixed point to be transformed.

count Specifies the number of fixed points to be transformed. These points must
be stored immediately following the point specified by the fpt parameter.

ERROR CODES

None

SEE ALSO

You can transform a set of fixed points that is made up of short integer values by calling

the TransformPoints function, which is described in the previous section.

TransformRect

The TransformRect function allows your application to transform the upper-left and

lower-right points of a rectangle through a specified matrix.

pascal Boolean TransformRect (MatrixRecordPtr m, Rect *r,

FixedPoint *fpp);

m Specifies the matrix for this operation.

r Contains a pointer to the structure that defines the rectangle to be
transformed. The TransformRect function returns the updated
coordinates into the structure referred to by this parameter. If the
resulting rectangle has been rotated or skewed (that is, the transformation
involves operations other than scaling and translation), the function sets
the returned Boolean value to false and returns the coordinates of the
rectangle that encloses the transformed rectangle. The function then
updates the points specified by the fpp parameter to contain the
coordinates of the four corners of the transformed rectangle.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-349

fpp Contains a pointer to an array of four fixed points. The TransformRect
function returns the coordinates of the four corners of the rectangle after
the transformation operation.

If you do not want this information, set this parameter to nil.

DESCRIPTION

The TransformRect function returns a Boolean value indicating the nature of the result

rectangle. If the matrix defines transformations other than translation and scaling, the

TransformRect function sets the returned value to false, updates the rectangle

specified by the r parameter to define the boundary box of the resulting rectangle, and

places the coordinates of the corners of the resulting rectangle in the points specified by

the fpp parameter. If the transformed rectangle and its boundary box are the same, the

function sets the returned value to true.

ERROR CODES

None

TransformFixedRect

The TransformFixedRect function allows your application to transform the

upper-left and lower-right points of a rectangle through a specified matrix. This

rectangle must be specified by fixed points.

pascal Boolean TransformFixedRect (MatrixRecord *m,

FixedRect *fr,

FixedPoint *fpp);

m Contains a pointer to the matrix for this operation.

fr Contains a pointer to the structure that defines the rectangle to be
transformed. The TransformFixedRect function returns the updated
coordinates into the structure referred to by this parameter. If the
resulting rectangle has been rotated or skewed (that is, the transformation
involves operations other than scaling and translation), the function sets
the returned Boolean value to false and returns the coordinates of the
boundary box of the transformed rectangle. The function then updates
the points specified by the fpp parameter to contain the coordinates
of the four corners of the transformed rectangle.

fpp Contains a pointer to an array of four fixed points. The
TransformFixedRect function returns the coordinates of the
four corners of the rectangle after the transformation operation.

If you do not want this information, set this parameter to nil.

C H A P T E R 2

Movie Toolbox

2-350 Movie Toolbox Reference

DESCRIPTION

The TransformFixedRect function returns a Boolean value indicating the nature of

the result rectangle. If the matrix defines transformations other than translation and

scaling, the TransformFixedRect function sets the returned value to false, updates

the rectangle specified by the fr parameter to define the boundary box of the resulting

rectangle, and places the coordinates of the corners of the resulting rectangle in the

points specified by the fpp parameter. If the transformed rectangle and its boundary box

are the same, the function sets the returned value to true.

ERROR CODES

None

SEE ALSO

You can transform a standard rectangle by calling the TransformRect function, which

is described in the previous section.

TransformRgn

The TransformRgn function allows your application to apply a specified matrix to a

region.

pascal OSErr TransformRgn (MatrixRecordPtr mp, RgnHandle r);

mp Points to the matrix for this operation. The TransformRgn function
currently supports only translating and scaling operations.

r Specifies the region to be transformed. The TransformRgn function
transforms each point in the region according to the contents of the
specified matrix.

ERROR CODES

Memory Manager errors

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-351

RectMatrix

The RectMatrix function allows your application to create a matrix that performs a

translate and scale operation as described by the relationship between two rectangles.

pascal void RectMatrix (MatrixRecord *matrix, Rect *srcRect,

Rect *dstRect);

matrix Contains a pointer to a matrix structure. The RectMatrix function
updates the contents of this matrix so that the matrix describes a
transformation from points in the rectangle specified by the srcRect
parameter to points in the rectangle specified by the dstRect parameter.
The previous contents of the matrix are ignored.

srcRect Contains a pointer to the source rectangle.

dstRect Contains a pointer to the destination rectangle.

DESCRIPTION

You specify the two rectangles; the function returns the appropriate matrix. Figure 2-43

shows how this matrix transforms the source image.

Figure 2-43 Transforming an image with the RectMatrix function

C H A P T E R 2

Movie Toolbox

2-352 Movie Toolbox Reference

Calling the RectMatrix function with the two rectangles shown in Figure 2-43 results

in the matrix shown in Figure 2-44.

Figure 2-44 Matrix created as a result of calling the RectMatrix function

SEE ALSO

If you call the TransformRect function (described on page 2-348) and supply the

matrix produced by the RectMatrix function along with the source rectangle you

specified when you called the RectMatrix function, the result is equivalent to the

destination rectangle you specified.

MapMatrix

The MapMatrix function alters an existing matrix so that it defines a transformation

from one rectangle to another, similar to the MapRect and MapRegion routines that are

described in Inside Macintosh: Imaging.

pascal void MapMatrix (MatrixRecord *matrix, Rect *fromRect,

Rect *toRect);

matrix Contains a pointer to a matrix structure. The MapMatrix function
modifies this matrix so that it performs a transformation in the rectangle
specified by the toRect parameter that is analogous to the
transformation it currently performs in the rectangle specified by the
fromRect parameter.

fromRect Contains a pointer to the source rectangle.

toRect Contains a pointer to the destination rectangle.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-353

DESCRIPTION

The MapMatrix function affects only the scaling and translation attributes of the matrix.

This function is similar to RectMatrix, with the exception that MapMatrix

concatenates the translation and scaling operations to the previous contents of the

matrix, whereas RectMatrix first sets the matrix to the identity state.

Figure 2-45 shows how the matrix that you obtain from the MapMatrix function

transforms a source image.

Figure 2-45 Transforming an image with the MapMatrix function

SEE ALSO

You can create a matrix that maps one rectangle to another by calling the RectMatrix

function, which is described in the previous section.

C H A P T E R 2

Movie Toolbox

2-354 Movie Toolbox Reference

Application-Defined Functions

This section describes the application-defined functions used with the Movie Toolbox. It

is divided into the following topics:

■ “Progress Functions” describes the functions that your application must assign to
monitor the progress of the Movie Toolbox during long operations

■ “Cover Functions” describes the functions that your application must use to perform
custom processing whenever one of your movies covers a screen region or reveals a
region that was previously covered

■ “Error-Notification Functions” discusses the functions that your application must use
to perform custom error-processing; you’ll find these functions particularly helpful
when you’re debugging your program

■ “Movie Callout Functions”describes the application-defined functions that the Movie
Toolbox calls repeatedly while a movie preview is playing; you can use your movie
callout function to stop the preview

■ “File Filter Functions” provides details about the function that you can supply to filter
the files that are displayed to the user in a dialog box

■ “Custom Dialog Functions” supplies information about a function that lets you
support the template in the custom dialog template that you specified with the
CustomGetFilePreview function

■ “Modal-Dialog Filter Functions” describes the functions that you can provide to
support the custom dialog template you specified with your custom dialog function;
your modal-dialog filter function gives you greater control over the interface
presented to the user

■ “Standard File Activation Functions” describes the functions that control the
highlighting of any items whose shape is known only by your application

■ “Callback Event Functions” discusses the callback events that you can ask the
CallMeWhen function to schedule

■ “Text Functions” describes a function through which you can specify operations on
text and whether you want to display the text

Progress Functions

Some Movie Toolbox functions can take a long time to execute. For example, creating a

movie file that contains all of its data may be quite an involved process for a movie that

has many large media structures. During these operations, your application should give

the user some indication of the progress of the task. The Movie Toolbox allows you to

monitor its progress on long operations with a progress function.

The Movie Toolbox calls your progress function at regular intervals during long

operations. The Movie Toolbox determines whether to call your function based on the

duration of the operation—your function will not be called unnecessarily. When it calls

your function, the Movie Toolbox provides information about the operation that is

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-355

underway and its relative completion. You can use this information to display an

informational dialog box to the user.

You assign a progress function to a movie by calling the SetMovieProgressProc

function (described on page 2-155). You should assign your progress function when you

open the movie; the Movie Toolbox will call your function when it is appropriate to do

so. One progress function may support more than one movie. When the Movie Toolbox

calls your function, it provides you with the movie identifier so that you can

discriminate between various movies.

MyProgressProc

Your progress function should support the following interface:

pascal OSErr MyProgressProc (Movie theMovie, short message,

short whatOperation,

Fixed percentDone, long refcon);

theMovie Specifies the movie for this operation. The Movie Toolbox sets this
parameter to identify the appropriate movie.

message Indicates why the Movie Toolbox called your function. The following
values are valid:

movieProgressOpen
Indicates the start of a long operation. This is always the
first message sent to your function. Your function can
use this message to trigger the display of your progress
window.

movieProgressUpdatePercent
Passes completion information to your function. The Movie
Toolbox repeatedly sends this message to your function.
The percentDone parameter indicates the relative
completion of the operation. You can use this value to
update your progress window.

movieProgressClose
Indicates the end of a long operation. This is always the
last message sent to your function. Your function can use
this message as an indication to remove its progress
window.

whatOperation
Indicates the long operation that is currently underway. The following
values are valid:

progressOpFlatten
Your application has called the FlattenMovie or
FlattenMovieData function (described on page 2-105
and page 2-107, respectively).

C H A P T E R 2

Movie Toolbox

2-356 Movie Toolbox Reference

progressOpInsertTrackSegment
Your application has called the InsertTrackSegment
function (described on page 2-262). The Movie Toolbox
calls the progress function that is assigned to the movie
that contains the destination track.

progressOpInsertMovieSegment
Your application has called the InsertMovieSegment
function (described on page 2-257). The Movie Toolbox
calls the progress function that is assigned to the
destination movie.

progressOpPaste
Your application has called the PasteMovieSelection
function (described on page 2-249). The Movie Toolbox
calls the progress function that is assigned to the
destination movie.

progressOpAddMovieSelection
Your application has called the AddMovieSelection
function (described on page 2-250). The Movie Toolbox
calls the progress function that is assigned to the
destination movie. The Movie Toolbox calls the progress
function that is assigned to the destination movie.

progressOpCopy
Your application has called the CopyMovieSelection
function (described on page 2-248). The Movie Toolbox
calls the progress function that is assigned to the
destination movie.

progressOpCut
Your application has called the CutMovieSelection
function (described on page 2-247). The Movie Toolbox
calls the progress function that is assigned to the
destination movie.

progressOpLoadMovieIntoRam
Your application has called the LoadMovieIntoRam
function (described on page 2-140). The Movie Toolbox
calls the progress function that is assigned to the
destination movie.

progressOpLoadTrackIntoRam
Your application has called the LoadTrackIntoRam
function (described on page 2-142). The Movie Toolbox
calls the progress function that is assigned to the
destination track.

progressOpLoadMediaIntoRam
Your application has called the LoadMediaIntoRam
function (described on page 2-143). The Movie Toolbox
calls the progress function that is assigned to the
destination media.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-357

progressOpImportMovie
Your application has called the
ConvertFileToMovieFile function (described on
page 2-93). The Movie Toolbox calls the progress function
that is associated with the destination movie file.
This flag is also used, as appropriate, for the
PasteHandleIntoMovie functions (described on
page 2-252).

progressOpExportMovie
Your application has called the ConvertMovieFile
function (described on page 2-95). The Movie Toolbox calls
the progress function that is associated with the destination
movie. This flag is also used, as appropriate, for the
PutMovieIntoTypedHandle function (described on
page 2-253).

percentDone
Contains a fixed-point value indicating how far the operation has
progressed. Its value is always between 0.0 and 1.0. This parameter is
valid only when the message field is set to
movieProgressUpdatePercent.

refcon Reference constant value for use by your progress function. Your
application specifies the value of this reference constant when you assign
the progress function to the movie.

DESCRIPTION

Your progress function should return an error value. The Movie Toolbox examines this

value after each movieProgressUpdatePercent message and before continuing the

current operation. Set this value to a nonzero value, such as userCanceledErr, to

cancel the operation; set it to noErr to continue.

Cover Functions

The Movie Toolbox allows your application to perform custom processing whenever one

of your movies covers a screen region or reveals a region that was previously covered.

You perform this processing using cover functions.

There are two types of cover functions: those that are called when your movie covers a

screen region, and those that are called when your movie uncovers a screen region,

revealing a region that was previously covered. You can use a cover function to detect

when a movie changes size.

Cover functions that are called when your movie covers a screen region are responsible

for erasing the region—you may choose to save the hidden region in an offscreen buffer.

Cover functions that are called when your movie reveals a hidden screen region must

redisplay the hidden region.

C H A P T E R 2

Movie Toolbox

2-358 Movie Toolbox Reference

The Movie Toolbox sets the graphics world before it calls your cover function. Your

function must not change the graphics world.

The Movie Toolbox provides default cover functions. When your movie uncovers a

region, the default function that is called erases the movie’s image by displaying the

graphics port’s background color and pattern. You can set the port’s characteristics by

calling the SetMovieGWorld function (described on page 2-159). When your movie

covers a region, the default function that is called does nothing.

Use the SetMovieCoverProcs function (described on page 2-156) to set both types of

cover functions.

MyCoverProc

Your cover functions should support the following interface:

pascal OSErr MyCoverProc (Movie theMovie, RgnHandle changedRgn,

long refcon);

theMovie Specifies the movie for this operation.

changedRgn
Contains a handle to the changed screen region.

refcon Contains the reference constant that you specified when you defined the
progress function.

DESCRIPTION

Your cover function should always return an error value of noErr.

Error-Notification Functions

The Movie Toolbox lets your application perform custom error notification. Your

application must identify its custom error-notification function to the Movie Toolbox.

Error-notification functions are particularly helpful when you are debugging your

program.

The SetMoviesErrorProc function (described on page 2-86) allows you to identify

your application’s error-notification function in the errProc parameter.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-359

MyErrProc

The entry point to your error-notification function should take the following form:

pascal void MyErrProc (OSErr theErr, long refcon);

theErr Contains the result code that the Movie Toolbox is going to place in the
current error value.

refcon Contains the reference constant value that you specified when your
application called the SetMoviesErrorProc function.

Movie Callout Functions

The PlayMoviePreview function (described on page 2-120) plays a movie’s preview.

You provide a pointer to a movie callout function in the callOutProc parameter.

The Movie Toolbox calls your movie callout function repeatedly while the movie

preview is playing. You can use this function to stop the preview. If you do not want to

assign a function, set the callOutProc parameter to nil.

MyCalloutProc

Your movie callout function should present the following interface:

pascal Boolean MyCallOutProc (long refcon);

refcon Contains the reference constant that you specified when you called the
PlayMoviePreview function.

DESCRIPTION

Your movie callout function returns a Boolean value. The Movie Toolbox examines this

value before continuing. If your function sets this value to false, the Movie Toolbox

stops the preview and returns to your application.

Note

If you call the GetMovieActiveSegment function (described on
page 2-137) from within your movie callout function, the Movie Toolbox
will have changed the active movie segment to be the preview segment
of the movie. The Movie Toolbox restores the active segment when the
preview is done playing. ◆

C H A P T E R 2

Movie Toolbox

2-360 Movie Toolbox Reference

File Filter Functions

A file filter function filters the files that are displayed to the user in a dialog box. You

specify this function in the fileFilter parameter of the SFGetFilePreview,

StandardGetFilePreview, and CustomGetFilePreview routines. If this parameter

is not nil, SFGetFilePreview calls the function for each file to determine whether to

display the file to the user. The SFGetFilePreview function supplies you with the

information it receives from the File Manager’s GetFileInfo routine (see Inside
Macintosh: Files for more information).

MyFileFilter

A file filter function whose address is passed to SFGetFilePreview,

StandardGetFilePreview, or CustomGetFilePreview should have the following

form.

pascal Boolean MyFileFilter (ParmBlkPtr parmBlock);

paramBlock A pointer to the parameter block associated with the files that are
displayed to the user in this dialog box. For details, see Inside Macintosh:
Files.

DESCRIPTION

When SFGetFilePreview, StandardGetFilePreview, or

CustomGetFilePreview is displaying the contents of a volume or folder, it checks the

file type of each file and filters out files whose types do not match your application’s

specifications. If your application also supplies a file filter function, the Standard File

Package calls that function each time it identifies a file of an acceptable type.

When your file filter function is called, it is passed, in the paramBlock parameter, a

pointer to a catalog information parameter block. See the chapter “File Manager” in

Inside Macintosh: Files for a description of the fields of this parameter block.

Your function evaluates the catalog information parameter block and returns a Boolean

value that determines whether the file is filtered (that is, a value of true suppresses

display of the filename, and a value of false allows the display). If you do not supply a

file filter function, the Standard File Package displays all files of the specified types.

Custom Dialog Functions

A dialog hook function handles user selections in a dialog box. A custom dialog function

lets you support the template in the custom dialog template that you specified with

the CustomGetFilePreview routine. This function corresponds to the File Manager’s

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-361

CustomGetFile routine. See Inside Macintosh: Files for a complete description of

the CustomGetFile routine.

You specify your dialog function in the dlgHook parameter of

CustomGetFilePreview. You can use this parameter to support a custom dialog box

function you have supplied by specifying a dialog template resource in your resource

file. You specify the dialog template’s resource ID with the dlgID parameter. If you are

not supplying a custom dialog function, set this parameter to nil. For more information

about using custom dialog functions with the CustomGetFile routine, see Inside
Macintosh: Files.

MyDlgHook

A dialog hook function should have the following form:

pascal short MyDlgHook (short item, DialogPtr theDialog,

Ptr myDataPtr);

item The number of the item selected.

theDialog A pointer to the dialog structure for the dialog box.

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFilePreview.

DESCRIPTION

You supply a dialog hook function to handle user selections of items that you added to a

dialog box. If you provide a dialog hook function, CustomGetFilePreview calls your

function immediately after calling the Dialog Manager’s ModalDialog function. It

passes your function the item number returned by ModalDialog, a pointer to the dialog

structure, and a pointer to the data received from your application, if any.

Your dialog hook function returns as its function result an integer that is either the item

number passed to it or some other item number. If your dialog hook function does not

handle a selection, it should pass the item number back to the Standard File Package for

processing by setting its return value equal to the item number. If your dialog hook

function does handle the selection, it should pass back sfHookNullEvent or the

number of some other pseudo-item.

SEE ALSO

See Inside Macintosh: Files for another sample dialog hook function.

C H A P T E R 2

Movie Toolbox

2-362 Movie Toolbox Reference

Modal-Dialog Filter Functions

The CustomGetFilePreview routine presents an Open dialog box to the user and

allows the user to view file previews. This function differs from

StandardGetFilePreview in that you can provide a custom dialog template and

functions to support your template. This function corresponds to the existing

CustomGetFile routine.

You specify your modal-dialog filter function in the filterProc parameter. Your

modal-dialog filter function gives you greater control over the interface presented to the

user. See Inside Macintosh: Files for more information about using modal-dialog filter

functions with CustomGetFile.

Note

A modal-dialog filter function controls events closer to their source by
filtering the events received from the Event Manager. The Standard File
Package itself contains an internal modal-dialog filter function that
maps keypresses and other user input onto the equivalent dialog box
items. If you also want to process events at this level, you can supply
your own filter function. ◆

MyModalFilter

A modal-dialog filter function whose address is passed to CustomGetFilePreview

should have the following form:

pascal Boolean MyModalFilter (DialogPtr theDialog,

EventRecord *theEvent,

short itemHit, Ptr myDataPtr);

theDialog A pointer to the dialog structure of the dialog box.

theEvent A pointer to the event structure for the event.

itemHit The number of the item selected.

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFilePreview.

DESCRIPTION

Your modal-dialog filter function determines how the Dialog Manager’s ModalDialog

routine filters events. The ModalDialog routine retrieves events by calling the Event

Manager’s GetNextEvent routine. The Standard File Package contains an internal filter

function that performs some preliminary processing on each event it receives. If you

provide a modal-dialog filter function, ModalDialog calls your filter function after it

calls the internal Standard File Package filter function and before it sends the event to

your dialog hook function.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-363

Your modal-dialog filter function returns a Boolean value that reports whether it

handled the event. If your function returns a value of false, ModalDialog processes

the event through its own filters. If your function returns a value of true,

ModalDialog returns with no further action.

SEE ALSO

See Inside Macintosh: Files for another sample modal-dialog filter function.

Standard File Activation Functions

The CustomGetFilePreview function presents an Open dialog box to the user and

allows the user to view file previews. This function differs from the

StandardGetFilePreview function in that you can provide a custom dialog template

and functions to support your template. The CustomGetFilePreview function

corresponds to the File Manager’s CustomGetFile routine.

You specify your activation function in the activateProc parameter. An activation

function controls the highlighting of any items whose shape is known only by your

application. See Inside Macintosh: Files for more information about standard file

activation routines.

MyActivateProc

An activation function should have the following form:

pascal void MyActivateProc (DialogPtr theDialog, short itemNo,

 Boolean activating, Ptr myDataPtr);

theDialog A pointer to the dialog structure of the dialog box.

itemNo The number of the item selected.

activating
A Boolean value that specifies whether the field is being activated (true)
or deactivated (false).

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFilePreview.

DESCRIPTION

Ordinarily, you need to supply an activation function only if your application builds a

list from which the user can select entries. The Standard File Package supplies the

activation routine for the file display list and for all TextEdit fields. You can also use

the activation function to keep track of which field is receiving keyboard input, if your

application needs that information.

C H A P T E R 2

Movie Toolbox

2-364 Movie Toolbox Reference

Your application is responsible for removing the highlighting when one of its fields

becomes inactive and for adding the highlighting when one of its fields becomes active.

The Standard File Package can handle the highlighting of all TextEdit fields, even those

defined by your application.

Callback Event Functions

The CallMeWhen function (described on page 2-337) schedules a callback event. You

specify the callback event in the callBackProc parameter.

MyCallBack

Your callback function must support the following interface:

pascal void MyCallBackProc (QTCallBack cb, long refcon);

cb Specifies the callback event for the operation.

refcon Contains a reference constant value for your callback function.

Text Functions

You can use the MyTextProc function described in this section to pass a handle to a

specified sample containing formatted text, along with the movie in which the text is

being displayed, a pointer to a flag variable, and your reference constant. You specify the

desired operations on the text and return an indication of whether you want to display

the text in the displayFlag parameter.

MyTextProc

Your text function should have the following form:

pascal OSErr MyTextProc (Handle theText, Movie theMovie,

short *displayFlag, long refcon);

theText Contains a handle to the formatted text.

theMovie Specifies the movie for this operation.

C H A P T E R 2

Movie Toolbox

Movie Toolbox Reference 2-365

displayFlag
Contains a pointer to one of the following flags, which specify how you
want the text media handler to proceed when your function returns. The
three possible return values for the flag are:

txtProcDefaultDisplay
Indicates that the media should follow the instructions of
its own displayFlag constants.

txtProcDontDisplay
Tells the media not to display the text.

txtProcDoDisplay
Instructs the media to display the text regardless of the
media’s own displayFlag constants.

refcon Contains the reference constant to your text function.

2-366 Summary of the Movie Toolbox

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox

C Summary

Constants

#define kFix1= (0x00010000); /* fixed point value equal to 1.0 */

#define gestaltQuickTime 'qtim' /* Movie Toolbox availability */

#define MovieFileType 'MooV' /* movie file type */

#define VideoMediaType 'vide' /* video media type */

#define SoundMediaType 'soun' /* sound media type */

#define MediaHandlerType 'mhlr' /* media handler type */

#define DataHandlerType 'dhlr' /* data handler type */

#define TextMediaType 'text' /* text media type */

#define GenericMediaType 'gnrc' /* base media handler type */

#define DoTheRightThing = 0L /* indicates default flag settings

 for Movie Toolbox functions */

/* sound volume values in trackVolume parameter of NewMovieTrack function */

#define kFullVolume = 0x100 /* full, natural volume

 (8.8 format) */

#define kNoVolume = 0 /* no volume */

/*

constants for whichMediaTypes parameter of GetMovieNextInterestingTime

function

*/

#define VisualMediaCharacteristic 'eyes'/* visual media */

#define AudioMediaCharacteristic 'ears' /* audio media */

enum

{

/* media quality settings in quality parameter of SetMediaQuality function */

mediaQualityDraft = 0x0000, /* lowest quality level */

mediaQualityNormal = 0x0040, /* acceptable quality level */

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-367

mediaQualityBetter = 0x0080, /* better quality level */

mediaQualityBest = 0x00C0 /* best quality level */

};

enum

{

/*

values for callBackFlags field of QuickTime callback header structure used

by clock components to communicate scheduling information about a

callback event to the Movie Toolbox

*/

qtcbNeedsRateChanges = 1, /* rate changes */

qtcbNeedsTimeChanges = 2, /* time changes */

qtcbNeedsStartStopChanges = 4 /* time base changes at start &

 stop times */

};

enum

{

/*

dialog items to include in dialog box definition for use with

SFPGetFilePreview function

*/

sfpItemPreviewAreaUser = 11, /* user preview area */

sfpItemPreviewStaticText = 12, /* static text preview */

sfpItemPreviewDividerUser = 13, /* user divider preview */

sfpItemCreatePreviewButton = 14, /* create preview button */

sfpItemShowPreviewButton = 15 /* show preview button */

};

enum

{

movieInDataForkResID = -1 /* magic resource ID */

};

enum

{

/* flags for LoadIntoRAM functions */

keepInRam = 1<<0, /* load and make so data cannot be

 purged */

unkeepInRam = 1<<1, /* mark data so it can be purged */

flushFromRam = 1<<2, /* empty handles and purge data from

 memory */

C H A P T E R 2

Movie Toolbox

2-368 Summary of the Movie Toolbox

loadForwardTrackEdits = 1<<3, /* load only data around

 track edits--play movie forward */

loadBackwardTrackEdits = 1<<4 /* load only data around edits--

 play movie in reverse */

};

enum

{

/* flag for PasteHandleIntoMovie function */

pasteInParallel = 1 /* changes function to take contents and type of

 handle and add to movie */

};

/* text description display flags used in AddTextSample and AddTESample */

enum

{

dfDontDisplay = 1<<0, /* don't display the text */

dfDontAutoScale = 1<<1, /* don't scale text as track bounds grows

 or shrinks */

dfClipToTextBox = 1<<2, /* clip update to the text box */

dfUseMovieBGColor = 1<<3, /* set text background to movie's

background color */

dfShrinkTextBoxToFit = 1<<4, /* compute minimum box to fit the

sample */

dfScrollIn = 1<<5, /* scroll text in until last of text is

 in view */

dfScrollOut = 1<<6 /* scroll text out until last of text is

gone (if dfScrollIn is also set,

scroll in then out */

dfHorizScroll = 1<<7, /* scroll text horizontally--otherwise,

it's vertical */

dfReverseScroll = 1<<8 /* vertically scroll down and

horizontally scroll

up--justification-dependent */

};

/* find flags for FindNextText function */

findTextEdgeOK = 1<<0, /* OK to find text at specified

 sample time */

findTextCaseSensitive = 1<<1, /* case-sensitive search */

findTextReverseSearch = 1<<2, /* search from sampleTime backward */

findTextWraparound = 1<<3, /* wrap search when beginning or end

 of movie is reached */

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-369

/* return display flags for application-defined text function */

enum

{

txtProcDefaultDisplay = 0, /* use the media's default settings */

txtProcDontDisplay = 1, /* don't display the text */

txtProcDoDisplay = 2 /* display the text */

};

enum

{

hintsScrubMode = 1<<0, /* toolbox can display key frames when

 movie is repositioned */

hintsAllowInterlace = 1<<6, /* use interlace option for compressor

 components */

hintsUseSoundInterp = 1<<7 /* turn on sound interpolation */

};

typedef unsigned long playHintsEnum;

Data Types

typedef MovieRecord *Movie; /* movie identifier */

typedef TrackRecord *Track; /* track identifer */

typedef MediaRecord *Media; /* media identifier */

typedef UserDataRecord *UserData; /* user data list identifier */

typedef TrackEditStateRecord *TrackEditState;

/* track edit state identifier */

typedef MovieEditStateRecord *MovieEditState;

/* movie edit state identifier */

typedef long TimeValue; /* time value field in time structure */

typedef long TimeScale; /* time scale field in time structure */

typedef TimeBaseRecord *TimeBase; /* time base identifier */

typedef CallBackRecord *QTCallBack; /* callback identifier */

typedef Int64 CompTimeValue;

struct Int64

{

long hi; /* high-order 32 bits of value field in time structure */

long lo; /* low-order 32 bits of value field in time structure */

};

typedef struct Int64 Int64;

C H A P T E R 2

Movie Toolbox

2-370 Summary of the Movie Toolbox

struct TimeRecord

{

CompTimeValue value;/* time value as duration or absolute */

TimeScale scale;/* time scale as unit of time & number of units */

TimeBase base; /* reference to the time base */

};

typedef struct TimeRecord TimeRecord;

/* All sample descriptions start with this header. */

struct SampleDescription

{

long descSize; /* total size in bytes of this structure */

long dataFormat; /* format of the sample data */

long resvd1; /* reserved--set to 0 */

short resvd2; /* reserved--set to 0 */

short dataRefIndex; /* reserved--set to 1 */

};

typedef struct SampleDescription SampleDescription;

typedef SampleDescription *SampleDescriptionPtr, **SampleDescriptionHandle;

struct SoundDescription

{

long descSize; /* total size in bytes of this structure */

long dataFormat; /* format of the sound data */

long resvd1; /* reserved--set to 0 */

short resvd2; /* reserved--set to 0 */

short dataRefIndex;

/* reserved--set to 1 */

short version; /* which version is this data? */

short revlevel; /* which version of that codec did this? */

long vendor; /* which codec compressed this data? */

short numChannels;/* number of sound channels used by sample */

short sampleSize; /* number of bits in each sound sample */

short compressionID;

/* sound compression used--set to 0 if none */

short packetSize; /* packet size for compression--set to 0 if

 no compression */

Fixed sampleRate; /* rate at which sound samples were obtained */

};

typedef struct SoundDescription SoundDescription;

typedef SoundDescription *SoundDescriptionPtr, **SoundDescriptionHandle;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-371

typedef struct TextDescription

{

long size; /* total size of this text description

 structure */

long type; /* type of data in this structure ('text') */

long resvd1; /* reserved for use by Apple--set to 0 */

short resvd2; /* reserved for use by Apple--set to 0 */

short dataRefIndex; /* index to data references */

long displayFlags; /* display flags for text */

long textJustification;

/* text justification flags */

RGBColor bgColor; /* background color */

Rect defaultTextBox;/* location of the text within track bounds */

ScrpSTElement defaultStyle;

/* default style (TextEdit structure) */

} TextDescription, *TextDescriptionPtr, **TextDescriptionHandle;

typedef struct TextDescription TextDescription;

typedef TextDescription *TextDescriptionPtr, **TextDescriptionHandle;

/* pointer to application-defined movie progress function */

typedef pascal OSErr (*MovieProgressProcPtr) (Movie theMovie, short message,

short whatOperation, Fixed percentDone, long refcon);

/* pointer to application-defined cover function */

typedef pascal OSErr (*MovieRgnCoverProc)(Movie theMovie,

 RgnHandle changedRgn, long refcon);

typedef Handle MediaInformationHandle; /* data returned by media handler */

typedef ComponentInstance MediaHandler; /* media handler */

typedef Component MediaHandlerComponent; /* media handler component */

typedef ComponentInstance DataHandler; /* data handler */

typedef Component DataHandlerComponent; /* data handler component */

typedef ComponentResult HandlerError; /* error handler */

typedef ComponentInstance MovieController;

 /* movie controller */

/* pointer to application-defined error-notification function */

typedef pascal void (*ErrorProcPtr)(OSErr theErr, long refcon);

/* pointer to application-defined movie preview callout function */

typedef pascal Boolean (*MoviePreviewCallOutProc)(long refcon);

C H A P T E R 2

Movie Toolbox

2-372 Summary of the Movie Toolbox

enum

{

/* control flags for timeBaseFlags parameter of SetTimeBaseFlags function */

loopTimeBase = 1, /* whether time base loops */

palindromeLoopTimeBase = 2 /* whether time base loops in palindrome

 fashion */

};

typedef unsigned long TimeBaseFlags; /* control flags for time base */

/* pointer to application-defined callback function */

typedef pascal void (*QTCallBackProc)(QTCallBack cb, long refcon);

struct QTCallBackHeader

{

long callBackFlags; /* clock component scheduling data flags */

long reserved1; /* reserved for use by Apple */

char qtPrivate[40]; /* reserved for use by Apple */

};

struct MatrixRecord

{

Fixed matrix[3][3];

};

typedef struct FixedPoint FixedPoint;

struct FixedPoint

{

Fixed x; /* point's x coordinate as fixed-point number */

Fixed y; /* point's y coordinate as fixed-pont number */

};

typedef struct MatrixRecord MatrixRecord;

typedef MatrixRecord *MatrixRecordPtr;/* pointer to matrix structure */

struct FixedRect

{

Fixed left; /* x coordinate of rectangle's upper-left corner */

Fixed top; /* y coordinate of rectangle's upper-left corner */

Fixed right; /* x coordinate of rectangle's lower-right corner */

Fixed bottom; /* y coordinate of rectangle's lower-right corner */

};

typedef struct FixedRect FixedRect;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-373

enum

{

/* progress function messages */

movieProgressOpen = 0, /* indicates start of a long operation */

movieProgressUpdatePercent = 1, /* passes completion data to function */

movieProgressClose = 2 /* indicates end of a long operation */

};

typedef unsigned char movieProgressMessages;

enum

{

/*

progress function operations that tell which function your application

has called

*/

progressOpFlatten = 1, /* FlattenMovie or

 FlattenMovieData */

progressOpInsertTrackSegment = 2, /* InsertTrackSegment */

progressOpInsertMovieSegment = 3, /* InsertMovieSegment */

progressOpPaste = 4, /* PasteMovieSelection */

progressOpAddMovieSelection = 5, /* AddMovieSelection */

progressOpCopy = 6, /* CopyMovieSelection */

progressOpCut = 7, /* CutMovieSelection */

progressOpLoadMovieIntoRam = 8, /* LoadMovieIntoRam */

progressOpLoadTrackIntoRam = 9, /* LoadTrackIntoRam */

progressOpLoadMediaIntoRam = 10, /* LoadMediaIntoRam */

progressOpImportMovie = 11, /* ConvertFileToMovieFile */

progressOpExportMOvie = 12 /* ConvertMovieFile */

};

typedef unsigned char movieProgressOperations;

enum

{

/* NewMovie function flags */

newMovieActive = 1<<0, /* new movie is or

 is not active */

newMovieDontResolveDataRefs = 1<<1, /* data reference

 resolution level */

newMovieDontAskUnresolvedDataRefs = 1<<2, /* is user asked to locate

 files? */

C H A P T E R 2

Movie Toolbox

2-374 Summary of the Movie Toolbox

newMovieDontAutoAlternates = 1<<3 /* are enabled tracks

 selected from

 alternate groups? */

};

typedef unsigned char newMovieFlagsEnum;

/* track usage flags in SetTrackUsage function */

enum

{

trackUsageInMovie = 1<<1, /* track is used in movie */

trackUsageInPreview = 1<<2, /* track is used in preview */

trackUsageInPoster = 1<<3 /* track is used in poster */

};

typedef unsigned char trackUsageEnum;

/* media sample flags in AddMediaSample function */

enum

{

mediaSampleNotSync = 1<<0, /* sample to be added is not a

 sync sample */

mediaSampleShadowSync = 1<<1 /* sample is a shadow sync sample */

};

typedef unsigned char mediaSampleFlagsEnum;

enum

{

/*

interesting times flags in interestingTimeFlags parameter of

 GetMovieNextInterestingTime function

*/

nextTimeMediaSample = 1<<0, /* finds next sample in movie's media */

nextTimeMediaEdit = 1<<1, /* finds next sample group in movie's

media */

nextTimeTrackEdit = 1<<2, /* finds sample for next entry in edit

list */

nextTimeSyncSample = 1<<3, /* finds next sync sample in movie's

media */

nextTimeEdgeOK = 1<<14,

/* to receive element data at specified

time */

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-375

nextTimeIgnoreActiveSegment

= 1<<15

/* look outside active segment for

samples */

};

typedef unsigned short nextTimeFlagsEnum;

enum

{

/* movie-creation flags from CreateMovieFile function */

createMovieFileDeleteCurFile = 1L<<31, /* delete existing file? */

createMovieFileDontCreateMovie = 1L<<30, /* is new movie created? */

createMovieFileDontOpenFile = 1L<<29 /* is new movie file

opened? */

};

typedef unsigned long createMovieFileFlagsEnum;

/* movie-flattening flags from FlattenFlags function */

enum

{

flattenAddMovieToDataFork = 1L<<0,/* movie placed in data fork */

flattenActiveTracksOnly = 1L<<2,/* enabled movie tracks added */

flattenDontInterleaveFlatten = 1L<<3 /* disable data storage

optimizations */

};

typedef unsigned long movieFlattenFlagsEnum;

enum

{

/* movie scrap flags from PutMovieOnScrap function */

movieScrapDontZeroScrap= 1<<0,/* is scrap cleared before movie is

 put on scrap? */

movieScrapOnlyPutMovie = 1<<1 /* are other items placed on scrap along

 with movie? */

};

typedef unsigned char movieScrapFlagsEnum;

C H A P T E R 2

Movie Toolbox

2-376 Summary of the Movie Toolbox

enum

{

/*

callback flags from CallMeWhen function specify when callback

should be called

*/

triggerTimeFwd = 0x0001, /* only when time is at positive rate */

triggerTimeBwd = 0x0002, /* only when time is at negative rate */

triggerTimeEither = 0x0003, /* at specified time without regard

 to rate */

triggerRateLT = 0x0004, /* whenever rate changes */

triggerRateGT = 0x0008, /* when changed rate greater than param2 */

triggerRateEqual = 0x0010, /* when changed rate equal to param2 */

triggerRateLTE = triggerRateLT | triggerRateEqual,

 /* when rate less than or equal to

 param2 */

triggerRateGTE = triggerRateGT | triggerRateEqual,

 /* when rate greater than or equal to

param2 */

triggerRateNotEqual = triggerRateGT | triggerRateEqual | triggerRateLT,

 /* when rate is not equal to param2 */

triggerRateChange = 0 /* whenever rate changes */

triggerAtStart = 0x0001,

 /* at startup time */

triggerAtStop = 0x0002 /* at stop time */

};

typedef unsigned short QTCallBackFlags;

enum

{

/*

flags returned by GetTimeBaseStatus function specify where time value in

time structure lies

*/

timeBaseBeforeStartTime = 1, /* before start time of time base */

timeBaseAfterStopTime = 2 /* after stop time of time base */

};

typedef unsigned long TimeBaseStatus;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-377

enum

{

/*

values for cbType parameter of NewCallBack function specify when event

can be invoked

*/

callBackAtTime = 1, /* at a specified time */

callBackAtRate = 2, /* time base rate at specified value */

callBackAtTimeJump = 3, /* time value jumps unexpectedly */

callBackAtExtremes = 4 /* time value at start time, stop time,

 or either */

callBackAtInterrupt = 0x8000 /* at interrupt time */

};

typedef unsigned short QTCallBackType;

enum

{

identityMatrixType = 0x00, /* identity matrix */

translateMatrixType = 0x01, /* translation operation */

scaleTranslateMatrixType = 0x03, /* translation & scaling operation */

linearMatrixType = 0x04, /* rotation, skew, or shear

 operation */

linearTranslateMatrixType = 0x05, /* translation & rotation, skew,

 or shear operation */

perspectiveMatrixType = 0x06 /* perspective (nonlinear)

 operation */

};

typedef unsigned short MatrixFlags;

enum

{

/*

values for the dataRefAttributes parameter of the GetMediaDataRef

function

*/

dataRefSelfReference = 1<<0,/* is reference to movie resource's

data file? */

dataRefWasNotResolved = 1<<1/* did Movie Toolbox resolve reference? */

};

typedef unsigned long dataRefAttributesFlags;

C H A P T E R 2

Movie Toolbox

2-378 Summary of the Movie Toolbox

enum

{

/* flags for SetMoviePlayHints and SetMediaPlayHints functions */

hintsScrubMode = 1<<0, /* mask == && (if flags == scrub on,

flags != scrub off) */

hintsAllowInterlace = 1<<6,

hintsUseSoundInterp = 1<<7

} ;

typedef unsigned long playHintsEnum;

enum

{

mediaHandlerFlagGenericClient = 1 /* component flag--should be set for

 all media handler components that

 make use of generic media

handler */

};

typedef unsigned long mediaHandlerFlagsEnum;

Functions for Getting and Playing Movies

Initializing the Movie Toolbox

pascal OSErr EnterMovies (void);

pascal void ExitMovies (void);

Error Functions

pascal OSErr GetMoviesError
(void);

pascal OSErr GetMoviesStickyError
(void);

pascal void ClearMoviesStickyError
(void);

pascal void SetMoviesErrorProc
(ErrorProcPtr errProc, long refcon);

Movie Functions

pascal OSErr NewMovieFromFile
(Movie *theMovie, short resRefNum,
short *resId, StringPtr resName,
short newMovieFlags,
Boolean *dataRefWasChanged);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-379

pascal OSErr NewMovieFromHandle
(Movie *theMovie, Handle h,
short newMovieFlags,
Boolean *dataRefWasChanged);

pascal Movie NewMovie (long newMovieFlags);

pascal OSErr ConvertFileToMovieFile
(const FSSpec *inputFile,
const FSSpec *outputFile, OSType creator,
ScriptCode scriptTag, short *resID,
long flags, ComponentInstance userComp,
MovieProgressProcPtr proc, long refcon);

pascal OSErr ConvertMovieToFile
(Movie theMovie, Track onlyTrack,
const FSSpec *outputFile, OSType fileType,
OSType creator, ScriptCode scriptTag,
short *resID, long flags,
ComponentInstance userComp);

pascal void DisposeMovie (Movie theMovie);

pascal OSErr CreateMovieFile
(const FSSpec *fileSpec, OSType creator,
ScriptCode scriptTag,
long createMovieFileFlags, short *resRefNum,
Movie *newMovie);

pascal OSErr OpenMovieFile (const FSSpec *fileSpec, short *resRefNum,
char perms);

pascal OSErr CloseMovieFile
(short resRefNum);

pascal OSErr DeleteMovieFile
(const FSSpec *fileSpec);

Saving Movies

pascal Boolean HasMovieChanged
(Movie theMovie);

pascal void ClearMovieChanged
(Movie theMovie);

pascal OSErr AddMovieResource
(Movie theMovie, short resRefNum, short *resId,
const StringPtr resName);

pascal OSErr UpdateMovieResource
(Movie theMovie, short resRefNum, short resId,
const StringPtr resName);

pascal OSErr RemoveMovieResource
(short resRefNum, short resId);

C H A P T E R 2

Movie Toolbox

2-380 Summary of the Movie Toolbox

pascal OSErr PutMovieIntoHandle
(Movie theMovie, Handle publicMovie);

pascal void FlattenMovie (Movie theMovie, long movieFlattenFlags,
const FSSpec *theFile,
OSType creator, ScriptCode scriptTag,
long createMovieFileFlags, short *resId,
const StringPtr resName);

pascal Movie FlattenMovieData
(Movie theMovie, long movieFlattenFlags,
const FSSpec *theFile,
OSType creator, ScriptCode scriptTag,
long createMovieFileFlags);

pascal OSErr NewMovieFromDataFork
(Movie *theMovie, short fRefNum,
long fileOffset, short newMovieFlags,
Boolean *dataRefWasChanged);

pascal OSErr PutMovieIntoDataFork
(Movie theMovie, short fRefNum, long offset,
long maxSize);

Controlling Movie Playback

pascal void StartMovie (Movie theMovie);

pascal void StopMovie (Movie theMovie);

pascal void GoToBeginningOfMovie
(Movie theMovie);

pascal void GoToEndOfMovie (Movie theMovie);

Movie Posters and Movie Previews

pascal void SetTrackUsage (Track theTrack, long usage);

pascal long GetTrackUsage (Track theTrack);

pascal void ShowMoviePoster
(Movie theMovie);

pascal void SetPosterBox (Movie theMovie, const Rect *boxRect);

pascal void GetPosterBox (Movie theMovie, Rect *boxRect);

pascal void SetMoviePosterTime
(Movie theMovie, TimeValue posterTime);

pascal TimeValue GetMoviePosterTime
(Movie theMovie);

pascal void PlayMoviePreview
(Movie theMovie,
MoviePreviewCallOutProc callOutProc,
long refcon);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-381

pascal void SetMoviePreviewMode
(Movie theMovie, Boolean usePreview);

pascal Boolean GetMoviePreviewMode
(Movie theMovie);

pascal void SetMoviePreviewTime
(Movie theMovie, TimeValue previewTime,
TimeValue previewDuration);

pascal void GetMoviePreviewTime
(Movie theMovie, TimeValue *previewTime,
TimeValue *previewDuration);

Movies and Your Event Loop

pascal void MoviesTask (Movie theMovie, long maxMilliSecToUse);

pascal Boolean IsMovieDone (Movie theMovie);

pascal OSErr UpdateMovie (Movie theMovie);

pascal Boolean PtInMovie (Movie theMovie, Point pt);

pascal Boolean PtInTrack (Track theTrack, Point pt);

pascal ComponentResult GetMovieStatus
(Movie theMovie, Track *firstProblemTrack);

pascal ComponentResult GetTrackStatus
(Track theTrack);

Preferred Movie Settings

pascal void SetMoviePreferredRate
(Movie theMovie, Fixed rate);

pascal Fixed GetMoviePreferredRate
(Movie theMovie);

pascal void SetMoviePreferredVolume
(Movie theMovie, short volume);

pascal short GetMoviePreferredVolume
(Movie theMovie);

Enhancing Movie Playback Performance

pascal OSErr PrerollMovie (Movie theMovie, TimeValue time, Fixed Rate);

pascal void SetMovieActiveSegment
(Movie theMovie, TimeValue startTime,
TimeValue duration);

pascal void GetMovieActiveSegment
(Movie theMovie, TimeValue *startTime,
TimeValue *duration);

C H A P T E R 2

Movie Toolbox

2-382 Summary of the Movie Toolbox

pascal void SetMoviePlayHints
(Movie theMovie, long flags, long flagsMask);

pascal void SetMediaPlayHints
(Media theMedia, long flags, long flagsMask);

pascal OSErr LoadMovieIntoRam
(Movie theMovie, TimeValue time,
TimeValue duration, long flags);

pascal OSErr LoadTrackIntoRam
(Track theTrack, TimeValue time,
TimeValue duration, long flags);

pascal OSErr LoadMediaIntoRam
(Media theMedia, TimeValue time,
TimeValue duration, long flags);

pascal OSErr SetMediaShadowSync
(Media theMedia, long frameDiffSampleNum
long syncSampleNum);

pascal OSErr GetMediaShadowSync
(Media theMedia, long frameDiffSampleNum
long *syncSampleNum);

Disabling Movies and Tracks

pascal void SetMovieActive (Movie theMovie, Boolean active);

pascal Boolean GetMovieActive
(Movie theMovie);

pascal void SetTrackEnabled
(Track theTrack, Boolean isEnabled);

pascal Boolean GetTrackEnabled
(Track theTrack);

Generating Pictures From Movies

pascal PicHandle GetMoviePict
(Movie theMovie, TimeValue time);

pascal PicHandle GetMoviePosterPict
(Movie theMovie);

pascal PicHandle GetTrackPict
(Track theTrack, TimeValue time);

Creating Tracks and Media Structures

pascal Track NewMovieTrack (Movie theMovie, Fixed width, Fixed height,
short trackVolume);

pascal void DisposeMovieTrack
(Track theTrack);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-383

pascal Media NewTrackMedia (Track theTrack, OSType mediaType,
TimeScale timeScale, Handle dataRef,
OSType dataRefType);

pascal void DisposeTrackMedia
(Media theMedia);

Working With Progress and Cover Functions

pascal void SetMovieProgressProc
(Movie theMovie, MovieProgressProcPtr p, long
refcon);

pascal void SetMovieCoverProcs
(Movie theMovie, MovieRgnCoverProc uncoverProc,
MovieRgnCoverProc coverProc, long refcon);

Functions That Modify Movie Properties

Working With Movie Spatial Characteristics

pascal void SetMovieGWorld (Movie theMovie, CGrafPtr port, GDHandle gdh);

pascal void GetMovieGWorld (Movie theMovie, CGrafPtr *port, GDHandle *gdh);

pascal void SetMovieBox (Movie theMovie, const Rect *boxRect);

pascal void GetMovieBox (Movie theMovie, Rect *boxRect);

pascal RgnHandle GetMovieDisplayBoundsRgn
(Movie theMovie);

pascal RgnHandle GetMovieSegmentDisplayBoundsRgn
(Movie theMovie, TimeValue time,
TimeValue duration);

pascal void SetMovieDisplayClipRgn
(Movie theMovie, RgnHandle theClip);

pascal RgnHandle GetMovieDisplayClipRgn
(Movie theMovie);

pascal RgnHandle GetTrackDisplayBoundsRgn
(Track theTrack);

pascal RgnHandle GetTrackSegmentDisplayBoundsRgn
(Track theTrack, TimeValue time, TimeValue
duration);

pascal void SetTrackLayer (Track theTrack, short layer);

pascal short GetTrackLayer (Track theTrack);

pascal void SetMovieMatrix (Movie theMovie, const MatrixRecord *matrix);

pascal void GetMovieMatrix (Movie theMovie, MatrixRecord *matrix);

pascal RgnHandle GetMovieBoundsRgn
(Movie theMovie);

C H A P T E R 2

Movie Toolbox

2-384 Summary of the Movie Toolbox

pascal RgnHandle GetTrackMovieBoundsRgn
(Track theTrack);

pascal void SetMovieClipRgn
(Movie theMovie, RgnHandle theClip);

pascal RgnHandle GetMovieClipRgn
(Movie theMovie);

pascal void SetTrackMatrix (Track theTrack, const MatrixRecord *matrix);

pascal void GetTrackMatrix (Track theTrack, MatrixRecord *matrix);

pascal RgnHandle GetTrackBoundsRgn
(Track theTrack);

pascal void SetTrackDimensions
(Track theTrack, Fixed width, Fixed height);

pascal void GetTrackDimensions
(Track theTrack, Fixed *width, Fixed *height);

pascal void SetTrackClipRgn
(Track theTrack, RgnHandle theClip);

pascal RgnHandle GetTrackClipRgn
(Track theTrack);

pascal void SetTrackMatte (Track theTrack, PixMapHandle theMatte);

pascal PixMapHandle GetTrackMatte
(Track theTrack);

pascal void DisposeMatte (PixMapHandle theMatte);

Working With Sound Volume

pascal void SetMovieVolume (Movie theMovie, short volume);

pascal short GetMovieVolume
(Movie theMovie);

pascal void SetTrackVolume (Track theTrack, short volume);

pascal short GetTrackVolume
(Track theTrack);

Working With Movie Time

pascal TimeValue GetMovieDuration
(Movie theMovie);

pascal void SetMovieTimeValue
(Movie theMovie, TimeValue newtime);

pascal void SetMovieTime (Movie theMovie, const TimeRecord *newtime);

pascal TimeValue GetMovieTime
(Movie theMovie, TimeRecord *currentTime);

pascal void SetMovieRate (Movie theMovie, Fixed rate);

pascal Fixed GetMovieRate (Movie theMovie);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-385

pascal void SetMovieTimeScale
(Movie theMovie, TimeScale timeScale);

pascal TimeScale GetMovieTimeScale
(Movie theMovie);

pascal TimeBase GetMovieTimeBase
(Movie theMovie);

Working With Track Time

pascal TimeValue GetTrackDuration
(Track theTrack);

pascal void SetTrackOffset (Track theTrack, TimeValue movieOffsetTime);

pascal TimeValue GetTrackOffset
(Track theTrack);

pascal TimeValue TrackTimeToMediaTime
(TimeValue value, Track theTrack);

Working With Media Time

pascal TimeValue GetMediaDuration
(Media theMedia);

pascal void SetMediaTimeScale
(Media theMedia, TimeScale timeScale);

pascal TimeScale GetMediaTimeScale
(Media theMedia);

Finding Interesting Times

pascal void GetMovieNextInterestingTime
(Movie theMovie, short interestingTimeFlags,
short numMediaTypes, const OSType
*whichMediaTypes, TimeValue time, Fixed rate,
TimeValue *interestingTime,
TimeValue *interestingDuration);

pascal void GetTrackNextInterestingTime
(Track theTrack, short interestingTimeFlags,
TimeValue time, Fixed rate,
TimeValue *interestingTime,
TimeValue *interestingDuration);

pascal void GetMediaNextInterestingTime
(Media theMedia, short interestingTimeFlags,
TimeValue time, Fixed rate,
TimeValue *interestingTime,
TimeValue *interestingDuration);

C H A P T E R 2

Movie Toolbox

2-386 Summary of the Movie Toolbox

Locating a Movie’s Tracks and Media Structures

pascal long GetMovieTrackCount
(Movie theMovie);

pascal Track GetMovieIndTrack
(Movie theMovie, long index);

pascal Track GetMovieTrack (Movie theMovie, long trackID);

pascal long GetTrackID (Track theTrack);

pascal Movie GetTrackMovie (Track theTrack);

pascal Media GetTrackMedia (Track theTrack);

pascal Track GetMediaTrack (Media theMedia);

Working With Alternate Tracks

pascal void SetMovieLanguage(Movie theMovie, long language);

pascal void SelectMovieAlternates
(Movie theMovie);

pascal void SetAutoTrackAlternatesEnabled
(Movie theMovie, Boolean enable);

pascal void SetTrackAlternate
(Track theTrack, Track alternateT);

pascal Track GetTrackAlternate
(Track theTrack);

pascal void SetMediaLanguage
(Media theMedia, short language);

pascal short GetMediaLanguage
(Media theMedia);

pascal void SetMediaQuality
(Media theMedia, short quality);

pascal short GetMediaQuality
(Media theMedia);

Working With Data References

pascal OSErr AddMediaDataRef
(Media theMedia, short *index, Handle dataRef,
OSType dataRefType);

pascal OSErr SetMediaDataRef
(Media theMedia, short index, Handle dataRef,
OSType dataRefType);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-387

pascal OSErr GetMediaDataRefCount
(Media theMedia, short *count);

pascal OSErr GetMediaDataRef
(Media theMedia, short index, Handle *dataRef,
OSType *dataRefType, long *dataRefAttributes);

Determining Movie Creation and Modification Time

pascal unsigned long GetMovieCreationTime
(Movie theMovie);

pascal unsigned long GetMovieModificationTime
(Movie theMovie);

pascal unsigned long GetTrackCreationTime
(Track theTrack);

pascal unsigned long GetTrackModificationTime
(Track theTrack);

pascal unsigned long GetMediaCreationTime
(Media theMedia);

pascal unsigned long GetMediaModificationTime
(Media theMedia);

Working With Media Samples

pascal long GetMovieDataSize
(Movie theMovie, TimeValue startTime,
TimeValue duration);

pascal long GetTrackDataSize
(Track theTrack, TimeValue startTime,
TimeValue duration);

pascal long GetMediaDataSize
(Media theMedia, TimeValue startTime,
TimeValue duration);

pascal long GetMediaSampleCount
(Media theMedia);

pascal long GetMediaSampleDescriptionCount
(Media theMedia);

pascal void GetMediaSampleDescription
(Media theMedia, long index,
SampleDescriptionHandle descH);

pascal OSErr SetMediaSampleDescription
(Media theMedia, long index,
SampleDescriptionHandle descH);

C H A P T E R 2

Movie Toolbox

2-388 Summary of the Movie Toolbox

pascal void MediaTimeToSampleNum
(Media theMedia, TimeValue time,
long *sampleNum, TimeValue *sampleTime,
TimeValue *sampleDuration);

pascal void SampleNumToMediaTime
(Media theMedia, long logicalSampleNum,
TimeValue *sampleTime,
TimeValue *sampleDuration);

Working With Movie User Data

pascal UserData GetMovieUserData
(Movie theMovie);

pascal UserData GetTrackUserData
(Track theTrack);

pascal UserData GetMediaUserData
(Media theMedia);

pascal long GetNextUserDataType
(UserData theUserData, OSType udType);

pascal short CountUserDataType
(UserData theUserData, OSType udType);

pascal OSErr AddUserData (UserData theUserData, Handle data,
OSType udType);

pascal OSErr GetUserData (UserData theUserData, Handle data,
OSType udType,long index);

pascal OSErr RemoveUserData
(UserData theUserData, OSType udType,
long index);

pascal OSErr AddUserDataText
(UserData theUserData, Handle data, OSType
udType, long index, short itlRegionTag);

pascal OSErr GetUserDataText
(UserData theUserData, Handle data,
OSType udType, long index, short itlRegionTag);

pascal OSErr RemoveUserDataText
(UserData theUserData, OSType udType,
long index, short itlRegionTag);

pascal OSErr SetUserDataItem
(UserData theUserData, void *data, long size,
OSType udType, long index);

pascal OSErr GetUserDataItem
(UserData theUserData, void *data, long size,
OSType udType, long index);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-389

pascal OSErr NewUserData (UserData *theUserData);

pascal OSErr DisposeUserData
(UserData theUserData);

pascal OSErr PutUserDataIntoHandle
(UserData theUserData, Handle h);

pascal OSErr NewUserDataFromHandle
(Handle h, UserData *theUserData);

Functions for Editing Movies

Editing Movies

pascal OSErr PutMovieOnScrap
(Movie theMovie, long movieScrapFlags);

pascal Movie NewMovieFromScrap
(long newMovieFlags);

pascal void SetMovieSelection
(Movie theMovie, TimeValue selectionTime,
TimeValue selectionDuration);

pascal void GetMovieSelection
(Movie theMovie, TimeValue *selectionTime,
TimeValue *selectionDuration);

pascal Movie CutMovieSelection
(Movie theMovie);

pascal Movie CopyMovieSelection
(Movie theMovie);

pascal void PasteMovieSelection
(Movie theMovie, Movie src);

pascal void AddMovieSelection
(Movie theMovie, Movie src);

pascal void ClearMovieSelection
(Movie theMovie);

pascal Component IsScrapMovie
(Track targetTrack);

pascal OSErr PasteHandleIntoMovie
(Handle h, OSType handleType, Movie theMovie,
long flags, ComponentInstance userComp);

pascal OSErr PutMovieIntoTypedHandle
(Movie theMovie, Track targetTrack,
OSType handleType, Handle publicMovie,
TimeValue start, TimeValue dur,
long flags, ComponentInstance userComp);

C H A P T E R 2

Movie Toolbox

2-390 Summary of the Movie Toolbox

Undo for Movies

pascal MovieEditState NewMovieEditState
(Movie theMovie);

pascal OSErr UseMovieEditState
(Movie theMovie, MovieEditState toState);

pascal OSErr DisposeMovieEditState
(MovieEditState state);

Low-Level Movie-Editing Functions

pascal OSErr InsertMovieSegment
(Movie srcMovie, Movie dstMovie,
TimeValue srcIn,
TimeValue srcDuration, TimeValue dstIn);

pascal OSErr InsertEmptyMovieSegment
(Movie dstMovie, TimeValue dstIn,
TimeValue dstDuration);

pascal OSErr DeleteMovieSegment
(Movie theMovie, TimeValue in, TimeValue
duration);

pascal OSErr ScaleMovieSegment
(Movie theMovie, TimeValue in,
TimeValue oldDuration, TimeValue newDuration);

pascal OSErr CopyMovieSettings
(Movie srcMovie, Movie dstMovie);

Editing Tracks

pascal OSErr InsertTrackSegment
(Track srcTrack, Track dstTrack,
TimeValue srcIn, TimeValue srcDuration,
TimeValue dstIn);

pascal OSErr InsertEmptyTrackSegment
(Track dstTrack, TimeValue dstIn,
TimeValue dstDuration);

pascal OSErr InsertMediaIntoTrack
(Track theTrack, TimeValue trackStart,
TimeValue mediaTime,
TimeValue mediaDuration, Fixed mediaRate);

pascal OSErr DeleteTrackSegment
(Track theTrack, TimeValue in,
TimeValue duration);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-391

pascal OSErr ScaleTrackSegment
(Track theTrack, TimeValue in,
TimeValue oldDuration, TimeValue newDuration);

pascal OSErr CopyTrackSettings
(Track srcTrack, Track dstTrack);

pascal Fixed GetTrackEditRate
(Track theTrack, TimeValue atTime);

Undo for Tracks

pascal TrackEditState NewTrackEditState
(Track theTrack);

pascal OSErr UseTrackEditState
(Track theTrack, TrackEditState state);

pascal OSErr DisposeTrackEditState
(TrackEditState state);

Adding Samples to Media Structures

pascal OSErr BeginMediaEdits
(Media theMedia);

pascal OSErr EndMediaEdits (Media theMedia);

pascal OSErr AddMediaSample (Media theMedia, Handle dataIn, long inOffset,
unsigned long size,
TimeValue durationPerSample,
SampleDescriptionHandle sampleDescriptionH,
long numberOfSamples, short sampleFlags,
TimeValue *sampleTime);

pascal OSErr AddMediaSampleReference
(Media theMedia, long dataOffset,
unsigned long size,
TimeValue durationPerSample,
SampleDescriptionHandle sampleDescriptionH,
long numberOfSamples, short sampleFlags,
TimeValue *sampleTime);

pascal OSErr GetMediaSample
(Media theMedia, Handle dataOut,
long maxSizeToGrow, long *size, TimeValue time,
TimeValue *sampleTime,
TimeValue *durationPerSample,
SampleDescriptionHandle sampleDescriptionH,
long *sampleDescriptionIndex,
long maxNumberOfSamples,
long *numberOfSamples, short *sampleFlags);

C H A P T E R 2

Movie Toolbox

2-392 Summary of the Movie Toolbox

pascal OSErr GetMediaSampleReference
(Media theMedia, long *dataOffset, long *size,
TimeValue time, TimeValue *sampleTime,
TimeValue *durationPerSample,
SampleDescriptionHandle sampleDescriptionH,
long *sampleDescriptionIndex,
long maxNumberOfSamples,
long *numberOfSamples, short *sampleFlags);

Media Functions

Selecting Media Handlers

pascal void GetMediaHandlerDescription
(Media theMedia, OSType *mediaType,
Str255 creatorName,
OSType *creatorManufacturer);

pascal MediaHandler GetMediaHandler
(Media theMedia);

pascal OSErr SetMediaHandler
(Media theMedia, MediaHandlerComponent mH);

pascal void GetMediaDataHandlerDescription
(Media theMedia, short index, OSType *dhType,
Str255 creatorName,
OSType *creatorManufacturer);

pascal DataHandler GetMediaDataHandler
(Media theMedia, short index);

pascal OSErr SetMediaDataHandler
(Media theMedia, short index,
DataHandlerComponent dataHandler);

Video Media Handler Functions

pascal HandlerError SetVideoMediaGraphicsMode
(MediaHandler mh, long graphicsMode,
const RGBColor *opColor);

pascal HandlerError GetVideoMediaGraphicsMode
(MediaHandler mh, long *graphicsMode,
RGBColor *opColor);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-393

Sound Media Handler Functions

pascal HandlerError SetSoundMediaBalance
(MediaHandler mh, short balance);

pascal HandlerError GetSoundMediaBalance
(MediaHandler mh, short *balance);

Text Media Handler Functions

pascal ComponentResult AddTextSample
(MediaHandler mh, Ptr text,
unsigned long size, short fontNum,
short fontSize, Style textFace,
RGBColor *textColor,
RGBColor *backColor,
short textJustification,
Rect *textBox, long displayFlags,
TimeValue scrollDelay,
short hiliteStart, short hiliteEnd,
RGBColor rgbHiliteColor,
TimeValue duration, TimeValue *sampleTime);

pascal ComponentResult AddTESample
(MediaHandler mh, TEHandle hTE,
RGBColor *backColor, short textJustification,
Rect *textBox, long displayFlags,
TimeValue scrollDelay, short hiliteStart,
short hiliteEnd, RGBColor rgbHiliteColor,
TimeValue duration,
TimeValue *sampleTime);

pascal ComponentResult AddHiliteSample
(MediaHandler mh, short hiliteStart,
short hiliteEnd,
RGBColor *rgbHiliteColor, TimeValue duration,
TimeValue *sampleTime);

pascal ComponentResult FindNextText
(MediaHandler mh, Ptr Text, long size,
short findFlags, TimeValue startTime,
TimeValue *foundTime, TimeValue *foundDuration,
long *offset);

pascal ComponentResult HiliteTextSample
(MediaHandler mh, TimeValue sampleTime,
short hiliteStart, short hiliteEnd,
RGBColor *rgbHiliteColor);

C H A P T E R 2

Movie Toolbox

2-394 Summary of the Movie Toolbox

pascal ComponentResult SetTextProc
(MediaHandler mh, TextMediaProcPtr TextProc,
long refcon);

Functions for Creating File Previews

pascal OSErr MakeFilePreview
(short resRefNum,
ProgressProcRecordPtr progress);

pascal OSErr AddFilePreview
(short resRefNum, OSType previewType,
Handle previewData);

Functions for Displaying File Previews

pascal void SFGetFilePreview
(Point where, ConstStr255Param prompt,
FileFilterProcPtr fileFilter, short numTypes,
SFTypeList typeList, DlgHookProcPtr dlgHook,
SFReply *reply);

pascal void SFPGetFilePreview
(Point where, ConstStr255Param prompt,
FileFilterProcPtr fileFilter, short numTypes,
SFTypeList typeList, DlgHookProcPtr dlgHook,
SFReply *reply, short dlgID,
ModalFilterProcPtr filterProc);

pascal void StandardGetFilePreview
(FileFilterProcPtr fileFilter, short numTypes,
SFTypeList typeList, StandardFileReply *reply);

pascal void CustomGetFilePreview
(FileFilterYDProcPtr fileFilter,
short numTypes, SFTypeList typeList,
StandardFileReply *reply, short dlgID,
Point where, DlgHookYDProcPtr dlgHook,
ModalFilterYDProcPtr filterProc,
short *activeList,
ActivateYDProcPtr activateProc,
void *yourDataPtr);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-395

Time Base Functions

Creating and Disposing of Time Bases

pascal TimeBase NewTimeBase
(void);

pascal void DisposeTimeBase
(TimeBase tb);

pascal void SetMovieMasterClock
(Movie theMovie, Component clockMeister,
const TimeRecord *slaveZero);

pascal void SetMovieMasterTimeBase
(Movie theMovie, TimeBase tb,
const TimeRecord *slaveZero);

pascal void SetTimeBaseMasterClock
(TimeBase slave, Component clockMeister,
const TimeRecord *slaveZero);

pascal ComponentInstance GetTimeBaseMasterClock
(TimeBase tb);

pascal void SetTimeBaseMasterTimeBase
(TimeBase slave, TimeBase master,
const TimeRecord *slaveZero);

pascal TimeBase GetTimeBaseMasterTimeBase
(TimeBase tb);

pascal void SetTimeBaseZero
(TimeBase tb, TimeRecord *zero);

Working With Time Base Values

pascal void SetTimeBaseTime
(TimeBase tb, const TimeRecord *tr);

pascal void SetTimeBaseValue
(TimeBase tb, TimeValue t, TimeScale s);

pascal TimeValue GetTimeBaseTime
(TimeBase tb, TimeScale s, TimeRecord *tr);

pascal void SetTimeBaseRate
(TimeBase tb, Fixed r);

pascal Fixed GetTimeBaseRate
(TimeBase tb);

C H A P T E R 2

Movie Toolbox

2-396 Summary of the Movie Toolbox

pascal Fixed GetTimeBaseEffectiveRate
(TimeBase tb);

pascal void SetTimeBaseStartTime
(TimeBase tb, const TimeRecord *tr);

pascal TimeValue GetTimeBaseStartTime
(TimeBase tb, TimeScale s, TimeRecord *tr);

pascal void SetTimeBaseStopTime
(TimeBase tb, const TimeRecord *tr);

pascal TimeValue GetTimeBaseStopTime
(TimeBase tb, TimeScale s, TimeRecord *tr);

pascal void SetTimeBaseFlags
(TimeBase tb, long timeBaseFlags);

pascal long GetTimeBaseFlags
(TimeBase tb);

pascal long GetTimeBaseStatus
(TimeBase tb, TimeRecord *unpinnedTime);

Working With Times

pascal void AddTime (TimeRecord *dst, const TimeRecord *src);

pascal void SubtractTime (TimeRecord *dst, const TimeRecord *src);

pascal void ConvertTime (TimeRecord *inout, TimeBase newBase);

pascal void ConvertTimeScale
(TimeRecord *inout, TimeScale newScale);

Time Base Callback Functions

pascal QTCallBack NewCallBack
(TimeBase tb, short cbType);

pascal OSErr CallMeWhen (QTCallBack cb,
QTCallBackProc callBackProc, long refcon,
long param1, long param2, long param3);

pascal void CancelCallBack (QTCallBack cb);

pascal void DisposeCallBack
(QTCallBack cb);

pascal TimeBase GetCallBackTimeBase
(QTCallBack cb);

pascal short GetCallBackType
(QTCallBack cb);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-397

Matrix Functions

pascal void SetIdentityMatrix
(MatrixRecord *matrix);

pascal short GetMatrixType (MatrixRecordPtr m);

pascal void CopyMatrix (MatrixRecordPtr m1, MatrixRecord *m2);

pascal Boolean EqualMatrix (const MatrixRecord *m1,
const MatrixRecord *m2);

pascal void TranslateMatrix
(MatrixRecord *m, Fixed deltaH, Fixed deltaV);

pascal void ScaleMatrix (MatrixRecord *m, Fixed scaleX,
Fixed scaleY, Fixed aboutX, Fixed aboutY);

pascal void RotateMatrix (MatrixRecord *m, Fixed degrees,
Fixed aboutX, Fixed aboutY);

pascal void SkewMatrix (MatrixRecord *m, Fixed skewX, Fixed skewY,
Fixed aboutX, Fixed aboutY);

pascal void ConcatMatrix (MatrixRecord *a, MatrixRecord *b);

pascal Boolean InverseMatrix
(MatrixRecord *m, MatrixRecord *im);

pascal OSErr TransformPoints
(MatrixRecord *mp, Point *pt1, long count);

pascal OSErr TransformFixedPoints
(MatrixRecord *m, FixedPoint *fpt, long count);

pascal Boolean TransformRect
(MatrixRecord *m, Rect *r, FixedPoint *fpp);

pascal Boolean TransformFixedRect
(MatrixRecord *m, FixedRect *fr,
FixedPoint *fpp);

pascal OSErr TransformRgn (MatrixRecordPtr mp, RgnHandle r);

pascal void RectMatrix (MatrixRecord *matrix, Rect *srcRect,
Rect *dstRect);

pascal void MapMatrix (MatrixRecord *matrix, Rect *fromRect,
Rect *toRect);

C H A P T E R 2

Movie Toolbox

2-398 Summary of the Movie Toolbox

Application-Defined Functions

Progress Functions

pascal OSErr MyProgressProc
(Movie theMovie, short message,
short whatOperation,
Fixed percentDone, long refcon);

Cover Functions

pascal OSErr MyCoverProc (Movie theMovie, RgnHandle changedRgn,
long refcon);

Error-Notification Functions

pascal void MyErrProc (OSErr theErr, long refcon);

Movie Callout Functions

pascal Boolean MyCallOutProc
(long refcon);

File Filter Functions

pascal Boolean MyFileFilter
(ParmBlkPtr parmBlock);

Custom Dialog Functions

pascal short MyDlgHook (short item, DialogPtr theDialog,
Ptr myDataPtr);

Modal-Dialog Filter Functions

pascal Boolean MyModalFilter
(DialogPtr theDialog, EventRecord *theEvent,
short itemHit, Ptr myDataPtr);

Standard File Activation Functions

pascal void MyActivateProc (DialogPtr theDialog, short itemNo, Boolean
activating, Ptr myDataPtr);

Callback Event Functions

pascal void MyCallBackProc (QTCallBack cb, long refcon);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-399

Text Functions

pascal OSErr MyTextProc (Handle theText, Movie theMovie,
short *displayFlag, long refcon);

Pascal Summary

Constants

CONST

kFix1 = $00010000;{fixed point value equal }

{ to 1.0}

gestaltQuickTime = 'qtim'; {Movie Toolbox availability}

MovieFileType = 'MooV'; {movie file type}

VideoMediaType = 'vide'; {video media type}

SoundMediaType = 'soun'; {sound media type}

MediaHandlerType = 'mhlr'; {media handler type}

DataHandlerType = 'dhlr'; {data handler type}

TextMediaType = 'text'; {text media type}

GenericMediaType = 'gnrc'; {base media handler type}

 DoTheRightThing = 0L {indicates default flag }

{ setting for Movie }

{ Toolbox functions}

{progress procedure messages}

movieProgressOpen = 0; {start of a long operation}

 movieProgressUpdatePercent = 1; {completion data to }

{ procedure}

movieProgressClose = 2; {end of a long operation}

{progress procedure operations that indicate which routine }

{ your application has called}

progressOpFlatten = 1; {FlattenMovie or }

{ FlattenMovieData}

progressOpInsertTrackSegment = 2; {InsertTrackSegment}

progressOpInsertMovieSegment = 3; {InsertMovieSegment}

progressOpPaste = 4; {PasteMovieSelection}

progressOpAddMovieSelection = 5; {AddMovieSelection}

progressOpCopy = 6; {CopyMovieSelection}

C H A P T E R 2

Movie Toolbox

2-400 Summary of the Movie Toolbox

progressOpCut = 7; {CutMovieSelection}

progressOpLoadMovieIntoRam = 8; {LoadMovieIntoRam}

progressOpLoadTrackIntoRam = 9; {LoadTrackIntoRam}

progressOpLoadMediaIntoRam = 10; {LoadMediaIntoRam}

progressOpImportMovie = 11; {ConvertFileToMovieFile}

progressOpExportMovie = 12; {ConvertMovieFile}

{NewMovie function flags}

newMovieActive = $1; {is new movie active?}

newMovieDontResolveDataRefs = $2; {how data references are }

{ resolved in movie resource}

newMovieDontAskUnresolvedDataRefs = $4; {is user asked to locate }

{ files? }

newMovieDontAutoAlternate = $8; {are enabled tracks }

{ selected from alternate }

{ groups?}

{sound volume values in trackVolume parameter of NewMovieTrack }

{ function}

kFullVolume = $100; {full, natural volume }

{ 8.8 format}

kNoVolume = 0; {sets track to no volume}

{constants for whichMediaTypes parameter of }

{ GetMovieNextInterestingTime function}

VisualMediaCharacteristic 'eyes' {visual media type}

AudioMediaCharacteristic 'ears' {audio media type}

{track usage flags in SetTrackUsage procedure}

trackUsageInMovie = $2; {track is used in movie}

trackUsageInPreview = $4; {track is used in preview}

trackUsageInPoster = $8; {track is used in poster}

{media sample flags in AddMediaSample function}

mediaSampleNotSync = 1; {sample to be added not a }

{ sync sample}

mediaSampleShadowSync = 2; {sample is a shadow }

{ sync sample}

{media quality settings in quality parameter of }

{ SetMediaQuality procedure}

mediaQualityDraft = $0000; {lowest quality level}

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-401

mediaQualityNormal = $0040; {acceptable quality level}

mediaQualityBetter = $0080; {better quality level}

mediaQualityBest = $00C0; {best quality level}

{interesting times flags in interestingTimeFlags parameter }

{ of GetMovieNextInterestingTime procedure specify searching criteria}

nextTimeMediaSample = $1; {next sample in movie's }

 { media}

nextTimeMediaEdit = $2; {next sample group in media}

nextTimeTrackEdit = $4; {sample for next entry }

 { in edit list}

nextTimeSyncSample = $8; {next sync sample in }

 { movie's media}

nextTimeEdgeOK = $2000; {get specified time }

 { element data}

nextTimeIgnoreActiveSegment = $4000; {outside active segment}

{flag for resID parameter of NewMovieFile function}

movieInDataForkResID = -1; {magic resource ID}

{movie-creation flags from CreateMovieFile function}

createMovieFileDeleteCurFile = $80000000;{delete existing file?}

createMovieFileDontCreateMovie = $40000000;{new movie created?}

createMovieFileDontOpenFile = $20000000;{new movie file opened?}

{movie-flattening flags from FlattenFlags procedure}

flattenAddMovieToDataFork = $1; {movie in data fork of }

 { new movie file}

flattenActiveTracksOnly = $4; {enabled tracks added }

 { to movie file}

flattenDontInterleaveFlatten = $8; {disables data }

 { storage optimizations}

{movie scrap flags from PutMovieOnScrap function}

movieScrapDontZeroScrap = $1; {is scrap cleared before }

 { movie on scrap?}

movieScrapOnlyPutMovie = $2; {are other items on }

 { scrap with movie?}

mediaHandlerFlagGenericClient = 1; {component flag--should be set }

{ for all media handlers }

{ components that use generic }

{ media handlers}

C H A P T E R 2

Movie Toolbox

2-402 Summary of the Movie Toolbox

{callback flags from CallMeWhen function specify when callback }

{ should be called}

triggerTimeFwd = $0001; {time is at positive rate}

triggerTimeBwd = $0002; {time is at negative rate}

triggerTimeEither = $0003; {without regard to rate}

triggerRateLT = $0004; {whenever rate changes}

triggerRateGT = $0008; {rate change less than }

 { param2}

triggerRateEqual = $0010; {rate change equal to }

 { param2}

triggerRateLTE = $0014; {rate change less than or }

 { equal to param2}

triggerRateGTE = $0018; {rate change greater than }

{ or equal to param2 specification}

triggerRateNotEqual = $001C; {rate change not equal to param2}

triggerRateChange = 0; {whenever rate changes}

triggerAtStart = $0001; {at start time}

triggerAtStop = $0002; {at stop time}

{flags returned by GetTimeBaseStatus function specify where }

{ time value in time record lies}

timeBaseBeforeStartTime = 1; {before start time of time base}

timeBaseAfterStopTime = 2; {after stop time of time base}

{values for cbType parameter of NewCallBack function specify when }

{ event can be invoked}

callBackAtTime = 1; {at a specified time}

callBackAtRate = 2; {rate for time base reaches value}

callBackAtTimeJump = 3; {when time value changes }

{ by amount differing from }

{ its rate}

callBackAtExtremes = 4; {at start time, at stop time, }

{ or both}

callBackAtInterrupt = $8000; {at interrupt time}

{values for callBackFlags field of QuickTime callback header record }

{ used by clock components to communicate scheduling information }

{ about a callback event to the Movie Toolbox}

qtcbNeedsRateChanges = 1; {rate changes}

qtcbNeedsTimeChanges = 2; {time changes}

qtcbNeedsStartStopChanges = 4;; {changes in time base start/stop}

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-403

{dialog items to include in dialog box definition for use with }

{ SFPGetFilePreview function}

sfpItemPreviewAreaUser = 11; {user preview area}

sfpItemPreviewStaticText = 12; {static text preview}

sfpItemPreviewDividerUser = 13; {user divider preview}

sfpItemCreatePreviewButton = 14; {create preview button}

sfpItemShowPreviewButton = 15; {show preview button}

{control flags for timeBaseFlags parameter of SetTimeBaseFlags }

{ function}

loopTimeBase = 1; {whether time base loops}

palindromeLoopTimeBase = 2; {whether time base loops }

{ in palindrome fashion}

{flags for LoadIntoRAM functions}

keepInRam = 1; {load and make so data cannot be }

{ purged}

unkeepInRam = 2; {mark data so it can be purged}

flushFromRam = 4; {empty handles and purge data }

{ from memory}

loadForwardTrackEdits = 8; {load only data around track }

{ edits--play movie forward}

loadBackwardTrackEdits = 16; {load only data around track}

{ edits--play movie in reverse}

{flag for PasteHandleIntoMovie function}

pasteInParallel = 1; {changes function to take }

{ contents and type of handle }

{ and add to movie}

{text description display flags used in AddTextSample and }

{ AddTESample functions}

dfDontDisplay = 1; {don't display the text}

dfDontAutoScale = 2; {don't scale text as track }

{ boundaries grow or shrink}

dfClipToTextBox = 4; {clip update to the text box}

dfUseMovieBGColor = 8; {set text background to }

{ movie's background color}

dfShrinkTextBoxToFit = 16; {compute minimum box to fit }

{ the sample}

dfScrollIn = 32; {scroll text in until last }

{ of text is in view}

dfScrollOut = 64; {scroll text out until last }

{ of text is gone}

C H A P T E R 2

Movie Toolbox

2-404 Summary of the Movie Toolbox

dfHorizScroll = 128; {scroll text horizontally}

dfReverseScroll = 256; {vertical text scrolls down, }

{ horizontal text scrolls }

{ backward;justification dependent}

{values returned by the GetMatrixType function}

identityMatrixType = $00; {matrix is identity}

translateMatrixType = $01; {matrix translates}

scaleMatrixType = $02; {matrix scales}

scaleTranslateMatrixType = $03; {matrix scales and translates}

linearMatrixType = $04; {matrix is general 2 x 2}

linearTranslateMatrixType = $05; {matrix is general 2 x 2 }

{ and translates}

perspectiveMatrixType = $06; {matrix is general 3 x 3}

{return display flags for application-defined text function}

txtProcDefaultDisplay = 0; {use the media's default settings}

txtProcDontDisplay = 1; {don't display the text}

txtProcDoDisplay = 2; {do display the text}

{find flags for FindNextTextFunction}

findTextEdgeOK = 1; {OK to find text at specified }

{ sample time}

findTextCaseSensitive = 2; {case-sensitive search}

findTextReverseSearch = 4; {search from sample time backward}

findTextWrapAround = 8; {wrap search when beginning or }

{ end of movie is reached}

{hints constants for play hints functions}

hintsScrubMode = $1; {toolbox can display key frames }

{ when movie is repositioned}

hintsAllowInterlace = $40; {use interlace option for }

{ compressor components}

hintsUseSoundInterp = $80; {turns on sound interpolation}

Data Types

TYPE Movie = ^MovieRecord; {movie identifier}

Track = ^TrackRecord; {track identifer}

Media = ^MediaRecord; {media identifier}

UserData = ^UserDataRecord; {user data list identifier}

TrackEditState = ^TrackEditStateRecord;{track edit state identifier}

MovieEditState = ^MovieEditStateRecord;{movie edit state identifier}

TimeValue = LongInt; {time value}

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-405

TimeScale = LongInt; {time scale in time record}

TimeBase = ^TimeBaseRecord; {time base identifier}

TimeBaseStatus = LongInt; {time base statistics}

QTCallBack = ^CallBackRecord; {callback identifier}

QTCallBackProc = procPtr; {callback function }

{ identifier}

Int64 = CompTimeValue; {time value in time }

{ record}

playHintsEnum = LongInt; {play hints enumeration}

movieFlattenFlagsEnum = LontInt; {movie flatteners flags }

{ enumeration}

createMovieFileFlagsEnum = LongInt; {movie creation flags}

nextTimeFlagsEnum = Byte; {next time flags}

Int64 =

RECORD

hi: LongInt; {high-order bits of value field in time record}

lo: LongInt; {low-order bits of value field in time record}

END;

TimeRecord =

RECORD

value: CompTimeValue; {time value as duration or }

{ absolute time}

scale: TimeScale; {time scale as time units}

base: TimeBase; {reference to the time base}

END;

SampleDescriptionPtr= ^SampleDescription;{ptr to sample description}

SampleDescriptionHandle = ^SampleDescriptionPtr;{handle to sample }

{ description record}

SampleDescription =

RECORD

descSize: LongInt; {total size in bytes of this record}

dataFormat: LongInt; {format of the sample data}

resvd1: LongInt; {reserved--set to 0}

resvd2: Integer; {reserved--set to 0}

dataRefIndex: Integer; {reserved--set to 1}

END;

SoundDescriptionPtr = ^SoundDescription; {ptr to sound description}

SoundDescriptionHandle = ^SoundDescriptionPtr; {handle to sound }

{ description record}

C H A P T E R 2

Movie Toolbox

2-406 Summary of the Movie Toolbox

SoundDescription =

RECORD

descSize: LongInt; {total size in bytes of this record}

dataFormat: LongInt; {format of the sound data}

resvd1: LongInt; {reserved--set to 0}

resvd2: Integer; {reserved--set to 0}

dataRefIndex: Integer; {reserved--set to 1}

version: Integer; {which version is this data? }

{ (set to 0)}

revlevel: Integer; {which version of the compressor }

{ component did this? (set to 0)}

vendor: LongInt; {whose compressor component }

{ compressed this data? (set to 0)}

numChannels: Integer; {number of sound channels}

sampleSize: Integer; {number of bits in each sample;}

compressionID: Integer; {sound compression used--0 if none}

packetSize: Integer; {packet size for compression--0 if }

{ no compression}

sampleRate: Fixed; {rate at which sound samples }

{ were obtained}

END;

TextDescriptionPtr = ^TextDescription;

TextDescriptionHandle = ^TextDescriptionPtr;

TextDescription =

RECORD

descSize: LongInt; {total size of this text }

{ description record}

dataFormat: LongInt; {type of data in this record }

{ ('text')}

resvd1: LongInt; {reserved for use by Apple-- }

{ set to 0}

resvd2: Integer; {reserved for use by Apple-- }

{ set to 0}

dataRefIndex: Integer; {index to data references}

displayFlags: LongInt; {display flags for text}

textJustification: LongInt; {text justification flags}

bgColor: RGBColor; {background color}

defaultTextBox: Rect; {location of the text within }

{ track bounds}

defaultStyle: ScrpSTElement; {default style (TextEdit }

{ record)}

END;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-407

MovieProgressProcPtr = ProcPtr; {pointer to application-defined }

{ movie progress procedure}

MovieRgnCoverProc = ProcPtr; {a pointer to application-defined }

{ cover procedure}

MediaInformationHandle = Handle; {data returned }

{ by media handler}

MediaHandler = ComponentInstance; {media handler}

MediaHandlerComponent = Component; {media handler component}

DataHandler = ComponentInstance; {data handler}

DataHandlerComponent = Component; {data handler component}

HandlerError = ComponentResult; {error handler}

MovieController = ComponentInstance; {movie controller}

ErrorProcPtr = ProcPtr; {pointer to application-defined }

{ error-notification procedure}

MoviePreviewCallOutProc = ProcPtr; {pointer to application-defined }

{ movie preview callout procedure}

TimeBaseFlags = Char; {control flags for time base}

QTCallBackProc = ProcPtr; {pointer to application-defined }

{ callback routine}

QTCallBackHeader =

RECORD

callBackFlags: LongInt; {flags used by clock component to }

{ communicate scheduling data }

{ about callback to Movie Toolbox}

reserved1: LongInt; {reserved for use by Apple}

qtPrivate: PACKED ARRAY[0..39] of Byte;
{reserved for use by Apple}

END;

MatrixRecordPtr = ^MatrixRecord; {pointer to matrix record}

MatrixRecord =

RECORD

matrix: ARRAY[0..2,0..2] of Fixed;

END;

FixedPoint =

RECORD

C H A P T E R 2

Movie Toolbox

2-408 Summary of the Movie Toolbox

x: Fixed; {point's x coordinate as fixed-point number}

y: Fixed; {point's y coordinate as fixed-point number}

END;

FixedRect =

RECORD

left: Fixed; {x coordinate of rectangle's upper-left corner}

top: Fixed; {y coordinate of rectangle's upper-left corner}

right: Fixed; {x coordinate of rectangle's lower-right corner}

bottom: Fixed; {y coordinate of rectangle's lower-right corner}

END;

Routines for Getting and Playing Movies

Initializing the Movie Toolbox

FUNCTION EnterMovies: OSErr;

PROCEDURE ExitMovies;

Error Routines

FUNCTION GetMoviesError: OSErr;

FUNCTION GetMoviesStickyError:
OSErr;

PROCEDURE ClearMoviesStickyError;

PROCEDURE SetMoviesErrorProc
(errProc: ErrorProcPtr; refcon: LongInt);

Movie Routines

FUNCTION NewMovieFromFile (VAR theMovie: Movie; resRefNum: Integer;
VAR resId: Integer; resName: Str255;
newMovieFlags: Integer;
VAR dataRefWasChanged: Boolean): OSErr;

FUNCTION NewMovieFromHandle
(VARh: Handle; newMovieFlags: LongInt;
VAR dataRefWasChanged: Boolean): OSErr;

FUNCTION NewMovie (newMovieFlags: LongInt): Movie;

FUNCTION ConvertFileToMovieFile
(inputFile: FSSpec; outputFile: FSSpec;
creator: OSType; scriptTag: ScriptCode;
VAR resID: Integer; flags: LongInt;
userComp: ComponentInstance;
proc: ProcPtr; refcon: LongInt): OSErr;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-409

FUNCTION ConvertMovieToFile
(theMovie: Movie; onlyTrack: Track;
outputFile: FSSpec; fileType: OSType;
creator: OSType; scriptTag: ScriptCode;
VAR resID: Integer; flags: LongInt;
userComp: ComponentInstance): OSErr;

PROCEDURE DisposeMovie (theMovie: Movie);

FUNCTION CreateMovieFile (fileSpec: FSSpec; creator: OSType;
scriptTag: ScriptCode;
createMovieFileFlags: LongInt;
VAR resRefNum: Integer;
VAR newMovie: Movie): OSErr;

FUNCTION OpenMovieFile (fileSpec: FSSpec; VAR resRefNum: Integer;
perms: SignedByte): OSErr;

FUNCTION CloseMovieFile (resRefNum: Integer): OSErr;

FUNCTION DeleteMovieFile (fileSpec: FSSpec): OSErr;

Saving Movies

FUNCTION HasMovieChanged (theMovie: Movie): Boolean;

PROCEDURE ClearMovieChanged
(theMovie: Movie);

FUNCTION AddMovieResource (theMovie: Movie; resRefNum: Integer;
VAR resId: Integer; resName: Str255): OSErr;

FUNCTION UpdateMovieResource
(theMovie: Movie; resRefNum: Integer;
VAR resId: Integer; resName: Str255): OSErr;

FUNCTION RemoveMovieResource
(resRefNum: Integer; resId: Integer): OSErr;

FUNCTION PutMovieIntoHandle
(theMovie: Movie; publicMovie: Handle): OSErr;

PROCEDURE FlattenMovie (theMovie: Movie; movieFlattenFlags: LongInt;
theFile: FSSpec; creator: OSType;
scriptTag: ScriptCode;
createMovieFileFlags: LongInt;
VAR resId: Integer; resName: Str255);

FUNCTION FlattenMovieData (theMovie: Movie; movieFlattenFlags: LongInt;
theFile: FSSpec; creator: OSType;
scriptTag: ScriptCode;
createMovieFileFlags: LongInt): Movie;

C H A P T E R 2

Movie Toolbox

2-410 Summary of the Movie Toolbox

FUNCTION NewMovieFromDataFork
(VAR theMovie: Movie; fRefNum: Integer;
fileOffset: Integer; newMovieFlags: Integer;
VAR dataRefWasChanged: Boolean): OSErr;

FUNCTION PutMovieIntoDataFork
(theMovie: Movie; fRefNum: Integer;
offset: LongInt; maxSize: LongInt): OSErr;

Controlling Movie Playback

PROCEDURE StartMovie (theMovie: Movie);

PROCEDURE StopMovie (theMovie: Movie);

PROCEDURE GoToBeginningOfMovie
(theMovie: Movie);

PROCEDURE GoToEndOfMovie (theMovie: Movie);

Movie Posters and Movie Previews

PROCEDURE SetTrackUsage (theTrack: Track; usage: LongInt);

FUNCTION GetTrackUsage (theTrack: Track): LongInt;

PROCEDURE ShowMoviePoster (theMovie: Movie);

PROCEDURE SetPosterBox (theMovie: Movie; boxRect: Rect);

PROCEDURE GetPosterBox (theMovie: Movie; VAR boxRect: Rect);

PROCEDURE SetMoviePosterTime
(theMovie: Movie; posterTime: TimeValue);

FUNCTION GetMoviePosterTime
(theMovie: Movie): TimeValue;

PROCEDURE PlayMoviePreview (theMovie: Movie;
callOutProc: MoviePreviewCallOutProc;
refcon: LongInt);

PROCEDURE SetMoviePreviewMode
(theMovie: Movie; usePreview: Boolean);

FUNCTION GetMoviePreviewMode
(theMovie: Movie): Boolean;

PROCEDURE SetMoviePreviewTime
(theMovie: Movie; previewTime: TimeValue;
previewDuration: TimeValue);

PROCEDURE GetMoviePreviewTime
(theMovie: Movie; VAR previewTime: TimeValue;
VAR previewDuration: TimeValue);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-411

Movies and Your Event Loop

PROCEDURE MoviesTask (theMovie: Movie; maxMilliSecToUse: LongInt);

FUNCTION IsMovieDone (theMovie: Movie): Boolean;

FUNCTION UpdateMovie (theMovie: Movie): OSErr;

FUNCTION PtInMovie (theMovie: Movie; pt: Point): Boolean;

FUNCTION PtInTrack (theTrack: Track; pt: Point): Boolean;

FUNCTION GetMovieStatus (theMovie: Movie;
VAR firstProblemTrack: Track): ComponentResult;

FUNCTION GetTrackStatus (theTrack: Track): ComponentResult;

Preferred Movie Settings

PROCEDURE SetMoviePreferredRate
(theMovie: Movie; rate: Fixed);

FUNCTION GetMoviePreferredRate
(theMovie: Movie): Fixed;

PROCEDURE SetMoviePreferredVolume
(theMovie: Movie; volume: Integer);

FUNCTION GetMoviePreferredVolume
(theMovie: Movie): Integer;

Enhancing Movie Playback Performance

FUNCTION PrerollMovie (theMovie: Movie; time: TimeValue;
Rate: Fixed): OSErr;

PROCEDURE SetMovieActiveSegment
(theMovie: Movie; startTime: TimeValue;
duration: TimeValue);

PROCEDURE GetMovieActiveSegment
(theMovie: Movie; VAR startTime: TimeValue;
VAR duration: TimeValue);

PROCEDURE SetMoviePlayHints
(theMovie: Movie; flags: LongInt;
flagsMask: LongInt);

PROCEDURE SetMediaPlayHints
(theMedia: Media; flags: LongInt;
flagsMask: LongInt);

FUNCTION LoadMovieIntoRam (theMovie: Movie; time: TimeValue;
duration: TimeValue; flags: LongInt): OSErr;

FUNCTION LoadTrackIntoRam (theTrack: Track; time: TimeValue;
duration: TimeValue; flags: LongInt): OSErr;

FUNCTION LoadMediaIntoRam (theMedia: Media; time: TimeValue;
duration: TimeValue; flags: LongInt): OSErr;

C H A P T E R 2

Movie Toolbox

2-412 Summary of the Movie Toolbox

FUNCTION SetMediaShadowSync
(theMedia: Media; frameDiffSampleNum: LongInt;
syncSampleNum: LongInt): OSErr;

FUNCTION GetMediaShadowSync
(theMedia: Media; frameDiffSampleNum: LongInt;
VAR syncSampleNum: LongInt): OSErr;

Disabling Movies and Tracks

PROCEDURE SetMovieActive (theMovie: Movie; active: Boolean);

FUNCTION GetMovieActive (theMovie: Movie): Boolean;

PROCEDURE SetTrackEnabled (theTrack: Track; isEnabled: Boolean);

FUNCTION GetTrackEnabled (theTrack: Track): Boolean;

Generating Pictures From Movies

FUNCTION GetMoviePict (theMovie: Movie; time: TimeValue): PicHandle;

FUNCTION GetMoviePosterPict
(theMovie: Movie): PicHandle;

FUNCTION GetTrackPict (theTrack: Track; time: TimeValue): PicHandle;

Creating Tracks and Media Structures

FUNCTION NewMovieTrack (theMovie: Movie; width: Fixed; height: Fixed;
trackVolume: Integer): Track;

PROCEDURE DisposeMovieTrack
(theTrack: Track);

FUNCTION NewTrackMedia (theTrack: Track; mediaType: OSType;
timeScale: TimeScale; dataRef: Handle;
dataRefType: OSType): Media;

PROCEDURE DisposeTrackMedia
(theMedia: Media);

Working With Progress and Cover Procedures

PROCEDURE SetMovieProgressProc
(theMovie: Movie; p: MovieProgressProcPtr;
refcon: LongInt);

PROCEDURE SetMovieCoverProcs
(theMovie: Movie;
uncoverProc: MovieRgnCoverProc;
coverProc: MovieRgnCoverProc; refcon: LongInt);

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-413

Routines That Modify Movie Properties

Working With Movie Spatial Characteristics

PROCEDURE SetMovieGWorld (theMovie: Movie; port: CGrafPtr;
gdh: GDHandle);

PROCEDURE GetMovieGWorld (theMovie: Movie; VAR port: CGrafPtr;
VAR gdh: GDHandle);

PROCEDURE SetMovieBox (theMovie: Movie; boxRect: Rect);

PROCEDURE GetMovieBox (theMovie: Movie; VAR boxRect: Rect);

FUNCTION GetMovieDisplayBoundsRgn
(theMovie: Movie): RgnHandle;

FUNCTION GetMovieSegmentDisplayBoundsRgn
(theMovie: Movie; time: TimeValue;
duration: TimeValue): RgnHandle;

PROCEDURE SetMovieDisplayClipRgn
(theMovie: Movie; theClip: RgnHandle);

FUNCTION GetMovieDisplayClipRgn
(theMovie: Movie): RgnHandle;

FUNCTION GetTrackDisplayBoundsRgn
(theTrack: Track): RgnHandle;

FUNCTION GetTrackSegmentDisplayBoundsRgn
(theTrack: Track; time: TimeValue;
duration: TimeValue): RgnHandle;

PROCEDURE SetTrackLayer (theTrack: Track; layer: Integer);

FUNCTION GetTrackLayer (theTrack: Track): Integer;

PROCEDURE SetMovieMatrix (theMovie: Movie; matrix: MatrixRecord);

PROCEDURE GetMovieMatrix (theMovie: Movie; VAR matrix: MatrixRecord);

FUNCTION GetMovieBoundsRgn (theMovie: Movie): RgnHandle;

FUNCTION GetTrackMovieBoundsRgn
(theTrack: Track): RgnHandle;

PROCEDURE SetMovieClipRgn (theMovie: Movie; theClip: RgnHandle);

FUNCTION GetMovieClipRgn (theMovie: Movie): RgnHandle;

PROCEDURE SetTrackMatrix (theTrack: Track; matrix: MatrixRecord);

PROCEDURE GetTrackMatrix (theTrack: Track; VAR matrix: MatrixRecord);

FUNCTION GetTrackBoundsRgn (theTrack: Track): RgnHandle;

PROCEDURE SetTrackDimensions
(theTrack: Track; width: Fixed; height: Fixed);

PROCEDURE GetTrackDimensions
(theTrack: Track; VAR width: Fixed;
VAR height: Fixed);

C H A P T E R 2

Movie Toolbox

2-414 Summary of the Movie Toolbox

PROCEDURE SetTrackClipRgn (theTrack: Track; theClip: RgnHandle);

FUNCTION GetTrackClipRgn (theTrack: Track): RgnHandle;

PROCEDURE SetTrackMatte (theTrack: Track; theMatte: PixMapHandle);

FUNCTION GetTrackMatte (theTrack: Track): PixMapHandle;

PROCEDURE DisposeMatte (theMatte: PixMapHandle);

Working With Sound Volume

PROCEDURE SetMovieVolume (theMovie: Movie; volume: Integer);

FUNCTION GetMovieVolume (theMovie: Movie): Integer;

PROCEDURE SetTrackVolume (theTrack: Track; volume: Integer);

FUNCTION GetTrackVolume (theTrack: Track): Integer;

Working With Movie Time

FUNCTION GetMovieDuration (theMovie: Movie): TimeValue;

PROCEDURE SetMovieTimeValue
(theMovie: Movie; newtime: TimeValue);

PROCEDURE SetMovieTime (theMovie: Movie; newtime: TimeRecord);

FUNCTION GetMovieTime (theMovie: Movie; VAR currentTime: TimeRecord):
TimeValue;

PROCEDURE SetMovieRate (theMovie: Movie; rate: Fixed);

FUNCTION GetMovieRate (theMovie: Movie): Fixed;

PROCEDURE SetMovieTimeScale
(theMovie: Movie; timeScale: TimeScale);

FUNCTION GetMovieTimeScale (theMovie: Movie): TimeScale;

FUNCTION GetMovieTimeBase (theMovie: Movie): TimeScale;

Working With Track Time

FUNCTION GetTrackDuration (theTrack: Track): TimeValue;

PROCEDURE SetTrackOffset (theTrack: Track; movieOffsetTime: TimeValue);

FUNCTION GetTrackOffset (theTrack: Track): TimeValue;

FUNCTION TrackTimeToMediaTime
(value: TimeValue; theTrack: Track): TimeValue;

Working With Media Time

FUNCTION GetMediaDuration (theMedia: Media): TimeValue;

PROCEDURE SetMediaTimeScale
(theMedia: Media; timeScale: TimeScale);

FUNCTION GetMediaTimeScale (theMedia: Media): TimeScale;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-415

Finding Interesting Times

PROCEDURE GetMovieNextInterestingTime
(theMovie: Movie; interestingTimeFlags: Integer;
numMediaTypes: Integer;
whichMediaTypes: OSTypePtr; time: TimeValue;
rate: Fixed; VAR interestingTime: TimeValue;
VAR interestingDuration: TimeValue);

PROCEDURE GetTrackNextInterestingTime
(theTrack: Track; interestingTimeFlags: Integer;
time: TimeValue; rate: Fixed;
VAR interestingTime: TimeValue;
VAR interestingDuration: TimeValue);

PROCEDURE GetMediaNextInterestingTime
(theMedia: Media; interestingTimeFlags: Integer;
time: TimeValue; rate: Fixed;
VAR interestingTime: TimeValue;
VAR interestingDuration: TimeValue);

Locating a Movie’s Tracks and Media Structures

FUNCTION GetMovieTrackCount
(theMovie: Movie): LongInt;

FUNCTION GetMovieIndTrack (theMovie: Movie; index: LongInt): Track;

FUNCTION GetMovieTrack (theMovie: Movie; trackID: LongInt): Track;

FUNCTION GetTrackID (theTrack: Track): LongInt;

FUNCTION GetTrackMovie (theTrack: Track): Movie;

FUNCTION GetTrackMedia (theTrack: Track): Media;

FUNCTION GetMediaTrack (theMedia: Media): Track;

Working With Alternate Tracks

PROCEDURE SetMovieLanguage (theMovie: Movie; language: LongInt);

PROCEDURE SelectMovieAlternates
(theMovie: Movie);

PROCEDURE SetAutoTrackAlternatesEnabled
(theMovie: Movie; enable: Boolean);

PROCEDURE SetTrackAlternate
(theTrack: Track; alternateT: Track);

FUNCTION GetTrackAlternate (theTrack: Track): Track;

PROCEDURE SetMediaLanguage (theMedia: Media; language: Integer);

FUNCTION GetMediaLanguage (theMedia: Media): Integer;

PROCEDURE SetMediaQuality (theMedia: Media; quality: Integer);

FUNCTION GetMediaQuality (theMedia: Media): Integer;

C H A P T E R 2

Movie Toolbox

2-416 Summary of the Movie Toolbox

Working With Data References

FUNCTION AddMediaDataRef (theMedia: Media; VAR index: Integer;
dataRef: Handle; dataRefType: OSType): OSErr;

FUNCTION SetMediaDataRef (theMedia: Media; index: Integer;
dataRef: Handle; dataRefType: OSType): OSType;

FUNCTION GetMediaDataRefCount
(theMedia: Media; VAR count: Integer): OSErr;

FUNCTION GetMediaDataRef (theMedia: Media; index: Integer;
VAR dataRef: Handle; VAR dataRefType: OSType;
VAR dataRefAttributes: LongInt): OSErr;

Determining Movie Creation and Modification Time

FUNCTION GetMovieCreationTime
(theMovie: Movie): LongInt;

FUNCTION GetMovieModificationTime
(theMovie: Movie): LongInt;

FUNCTION GetTrackCreationTime
(theTrack: Track): LongInt;

FUNCTION GetTrackModificationTime
(theTrack: Track): LongInt;

FUNCTION GetMediaCreationTime
(theMedia: Media): LongInt;

FUNCTION GetMediaModificationTime
(theMedia: Media): LongInt;

Working With Media Samples

FUNCTION GetMovieDataSize (theMovie: Movie; startTime: TimeValue;
duration: TimeValue): LongInt;

FUNCTION GetTrackDataSize (theTrack: Track; startTime: TimeValue;
duration: TimeValue): LongInt;

FUNCTION GetMediaDataSize (theMedia: Media; startTime: TimeValue;
duration: TimeValue): LongInt;

FUNCTION GetMediaSampleCount
(theMedia: Media): LongInt;

FUNCTION GetMediaSampleDescriptionCount
(theMedia: Media): LongInt;

PROCEDURE GetMediaSampleDescription
(theMedia: Media; index: LongInt;
descH: SampleDescriptionHandle);

FUNCTION SetMediaSampleDescription
(theMedia: Media; index: LongInt;
descH: SampleDescriptionHandle): OSErr;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-417

PROCEDURE MediaTimeToSampleNum
(theMedia: Media; time: TimeValue;
VAR sampleNum: LongInt;
VAR sampleTime: TimeValue;
VAR sampleDuration: TimeValue);

PROCEDURE SampleNumToMediaTime
(theMedia: Media; logicalSampleNum: LongInt;
VAR sampleTime: TimeValue;
VAR sampleDuration: TimeValue);

Working With Movie User Data

FUNCTION GetMovieUserData (theMovie: Movie): UserData;

FUNCTION GetTrackUserData (theTrack: Track): UserData;

FUNCTION GetMediaUserData (theMedia: Media): UserData;

FUNCTION GetNextUserDataType
(theUserData: UserData;
udType: OSType): LongInt;

FUNCTION CountUserDataType (theUserData: UserData;
udType: OSType): Integer;

FUNCTION AddUserData (theUserData: UserData; data: Handle;
udType: OSType): OSErr;

FUNCTION GetUserData (theUserData: UserData; data: Handle;
udType: OSType; index: LongInt): OSErr;

FUNCTION RemoveUserData (theUserData: UserData; udType: OSType;
index: LongInt): OSErr;

FUNCTION AddUserDataText (theUserData: UserData; data: Handle;
udType: OSType;
index: LongInt; itlRegionTag: Integer): OSErr;

FUNCTION GetUserDataText (theUserData: UserData; data: Handle;
udType: OSType; index: LongInt;
itlRegionTag: Integer): OSErr;

FUNCTION RemoveUserDataText
(theUserData: UserData; udType: OSType;
index: LongInt; itlRegionTag: Integer): OSErr;

FUNCTION SetUserDataItem (theUserData: UserData; data: Ptr;
size: LongInt; udType: OSType;
index: LongInt): OSErr;

FUNCTION GetUserDataItem (theUserData: UserData; data: Ptr;
size: LongInt; udType: OSType; index: long):
OSErr;

FUNCTION NewUserData (VAR theUserData: UserData): OSErr;

FUNCTION DisposeUserData (theUserData: UserData): OSErr;

C H A P T E R 2

Movie Toolbox

2-418 Summary of the Movie Toolbox

FUNCTION PutUserDataIntoHandle
(theUserData UserData; h Handle): OSErr;

FUNCTION NewUserDataFromHandle
(h Handle; VAR theUserData: UserData): OSErr;

Routines for Editing Movies

Editing Movies

FUNCTION PutMovieOnScrap (theMovie: Movie;
movieScrapFlags: LongInt): OSErr;

FUNCTION NewMovieFromScrap (newMovieFlags: LongInt): Movie;

PROCEDURE SetMovieSelection
(theMovie: Movie; selectionTime: TimeValue;
selectionDuration: TimeValue);

PROCEDURE GetMovieSelection
(theMovie: Movie; VAR selectionTime: TimeValue;
VAR selectionDuration: TimeValue);

FUNCTION CutMovieSelection (theMovie: Movie): Movie;

FUNCTION CopyMovieSelection
(theMovie: Movie): Movie;

PROCEDURE PasteMovieSelection
(theMovie: Movie; src: Movie);

PROCEDURE AddMovieSelection
(theMovie: Movie; src: Movie);

PROCEDURE ClearMovieSelection
(theMovie: Movie);

FUNCTION IsScrapMovie (targetTrack: Track): Component;

FUNCTION PasteHandleIntoMovie
(h: Handle; handleType: OSType;
theMovie: Movie; flags: LongInt;
userComp: ComponentInstance): OSErr;

FUNCTION PutMovieIntoTypedHandle
(theMovie: Movie; targetTrack: Track;
handleType: OSType; publicMovie: Handle;
start: TimeValue; dur: TimeValue;
flags: long; userComp: ComponentInstance):
OSErr;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-419

Undo for Movies

FUNCTION NewMovieEditState (theMovie: Movie): MovieEditState;

FUNCTION UseMovieEditState (theMovie: Movie; toState: MovieEditState):
OSErr;

FUNCTION DisposeMovieEditState
(state: MovieEditState): OSErr;

Low-Level Movie-Editing Routines

FUNCTION InsertMovieSegment (srcMovie: Movie; dstMovie: Movie;
srcIn: TimeValue; srcDuration: TimeValue;
dstIn: TimeValue): OSErr;

FUNCTION InsertEmptyMovieSegment
(dstMovie: Movie; dstIn: TimeValue;
dstDuration: TimeValue): OSErr;

FUNCTION DeleteMovieSegment
(theMovie: Movie; in: TimeValue;
duration: TimeValue): OSErr;

FUNCTION ScaleMovieSegment (theMovie: Movie; in: TimeValue;
oldDuration: TimeValue;
newDuration: TimeValue): OSErr;

FUNCTION CopyMovieSettings (srcMovie: Movie; dstMovie: Movie): OSErr;

Editing Tracks

FUNCTION InsertTrackSegment
(srcTrack: Track; dstTrack: Track;
srcIn: TimeValue; srcDuration: TimeValue;
dstIn: TimeValue): OSErr;

FUNCTION InsertEmptyTrackSegment
(dstTrack: Track; dstIn: TimeValue;
dstDuration: TimeValue): OSErr;

FUNCTION InsertMediaIntoTrack
(theTrack: Track; trackStart: TimeValue;
mediaTime: TimeValue; mediaDuration: TimeValue;
mediaRate: Fixed): OSErr;

FUNCTION DeleteTrackSegment
(theTrack: Track; in: TimeValue;
duration: TimeValue): OSErr;

C H A P T E R 2

Movie Toolbox

2-420 Summary of the Movie Toolbox

FUNCTION ScaleTrackSegment (theTrack: Track; in: TimeValue;
oldDuration: TimeValue;
newDuration: TimeValue): OSErr;

FUNCTION CopyTrackSettings (srcTrack: Track; dstTrack: Track): OSErr;

FUNCTION GetTrackEditRate (theTrack: Track; atTime: TimeValue): Fixed;

Undo for Tracks

FUNCTION NewTrackEditState (theTrack: Track): TrackEditState;

FUNCTION UseTrackEditState (theTrack: Track; state: TrackEditState): OSErr;

FUNCTION DisposeTrackEditState
(state: TrackEditState): OSErr;

Adding Samples to Media Structures

FUNCTION BeginMediaEdits (theMedia: Media): OSErr;

FUNCTION EndMediaEdits (theMedia: Media): OSErr;

FUNCTION AddMediaSample (theMedia: Media; dataIn: Handle;
inOffset: LongInt; size: LongInt;
durationPerSample: TimeValue;
sampleDescriptionH: SampleDescriptionHandle;
numberOfSamples: LongInt;
sampleFlags: Integer;
VAR sampleTime: TimeValue): OSErr;

FUNCTION AddMediaSampleReference
(theMedia: Media; dataOffset: LongInt;
size: LongInt; durationPerSample: TimeValue;
sampleDescriptionH: SampleDescriptionHandle;
numberOfSamples: LongInt;
sampleFlags: Integer;
VAR sampleTime: TimeValue): OSErr;

FUNCTION GetMediaSample (theMedia: Media; dataOut: Handle;
maxSizeToGrow: LongInt; VAR size: LongInt;
time: TimeValue;
VAR sampleTime: TimeValue;
VAR durationPerSample: TimeValue;
sampleDescriptionH: SampleDescriptionHandle;
VAR sampleDescriptionIndex: LongInt;
maxNumberOfSamples: LongInt;
VAR numberOfSamples: LongInt;
VAR sampleFlags: Integer): OSErr;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-421

FUNCTION GetMediaSampleReference
(theMedia: Media; VAR dataOffset: LongInt;
VAR size: LongInt; time: TimeValue;
VAR sampleTime: TimeValue;
VAR durationPerSample: TimeValue;
sampleDescriptionH: SampleDescriptionHandle;
VAR sampleDescriptionIndex: LongInt;
maxNumberOfSamples: LongInt;
VAR numberOfSamples: LongInt;
VAR sampleFlags: Integer): OSErr;

Media Routines

Selecting Media Handlers

PROCEDURE GetMediaHandlerDescription
(theMedia: Media; VAR mediaType: OSType;
VAR creatorName: Str255;
VAR creatorManufacturer: OSType);

FUNCTION GetMediaHandler (theMedia: Media): MediaHandler;

FUNCTION SetMediaHandler (theMedia: Media;
mH: MediaHandlerComponent): OSErr;

PROCEDURE GetMediaDataHandlerDescription
(theMedia: Media; index: Integer;
VAR dhType: OSType;
VAR creatorName: Str255;
VAR creatorManufacturer: OSType);

FUNCTION GetMediaDataHandler
(theMedia: Media; index: Integer): DataHandler;

FUNCTION SetMediaDataHandler
(theMedia: Media; index: Integer;
dataHandler: DataHandlerComponent): OSErr;

Video Media Handler Routines

FUNCTION SetVideoMediaGraphicsMode
(mh: MediaHandler; graphicsMode: LongInt;
opColor: RGBColor): HandlerError;

FUNCTION GetVideoMediaGraphicsMode
(mh: MediaHandler; VAR graphicsMode: LongInt;
VAR opColor: RGBColor): HandlerError;

C H A P T E R 2

Movie Toolbox

2-422 Summary of the Movie Toolbox

Sound Media Handler Routines

FUNCTION SetSoundMediaBalance
(mh: MediaHandler;
balance: Integer): HandlerError;

FUNCTION GetSoundMediaBalance
(mh: MediaHandler;
VAR balance: Integer): HandlerError;

Text Media Handler Routines

FUNCTION AddTextSample (mh: MediaHandler; text: Ptr; size: LongInt;
fontNumber: Integer; fontSize: Integer;
textFace: Style; textColor: RGBColor;
backColor: RGBColor;
textJustification: Integer; VAR textBox: Rect;
displayFlags: LongInt;
scrollDelay: TimeValue;
hiliteStart: Integer; hiliteEnd: Integer;
VAR rgbColor: RGBColor;
duration: TimeValue;
VAR sampleTime: TimeValue): ComponentResult;

FUNCTION AddTESample (mh: MediaHandler; hTE: TEHandle;
VAR backColor: RGBColor;
textJustification: Integer; VAR textBox: Rect;
displayFlags: LongInt;
scrollDelay: TimeValue;
hiliteStart: Integer; hiliteEnd: Integer;
VAR rgbColor: RGBColor;
duration: TimeValue;
VAR sampleTime: TimeValue): ComponentResult;

FUNCTION AddHiliteSample (mh: MediaHandler; hiliteStart: Integer;
hiliteEnd: Integer; VAR rgbColor: RGBColor;
duration: TimeValue;
VAR sampleTime: TimeValue): ComponentResult;

FUNCTION FindNextText (mh: MediaHandler; text: Ptr; size: LongInt;
findFlags: Integer; startTime: TimeValue;
VAR foundTime: TimeValue;
VAR foundDuration: TimeValue;
VAR offset: LongInt): ComponentResult;

FUNCTION HiliteTextSample (mh: MediaHandler; sampleTime: TimeValue;
hiliteStart: Integer;
hiliteEnd: Integer;
VAR rgbHiliteColor: RGBColor): ComponentResult;

FUNCTION SetTextProc (mh: MediaHandler; TextProc: ProcPtr;
refcon: LongInt): ComponentResult;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-423

Routines for Creating File Previews

FUNCTION MakeFilePreview (resRefNum: Integer;
progress: ProgressProcRecordPtr): OSErr;

FUNCTION AddFilePreview (resRefNum: Integer; previewType: OSType;
previewData: Handle): OSErr;

Routines for Displaying File Previews

PROCEDURE SFGetFilePreview (where: Point; prompt: Str255;
fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: DlgHookProcPtr; VAR reply: SFReply);

PROCEDURE SFPGetFilePreview
(where: Point; prompt: Str255;
fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: DlgHookProcPtr; VAR reply: SFReply;
dlgID: Integer; filterProc:
ModalFilterProcPtr);

PROCEDURE StandardGetFilePreview
(fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
VAR reply: StandardFileReply);

PROCEDURE CustomGetFilePreview
(fileFilter: FileFilterYDProcPtr;
numTypes: Integer; typeList: SFTypeList;
VAR reply: StandardFileReply; dlgID: Integer;
where: Point; dlgHook: DlgHookYDProcPtr;
filterProc: ModalFilterYDProcPtr;
activeList: Ptr;
activateProc: ActivateYDProcPtr;
yourDataPtr: UNIV Ptr);

Time Base Routines

Creating and Disposing of Time Bases

FUNCTION NewTimeBase: TimeBase;

PROCEDURE DisposeTimeBase (tb: TimeBase);

PROCEDURE SetMovieMasterClock
(theMovie: Movie; clockMeister: Component;
slaveZero: TimeRecord);

C H A P T E R 2

Movie Toolbox

2-424 Summary of the Movie Toolbox

PROCEDURE SetMovieMasterTimeBase
(theMovie: Movie; tb: TimeBase;
slaveZero: TimeRecord);

PROCEDURE SetTimeBaseMasterClock
(slave: TimeBase; clockMeister: Component;
slaveZero: TimeRecord);

FUNCTION GetTimeBaseMasterClock
(tb: TimeBase): ComponentInstance;

PROCEDURE SetTimeBaseMasterTimeBase
(slave: TimeBase; master: TimeBase;
slaveZero: TimeRecord);

FUNCTION GetTimeBaseMasterTimeBase
(tb: TimeBase): TimeBase;

PROCEDURE SetTimeBaseZero (tb: TimeBase; VAR zero: TimeRecord);

Working With Time Base Values

PROCEDURE SetTimeBaseTime (tb: TimeBase; tr: TimeRecord);

PROCEDURE SetTimeBaseValue (tb: TimeBase; t: TimeValue; s: TimeScale);

FUNCTION GetTimeBaseTime (tb: TimeBase; s: TimeScale;
VAR tr: TimeRecord): TimeValue;

PROCEDURE SetTimeBaseRate (tb: TimeBase; r: Fixed);

FUNCTION GetTimeBaseRate (tb: TimeBase): Fixed;

FUNCTION GetTimeBaseEffectiveRate
(tb: TimeBase): Fixed;

PROCEDURE SetTimeBaseStartTime
(tb: TimeBase; VAR tr: TimeRecord);

FUNCTION GetTimeBaseStartTime
(tb: TimeBase; s: TimeScale;
tr: TimeRecord): TimeValue;

PROCEDURE SetTimeBaseStopTime
(tb: TimeBase; VAR tr: TimeRecord);

FUNCTION GetTimeBaseStopTime
(tb: TimeBase; s: TimeScale;
tr: TimeRecord): TimeValue;

PROCEDURE SetTimeBaseFlags (tb: TimeBase; timeBaseFlags: LongInt);

FUNCTION GetTimeBaseFlags (tb: TimeBase): LongInt;

FUNCTION GetTimeBaseStatus (tb: TimeBase;
VAR unpinnedTime: TimeRecord): LongInt;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-425

Working With Times

PROCEDURE AddTime (VAR dst: TimeRecord; src: TimeRecord);

PROCEDURE SubtractTime (VAR dst: TimeRecord; src: TimeRecord);

PROCEDURE ConvertTime (VAR inout: TimeRecord; newBase: TimeBase);

PROCEDURE ConvertTimeScale (VAR inout: TimeRecord; newScale: TimeScale);

Time Base Callback Routines

FUNCTION NewCallBack (tb: TimeBase; cbType: Integer): QTCallBack;

FUNCTION CallMeWhen (cb: QTCallBack; callBackProc: QTCallBackProc;
refcon: LongInt; param1: LongInt;
param2: LongInt; param3: LongInt): OSErr;

PROCEDURE CancelCallBack (cb: QTCallBack);

PROCEDURE DisposeCallBack (cb: QTCallBack);

FUNCTION GetCallBackTimeBase
(cb: QTCallBack): TimeBase;

FUNCTION GetCallBackType (cb: QTCallBack): Integer;

Matrix Routines

PROCEDURE SetIdentityMatrix
(VAR matrix: MatrixRecord);

FUNCTION GetMatrixType (m: MatrixRecord): Integer;

PROCEDURE CopyMatrix (m1: MatrixRecord; VAR m2: MatrixRecord);

FUNCTION EqualMatrix (m1: MatrixRecord; m2: MatrixRecord): Boolean;

PROCEDURE TranslateMatrix (VAR m: MatrixRecord; deltaH: Fixed;
deltaV: Fixed);

PROCEDURE ScaleMatrix (VAR m: MatrixRecord; scaleX: Fixed;
scaleY: Fixed; aboutX: Fixed; aboutY: Fixed);

PROCEDURE RotateMatrix (VAR m: MatrixRecord; degrees: Fixed;
aboutX: Fixed; aboutY: Fixed);

PROCEDURE SkewMatrix (VAR m: MatrixRecord; skewX: Fixed;
skewY: Fixed; aboutX: Fixed; aboutY: Fixed);

PROCEDURE ConcatMatrix (a: MatrixRecord; VAR b: MatrixRecord);

FUNCTION InverseMatrix (m: MatrixRecord;
VAR im: MatrixRecord): Boolean;

FUNCTION TransformPoints (mp: MatrixRecord; VAR pt1: Point;
count: LongInt): OSErr;

FUNCTION TransformFixedPoints
(m: MatrixRecord; VAR fpt: FixedPoint;
count: LongInt): OSErr;

C H A P T E R 2

Movie Toolbox

2-426 Summary of the Movie Toolbox

FUNCTION TransformRect (m: MatrixRecord; VAR r: Rect;
VAR fpp: FixedPoint): Boolean;

FUNCTION TransformFixedRect (m: MatrixRecord; VAR fr: FixedRect;
VAR fpp: FixedPoint): Boolean;

FUNCTION TransformRgn (mp: MatrixRecord; r: RgnHandle): OSErr;

PROCEDURE RectMatrix (VAR matrix: MatrixRecord; srcRect: Rect;
dstRect: Rect);

PROCEDURE MapMatrix (VAR matrix: MatrixRecord; fromRect: Rect;
toRect: Rect);

Application-Defined Routines

Progress Routines

FUNCTION MyProgressProc (theMovie: Movie; message: Integer;
whatOperation: Integer;
percentDone: Fixed; refcon: LongInt): OSErr;

Cover Routines

FUNCTION MyCoverProc (theMovie: Movie; changedRgn: RgnHandle;
refcon: LongInt): OSErr;

Error-Notification Routines

PROCEDURE MyErrProc (theErr: OSErr; refcon: LongInt);

Movie Callout Routines

FUNCTION MyCallOutProc (refcon: long): Boolean;

File Filter Routines

FUNCTION MyFileFilter (paramBlock: ParmBlkPtr): Boolean;

Custom Routines

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr;
myDataPtr: Ptr): Integer;

Modal-Dialog Filter Routines

FUNCTION MyModalFilter (theDialog: DialogPtr;
VAR theEvent: EventRecord; itemHit: Integer;
myDataPtr: Ptr): Boolean;

C H A P T E R 2

Movie Toolbox

Summary of the Movie Toolbox 2-427

Standard File Activation Routines

PROCEDURE MyActivateProc (theDialog: DialogPtr; itemNo: Integer;
activating: Boolean; myDataPtr: Ptr);

Callback Event Routines

PROCEDURE MyCallBackProc (cb: QTCallBack; refcon: LongInt);

Text Routines

PROCEDURE MyTextProc (theText: Handle; theMovie: Movie;
VAR displayFlag: Integer; refcon: LongInt);

Result Codes
couldNotResolveDataRef –2000 Cannot use this data reference
badImageDescription –2001 Problem with this image description
badPublicMovieAtom –2002 Movie file corrupted
cantFindHandler –2003 Cannot locate this handler
cantOpenHandler –2004 Cannot open this handler
badComponentType –2005 Component cannot accommodate this data
noMediaHandler –2006 Media has no media handler
noDataHandler –2007 Media has no data handler
invalidMedia –2008 This media is corrupted or invalid
invalidTrack –2009 This track is corrupted or invalid
invalidMovie –2010 This movie is corrupted or invalid
invalidSampleTable –2011 This sample table is corrupted or invalid
invalidDataRef –2012 This data reference is invalid
invalidHandler –2013 This handler is invalid
invalidDuration –2014 This duration value is invalid
invalidTime –2015 This time value is invalid
cantPutPublicMovieAtom –2016 Cannot write to this movie file
badEditList –2017 The track’s edit list is corrupted
mediaTypesDontMatch –2018 These media don’t match
progressProcAborted –2019 Your progress procedure returned an error
movieToolboxUninitialized –2020 You haven’t initialized the Movie Toolbox
wfFileNotFound –2021 Cannot locate this file
cantCreateSingleForkFile –2022 Error trying to create a single-fork file. This occurs

when the file already exists.
invalidEditState –2023 This edit state is invalid
nonMatchingEditState –2024 This edit state is not valid for this movie
staleEditState –2025 Movie or track has been disposed
userDataItemNotFound –2026 Cannot locate this user data item
maxSizeToGrowTooSmall –2027 Maximum size must be larger
badTrackIndex –2028 This track index value is not valid
trackIDNotFound –2029 Cannot locate a track with this ID value
trackNotInMovie –2030 This track is not in this movie
timeNotInTrack –2031 This time value is outside of this track
timeNotInMedia –2032 This time value is outside of this media

C H A P T E R 2

Movie Toolbox

2-428 Summary of the Movie Toolbox

badEditIndex –2033 This edit index value is not valid
internalQuickTimeError –2034 Internal error
cantEnableTrack –2035 Cannot enable this track
invalidRect –2036 Specified rectangle has invalid coordinates
invalidSampleNum –2037 There is no sample with this sample number
invalidChunkNum –2038 There is no chunk with this chunk number
invalidSampleDescIndex –2039 Sample description index value invalid
invalidChunkCache –2040 The chunk cache is corrupted
invalidSampleDescription –2041 This sample description is invalid or corrupted
dataNotOpenForRead –2042 Cannot read from this data source
dataNotOpenForWrite –2043 Cannot write to this data source
dataAlreadyOpenForWrite –2044 Data source is already open for write
dataAlreadyClosed –2045 You have already closed this data source
endOfDataReached –2046 End of data
dataNoDataRef –2047 No data reference value found
noMovieFound –2048 Toolbox cannot find a movie in the movie file
invalidDataRefContainer –2049 Invalid data reference
badDataRefIndex –2050 Data reference index value is invalid
noDefaultDataRef –2051 Could not find a default data reference
couldNotUseAnExistingSampl
e

–2052 Movie Toolbox could not use a sample

featureUnsupported –2053 Movie Toolbox does not support this feature

Contents 3-1

C H A P T E R 3

Contents

Image Compression Manager

Introduction to the Image Compression Manager 3-5

Data That Is Suitable for Compression 3-6

Storing Images 3-8

About Image Compression 3-8

Image-Compression Characteristics 3-8

Compression Ratio 3-8

Compression Speed 3-9

Image Quality 3-9

Compressors Supplied by Apple 3-9

The Photo Compressor 3-10

The Video Compressor 3-10

The Compact Video Compressor 3-11

The Animation Compressor 3-11

The Graphics Compressor 3-11

The Raw Compressor 3-12

Types of Images Suitable for Different Compressors 3-13

Using the Image Compression Manager 3-24

Getting Information About Compressors and Compressed Data 3-24

Working With Pictures 3-24

Compressing Images 3-27

Decompressing Images 3-30

Compressing Sequences 3-31

Decompressing Sequences 3-33

Decompressing Still Images From a Sequence 3-34

Using Screen Buffers and Image Buffers 3-34

A Sample Program for Compressing and Decompressing a Sequence of
Images 3-35

C H A P T E R 3

3-2 Contents

A Sample Function for Saving a Sequence of Images to a Disk
File 3-36

A Sample Function for Creating, Compressing, and Drawing a Sequence
of Images 3-38

A Sample Function for Decompressing and Playing Back a Sequence
From a Disk File 3-42

Spooling Compressed Data 3-44

Banding and Extending Images 3-45

Defining Key Frame Rates 3-47

Fast Dithering 3-47

Understanding Compressor Components 3-48

Image Compression Manager Reference 3-49

Data Types 3-49

The Image Description Structure 3-49

The Compressor Information Structure 3-52

The Compressor Name Structure 3-55

The Compressor Name List Structure 3-56

Compression Quality Constants 3-57

Image Compression Manager Function Control Flags 3-58

Image Compression Manager Functions 3-61

Getting Information About Compressor Components 3-62

Getting Information About Compressed Data 3-67

Working With Images 3-73

Working With Pictures and PICT Files 3-88

Making Thumbnail Pictures 3-103

Working With Sequences 3-106

Changing Sequence-Compression Parameters 3-120

Constraining Compressed Data 3-127

Changing Sequence-Decompression Parameters 3-129

Working With the StdPix Function 3-137

Aligning Windows 3-142

Working With Graphics Devices and Graphics Worlds 3-147

Application-Defined Functions 3-148

Data-Loading Functions 3-149

Data-Unloading Functions 3-150

Progress Functions 3-152

Completion Functions 3-154

Alignment Functions 3-155

Summary of the Image Compression Manager 3-157

C Summary 3-157

Constants 3-157

Data Types 3-159

Image Compression Manager Functions 3-163

Application-Defined Functions 3-169

C H A P T E R 3

Contents 3-3

Pascal Summary 3-170

Constants 3-170

Data Types 3-172

Image Compression Manager Routines 3-175

Application-Defined Routines 3-181

Result Codes 3-182

C H A P T E R 3

Introduction to the Image Compression Manager 3-5

Image Compression Manager

This chapter describes the Image Compression Manager. The Image Compression

Manager provides image-compression and image-decompression services to

applications and other managers. If you are developing an application that works

with images, you should read this chapter to familiarize yourself with the features of the

Image Compression Manager. If you want to develop a compressor or decompressor for

use on the Macintosh computer, see Inside Macintosh: QuickTime Components for

information about the software interfaces that your component must support in order to

work with the Image Compression Manager.

Image compression benefits you by decreasing the amount of storage required for image

data, decreasing the time required to exchange image data across networks, and

decreasing the time required to read data from disks and CD-ROM volumes.

This chapter is divided into the following major sections:

■ “Introduction to the Image Compression Manager” contains a general introduction to
the features provided by the Image Compression Manager.

■ “About Image Compression” presents background information on image compression
and image-compression algorithms, and it describes the features of the image
compressors and decompressors supplied by Apple.

■ “Using the Image Compression Manager” discusses how you can use the features of
the Image Compression Manager to compress and decompress still images and image
sequences—within this section are a number of shorter sections that discuss more
advanced topics, including key frames, fast dithering, and compressor and
decompressor components.

■ “Image Compression Manager Reference” describes the data types and functions
provided by the Image Compression Manager.

■ “Summary of the Image Compression Manager” contains a condensed listing of the
constants, data types, and functions provided by the Image Compression Manager in
C and in Pascal.

Introduction to the Image Compression Manager

The Image Compression Manager provides your application with an interface for

compressing and decompressing images and sequences of images that is independent of

devices and algorithms.

Uncompressed image data requires a large amount of storage space. Storing a single

640-by-480 pixel image in 32-bit color can require as much as 1.2 MB. Sequences of

images, like those that might be contained in a QuickTime movie, demand substantially

more storage than single images. This is true even for sequences that consist of fairly

small images, because the movie consists of such a large number of those images.

Consequently, minimizing the storage requirements for image data is an important

consideration for any application that works with images or sequences of images.

C H A P T E R 3

Image Compression Manager

3-6 Introduction to the Image Compression Manager

The Image Compression Manager allows your application to

■ use a common interface for all image-compression and image-decompression
operations

■ take advantage of any compression software or hardware that may be present in a
given Macintosh configuration

■ store compressed image data in pictures

■ temporally compress sequences of images, further reducing the storage requirements
of movies

■ display compressed PICT files without the need to modify your application

■ use an interface that is appropriate for your application—a high-level interface if you
do not need to manipulate many compression parameters or a low-level interface that
provides you greater control over the compression operation

The Image Compression Manager compresses images by invoking image compressor
components and decompresses images using image decompressor components.
Compressor and decompressor components are code resources that present a standard

interface to the Image Compression Manager and provide image-compression and

image-decompression services, respectively. The Image Compression Manager receives

application requests and coordinates the actions of the appropriate components. The

components perform the actual compression and decompression. Compressor and

decompressor components are standard components and are managed by the

Component Manager. For detailed information about creating compressor and

decompressor components, see Inside Macintosh: QuickTime Components.

Because the Image Compression Manager is independent of specific compression

algorithms and drivers, it provides a number of advantages to developers of image-

compression algorithms. Specifically, compressor and decompressor components can

■ present a common application interface for software-based compressors and
hardware-based compressors

■ provide several different compressors and compression options, allowing the Image
Compression Manager or the application to choose the appropriate tool for a
particular situation

Data That Is Suitable for Compression
One way to represent an image is with a pixel map, which stores a color for every pixel.

For most images, however, a pixel map is an inefficient storage format. For example, a

pixel map containing a solid black image would contain the color black stored over and

over and over again. By compressing the image, some of this redundant information can

be eliminated. The compressed image can occupy much less storage than a pixel map

and can be decompressed to a pixel map when necessary.

C H A P T E R 3

Image Compression Manager

Introduction to the Image Compression Manager 3-7

In addition, human perception of visual images exhibits special qualities that can be

exploited to further compress image data. Image-compression algorithms take

advantage of these properties to reduce the amount of information required to describe

an image well enough to allow a person to see it.

A lossless compression technique can recreate an exact copy of the original image from

the compressed form. Small changes in the image are not objectionable in most

applications, however, so most compressors sacrifice some accuracy in order to further

decrease the size of the compressed data. However, the compressor carefully chooses the

data to omit so that the human visual system compensates for the loss and fools the user

into seeing what appears to be the original image.

The Image Compression Manager works only with image data. The Image Compression

Manager is primarily useful for compressing pictures that have pixel map images, such

as those obtained from scanned still images or digitized video images, or from paint or

three-dimensional rendering applications. You do not achieve significant compression

treating pictures that are stored as groups of graphics primitives, such as those created

by drawing, computer-aided design (CAD), or three-dimensional modeling applications.

These applications create images in a compact format that precisely states the

characteristics of the objects in the image. In fact, if you were to convert such images to

pixel map representations and then compress the resulting image with the Image

Compression Manager, you would probably end up with a larger, less precise image

than the original. If a picture contains both primitives and pixel map image data (such as

text or lines drawn over a painted or digitized image) the Image Compression Manager

compresses the pixel map data and leaves the graphics primitives unchanged.

The Image Compression Manager also provides services for compressing and

decompressing sequences of images or frames (another term for a single visual image in

an image sequence). When processing a sequence, compressors may perform temporal
compression, compressing the sequence by eliminating information that is redundant

from one frame to the next. This temporal compression differs from spatial compression,
which is performed on individual images or frames within a sequence. You may use

both techniques on a single sequence.

Compressor components perform temporal compression by comparing the current

frame in a sequence with the previous frame. The compressor then stores information

about only those pixels that change significantly between the two images. When adjacent

images contain substantially similar visual information, as is often the case in movies,

temporal compression can significantly reduce the amount of data required to describe

the images in the sequence. Your application indicates the desired quality level for the

compressed image. The compressor uses this value to govern the extent to which it takes

advantage of temporal redundancy between images. There is also a spatial quality level

that you can use to control the amount of spatial compression applied to each individual

image. Both of these quality values govern the amount of accuracy that is lost in the

compressed image.

C H A P T E R 3

Image Compression Manager

3-8 About Image Compression

Note that the Image Compression Manager does not maintain any time information for

an image sequence. Rather, the Image Compression Manager maintains the order and

content of the images in the sequence while the Movie Toolbox handles all timing

considerations.

Storing Images
The Image Compression Manager can compress two kinds of image data: pictures and

pixel maps. Pictures may be stored in memory, in a resource, or in a PICT file. Pixel maps

are normally stored in a window or offscreen buffer. When compressing an image from a

PICT file, the Image Compression Manager provides facilities that allow applications to

spool data to and from the disk file, as appropriate to the operation. These

application-provided data-loading and data-unloading functions allow arbitrarily large

images to be compressed or decompressed without requiring large amounts of memory.

Applications must convert images that are not stored as pictures or pixel maps into one

of these formats before compressing them. The Image Compression Manager contains

several high-level functions that make it quite easy for applications to work with

compressed images that are stored as PICT files. See “Working With Pictures” on

page 3-24 for more information.

About Image Compression

This section provides some background information regarding image compression. This

discussion has been divided into two main sections. The first, “Image-Compression

Characteristics,” describes the key features you can use to choose a compression

algorithm for your image data. The second, “Compressors Supplied by Apple,”

discusses the compressors that are supplied with the Image Compression Manager by

Apple.

Image-Compression Characteristics
There are three main characteristics by which you can judge image-compression

algorithms: compression ratio, compression speed, and image quality. You can use these

characteristics to determine the suitability of a given compression algorithm to your

application. The following paragraphs discuss each of these attributes in more detail.

Compression Ratio

The compression ratio is equal to the size of the original image divided by the size of the

compressed image. This ratio gives an indication of how much compression is achieved

for a particular image.

C H A P T E R 3

Image Compression Manager

About Image Compression 3-9

The compression ratio achieved usually indicates the picture quality. Generally, the

higher the compression ratio, the poorer the quality of the resulting image. The trade-off

between compression ratio and picture quality is an important one to consider when

compressing images.

Furthermore, some compression schemes produce compression ratios that are highly

dependent on the image content. This aspect of compression is called data dependency.

Using an algorithm with a high degree of data dependency, an image of a crowd at a

football game (which contains a lot of detail) may produce a very small compression

ratio, whereas an image of a blue sky (which consists mostly of constant colors and

intensities) may produce a very high compression ratio.

Compression Speed

Compression time and decompression time are defined as the amount of time required

to compress and decompress a picture, respectively. Their value depends on the

following considerations:

■ the complexity of the compression algorithm

■ the efficiency of the software or hardware implementation of the algorithm

■ the speed of the utilized processor or auxiliary hardware

Generally, the faster that both operations can be performed, the better. Fast compression

time increases the speed with which material can be created. Fast decompression time

increases the speed with which the user can display and interact with images.

Image Quality

Image quality describes the fidelity with which an image-compression scheme recreates

the source image data. Compression schemes can be characterized as being either lossy

or lossless. Lossless schemes preserve all of the original data. Lossy compression does

not preserve the data precisely; image data is lost, and it cannot be recovered after

compression. Most lossy schemes try to compress the data as much as possible, without

decreasing the image quality in a noticeable way. Some schemes may be either lossy or

lossless, depending upon the quality level desired by the user.

Compressors Supplied by Apple
Apple supplies six image-compression algorithms with the Image Compression

Manager. This section discusses each of these compressors and identifies their strengths

and weaknesses in light of the compression characteristics just discussed. You can use

this discussion as a guideline for choosing a compression algorithm for your specific

situation. All the compressors support both temporal and spatial compression except for

the Photo and Raw Compressors, which support only spatial compression.

C H A P T E R 3

Image Compression Manager

3-10 About Image Compression

The Photo Compressor

The Photo Compressor implements the Joint Photographic Experts Group (JPEG)

algorithm for image compression. JPEG is an international standard for compressing still

images. The version of JPEG supplied with QuickTime complies with the baseline

International Standards Organization (ISO) standard bitstream, version 9R9.

The Photo Compressor performs best on images that vary smoothly or that do not have a

large percentage of their areas devoted to edges or other types of sharp detail. This is the

case for most natural (that is, nonsynthetic) images. In practice, you will find that

compression ratios are highly dependent on source images, but they generally range

from 5:1 to 50:1 at 24 bits per pixel, with good picture quality resulting from compression

ratios between 10:1 and 20:1.

Picture quality is generally very good to excellent and is often good enough for use in

demanding desktop publishing applications. Very high-resolution images obtained

through the use of 24-bit color scanners would best be compressed using the Photo

Compressor. This compressor is good for 8-bit grayscale images; it is not well suited to

1-bit images or non-natural images that usually have high contrast.

On a Macintosh IIsi, the Photo Compressor can compress a 24-bit, 640-by-480 pixel

image at a normal quality setting in 7.5 seconds, achieving a compression ratio of 10:1.

Decompressing the same image takes 6.5 seconds.

The Video Compressor

The Video Compressor employs an image-compression method developed by Apple.

This method was designed to permit very fast decompression times while maintaining

reasonably good picture quality. This algorithm’s rapid decompression allows

applications to display color images or drawings at interactive speeds. This algorithm is

best suited for use with sequences of video data.

The Video Compressor is better suited to digitized video content rather than

synthetically generated images. This compressor supports both spatial and temporal

compression. If you use only spatial compression, you may obtain compression ratios

from 5:1 to 8:1 with reasonably good quality at 24-bit pixel depths. If you use both spatial

and temporal compression, the compression ratio range extends from 5:1 to 25:1.

On a Macintosh IIsi, the Video Compressor can compress a 24-bit, 640-by-480 pixel

image at a normal quality setting in 3.5 seconds, achieving a compression ratio of 6.5:1.

Decompressing the same image takes 1.0 second.

C H A P T E R 3

Image Compression Manager

About Image Compression 3-11

The Compact Video Compressor

The Compact Video Compressor is best suited to compressing 16-bit and 24-bit video

sequences. It employs a lossy algorithm developed by Apple that is highly asymmetrical.

In other words, it takes significantly longer to compress a frame than it does to

decompress that frame. Compressing a 24-bit, 640-by-480 image on a Macintosh IIsi

computer takes approximately 2.5 minutes, achieving a compression ratio of 18.5:1.

Decompressing the image takes less than a second.

Compared to the Video Compressor, the Compact Video Compressor obtains higher

compression ratios, better image quality, and faster playback speeds. The Compact

Video Compressor can constrain data rates to user-definable levels. This is particularly

important when compressing material for playback from CD-ROM discs.

For best quality results, the Compact Video Compressor should be used on raw source

data that has not been compressed with a highly lossy compressor—such as the Video

Compressor.

The Animation Compressor

The Animation Compressor employs a compression algorithm developed by Apple. This

technique is best suited to animation and computer-generated video content. In addition,

the Animation Compressor can be used to compress sequences of screen images, such as

might be generated for a training application.

The Animation Compressor stores images in run-length encoded format, and it can work

in either a lossy or a lossless mode. The lossless mode maintains picture content

precisely, storing an animation as a series of run-length encoded images. The lossy mode

loses some image quality.

The Animation Compressor’s performance and achieved compression ratios are highly

dependent on the type of images in a scene. The Animation Compressor is very sensitive

to picture changes, and it works best on a clean image that has been generated

synthetically. Images captured from videotape generally have considerable visual noise,

which can corrupt the inherent similarity of the pixels and make it more difficult for the

Animation Compressor to achieve good compression. This compressor works at all pixel

depths.

On a Macintosh IIsi, the Animation Compressor can compress a 24-bit, 640-by-480 pixel

image at a normal quality setting in 2.0 seconds, achieving a compression ratio of 1.3:1.

Decompressing the same image takes 1 second.

The Graphics Compressor

The Graphics Compressor employs a compression algorithm developed by Apple.

This compressor is best suited to 8-bit still images and image sequences in applications

where compression ratio is more important than decompression speed.

C H A P T E R 3

Image Compression Manager

3-12 About Image Compression

The Graphics Compressor is a good alternative to the Animation Compressor whenever

performance is less important than compression ratio. In general, the Graphics

Compressor generates a compressed image that is one-half the size of the same

image compressed by the Animation Compressor. However, the Graphics Compressor

can decompress the image at only half the speed of the Animation Compressor.

Therefore, you should consider using the Graphics Compressor with relatively slow

storage devices, such as CD-ROM discs. In these circumstances, the Graphics

Compressor has sufficient time to decompress the image or image sequence.

On a Macintosh IIsi, the Graphics Compressor can compress a 640-by-480 pixel image

that has been dithered to 8-bit pixel depth at a normal quality setting in 6.5 seconds,

achieving a compression ratio of 2.5:1. Decompressing the same image takes 1.0 second.

The Raw Compressor

The Raw Compressor can reduce image storage requirements by converting an image

from one pixel depth to another. For example, converting a 32-bit image to 16-bit format

achieves a 2:1 compression ratio. The Raw Compressor can also convert a 32-bit image to

24-bit format by dropping the pad byte. This achieves a 4:3 compression with no loss of

quality. The Raw Compressor accomplishes this conversion quickly, and the resulting

image retains excellent image quality in most cases.

The Image Compression Manager often uses the Raw Compressor to extend the

capabilities of other compressors. For example, the Photo Compressor works directly

with only 32-bit color images and 8-bit grayscale images. For color images, the Image

Compression Manager uses the Raw Compressor to convert the pixel depth of the

original image to 32-bit color or to convert the 32-bit decompressed image to another

pixel depth for display.

Image quality can deteriorate when the pixel depth is reduced; however, this technique

is generally lossless when converting from a lower pixel depth to a higher depth. With 1,

2, 4, 8, and 24-bit images, the Raw Compressor allows colors to be mapped through a

color table.

Note that the resulting image may be larger than the corresponding pixel image in PICT

format, because QuickDraw stores PICT images in a run-length encoded format.

Note

These uncompressed QuickTime-specific PICT images cannot be used
without QuickTime. ◆

Performance figures for the Raw Compressor are dependent upon the source and

destination pixel depths. (The Raw Compressor is signified by the None option in the

standard compression dialog box.)

C H A P T E R 3

Image Compression Manager

About Image Compression 3-13

Types of Images Suitable for Different Compressors

This section presents a series of graphs that indicate the amount of compression you can

obtain when you compress still images with the Apple-supplied QuickTime compressors.

Note

Since some compressors make use of temporal compression, these
results cannot be used to directly infer results for compressing image
sequences (as in QuickTime movies). ◆

The different compressors take advantage of different properties of an image to achieve

their compression; hence, the type of image being compressed significantly affects the

amount of compression achieved, as well as the fidelity of the compressed image to the

original.

For this comparison, three images that represent three classes of digital images are used.

Figure 3-1 provides a photographic image scanned from a photographic slide. This is a

natural image and contains no computer-synthesized characters or graphics elements.

Figure 3-1 24-bit photographic image

C H A P T E R 3

Image Compression Manager

3-14 About Image Compression

Figure 3-2 shows a full-color image created by a three-dimensional graphics rendering

program. It does not contain the detail of a natural image, but it is a full-color image that

needs significantly more than 256 colors to portray it accurately. It is possible to create

such an image with a full-color paint or drawing program as well as from a

three-dimensional rendering program. Note also that, if an image created by these means

has enough detail, it becomes more like a photographic image. Likewise, a natural image

with some overlaid graphics or text may fit more closely into this category than the

photographic category depending on the proportions of each type of imagery.

Figure 3-2 24-bit synthetic image

C H A P T E R 3

Image Compression Manager

About Image Compression 3-15

Figure 3-3 is an example of a nondithered simple graphic image with fewer than 256

colors. The image is adequately represented by 8 bits per pixel. This image is also special

in that it has large horizontal areas that are all of a single color, which is an important

characteristic exploited by several compression algorithms, including the normal PICT

packing used by QuickDraw.

Figure 3-3 8-bit graphic image

C H A P T E R 3

Image Compression Manager

3-16 About Image Compression

Figure 3-4 is a natural photographic image dithered to 8 bits per pixel.

Figure 3-4 8-bit photographic image

All of the graphs show the compressed data size (in kilobytes) versus the quality of an

image at minimum, low, normal, high, and maximum compression settings. The

Raw Compressor is included to show the size of the image in raw pixels. The Raw

Compressor is not useful for storing still images, since it does not even use the simple

packing technique used by QuickDraw (notice that the 24-bit raw format is larger than

the uncompressed PICT file).

Figure 3-5 provides a graph that compares compressor performance for the photographic

image shown in Figure 3-1. The best compression is obtained by the Compact Video

Compressor. The Photo Compressor performs as well as the Compact Video Compressor

at minimum, low, and normal compression settings, but does not perform as well at high

and maximum settings. However, as you might expect, the Photo Compressor retains the

best image quality. The Graphics Compressor stores the image at a smaller size than the

highest quality setting of the Photo Compressor, but only stores 256 colors, which

significantly degrades the quality of the image. The Video Compressor does almost as

well as the Photo Compressor, but the image quality is lower, because of compression

artifacts and reduced color resolution. The Animation Compressor retains the color

resolution and detail of the image when storing millions of colors and the detail when

storing thousands of colors, but it does not achieve nearly as much compression as the

other compressors.

C H A P T E R 3

Image Compression Manager

About Image Compression 3-17

Figure 3-5 Compressor performance for a 921 KB, 24-bit, photographic image

C H A P T E R 3

Image Compression Manager

3-18 About Image Compression

The graph in Figure 3-6 compares compressor performance for the full-color,

computer-synthesized image shown in Figure 3-2. The Compact Video Compressor

again achieves the best overall compression, followed by the Photo and Video

Compressors. Again the Graphics Compressor cannot accurately represent all of the

colors of the image and is not suitable for use on this type of image. With this image, the

Animation Compressor does better than it did with the natural image, and it may be

suitable if space constraints are not as important as speed constraints. Because

computer-generated images tend to have smoother color gradations than natural images,

the loss of color resolution with the Video Compressor and the 16-bit Raw and

Animation Compressors is more apparent.

C H A P T E R 3

Image Compression Manager

About Image Compression 3-19

Figure 3-6 Compressor performance for a 502 KB, 24-bit, synthetic image

C H A P T E R 3

Image Compression Manager

3-20 About Image Compression

Figure 3-7 compares compressor performance for the simple graphic image shown

in Figure 3-3. The Graphics Compressor is the only reasonable choice. Not only does it

produce the best compression, but also it stores the image without losing any of the

image’s detail, since there are fewer than 256 colors in the source image. The Photo and

Compact Video Compressors get some compression, but do not store the image as

accurately as the Graphics Compressor. The Video Compressor stores the image even

less accurately and does not compress the image well at all. The Animation Compressor

also does not store the image with complete accuracy at 16 or even 24 bits per pixel, and

the resulting files are much larger than the uncompressed PICT. Although the 8-bit

Animation Compressor does store the image accurately, it only achieves half as much

compression as the Graphics Compressor and its file is also larger than the original PICT.

C H A P T E R 3

Image Compression Manager

About Image Compression 3-21

Figure 3-7 Compressor performance for a 30 KB, 8-bit, graphic image

C H A P T E R 3

Image Compression Manager

3-22 About Image Compression

The graph in Figure 3-8 compares performance for the 8-bit, dithered, photographic

image shown in Figure 3-4. The best results are obtained by the Compact Video

Compressor. The rest of the results are almost the same as for the full-color, natural

image shown in Figure 3-5, but this time the Graphics Compressor stores the image

exactly, since it had only 256 colors to start with. The other compressors do almost as

well as they did for the full-color, natural image, but the compression for all of them is a

bit worse, due to the added artifacts introduced when the image was converted to 8 bits

per pixel. The 16-bit and 24-bit versions of the Animation Compressor do not make sense

for this image, since their results are always larger than the original PICT. The Photo and

Video Compressors still do well on this image, but they do lose some detail that the

Graphics Compressor retains. The losses are minor, however, and the sizes approach the

size of the Graphics Compressor’s image only at high-quality settings, where the losses

are negligible.

C H A P T E R 3

Image Compression Manager

About Image Compression 3-23

Figure 3-8 Compressor performance for a 302 KB, 8-bit, dithered, photographic image

C H A P T E R 3

Image Compression Manager

3-24 Using the Image Compression Manager

Using the Image Compression Manager

This section discusses several of the ways your application may use the Image

Compression Manager to compress and decompress images and sequences of images.

Getting Information About Compressors and Compressed Data
Use the Gestalt environmental selector gestaltCompressionMgr to determine

whether the Image Compression Manager is available. Gestalt returns a 32-bit value

indicating the version of the Image Compression Manager that is installed. This return

value is formatted in the same way as the value returned by the

CodecManagerVersion function (described on page 3-62), and it contains the version

number specified as an integer value.

#define gestaltCompressionMgr 'icmp'

The Image Compression Manager provides a number of functions that allow your

application to obtain information about the facilities available for image compression or

about compressed images. Your application may use some of these functions to select a

specific compressor or decompressor for a given operation or to determine how much

memory to allocate to receive a decompressed image. In addition, your application may

use some of these functions to determine the capabilities of the components that are

available on the user’s computer system. You can then condition the options your

program makes available to the user based on the user’s system configuration.

See “Getting Information About Compressor Components,” which begins on page 3-62,

and “Getting Information About Compressed Data,” which begins on page 3-67, for

detailed descriptions of these functions.

Working With Pictures
The Image Compression Manager provides a set of functions that allow applications to

work easily with compressed pictures stored in version 2 PICT files. These functions

constitute a high-level interface to image compression and decompression. Applications

that require little control over the compression process may use these functions to

display pictures that contain compressed image data.

Existing programs can display (without changes) pictures that contain compressed

image data. When the Image Compression Manager is installed on a system, it installs a

new StdPix graphics function (see page 3-137 for more information on the StdPix

graphics function). This function handles all requests to display compressed images.

Whenever an application issues the standard QuickDraw DrawPicture routine

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-25

(described in Inside Macintosh: Imaging) to display an image that contains compressed

image data, the StdPix function decompresses the image by invoking the Image

Compression Manager. The function then delivers the decompressed image to the

application.

The Image Compression Manager also provides a simple mechanism for creating a

picture that contains compressed image data. For example, to place an existing

compressed image into a picture, your application could open the picture with

QuickDraw’s OpenPicture (or OpenCPicture) function and then call the Image

Compression Manager’s DecompressImage function, as if you were going to display

the image. The Image Compression Manager places the compressed image and the other

data that describe the image into the picture for you.

The Image Compression Manager stores the following information about a compressed

picture:

■ the image description, which describes the compression format and characteristics of
the compressed image data

■ the compressed data for the image

■ the transfer mode (source copy mode, dither copy mode, and so on)

■ the matte pixel map

■ the mask region

■ the mapping matrix

■ the source rectangle of the image

The Image Compression Manager stores this information in the picture as a new PICT

opcode (described in the following paragraphs). When an application draws the

compressed picture on a Macintosh computer that is running the Image Compression

Manager, the StdPix function instructs the Image Compression Manager to decompress

the image. If an application tries to read a picture file that contains compressed data on a

Macintosh that does not have the Image Compression Manager installed, the system

ignores the new opcodes and displays a message that indicates that the user

needs QuickTime in order to display the compressed image data. The message states

“QuickTime™ and a <Codec Name> decompressor are needed to see this picture”.

The Color QuickDraw version 2 picture format includes PICT opcodes for compressed

and uncompressed QuickTime images. (An opcode is a hexidecimal number that

represents drawing commands and the parameters that affect those drawing commands

in a picture.) For more information on the version 2 picture format, see the chapter

“Color QuickDraw” in Inside Macintosh: Imaging.

The PICT opcodes for compressed and uncompressed QuickTime images are

■ opcode $8200, which signals a compressed QuickTime image

■ opcode $8201, which signals an uncompressed QuickTime image

C H A P T E R 3

Image Compression Manager

3-26 Using the Image Compression Manager

Table 3-1 gives an overview of the opcode for QuickTime compressed pictures.

▲ W A R N I N G

Do not attempt to read opcodes directly. For compatibility reasons, use
Toolbox routines to access this information. ▲

The MaskSize field of opcode $8200 is followed by five variable fields:

■ The matte image description, which contains the image description structure for the
matte. The variable size is specified in the first long integer in the opcode. This field is
not included if the MatteSize field is 0.

■ The matte data, which contains the compressed data for the matte. The size of this
field is defined by the MatteSize field described in Table 3-1. This field is not
included if the MatteSize field is 0.

■ The mask region, which contains the region for masking. The size of this variable is
defined by the MaskSize field described in Table 3-1. This field is not included if the
MaskSize field is 0.

■ The image description structure for this data. The size of this variable is specified
in the first long integer in the idSize field of this image description.

■ The image data, which contains the compressed data for the image. The size of the
image data is specified in the image description’s dataSize field.

See “The Image Description Structure” beginning on page 3-49 for details on the idSize

and dataSize fields.

Table 3-1 Fields of the PICT opcode for compressed QuickTime images

Field name Description Data size (in bytes)

Opcode Compressed picture data 2

Size Size in bytes of data for this opcode 4

Version Version of this opcode 2

Matrix 3 by 3 fixed transformation matrix 36

MatteSize Size of matte data in bytes 4

MatteRect Rectangle for matte data 8

Mode Transfer mode 2

SrcRect Rectangle for source 8

Accuracy Preferred accuracy 4

MaskSize Size of mask region in bytes 4

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-27

Table 3-2 provides an overview of the structure of uncompressed QuickTime images.

The MatteRect field of opcode $8201 is followed by three variable fields and a

subopcode:

■ The matte image description, which contains the image description structure for the
matte. The size of this variable is specified in the first long integer in this opcode. This
field is not included if the MatteSize field is 0.

■ The matte data, which contains information for the matte. The size of this variable is
defined by the MatteSize field.

■ A subopcode (2 bytes in length) which describes the image and mask and is entirely
within the other opcode. Its size is included in the size for the main opcode; hence it is
not included if the QuickTime opcode is skipped. This subopcode can be either $98,
$99, $9A, or $9B.

■ The data for the subopcode variable which contains information for the image.

Compressing Images
The Image Compression Manager provides a rich set of functions that allow applications

to compress images. Some of these functions present a straightforward interface that is

suitable for applications that need little control over the compression operation. Others

permit applications to control the parameters that govern the compression operation.

This section describes the basic steps that your application follows when compressing a

single frame of image data. Following this discussion, Listing 3-1 shows a sample

function that compresses an image.

First, determine the parameters for the compression operation. Typically, the user

specifies these parameters in a user dialog box you may supply via the standard

compression dialog component. For comprehensive details, see the chapter “Standard

Image-Compression Dialog Components” in Inside Macintosh: QuickTime Components.
Your application may choose to give the user the ability to specify such parameters as

the compression algorithm, image quality, and so on.

Table 3-2 Fields of the PICT opcode for uncompressed QuickTime images

Field name Description Data size (in bytes)

Opcode Uncompressed picture data 2

Size Size in bytes of data for this opcode 4

Version Version of this opcode 2

Matrix 3 by 3 fixed transformation matrix 36

MatteSize Size of matte data in bytes 4

MatteRect Rectangle for matte data 8

C H A P T E R 3

Image Compression Manager

3-28 Using the Image Compression Manager

Your application may give the user the option to specify a compression algorithm based

on an important performance characteristic. For example, the user may be most

concerned with size, speed, or quality. The Image Compression Manager allows your

application to choose the compressor component that meets the specified criterion.

To determine the maximum size of the resulting compressed image, your application

should then call the Image Compression Manager’s GetMaxCompressionSize

function (described on page 3-68). You provide the specified compression parameters to

this function. In response, the Image Compression Manager invokes the appropriate

compressor component to determine the maximum number of bytes required to store

the compressed image. Your application should then reserve sufficient memory to

accommodate the compressed image or use a data-unloading function to spool the

compressed data to disk (see “Spooling Compressed Data” beginning on page 3-44 for

more information about data-unloading functions).

Once the user has specified the compression parameters and your application has

established an appropriate environment for the operation, call the CompressImage (or

FCompressImage) function to compress the image. Use the CompressImage function

(described on page 3-73) if your application does not need to control all the parameters

governing compression. If your application needs access to other compression

parameters, use the FCompressImage function (described on page 3-75).

The Image Compression Manager manages the compression operation and invokes the

appropriate compressor. The manager returns the compressed image and its associated

image description structure to your application. Note that the image description

structure contains a field indicating the size of the resulting image.

Note

You should use the standard compression dialog component to set up
the parameters for compression. See the chapter “Standard
Image-Compression Dialog Components” in Inside Macintosh: QuickTime
Components for details. ◆

Listing 3-1 Compressing and decompressing an image

#include <Types.h>

#include <Traps.h>

#include <Memory.h>

#include <Errors.h>

#include <FixMath.h>

#include "Movies.h"

#include "ImageCompression.h"

#include "StdCompression.h"

#define kMgrChoose 0

PicHandle GetQTCompressedPict (PixMapHandle myPixMap);

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-29

PicHandle GetQTCompressedPict(PixMapHandle myPixMap)

{

long maxCompressedSize = 0;

Handle compressedDataH = nil;

Ptr compressedDataP;

ImageDescriptionHandle imageDescH = nil;

OSErr theErr;

PicHandle myPic = nil;

Rect bounds = (**myPixMap).bounds;

CodecType theCodecType = 'jpeg';

CodecComponent theCodec = (CodecComponent)anyCodec;

CodecQ spatialQuality = codecNormalQuality;

short depth = 0;/* let ICM choose depth */

theErr = GetMaxCompressionSize(myPixMap, &bounds, depth,

spatialQuality, theCodecType,

(CompressorComponent)theCodec,

 &maxCompressedSize);

if (theErr) return nil;

imageDescH = (ImageDescriptionHandle)NewHandle(4);

compressedDataH = NewHandle(maxCompressedSize);

if (compressedDataH != nil && imageDescH != nil)

{

MoveHHi(compressedDataH);

HLock(compressedDataH);

compressedDataP = StripAddress(*compressedDataH);

theErr = CompressImage(myPixMap,

&bounds,

spatialQuality,

theCodecType,

imageDescH,

compressedDataP);

if (theErr == noErr)

{

ClipRect(&bounds);

myPic = OpenPicture(&bounds);

theErr = DecompressImage(compressedDataP,

imageDescH,

myPixMap,

C H A P T E R 3

Image Compression Manager

3-30 Using the Image Compression Manager

&bounds,

&bounds,

srcCopy,

nil);

ClosePicture();

}

if (theErr

|| GetHandleSize((Handle)myPic) == sizeof(Picture))

{

KillPicture(myPic);

myPic = nil;

}

}

if (imageDescH) DisposeHandle((Handle)imageDescH);

if (compressedDataH) DisposeHandle(compressedDataH);

return myPic;

}

Decompressing Images
“Working With Pictures,” which begins on page 3-24, discusses how applications can

display compressed images that are stored as pictures by calling the DrawPicture

function. The Image Compression Manager also provides functions that allow your

application to display single-frame compressed images. As with image compression,

your application can choose to specify all the parameters that govern the operation, or it

can leave many of these choices to the Image Compression Manager.

This section describes the steps your application must follow to decompress an image

into a pixel map.

First, your application determines where to display the decompressed image. Your

application must specify the destination graphics port to the Image Compression

Manager. In addition, you may indicate that only a portion of the source image is to be

displayed. You describe the desired portion of the image by specifying a rectangle in the

coordinate system of the source image. You can determine the size of the source image

by examining the image description structure associated with the image (see “The Image

Description Structure” on page 3-49 for more information about image description

structures).

Your application may also specify that the image is to be mapped into the destination

graphics port. The Image Compression Manager provides two mechanisms for mapping

images during decompression. The DecompressImage function (described on

page 3-78) accepts a second rectangle as a parameter. During decompression the Image

Compression Manager maps the desired image to the destination rectangle, scaling the

resulting image as appropriate to fit the destination rectangle. The FDecompressImage

function (described on page 3-79) allows your application to specify a mapping matrix

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-31

for the operation. Currently, the Image Compression Manager supports only scaling and

translation matrix operations.

Your application can invoke further effects by specifying a mask region or blend matte

for the image. Mask regions and mattes control which pixels in the source image are

drawn to the destination. Mask regions define the part of the source image that is

displayed. During decompression the Image Compression Manager displays only those

pixels in the source image that correspond to bits in the mask that are set to 1. Mask

regions must be defined in the destination coordinate system.

Blend mattes contain several bits per pixel and are defined in the coordinate system of

the source image. Mattes provide a mechanism for mixing two images. The Image

Compression Manager displays the weighted average of the source and destination

based on the corresponding pixel in the matte (this feature is fully functional in System 7

and is approximated in System 6).

Decompress the image by calling the Image Compression

Manager’s DecompressImage or FDecompressImage function. Your application must

provide an image description structure along with the other parameters governing the

operation. Use the DecompressImage function for simple decompression operations. If

your application needs greater control, use the FDecompressImage function. See

“Working With Images” which begins on page 3-73, for detailed descriptions of these

functions.

The Image Compression Manager manages the decompression operation and

invokes the appropriate decompressor component. The manager returns the

decompressed image to the location specified by your application.

Compressing Sequences
The Image Compression Manager also provides functions that allow your application to

compress and decompress sequences of images, such as might constitute a QuickTime

movie. The tools provided by the Image Compression Manager focus on image

compression and decompression and on the ordering of the images in a sequence, not on

timing considerations. Use the Movie Toolbox to handle all the issues relating to the

amount of time each image should be shown on the screen. For information on

decompressing image sequences, see the next section, “Decompressing Sequences.”

A series of images can be compressed as a sequence if those images share an image

description. That is, each image in the sequence must have the same compressor type,

pixel depth, color lookup table, and boundary dimensions. To take best advantage of

temporal compression, the images should also be related to each other (like frames in a

movie), but this relationship is not necessary for them to be grouped as a sequence. If

you create a sequence from completely unrelated images, you may not be able to achieve

significant temporal compression.

When compressing image sequences, your application must perform several steps in

addition to those required for single-frame image compression. This section describes a

typical function for compressing an image sequence. Note that much of the setup

processing is the same as that performed for single-frame images.

C H A P T E R 3

Image Compression Manager

3-32 Using the Image Compression Manager

First, determine the parameters for the compression operation. As with single-image

compression, the user may specify these parameters in a dialog box you can supply via

the standard image-compression dialog component (see the chapter “Standard

Image-Compression Dialog Components” in Inside Macintosh: QuickTime Components for

details). Your application may choose to give the user the ability to specify such

parameters as the compression algorithm, image quality, and so on. Note that image

sequences require additional parameters, such as temporal quality.

Your application may give the user the option of specifying a compression algorithm

based on an important performance characteristic. For example, the user may be most

concerned with size, speed, or accuracy. The Image Compression Manager allows your

application to choose the compressor component that meets the specified criterion.

Your application signals its intention to compress an image sequence by issuing the

Image Compression Manager’s CompressSequenceBegin function (see page 3-106 for

more information about this function). At this time your application specifies many of

the parameters that govern the sequence-compression operation. When you set the

compression parameters and the temporalQuality parameter is not 0, then be sure to

set the value of either the codecFlagUpdatePrevious or

codecFlagUpdatePreviousComp flag to 1 in the flags parameter of the

CompressSequenceBegin function.

Once you have started the sequence, you then compress each image in the sequence by

performing the following steps:

1. Your application must call the Image Compression Manager’s
GetMaxCompressionSize function to determine the maximum size of the
compressed data that will result from the current image (see “Getting Information
About Compressed Data” on page 3-67 for more information about this function). You
provide the specified compression parameters to this function. In response, the Image
Compression Manager invokes the appropriate compressor component to determine
the number of bytes required to store the largest compressed image in the sequence.
Your application should then reserve sufficient memory to accommodate that
compressed image. You can use this returned value until you change the settings of
the compression parameters.

2. Your application must call the CompressSequenceFrame function to compress the
image (see “Working With Sequences” on page 3-106 for more information about this
function). It may be necessary or desirable for your application to change one or more
of the compression parameters while processing a sequence. The Image Compression
Manager provides several functions that allow your application to modify such
parameters as the spatial or temporal quality or the data-unloading function. See
“Changing Sequence-Compression Parameters” on page 3-120 for more information
about these functions.

3. The Image Compression Manager manages the compression operation and invokes
the appropriate compressor. The manager returns the compressed image and its
associated image description to your application.

4. Your application is then free to store the compressed image with the others in the
sequence.

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-33

After the entire sequence is compressed, you end the process by calling the

CDSequenceEnd function (see page 3-119 for more information about this function).

Decompressing Sequences
The Movie Toolbox handles the details of displaying compressed image sequences that

are stored in QuickTime movies. (For details, see the chapter “Movie Toolbox” in this

book.) However, if you want to work with sequences in your application, the Image

Compression Manager provides tools for decompressing image sequences. As with

still-image compression, decompressing sequences requires additional effort on the part

of your application. In addition, there are some processing considerations that are

particular to sequence decompression. This section describes the steps necessary to

decompress an image sequence. Then it discusses several points you should consider

before decompressing a sequence.

When decompressing an image sequence, your application must first determine where

to display the decompressed sequence. Your application must specify the destination

graphics port to the Image Compression Manager. In addition, you may indicate that

only a portion of the source image is to be displayed. You describe the desired portion of

the image by specifying a rectangle in the coordinate system of the source image. You

can determine the size of the source image by examining the image description structure

associated with the image (see “The Image Description Structure” on page 3-49 for more

information about image description structures).

Your application may also specify that the image is to be mapped into the destination

graphics port. The DecompressSequenceBegin function (described on page 3-113)

allows your application to specify a mapping matrix for the operation.

Your application can invoke additional effects by specifying a mask region or blend

matte for the image. Mask regions and mattes control which pixels in the source image

are drawn to the destination. Mask regions must be defined in the destination coordinate

system. During decompression the Image Compression Manager displays only those

pixels in the source image that correspond to bits in the mask that are set to 1. Mattes

contain several bits per pixel and are defined in the coordinate system of the source

image. Mattes provide a mechanism for blending pixels from source images.

Your application signals its intention to decompress an image sequence by issuing the

Image Compression Manager’s DecompressSequenceBegin function (see page 3-113

for more information about this function). At this time your application specifies many

of the parameters that govern the sequence-decompression operation. The Image

Compression Manager, in turn, allocates system resources that are necessary for the

operation.

Once you have started the sequence, you then decompress each image in the sequence.

Call the DecompressSequenceFrame function to decompress the image (described on

page 3-116). It may be necessary or desirable for your application to change one or more

of the decompression parameters while processing a sequence. The Image Compression

Manager provides several functions that allow your application to modify such

parameters as the accuracy, the transformation matrix, or the data-loading function. See

C H A P T E R 3

Image Compression Manager

3-34 Using the Image Compression Manager

“Changing Sequence-Decompression Parameters” beginning on page 3-129 for more

information about these functions.

The Image Compression Manager manages the decompression operation and invokes

the appropriate compressor component. The manager returns the decompressed image

to the location specified by your application and applies any effects you may have

specified.

After the entire sequence is decompressed, you end the process by calling the

CDSequenceEnd function (described on page 3-119).

Decompressing Still Images From a Sequence

Your application can, of course, decompress individual images from a sequence. When

doing so, you must be careful to select only those frames that do not depend on other

frames. That is, do not decompress frames from a sequence that has been temporally

compressed unless you first decompress all the frames in sequence starting from the

preceding key frame (see “Defining Key Frame Rates” on page 3-47 for more information

on key frames in image sequences). In general, you should decompress images from

sequences as sequences, rather than as individual frames.

Using Screen Buffers and Image Buffers

There are two special buffers associated with decompressing an image sequence: a

screen buffer and an image buffer. The Image Compression Manager uses the screen

buffer to reduce tearing artifacts that result when an image cannot be decompressed to

the screen quickly enough. Tearing manifests itself when your eye sees parts of

consecutive images simultaneously. Screen buffers should be the same size and pixel

depth as the destination. This provides the fastest screen update speed. The compressor

decompresses the image to the screen buffer, performing the time-consuming tasks

associated with decompression. When the image is fully decompressed, the compressor

quickly copies the image to the screen. Few sequences require the use of a screen buffer.

You must determine whether it is appropriate to your application.

The Image Compression Manager uses image buffers when decompressing sequences

that have been temporally compressed and therefore contain key frames. Image buffers

are especially useful when you want to skip to random frames within a sequence.

Random frame access in temporally compressed sequences forces the compressor to

decompress all the frames between the nearest preceding key frame and the desired

frame. Reconstructing the frame in this manner on the screen can result in jerky sequence

display. As an alternative, the compressor can reconstruct the frame in the offscreen

image buffer and then copy it to the screen when appropriate. Image buffers are

allocated at an appropriate depth and size for the decompressor.

Your application can control the use of the image buffer by the compressor component.

For example, you can force the compressor to draw images only to the image buffer, not

to the screen. In this manner you can use the image buffer to build up sequences without

making the process visible. You can also control when the compressor uses the image

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-35

buffer. You may need to do this when your program is decompressing directly to the

screen and suddenly is prevented from doing so (for example, when your window

becomes hidden).

A Sample Program for Compressing and Decompressing a
Sequence of Images
The sample program presented in this section illustrates the processes described in the

previous sections. The program has been divided into several functions. Listing 3-2

shows the main program.

Listing 3-2 Compressing and decompressing a sequence of images: The main program

WindowPtr displayWindow; /* window in which to display

 sequence */

Rect windowRect; /* rectangle of displayWindow */

main (void)

{

WindowPtr displayWindow;

Rect windowRect;

InitGraf (&thePort);

InitFonts ();

InitWindows ();

InitMenus ();

TEInit ();

InitDialogs (nil);

SetRect (&windowRect, 0, 0, 256, 256);

OffsetRect (&windowRect,/* middle of screen */

((qd.screenBits.bounds.right - qd.screenBits.bounds.left) -

 windowRect.right) / 2,

((qd.screenBits.bounds.bottom - qd.screenBits.bounds.top) -

 windowRect.bottom) / 2);

displayWindow = NewCWindow (nil, &windowRect,

"\pImage", true, 0,

 (WindowPtr)-1, true, 0);

if (displayWindow)

{

SetPort (displayWindow);

SequenceSave ();

C H A P T E R 3

Image Compression Manager

3-36 Using the Image Compression Manager

SequencePlay ();

}

}

A Sample Function for Saving a Sequence of Images to a Disk File

The SequenceSave function shown in Listing 3-3 saves a sequence of images to a disk

file. This function creates and opens a disk file for the image sequence, calls the

CompressSequence function to create and compress the image sequence into the file,

and then calls the MakeMyResource function to save the image description resource in

the file, so that the sequence can be played back later. For details on

CompressSequence, see the next section.

The data for each frame is written to the data fork of the disk file, preceded by a long

word that contains the number of bytes of data for that frame. A description of the

compressed images in the sequence is stored in a 'SEQU' resource in the same file with a

resource ID of 128 or 129. This description is simply the image description structure

maintained by the Image Compression Manager.

The image for each frame of the sequence is drawn into an offscreen graphics world that

the SequenceSave function creates in the currWorld variable. SequenceSave

calls the DrawOneFrame function (described in the next section) to draw each frame’s

image into the currWorld variable. Before any of the frames of the sequence are

drawn, the Image Compression Manager is prepared to compress a sequence of images

through the CompressSequence function.

Listing 3-3 Compressing and decompressing a sequence of images: Saving a sequence to a
disk file

void SequenceSave (void)

{

long filePos;

StandardFileReply fileReply;

short dfRef = 0;

OSErr error;

ImageDescriptionHandle description = nil;

StandardPutFile ("\p", "\pSequence File", &fileReply);

if (fileReply.sfGood)

{

if (! (fileReply.sfReplacing))

{

error = FSpCreate (&fileReply.sfFile, 'SEQM', 'SEQU',

 fileReply.sfScript);

CheckError (error, "\pFSpCreate");

}

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-37

error = FSpOpenDF (&fileReply.sfFile, fsWrPerm, &dfRef);

CheckError (error, "\pFSpOpenDF");

error = SetFPos (dfRef, fsFromStart, 0);

CheckError (error, "\pSetFPos");

CompressSequence (&dfRef, &description);

error = GetFPos (dfRef, &filePos);

CheckError (error, "\pGetFPos");

error = SetEOF (dfRef, filePos);

CheckError (error, "\pSetEOF");

FSClose (dfRef);

FlushVol (nil, fileReply.sfFile.vRefNum);

MakeMyResource (fileReply, description);

if (description != nil)

DisposeHandle ((Handle) description);

}

}

void MakeMyResource (StandardFileReply fileReply,

 ImageDescriptionHandle description)

{

OSErr error;

short rfRef;

Handle sequResource;

FSpCreateResFile (&fileReply.sfFile, 'SEQM', 'SEQU',

 fileReply.sfScript);

error = ResError();

if (error != dupFNErr)

CheckError (error, "\pFSpCreateResFile");

rfRef = FSpOpenResFile (&fileReply.sfFile, fsRdWrPerm);

CheckError (ResError (), "\pFSpOpenResFile");

SetResLoad (false);

sequResource = Get1Resource ('SEQU', 128);

if (sequResource)

RmveResource (sequResource);

C H A P T E R 3

Image Compression Manager

3-38 Using the Image Compression Manager

SetResLoad (true);

sequResource = (Handle) description;

error = HandToHand (&sequResource);

CheckError (error, "\pHandToHand");

AddResource (sequResource,'SEQU', 128, "\p");

CheckError (ResError (), "\pAddResource");

UpdateResFile (rfRef);

CheckError (ResError (), "\pUpdateResFile");

CloseResFile (rfRef);

}

A Sample Function for Creating, Compressing, and Drawing a Sequence
of Images

Listing 3-4 shows the CompressSequence function, which creates and then compresses

the image sequence. CompressSequenceBegin informs the Image Compression

Manager which compressor (of type codectype) to use, what the desired compression

quality is, the key frame rate, the portion of the image to compress (in this example, the

entire image is compressed), and the image to be compressed (in this example, the pixel

map [of type PixMap] in the currWorld variable).

CompressSequenceBegin returns a unique number that identifies the sequence for

subsequent image-compression routines, and it initializes a new image description

structure, which is stored in the handle referenced by the description local variable.

Using a loop, the DrawOneFrame function draws each frame until the last frame is

drawn, at which time the function returns the value of false. Each frame that it draws

is copied to the window so that it can be seen during the compression sequence.

The CompressSequenceFrame function is used to compress each frame’s image.

CompressSequenceFrame tells the Image Compression Manager

■ which image to compress (in this case, the pixel map of the currWorld variable)

■ the portion of that image to compress (in this case, all of it)

■ whether to update the previous frame’s buffer for frame differencing

■ the address of the buffer that’s to receive the compressed image data

In updating the previous frame’s buffer for frame differencing, the Image Compression

Manager control flag codecFlagUpdatePrevious copies the uncompressed image to

the previous frame’s buffer; contrast this with the codecFlagUpdatePreviousComp

flag, which copies the compressed image to the previous frame’s buffer—the more lossy

the compression, the more the difference between the compressed and uncompressed

images.

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-39

The CompressSequenceBegin function returns a rating of the similarity between the

current frame and the previous frame, but this example ignores this rating. After each

frame is compressed, the number of bytes in the compressed image data is written to the

disk file, followed by the compressed image data itself.

After all the images in the sequence have been compressed, the CDSequenceEnd

function is called to tell the Image Compression Manager that the sequence is over. The

data fork of the file is closed, and the image description is written to a 'SEQU' resource.

The DrawOneFrame function draws one frame of the sequence with QuickDraw. The

frame’s image is drawn into the rectangle specified by the destRect parameter. The

image is a set of color ramps in which the shading goes from light to dark in smooth

increments. The color ramps fill the destination rectangle and the current frame number

centered within the destination rectangle over the ramps.

The PaintImage function paints a series of vertical color ramps into the rectangle

specified by the destRect parameter into the current color graphics port. This is done

through a nested loop. The outer loop iterates only twice, and half of the ramps are

drawn in the first iteration and half in the second. The inner loop iterates over all the

steps in a ramp.

Listing 3-4 Compressing and decompressing a sequence of images: Drawing one frame with
QuickDraw

void CompressSequence (short* dfRef,

ImageDescriptionHandle* description)

{

GWorldPtr currWorld = nil;

PixMapHandle currPixMap;

CGrafPtr savedPort;

GDHandle savedDevice;

Handle buffer = nil;

Ptr bufferAddr;

long compressedSize;

long dataLen;

Rect imageRect;

ImageSequence sequenceID = 0;

short frameNum;

OSErr error;

CodecType codecKind = 'rle ';

GetGWorld (&savedPort, &savedDevice);

imageRect = savedPort->portRect;

error = NewGWorld (&currWorld, 32, &imageRect, nil, nil, 0);

CheckError (error, "\pNewGWorld");

SetGWorld (currWorld, nil);

C H A P T E R 3

Image Compression Manager

3-40 Using the Image Compression Manager

currPixMap = currWorld->portPixMap;

LockPixels (currPixMap);

/*

Allocate an embryonic image description structure and the

Image Compression Manager will resize.

*/

*description = (ImageDescriptionHandle) NewHandle (4);

error = CompressSequenceBegin (

&sequenceID,

currPixMap,

nil, /* tell ICM to allocate previous

 image buffer */

&imageRect,

&imageRect,

0, /* let ICM choose pixel depth */

codecKind,

(CompressorComponent) anyCodec,

codecNormalQuality, /* spatial quality */

codecNormalQuality, /* temporal quality */

5, /* at least 1 key frame every

 5 frames */

nil, /* use default color table */

codecFlagUpdatePrevious,

*description);

CheckError (error, "\pCompressSequenceBegin");

error = GetMaxCompressionSize(

currPixMap,

&imageRect,

0, /* let ICM choose pixel depth */

codecNormalQuality, /* spatial quality */

codecKind,

(CompressorComponent) anyCodec,

&compressedSize);

CheckError (error, "\pGetMaxCompressionSize");

buffer = NewHandle(compressedSize);

CheckError (MemError(), "\pNewHandle buffer");

MoveHHi (buffer);

HLock (buffer);

bufferAddr = StripAddress (*buffer);

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-41

for (frameNum = 1; frameNum <= 10; frameNum++)

{

DrawFrame (&imageRect, frameNum);

error = CompressSequenceFrame (

sequenceID,

currPixMap,

&imageRect,

codecFlagUpdatePrevious,

bufferAddr,

&compressedSize,

nil,

nil);

CheckError (error, "\pCompressSequenceFrame");

dataLen = 4;

error = FSWrite (*dfRef, &dataLen, &compressedSize);

CheckError (error, "\pFSWrite length");

error = FSWrite (*dfRef, &compressedSize, bufferAddr);

CheckError (error, "\pFSWrite buffer");

}

CDSequenceEnd (sequenceID);

DisposeGWorld (currWorld);

SetGWorld (savedPort,savedDevice);

if (buffer) DisposeHandle (buffer);

}

void DrawFrame (const Rect *imageRect, long frameNum)

{

Str255 numStr;

ForeColor(redColor);

PaintRect(imageRect);

ForeColor(blueColor);

NumToString (frameNum, numStr);

MoveTo (imageRect->right / 2, imageRect->bottom / 2);

TextSize (imageRect->bottom / 3);

DrawString (numStr);

}

C H A P T E R 3

Image Compression Manager

3-42 Using the Image Compression Manager

A Sample Function for Decompressing and Playing Back a Sequence
From a Disk File

The SequencePlay function, shown in Listing 3-5, plays back a sequence of images

from a disk file that was created by the SequenceSave function (see Listing 3-3 on

page 3-36 for details).

The SequencePlay function begins by grabbing the image description structure from

the file that the user specified from a 'SEQU' resource ID 128. This structure is needed to

decompress the images in the file.

Before these compressed images are read, the Image Compression Manager is told to

prepare to decompress a sequence of images through the DecompressSequenceBegin

function. This routine tells the Image Compression Manager

■ how the images were compressed with the image description structure

■ where to display the decompressed image (the current port in this example)

■ what part of the image to decompress (all of it)

■ what transfer mode to use when displaying the image (srcCopy)

■ whether to buffer the image for frame differences

A loop iterates for each frame in the file. For each frame, a long word with the number of

bytes in the frame is read from the file, and then that many bytes are read from the file

into a compressed-image buffer. This buffer is passed to DecompressSequenceFrame,

which decompresses the image to the screen (the destination doesn’t have to be the

screen, but it is in this example). The loop iterates until the end of the file has been

reached.

Listing 3-5 Compressing and decompressing a sequence of images: Decompressing and
playing back a sequence from a disk file

void SequencePlay (void)

{

ImageDescriptionHandle description;

long compressedSize;

Handle buffer = nil;

Ptr bufferAddr;

long dataLen;

long lastTicks;

ImageSequence sequenceID;

Rect imageRect;

StandardFileReply fileReply;

SFTypeList typeList = {'SEQU',0,0,0};

short dfRef = 0; /* sequence data fork */

short rfRef = 0; /* sequence resource fork */

OSErr error;

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-43

StandardGetFile (nil, 1, typeList, &fileReply);

if (!fileReply.sfGood) return;

rfRef = FSpOpenResFile (&fileReply.sfFile, fsRdPerm);

CheckError (ResError (), "\pFSpOpenResFile");

description = (ImageDescriptionHandle)

Get1Resource ('SEQU', 128);

CheckError (ResError (), "\pGet1Resource");

DetachResource ((Handle) description);

HNoPurge ((Handle) description);

CloseResFile (rfRef);

error = FSpOpenDF (&fileReply.sfFile, fsRdPerm, &dfRef);

CheckError (error, "\pFSpOpenDF");

buffer = NewHandle (4);

CheckError (MemError (), "\pNewHandle buffer");

SetRect (&imageRect, 0, 0, (**description).width,

 (**description).height);

error = DecompressSequenceBegin (

&sequenceID,

description,

nil, /* use the current port */

nil, /* go to screen */

&imageRect,

nil, /* no matrix */

ditherCopy,

nil, /* no mask region */

codecFlagUseImageBuffer,

codecNormalQuality, /* accuracy */

(CompressorComponent) anyCodec);

while (true)

{

dataLen = 4;

error = FSRead (dfRef, &dataLen, &compressedSize);

if (error == eofErr)

break;

CheckError(error, "\pFSRead");

C H A P T E R 3

Image Compression Manager

3-44 Using the Image Compression Manager

if (compressedSize > GetHandleSize (buffer))

{

HUnlock (buffer);

SetHandleSize (buffer, compressedSize);

CheckError (MemError(), "\pSetHandleSize");

}

HLock (buffer);

bufferAddr = StripAddress (*buffer);

error = FSRead (dfRef, &compressedSize, bufferAddr);

CheckError (error, "\pFSRead");

error = DecompressSequenceFrame (

sequenceID,

bufferAddr,

0, // flags

nil,

nil);

CheckError (error, "\pDecompressSequenceFrame");

Delay (30, &lastTicks);

}

CDSequenceEnd (sequenceID);

if (dfRef) FSClose (dfRef);

if (buffer) DisposeHandle (buffer);

if (description) DisposeHandle ((Handle)description);

}

Spooling Compressed Data
During compression and decompression operations it may be necessary to spool the

image data to or from storage other than computer memory. If your application uses

the Image Compression Manager functions that handle picture files, the Image

Compression Manager manages this spooling for you. However, if you use the functions

that work with pixel maps or sequences and your application cannot store the image

data in memory, it is your application’s responsibility to spool the data.

The Image Compression Manager provides a mechanism that allows the compressors

and decompressors to invoke spooling functions provided by your application. There are

two kinds of data-spooling functions: data-loading functions and data-unloading

functions. Decompressors call data-loading functions during image decompression. The

data-loading function is responsible for providing compressed image data to the

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-45

decompressor. The decompressor then decompresses the data and writes the resulting

image to the appropriate location. See “Application-Defined Functions” beginning on

page 3-148 for a detailed description of the calling sequence used by the decompressor

component when it invokes your data-loading function.

Compressors call data-unloading functions during image compression. The

data-unloading function must remove the compressed image data from memory. The

compressor can then compress more of the image and write the compressed image data

into the available buffer space. See “Application-Defined Functions” beginning on

page 3-148 for a detailed description of the calling sequence used by the compressor

component when it invokes your data-unloading function.

When compressing sequences, your application assigns a data-unloading function by

calling the SetCSequenceFlushProc function (described on page 3-125). When

decompressing sequences, you assign a data-loading function by calling the

SetDSequenceDataProc function (described on page 3-135).

When your application assigns a spooling function to an image or sequence operation,

you must also specify a data buffer and the size of that buffer. The

codecMinimumDataSize value specifies the smallest data buffer you may allocate for

image data spooling.

#define codecMinimumDataSize 32768 /* minimum data size */

Banding and Extending Images
Occasionally a compressor component may not be able to accommodate the destination

rectangle for an image decompression or the source for an image-compression operation.

This situation may result from compressors that are optimized to work at certain depths

or that cannot perform scaling, translation, dithering, or masking during decompression.

In such circumstances the Image Compression Manager allocates a temporary buffer that

is acceptable to the compressor component and breaks the image up to fit into that new

buffer. Since there often is not enough memory to allocate a buffer to hold the

entire image, the Image Compression Manager may allocate one that holds a band of the

image. A band is one horizontal piece of the image. Its height is some portion of the

desired image height (before scaling or rotation), and it is at least as wide as the desired

image.

The height of the band is determined both by the amount of memory available and the

block size of the compressor component. The block size of a compressor is the natural

size at which it handles images, and it is peculiar to the image-compression algorithm.

The block size for the photo compressor is usually 16 pixels by 16 pixels, for example.

Usually the block width and height are equal, but this is not always the case. The

minimum height of a band is one strip of blocks. A strip is defined to be a part of an

image that is as high as the block height (for the compressor in question) and as wide as

the band. The width of a band is either the width of the desired unscaled image, or that

width increased by an extension.

C H A P T E R 3

Image Compression Manager

3-46 Using the Image Compression Manager

Figure 3-9 shows the measurements of several image bands.

Figure 3-9 Image bands and their measurements

Some compressors can only handle images with dimensions that are a multiple of their

block size. If the desired image does not comply with this restriction in either dimension,

the Image Compression Manager extends the band on the right side and bottom by the

amount required to meet the needs of the compressor. During compression, the

compressor fills the extended region with the same pixel value as the pixels adjacent to

the extension. During decompression, the Image Compression Manager writes only the

pixels that are part of the source image. The extended portion remains only in the

offscreen buffer.

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-47

Defining Key Frame Rates
The process of temporal compression involves reducing or eliminating temporal

redundancy from an image sequence. Temporal compression is most effective when a

sequence contains frames that bear significant similarity to adjacent frames. This is

typically true of movies and other video sequences. Reconstructing an individual frame

within a sequence that has been temporally compressed requires knowledge of the

previous frames. This does not present a problem if your application always plays

compressed sequences from the beginning. However, if your application needs to start

playing a sequence from a random point, or perhaps backward, the decompressor does

not have enough information to decompress the frames.

To alleviate this problem, compressors insert key frames in compressed sequences at

regular intervals. Key frames define starting points for portions of a temporally

compressed sequence. Subsequent frames depend on the previous key frame.

At the start of a sequence compression your application can specify a rate at which the

compressor is to insert key frames into the compressed data stream. This key frame rate

indicates the maximum number of frames you will accept between key frames. The

Image Compression Manager picks the best key frames from the source sequence and at

the same time enforces the specified key frame rate (the best key frames are those that

are least similar to adjacent frames, such as at scene changes—these frames would have

the largest compressed images even if they were not selected as key frames).

During sequence compression your application can change the key frame rate by calling

the SetCSequenceKeyFrameRate function (described beginning on page 3-121). By

manipulating the parameters for the sequence, you can force the Image Compression

Manager to place a key frame at any arbitrary point in a sequence (set the

codecFlagForceKeyFrame flag to 1 in the flags parameter of the

CompressSequenceFrame function—described beginning on page 3-111).

Fast Dithering
QuickDraw provides a means of displaying images with high color resolution in pixel

maps or on screens with lower color resolution. By dithering the destination image,

QuickDraw fools your eyes into seeing colors that are not actually available on the

display screen. Unfortunately, the error-diffusion technique used by QuickDraw takes

longer than just drawing pixels by directly looking them up in a color table. The drawing

delays imposed by standard dithering are unacceptable when working with movies.

To alleviate this problem, Apple has developed a technique that allows faster

dithering to destinations that use 8 bits per pixel. Fast dithering uses lookup tables

created by the Image Compression Manager. All the decompressors supplied by Apple

can use fast dithering.

Apple decompressors use fast dithering when copying from image band buffers to 8-bit

destinations. If the accuracy for decompression is above normal, then the decompressors

use true error diffusion rather than fast dithering. Note that video sequences are

normally displayed at normal or low accuracy so that you can obtain maximum display

speed during decompression.

C H A P T E R 3

Image Compression Manager

3-48 Using the Image Compression Manager

Understanding Compressor Components
This section discusses key attributes of compressor components and the functional

interfaces these components must support. (Compressor components here refers to both

image compressor components and image decompressor components.) This information

is intended for developers of compressor components. Application developers do not

need to be familiar with this material to use the Image Compression Manager.

A compressor component is a code resource that provides image compression or

decompression services for image data. These components may also utilize additional

hardware to provide their services. Compressor components are registered by the

Component Manager, and they present a standard set of function interfaces to the

Image Compression Manager (see Inside Macintosh: QuickTime Components for a detailed

description of the functions that compressors must provide). A compressor can be a

systemwide resource, or it can be local to a particular application.

Applications never communicate directly with compressors. Applications request

compressor services by issuing the appropriate Image Compression Manager functions.

The Image Compression Manager then performs its necessary processing before

invoking the compressor. Of course, an application could install its own compressor

component. However, any interaction between the application and the compressor is still

managed by the Image Compression Manager.

The Image Compression Manager knows about two types of compressor components.

Components that can compress image data carry a component type (described by the

compressorComponentType data type) of 'imco' and are referred to as compressors.
Components that can decompress images have a component type (described by the

decompressorComponentType data type) of 'imdc' and are called decompressors. The

value of the component subtype indicates the compression algorithm supported by the

component. All compressor components with the same subtype must be able to handle

the same format of compressed data. During decompression a component should handle

all variations of the data specified for a subtype. Conversely, while compressing an

image a compressor must not produce data that decompressors of the same subtype

cannot handle during decompression.

The Image Compression Manager defines four callback functions that may be provided

to compressors or decompressors by applications. A callback function is an

application-defined function that is invoked at a specified time or based on specified

criteria. These callback functions are data-loading functions, data-unloading functions,

completion functions, and progress functions. Data-loading functions and

data-unloading functions support spooling of compressed data. Completion functions

allow compressors and decompressors to report that asynchronous operations have

completed. Progress functions provide a mechanism for compressors and decompressors

to report their progress toward completing an operation. For more information about

these callback functions, see “Application-Defined Functions” beginning on page 3-148.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-49

Image Compression Manager Reference

This section describes all of the Image Compression Manager functions and data

structures. The Image Compression Manager provides a rich and varied set of functions

that allow your application to work with compressed image data. This discussion has

been divided into the following sections:

■ “Data Types” identifies the data structures used by your application when interacting
with the Image Compression Manager.

■ “Image Compression Manager Functions” describes the functions that your
application can use to work with compressed data.

■ “Application-Defined Functions” describes the interfaces to the callback functions that
may be provided to compressors or decompressors by applications.

Data Types

This section describes the format and content of the data structures, data types, and

constants that you use to exchange information with the Image Compression Manager.

The Image Description Structure

An image description structure contains information that defines the characteristics of a

compressed image or sequence. Data in the image description structure indicates the

type of compression that was used, the size of the image when displayed, the resolution

at which the image was captured, and so on. One image description structure may be

associated with one or more compressed frames.

The ImageDescription data type defines the layout of an image description structure.

In addition, an image description structure may contain additional data in extensions

and custom color tables. The Image Compression Manager provides functions that allow

you to get and set the data in image description structure extensions and custom color

tables.

■ See “Working With Images,” which begins on page 3-73, for more information about
the functions GetImageDescriptionCTable and
SetImageDescriptionCTable, which allow you to work with custom color tables
in image description structures.

■ See Inside Macintosh: QuickTime Components for more information about the
GetImageDescriptionExtension, SetImageDescriptionExtension,
RemoveImageDescriptionExtension,
CountImageDescriptionExtensionType, and
GetNextImageDescriptionExtensionType functions, which allow you to work
with image description structure extensions.

C H A P T E R 3

Image Compression Manager

3-50 Image Compression Manager Reference

struct ImageDescription {

long idSize; /* total size of this structure */

CodecType cType; /* compressor creator type */

long resvd1; /* reserved--must be set to 0 */

short resvd2; /* reserved--must be set to 0 */

short dataRefIndex;/* reserved--must be set to 0 */

short version; /* version of compressed data */

short revisionLevel;/* compressor that created data */

long vendor; /* compressor developer that created data */

CodecQ temporalQuality;

/* degree of temporal compression */

CodecQ spatialQuality;

/* degree of spatial compression */

short width; /* width of source image in pixels */

short height; /* height of source image in pixels */

Fixed hRes; /* horizontal resolution of source image */

Fixed vRes; /* vertical resolution of source image */

long dataSize; /* size in bytes of compressed data */

short frameCount; /* number of frames in image data */

Str31 name; /* name of compression algorithm */

short depth; /* pixel depth of source image */

short clutID; /* ID number of the color table for image */

};

typedef struct ImageDescription ImageDescription;

typedef ImageDescription *ImageDescriptionPtr,

**ImageDescriptionHandle;

Field descriptions

idSize Defines the total size of this image description structure with extra
data including color lookup tables and other per sequence data.

cType Indicates the type of compressor component that created
this compressed image data. The value of this field indicates the
compression algorithm supported by the component. The Codec
data type defines a field in the compressor name list structure that
identifies the compression method employed by a given compressor
component. Apple Computer’s Developer Technical Support group
assigns these values so that they remain unique. These values
correspond, in turn, to text strings that can identify the compression
method to the user. See the description of GetCodecNameList on
page 3-63 for a list of valid values.

resvd1 Reserved for Apple. This field must be set to 0.

resvd2 Reserved for Apple. This field must be set to 0.

dataRefIndex Reserved for Apple. This field must be set to 0.

version Indicates the version of the compressed data. The contents of this
field should indicate the version of the compression algorithm that

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-51

was used to create the compressed data. By examining this field,
decompressors that support many versions of an algorithm can
determine the proper way to decompress the image.

revisionLevel Indicates the version of the compressor that created the compressed
image. Developers of compressors and decompressors assign these
version numbers.

vendor Identifies the developer of the compressor that created the
compressed image.

temporalQuality
Indicates the degree of temporal compression performed on the
image data associated with this description. This field is valid only
for sequences. See “Compression Quality Constants” beginning on
page 3-57 for a list of available values.

spatialQuality
Indicates the degree of spatial compression performed on the image
data associated with this description. This field is valid for
sequences and still images. See “Compression Quality Constants”
on page 3-57 for a list of available values.

width Contains the width of the source image, in pixels.

height Contains the height of the source image, in pixels.

hRes Contains the horizontal resolution of the source image, in dots per
inch.

vRes Contains the vertical resolution of the source image, in dots per inch.

dataSize Indicates the size of the compressed image, in bytes. This field is
valid only for still images. Set this field to 0 if the size is unknown.

frameCount Contains the number of frames in the image data associated with
this description.

name Indicates the compression algorithm used to create the compressed
data. This algorithm is stored in Pascal string format. It always
takes up 32 bytes no matter how long the string is. The 32 bytes
consist of 31 bytes plus one length byte. The value of this field
should correspond to the compressor type specified by the cType
field, as well as to the value of the typeName field in the
appropriate compressor name structure returned by the
GetCodecNameList function (see “The Compressor Name List
Structure” on page 3-56 for information on the compressor list
name structure; see “Getting Information About Compressor
Components,” which begins on page 3-62, for information on the
GetCodecNameList function). Applications may use the contents
of this field to indicate the type of compression used for the
associated image.

depth Contains the pixel depth specified for the compressed image. Values
of 1, 2, 4, 8, 16, 24, and 32 indicate the depth of color images.
Values of 34, 36, and 40 indicate 2-bit, 4-bit, and 8-bit grayscale,
respectively, for grayscale images.

C H A P T E R 3

Image Compression Manager

3-52 Image Compression Manager Reference

clutID Contains the ID of the color table for the compressed image, or
other special values. If this field is set to 0, then a custom color table
is defined for the compressed image. You can use the
GetImageDescriptionCTable function, described on page 3-87,
to retrieve the color table. If this field is set to –1, the image does not
use a color table.

The Compressor Information Structure

Your application can retrieve information describing the capabilities of compressors with

the GetCodecInfo function (described on page 3-65). The CodecInfo data type

defines the format of the compressor information structure.

/* compressor information structure */

struct CodecInfo {

Str31 typeName; /* compression algorithm (codec type) */

short version; /* version supported by component */

short revisionLevel; /* version assigned by developer */

long vendor; /* developer of component */

long decompressFlags; /* decompression capability flags */

long compressFlags; /* compression capability flags */

long formatFlags; /* compression format flags */

unsigned char compressionAccuracy;

/* relative accuracy of this algorithm */

unsigned char decompressionAccuracy;

/* relative accuracy of this algorithm */

unsigned short compressionSpeed;

/* relative compression speed */

unsigned short decompressionSpeed;

/* relative decompression speed */

unsigned char compressionLevel;

/* relative compression of component */

char resvd; /* reserved--set to 0 */

short minimumHeight; /* minimum image height for component */

short minimumWidth; /* minimum image width for component */

short decompressPipelineLatency;

/* in milliseconds (asynchronous) */

short compressPipelineLatency;

/* in milliseconds (asynchronous) */

long privateData; /* reserved for use by Apple */

};

typedef struct CodecInfo CodecInfo;

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-53

Field descriptions

typeName Indicates the compression algorithm used by the component—for
example, 'Animation'. This Pascal string may be used to identify
the compression algorithm to the user. The string always takes up
32 bytes no matter how long it is. The 32 bytes consist of 31 bytes
plus one length byte. Apple Computer’s Developer Technical
Support group assigns these type names. The value of this field
should correspond to the value of the typeName field in the
appropriate compressor name structure returned by the
GetCodecNameList function (see “The Compressor Name
Structure” on page 3-55 for information on the compressor
name structure; see page 3-63 for information on the
GetCodecNameList function).

version Indicates the version of compressed data this component supports.
The contents of this field should indicate the most recent version of
the compression algorithm that the component can understand.

revisionLevel Indicates the version of the component—for example,
0x00010001 (1.0.1). Developers of compressors assign these
version numbers.

vendor Identifies the developer of the component—for example, 'appl'.
The value of this field corresponds to the manufacturer code or
application signature assigned to the developer.

decompressFlags
Contains flags that specify the decompression capabilities of the
component. Typically, these flags are of interest only to developers
of image decompressors. The bit values for this field are described
in the discussion of image decompressors in Inside Macintosh:
QuickTime Components.

compressFlags Contains flags that specify the compression capabilities of the
component. Typically, these flags are of interest only to developers
of image compressors. The bit values for this field are described in
the discussion of image compressors in Inside Macintosh: QuickTime
Components.

formatFlags Contains flags that describe the possible format for compressed
data produced by this component and the format of compressed
files that the component can handle during decompression.
Typically, these flags are of interest only to developers of
compressor components. The bit values for this field are described
in the discussion of image compressor and decompressor
components in Inside Macintosh: QuickTime Components.

compressionAccuracy
Indicates the relative accuracy of the compression algorithm
employed by the component. Valid values for this field range from 0
to 255. A value of 0 means that the accuracy is unknown. Values
from 1 to 255 provide a gauge for the relative accuracy of the
compression algorithm—higher values indicate better accuracy.

C H A P T E R 3

Image Compression Manager

3-54 Image Compression Manager Reference

The Image Compression Manager examines this field to determine
which compressor component can most accurately compress a
given image.

The compressionAccuracy field can only approximate the
accuracy of a compression algorithm. Typically, compression
algorithms produce results of varying quality based on a variety of
parameters, including image size and content. Since this
information is not available until a compression request is issued, a
precise measure of accuracy is not possible. However, the value of
this field should still give a rough idea of the accuracy of the
supported algorithm.

decompressionAccuracy
Indicates the relative accuracy of the decompression algorithm
employed by the component. Valid values for this field range from 0
to 255. A value of 0 means that the accuracy is unknown. Values
from 1 to 255 indicate the relative accuracy of the decompression
technique—higher values mean better accuracy.

The Image Compression Manager examines this field to determine
which decompressor component can most accurately decompress a
given image.

The decompressionAccuracy field can only approximate the
accuracy of a decompression algorithm. Typically, decompression
algorithms produce results of varying quality based on a variety of
parameters, including image size and content. Since this
information is not available until a decompression request is issued,
a precise measure of accuracy is not possible. However, the value of
this field should still give a rough idea of the accuracy of the
supported algorithm.

compressionSpeed
Indicates the relative speed of the component for compression
operations. Valid values for this field lie in the range from 0 to
65,535. A value of 0 means that the speed is unknown. Values from
1 to 65,535 correspond to the number of milliseconds the
component requires to compress a 320-by-240 pixel image on a
Macintosh II computer.

The Image Compression Manager examines this field to determine
which compressor component can most quickly compress a given
image.

decompressionSpeed
Indicates the relative speed of the component for decompression
operations. Valid values for this field lie in the range from 0 to
65,535. A value of 0 means that the speed is unknown. Values from
1 to 65,535 correspond to the number of milliseconds the
component requires to decompress a 320-by-240 pixel image on a
Macintosh II computer.

The Image Compression Manager examines this field to determine
which compressor component can most quickly decompress a given
image.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-55

compressionLevel
Indicates the relative compression achieved by this component.
Valid values for this field lie in the range from 0 to 255. A value of 0
means that the compression level is unknown. Values from 1 to 255
map to percentage values of relative compression—lower values
mean lesser compression. A value of 1 means no compression
(0 percent); a value of 255 means maximum compression (100
percent).

The Image Compression Manager examines this field to determine
which available compressor component will yield the smallest
resulting data for a given image.

The compressionLevel field can only approximate the
effectiveness of a compression algorithm. Typically, compression
algorithms produce results of varying quality based on a variety of
parameters, including image size and content. Since this
information is not available until a compression request is issued, a
precise measure of compression is not possible. However, the value
of this field should still give a rough idea of the effectiveness of the
supported algorithm.

resvd Reserved for Apple. This field must be set to 0.

minimumHeight Specifies the height in pixels of the smallest image the component
can handle. Together with the minimumWidth field, this field
defines the block size for the component. The Image Compression
Manager does not issue compression or decompression requests for
images smaller than the block size.

minimumWidth Specifies the width in pixels of the smallest image the component
can handle. Together with the minimumHeight field, this field
defines the block size for the component. The Image Compression
Manager does not issue compression or decompression requests for
images smaller than the block size.

decompressPipelineLatency
Reserved for future use. This field must be set to 0.

compressPipelineLatency
Reserved for future use. This field must be set to 0.

privateData Reserved for use by Apple. This field must be set to 0.

The Compressor Name Structure

The CodecNameSpec data type defines a compressor name structure.

/* compressor name structure from GetCodecNameList function */

struct CodecNameSpec

{

CodecComponent codec;/* component ID for compressor */

CodecType cType; /* type identifier for compressor */

Str31 typeName; /* string identifier of algorithm */

C H A P T E R 3

Image Compression Manager

3-56 Image Compression Manager Reference

Handle name; /* name of compressor component */

};

typedef struct CodecNameSpec CodecNameSpec;

Field descriptions

codec Uniquely identifies the component or, in some cases, contains a
special value that selects all components. If your application
requests a list of components, the codec field in each compressor
name structure contains the component ID for that compressor. If
your application requests a list of component types, the codec field
is set to 0 in each compressor name structure.

cType Contains the type identifier for the compressor. The value of this
field indicates the compression algorithm supported by the
component. See the description of GetCodecNameList on
page 3-63 for a list of valid values.

typeName Contains a text string in Pascal format that identifies the
compression algorithm supported by the component. This string
may be used to identify the compression algorithm to the user. The
value of this field should correspond to the value of the typeName
field in the appropriate compressor information structure returned
by the component in response to a GetCodecInfo function (see
“The Compressor Information Structure” on page 3-52 for
information on the compressor information structure; see page 3-65
for information on the GetCodecInfo function).

name Specifies the name of the compressor component. Developers assign
these names to uniquely identify their products. This name may be
used to identify the component to the user.

The Compressor Name List Structure

The compressor name list structure contains a list of compressor name structures. (A

compressor name structure identifies a compressor or decompressor component.) The

data structure contains name and type information for the component. The

GetCodecNameList function returns an array of these structures, formatted into a

compressor name list structure. See page 3-63 for more information on the

GetCodecNameList function. The CodecNameSpecList data type defines a

compressor name list structure.

/* compressor name list structure */

struct CodecNameSpecList {

short count; /* how many compressor name structures */

CodecNameSpec list[1];

/* array of compressor name structures */

};

typedef struct CodecNameSpecList CodecNameSpecList;

typedef CodecNameSpecList *CodecNameSpecListPtr;

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-57

Field descriptions

count Indicates the number of compressor name structures contained in
the list array that follows.

list Contains an array of compressor name structures. Each structure
corresponds to one compressor component or type that meets the
selection criteria your application specifies when it issues the
GetCodecNameList function. The count field indicates the
number of structures stored in this array.

Compression Quality Constants

Compressor components may allow applications to assert some control over the image

quality that results from a compression or decompression operation. For example, the

CompressSequenceBegin function (described on page 3-106) provides the

spatialQuality and temporalQuality parameters so that applications can indicate

the level of image accuracy desired within individual frames and across adjacent frames

in a sequence, respectively. These quality values become a property of the compressed

data and are stored in the image description structure (described on page 3-49)

associated with the image or sequence.

For a given compression operation, your application can determine the quality that the

component supports by issuing the GetCompressionTime function (described on

page 3-69).

The CodecQ data type defines a field that identifies the quality characteristics of a given

image or sequence. Note that individual components may not implement all the quality

levels shown here. In addition, components may implement other quality levels in the

range from codecMinQuality to codecMaxQuality. Relative quality should scale

within the defined value range. Values above codecLosslessQuality are reserved

for use by individual components.

/* compression quality values */

#define codecMinQuality 0x000L /* minimum valid value */

#define codecLowQuality 0x100L /* low-quality reproduction */

#define codecNormalQuality

0x200L /* normal-quality repro */

#define codecHighQuality

0x300L /* high-quality repro */

#define codecMaxQuality 0x3FFL /* maximum-quality repro */

#define codecLosslessQuality

0x400L /* lossless-quality repro */

typedef unsigned long CodecQ;

C H A P T E R 3

Image Compression Manager

3-58 Image Compression Manager Reference

Constant descriptions

codecMinQuality
Specifies the minimum valid value for a CodecQ field.

codecLowQuality
Specifies low-quality image reproduction. This value should
correspond to the lowest image quality that still results in
acceptable display characteristics.

codecNormalQuality
Specifies image reproduction of normal quality.

codecHighQuality
Specifies high-quality image reproduction. This value should
correspond to the highest image quality that can be achieved with
reasonable performance.

codecMaxQuality
Specifies the maximum standard value for a CodecQ field.

codecLosslessQuality
Specifies lossless compression or decompression. This special value
is valid only for components that can support lossless compression
or decompression.

Image Compression Manager Function Control Flags

A number of Image Compression Manager functions take control flags that allow your

application to exert greater control over the operation. In some cases, the Image

Compression Manager returns status information about the results of the function in the

same flags field. In general, you need to use only a few of these flags. The function

descriptions in the reference section of this chapter indicate the flags that are valid for

individual functions.

The CodecFlags data type defines these flag fields.

typedef unsigned short CodecFlags;

/* Image Compression Manager function control flags */

#define codecFlagUseImageBuffer (1L<<0)

/* (input) use image buffer */

#define codecFlagUseScreenBuffer (1L<<1)

/* (input) use screen buffer */

#define codecFlagUpdatePrevious (1L<<2)

/* (input) update previous buffer */

#define codecFlagNoScreenUpdate (1L<<3)

/* (input) don't update screen */

#define codecFlagWasCompressed (1L<<4)

/*(input) image was compressed */

#define codecFlagDontOffscreen (1L<<5)

/* don't go offscreen */

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-59

#define codecFlagUpdatePreviousComp (1L<<6)

/* (input) update previous buffer */

#define codecFlagForceKeyFrame (1L<<7)

/* force key frame from image */

#define codecFlagOnlyScreenUpdate

(1L<<8)

/* (input) only update screen */

#define codecFlagLiveGrab (1L<<9)

/* (input) grab live video */

#define codecFlagUsedNewImageBuffer

(1L<<14)

/* (output) new image buffer used */

#define codecFlagUsedImageBuffer

(1L<<15)

/* (output) decompressor used

 offscreen buffer */

Constant descriptions

codecFlagUseImageBuffer
Controls whether the decompressor allocates an offscreen buffer
for decompression. If your application sets this flag to 1, the
decompressor allocates an offscreen buffer the size of the
compressed image. If you set this flag to 0, the decompressor does
not use an offscreen image buffer. These image buffers are useful
when decompressing sequences that were created using temporal
compression. For more information about image buffers, see “Using
Screen Buffers and Image Buffers” on page 3-34.

codecFlagUseScreenBuffer
Controls whether the decompressor allocates an offscreen
destination buffer during decompression. If you set this flag to 1,
the decompressor allocates an offscreen buffer the size of the
destination screen. If you set this flag to 0, the decompressor does
not use an offscreen screen buffer. Using a screen buffer helps to
reduce tearing that may result when decompressing directly to
the screen. For more information about screen buffers, see “Using
Screen Buffers and Image Buffers” on page 3-34.

codecFlagUpdatePrevious
Controls whether the compressor updates the previous image
buffer during compression. This flag is only used with sequences
that are being temporally compressed. If you set this flag to 1, the
compressor copies the current source image into the previous frame
buffer at the end of the frame compression.

C H A P T E R 3

Image Compression Manager

3-60 Image Compression Manager Reference

codecFlagNoScreenUpdate
Controls whether the decompressor updates the screen image. If
you set this flag to 1, the decompressor does not write the current
frame to the screen, but does write the frame to its offscreen image
buffer (if one was allocated). If you set this flag to 0, the
decompressor writes the frame to the screen.

codecFlagWasCompressed
Indicates to the compressor that the image to be compressed has
been compressed before. This information may be useful to
compressors that can compensate for the image degradation that
may otherwise result from repeated compression and
decompression of the same image. Set this flag to 1 to indicate that
the image was previously compressed. Set this flag to 0 if the image
was not previously compressed.

codecFlagDontOffscreen
Controls whether the decompressor uses the offscreen buffer during
sequence decompression. This flag is only used with sequences that
have been temporally compressed. If this flag is set to 1,
the decompressor does not use the offscreen buffer during
decompression. Instead, the decompressor returns an error. This
allows your application to refill the offscreen buffer. If this flag is set
to 0, the decompressor uses the offscreen buffer if appropriate.

codecFlagUpdatePreviousComp
Controls whether the compressor updates the previous image
buffer with the decompressed image data. This flag is
only used with temporal compression and is similar to
the codecFlagUpdatePrevious flag. As with the
codecFlagUpdatePrevious flag, if you set this flag to 1, the
compressor updates the previous frame buffer at the end of the
frame compression. However, this flag causes the Image
Compression Manager to update the frame buffer using an image
obtained by decompressing the results of the most recent
compression operation, rather than the source image.

codecFlagForceKeyFrame
Controls whether the compressor creates a key frame from the
current image. This flag is only used with temporal compression. If
you set this flag to 1, the compressor makes the current image a key
frame. If you set this flag to 0, the compressor decides based on
other criteria, such as the key frame rate, whether to create a key
frame from the current image.

codecFlagOnlyScreenUpdate
Controls whether the decompressor decompresses the current
frame. If you set this flag to 1, the decompressor writes the contents
of its offscreen image buffer to the screen, but does decompress the
current frame. If you set this flag to 0, the decompressor
decompresses the current frame and writes it to the screen. You can
set this flag to 1 only if you have allocated an offscreen image buffer
for use by the decompressor.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-61

codecFlagLiveGrab
Indicates to the compressor whether the current sequence results
from grabbing live video. When working with live video,
compressors operate as quickly as possible and disable some
additional processing, such as compensation for previously
compressed data. Set this flag to 1 when you are compressing from
a live video source—the compressor then operates as quickly as it
can.

codecFlagUsedNewImageBuffer
Indicates to your application that the decompressor used the
offscreen image buffer for the first time when it processed this
frame. If this flag is set to 1, the decompressor used the image buffer
for this frame and this is the first time the decompressor used the
image buffer in this sequence. If this flag is set to 0, the
decompressor did not use the image buffer.

codecFlagUsedImageBuffer
Indicates to your application that the decompressor used the
offscreen image buffer for this frame. If this flag is set to 1, the
decompressor used the image buffer. If this flag is set to 0,
the decompressor did not use the image buffer.

Image Compression Manager Functions

The following sections describe the functions that the Image Compression Manager

provides to application programs. This section is divided into the following topics:

■ “Getting Information About Compressor Components” describes the Image
Compression Manager functions that allow applications to gather information about
the manager and installed compressor components

■ “Getting Information About Compressed Data” describes the functions that allow
applications to obtain information about compressed images

■ “Working With Images” defines the functions that applications can use to compress
and decompress single-frame images that are stored in pixel maps

■ “Working With Pictures and PICT Files” describes the functions that applications can
use to compress and decompress single-frame images that are stored as pictures or
picture files (PICT files)

■ “Making Thumbnail Pictures” defines the functions that create and manipulate
thumbnail images

■ “Working With Sequences” describes the functions that allow applications to
compress and decompress sequences of images

■ “Changing Sequence-Compression Parameters” discusses the functions that your
application can use to manipulate many of the parameters that govern sequence-
compression operations

■ “Constraining Compressed Data” describes the functions and a data structure that
allow your application to communicate information to compressors that can constrain
compressed data to a specific data rate

C H A P T E R 3

Image Compression Manager

3-62 Image Compression Manager Reference

■ “Changing Sequence-Decompression Parameters” discusses the functions that your
application can use to manipulate many of the parameters that govern
sequence-decompression operations

■ “Working With the StdPix Function” describes the functions that work with the
StdPix function to allow your application to have access to compressed image data
as it is displayed

■ “Aligning Windows” describes the functions that your application can use to position
individual windows along optimal alignment grids

■ “Working With Graphics Devices and Graphics Worlds” discusses the functions that
let you select graphics devices and specify graphics worlds for use in compression
and decompression operations

Getting Information About Compressor Components

This section describes the functions that allow your application to gather information

about the Image Compression Manager and the installed compressor components.

You can use the CodecManagerVersion function to retrieve the version number

associated with the Image Compression Manager that is installed on a particular

computer.

You can use the FindCodec, GetCodecInfo, and GetCodecNameList functions to

locate and retrieve information about the compressor components that are available on a

computer.

CodecManagerVersion

Your application can determine the version of the installed Image Compression Manager

by calling the CodecManagerVersion function.

pascal OSErr CodecManagerVersion (long *version);

version Contains a pointer to a long integer that is to receive the version
information. The Image Compression Manager returns its version
number into this location. The version number is a long integer value.

DESCRIPTION

The CodecManagerVersion function returns the version information as a long integer

value.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-63

RESULT CODES

SEE ALSO

“Getting Information About Compressors and Compressed Data,” which begins on

page 3-24, describes how to use CodecManagerVersion.

GetCodecNameList

The GetCodecNameList function allows your application to retrieve a list of installed

compressor components or a list of installed compressor types. This information may be

useful when the user selects a compression type for a given image or sequence.

pascal OSErr GetCodecNameList (CodecNameSpecListPtr *list,

 short showAll);

list Contains a pointer to a field that is to receive a pointer to the compressor
name list structure. The Image Compression Manager creates the
appropriate list and returns a pointer to that list in the field specified by
the list parameter. Note that the GetCodecNameList function creates
this list in your application’s current heap zone.

showAll Specifies a short integer that controls the contents of the list. Set this
parameter to 1 to receive a list of the names of all installed compressor
components—the returned list contains one entry for each installed
compressor. Set this parameter to 0 to receive a list of the types of
installed compressor components—the returned list contains one entry
for each installed compressor type. See “The Compressor Name List
Structure” on page 3-56 for a complete description of the contents of the
returned list.

DESCRIPTION

The Image Compression Manager returns this information in a compressor name list

structure, which contains an array of compressor name structures and a field indicating

the number of structures in the array.

The CodecType data type defines a field in the compressor name list structure that

identifies the compression method employed by a given compressor component. Apple

Computer’s Developer Technical Support group assigns these values so that they remain

unique. These values correspond, in turn, to text strings that can identify the

compression method to the user.

typedef long CodecType;

/* compressor type descriptor--for example 'jpeg','rle ',

 'rpza' */

noErr 0 No error

C H A P T E R 3

Image Compression Manager

3-64 Image Compression Manager Reference

Currently, six CodecType values are provided by Apple. You should use the

GetCodecNameList function to retrieve these names, so that your application can take

advantage of new compressor types that may be added in the future. For each

CodecType value in the following list, the corresponding compression method is also

identified by its text string name. For more information about each of these compression

techniques, see the section “About Image Compression,” which begins on page 3-8.

SPECIAL CONSIDERATIONS

Note that the Image Compression Manager returns the list in your application’s current

heap zone. Use the DisposeCodecNameList function, described in the next section, to

release this memory when your program is finished with the list.

RESULT CODES

Component Manager errors

Memory Manager errors

DisposeCodecNameList

The DisposeCodecNameList function allows your application to dispose of the

compressor name list structure you obtained by calling the GetCodecNameList

function.

pascal OSErr DisposeCodecNameList (CodecNameSpecListPtr list);

Table 3-3 Compressor type descriptors

Compressor type Compressor name

'rpza' video compressor

'jpeg' photo compressor

'rle ' animation compressor

'raw ' raw compressor

'smc ' graphics compressor

'cdvc' compact video
compressor

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-65

list Points to the compressor name list to be disposed of. You obtain the
compressor list by calling the GetCodecNameList function, which is
described in the previous section.

RESULT CODES

Memory Manager errors

GetCodecInfo

The GetCodecInfo function returns information about a single compressor component.

pascal OSErr GetCodecInfo (CodecInfo *info, CodecType cType,

 CodecComponent codec);

info Contains a pointer to a compressor information structure. The
GetCodecInfo function returns the detailed information about the
appropriate compressor component into this structure.

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types).

codec Specifies a compressor identifier. Set this parameter to the
component identifier of the specific compressor for the request.
The component identifier is available in the compressor name list
structure returned by the GetCodecNameList function (described on
page 3-63).

If you want information about any compressor of the type specified by
the cType parameter, set codec to 0. The Image Compression Manager
then returns information about the first compressor it finds of the type
you have specified.

DESCRIPTION

Your application may retrieve information about a specific compressor or about a

compressor of a specific type. If you request information about a type of compressor, the

Image Compression Manager returns information about the first compressor it finds of

that type. The Image Compression Manager returns the detailed compressor information

in a compressor information structure (see “The Compressor Information Structure,”

which begins on page 3-52, for details).

noErr 0 No error

C H A P T E R 3

Image Compression Manager

3-66 Image Compression Manager Reference

RESULT CODES

Component Manager errors

Memory Manager errors

FindCodec

The FindCodec function allows you to determine which of the installed compressors or

decompressors has been chosen to field requests made using one of the special

compressor identifiers.

Some Image Compression Manager functions allow you to specify a particular

compressor component. For example, you may use the codec parameter to

the CompressSequenceBegin function (described on page 3-106) to specify a

particular compressor to do the compression.

You identify the compressor to the Image Compression Manager by specifying the

compressor’s component identifier (see the description of the GetCodecNameList

function on page 3-63 for information on retrieving these identifiers).

The Image Compression Manager also supports several special identifiers that allow you

to exert some control over the component for a given action without having to know its

identifier.

pascal OSErr FindCodec (CodecType cType, CodecComponent specCodec,

 CompressorComponent *compressor,

 DecompressorComponent *decompressor);

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types).

specCodec Contains a special identifier value. You must set this parameter to one of
the following special identifier values:

anyCodec Choose the first compressor or decompressor of the
specified type

bestSpeedCodec
Choose the fastest compressor or decompressor of the
specified type

bestFidelityCodec
Choose the most accurate compressor or decompressor of
the specified type

bestCompressionCodec
Choose the compressor that produces the smallest resulting
data

noErr 0 No error
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-67

compressor
Contains a pointer to a field to receive the identifier for the compressor
component. The Image Compression Manager returns the identifier of the
compressor that meets the special characteristics you specify in the
specCodec parameter. Note that this identifier may differ from the value
of the field referred to by the decompressor field. The Image
Compression Manager sets this field to 0 if it cannot find a
suitable compressor component. Set this parameter to nil if you do not
want this information.

decompressor
Contains a pointer to a field to receive the identifier for the decompressor
component. The Image Compression Manager returns the identifier of the
decompressor that meets the special characteristics you specify in the
specCodec parameter. Note that this identifier may differ from the value
of the field referred to by the compressor field. The Image Compression
Manager sets this field to 0 if it cannot find a suitable decompressor
component. Set this parameter to nil if you do not want this information.

DESCRIPTION

You can use the FindCodec function to obtain the identifier of the component that is

being used to field requests made with one of the special compressor identifiers.

RESULT CODES

Getting Information About Compressed Data

This section describes the functions that enable your application to collect information

about compressed images and images that are about to be compressed. Your application

may use some of these functions in preparation for compressing or decompressing an

image or sequence.

You can use the GetCompressionTime function to determine how long it will take for

a compressor to compress a specified image. Similarly, you can use the

GetMaxCompressionSize function to find out how large the compressed image may

be after the compression operation.

You can use the GetCompressedImageSize to determine the size of a compressed

image that does not have a complete image description.

The GetSimilarity function allows you to determine how similar two images are.

This information is useful when you are performing temporal compression on an image

sequence.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

3-68 Image Compression Manager Reference

GetMaxCompressionSize

The GetMaxCompressionSize function allows your application to determine the

maximum size an image will be after compression. You specify the compression

characteristics, including compression type and quality, along with the image.

pascal OSErr GetMaxCompressionSize (PixMapHandle src,

const Rect *srcRect,

short colorDepth,

CodecQ quality,

CodecType cType,

CompressorComponent codec,

long *size);

src Contains a handle to the source image. The source image must be stored
in a pixel map structure. The compressor uses only the image’s size and
pixel depth to determine the maximum size of the compressed image.

srcRect Contains a pointer to a rectangle defining the portion of the source image
that is to be compressed. You may set this parameter to nil if you are
interested only in information about quality settings.
GetCompressionTime then uses the bounds of the source pixel map.

colorDepth
Specifies the depth at which the image is to be compressed. If you set this
parameter to 0, the Image Compression Manager determines the
appropriate value for the source image. Values of 1, 2, 4, 8, 16, 24, and 32
indicate the number of bits per pixel for color images. Values of 34, 36,
and 40 indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images. Your program can determine which depths are supported by a
given compressor by examining the compressor information structure
returned by the GetCodecInfo function (see “Getting Information
About Compressor Components” on page 3-62 for more information on
the GetCodecInfo function).

quality Specifies the desired compressed image quality. See “Compression
Quality Constants” beginning on page 3-57 for valid values.

cType Specifies a compressor type. You must set this parameter to a valid
compressor type (see Table 3-3 on page 3-64 for a list of the
available compressor types).

codec Contains a compressor identifier. Specify a particular compressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first compressor of the specified type

bestSpeedCodec
Choose the fastest compressor of the specified type

bestFidelityCodec
Choose the most accurate compressor of the specified type

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-69

bestCompressionCodec
Choose the compressor that produces the smallest resulting
data

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

size Contains a pointer to a field to receive the size, in bytes, of the
compressed image.

DESCRIPTION

The Image Compression Manager returns the maximum resulting size for the specified

image and parameters. Your application may then use this information to allocate

memory for the compression operation.

RESULT CODES

GetCompressionTime

The GetCompressionTime function allows your application to determine the

estimated amount of time required to compress a given image. This function also allows

you to verify that the quality settings you desire are supported by a given compressor

component.

You specify the compression characteristics, including compression type and quality,

along with the image.

pascal OSErr GetCompressionTime (PixMapHandle src,

const Rect *srcRect,

short colorDepth,

CodecType cType,

CompressorComponent codec,

CodecQ *spatialQuality,

CodecQ *temporalQuality,

unsigned long *compressTime);

src Contains a handle to the source image. The source image must be stored
in a pixel map structure. The compressor uses only the bit depth of this
image to determine the compression time. You may set this parameter to
nil if you are interested only in information about quality settings.

noErr 0 No error
paramErr –50 Invalid parameter specified
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

3-70 Image Compression Manager Reference

srcRect Contains a pointer to a rectangle defining the portion of the source image
to compress. You may set this parameter to nil if you are interested only
in information about quality settings. GetCompressionTime then uses
the bounds of the source pixel map.

colorDepth
Specifies the depth at which the image is to be compressed. If you set this
parameter to 0, the Image Compression Manager determines the
appropriate value for the source image. Values of 1, 2, 4, 8, 16, 24, and 32
indicate the number of bits per pixel for color images. Values of 34, 36,
and 40 indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images. Your program can determine which depths are supported by a
given compressor by examining the compressor information structure
returned by the GetCodecInfo function (see “Getting Information
About Compressor Components” on page 3-62 for more information on
the GetCodecInfo function).

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types).

codec Contains a compressor identifier. Specify a particular compressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first compressor of the specified type

bestSpeedCodec
Choose the fastest compressor of the specified type

bestFidelityCodec
Choose the most accurate compressor of the specified type

bestCompressionCodec
Choose the compressor that produces the smallest resulting
data

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

spatialQuality
Contains a pointer to a field containing the desired compressed image
quality. The Image Compression Manager sets this field to the closest
actual quality that the compressor can achieve. See “Compression Quality
Constants” beginning on page 3-57 for valid values. If you are not
interested in this information, pass nil in this parameter.

temporalQuality
Contains a pointer to a field containing the desired temporal quality. Use
this value only with images that are part of image sequences. The Image
Compression Manager sets this field to the closest actual quality that the
compressor can achieve. See “Compression Quality Constants” beginning
on page 3-57 for valid values. If you are not interested in this information,
pass nil in this parameter.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-71

compressTime
Contains a pointer to a field to receive the compression time, in
milliseconds. If the compressor cannot determine the amount of time
required to compress the image or if the compressor does not support this
function, this field is set to 0. If you are not interested in this information,
pass nil in this parameter.

DESCRIPTION

The Image Compression Manager returns the maximum compression time for the

specified image and parameters. Note that some compressors may not support this

function. If the component you specify does not support this function, the Image

Compression Manager returns a time value of 0.

RESULT CODES

GetSimilarity

The GetSimilarity function compares a compressed image to a picture stored in a

pixel map and returns a value indicating the relative similarity of the two images.

pascal OSErr GetSimilarity (PixMapHandle src, const Rect *srcRect,

 ImageDescriptionHandle desc, Ptr data,

 Fixed *similarity);

src Contains a handle to the noncompressed image. The image must be
stored in a pixel map structure.

srcRect Contains a pointer to a rectangle defining the portion of the image to
compare to the compressed image. This rectangle should be the same size
as the image described by the image description structure specified by the
desc parameter.

desc Specifies a handle to the image description structure that defines the
compressed image for the operation.

data Points to the compressed image data. This pointer must contain a 32-bit
clean address.

similarity
Contains a pointer to a field that is to receive the similarity value. The
compressor sets this field to reflect the relative similarity of the two
images. Valid values range from 0 (completely different) to 1.0 (identical).

noErr 0 No error
paramErr –50 Invalid parameter specified
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

3-72 Image Compression Manager Reference

RESULT CODES

GetCompressedImageSize

The GetCompressedImageSize function determines the size, in bytes, of a

compressed image.

Most applications do not need to use this function because compressed images have a

corresponding image description structure with a size field. You only need to use this

function if you do not have an image description structure associated with your data—

for example, when you are taking a compressed image out of a movie one frame at a

time.

pascal OSErr GetCompressedImageSize (ImageDescriptionHandle desc,

Ptr data, long bufferSize,

DataProcRecordPtr dataProc,

long *dataSize);

desc Specifies a handle to the image description structure that defines the
compressed image for the operation.

data Points to the compressed image data. This pointer must contain a 32-bit
clean address.

bufferSize
Specifies the size of the buffer to be used by the data-loading
function specified by the dataProc parameter. If you have not specified
a data-loading function, set this parameter to 0.

dataProc Points to a data-loading function structure. If the data stream is not all in
memory when your program calls GetCompressedImageSize, the
compressor calls a function you provide that loads more compressed data
(see “Data-Loading Functions” beginning on page 3-149 for more
information about data-loading functions). If you have not provided a
data-loading function, set this parameter to nil. In this case, the entire
image must be in memory at the location specified by the data parameter.

dataSize Contains a pointer to a field that is to receive the size, in bytes, of the
compressed image.

DESCRIPTION

Your application may use the GetCompressedImageSize function when parsing a

data stream that does not contain an image description structure for each frame in the

sequence.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-73

RESULT CODES

Component Manager errors

Working With Images

This section discusses the functions that allow your application to compress and

decompress single-frame images stored as pixel maps (of data type PixMap). See

“Working With Sequences,” which begins on page 3-106, for information on compressing

and decompressing sequences of images. See “Working With Pictures and PICT Files,”

which begins on page 3-88, for information on compressing and manipulating

single-frame images stored as pictures or picture files (in PICT format).

The Image Compression Manager provides two sets of functions for compressing and

decompressing images. If you do not need to assert a lot of control over the compression

operation, you can use the CompressImage and DecompressImage functions to work

with compressed images. If you need more control over the compression parameters,

you can use the FCompressImage and FDecompressImage functions.

You can convert a compressed image from one compression format to another by calling

the ConvertImage function.

You can alter the spatial characteristics of a compressed image by calling the TrimImage

function.

You can work with an image’s color table with the SetImageDescriptionCTable and

GetImageDescriptionCTable functions.

CompressImage

The CompressImage function allows your application to compress a single-frame

image that is currently stored as a pixel map structure.

pascal OSErr CompressImage (PixMapHandle src,

const Rect *srcRect,

CodecQ quality, CodecType cType,

ImageDescriptionHandle desc,

Ptr data);

src Contains a handle to the image to be compressed. The image must be
stored in a pixel map structure.

srcRect Contains a pointer to a rectangle defining the portion of the image to
compress.

noErr 0 No error
paramErr –50 Invalid parameter specified
noCodecErr –8961 Image Compression Manager could not find the

specified compressor
codecSpoolErr –8966 Error loading or unloading data

C H A P T E R 3

Image Compression Manager

3-74 Image Compression Manager Reference

quality Specifies the desired compressed image quality. See “Compression
Quality Constants” on page 3-57 for valid values.

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types).

desc Contains a handle that is to receive a formatted image description
structure. The Image Compression Manager resizes this handle for the
returned image description structure. Your application should store this
image description with the compressed image data.

data Points to a location to receive the compressed image data. It is your
program’s responsibility to make sure that this location can receive at
least as much data as indicated by the GetMaxCompressionSize
function (described on page 3-68). The Image Compression Manager
places the actual size of the compressed image into the dataSize field of
the image description structure referred to by the desc parameter. This
pointer must contain a 32-bit clean address. If you use a dereferenced,
locked handle, you must call the Memory Manager’s StripAddress
routine before you use that handle with this parameter (for details on
StripAddress, see Inside Macintosh: Memory).

DESCRIPTION

The CompressImage function presents a simplified interface to your application,

eliminating some parameters for the sake of convenience.

RESULT CODES

SEE ALSO

If you need to exert greater control over the compression operation, use the

FCompressImage function, described in the next section.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-75

FCompressImage

Like the CompressImage function, the FCompressImage function allows your

application to compress a single-frame image that is currently stored as a pixel map

structure (PixMap).

pascal OSErr FCompressImage (PixMapHandle src,

const Rect *srcRect,

short colorDepth, CodecQ quality,

CodecType cType,

CompressorComponent codec,

CTabHandle clut, CodecFlags flags,

long bufferSize,

FlushProcRecordPtr flushProc,

ProgressProcRecordPtr progressProc,

ImageDescriptionHandle desc,

Ptr data);

src Contains a handle to the image to be compressed. The image must be
stored in a pixel map structure.

srcRect Contains a pointer to a rectangle defining the portion of the image to
compress.

colorDepth
Specifies the depth at which the image is likely to be viewed.
Compressors may use this as an indication of the color or grayscale
resolution of the compressed image. If you set this parameter to 0, the
Image Compression Manager determines the appropriate value for the
source image. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the number of bits
per pixel for color images. Values of 34, 36, and 40 indicate 2-bit, 4-bit, and
8-bit grayscale, respectively, for grayscale images. Your program can
determine which depths are supported by a given compressor by
examining the compressor information structure returned by the
GetCodecInfo function (see “Getting Information About Compressor
Components” on page 3-62 for more information on the GetCodecInfo
function).

quality Specifies the desired compressed image quality. See “Compression
Quality Constants” on page 3-57, for valid values.

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types).

C H A P T E R 3

Image Compression Manager

3-76 Image Compression Manager Reference

codec Specifies a compressor identifier. Specify a particular compressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first compressor of the specified type

bestSpeedCodec
Choose the fastest compressor of the specified type

bestFidelityCode
Choose the most accurate compressor of the specified type

bestCompressionCodec
Choose the compressor that produces the smallest resulting
data

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

If you set the codec parameter to anyCodec, the Image Compression
Manager chooses the first compressor it finds of the specified type.

clut Contains a handle to a custom color lookup table. Your program may use
this parameter to indicate a custom color lookup table to be used with this
image. If the value of the colorDepth parameter is less than or equal to
8 and the custom color lookup table is different from that of the source
pixel map (that is, the ctSeed field values differ in the two pixel maps),
the compressor remaps the colors of the image to the custom colors. If
you set the colorDepth parameter to 16, 24, or 32, the compressor stores
the custom color table with the compressed image. The compressor may
use the table to specify the best colors to use when displaying the image
at lower bit depths. The compressor ignores the clut parameter when
colorDepth is set to 33, 34, 36, or 40. If you set this parameter to nil,
the compressor uses the color lookup table from the source pixel map.

flags Specifies flags providing further control information. See “Image
Compression Manager Function Control Flags,” which begins on
page 3-58, for information about CodecFlags fields. The following flag
is available for this function:

codecFlagWasCompressed
Indicates to the compressor that the image to be
compressed has been compressed before. This information
may be useful to compressors that can compensate for the
image degradation that may otherwise result from
repeated compression and decompression of the same
image. Set this flag to 1 to indicate that the image was
previously compressed. Set this flag to 0 if the image was
not previously compressed.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-77

bufferSize
Specifies the size of the buffer to be used by the data-unloading
function specified by the flushProc parameter. If you have not specified
a data-unloading function, set this parameter to 0.

flushProc Points to a data-unloading function structure. If there is not enough
memory to store the compressed image, the compressor calls a function
you provide that unloads some of the compressed data (see
“Data-Unloading Functions” beginning on page 3-150 for more
information on the data-unloading structure). If you have not provided a
data-unloading function, set this parameter to nil. In this case, the
compressor writes the entire compressed image into the memory location
specified by the data parameter.

progressProc
Points to a progress function structure. During the compression
operation, the compressor may occasionally call a function you provide in
order to report its progress (see “Progress Functions” on page 3-152 for
more information about progress functions). If you have not provided a
progress function, set this parameter to nil. If you pass a value of –1, you
obtain a standard progress function.

desc Contains a handle that is to receive a formatted image description
structure. The Image Compression Manager resizes this handle for the
returned image description structure. Your application should store this
image description with the compressed image data.

data Points to a location to receive the compressed image data. It is your
program’s responsibility to make sure that this location can receive at
least as much data as indicated by the GetMaxCompressionSize
function (described on page 3-68). If there is not sufficient memory to
store the compressed image, you may choose to write the compressed
data to mass storage during the compression operation. Use the
flushProc parameter to identify your data-unloading function to the
compressor. This pointer must contain a 32-bit clean address. If you use a
dereferenced, locked handle, you must call the Memory Manager’s
StripAddress routine before you use that handle with this parameter.
(See Inside Macintosh: Memory for details on StripAddress.)

The Image Compression Manager places the actual size of the
compressed image into the dataSize field of the image description
structure referred to by the desc parameter.

DESCRIPTION

The FCompressImage function gives your application additional control over the

parameters that guide the compression operation.

C H A P T E R 3

Image Compression Manager

3-78 Image Compression Manager Reference

RESULT CODES

SEE ALSO

If you find that you do not need this level of compression parameter control, use the

CompressImage function, described in the previous section.

DecompressImage

The DecompressImage function allows your application to decompress a single-frame

image into a pixel map structure. If you call this function when you have a picture open,

the Image Compression Manager inserts the compressed image data into the picture.

pascal OSErr DecompressImage (Ptr data,

ImageDescriptionHandle desc,

PixMapHandle dst, const Rect *srcRect,

const Rect *dstRect, short mode,

RgnHandle mask);

data Points to the compressed image data. This pointer must contain a 32-bit
clean address. If you use a dereferenced, locked handle, you must call the
Memory Manager’s StripAddress routine before you use that handle
with this parameter.

desc Contains a handle to the image description structure that describes the
compressed image.

dst Contains a handle to the pixel map where the decompressed image is to
be displayed. Set the current graphics port to the port that contains this
pixel map.

srcRect Contains a pointer to a rectangle defining the portion of the image to
decompress. This rectangle must lie within the boundary rectangle of the
compressed image, which is defined by (0,0) and
((**desc).width,(**desc).height). If you want to decompress
the entire source image, set this parameter to nil. If the parameter is
nil, the rectangle is set to the rectangle structure of the image description
structure.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor
codecSpoolErr –8966 Error loading or unloading data
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-79

dstRect Contains a pointer to the rectangle into which the decompressed image is
to be loaded. The compressor scales the source image to fit into this
destination rectangle.

mode Specifies the transfer mode for the operation. The Image Compression
Manager supports the same transfer modes supported by QuickDraw’s
CopyBits routine.

mask Contains a handle to a clipping region in the destination coordinate
system. If specified, the compressor applies this mask to the destination
image. If you do not want to mask bits in the destination, set this
parameter to nil.

DESCRIPTION

The DecompressImage function presents a simplified interface to your application,

eliminating some parameters for the sake of convenience.

Note that the DecompressImage function is invoked through the StdPix function (see

“Working With the StdPix Function,” which begins on page 3-137, for more information).

SPECIAL CONSIDERATIONS

The graphics port and the graphics device should be set to the destination before you call

the DecompressImage function.

RESULT CODES

SEE ALSO

If you need to exert greater control over the decompression operation, use the

FDecompressImage function, described in the next section.

FDecompressImage

Like the DecompressImage function, the FDecompressImage function allows your

application to decompress a single-frame image into a pixel map (PixMap). This

function gives your application greater control over the parameters that guide the

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

3-80 Image Compression Manager Reference

decompression operation. If you find that you do not need this level of control, use the

DecompressImage function, described in the previous section.

pascal OSErr FDecompressImage (Ptr data,

ImageDescriptionHandle desc,

PixMapHandle dst,

const Rect *srcRect,

 MatrixRecordPtr matrix,

short mode, RgnHandle mask,

PixMapHandle matte,

const Rect *matteRect,

CodecQ accuracy,

DecompressorComponent codec,

long bufferSize,

DataProcRecordPtr dataProc,

ProgressProcRecordPtr progressProc);

data Points to the compressed image data. If the entire compressed image
cannot be stored at this location, your application may provide a
data-loading function (see the discussion of the dataProc parameter to
this function). This pointer must contain a 32-bit clean address. If you use
a dereferenced, locked handle, you must call the Memory Manager’s
StripAddress routine before you use that handle with this parameter.
(See Inside Macintosh: Memory for details on StripAddress.)

desc Contains a handle to the image description structure that describes the
compressed image.

dst Contains a handle to the pixel map where the decompressed image is to
be displayed. Set the current graphics port to the port that contains this
pixel map.

srcRect Contains a pointer to a rectangle defining the portion of the image to
decompress. This rectangle must lie within the boundary rectangle of the
compressed image, which is defined by (0,0) and
((**desc).width,(**desc).height). If you want to decompress
the entire source image, set this parameter to nil. If the parameter is
nil, the rectangle is set to the rectangle structure of the image description
structure.

matrix Points to a matrix structure that specifies how to transform the image
during decompression. You can use the matrix structure to translate or
scale the image during decompression. If you do not want to apply such
effects, set the matrix parameter to nil. See the chapter “Movie
Toolbox” in this book for more information about matrix operations.

mode Specifies the transfer mode for the operation. The Image Compression
Manager supports the same transfer modes supported by QuickDraw’s
CopyBits routine (described in Inside Macintosh: Imaging).

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-81

mask Contains a handle to a clipping region in the destination coordinate
system. If specified, the decompressor applies this mask to the destination
image. If you do not want to mask bits in the destination, set this
parameter to nil.

matte Contains a handle to a pixel map that contains a blend matte. You can use
the blend matte to cause the decompressed image to be blended into the
destination pixel map. The matte can be defined at any supported
pixel depth—the matte depth need not correspond to the source or
destination depths. However, the matte must be in the coordinate system
of the source image. If you do not want to apply a blend matte, set this
parameter to nil.

matteRect Contains a pointer to a rectangle defining a portion of the blend matte to
apply. If you do not want to use the entire matte referred to by the matte
parameter, use this parameter to specify a rectangle within that matte. If
specified, this rectangle must be the same size as the rectangle specified
by the srcRect parameter. If you want to use the entire matte, or if you
are not providing a blend matte, set this parameter to nil.

accuracy Specifies the accuracy desired in the decompressed image. Values for this
parameter are on the same scale as compression quality. See
“Compression Quality Constants” beginning on page 3-57 for valid
values. (For a good display of still images, you should specify at least the
codecHighQuality constant.)

codec Contains a compressor identifier. Specify a particular decompressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first decompressor of the specified type

bestSpeedCodec
Choose the fastest decompressor of the specified type

bestFidelityCodec
Choose the most accurate decompressor of the specified
type

bestCompressionCodec
Choose the decompressor that produces the smallest
resulting data

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

If you set the codec parameter to anyCodec, the Image Compression
Manager chooses the first decompressor it finds of the specified type.

bufferSize
Specifies the size of the buffer to be used by the data-loading
function specified by the dataProc parameter. If you have not specified
a data-loading function, set this parameter to 0.

C H A P T E R 3

Image Compression Manager

3-82 Image Compression Manager Reference

dataProc Points to a data-loading function structure. If there is not enough memory
to store the compressed image, the compressor calls a function you
provide that loads more compressed data (see “Data-Loading Functions”
on page 3-149 for more information about data-loading functions). If you
have not provided a data-loading function, set this parameter to nil. In
this case, the compressor expects that the entire compressed image is in
the memory location specified by the data parameter.

progressProc
Points to a progress function structure. During the decompression
operation, the compressor may occasionally call a function you provide in
order to report its progress (see “Progress Functions” on page 3-152 for
more information about progress functions). If you have not provided a
progress function, set this parameter to nil. If you pass a value of –1, you
obtain a standard progress function.

DESCRIPTION

Note that this function is invoked through the StdPix function (see “Working With the

StdPix Function,” which begins on page 3-137, for more information).

SPECIAL CONSIDERATIONS

The graphics port and the graphics device should be set to the destination before you call

the FDecompressImage function.

RESULT CODES

ConvertImage

The ConvertImage function allows your application to convert the format of a

compressed image. This function is essentially equivalent to decompressing

and recompressing the image.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor
codecSpoolErr –8966 Error loading or unloading data
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-83

pascal OSErr ConvertImage (ImageDescriptionHandle srcDD,

Ptr srcData, short colorDepth,

CTabHandle clut, CodecQ accuracy,

CodecQ quality, CodecType cType,

 CodecComponent codec,

ImageDescriptionHandle dstDD,

Ptr dstData);

srcDD Contains a handle to the image description structure that describes the
compressed image.

srcData Points to the compressed image data. This pointer must contain a 32-bit
clean address.

colorDepth
Specifies the depth at which the recompressed image is likely to be
viewed. Decompressors may use this as an indication of the color or
grayscale resolution of the compressed image. If you set this parameter to
0, the Image Compression Manager determines the appropriate value for
the source image. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the number of
bits per pixel for color images. Values of 34, 36, and 40 indicate 2-bit, 4-bit,
and 8-bit grayscale, respectively, for grayscale images. Your program can
determine which depths are supported by a given compressor by
examining the compressor information structure returned by the
GetCodecInfo function (see “Getting Information About Compressor
Components” on page 3-62 for more information on the GetCodecInfo
function).

clut Contains a handle to a custom color lookup table. Your program may use
this parameter to indicate a custom color lookup table to be used with this
image. If the value of the colorDepth parameter is less than or equal to
8 and the custom color lookup table is different from that of the source
pixel map (that is, the ctSeed field values differ in the two pixel maps),
the compressor remaps the colors of the image to the custom colors. If
you set the colorDepth parameter to 16, 24, or 32, the compressor stores
the custom color table with the compressed image. The compressor may
use the table to specify the best colors to use when displaying the image
at lower bit depths. The compressor ignores the clut parameter when
colorDepth is set to 33, 34, 36, or 40. If you set this parameter to nil,
the compressor uses the color lookup table from the source image
description structure.

accuracy Specifies the accuracy desired in the decompressed image. Values for this
parameter are on the same scale as compression quality. See
“Compression Quality Constants” on page 3-57 for valid values. (For a
good display of still images, you should specify at least the
codecHighQuality constant.)

C H A P T E R 3

Image Compression Manager

3-84 Image Compression Manager Reference

quality Specifies the desired compressed image quality. See “Compression
Quality Constants” on page 3-57 for valid values. Use the following value:

codecHighQuality
Specifies high-quality image reproduction. This value
should correspond to the highest image quality that can be
achieved with reasonable performance.

cType Specifies a compressor type. You must set this parameter to a
valid compressor type. See Table 3-3 on page 3-64 for a list of the available
compressor types.

codec Contains a compressor identifier. Specify a particular compressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first compressor of the specified type

bestSpeedCodec
Choose the fastest compressor of the specified type

bestFidelityCodec
Choose the most accurate compressor of the specified type

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

If you set the codec parameter to anyCodec, the Image Compression
Manager chooses the first compressor it finds of the specified type.

dstDD Contains a handle that is to receive a formatted image description
structure. The Image Compression Manager resizes this handle for the
returned image description structure. Your application should store this
image description with the compressed image data.

dstData Points to a location to receive the compressed image data. It is your
program’s responsibility to make sure that this location can receive at
least as much data as indicated by the GetMaxCompressionSize
function (described on page 3-68). The Image Compression Manager
places the actual size of the compressed image into the dataSize field of
the image description referred to by the dstDD parameter. This pointer
must contain a 32-bit clean address.

DESCRIPTION

During the decompression operation, the decompressor uses the srcDD, srcData, and

accuracy parameters. During the subsequent compression operation, the compressor

uses the colorDepth, clut, cType, codec, quality, dstDD, and dstData

parameters.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-85

RESULT CODES

TrimImage

The TrimImage function adjusts a compressed image to the boundaries defined by a

rectangle specified by your application.

pascal OSErr TrimImage (ImageDescriptionHandle desc, Ptr inData,

long inBufferSize,

DataProcRecordPtr dataProc,

Ptr outData, long outBufferSize,

FlushProcRecordPtr flushProc,

Rect *trimRect,

ProgressProcRecordPtr progressProc);

desc Contains a handle to the image description structure that describes the
compressed image. On return from TrimImage, the compressor updates
this image description to refer to the resized image.

inData Points to the compressed image data. If the entire compressed image
cannot be stored at this location, your application may provide a
data-loading function (see the discussion of the dataProc parameter to
this function). This pointer must contain a 32-bit clean address.

inBufferSize
Specifies the size of the buffer to be used by the data-loading
function specified by the dataProc parameter. If you have not specified
a data-loading function, this parameter is ignored.

dataProc Points to a data-loading function structure. If there is not enough memory
to store the compressed image, the compressor calls a function you
provide that loads more compressed data (see “Data-Loading Functions”
beginning on page 3-149 for more information about data-loading
function structures). If you have not provided a data-loading function, set
this parameter to nil. In this case, the compressor expects that the entire
compressed image is in the memory location specified by the inData
parameter.

outData Points to a buffer to receive the trimmed image. Your application should
create this destination buffer at least as large as the source image. If there
is not sufficient memory to store the compressed image, you may choose
to write the compressed data to mass storage during the compression
operation. Use the flushProc parameter to identify your
data-unloading function to the compressor. This pointer must contain a
32-bit clean address.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

3-86 Image Compression Manager Reference

The Image Compression Manager places the actual size of the resulting
image into the dataSize field of the image description structure referred
to by the desc parameter.

outBufferSize
Specifies the size of the buffer to be used by the data-unloading
function specified by the flushProc parameter. If you have not specified
a data-unloading function, this parameter is ignored.

flushProc Points to a data-unloading function structure. If there is not enough
memory to store the compressed image, the compressor calls a function
you provide that unloads some of the compressed data (see
“Data-Unloading Functions” beginning on page 3-150 for more
information on the data-unloading structure). If you have not provided a
data-unloading function, set this parameter to nil. In this case, the
compressor writes the entire compressed image into the memory location
specified by the data parameter.

trimRect Contains a pointer to a rectangle that defines the desired image
dimensions. Upon return to your application, the compressor adjusts the
rectangle values so that they refer to the same rectangle in the result
image (this is necessary whenever data is removed from the beginning or
from the left side of the image).

progressProc
Points to a progress function structure. During the operation, the
compressor may occasionally call a function you provide in order to
report its progress (see “Progress Functions” on page 3-152 for more
information about progress functions). If you have not provided a
progress function, set this parameter to nil. If you pass a value of –1, you
obtain a standard progress function.

DESCRIPTION

The resulting image data is still compressed and is in the same compression format as

the source image.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor
codecUnimpErr –8962 Feature not implemented by this compressor
codecSpoolErr –8966 Error loading or unloading data
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-87

SetImageDescriptionCTable

Your application may use the SetImageDescriptionCTable function to update the

custom color table for an image. The Image Compression Manager copies the custom

color table for an image into the appropriate image description structure. This function

does not change the image data, just the color table.

pascal OSErr SetImageDescriptionCTable

(ImageDescriptionHandle desc,

CTabHandle ctable);

desc Contains a handle to the appropriate image description structure. The
SetImageDescriptionCTable function updates the size of the image
description to accommodate the new color table and removes the old
color table, if one is present.

ctable Contains a handle to the new color table. The
SetImageDescriptionCTable function loads this color table into the
image description referred to by the desc parameter. Set this parameter
to nil to remove a color table.

DESCRIPTION

The SetImageDescriptionCTable function is rarely used. Typically, you supply the

color table when your application compresses an image. The Image Compression

Manager stores the color table with the image.

RESULT CODES

GetImageDescriptionCTable

Your application may use the GetImageDescriptionCTable function to set the

custom color table for an image.

pascal OSErr GetImageDescriptionCTable

(ImageDescriptionHandle desc,

 CTabHandle *ctable);

desc Contains a handle to the appropriate image description structure.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

3-88 Image Compression Manager Reference

ctable Contains a pointer to a field that is to receive a color table handle. The
GetImageDescriptionCTable function returns the color table for the
image described by the image description structure that is referred to by
the desc parameter. The function correctly sizes the handle for the color
table it returns.

DESCRIPTION

The Image Compression Manager stores the custom color table for an image in the

appropriate image description structure. Your application must use QuickDraw’s

DisposeCTable routine to free the color table. (For details on DisposeCTable, see

Inside Macintosh: Imaging.)

SPECIAL CONSIDERATIONS

If you want to find out if there is a custom color table, you should check the size of

the CTSize or CTSeed fields in the returned ctable parameter. If CTSize is 0 or if the

CTSeed field is less than 0, then the color table is not a custom color table for that image.

RESULT CODES

Working With Pictures and PICT Files

This section describes the functions that let your application compress and decompress

single-frame images stored as pictures and PICT files. See “Working With Images,”

which begins on page 3-73, for information on compressing and manipulating

single-frame images stored as pixel map structures. See “Working With Sequences,”

which begins on page 3-106, for information on compressing and decompressing

sequences of images.

As with image compression, the Image Compression Manager provides two sets of

functions for working with compressed pictures. If you do not need to control the

compression parameters, use the CompressPicture or CompressPictureFile

functions. If you need more control over the operation, use the FCompressPicture or

FCompressPictureFile functions.

The Image Compression Manager automatically expands compressed pictures when you

display them. Use the DrawPictureFile function to display the contents of a picture

file. If you want to alter the spatial characteristics of the image, use the

DrawTrimmedPicture or DrawTrimmedPictureFile functions.

You can work with an image’s control information by calling the

GetPictureFileHeader function.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager Reference 3-89

Image Compression Manager

CompressPicture

The CompressPicture function compresses a single-frame image stored as a picture

structure and places the result in another picture. If a picture with multiple pixel

maps and other graphical objects is passed, the pixel maps will be compressed

individually and the other graphic objects will not be affected.

pascal OSErr CompressPicture (PicHandle srcPicture,

PicHandle dstPicture,

CodecQ quality, CodecType cType);

srcPicture
Contains a handle to the source image, stored as a picture.

dstPicture
Contains a handle to the destination for the compressed image. The
compressor resizes this handle for the result data.

quality Specifies the desired compressed image quality. See “Compression
Quality Constants” beginning on page 3-57 for valid values.

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types). If the value passed in is 0, or 'raw ', and the source
picture is compressed, the destination picture is created as an
uncompressed picture and does not require QuickTime to be displayed.

DESCRIPTION

The CompressPicture function compresses only image data. Any other types of data

in the picture, such as text, graphics primitives, and previously compressed images, are

not modified in any way and are passed through to the destination picture.

This function does not use the graphics port.

If your picture does not fit in memory, use the CompressPictureFile function, which

is described on page 3-93.

This function supports parameters governing image quality and compressor type. The

compressor infers the other compression parameters from the image data in the source

picture.

SPECIAL CONSIDERATIONS

The CompressPicture function doesn’t compress pictures that contain compressed

data. Do not alter data in pictures that are already compressed. Instead use

FCompressPicture, described in the next section.

C H A P T E R 3

Image Compression Manager

3-90 Image Compression Manager Reference

RESULT CODES

SEE ALSO

If you need more control over the compression operation than is provided by the

CompressPicture function, use the FCompressPicture function.

FCompressPicture

The FCompressPicture function compresses a single-frame image stored as a picture

structure and places the result in another picture. If a picture with multiple pixel

maps and other graphical objects is passed, the pixel maps will be compressed

individually and the other graphic objects will not be affected.

pascal OSErr FCompressPicture (PicHandle srcPicture,

PicHandle dstPicture,

short colorDepth,

CTabHandle clut,

CodecQ quality,

short doDither,

short compressAgain,

ProgressProcRecordPtr progressProc,

CodecType cType,

CompressorComponent codec);

srcPicture
Contains a handle to the source image, stored as a picture.

dstPicture
Contains a handle to the destination for the compressed image. The
compressor resizes this handle for the result data.

colorDepth
Specifies the depth at which the image is to be compressed. If you set this
parameter to 0, the Image Compression Manager determines the
appropriate value for the source image. Values of 1, 2, 4, 8, 16, 24, and 32
indicate the number of bits per pixel for color images. Values of 34, 36,
and 40 indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images. Your program can determine which depths are supported by a
given compressor by examining the compressor information structure

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-91

returned by the GetCodecInfo function (see “Getting Information
About Compressor Components,” which begins on page 3-62, for more
information).

clut Contains a handle to a custom color lookup table. Your program may use
this parameter to indicate a custom color lookup table to be used with this
image. If the value of the colorDepth parameter is less than or equal to
8 and the custom color lookup table is different from that of the source
pixel map (that is, the ctSeed field values differ in the two pixel maps),
the compressor remaps the colors of the image to the custom colors. If
you set the colorDepth parameter to 16, 24, or 32, the compressor stores
the custom color table with the compressed image. The compressor may
use the table to specify the best colors to use when displaying the image
at lower bit depths. The compressor ignores the clut parameter when
colorDepth is set to 33, 34, 36, or 40. If you set this parameter to nil,
the compressor uses the color lookup table from the source pixel map.

quality Specifies the desired compressed image quality. See “Compression
Quality Constants” beginning on page 3-57 for available values.

doDither Indicates whether to dither the image. Use this parameter to indicate
whether you want the image to be dithered when it is displayed on a
lower-resolution screen. The following constants are available:

defaultDither
Indicates that the dithering in the source file is to be
respected.

forceDither
Indicates that the specified image should be dithered
whether the source uses dithering or not.

suppressDither
Indicates that dithering should not be used in any case. The
ability to suppress dithering can be useful if, for example,
you have a 32-bit color JPEG image drawn into a 8-bit
buffer with a custom color table from the image. In that
case, dithering would not be necessary and probably not
desirable, particularly if the buffer were to be compressed
with the graphics compressor.

compressAgain
Indicates whether to recompress compressed image data in the picture.
Use this parameter to control whether any compressed image data that is
in the source picture should be decompressed and then recompressed
using the current parameters. Set the value of this parameter to true to
recompress such data. Set the value of the parameter to false to leave
the data as it is. Note that recompressing the data may have undesirable
side effects, including image quality degradation.

progressProc
Points to a progress function structure. During the compression
operation, the compressor may occasionally call a function you provide in
order to report its progress (see “Progress Functions” beginning on

C H A P T E R 3

Image Compression Manager

3-92 Image Compression Manager Reference

page 3-152 for more information about progress functions). If you have
not provided a progress function, set this parameter to nil. If you pass a
value of –1, you obtain a standard progress function.

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types). If the value passed in is 0, or 'raw ', the resulting
picture is not compressed and does not require QuickTime to be
displayed.

codec Contains a compressor identifier. Specify a particular compressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first compressor of the specified type

bestSpeedCodec
Choose the fastest compressor of the specified type

bestFidelityCodec
Choose the most accurate compressor of the specified type

bestCompressionCodec
Choose the compressor that produces the smallest resulting
data

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

DESCRIPTION

The FCompressPicture function compresses only image data. Any other types of data

in the picture, such as text, graphics primitives, and previously compressed images, are

not modified in any way and are passed through to the destination picture.

This function supports parameters governing image quality, compressor type, image

depth, custom color tables, and dithering.

RESULT CODES

SEE ALSO

If you do not need such a high degree of control over the compression operation, use the

CompressPicture function, described on page 3-89.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor
codecSpoolErr –8966 Error loading or unloading data
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-93

CompressPictureFile

The CompressPictureFile function compresses a single-frame image stored as a

picture file (PICT file) and places the result in another picture file.

pascal OSErr CompressPictureFile (short srcRefNum,

 short dstRefNum,

 CodecQ quality,

 CodecType cType);

srcRefNum Contains a file reference number for the source PICT file.

dstRefNum Contains a file reference number for the destination PICT file. Note that
the compressor overwrites the contents of the file referred to by
dstRefNum. You must open this file with write permission. The
destination file can be the same as the source file specified by the
srcRefNum parameter.

quality Specifies the desired compressed image quality. See “Compression
Quality Constants” on page 3-57 for available values.

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types). If the value passed in is 0, or 'raw ', and the source
picture is compressed, the destination picture is created as an
uncompressed picture and does not require QuickTime to be displayed.

DESCRIPTION

The CompressPictureFile function compresses only image data. Any other types of

data in the file, such as text, graphics primitives, and previously compressed images, are

not modified in any way and are passed through to the destination picture. This function

does not use the graphics port.

This function supports parameters governing image quality and compressor type. The

compressor infers the other compression parameters from the image data in the source

picture file.

SPECIAL CONSIDERATIONS

The CompressPictureFile function doesn’t compress pictures that contain

compressed data. Do not alter data in pictures that are already compressed. Instead use

FCompressPictureFile, described in the next section.

C H A P T E R 3

Image Compression Manager

3-94 Image Compression Manager Reference

RESULT CODES

File Manager errors

SEE ALSO

If you need more control over the compression operation, use the

FCompressPictureFile function.

FCompressPictureFile

The FCompressPictureFile function compresses a single-frame image stored as a

picture file (PICT file) and places the result in another picture file.

pascal OSErr FCompressPictureFile (short srcRefNum,

short dstRefNum, short colorDepth,

CTabHandle clut, CodecQ quality,

short doDither,

short compressAgain,

ProgressProcRecordPtr progressProc,

CodecType cType,

CompressorComponent codec);

srcRefNum Specifies a file reference number for the source PICT file.

dstRefNum Specifies a file reference number for the destination PICT file. Note that
the compressor overwrites the contents of the file referred to by
dstRefNum. You must open this file with write permissions. The
destination file may be the same as the source file specified by the
srcRefNum parameter.

colorDepth
Specifies the depth at which the image is to be compressed. If you set this
parameter to 0, the Image Compression Manager determines the
appropriate value for the source image. Values of 1, 2, 4, 8, 16, 24, and 32
indicate the number of bits per pixel for color images. Values of 34, 36,
and 40 indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images. Your program can determine which depths are supported by a
given compressor by examining the compressor capability structure
returned by the GetCodecInfo function (see “Getting Information
About Compressor Components,” which begins on page 3-62, for more
information).

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-95

clut Contains a handle to a custom color lookup table. Your program may use
this parameter to indicate a custom color lookup table to be used with this
image. If the value of the colorDepth parameter is less than or equal to
8 and the custom color lookup table is different from that of the source
pixel map (that is, the ctSeed field values differ in the two pixel maps),
the compressor remaps the colors of the image to the custom colors. If
you set the colorDepth parameter to 16, 24, or 32, the compressor stores
the custom color table with the compressed image. The compressor may
use the table to specify the best colors to use when displaying the image
at lower bit depths. The compressor ignores the clut parameter when
colorDepth is set to 33, 34, 36, or 40. If you set this parameter to nil,
the compressor uses the color lookup table from the source pixel map.

quality Specifies the desired compressed image quality. See “Compression
Quality Constants” on page 3-57 for available values.

doDither Indicates whether to dither the image. Use this parameter to indicate
whether you want the image to be dithered when it is displayed on a
lower-resolution screen. The following constants are available:

defaultDither
Indicates that the dithering in the source file is to be
respected.

forceDither
Indicates that the specified image should be dithered
whether the source uses dithering or not.

suppressDither
Indicates that dithering should not be used in any case. The
ability to suppress dithering can be useful if, for example,
you have a 32-bit, color JPEG image drawn into an 8-bit
buffer with a custom color table from the image. In that
case, dithering would not be necessary and probably not
desirable, particularly if the buffer were to be compressed
with the graphics compressor.

compressAgain
Indicates whether to recompress compressed image data in the picture.
Use this parameter to control whether any compressed image data that is
in the source picture should be decompressed and then recompressed
using the current parameters. Set the value of this parameter to true to
recompress such data. Set the value of this parameter to false to leave
the data as it is. Note that recompressing the data may have undesirable
side effects, including image quality degradation.

progressProc
Points to a progress function structure. During the compression
operation, the compressor may occasionally call a function you provide in
order to report its progress (see “Progress Functions” on page 3-152 for
more information about progress functions). If you have not provided a
progress function, set this parameter to nil. If you pass a value of –1, you
obtain a standard progress function.

C H A P T E R 3

Image Compression Manager

3-96 Image Compression Manager Reference

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types). If the value passed in is 0, or 'raw ' and the source
picture is compressed, the destination picture is created as an
uncompressed picture and does not require QuickTime to be displayed.

codec Contains a compressor identifier. Specify a particular compressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first compressor of the specified type

bestSpeedCodec
Choose the fastest compressor of the specified type

bestFidelityCodec
Choose the most accurate compressor of the specified type

bestCompressionCodec
Choose the compressor that produces the smallest resulting
data

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

DESCRIPTION

The FCompressPicture function compresses only image data. Any other types of data

in the file, such as text, graphics primitives, and previously compressed images, are not

modified in any way and are passed through to the destination picture file.

This function supports parameters governing image quality, compressor type, image

depth, custom color tables, and dithering.

RESULT CODES

File Manager errors

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-97

SEE ALSO

If you do not need such a high degree of control over the compression operation, use the

CompressPictureFile function, described on page 3-93.

DrawPictureFile

The DrawPictureFile function draws an image from a specified picture file (PICT file)

in the current graphics port. Your program also specifies the destination rectangle for the

image.

pascal OSErr DrawPictureFile (short refNum, const Rect *frame,

 ProgressProcRecordPtr progressProc);

refNum Contains a file reference number for the source PICT file.

frame Contains a pointer to the rectangle into which the image is to be loaded.
The compressor scales the source image to fit into this destination
rectangle.

progressProc
Points to a progress function structure. During the operation, the draw
function may occasionally call a function you provide in order to report
its progress (see “Progress Functions” beginning on page 3-152 for more
information about progress functions). If you have not provided a
progress function, set this parameter to nil. If you pass a value of –1, you
obtain a standard progress function.

DESCRIPTION

The DrawPictureFile function is essentially the same as QuickDraw’s DrawPicture

routine, except that DrawPictureFile reads the picture from disk. (For details on

DrawPicture, see Inside Macintosh: Imaging.) The Image Compression Manager

performs any spooling that may be necessary when reading the picture file.

RESULT CODES

File Manager errors

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

3-98 Image Compression Manager Reference

DrawTrimmedPicture

The DrawTrimmedPicture function draws an image that is stored as a picture into the

current graphics port and trims that image to fit a region you specify.

pascal OSErr DrawTrimmedPicture (PicHandle srcPicture,

const Rect *frame, RgnHandle trimMask,

short doDither,

ProgressProcRecordPtr progressProc);

srcPicture Contains a handle to the source image; stored as a picture.

frame Contains a pointer to the rectangle into which the decompressed image is
to be loaded.

trimMask Contains a handle to a clipping region in the destination coordinate
system. The decompressor applies this mask to the destination image and
ignores any image data that fall outside the specified region. Set this
parameter to nil if you do not want to clip the source image. In this case,
this function acts like QuickDraw’s DrawPicture routine, but it also
allows you to control dithering and assign a progress function. (See Inside
Macintosh: Imaging for more on DrawPicture.)

doDither Indicates whether to dither the image. Use this parameter to indicate
whether you want the image to be dithered when it is displayed on a
lower-resolution screen. The following constants are available:

defaultDither
Indicates that the dithering in the source file is to be
respected.

forceDither
Indicates that the specified image should be dithered
whether the source uses dithering or not.

suppressDither
Indicates that dithering should not be used in any case. The
ability to suppress dithering can be useful if, for example,
you have a 32-bit, color JPEG image drawn into an 8-bit
buffer with a custom color table from the image. In that
case, dithering would not be necessary and probably not
desirable, particularly if the buffer were to be compressed
with the graphics compressor.

progressProc
Points to a progress function structure. During the compression
operation, the compressor may occasionally call a function you provide in
order to report its progress (see “Progress Functions” beginning on
page 3-152 for more information about progress functions). If you have
not provided a progress function, set this parameter to nil. If you pass a
value of –1, you obtain a standard progress function.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-99

DESCRIPTION

The DrawTrimmedPicture function works with compressed image data—the source

data stays compressed. The function trims the image to fit the specified clipping region.

Figure 3-10 shows how the DrawTrimmedPicture function works. It illustrates how

you can use this function to save part of a picture (the clipped or uncompressed image

data that is not within the trim region is ignored and is not included in the destination

picture). All the remaining objects in the resulting image are clipped. You use

QuickDraw’s OpenPicture and ClosePicture routines to open and close the

destination picture. (For more on OpenPicture and ClosePicture, see Inside
Macintosh: Imaging.)

Note that if you just use a clip while making a picture, the data—though not visible—is

still stored in the picture.

C H A P T E R 3

Image Compression Manager

3-100 Image Compression Manager Reference

Figure 3-10 The operation of the DrawTrimmedPicture function

RESULT CODES

SEE ALSO

If your source image does not fit in memory, use the DrawTrimmedPictureFile

function, which is described in the next section.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-101

DrawTrimmedPictureFile

The DrawTrimmedPictureFile function draws an image that is stored as a picture file

(PICT file) into the current graphics port and trims that image to fit a region you specify.

pascal OSErr DrawTrimmedPictureFile (short srcRefnum,

const Rect *frame,

RgnHandle trimMask,

short doDither,

ProgressProcRecordPtr progressProc);

srcRefNum Contains a file reference number for the source PICT file.

frame Contains a pointer to the rectangle into which the decompressed image is
to be loaded.

trimMask Contains a handle to a clipping region in the destination coordinate
system. The decompressor applies this mask to the destination image and
ignores any image data that fall outside the specified region. Set this
parameter to nil if you do not want to clip the source image. In this case,
this function acts like the DrawPictureFile function, which is
described on page 3-97.

doDither Indicates whether to dither the image. Use this parameter to indicate
whether you want the image to be dithered when it is displayed on a
lower-resolution screen. The following constants are available:

defaultDither
Indicates that the dithering in the source picture file is to be
respected.

forceDither
Indicates that the specified image should be dithered
whether the source uses dithering or not.

suppressDither
Indicates that dithering should not be used in any case. The
ability to suppress dithering can be useful if, for example,
you have a 32-bit color JPEG image drawn into an 8-bit
buffer with a custom color table from the image. In that
case, dithering would not be necessary and probably not
desirable, particularly if the buffer were to be compressed
with the graphics compressor.

progressProc
Points to a progress function structure. During the compression
operation, the compressor may occasionally call a function you provide in
order to report its progress (see “Progress Functions” beginning on
page 3-152 for more information about progress functions). If you have
not provided a progress function, set this parameter to nil. If you pass a
value of –1, you obtain a standard progress function.

C H A P T E R 3

Image Compression Manager

3-102 Image Compression Manager Reference

DESCRIPTION

The DrawTrimmedPictureFile function works with compressed image data—the

source data stays compressed. The function trims the image to fit the specified clipping

region. The Image Compression Manager handles any spooling issues that may arise

when reading the picture file.

You can use this function to save part of a picture, since the image data that is not within

the trim region is ignored and is not included in the destination picture file. All the

reamining objects in the resulting object are clipped.

RESULT CODES

File Manager errors

GetPictureFileHeader

The GetPictureFileHeader function extracts the picture frame (the picFrame

rectangle in the picture structure) and file header from a specified picture file (PICT file).

Your program can use this information to determine how to draw an image without

having to read the picture file.

pascal OSErr GetPictureFileHeader (short refNum, Rect *frame,

OpenCPicParams *header);

refNum Contains a file reference number for the source PICT file.

frame Contains a pointer to a rectangle that is to receive the picture frame
rectangle of the picture file. This function places the picFrame rectangle
from the picture structure into the rectangle referred to by the frame
parameter. If you are not interested in this information, pass nil in
this parameter.

header Contains a pointer to an OpenCPicture parameters structure. The
GetPictureFileHeader function places the header from the specified
picture file into the structure referred to by the header parameter. Note
that this function always returns a version 2 header. If the source file is a
version 1 PICT file, the GetPictureFileHeader function converts the
header into version 2 format before returning it to your application. See
Inside Macintosh: Imaging for more information about picture headers and
the OpenCPicture function. If you are not interested in this information,
pass nil in this parameter.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-103

DESCRIPTION

The GetPictureFileHeader function always returns a version 2 PICT file header. If

the specified picture file is a version 1 file, the GetPictureFileHeader function

synthesizes a version 2 header from the information available in the file header.

RESULT CODES

File Manager errors

Making Thumbnail Pictures

This section describes the functions that allow your application to create thumbnail

pictures from existing images that are stored as pixel maps, pictures, or picture files.

Thumbnail pictures are useful for creating small, representative images of a source

image. You can use thumbnails when you create previews for files that contain image

data (for more information about file previews, see the chapter “Movie Toolbox” in this

book).

You can create thumbnails from pictures, picture files, or pixel maps—use

the MakeThumbnailFromPicture, MakeThumbnailFromPictureFile, or

MakeThumbnailFromPixMap function, as appropriate.

MakeThumbnailFromPicture

The MakeThumbnailFromPicture function creates an 80-by-80 pixel thumbnail

picture from a specified picture structure.

pascal OSErr MakeThumbnailFromPicture (PicHandle picture,

short colorDepth,

PicHandle thumbnail,

ProgressProcRecordPtr progressProc);

picture Contains a handle to the image from which the thumbnail is to be
extracted. The image must be stored in a picture structure.

colorDepth
Specifies the depth at which the image is likely to be viewed. If you set
this parameter to 0, the Image Compression Manager determines the
appropriate value for the source image. Values of 1, 2, 4, 8, 16, 24, and 32
indicate the number of bits per pixel for color images. Values of 34, 36,
and 40 indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images.

thumbnail Contains a handle to the destination picture structure for the thumbnail
image. The compressor resizes this handle for the resulting data.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-104 Image Compression Manager Reference

progressProc
Points to a progress function structure. During the operation, the Image
Compression Manager will occasionally call a function you provide in
order to report its progress (see “Progress Functions” beginning on
page 3-152 for more information about progress functions). If you have
not provided a progress function, set this parameter to nil. If you pass a
value of –1, you obtain a standard progress function.

RESULT CODES

MakeThumbnailFromPictureFile

The MakeThumbnailFromPictureFile function creates an 80-by-80 pixel thumbnail

picture from a specified picture file (PICT file).

pascal OSErr MakeThumbnailFromPictureFile (short refNum,

short colorDepth,

PicHandle thumbnail,

ProgressProcRecordPtr progressProc);

refNum Contains a file reference number for the PICT file from which the
thumbnail is to be extracted.

colorDepth
Specifies the depth at which the image is likely to be viewed. If you set
this parameter to 0, the Image Compression Manager determines the
appropriate value for the source image. Values of 1, 2, 4, 8, 16, 24, and 32
indicate the number of bits per pixel for color images. Values of 34, 36,
and 40 indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images.

thumbnail Contains a handle to the destination picture structure for the thumbnail
image. The compressor resizes this handle for the resulting data.

progressProc
Points to a progress function structure. During the operation, the Image
Compression Manager will occasionally call a function you provide in
order to report its progress (see “Progress Functions” beginning on
page 3-152 for more information about progress functions). If you have
not provided a progress function, set this parameter to nil. If you pass a
value of –1, you obtain a standard progress function.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-105

RESULT CODES

File Manager errors

MakeThumbnailFromPixMap

The MakeThumbnailFromPixMap function creates an 80-by-80 pixel thumbnail picture

from a specified pixel map structure.

pascal OSErr MakeThumbnailFromPixMap (PixMapHandle src,

const Rect *srcRect,

short colorDepth,

PicHandle thumbnail,

ProgressProcRecordPtr progressProc);

src Contains a handle to the image from which the thumbnail is to be
extracted. The image must be stored in a pixel map structure.

srcRect Contains a pointer to a rectangle defining the portion of the image to use
for the thumbnail.

colorDepth
Specifies the depth at which the image is likely to be viewed. If you set
this parameter to 0, the Image Compression Manager determines the
appropriate value for the source image. Values of 1, 2, 4, 8, 16, 24, and 32
indicate the number of bits per pixel for color images. Values of 34, 36,
and 40 indicate 2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images.

thumbnail Contains a handle to the destination picture structure for the thumbnail
image. The compressor resizes this handle for the resulting data.

progressProc
Points to a progress function structure. During the operation, the Image
Compression Manager will occasionally call a function you provide in
order to report its progress (see “Progress Functions” beginning on
page 3-152, for more information about progress functions). This
parameter contains a pointer to a structure that identifies that progress
function. If you have not provided a progress function, set this parameter
to nil. If you pass a value of –1, you obtain a standard progress function.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

3-106 Image Compression Manager Reference

DESCRIPTION

The thumbnail returned is an 80-by-80 pixel picture, but the aspect ratio is maintained.

RESULT CODES

Working With Sequences

This section describes the functions that enable your application to compress and

decompress sequences of images. Each image in the sequence is referred to as a frame.

Note that the sequence carries no time information. The Movie Toolbox manages all

temporal aspects of displaying the sequence. Consequently, your application can focus

on the order of images in the sequence.

To process a sequence of frames, your program first begins the sequence (by issuing

either the CompressSequenceBegin or DecompressSequenceBegin functions). You

then process each frame in the sequence (use CompressSequenceFrame to compress a

frame; use DecompressSequenceFrame to decompress a frame). When you are done,

close the sequence by issuing the CDSequenceEnd function. You can check on the status

of the current operation by calling the CDSequenceBusy function.

Note that the Image Compression Manager provides a rich set of functions that allow

your application to control many of the parameters that govern sequence processing.

You set default values for most of these parameters when you start the sequence. These

additional functions allow you to modify those parameters while you are processing a

sequence. See “Changing Sequence-Compression Parameters,” which begins on

page 3-120, for information on functions that affect sequence compression. See

“Changing Sequence-Decompression Parameters” beginning on page 3-129 for

information on functions that affect sequence decompression.

CompressSequenceBegin

Your application calls the CompressSequenceBegin function to signal the beginning

of the process of compressing a sequence of frames. The Image Compression Manager

prepares for the sequence-compression operation by reserving appropriate system

resources. You must call this function before calling the CompressSequenceFrame

function, which is described in the next section.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-107

pascal OSErr CompressSequenceBegin (ImageSequence *seqID,

PixMapHandle src,

PixMapHandle prev,

const Rect *srcRect,

const Rect *prevRect,

short colorDepth,

CodecType cType,

CompressorComponent codec,

CodecQ spatialQuality,

CodecQ temporalQuality,

long keyFrameRate,

CTabHandle clut,

CodecFlags flags,

ImageDescriptionHandle desc);

seqID Contains a pointer to a field to receive the unique identifier for this
sequence. You must supply this identifier to all subsequent Image
Compression Manager functions that relate to this sequence.

src Contains a handle to a pixel map that will contain the image to be
compressed. The image must be stored in a pixel map structure.

prev Contains a handle to a pixel map that will contain a previous image. The
compressor uses this buffer to store a previous image against which the
current image (stored in the pixel map referred to by the src parameter)
is compared when performing temporal compression. This pixel map
must be created at the same depth and with the same color table as the
source image. The compressor manages the contents of this pixel map
based upon several considerations, such as the key frame rate and the
degree of difference between compared images. If you want the
compressor to allocate this pixel map or if you do not want to
perform temporal compression (that is, you have set the value of the
temporalQuality parameter to 0), set this parameter to nil.

You can set or change the previous image buffer for an active sequence by
calling the SetCSequencePrev function. You can obtain a pointer to a
pixel map that was allocated by the compressor by calling the
GetCSequencePrevBuffer function. See “Changing
Sequence-Compression Parameters,” which begins on page 3-120, for
information about these functions.

srcRect Contains a pointer to a rectangle defining the portion of the image to
compress. The compressor applies this rectangle to the image stored in
the buffer referred to by the src parameter.

C H A P T E R 3

Image Compression Manager

3-108 Image Compression Manager Reference

prevRect Contains a pointer to a rectangle defining the portion of the previous
image to use for temporal compression. The compressor uses this portion
of the previous image as the basis of comparison with the current image.
The compressor ignores this parameter if you have not provided a buffer
for previous images. This rectangle must be the same size as the source
rectangle, which is specified with the srcRect parameter.

You can set or change the rectangle used with the previous image buffer
for an active sequence by calling the SetCSequencePrev function. See
“Changing Sequence-Compression Parameters,” which begins on
page 3-120, for information about this function.

colorDepth
Specifies the depth at which the sequence is likely to be viewed.
Compressors may use this as an indication of the color or grayscale
resolution of the compressed images. If you set this parameter to 0, the
Image Compression Manager determines the appropriate value for the
source image. Values of 1, 2, 4, 8, 16, 24, and 32 indicate the number of bits
per pixel for color images. Values of 34, 36, and 40 indicate 2-bit, 4-bit, and
8-bit grayscale, respectively, for grayscale images. Your program can
determine which depths are supported by a given compressor by
examining the compressor information structure returned by the
GetCodecInfo function (described on page 3-65).

cType Specifies a compressor type. You must set this parameter to a
valid compressor type (see Table 3-3 on page 3-64 for a list of the available
compressor types).

codec Specifies a compressor identifier. Specify a particular compressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first compressor of the specified type

bestSpeedCodec
Choose the fastest compressor of the specified type

bestFidelityCodec
Choose the most accurate compressor of the specified type

bestCompressionCodec
Choose the compressor that produces the smallest resulting
data

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

If you set the codec parameter to anyCodec, the Image Compression
Manager chooses the first compressor it finds of the specified type.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-109

spatialQuality
Specifies the desired compressed image quality. See “Compression
Quality Constants” beginning on page 3-57 for available values. You can
change the value of this parameter for an active sequence by calling the
SetCSequenceQuality function (described on page 3-120).

temporalQuality
Specifies the desired sequence temporal quality. This parameter governs
the level of compression you desire with respect to information between
successive frames in the sequence. Set this parameter to 0 to prevent the
compressor from applying temporal compression to the sequence. See
“Compression Quality Constants” beginning on page 3-57 for other
available values.

You can change the value of this parameter for an active sequence by
calling the SetCSequenceQuality function (described on page 3-120).

keyFrameRate
Specifies the maximum number of frames allowed between key frames.
Key frames provide points from which a temporally compressed
sequence may be decompressed. Use this parameter to control the
frequency at which the compressor places key frames into the compressed
sequence. The compressor determines the optimum placement for key
frames based upon the amount of redundancy between adjacent images
in the sequence. Consequently, the compressor may insert key frames
more frequently than you have requested. However, the compressor
never places fewer key frames than is indicated by the setting of the
keyFrameRate parameter. The compressor ignores this parameter if you
have not requested temporal compression (that is, you have set the
temporalQuality parameter to 0). If you pass in 0 in this parameter,
this indicates that there are no key frames in the sequence. If you pass in
any other number, it specifies the number of non-key frames between key
frames. Set this parameter to 1 to specify all key frames, to 2 to specify
every other frame as a key frame, to 3 to specify every third frame as a
key frame, and so forth.

Your application may change the key frame rate for an active sequence by
calling the SetCSequenceKeyFrameRate function (described
beginning on page 3-121). See “Defining Key Frame Rates” on page 3-47
for more information about key frames.

clut Contains a handle to a custom color lookup table. Your program may use
this parameter to indicate a custom color lookup table to be used with this
image. If the value of the colorDepth parameter is less than or equal to
8 and the custom color lookup table is different from that of the source
pixel map (that is, the ctSeed field values differ in the two pixel maps),
the compressor remaps the colors of the image to the custom colors. If
you set the colorDepth parameter to 16, 24, or 32, the compressor stores
the custom color table with the compressed image. The compressor may
use the table to specify the best colors to use when displaying the image
at lower bit depths. The compressor ignores the clut parameter when
colorDepth is set to 33, 34, 36, or 40. If you set this parameter to nil,
the compressor uses the color lookup table from the source pixel map.

C H A P T E R 3

Image Compression Manager

3-110 Image Compression Manager Reference

flags Contains flags providing further control information. See “Image
Compression Manager Function Control Flags,” which begins on
page 3-58, for information about CodecFlags fields. You must set either
the value of the codecFlagUpdatePrevious flag or the
codecFlagUpdatePreviousComp flag to 1 (be sure to set unused flags
to 0). The following flags are available for this function:

codecFlagUpdatePrevious
Controls whether the compressor updates the previous
image during compression. This flag is only used with
sequences that are being temporally compressed. If you set
this flag to 1, the compressor copies the current frame into
the previous frame buffer at the end of frame compression.

codecFlagUpdatePreviousComp
Controls whether the compressor updates the previous
image buffer with the compressed image. This flag is only
used with temporal compression and is similar to
the codecFlagUpdatePrevious flag. As with the
codecFlagUpdatePrevious flag, if you set this flag to 1,
the compressor updates the previous frame buffer at the
end of frame compression. However, this flag causes the
Image Compression Manager to update the frame buffer
using an image obtained by decompressing the results of
the most recent compression operation, rather than the
source image, which may give better results at the expense
of taking more time.

codecFlagWasCompressed
Indicates to the compressor that the image to be
compressed has been compressed before. This information
may be useful to compressors that can compensate for the
image degradation that may otherwise result from
repeated compression and decompression of the same
image. Set this flag to 1 to indicate that the image was
previously compressed. Set this flag to 0 if the image was
not previously compressed.

desc Contains a handle that is to receive a formatted image description
structure. The Image Compression Manager resizes this handle for
the returned image description structure. Your application should
store this image description with the compressed sequence.
During the compression operation, the Image Compression
Manager and the compressor component update the contents of this
image description. Consequently, you should not store the image
description until the sequence has been completely processed.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-111

RESULT CODES

CompressSequenceFrame

Your application calls the CompressSequenceFrame function to compress one of a

sequence of frames.

pascal OSErr CompressSequenceFrame (ImageSequence seqID,

PixMapHandle src, const Rect *srcRect,

CodecFlags flags, Ptr data, long *dataSize,

unsigned char *similarity,

CompletionProcRecordPtr asyncCompletionProc);

seqID Unique sequence identifier that was returned by the
CompressSequenceBegin function (described in the previous section).

src Contains a handle to a pixel map that contains the image to be
compressed. The image must be stored in a pixel map structure.

srcRect Contains a pointer to a rectangle defining the portion of the image to
compress. The compressor applies this rectangle to the image stored in
the buffer referred to by the src parameter.

flags Specifies flags providing further control information. See “Image
Compression Manager Function Control Flags,” which begins on
page 3-58, for information about CodecFlags fields. You must set the
value of either the codecFlagUpdatePrevious flag or the
codecFlagUpdatePreviousComp flag to 1 (be sure to set unused flags
to 0). The following flags are available for this function:

codecFlagUpdatePrevious
Controls whether the compressor updates the previous
image during compression. This flag is only used with
sequences that are being temporally compressed. If you set
this flag to 1, the compressor copies the current frame into
the previous frame buffer at the end of frame compression.

Indicates to the compressor that the image to be
compressed has been compressed before. This information
may be useful to compressors that can compensate for the
image degradation that may otherwise result from
repeated compression and decompression of the same
image. Set this flag to 1 to indicate that the image was
previously compressed. Set this flag to 0 if the image was
not previously compressed.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find

the specified compressor
codecConditionErr –8972 Component cannot perform requested operation

C H A P T E R 3

Image Compression Manager

3-112 Image Compression Manager Reference

codecFlagUpdatePreviousComp
Controls whether the compressor updates the previous
image buffer with the compressed image. This flag is only
used with temporal compression and is similar to
the codecFlagUpdatePrevious flag. As with the
codecFlagUpdatePrevious flag, if you set this flag to 1,
the compressor updates the previous frame buffer at the
end of frame compression. However, this flag causes the
Image Compression Manager to update the frame buffer
using an image obtained by decompressing the results of
the most recent compression operation, rather than the
source image.

codecFlagForceKeyFrame
Controls whether the compressor creates a key frame from
the current image. This flag is only used with temporal
compression. If you set this flag to 1, the compressor makes
the current image a key frame. If you set this flag to 0, the
compressor decides based on other criteria, such as the key
frame rate, whether to create a key frame from the current
image. If you don’t want any key frames other than the
ones that are forced, set the key frame rate for the sequence
to 0.

codecFlagLiveGrab
Indicates to the compressor that speed is of the
utmost importance, and that size and quality are of lesser
importance. This flag is useful when you are grabbing
sequences from a live source where each frame must be
compressed quickly.

data Points to a location to receive the compressed image data. It is your
program’s responsibility to make sure that this location can receive at
least as much data as indicated by the GetMaxCompressionSize
function (described on page 3-68). The Image Compression Manager
places the actual size of the compressed image into the field referred to by
the dataSize parameter. This pointer must contain a 32-bit clean
address. If you use a dereferenced, locked handle, you must call the
Memory Manager’s StripAddress routine before you use that pointer
with this parameter. For details on StripAddress, see Inside Macintosh:
Memory.

dataSize Contains a pointer to a field that is to receive the size, in bytes, of the
compressed image.

similarity Contains a pointer to a field that is to receive a similarity value. The
CompressSequenceFrame function returns a value that indicates the
similarity of the current frame to the previous frame. A value of 0
indicates that the current frame is a key frame in the sequence. A value of

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-113

255 indicates that the current frame is identical to the previous frame.
Values from 1 through 254 indicate relative similarity, ranging from very
different (1) to very similar (254).

asyncCompletionProc
Points to a completion function structure. The compressor calls your
completion function when an asynchronous compression operation
is complete. You can cause the compression to be performed
asynchronously by specifying a completion function if the compressor
supports asynchronous compression. For more information about
completion function structures, see “Completion Functions” on
page 3-154.

If you specify asynchronous operation, you must not read the compressed
data until the compressor indicates that the operation is complete by
calling your completion function. Set asyncCompletionProc to nil to
specify synchronous compression. If you set asyncCompletionProc
to –1, the operation is performed asynchronously but the compressor
does not call your completion function.

If the asyncCompletionProc parameter is not nil, the following
conditions are in effect: the pixels in the source image must stay valid
until the completion function is called with its
codecCompletionSource flag, and the resulting compressed data is
not valid until it is called with its codecCompletionDest flag set.

SPECIAL CONSIDERATIONS

You must call the CompressSequenceBegin function (described in the previous

section) shortly before you use the CompressSequenceFrame function.

CompressSequenceFrame uses the current graphics device and port set from your

prior call to CompressSequenceBegin.

RESULT CODES

DecompressSequenceBegin

The Movie Toolbox handles the details of decompressing image sequences in QuickTime

movies. If you need to decompress other sequences, your application calls this function

to signal the beginning of the process of decompressing a sequence of frames. You must

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor
codecSpoolErr –8966 Error loading or unloading data

C H A P T E R 3

Image Compression Manager

3-114 Image Compression Manager Reference

call this function before calling the DecompressSequenceFrame function (described in

the next section).

pascal OSErr DecompressSequenceBegin (ImageSequence *seqID,

ImageDescriptionHandle desc,

CGrafPtr port, GDHandle gdh,

const Rect *srcRect,

MatrixRecordPtr matrix, short mode,

RgnHandle mask, CodecFlags flags,

CodecQ accuracy,

DecompressorComponent codec);

seqID Contains a pointer to a field to receive the unique identifier for this
sequence returned by the CompressSequenceBegin function
(described on page 3-106). You must supply this identifier to all
subsequent Image Compression Manager functions that relate to this
sequence.

desc Contains a handle to the image description structure that describes the
compressed image.

port Points to the graphics port for the destination image. If this parameter
specifies a graphics world or points to the screen, set the gdh parameter
to nil. If you set this parameter to nil, the Image Compression Manager
uses the current port (in this case, you should also set the gdh parameter
to nil).

gdh Contains a handle to the graphics device record for the destination image.
If the port parameter specifies a graphics world or the screen, or if you set
the port parameter to nil, set this parameter to nil.

srcRect Contains a pointer to a rectangle defining the portion of the image to
decompress. This rectangle must lie within the boundary rectangle of the
compressed image, which is defined by (0,0) and
((**desc).width,(**desc).height). If you want to decompress
the entire source image, set this parameter to nil. If the srcRect
parameter is nil, the rectangle is set to the rectangle structure of the
image description structure. Your application can change the source
rectangle for an active sequence by calling the SetDSequenceSrcRect
function (described on page 3-131).

matrix Points to a matrix structure that specifies how to transform the image
during decompression. You can use the matrix structure to translate or
scale the image during decompression. If you do not want to apply such
effects, set the matrix parameter to nil. For more information about
matrix operations, see the chapter “Movie Toolbox” in this book.

Your application can change the matrix for an active sequence by calling
the SetDSequenceMatrix function (described on page 3-131).

mode Specifies the transfer mode for the operation. The Image Compression
Manager supports the same transfer modes supported by QuickDraw’s
CopyBits routine (described in Inside Macintosh: Imaging).

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-115

Your application can change the transfer mode for an active sequence by
calling the SetDSequenceTransferMode function (described on
page 3-130).

mask Contains a handle to a clipping region in the destination coordinate
system. If specified, the decompressor applies this mask to the destination
image. If you do not want to mask pixels in the destination, set this
parameter to nil.

Your application can change the clipping mask for an active sequence by
calling the SetDSequenceMask function (described on page 3-132).

flags Contains flags providing further control information. See “Image
Compression Manager Function Control Flags,” which begins on
page 3-58, for information about CodecFlags fields. The following flags
are available for this function:

codecFlagUseScreenBuffer
Controls whether the decompressor allocates an offscreen
buffer. The decompressor places the decompressed image
into that buffer and then copies the image to the
destination pixel map after completing the decompression
operation. Using an offscreen buffer reduces the tearing
effect that can result from writing directly to the screen
during decompression. Set this flag to 1 to cause the
decompressor to allocate and use an offscreen buffer. Set
this flag to 0 to cause the decompressor to write to the
destination pixel map.

Your application can determine the screen buffer for an
active sequence by calling the
GetDSequenceScreenBuffer function (described on
page 3-136).

codecFlagUseImageBuffer
Controls whether the decompressor allocates an offscreen
buffer for the current image. The decompressor uses
this buffer to store the compressed data from the current
image so that subsequent images that are temporally
compressed can be processed correctly. Set this flag to 1 to
cause the decompressor to use an image buffer. Set this flag
to 0 if your sequence is not temporally compressed and
therefore does not require the use of an image buffer.

Your application can determine the image buffer for an
active sequence by calling the
GetDSequenceImageBuffer function (described on
page 3-136).

accuracy Specifies the accuracy desired in the decompressed image. Values for this
parameter are on the same scale as compression quality.
See “Compression Quality Constants” beginning on page 3-57 for
available values.

Your application can change the accuracy parameter for an active
sequence by calling the SetDSequenceAccuracy function (described on
page 3-134).

C H A P T E R 3

Image Compression Manager

3-116 Image Compression Manager Reference

codec Contains a compressor identifier. Specify a particular decompressor by
setting this parameter to its compressor identifier. Alternatively, you may
use one of the special identifiers:

anyCodec Choose the first decompressor of the specified type

bestSpeedCodec
Choose the fastest decompressor of the specified type

bestFidelityCodec
Choose the most accurate decompressor of the specified
type

You can also specify a component instance. This may be useful if you
have previously set some parameter on a specific instance of a codec
field and want to make sure that the specified instance is used for that
operation.

If you set the codec parameter to anycodec, the Image Compression
Manager chooses the first decompressor it finds of the specified type.

DESCRIPTION

Use the SetDSequenceDataProc function (described on page 3-135) to assign a

data-loading function to the sequence. Use the SetDSequenceMatte function

(described on page 3-133) to assign a blend matte to the sequence.

RESULT CODES

DecompressSequenceFrame

Your application calls the DecompressSequenceFrame function to decompress one of

a sequence of frames. You must have called the DecompressSequenceBegin function

before calling this function. You specify the destination with the port parameter to the

DecompressSequenceBegin function, described in the previous section.

pascal OSErr DecompressSequenceFrame (ImageSequence seqID,

Ptr data, CodecFlags inFlags,

CodecFlags *outFlags,

CompletionProcRecordPtr asyncCompletionProc);

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find

the specified compressor
codecScreenBufErr –8964 Could not allocate the screen buffer
codecImageBufErr –8965 Could not allocate the image buffer
codecConditionErr –8972 Component cannot perform requested operation

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-117

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

data Points to the compressed image data. This pointer must contain a 32-bit
clean address. If you use a dereferenced, locked handle, you must call the
Memory Manager’s StripAddress routine before you use that pointer
with this parameter.

inFlags Contains flags providing further control information. See “Image
Compression Manager Function Control Flags,” which begins on
page 3-58, for information about CodecFlags fields. The following flags
are available for this function:

codecFlagNoScreenUpdate
Controls whether the decompressor updates the screen
image. If you set this flag to 1, the decompressor does not
write the current frame to the screen, but does write the
frame to its offscreen image buffer (if one was allocated). If
you set this flag to 0, the decompressor writes the frame to
the screen.

codecFlagDontOffscreen
Controls whether the decompressor uses the offscreen
buffer during sequence decompression. This flag is only
used with sequences that have been temporally
compressed. If this flag is set to 1, the decompressor does
not use the offscreen buffer during decompression. Instead,
the decompressor returns an error. This allows your
application to refill the offscreen buffer. If this flag is set
to 0, the decompressor uses the offscreen buffer if
appropriate.

codecFlagOnlyScreenUpdate
Controls whether the decompressor decompresses the
current frame. If you set this flag to 1, the decompressor
writes the contents of its offscreen image buffer to the
screen, but does decompress the current frame. If you set
this flag to 0, the decompressor decompresses the current
frame and writes it to the screen. You can set this flag to 1
only if you have allocated an offscreen image buffer for use
by the decompressor.

outFlags Contains a pointer to status flags. The decompressor updates these flags
at the end of the decompression operation. See “Image Compression
Manager Function Control Flags,” which begins on page 3-58, for
information about CodecFlags constants. The following flags may be set
by this function:

codecFlagUsedNewImageBuffer
Indicates to your application that the decompressor used
the offscreen image buffer for the first time when it
processed this frame. If this flag is set to 1, the
decompressor used the image buffer for this frame and this
is the first time the decompressor used the image buffer in
this sequence.

C H A P T E R 3

Image Compression Manager

3-118 Image Compression Manager Reference

codecFlagUsedImageBuffer
Indicates whether the decompressor used the offscreen
image buffer. If the decompressor used the image buffer
during the decompress operation, it sets this flag to 1.
Otherwise, it sets this flag to 0.

codecFlagDontUseNewImageBuffer
Forces an error to be returned when a new image buffer
would have to be allocated instead of allocating the new
buffer.

codecFlagInterlaceUpdate
Updates the screen by interlacing even and odd scan lines
to reduce tearing artifacts (if the decompressor supports
this mode).

asyncCompletionProc
Points to a completion function structure. The compressor calls your
completion function when an asynchronous decompression operation
is complete. You can cause the decompression to be performed
asynchronously by specifying a completion function. See “Completion
Functions,” which begins on page 3-154, for more information about
completion functions.

If you specify asynchronous operation, you must not read the
decompressed image until the decompressor indicates that the operation
is complete by calling your completion function. Set
asyncCompletionProc to nil to specify synchronous decompression.
If you set asyncCompletionProc to –1, the operation is performed
asynchronously but the decompressor does not call your completion
function.

SPECIAL CONSIDERATIONS

Only if the asyncCompletionProc parameter of CompressSequenceFrame is not

nil are the following conditions in effect: the compressed data must remain valid until

the completion function is called with its codecCompletionSource flag, and the

pixels in the destination image will not be valid until the completion function is called

with its codecCompletionDest flag set.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor
codecSpoolErr –8966 Error loading or unloading data

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-119

CDSequenceBusy

Your application may call the CDSequenceBusy function to check the status of an

asynchronous compression or decompression operation.

pascal OSErr CDSequenceBusy (ImageSequence seqID);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin or CompressSequenceBegin function
(described on page 3-113 and page 3-106, respectively).

DESCRIPTION

If there is no asynchronous operation in progress, the CDSequenceBusy function

returns a 0 result code. If there is an asynchronous operation in progress, the result code

is 1. Negative result codes indicate an error.

SPECIAL CONSIDERATIONS

If you call the CDSequenceEnd function (described in the next section), you don’t need

to call CDSequenceBusy to make sure you have completed an operation.

RESULT CODES

Component Manager errors

CDSequenceEnd

Your application calls the CDSequenceEnd function to indicate the end of processing for

an image sequence.

pascal OSErr CDSequenceEnd (ImageSequence seqID);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin or CompressSequenceBegin function
(described on page 3-113 and page 3-106, respectively).

SPECIAL CONSIDERATIONS

You must make this call to CDSequenceEnd to make sure that all resources associated

with the sequence are freed.

paramErr –50 Invalid parameter specified
codecUnimpErr –8962 Feature not implemented by this compressor

C H A P T E R 3

Image Compression Manager

3-120 Image Compression Manager Reference

RESULT CODES

SEE ALSO

See “Compressing Sequences,” which begins on page 3-31, and “Decompressing

Sequences,” which begins on page 3-33, for more on how to use CDSequenceEnd.

Also see “A Sample Program for Compressing and Decompressing a Sequence of

Images,” which begins on page 3-35, for details on how to use CDSequenceEnd.

Changing Sequence-Compression Parameters

This section describes the functions that allow your application to manipulate the

parameters that control sequence compression and to get information about memory

that the compressor has allocated. You can use these functions during the

sequence-compression process. Your application establishes the default value for most of

these parameters with the CompressSequenceBegin function (described on

page 3-106). Some of these functions deal with parameter values that cannot be set when

starting a sequence.

You can determine the location of the previous image buffer used by the Image

Compression Manager by calling the GetCSequencePrevBuffer function.

You can set a number of compression parameters. Use the SetCSequenceFlushProc

function to assign a data-unloading function to the operation. You can set the rate at

which the Image Compression Manager inserts key frames into the compressed

sequence by calling the SetCSequenceKeyFrameRate function. You can set the frame

against which the compressor compares a frame when performing temporal

compression by calling the SetCSequencePrev function. Finally, you can control the

quality of the compressed image by calling the SetCSequenceQuality function.

SetCSequenceQuality

The SetCSequenceQuality function allows you to adjust the spatial or temporal

quality for the current sequence.

pascal OSErr SetCSequenceQuality (ImageSequence seqID,

CodecQ spatialQuality,

CodecQ temporalQuality);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function.

noErr 0 No error
paramErr –50 Invalid parameter specified
noCodecErr –8961 The Image Compression Manager could not find the

specified compressor

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-121

spatialQuality
Specifies the desired compressed image quality. See“Compression Quality
Constants” on page 3-57 for available values.

temporalQuality
Specifies the desired sequence temporal quality. This parameter governs
the level of compression you desire with respect to information between
successive frames in the sequence. Set this parameter to 0 to prevent the
compressor from applying temporal compression to the sequence.
See “Compression Quality Constants” beginning on page 3-57 for other
available values.

DESCRIPTION

The spatial quality parameter indicates the image quality you desire for each frame in

the sequence, which governs the level of spatial compression that the compressor may

apply to each frame. The temporal quality parameter indicates the sequence quality you

desire, which in turn governs the amount of temporal compression that the compressor

may apply to the sequence. The new quality parameters take effect with the next frame

in the sequence.

You set the default spatial and temporal quality values for a sequence with the

spatialQuality and temporalQuality parameters to the

CompressSequenceBegin function. For details on CompressSequenceBegin,

see page 3-106.

If you change the quality settings while processing an image sequence, you affect the

maximum image size that you may receive during sequence compression. Consequently,

you should call the GetMaxCompressionSize function (described on page 3-68)

after you change the quality settings. If the maximum size has increased, you should

reallocate your image buffers to accommodate the larger image size.

RESULT CODES

SetCSequenceKeyFrameRate

The SetCSequenceKeyFrameRate function adjusts the key frame rate for the current

sequence.

pascal OSErr SetCSequenceKeyFrameRate (ImageSequence seqID,

long keyframerate);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-122 Image Compression Manager Reference

keyframerate
Specifies the maximum number of frames allowed between key frames.
Key frames provide points from which a temporally compressed
sequence may be decompressed. Use this parameter to control the
frequency at which the compressor places key frames into the compressed
sequence.

The compressor determines the optimum placement for key frames based
upon the amount of redundancy between adjacent images in the
sequence. Consequently, the compressor may insert key frames more
frequently than you have requested. However, the compressor will never
place fewer key frames than is indicated by the setting of the
keyFrameRate parameter. The compressor ignores this parameter if you
have not requested temporal compression (that is, you have set the
temporalQuality parameter to the CompressSequenceBegin
function to 0).

If you set this parameter to 0, the Image Compression Manager only
places key frames in the compressed sequence when you call the
CompressSequenceFrame function (described on page 3-111) and set
the value of the codecFlagForceKeyFrame flag to 1 in the flags
parameter. If you pass in any number other than 0, it specifies the number
of non-key frames between key frames. Set this parameter to 1 to specify
all key frames, to 2 to specify every other frame as a key frame, to 3 to
specify every third frame as a key frame, and so forth.

DESCRIPTION

The key frame rate for a sequence specifies the maximum number of frames allowed

between key frames. Key frames provide points from which a temporally compressed

sequence may be decompressed. The new key frame rate takes effect with the next image

in the sequence. See “Defining Key Frame Rates” on page 3-47 for more information

about key frames.

RESULT CODES

SEE ALSO

You set the default key frame rate for a sequence with the keyFrameRate parameter to

the CompressSequenceBegin function (described on page 3-106).

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-123

GetCSequenceKeyFrameRate

The GetCSequenceKeyFrameRate function lets you determine the current key frame

rate of a sequence.

pascal OSErr GetCSequenceKeyFrameRate (ImageSequence seqID,

long *keyframerate);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

keyframerate
Contains a pointer to a long integer that specifies the maximum number
of frames allowed between key frames. Key frames provide points from
which a temporally compressed sequence may be decompressed.

SEE ALSO

You can set the key frame rate of a sequence with the SetCSequenceKeyFrameRate

function, described in the previous section.

RESULT CODES

SetCSequenceFrameNumber

The SetCSequenceFrameNumber function informs the compressor in use for the

specified sequence that frames are being compressed out of order.

pascal OSErr SetCSequenceFrameNumber (ImageSequence seqID,

long frameNumber);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

frameNumber
Specifies the frame number of the frame that is being compressed out of
sequence.

DESCRIPTION

This information is only necessary for compressors that are sequence-sensitive.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-124 Image Compression Manager Reference

RESULT CODES

GetCSequenceFrameNumber

The GetCSequenceFrameNumber function returns the current frame number of the

specified sequence.

pascal OSErr GetCSequenceFrameNumber (ImageSequence seqID,

long *frameNumber);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

frameNumber
Contains a pointer to the current frame number of the sequence identified
by the seqID parameter.

RESULT CODES

SetCSequencePrev

The SetCSequencePrev function allows the application to set the pixel map and

boundary rectangle used by the previous frame in temporal compression. This is useful

if the application that is compressing has multiple buffers and wants to update the

previous frame by switching buffer pointers instead of copying the data. Usually, the

Image Compression Manager allocates the previous buffer for temporal compression.

Under normal circumstances, the compressor component or the Image Compression

Manager updates the contents of the buffer by copying each frame into the buffer after it

is compressed.

This is a very specialized function—your application should not need to call it under

most circumstances.

pascal OSErr SetCSequencePrev (ImageSequence seqID,

 PixMapHandle prev,

 const Rect *prevRect);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

noErr 0 No error
paramErr –50 Invalid parameter specified

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-125

prev Contains a handle to the new previous image buffer. The compressor uses
this buffer to store a previous image against which the current image
(stored in the buffer referred to by the src parameter to the
CompressSequenceBegin function) is compared when performing
temporal compression. You must allocate this buffer using the same pixel
depth and color table as the source image buffer that you specify with the
src parameter when you call the CompressSequenceBegin function
(described on page 3-106). The compressor manages the contents of this
buffer based upon several considerations, such as the key frame rate and
the degree of difference between compared images.

prevRect Contains a pointer to a rectangle defining the portion of the previous
image to use for temporal compression. The compressor uses this portion
of the previous image as the basis of comparison with the current image.
This rectangle must be the same size as the source rectangle you specify
with the srcRect parameter to the CompressSequenceBegin function.
To get the boundary of a source pixel map, set this parameter to nil.

DESCRIPTION

When you start compressing a sequence, you may assign a previous frame buffer and

rectangle with the prev and prevRect parameters to the CompressSequenceBegin

function, respectively. If you specified a nil value for the prev parameter, the

compressor allocates an offscreen buffer for the previous frame. In either case you may

use this function to assign a new previous frame buffer.

RESULT CODES

Memory Manager errors

SetCSequenceFlushProc

The SetCSequenceFlushProc function lets you assign a data-unloading function to a

sequence.

pascal OSErr SetCSequenceFlushProc (ImageSequence seqID,

FlushProcRecordPtr flushProc,

long bufferSize);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

flushProc Points to a data-unloading function structure. If there is not enough
memory to store the compressed image, the compressor calls a function
you provide that unloads some of the compressed data (see
“Data-Unloading Functions” beginning on page 3-150 for more

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-126 Image Compression Manager Reference

information on the data-unloading structure). If you have not provided a
data-unloading function, set this parameter to nil. In this case, the
compressor writes the entire compressed image into the memory location
specified by the data parameter to the CompressSequenceFrame
function (described on page 3-111).

bufferSize Specifies the size of the buffer to be used by the data-unloading
function specified by the flushProc parameter. If you have not specified
a data-unloading function, set this parameter to 0.

DESCRIPTION

Data-unloading functions allow compressors to work with images that cannot fit in

memory. During the compression operation, the compressor calls the data-unloading

function whenever it has accumulated a specified amount of compressed data. Your

data-unloading function then writes the compressed data to some other device, freeing

buffer space for more compressed data. The compressor starts using the data-unloading

function with the next image in the sequence. See “Spooling Compressed Data” on

page 3-44 for more information.

There is no parameter to the CompressSequenceBegin function (described on

page 3-106) that allows you to assign a data-unloading function to a sequence.

RESULT CODES

GetCSequencePrevBuffer

The GetCSequencePrevBuffer function determines the location of the previous

image buffer allocated by the compressor.

pascal OSErr GetCSequencePrevBuffer (ImageSequence seqID,

 GWorldPtr *gworld);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

gworld Contains a pointer to a field to receive a pointer to the structure of type
GWorld that describes the graphics world for the image buffer. If the
compressor has allocated an offscreen image buffer, the compressor
returns an appropriate pointer to the graphics world (of type
GWorldPtr) in the field referred to by this parameter. If the compressor
has not allocated a buffer, the function returns an error result code.

You should not dispose of this graphics world—the returned pointer
refers to a buffer that the Image Compression Manager is using.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-127

DESCRIPTION

If you do not specify a previous image buffer with the prev parameter to the

CompressSequenceBegin function, the compressor allocates an offscreen graphics

world for you. Your program can obtain access to the pixel map in that graphics world

by calling this function.

Note that the GetCSequencePrevBuffer function only returns information about

buffers that were allocated by the compressor. You cannot use this function to determine

the location of a buffer you have provided.

RESULT CODES

Constraining Compressed Data

The Image Compression Manager provides two functions and a data structure that allow

your application to communicate information to compressors that can constrain

compressed data to a specific data rate. Compressors indicate that they can constrain the

data rate by setting the following flag in their compressor information structure:

#define codecInfoDoesRateConstrain(1L<<23)

(For details, see “The Compressor Information Structure” beginning on page 3-52.)

The DataRateParams data type defines the data rate parameters structure.

typedef struct {

long dataRate; /* bytes per second */

long dataOverrun; /* number of bytes outside

rate */

long frameDuration; /* in milliseconds */

long keyFrameRate; /* frequency of key frames */

CodecQ minSpatialQuality; /* minimum spatial quality */

CodecQ minTemporalQuality; /* minimum temporal quality */

} DataRateParams;

typedef DataRateParams *DataRateParamsPtr;

Field descriptions

dataRate Specifies the bytes per second to which the data rate must be
constrained.

dataOverrun Indicates the current number of bytes above or below the desired
data rate. A value of 0 means that the data rate is being met exactly.
If your application doesn’t know the data overrun, it should set this
field to 0.

frameDuration Specifies the duration of the current frame in milliseconds.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-128 Image Compression Manager Reference

keyFrameRate Indicates the frequency of key frames. This frequency is normally
identical to the key frame rate passed to the
CompressSequenceBegin function (described on page 3-106).

minSpatialQuality
Specifies the minimum spatial quality the compressor should use to
meet the requested data rate. See “Compression Quality Constants”
beginning on page 3-57 for available values.

minTemporalQuality
Indicates the minimum temporal quality the compressor should use
to meet the requested data rate. See “Compression Quality
Constants” beginning on page 3-57 for available values.

The SetCSequenceDataRateParams function allows you to specify the parameters in

this structure and the GetCSequenceDataRateParams function allows you to retrieve

the parameters.

SetCSequenceDataRateParams

The SetCSequenceDataRateParams function allows your application to set

parameters in the data rate parameters structure, which communicates information to

compressors that can constrain compressed data in a particular sequence to a specific

data rate.

pascal OSErr SetCSequenceDataRateParams

(ImageSequence seqID,

 DataRateParamsPtr params);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

params Points to the data rate parameters structure to be associated with the
sequence identifier specified in the seqID parameter.

DESCRIPTION

If your application is keeping track of data overrun, you should call the

SetCSequenceDataRateParams function before each use of the

CompressSequenceFrame function (described on page 3-111). If not, you only need to

call SetCSequenceDataRateParams before the first use of

CompressSequenceFrame, with the dataOverrun parameter of the data rate

parameters structure set to 0. In this case, it is assumed that the frame duration is valid

for all frames. Setting the dataRate field in the data rate parameters structure to 0 is the

same as not performing data rate constraint.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-129

RESULT CODES

GetCSequenceDataRateParams

The GetCSequenceDataRateParams function obtains the data rate parameters

previously set with the SetCSequenceDataRateParams function, which is described

in the previous section.

pascal OSErr GetCSequenceDataRateParams

(ImageSequence seqID,

 DataRateParamsPtr params);

seqID Contains the unique sequence identifier that was returned by the
CompressSequenceBegin function (described on page 3-106).

params Points to the data rate parameters structure associated with the sequence
identifier specified in the seqID parameter.

RESULT CODES

Changing Sequence-Decompression Parameters

This section discusses the functions that enable your application to manipulate the

parameters that control sequence decompression and to get information about memory

that the decompressor has allocated. Your application establishes the default value for

most of these parameters with the DecompressSequenceBegin function (described on

page 3-113). Some of these functions deal with parameter values that cannot be set when

starting a sequence.

You can determine the buffers used by a decompressor component when it

decompresses a sequence. Use the GetDSequenceImageBuffer function to determine

the location of the image buffer. Use the GetDSequenceScreenBuffer function to

determine the location of the screen buffer.

You can control a number of the parameters that affect a decompression operation (note

that changing these parameters may temporarily affect performance). Use the

SetDSequenceAccuracy function to control the accuracy of the decompression. Use

the SetDSequenceDataProc function to assign a data-loading function to the

operation. Use the SetDSequenceMask function to set the clipping region for the

resulting image. You can establish a blend matte for the operation by calling the

SetDSequenceMatte function. You can alter the spatial characteristics of the resulting

image by calling the SetDSequenceMatrix function. Your application can establish the

noErr 0 No error
paramErr –50 Invalid parameter specified

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-130 Image Compression Manager Reference

size and location of the operation’s source rectangle by calling the

SetDSequenceSrcRect function. Finally, you can set the transfer mode used by the

decompressor when it draws to the screen by calling the

SetDSequenceTransferMode function.

SetDSequenceTransferMode

The SetDSequenceTransferMode function sets the mode used when drawing the

decompressed image.

pascal OSErr SetDSequenceTransferMode (ImageSequence seqID,

short mode,

const RGBColor *opColor);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

mode Specifies the transfer mode used when drawing the decompressed image.
The Image Compression Manager supports the same transfer modes
supported by QuickDraw’s CopyBits routine (described in Inside
Macintosh: Imaging).

opColor Contains a pointer to the color for use in addPin, subPin, blend, and
transparent operations. The Image Compression Manager passes this
color to QuickDraw as appropriate. If nil, the opcolor is left unchanged.

DESCRIPTION

The Image Compression Manager supports the same transfer modes supported by

QuickDraw’s CopyBits routine. The new mode takes effect with the next frame in the

sequence. For any given sequence, the default opcolor is 50 percent gray and the default

mode is ditherCopy.

RESULT CODES

SEE ALSO

You set the default transfer mode for a sequence with the mode parameter to the

DecompressSequenceBegin function.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-131

SetDSequenceSrcRect

The SetDSequenceSrcRect function defines the portion of the image to decompress.

pascal OSErr SetDSequenceSrcRect (ImageSequence seqID,

 const Rect *srcRect);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

srcRect Contains a pointer to a rectangle defining the portion of the image to
decompress. This rectangle must lie within the boundary rectangle of the
compressed image, which is defined by (0,0) and
((**desc).width,(**desc).height), where desc refers to the
image description structure you supply to the
DecompressSequenceBegin function. If the srcRect parameter is
nil, the rectangle is set to the rectangle structure of the image description
structure.

DESCRIPTION

The decompressor acts on that portion of the compressed image that lies within this

rectangle. The new source rectangle takes effect with the next frame in the sequence.

RESULT CODES

SEE ALSO

You set the default source rectangle for a sequence with the srcRect parameter to the

DecompressSequenceBegin function.

SetDSequenceMatrix

The SetDSequenceMatrix function assigns a mapping matrix to the sequence.

pascal OSErr SetDSequenceMatrix (ImageSequence seqID,

 MatrixRecordPtr matrix);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-132 Image Compression Manager Reference

matrix Points to a matrix structure that specifies how to transform the image
during decompression. You can use the matrix structure to translate or
scale the image during decompression. To set the matrix to identity, pass
nil in this parameter. See the chapter “Movie Toolbox” in this book for
more information about matrix operations.

DESCRIPTION

The decompressor uses the matrix to create special effects with the decompressed image,

such as translating or scaling the image. The new matrix takes effect with the next frame

in the sequence.

RESULT CODES

SEE ALSO

You set the default matrix for a sequence with the matrix parameter to the

DecompressSequenceBegin function.

SetDSequenceMask

The SetDSequenceMask function assigns a clipping region to the sequence.

pascal OSErr SetDSequenceMask (ImageSequence seqID,

RgnHandle mask);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

mask Contains a handle to a clipping region in the destination coordinate
system. If specified, the decompressor applies this mask to the destination
image. If you want to stop masking, set this parameter to nil.

DESCRIPTION

The decompressor draws only that portion of the decompressed image that lies within

the specified clipping region. The new region takes effect with the next frame in the

sequence. You should not dispose of this region until the Image Compression Manager is

finished with the sequence, or until you set the mask either to nil or to a different

region by calling the SetDSequenceMask function again.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-133

RESULT CODES

Memory Manager errors

SEE ALSO

You set the default clipping region for a sequence with the mask parameter to the

DecompressSequenceBegin function.

SetDSequenceMatte

The SetDSequenceMatte function assigns a blend matte to the sequence.

pascal OSErr SetDSequenceMatte (ImageSequence seqID,

PixMapHandle matte,

const Rect *matteRect);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

matte Contains a handle to a pixel map that contains a blend matte. You can use
the blend matte to cause the decompressed image to be blended into the
destination pixel map. The matte can be defined at any supported
pixel depth—the matte depth need not correspond to the source or
destination depths. However, the matte must be in the coordinate system
of the source image. If you want to turn off the blend matte, set this
parameter to nil.

matteRect Contains a pointer to the boundary rectangle for the matte. The
decompressor uses only that portion of the matte that lies within the
specified rectangle. This rectangle must be the same size as the source
rectangle you specify with the SetDSequenceSrcRect function
(described on page 3-131) or with the srcRect parameter to the
DecompressSequenceBegin function. To specify the matte pixel map
bounds, pass nil in this parameter.

DESCRIPTION

The decompressor uses the matte to blend the decompressed image into the destination

pixel map. The new matte and matte boundary rectangle take effect with the next frame

in the sequence. You should not dispose of the matte until the Image Compression

Manager is finished with the sequence.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-134 Image Compression Manager Reference

RESULT CODES

Memory Manager errors

SetDSequenceAccuracy

The SetDSequenceAccuracy function adjusts the decompression accuracy for the

current sequence.

pascal OSErr SetDSequenceAccuracy (ImageSequence seqID,

CodecQ accuracy);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

accuracy Specifies the accuracy desired in the decompressed image. Values for this
parameter are on the same scale as compression quality. See
“Compression Quality Constants” beginning on page 3-57, for available
values.

DESCRIPTION

The accuracy parameter governs how precisely the decompressor decompresses the

image data. Some decompressors may choose to ignore some image data to improve

decompression speed. A new accuracy parameter takes effect with the next frame in

the sequence.

RESULT CODES

SEE ALSO

You set the default accuracy value for a sequence with the accuracy parameter to the

DecompressSequenceBegin function.

noErr 0 No error
paramErr –50 Invalid parameter specified

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-135

SetDSequenceDataProc

The SetDSequenceDataProc function lets you assign a data-loading function to the

sequence.

pascal OSErr SetDSequenceDataProc (ImageSequence seqID,

DataProcRecordPtr dataProc,

long bufferSize);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

dataProc Points to a data-loading function structure. If the data stream is not all in
memory when your program calls DecompressSequenceFrame, the
decompressor calls a function you provide that loads more compressed
data (see “Data-Loading Functions” beginning on page 3-149 for more
information about data-loading functions). If you have not provided a
data-loading function, or if you want the decompressor to stop using
your data-loading function, set this parameter to nil. In this case, the
entire image must be in memory at the location specified by the data
parameter to the DecompressSequenceFrame function (see page 3-116).

bufferSize Specifies the size of the buffer to be used by the data-loading
function specified by the dataProc parameter. If you have not specified
a data-loading function, set this parameter to 0.

DESCRIPTION

Data-loading functions allow decompressors to work with images that cannot fit in

memory. During the decompression operation the decompressor calls the

data-loading function whenever it has exhausted its supply of compressed data.

Your data-loading function then fills the available buffer space with more compressed

data. The decompressor starts using the data-loading function with the next image in the

sequence. See “Spooling Compressed Data,” which begins on page 3-44, for more

information about data-loading functions.

There is no parameter to the DecompressSequenceBegin function that allows you to

assign a data-loading function to a sequence.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-136 Image Compression Manager Reference

GetDSequenceImageBuffer

The GetDSequenceImageBuffer function helps you determine the location of the

offscreen image buffer allocated by the decompressor.

pascal OSErr GetDSequenceImageBuffer (ImageSequence seqID,

 GWorldPtr *gworld);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

gworld Contains a pointer to a field to receive a pointer to the structure of type
GWorld describing the graphics world for the image buffer. If the
decompressor has allocated an offscreen image buffer, the decompressor
returns an appropriate GWorldPtr in the field referred to by this
parameter. If the decompressor has not allocated a buffer, the function
returns an error result code.

You should not dispose of this graphics world—the returned pointer
refers to a buffer that the Image Compression Manager is using. It is
disposed of for you when the CDSequenceEnd function is called. For
details on CDSequenceEnd, see page 3-119.

DESCRIPTION

The decompressor uses this buffer when decompressing a sequence that was temporally

compressed. You cause the decompressor to use an image buffer by setting the

codecFlagUseImageBuffer flag to 1 in the flags parameter to the

DecompressSequenceBegin function.

RESULT CODES

GetDSequenceScreenBuffer

The GetDSequenceScreenBuffer function enables you to determine the location of

the offscreen buffer allocated by the decompressor.

pascal OSErr GetDSequenceScreenBuffer (ImageSequence seqID,

 GWorldPtr *gworld);

seqID Contains the unique sequence identifier that was returned by the
DecompressSequenceBegin function (described on page 3-113).

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-137

gworld Contains a pointer to a field to receive a pointer to the graphics world
structure (defined by the GWorld data type) describing the graphics
world for the screen buffer. If the decompressor has allocated an offscreen
buffer, the decompressor returns an appropriate GWorldPtr in the field
referred to by this parameter. If the decompressor has not allocated a
buffer, the function returns an error result code.

You should not dispose of this graphics world—the returned pointer
refers to a buffer that the Image Compression Manager is using. It is
disposed of for you when the CDSequenceEnd function is called. For
details on CDSequenceEnd, see page 3-119.

DESCRIPTION

The decompressor uses this buffer for decompressed images. During decompression the

decompressor writes the decompressed image to an offscreen buffer and then copies the

results to the screen. This reduces the tearing effect that can result from decompressing

directly to the screen. You cause the decompressor to use a screen buffer by setting the

codecFlagUseScreenBuffer flag to 1 in the flags parameter to the

DecompressSequenceBegin function.

RESULT CODES

Working With the StdPix Function

To allow applications to have access to compressed image data as it is displayed, a new

graphics function has been added to the grafProcs field of the color graphics port

structure (defined by the CGrafPort data type). See Inside Macintosh: Imaging for more

information about the color graphics port structure.

The StdPix function extends the current grafProcs field to support compressed data,

mattes, and matrices. The new function supports pixel maps and allows you to intercept

image data in compressed form before it is decompressed and displayed. For example,

you can use the StdPix function to collect compressed image data that is to be

processed and printed. In addition, your application can call the StdPix function

directly.

The replaced grafProcs field is referred to in the original QuickDraw documentation

as the newProc1 field. The standard handler is called StdPix, and you obtain its

address by calling QuickDraw’s SetStdCProcs routine. Alternatively, your application

can call the StdPix function directly, using the interface described here. Your

application can intercept the low-level grafProcs drawing routines just as it would any

of the other routines, except that you must call SetStdCProcs to gain access to the

standard grafProcs handler.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

3-138 Image Compression Manager Reference

Note
QuickDraw’s CopyDeepMask function uses the StdPix function
if QuickTime is present. ◆

See Inside Macintosh: Imaging for more information about the QuickDraw low-level

drawing routines, the SetStdCProcs routine, the QDProcs structure, and the

CopyDeepMask routine.

To work with the control information associated with a compressed image, you can use

the SetCompressedPixMapInfo and GetCompressedPixMapInfo functions

(described on page 3-139 and page 3-141, respectively).

StdPix

The Image Compression Manager lets you invoke QuickDraw’s StdPix function as

follows:

pascal void StdPix (PixMapPtr src, const Rect *srcRect,

MatrixRecordPtr matrix, short mode,

RgnHandle mask, PixMapPtr matte,

Rect *matteRect, short flags);

src Contains a pointer to a pixel map containing the image to draw. Use the
GetCompressedPixMapInfo function (described on page 3-141) to
retrieve information about this pixel map.

srcRect Points to a rectangle defining the portion of the image to display. This
rectangle must lie within the boundary rectangle of the compressed image
or within the source image. If this parameter is set to nil, the entire
image is displayed.

matrix Contains a pointer to a matrix structure that specifies the mapping of the
source rectangle to the destination. It is a fixed-point, 3-by-3 matrix. This
roughly corresponds to the dstRect parameter to QuickDraw’s
StdBits routine. See the chapter “Movie Toolbox” in this book for more
information about matrix operations.

mode Specifies the transfer mode for the operation. The Image Compression
Manager supports the same transfer modes supported by QuickDraw’s
CopyBits routine.

Note that this parameter also controls the accuracy of any decompression
operation that may be required to display the image. If bit 7 (0x80) of the
mode parameter is set to 1, the StdPix function sets the decompression
accuracy to codecNormalQuality. If this bit is set to 0, the function sets
the accuracy to codecHighQuality.

mask Contains a handle to a clipping region in the destination coordinate
system. If specified, the compressor applies this mask to the destination
image. If there is no mask, this parameter is set to nil.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-139

matte Points to a pixel map that contains a blend matte. The blend matte
causes the decompressed image to be blended into the destination pixel
map. The matte can be defined at any supported pixel depth—the matte
depth need not correspond to the source or destination depths. However,
the matte must be in the coordinate system of the source image. If there is
no matte, this parameter is set to nil.

The matte may be compressed. Use the GetCompressedPixMapInfo
function (described on page 3-141) to determine if the matte pixel map
contains compressed data.

matteRect Contains a pointer to a rectangle defining a portion of the blend matte to
apply. This parameter is set to nil if there is no matte or if the entire
matte is to be used.

flags Contains control flags. The following flags are available:

callOldBits
If this flag is set, then the StdPix function calls
QuickDraw’s bitsProc routine with the decompressed
image data. A pointer to this routine is located in the
bitsProc field of the CQDProcs record. If the bitsProc
routine is not customized, then it is not called unless the
callStdBits flag is also set. See the description of the
CQDProcs record in Inside Macintosh: Imaging for more on
the bitsProc routine.

callStdBits
If this flag is set, the callOldBits flag is set, and the
CQDProcs record’s bitsProc field is set to the StdBits
routine, then the StdBits routine is called with the
decompressed image data.

noDefaultOpcodes
If this flag is set and a picture is open for writing, the
default picture opcodes (for displaying a warning when
QuickTime is not installed) are not added to the output
picture. This can be useful when storing multiple StdPix
opcodes in a single picture.

SetCompressedPixMapInfo

The SetCompressedPixMapInfo function allows your application to store

information about a compressed image for the StdPix function (described in the

previous section).

pascal OSErr SetCompressedPixMapInfo (PixMapPtr pix,

 ImageDescriptionHandle desc,

Ptr data, long bufferSize,

DataProcRecordPtr dataProc,

ProgressProcRecordPtr progressProc);

C H A P T E R 3

Image Compression Manager

3-140 Image Compression Manager Reference

pix Points to a structure that holds encoded compressed image data.

desc Contains a handle to the image description structure that defines the
compressed image.

data Points to the buffer for the compressed image data. If the entire
compressed image cannot be stored at this location, you may assign a
data-loading function (see the discussion of the dataProc parameter to
this function). This pointer must contain a 32-bit clean address.

bufferSize
Specifies the size of the buffer to be used by the data-loading
function specified by the dataProc parameter. If there is no
data-loading function defined for this operation, set this parameter to 0.

dataProc Points to a data-loading function structure. If there is not enough memory
to store the compressed image, the decompressor calls a function you
provide that loads more compressed data (see “Data-Loading Functions”
beginning on page 3-149 for more information about data-loading
functions). If you do not want to assign a data-loading function, set this
parameter to nil.

progressProc
Points to a progress function structure. During the decompression
operation, the decompressor may occasionally call a function you provide
in order to report its progress (see “Progress Functions” beginning on
page 3-152 for more information about progress functions). If you do not
want to assign a progress function, set this parameter to nil. If you pass
a value of –1, you obtain a standard progress function.

DESCRIPTION

The SetCompressedPixMapInfo function stores information in a structure that is

identical to a PixMap structure, but the structure represents the compressed data, not the

actual pixel map. You can use the SetCompressedPixMapInfo if you are working

with the StdPix function (described on page 3-138).

RESULT CODES

SEE ALSO

You can retrieve information about a compressed pixel map by calling the

GetCompressedPixMapInfo function, which is described in the next section.

paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-141

GetCompressedPixMapInfo

The GetCompressedPixMapInfo function allows your application to retrieve

information about a compressed image.

pascal OSErr GetCompressedPixMapInfo (PixMapPtr pix,

ImageDescriptionHandle *desc,

Ptr *data, long *bufferSize,

DataProcRecord *dataProc,

ProgressProcRecord *progressProc);

pix Points to a structure that holds encoded compressed image data.

desc Contains a pointer to a field that is to receive a handle to the image
description structure that defines the compressed image. If you are not
interested in this information, you may specify nil in this parameter.

data Contains a pointer to a field that is to receive a pointer to the compressed
image data. If the entire compressed image cannot be stored at this
location, you can define a data-loading function for this operation (see the
discussion of the dataProc parameter to this function). If you are not
interested in this information, you may specify nil in this parameter.

bufferSize
Contains a pointer to a field that is to receive the size of the buffer to be
used by the data-loading function specified by the dataProc parameter.
If there is no data-loading function defined for this operation, this
parameter is ignored. If you are not interested in this information, you
may specify nil in this parameter.

dataProc Contains a pointer to a data-loading function structure. If there is not
enough memory to store the compressed image, the decompressor calls a
function you provide that loads more compressed data (see
“Data-Loading Functions” beginning on page 3-149 for more information
about data-loading functions). If there is no data-loading function for this
image, the function sets the dataProc field in the function structure to
nil. If you are not interested in this information, you may specify nil in
this parameter.

progressProc
Contains a pointer to a progress function structure. During a
decompression operation, the decompressor may occasionally
call a function you provide in order to report its progress
(see “Progress Functions” beginning on page 3-152 for more information
about progress functions). If there is no progress function for this image,
the function sets the progressProc field in the function structure to
nil. If you pass a value of –1, you obtain a standard progress function. If
you are not interested in this information, you may specify nil in this
parameter.

C H A P T E R 3

Image Compression Manager

3-142 Image Compression Manager Reference

DESCRIPTION

The data in the compressed image has been encoded in a PixMap structure with the

SetCompressPixMapInfo function. This is the kind of pixel map that may be passed

into the StdPix function. If you pass a normal, non-encoded pixel map,

GetCompressedPixMapInfo returns a paramErr result code. You use

the GetCompressedPixMapInfo function if you are intercepting calls to the StdPix

function.

SPECIAL CONSIDERATIONS

The pixel map structure filled in by the GetCompressedPixMapInfo function should

not be used by any other Macintosh functions. It is only to be used by the StdPix

function.

RESULT CODES

SEE ALSO

You can set information about a compressed pixel map by calling the

SetCompressedPixMapInfo function, which is described in the previous section.

Aligning Windows

This section describes the functions that allow your application to position and drag

windows to optimal screen positions based on the depth of the screen. These functions

are useful for movie playback performance considerations that depend on where you

draw on the screen.

The Image Compression Manager places the windows at an optimal position on the

screen by aligning rectangles horizontally on 1-bit and 2-bit screens to multiples of 16

pixels, aligning 4-bit screens to multiples of 8, aligning 8-bit screens to multiples of 4,

and aligning 16-bit screens to multiples of 2. (Alignment on 32-bit screens is to multiples

of 4 pixels and only occurs on Macintosh computers of class 68040 or greater.) When the

alignment rectangle crosses more than one screen, the Image Compression Manager uses

the alignment of the strictest screen.

Decompression to non-optimally aligned destinations can reduce performance by as

much as 50 percent, so you should use these functions whenever possible.

The alignment behavior provided by these functions is adequate in the vast majority of

situations. However, if you need customized alignment behavior (for example,

justification specifications geared to particular video hardware), you can use the

application-defined function described in “Alignment Functions” on page 3-155 to

override the standard alignment. See the chapter “Sequence Grabber Components” in

Inside Macintosh: QuickTime Components for more information on application-defined

paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-143

alignment functions and video hardware. All the alignment functions provide a

parameter in which you can specify a function with customized alignment behavior.

The AlignWindow function enables you to transport a specified window to the nearest

optimal alignment position. The DragAlignedWindow function drags the specified

window along an optimal alignment grid. The DragAlignedGrayRgn function drags a

specified gray region along an optimal alignment grid. The AlignScreenRect function

aligns a specified rectangle to the strictest screen that the rectangle intersects.

AlignWindow

The AlignWindow function moves a specified window to the nearest optimal alignment

position.

pascal void AlignWindow (WindowPtr wp, Boolean front,

 const Rect *alignmentRect,

 AlignmentProcRecordPtr alignmentProc);

wp Points to the window to be aligned.

front Specifies the frontmost window. If the front parameter is true and the
window specified in the wp parameter isn’t the active window,
AlignWindow makes it the active window by calling the Window
Manager’s SelectWindow routine.

alignmentRect
Contains a pointer to a rectangle in window coordinates that allows you
to align the window to a rectangle within the window. Set this
parameter to nil to align using the bounds of the window.

alignmentProc
Points to a function that allows you to provide your own alignment
behavior. Set this parameter to nil to use the standard behavior. Your
alignment function must be in the following form:

pascal void MyAlignmentProc(Rect *rp, long refcon);

See “Alignment Functions” on page 3-155 for details.

SEE ALSO

The AlignWindow function is similar to the Window Manager’s MoveWindow routine.

See Inside Macintosh: Macintosh Toolbox Essentials for details.

C H A P T E R 3

Image Compression Manager

3-144 Image Compression Manager Reference

DragAlignedWindow

The DragAlignedWindow function drags the specified window along an optimal

alignment grid.

pascal void DragAlignedWindow (WindowPtr wp, Point startPt,

Rect *boundsRect,

Rect *alignmentRect,

AlignmentProcRecordPtr alignmentProc);

wp Contains a window pointer to the window to be dragged.

startPt Specifies a point that is equal to the point where the mouse button was
pressed (in global coordinates, as stored in the where field of the event
structure). DragAlignedWindow pulls a gray outline of the window
around the screen, following the movements of the mouse until the
button is released.

boundsRect
Points to the boundary rectangle in global coordinates. If the mouse
button is released when the mouse position is outside the limits of the
boundary rectangle, DragAlignedWindow returns without moving the
window or making it the active window. For a document window,
the boundary rectangle typically is four pixels in from the menu bar and
from the other edges of the screen, to ensure that there won’t be less than
a four-pixel-square area of the title bar visible on the screen.

alignmentRect
Points to a rectangle in window coordinates that allows you to align the
window to a rectangle within the window. Set this parameter to nil to
align using the bounds of the window.

alignmentProc
Allows you to provide your own alignment behavior. Set this parameter
to nil to use the standard alignment behavior. Your alignment function
must be in the following form:

pascal void MyAlignmentProc (Rect *rp, long refcon);

See “Alignment Functions” on page 3-155 for details.

SEE ALSO

The DragAlignedWindow is similar to the Window Manager’s DragWindow routine.

See Inside Macintosh: Macintosh Toolbox Essentials for details on DragWindow.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-145

DragAlignedGrayRgn

The DragAlignedGrayRgn function drags the specified gray region along an optimal

alignment grid.

pascal long DragAlignedGrayRgn (RgnHandle theRgn, Point startPt,

Rect *boundsRect, Rect *slopRect,

short axis, ProcPtr actionProc,

Rect *alignmentRect,

AlignmentProcRecordPtr alignmentProc);

theRgn Contains a region handle to the specified region for this operation. When
the user holds down the mouse button, DragAlignedGrayRgn pulls a
gray outline of the region around following the movement of the mouse
until the mouse button is released.

startPt Specifies the point where the mouse button was originally pressed in the
local coordinates of the current graphics port.

boundsRect
Contains a pointer to the boundary rectangle of the current graphics port.
The offset point follows the mouse location except that
DragAlignedGrayRgn never moves the offset point outside this
rectangle. This limits the travel of the region’s outline, not the movements
of the mouse.

slopRect Contains a pointer to the slop rectangle that completely encloses the
boundary rectangle so that the user is allowed some flexibility in moving
the mouse.

axis Allows you to constrain the region’s motion to only one axis. Set this
parameter to 0 to specify no constraint. To indicate constraint along
a horizontal axis, set this parameter to 1. To indicate constraint along a
vertical axis, set this parameter to 2. See Inside Macintosh: Macintosh
Toolbox Essentials for details on the constants for the axis parameter of the
Window Manager’s DragGrayRgn routine.

actionProc
Points to a function that defines some action to be performed repeatedly
as long as the user holds down the mouse button. The function should
have no parameters. If the actionProc parameter is nil,
DragAlignedGrayRgn simply retains control until the mouse button is
released.

alignmentRect
Contains a pointer to a rectangle within the bounds of the region specified
in the parameter theRgn. Pass nil to align using the bounds of the
parameter theRgn.

C H A P T E R 3

Image Compression Manager

3-146 Image Compression Manager Reference

alignmentProc
Points to your own alignment behavior function. Pass nil to use the
standard behavior. Your alignment function must be in the following
form:

pascal void MyAlignmentProc (Rect *rp, long refcon);

See “Alignment Functions” on page 3-155 for details.

DESCRIPTION

The DragAlignedGrayRgn function is not normally made directly. The

DragAlignedWindow function (described on page 3-144) calls this function.

SEE ALSO

The DragAlignedGrayRgn function is nearly identical to the Window Manager’s

DragGrayRgn routine. See Inside Macintosh: Macintosh Toolbox Essentials for

details on DragGrayRgn.

AlignScreenRect

The AlignScreenRect function aligns a specified rectangle to the strictest screen that

the rectangle intersects.

pascal void AlignScreenRect (Rect *rp,

AlignmentProcRecordPtr alignmentProc);

rp Contains a pointer to a rectangle defined in global screen coordinates.

alignmentProc
Points to your own alignment behavior function. Set this parameter to
nil to use the standard behavior. Your alignment function must be in the
following form:

pascal void MyAlignmentProc (Rect *rp, long refCon);

See “Alignment Functions” on page 3-155 for details.

DESCRIPTION

Normally, the AlignScreenRect function is not called directly.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-147

Working With Graphics Devices and Graphics Worlds

This section describes two Image Compression Manager functions that enable you to

select graphics devices and create graphics worlds. You can use the

GetBestDeviceRect function to select the best available graphics device. The

NewImageGWorld function allows you to create a graphics world based on the width,

height, depth, and color table of a specified image description structure.

GetBestDeviceRect

The GetBestDeviceRect function selects the deepest of all available graphics devices,

while treating 16-bit and 32-bit screens as having equal depth.

pascal OSErr GetBestDeviceRect (GDHandle *gdh, Rect *rp);

gdh Contains a pointer to the handle of the rectangle for the chosen device. If
you do not need the information in this parameter returned, specify nil.

rp Contains a pointer to the rectangle that is adjusted for the height of the
menu bar if the device is the main device. If you do not need the
information in this parameter returned, specify nil.

DESCRIPTION

If multiple 16-bit and 32-bit monitors are available, the GetBestDeviceRect function

selects the 16-bit or 32-bit device upon which the cursor has currently been detected. If a

cursor is not on one of the devices in question, the first of those in the list is chosen.

Note that the GetBestDeviceRect function does not center a rectangle on a device.

Rather, it returns the rectangle for the best device.

NewImageGWorld

The NewImageGWorld function creates a graphics world from the width, height, depth,

and color table of a specified image-description structure.

pascal QDErr NewImageGWorld (GWorldPtr *gworld,

ImageDescription **idh,

GWorldFlags flags);

gworld Contains a pointer to a graphic world created using the width, height,
depth, and color table specified in the image description structure pointed
to in the idh parameter.

C H A P T E R 3

Image Compression Manager

3-148 Image Compression Manager Reference

idh Contains a handle to an image description structure with information for
the graphics world pointed to by the gworld parameter.

flags Contains graphics world flags. These flags are passed directly through to
the NewGWorld function. (For details on NewGWorld, see Inside
Macintosh: Devices.)

DESCRIPTION

The NewImageGWorld function selects the appropriate color table using the depth field

or custom color table in the image description structure. It creates a 32-bit-deep graphics

world if the depth specified in the image description structure is 24.

SPECIAL CONSIDERATIONS

You are responsible for disposing of the graphics world with the DisposeGWorld

routine. (For more on DisposeGWorld, see Inside Macintosh: Devices.)

RESULT CODES

Application-Defined Functions

This section describes four callback functions that you may provide to compressor

components and an application-defined function that specifies alignment behavior.

The Image Compression Manager defines four callback functions that applications may

provide to compressors or decompressors. These callbacks are data-loading functions,

data-unloading functions, completion functions, and progress functions.

■ Data-loading functions and data-unloading functions support spooling of compressed
data.

■ Completion functions allow compressors and decompressors to report that
asynchronous operations have completed.

■ Progress functions provide a mechanism for compressors and decompressors to
report their progress toward completing an operation.

This section describes the interfaces presented when compressors invoke your callback

functions. These application-defined functions may be called by compressor components

during a compression or decompression operation.

You identify a callback function to an Image Compression Manager function by

specifying a pointer to a callback function structure. These structures contain two fields:

a pointer to the callback function and a reference constant value. There is one callback

function structure for each type of callback function. See the individual function

descriptions in the sections that follow for descriptions of the structures.

noErr 0 No error
paramErr –50 Invalid parameter specified
cDepthErr –157 Invalid pixel resolution

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-149

Data-Loading Functions

Compressors use the data-loading and data-unloading functions when working with

images that do not fit into memory. The data-loading function supplies compressed data

during a decompression operation.

The DataProcPtr data type defines a pointer to a data-loading function. You assign a

data-loading function to an image or a sequence by passing a pointer to a structure that

identifies the function to the appropriate decompress function.

/* data-loading function structure */

typedef struct DataProcRecord DataProcRecord;

typedef DataProcRecord *DataProcRecordPtr;

The data-loading function structure contains the following fields:

struct DataProcRecord

{

DataProcPtr dataProc; /* pointer to data-loading function */

long dataRefCon; /* reference constant */

};

Field descriptions

dataProc Contains a pointer to your data-loading function.

dataRefCon Contains a reference constant for use by your data-loading function.

DESCRIPTION

If your data-loading function returns a nonzero result code, the Image Compression

Manager terminates the current operation.

MyDataLoadingProc

Your data-loading function should have the following form:

pascal OSErr MyDataLoadingProc (Ptr *dataP, long bytesNeeded,

long refcon);

dataP Contains a pointer to the address of the data buffer. The decompressor
uses this parameter to indicate where your data-loading function should
return the compressed data. You establish this data buffer when you start
the decompression operation. For example, the data parameter to the
FDecompressImage function (described on page 3-79) defines the
location of the data buffer for that operation. Upon return from your
data-loading function, this pointer should refer to the beginning of the
compressed data that you loaded.

C H A P T E R 3

Image Compression Manager

3-150 Image Compression Manager Reference

The decompressor may also use this parameter to indicate that it wants to
reset the mark within the compressed data stream. If the dataP
parameter is set to nil, the bytesNeeded parameter contains the new
mark position, relative to the current position of the data stream. If your
data-loading function does not support this operation, return a nonzero
result code.

bytesNeeded
Specifies the number of bytes requested or the new mark offset. If the
decompressor has requested additional compressed data (that is, the
value of the dataP parameter is not nil), then this parameter specifies
how many bytes to return. This value never exceeds the size of the
original data buffer. Your data-loading function should read the data from
the current mark in the input data stream.

If the decompressor has requested to set a new mark position in the data
stream (that is, the value of the dataP parameter is nil), then this
parameter specifies the new mark position relative to the current position
of the data stream.

refcon Contains a reference constant value for use by your data-loading function.
Your application specifies the value of this reference constant in the
data-loading function structure you pass to the Image Compression
Manager.

SPECIAL CONSIDERATIONS

The pointer in the dataP parameter must contain a 32-bit clean address within the data

buffer. If you have dereferenced a handle, you should call the Memory Manager’s

StripAddress routine before passing it to the MyDataLoadingProc function.

RESULT CODES

Data-Unloading Functions

Compressors use the data-loading and data-unloading functions when working with

images that do not fit into the computer’s memory. The data-unloading function writes

compressed data to a storage device during a compression operation.

The FlushProcPtr data type defines a pointer to a data-unloading function.

/* data-unloading structure */

typedef struct FlushProcRecord FlushProcRecord;

typedef FlushProcRecord *FlushProcRecordPtr;

You assign a data-unloading function to an image or a sequence by passing a pointer to a

structure that identifies the function to the appropriate compression function.

noErr 0 No error
paramErr –50 Invalid parameter specified
codecSpoolErr –8966 Error loading or unloading data

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-151

The data-unloading function structure contains the following fields:

struct FlushProcRecord

{

FlushProcPtr flushProc;/* pointer to data-unloading function */

long flushRefCon;/* reference constant */

};

Field descriptions

flushProc Contains a pointer to your data-unloading function.

flushRefCon Contains a reference constant for use by your data-unloading
function.

MyDataUnloadingProc

Your data-unloading function should have the following form:

pascal OSErr MyDataUnloadingProc (Ptr data, long bytesAdded,

long refcon);

data Points to the data buffer. The compressor uses this parameter to indicate
where your data-unloading function can find the compressed data. You
establish this data buffer when you start the compression operation. For
example, the data parameter to the FCompressImage function
(described on page 3-75) defines the location of the data buffer for that
operation. This pointer contains a 32-bit clean address. Your
data-unloading function should make no other assumptions about the
value of this address.

The compressor may also use this parameter to indicate that it wants to
reset the mark within the compressed data stream. If the data parameter
is set to nil, the bytesNeeded parameter contains the new mark
position, relative to the current position of the output data stream. If your
data-unloading function does not support this operation, return a
nonzero result code.

bytesAdded
Specifies the number of bytes to write or the new mark offset. If the
compressor wants to write out some compressed data (that is, the value of
data is not nil), then this parameter specifies how many bytes to write.
This value never exceeds the size of the original data buffer. Your
data-unloading function should write that data at the current mark in the
output data stream.

If the compressor has requested to set a new mark position in the output
data stream (that is, the value of data is nil), then this parameter
specifies the new mark position relative to the current position of the data
stream.

C H A P T E R 3

Image Compression Manager

3-152 Image Compression Manager Reference

refcon Contains a reference constant value for use by your data-unloading
function. Your application specifies the value of this reference constant in
the data-unloading function structure you pass to the Image Compression
Manager.

RESULT CODES

Progress Functions

Compressors and decompressors call progress functions to report on their progress in

the current operation. When a component calls your progress function, it supplies you

with a number that indicates the completion percentage. This fixed-point value may

range from 0.0 through 1.0. Your program can cause the component to terminate the

current operation by returning a result code of codecAbortErr.

The Image Compression Manager calls your progress function only during long

operations, and it does not call your function more than 30 times per second.

The ProgressProcPtr data type defines a pointer to a progress function. You assign a

progress function to an image or a sequence by passing a pointer to a structure that

identifies the progress function to the appropriate function.

/* progress function structure */

typedef struct ProgressProcRecord ProgressProcRecord;

typedef ProgressProcRecord *ProgressProcRecordPtr;

The progress function structure contains the following fields:

struct ProgressProcRecord

{

ProgressProcPtr progressProc; /* ptr to progress function */

long progressRefCon;/* reference constant */

};

Field descriptions

progressProc Contains a pointer to your progress function.

progressRefCon
Contains a reference constant for use by your progress function.

noErr 0 No error
paramErr –50 Invalid parameter specified
codecSpoolErr –8966 Error loading or unloading data

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-153

MyProgressProc

Your progress function should have the following form:

pascal OSErr MyProgressProc (short message, Fixed completeness,

long refcon);

message Indicates why the Image Compression Manager called your function. The
following values are valid:

codecProgressOpen
Indicates the start of a long operation. This is always the
first message sent to your function. Your function can use
this message to trigger the display of your progress
window.

codecProgressUpdatePercent
Passes completion information to your function. The Image
Compression Manager repeatedly sends this message to
your function. The completeness parameter indicates the
relative completion of the operation. You can use this value
to update your progress window.

codecProgressClose
Indicates the end of a long operation. This is always the
last message sent to your function. Your function can use
this message as an indication to remove its progress
window.

completeness
Contains a fixed-point value indicating how far the operation has
progressed. Its value is always between 0.0 and 1.0. This parameter is
valid only when the message field is set to
codecProgressUpdatePercent.

refcon Contains a reference constant value for use by your progress function.
Your application specifies the value of this reference constant in the
progress function structure you pass to the Image Compression Manager.

DESCRIPTION

The following functions have parameters that allow you to provide application-defined

progress functions: FCompressImage, FDecompressImage, TrimImage,

FCompressPicture, FCompressPictureFile,

DrawPictureFile, DrawTrimmedPicture,

DrawTrimmedPictureFile, MakeThumbNailFromPicture,

MakeThumbnailFromPictureFile, MakeThumbnailFromPixMap,

SetCompressedPixMapInfo, and GetCompressedPixMapInfo. If you pass a value

of –1 in the progressProc parameter of any of these functions, you obtain a standard

progress function.

C H A P T E R 3

Image Compression Manager

3-154 Image Compression Manager Reference

RESULT CODES

Completion Functions

Compressor components call completion functions when they have finished an

asynchronous operation. The component supplies a result code to your completion

function. This result code indicates the success or failure of the asynchronous operation.

Note that any other result data that may be produced by the asynchronous operation is

not valid until the component calls your completion function.

The CompletionProcPtr data type defines a pointer to a completion function. You

assign a completion function to an image or a sequence by passing a pointer to a

structure that identifies the function to the appropriate function.

typedef struct CompletionProcRecord CompletionProcRecord;

The completion function structure contains the following fields:

typedef CompletionProcRecord *CompletionProcRecordPtr;

struct CompletionProcRecord

{

CompletionProcPtr completionProc;

/* pointer to completion function */

long completionRefCon;

/* reference constant */

};

Field descriptions

completionProc
Contains a pointer to your completion function. Your completion
function may be called at interrupt time. Therefore, the value of the
A5 register is unknown, and your function may not use Memory
Manager functions or other functions that move memory.

completionRefCon
Contains a reference constant for use by your completion function.

MyCompletionProc

Your completion function should have the following form:

pascal OSErr MyCompletionProc (OSErr result, short flag,

 long refcon);

noErr 0 No error
paramErr –50 Invalid parameter specified
codecAbortErr –8967 Operation aborted by the progress function

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-155

result Indicator of success of current operation.

flag Indicates which part of the operation is complete. The following flags are
defined:

codecCompletionSource
The Image Compression Manager is done with the source
buffer. The Image Compression Manager sets this flag to 1
when it is done with the processing associated with the
source buffer. For compression operations, the source is the
uncompressed pixel map you are compressing. For
decompression operations, the source is the decompressed
data you are decompressing.

codecCompletionDest
The Image Compression Manager is done with the
destination buffer. The Image Compression Manager sets
this flag to 1 when it is done with the processing associated
with the destination buffer.

Note that more than one of these flags may be set to 1.

refcon Contains a reference constant value for use by your completion function.
Your application specifies the value of this reference constant in the
callback function structure you pass to the Image Compression Manager.

RESULT CODES

Alignment Functions

Your application can use alignment functions to specify the alignment in any of the

Image Compression Manager’s alignment functions (described in “Aligning Windows”

beginning on page 3-142). You call the alignment function with a rectangle (defined in

global screen coordinates) that has already been aligned using the default behavior. The

alignment function then has the option of applying some additional alignment criteria to

the rectangle, such as vertical alignment of some form. In the case of supporting

hardware alignment, it is the function’s responsibility to determine if the rectangle

applies to the relevant device.

The AlignmentProcPtr data type defines a pointer to an alignment function. You

assign an alignment function by passing a pointer to the alignment function structure,

which identifies the alignment function to the appropriate function.

/* alignment function structure */

typedef struct

{

AlignmentProcPtr alignmentProc; /* pointer to your

alignment function */

long alignmentRefCon; /* reference constant */

} AlignmentProcRecord, *AlignmentProcRecordPtr;

noErr 0 No error

C H A P T E R 3

Image Compression Manager

3-156 Image Compression Manager Reference

Field descriptions

alignmentProc Points to your alignment function.

alignmentRefCon
Contains a reference constant for use by your alignment function.

MyAlignmentProc

Your alignment function should have the following form:

pascal void MyAlignmentProc (Rect *rp, long refcon);

rp Contains a pointer to a rectangle that has already been aligned with a
default alignment function.

refcon Contains a reference constant value for use by your alignment function.
Your application specifies the value of this reference constant in the
alignment function structure you pass to the Image Compression
Manager.

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-157

Summary of the Image Compression Manager

C Summary

Constants

/* determines if Image Compression Manager is available */

#define gestaltCompressionMgr 'icmp'

/* smallest data buffer you may allocate for image data spooling */

#define codecMinimumDataSize 32768

/* compressor component type */

#define compressorComponentType 'imco'

/* decompressor component type */

#define decompressorComponentType 'imdc'

/* Image Compression Manager function control flags */

#define codecFlagUseImageBuffer (1L<<0) /* (input) use image buffer */

#define codecFlagUseScreenBuffer(1L<<1) /* (input) use screen buffer */

#define codecFlagUpdatePrevious (1L<<2) /* (input) update previous

 buffer */

#define codecFlagNoScreenUpdate (1L<<3) /* (input) don't update screen */

#define codecFlagWasCompressed (1L<<4) /* (input) image compressed */

#define codecFlagDontOffscreen (1L<<5) /* don't go offscreen

 automatically */

#define codecFlagUpdatePreviousComp (1L<<6)

/* (input) update previous

 buffer */

#define codecFlagForceKeyFrame (1L<<7) /* force key frame from image */

#define codecFlagOnlyScreenUpdate

 (1L<<8) /* decompress current frame */

#define codecFlagLiveGrab (1L<<9) /* sequence from live video grab */

#define codecFlagDontUseNewImageBuffer (1L<<10)

/* (input) don't use new image

 buffer */

C H A P T E R 3

Image Compression Manager

3-158 Summary of the Image Compression Manager

#define codecFlagInterlaceUpdate (1L<<11)

/* (input) update screen

 interlacing */

/*

status flags from outflags parameter of DecompressSequenceFrame

function

*/

#define codecFlagUsedNewImageBuffer (1L<<14)

/* (output) used new image buffer */

#define codecFlagUsedImageBuffer (1L<<15)

/* (output) used image buffer */

/* completion flags from application-defined completion functions */

#define codecCompletionSource (1<<0) /* Image Compression Manager done

 with source buffer */

#define codecCompletionDest (1<<1)/* Image Compression Manager done with

 destination buffer */

/* compression quality values */

#define codecMinQuality 0x000L /* minimum-quality image reproduction */

#define codecLowQuality 0x100L /* low-quality image reproduction */

#define codecNormalQuality 0x200L /* normal-quality image reproduction */

#define codecHighQuality 0x300L /* high-quality image reproduction */

#define codecMaxQuality 0x3FFL /* maximum-quality image reproduction */

#define codecLosslessQuality 0x400L /* lossless-quality reproduction */

/*

special compressor and decompressor identifiers let you choose an

image compressor component

*/

#define anyCodec (CodecComponent)0) /* first one or a

specified type */

#define bestSpeedCodec ((CodecComponent)-1) /* fastest of specified

type */

#define bestFidelityCodec (CodecComponent)-2) /* most accurate of

specified type */

#define bestCompressionCodec((CodecComponent)-3) /* one with smallest

resulting data */

/*

constants for doDither parameter of DrawTrimmedPictureFile and

FCompressPictureFile functions

*/

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-159

#define defaultDither0 /* respect dithering instructions in

 source picture */

#define forceDither1 /* dither image */

#define suppressDither2 /* don't dither image */

Data Types

typedef Component CompressorComponent; /* compressor identifier */

typedef Component DecompressorComponent;/* decompressor identifier */

typedef Component CodecComponent; /* compressor identifier */

typedef long CodecType; /* compressor type */

typedef unsigned short CodecFlags; /* compressor component flags */

typedef unsigned long CodecQ; /* compression quality */

typedef pascal OSErr (*DataProcPtr) (Ptr *dataP, long bytesNeeded,

 longrefCon); /* pointer to a data-loading function */

typedef pascal OSErr (*FlushProcPtr) (Ptr data, long bytesAdded,

 long refCon);/* pointer to a data-unloading function */

typedef pascal void (*CompletionProcPtr)(OSErr result, short flags,

 long refCon);/* pointer to a completion function */

typedef pascal OSErr (*ProgressProcPtr)(short message, Fixed completeness,

 long refCon);/* pointer to a progress function */

typedef long ImageSequence; /* unique sequence identifier */

/* progress function structure */

struct ProgressProcRecord

{

ProgressProcPtr progressProc; /* pointer to your progress function */

long progressRefCon; /* reference constant */

};

typedef struct ProgressProcRecord ProgressProcRecord;

typedef ProgressProcRecord *ProgressProcRecordPtr;

/* completion function structure */

struct CompletionProcRecord

{

C H A P T E R 3

Image Compression Manager

3-160 Summary of the Image Compression Manager

CompletionProcPtr completionProc;/* pointer to completion function */

long completionRefCon; /* reference constant */

};

typedef struct CompletionProcRecord CompletionProcRecord;

typedef CompletionProcRecord *CompletionProcRecordPtr;

/* data-loading structure */

struct DataProcRecord

{

DataProcPtr dataProc; /* pointer to data-loading function */

long dataRefCon; /* reference constant */

};

typedef struct DataProcRecord DataProcRecord;

typedef DataProcRecord *DataProcRecordPtr;

/* data-unloading structure */

struct FlushProcRecord

{

FlushProcPtr flushProc; /* pointer to data-unloading function */

long flushRefCon; /* reference constant */

};

typedef struct FlushProcRecord FlushProcRecord;

typedef FlushProcRecord *FlushProcRecordPtr;

typedef pascal void (*StdPixProcPtr)(PixMap *src, Rect *srcRect,

 MatrixRecord *matrix,

 short mode, RgnHandle mask,

 PixMap *matte,Rect *matteRect,

 short flags);

typedef struct

{

AlignmentProcPtr alignmentProc; /* pointer to your alignment

function */

long alignmentRefCon; /* reference constant */

} AlignmentProcRecord;

typedef AlignmentProcRecord *AlignmentProcRecordPtr;

typedef struct

{

long dataRate; /* bytes per second */

long dataOverrun; /* number of bytes outside rate */

long frameDuration; /* in milliseconds */

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-161

long keyFrameRate; /* frequency of key frames */

CodecQ minSpatialQuality; /* minimum spatial quality */

CodecQ minTemporalQuality; /* minimum temporal quality */

} DataRateParams;

typedef DataRateParams *DataRateParamsPtr;

/* image description structure */

struct ImageDescription

{

long idSize; /* total size of this structure */

CodecType cType; /* compressor type of creator */

long resvd1; /* reserved--must be set to 0 */

short resvd2; /* reserved--must be set to 0 */

short dataRefIndex; /* reserved--must be set to 0 */

short version; /* version of compressed data */

short revisionLevel; /* version of compressor that created data */

long vendor; /* developer of compressor that created data */

CodecQ temporalQuality; /* degree of temporal compression */

CodecQ spatialQuality; /* degree of spatial compression */

short width; /* width of source image in pixels */

short height; /* height of source image in pixels */

Fixed hRes; /* horizontal resolution of source image */

Fixed vRes; /* vertical resolution of source image */

long dataSize; /* size in bytes of compressed data */

short frameCount; /* number of frames in image data */

Str31 name; /* name of compression algorithm */

short depth; /* pixel depth of source image */

short clutID; /* ID number of color table for image */

};

typedef struct ImageDescription ImageDescription;

typedef ImageDescription *ImageDescriptionPtr, **ImageDescriptionHandle;

/* compressor information structure */

struct CodecInfo

{

Str31 typeName; /* compression algorithm */

short version; /* version of compressed data */

short revisionLevel; /* version of component */

long vendor; /* developer of component */

long decompressFlags; /* decompression capability flags */

long compressFlags; /* compression capability flags */

long formatFlags; /* compression format flags */

unsigned char compressionAccuracy;

/* relative accuracy of compression */

C H A P T E R 3

Image Compression Manager

3-162 Summary of the Image Compression Manager

unsigned char decompressionAccuracy;

/* relative accuracy of decompression */

unsigned short compressionSpeed;

/* relative speed of compressor */

unsigned short decompressionSpeed;

/* relative speed of decompressor */

unsigned char compressionLevel;

/* relative level of compression */

char resvd; /* reserved--set to 0 */

short minimumHeight; /* minimum height */

short minimumWidth; /* minimum width */

short decompressPipelineLatency;

/* in milliseconds (asynchronous) */

short compressPipelineLatency;

/* in milliseconds (asynchronous) */

long privateData; /* reserved for use by Apple */

};

typedef struct CodecInfo CodecInfo;

/* compressor name structure returned by GetCodecNameList function */

struct CodecNameSpec

{

CodecComponent codec;/* component ID for compressor */

CodecType cType; /* type identifier for compressor */

Str31 typeName; /* string identifier of compression algorithm */

Handle name; /* name of compressor component */

};

typedef struct CodecNameSpec CodecNameSpec;

/* compressor name list structure */

struct CodecNameSpecList

{

short count; /* number of compressor name structures in list

array that follows */

CodecNameSpec list[1]; /* array of compressor name structures */

};

typedef struct CodecNameSpecList CodecNameSpecList;

typedef CodecNameSpecList *CodecNameSpecListPtr;

/*

flags from message parameter of application-defined progress functions

tell why the Image Compression Manager called your function

*/

enum

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-163

{

codecProgressOpen = 0, /* start of a long operation */

codecProgressUpdatePercent = 1, /* passes completion information */

codecProgressClose = 2 /* end of a long operation*/

};

typedef pascal void (*CompletionProcPtr) (OSErr result, short flags,

long refCon);

/* data rate parameters structure */

typedef struct {

long dataRate; /* bytes per second */

long dataOverrun; /* number of bytes outside rate */

long frameDuration; /* in milliseconds */

long keyFrameRate; /* frequency of key frames */

CodecQ minSpatialQuality; /* minimum spatial quality */

CodecQ minTemporalQuality; /* minimum temporal quality */

} DataRateParams;

typedef DataRateParams *DataRateParamsPtr;

Image Compression Manager Functions

Getting Information About Compressor Components

pascal OSErr CodecManagerVersion
(long *version);

pascal OSErr GetCodecNameList
(CodecNameSpecListPtr *list, short showAll);

pascal OSErr DisposeCodecNameList
(CodecNameSpecListPtr list);

pascal OSErr GetCodecInfo (CodecInfo *info, CodecType cType,
CodecComponent codec);

pascal OSErr FindCodec (CodecType cType, CodecComponent specCodec,
CompressorComponent *compressor,
DecompressorComponent *decompressor);

Getting Information About Compressed Data

pascal OSErr GetMaxCompressionSize
(PixMapHandle src, const Rect *srcRect,
short colorDepth, CodecQ quality,
CodecType cType, CompressorComponent codec,
long *size);

C H A P T E R 3

Image Compression Manager

3-164 Summary of the Image Compression Manager

pascal OSErr GetCompressionTime
(PixMapHandle src, const Rect *srcRect,
short colorDepth, CodecType cType,
CompressorComponent codec,
CodecQ *spatialQuality,
CodecQ *temporalQuality,
unsigned long *compressTime);

pascal OSErr GetSimilarity (PixMapHandle src, const Rect *srcRect,
ImageDescriptionHandle desc, Ptr data,
Fixed *similarity);

pascal OSErr GetCompressedImageSize
(ImageDescriptionHandle desc, Ptr data,
long bufferSize, DataProcRecordPtr dataProc,
long *dataSize);

Working With Images

pascal OSErr CompressImage (PixMapHandle src, const Rect *srcRect,
CodecQ quality, CodecType cType,
ImageDescriptionHandle desc, Ptr data);

pascal OSErr FCompressImage
(PixMapHandle src, const Rect *srcRect,
short colorDepth, CodecQ quality,
CodecType cType, CompressorComponent codec,
CTabHandle clut, CodecFlags flags,
long bufferSize, FlushProcRecordPtr flushProc,
ProgressProcRecordPtr progressProc,
ImageDescriptionHandle desc, Ptr data);

pascal OSErr DecompressImage
(Ptr data, ImageDescriptionHandle desc,
PixMapHandle dst, const Rect *srcRect,
const Rect *dstRect, short mode,
RgnHandle mask);

pascal OSErr FDecompressImage
(Ptr data, ImageDescriptionHandle desc,
PixMapHandle dst, const Rect *srcRect,
MatrixRecordPtr matrix, short mode,
RgnHandle mask, PixMapHandle matte,
const Rect *matteRect, CodecQ accuracy,
DecompressorComponent codec, long bufferSize,
DataProcRecordPtr dataProc,
ProgressProcRecordPtr progressProc);

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-165

pascal OSErr ConvertImage (ImageDescriptionHandle srcDD, Ptr srcData,
short colorDepth, CTabHandle clut,
CodecQ accuracy, CodecQ quality,
CodecType cType, CodecComponent codec,
ImageDescriptionHandle dstDD, Ptr dstData);

pascal OSErr TrimImage (ImageDescriptionHandle desc, Ptr inData,
long inBufferSize, DataProcRecordPtr dataProc,
Ptr outData, long outBufferSize,
FlushProcRecordPtr flushProc, Rect *trimRect,
ProgressProcRecordPtr progressProc);

pascal OSErr SetImageDescriptionCTable
(ImageDescriptionHandle desc,
CTabHandle ctable);

pascal OSErr GetImageDescriptionCTable
(ImageDescriptionHandle desc,
CTabHandle *ctable);

Working With Pictures and PICT Files

pascal OSErr CompressPicture
(PicHandle srcPicture, PicHandle dstPicture,
CodecQ quality, CodecType cType);

pascal OSErr FCompressPicture
(PicHandle srcPicture, PicHandle dstPicture,
short colorDepth, CTabHandle clut,
CodecQ quality, short doDither,
short compressAgain,
ProgressProcRecordPtr progressProc,
CodecType cType, CompressorComponent codec);

pascal OSErr CompressPictureFile
(short srcRefNum, short dstRefNum,
CodecQ quality, CodecType cType);

pascal OSErr FCompressPictureFile
(short srcRefNum, short dstRefNum,
short colorDepth, CTabHandle clut,
CodecQ quality, short doDither,
short compressAgain,
ProgressProcRecordPtr progressProc,
CodecType cType, CompressorComponent codec);

pascal OSErr DrawPictureFile
(short refNum, const Rect *frame,
ProgressProcRecordPtr progressProc);

C H A P T E R 3

Image Compression Manager

3-166 Summary of the Image Compression Manager

pascal OSErr DrawTrimmedPicture
(PicHandle srcPicture, const Rect *frame,
RgnHandle trimMask, short doDither,
ProgressProcRecordPtr progressProc);

pascal OSErr DrawTrimmedPictureFile
(short srcRefnum, const Rect *frame,
RgnHandle trimMask, short doDither,
ProgressProcRecordPtr progressProc);

pascal OSErr GetPictureFileHeader
(short refNum, Rect *frame,
OpenCPicParams *header);

Making Thumbnail Pictures

pascal OSErr MakeThumbnailFromPicture
(PicHandle picture, short colorDepth,
PicHandle thumbnail,
ProgressProcRecordPtr progressProc);

pascal OSErr MakeThumbnailFromPictureFile
(short refNum, short colorDepth,
PicHandle thumbnail,
ProgressProcRecordPtr progressProc);

pascal OSErr MakeThumbnailFromPixMap
(PixMapHandle src, const Rect *srcRect,
short colorDepth, PicHandle thumbnail,
ProgressProcRecordPtr progressProc);

Working With Sequences

pascal OSErr CompressSequenceBegin
(ImageSequence *seqID, PixMapHandle src,
PixMapHandle prev, const Rect *srcRect,
const Rect *prevRect, short colorDepth,
CodecType cType, CompressorComponent codec,
CodecQ spatialQuality, CodecQ temporalQuality,
long keyFrameRate, CTabHandle clut,
CodecFlags flags, ImageDescriptionHandle desc);

pascal OSErr CompressSequenceFrame
(ImageSequence seqID, PixMapHandle src,
const Rect *srcRect, CodecFlags flags,
Ptr data, long *dataSize,
unsigned char *similarity,
CompletionProcRecordPtr asyncCompletionProc);

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-167

pascal OSErr DecompressSequenceBegin
(ImageSequence *seqID,
ImageDescriptionHandle desc, CGrafPtr port,
GDHandle gdh, const Rect *srcRect,
MatrixRecordPtr matrix, short mode,
RgnHandle mask, CodecFlags flags,
CodecQ accuracy, DecompressorComponent codec);

pascal OSErr DecompressSequenceFrame
(ImageSequence seqID, Ptr data,
CodecFlags inFlags, CodecFlags *outFlags,
CompletionProcRecordPtr asyncCompletionProc);

pascal OSErr CDSequenceBusy
(ImageSequence seqID);

pascal OSErr CDSequenceEnd (ImageSequence seqID);

Changing Sequence-Compression Parameters

pascal OSErr SetCSequenceQuality
(ImageSequence seqID, CodecQ spatialQuality,
CodecQ temporalQuality);

pascal OSErr SetCSequenceKeyFrameRate
(ImageSequence seqID, long keyframerate);

pascal OSErr GetCSequenceKeyFrameRate
(ImageSequence seqID, long *keyframerate);

pascal OSErr SetCSequenceFrameNumber
(ImageSequence seqID, long frameNumber);

pascal OSErr GetCSequenceFrameNumber
(ImageSequence seqID, long *frameNumber);

pascal OSErr SetCSequencePrev
(ImageSequence seqID, PixMapHandle prev,
const Rect *prevRect);

pascal OSErr SetCSequenceFlushProc
(ImageSequence seqID,
FlushProcRecordPtr flushProc, long bufferSize);

pascal OSErr GetCSequencePrevBuffer
(ImageSequence seqID, GWorldPtr *gworld);

Constraining Compressed Data

pascal OSErr SetCSequenceDataRateParams
(ImageSequence seqID,
DataRateParamsPtr params);

pascal OSErr GetCSequenceDataRateParams
(ImageSequence seqID, DataRateParamsPtr params);

C H A P T E R 3

Image Compression Manager

3-168 Summary of the Image Compression Manager

Changing Sequence-Decompression Parameters

pascal OSErr SetDSequenceTransferMode
(ImageSequence seqID, short mode,
const RGBColor *opColor);

pascal OSErr SetDSequenceSrcRect
(ImageSequence seqID, const Rect *srcRect);

pascal OSErr SetDSequenceMatrix
(ImageSequence seqID, MatrixRecordPtr matrix);

pascal OSErr SetDSequenceMask
(ImageSequence seqID, RgnHandle mask);

pascal OSErr SetDSequenceMatte
(ImageSequence seqID, PixMapHandle matte,
const Rect *matteRect);

pascal OSErr SetDSequenceAccuracy
(ImageSequence seqID, CodecQ accuracy);

pascal OSErr SetDSequenceDataProc
(ImageSequence seqID,
DataProcRecordPtr dataProc, long bufferSize);

pascal OSErr GetDSequenceImageBuffer
(ImageSequence seqID, GWorldPtr *gworld);

pascal OSErr GetDSequenceScreenBuffer
(ImageSequence seqID, GWorldPtr *gworld);

Working With the StdPix Function

pascal void StdPix (PixMapPtr src, const Rect *srcRect,
MatrixRecordPtr matrix, short mode,
RgnHandle mask, PixMapPtr matte,
Rect *matteRect, short flags);

pascal OSErr SetCompressedPixMapInfo
(PixMapPtr pix, ImageDescriptionHandle desc,
Ptr data, long bufferSize,
DataProcRecordPtr dataProc,
ProgressProcRecordPtr progressProc);

pascal OSErr GetCompressedPixMapInfo
(PixMapPtr pix, ImageDescriptionHandle *desc,
Ptr *data, long *bufferSize,
DataProcRecord *dataProc,
ProgressProcRecord *progressProc);

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-169

Aligning Windows

pascal void AlignWindow (WindowPtr wp, Boolean front,
const Rect *alignmentRect,
AlignmentProcRecordPtr alignmentProc);

pascal void DragAlignedWindow
(WindowPtr wp, Point startPt,
Rect *boundsRect, Rect *alignmentRect,
AlignmentProcRecordPtr alignmentProc);

pascal long DragAlignedGrayRgn
(RgnHandle theRgn, Point startPt,
Rect *boundsRect, Rect *slopRect, short axis,
ProcPtr actionProc, Rect *alignmentRect,
AlignmentProcRecordPtr alignmentProc);

pascal void AlignScreenRect
(Rect *rp,
AlignmentProcRecordPtr alignmentProc);

Working With Graphics Devices and Graphics Worlds

pascal OSErr GetBestDeviceRect
(GDHandle *gdh, Rect *rp);

pascal QDErr NewImageGWorld
(GWorldPtr *gworld,
ImageDescription **idh,GWorldFlags flags);

Application-Defined Functions

Data-Loading Functions

pascal OSErr MyDataLoadingProc
(Ptr *dataP, long bytesNeeded, long refcon);

Data-Unloading Functions

pascal OSErr MyDataUnloadingProc
(Ptr data, long bytesAdded, long refcon);

Progress Functions

pascal OSErr MyProgressProc
(short message, Fixed completeness,
long refcon);

C H A P T E R 3

Image Compression Manager

3-170 Summary of the Image Compression Manager

Completion Functions

pascal OSErr MyCompletionProc
(OSErr result, short flag, long refcon);

Alignment Functions

pascal void MyAlignmentProc
(Rect *rp, long refcon);

Pascal Summary

Constants

CONST

gestaltCompressionMgr = 'icmp';{determines if Image }

{ Compression Manager is }

{ available}

codecMinimumDataSize = 32768; {smallest data buffer you may }

{ allow for data spooling}

compressorComponentType = 'imco';{compressor component type}

decompressorComponentType = 'imdc';{decompressor component type}

{Image Compression Manager function control flags}

codecFlagUseImageBuffer = $1; {(input) use offscreen buffer}

codecFlagUseScreenBuffer = $2; {(input) use screen buffer}

codecFlagUpdatePrevious = $4; {(input) previous image is }

{ updated}

codecFlagNoScreenUpdate = $8; {(input) no screen image update}

codecFlagWasCompressed = $10; {(input) image has been }

{ compressed}

codecFlagDontOffscreen = $20; {don't use offscreen buffer}

codecFlagUpdatePreviousComp = $40; {(input) previous image buffer }

{ updated}

codecFlagForceKeyFrame = $80; {force key frame from image}

codecFlagOnlyScreenUpdate = $100; {decompresses current frame}

codecFlagLiveGrab = $200; {sequence from live video grab}

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-171

codecFlagDontUseNewImageBuffer = $400; {(input) return error if image }

{ buffer is new or reallocated}

codecFlagInterlaceUpdate = $800; {(input) use interlaced update}

{status flags from outflags parameter of DecompressSequenceFrame function}

codecFlagUsedNewImageBuffer = $4000; {(output) used new image buffer}

codecFlagUsedImageBuffer = $8000; {(output) used offscreen image }

{ buffer}

{completion flags from application-defined completion functions}

codecCompletionSource = 1; {done with source buffer}

codecCompletionDest = 2; {done with destination buffer}

{flags from application-defined progress functions message parameter—- }

{ tell why the Image Compression Manager called your function}

codecProgressOpen = 0; {start of a long operation}

codecProgressUpdatePercent = 1; {passing completion data}

codecProgressClose = 2; {end of a long}

{compression quality values}

codecMinQuality = $000; {minimum-quality image reproduction}

codecLowQuality = $100; {low-quality image reproduction}

codecNormalQuality = $200; {normal-quality image reproduction}

codecHighQuality = $300; {high-quality image reproduction}

codecMaxQuality = $3FF; {maximum-quality image reproduction}

codecLosslessQuality = $400; {lossless-quality image reproduction}

{special compressor and decompressor identifiers}

anyCodec = 0; {first component of specified type}

bestSpeedCodec = -1; {fastest component of specified type}

bestFidelityCodec = -2; {most accurate component of specified type}

bestCompressionCodec = -3; {component with smallest resulting data}

{constants for doDither parameter of DrawTrimmedPictureFile and }

{ FCompressPictureFile functions}

defaultDither = 0; {respect dithering instructions in source }

{ picture}

forceDither = 1; {dither image}

suppressDither = 2; {don't dither image}

C H A P T E R 3

Image Compression Manager

3-172 Summary of the Image Compression Manager

Data Types

TYPE

CompressorComponent = Component;{compressor identifier}

DecompressorComponent = Component;{decompressor identifier}

CodecComponent = Component;{compressor identifier}

CodecType = OSType; {compressor type}

CodecFlags = Integer; {compressor component flags}

CodecQ = LongInt; {compression quality}

DataProcPtr = ProcPtr; {pointer to a data-loading function}

FlushProcPtr = ProcPtr; {pointer to a data-unloading function}

CompletionProcPtr = ProcPtr; {pointer to a completion function}

ProgressProcPtr = ProcPtr; {pointer to a progress function}

ImageSequence = LongInt; {unique sequence identifer}

ProgressProcRecordPtr = ^ProgressProcRecord;

ProgressProcRecord = {progress function record}

RECORD

progressProc: ProgressProcPtr; {pointer to your progress function}

 progressRefCon: LongInt; {reference constant}

END;

CompletionProcRecordPtr = ^CompletionProcRecord;

CompletionProcRecord = {completion function record}

RECORD

completionProc: CompletionProcPtr;{pointer to completion function}

completionRefCon: LongInt; {reference constant}

END;

DataProcRecordPtr = ^DataProcRecord;

DataProcRecord = {data-loading function record}

RECORD

dataProc: DataProcPtr; {pointer to data-loading function}

dataRefCon: LongInt; {reference constant}

END;

FlushProcRecordPtr = ^FlushProcRecord;

FlushProcRecord = {data-unloading function record}

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-173

RECORD

flushProc: FlushProcPtr; {pointer to data-unloading }

{ function}

flushRefCon: LongInt; {reference constant}

END;

ImageDescriptionPtr = ^ImageDescription;

ImageDescriptionHandle = ^ImageDescriptionPtr;

ImageDescription =

PACKED RECORD

idSize: LongInt; {total size of this record}

cType: CodecType; {type of creator component}

resvd1: LongInt; {reserved—-must be set to 0}

resvd2: Integer; {reserved—-must be set to 0}

dataRefIndex: Integer; {reserved—-must be set to 0}

version: Integer; {version of compressed data}

revisionLevel: Integer; {version of creator compressor}

vendor: LongInt; {developer of creator compressor}

temporalQuality: CodecQ; {degree of temporal compression}

spatialQuality: CodecQ; {degree of spatial compression}

width: Integer; {width of source image in pixels}

height: Integer; {height of source image in pixels}

hRes: Fixed; {horizontal resolution of source image}

vRes: Fixed; {vertical resolution of source image}

dataSize: LongInt; {byte size of compressed image data}

frameCount: Integer; {number of frames in image data}

name: PACKED ARRAY[0..31] of char;

{name of compression algorithm}

depth: Integer; {pixel depth of source image}

clutID: Integer; {ID number of the color table for image}

END;

CodecInfo = {compressor information record}

PACKED RECORD

typeName: PACKED ARRAY[0..31] of char;

{compression algorithm}

version: Integer; {version of compressed data}

revisionLevel: Integer; {version of component}

vendor: LongInt; {developer of component}

decompressFlags: LongInt; {decompression capability flags}

compressFlags: LongInt; {compression capability flags}

formatFlags: LongInt; {format flags}

compressionAccuracy:

Char; {relative accuracy of compression}

C H A P T E R 3

Image Compression Manager

3-174 Summary of the Image Compression Manager

decompressionAccuracy:

Char; {relative accuracy of decompression}

compressionSpeed: Integer; {relative compression speed}

decompressionSpeed: Integer; {relative decompression speed}

compressionLevel: Char; {relative compression of component}

resvd: Char; {reserved—-set to 0}

minimumHeight: Integer; {minimum height in pixels}

minimumWidth: Integer; {maximum width in pixels}

decompressPipelineLatency:

Integer; {milliseconds (asynchronous)}

compressPipelineLatency:

Integer; {milliseconds (asynchronous)}

privateData: LongInt; {reserved--must be set to 0}

END;

{compressor name record returned by GetCodecNameList}

CodecNameSpec =

PACKED RECORD

codec: CodecComponent;{component ID for compressor}

cType: CodecType; {type identifier for compressor}

typeName: PACKED ARRAY[0..31] OF Char;

{string identifier of compression algorithm}

name: Handle; {name of compressor component}

END;

{compressor name list record}

CodecNameSpecListPtr = ^CodecNameSpecList;

CodecNameSpecList =

RECORD

count: Integer; {number of compressor name records}

list: ARRAY[0..0] OF CodecNameSpec;

{array of compressor name records}

END;

{data rate parameters record}

DataRateParamsPtr = ^DataRateParams;

DataRateParams =

RECORD

dataRate: LongInt; {bytes per second}

dataOverrun: LongInt; {number of bytes outside rate}

frameDuration: LongInt; {duration in milliseconds}

keyFrameRate: LongInt; {frequency of key frames}

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-175

minSpatialQuality: CodecQ; {minimum spatial quality}

minTemporalQuality: CodecQ; {minimum temporal quality}

 END;

Image Compression Manager Routines

Getting Information About Compressor Components

FUNCTION CodecManagerVersion
(VAR version: LongInt): OSErr;

FUNCTION GetCodecNameList (VAR list: CodecNameSpecListPtr;
showAll: Integer): OSErr;

FUNCTION DisposeCodecNameList
(list: CodecNameSpecListPtr): OSErr;

FUNCTION GetCodecInfo (VAR info: CodecInfo; cType: CodecType;
codec: CodecComponent): OSErr;

FUNCTION FindCodec (cType: CodecType; specCodec: CodecComponent;
VAR compressor: CompressorComponent;
VAR decompressor: DecompressorComponent):
OSErr;

Getting Information About Compressed Data

FUNCTION GetMaxCompressionSize
(src: PixMapHandle; srcRect: Rect;
colorDepth: Integer; quality: CodecQ;
cType: CodecType; codec: CompressorComponent;
VAR size: LongInt): OSErr;

FUNCTION GetCompressionTime
(src: PixMapHandle; srcRect: Rect;
colorDepth: Integer; cType: CodecType;
codec: CompressorComponent;
VAR spatialQuality: CodecQ;
VAR temporalQuality: CodecQ;
VAR compressTime: LongInt): OSErr;

FUNCTION GetSimilarity (src: PixMapHandle; srcRect: Rect;
desc: ImageDescriptionHandle; data: Ptr;
VAR similarity: Fixed): OSErr;

FUNCTION GetCompressedImageSize
(desc: ImageDescriptionHandle; data: Ptr;
bufferSize: LongInt;
dataProc: DataProcRecordPtr;
VAR dataSize: LongInt): OSErr;

C H A P T E R 3

Image Compression Manager

3-176 Summary of the Image Compression Manager

Working With Images

FUNCTION CompressImage (src: PixMapHandle; srcRect: Rect;
quality: CodecQ; cType: CodecType;
desc: ImageDescriptionHandle;
data: Ptr): OSErr;

FUNCTION FCompressImage (src: PixMapHandle; srcRect: Rect;
colorDepth: Integer; quality: CodecQ;
cType: CodecType; codec: CompressorComponent;
clut: CTabHandle; flags: CodecFlags;
bufferSize: LongInt;
flushProc: FlushProcRecordPtr;
progressProc: ProgressProcRecordPtr;
desc: ImageDescriptionHandle;
data: Ptr): OSErr;

FUNCTION DecompressImage (data: Ptr; desc: ImageDescriptionHandle;
dst: PixMapHandle; srcRect: Rect;
dstRect: Rect; mode: Integer;
mask: RgnHandle): OSErr;

FUNCTION FDecompressImage (data: Ptr; desc: ImageDescriptionHandle;
dst: PixMapHandle; srcRect: Rect;
matrix: MatrixRecordPtr; mode: Integer;
mask: RgnHandle; matte: PixMapHandle;
matteRect: Rect; accuracy: CodecQ;
codec: DecompressorComponent;
bufferSize: LongInt;
dataProc: DataProcRecordPtr;
progressProc: ProgressProcRecordPtr): OSErr;

FUNCTION ConvertImage (srcDD: ImageDescriptionHandle; srcData: Ptr;
colorDepth: Integer; clut: CTabHandle;
accuracy: CodecQ; quality: CodecQ;
cType: CodecType; codec: CodecComponent;
dstDD: ImageDescriptionHandle;
dstData: Ptr): OSErr;

FUNCTION TrimImage (desc: ImageDescriptionHandle; inData: Ptr;
inBufferSize: LongInt;
dataProc: DataProcRecordPtr; outData: Ptr;
outBufferSize: LongInt;
flushProc: FlushProcRecordPtr;
VAR trimRect: Rect;
progressProc: ProgressProcRecordPtr): OSErr;

FUNCTION SetImageDescriptionCTable
(desc: ImageDescriptionHandle;
ctable: CTabHandle): OSErr;

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-177

FUNCTION GetImageDescriptionCTable
(desc: ImageDescriptionHandle;
VAR ctable: CTabHandle): OSErr;

Working With Pictures and PICT Files

FUNCTION CompressPicture (srcPicture: PicHandle; dstPicture: PicHandle;
quality: CodecQ; cType: CodecType): OSErr;

FUNCTION FCompressPicture (srcPicture: PicHandle; dstPicture: PicHandle;
colorDepth: Integer; clut: CTabHandle;
quality: CodecQ; doDither: Integer;
compressAgain: Integer;
progressProc: ProgressProcRecordPtr;
cType: CodecType;
codec: CompressorComponent): OSErr;

FUNCTION CompressPictureFile
(srcRefNum: Integer; dstRefNum: Integer;
quality: CodecQ; cType: CodecType): OSErr;

FUNCTION FCompressPictureFile
(srcRefNum: Integer; dstRefNum: Integer;
colorDepth: Integer; clut: CTabHandle;
quality: CodecQ; doDither: Integer;
compressAgain: Integer;
progressProc: ProgressProcRecordPtr;
cType: CodecType;
odec: CompressorComponent): OSErr;

FUNCTION DrawPictureFile (refNum: Integer; frame: Rect;
progressProc: ProgressProcRecordPtr): OSErr;

FUNCTION DrawTrimmedPicture
(srcPicture: PicHandle; frame: Rect;
trimMask: RgnHandle; doDither: Integer;
progressProc: ProgressProcPtr): OSErr;

FUNCTION DrawTrimmedPictureFile
(srcRefnum: Integer; frame: Rect;
trimMask: RgnHandle; doDither: Integer;
progressProc: ProgressProcRecordPtr): OSErr;

FUNCTION GetPictureFileHeader
(refNum: Integer; VAR frame: Rect;
VAR header: OpenCPicParams): OSErr;

Making Thumbnail Pictures

FUNCTION MakeThumbnailFromPicture
(picture: PicHandle; colorDepth: Integer;
thumbnail: PicHandle;
progressProc: ProgressProcRecordPtr): OSErr;

C H A P T E R 3

Image Compression Manager

3-178 Summary of the Image Compression Manager

FUNCTION MakeThumbnailFromPictureFile
(refNum: Integer; colorDepth: Integer;
thumbnail: PicHandle;
progressProc: ProgressProcRecordPtr): OSErr;

FUNCTION MakeThumbnailFromPixMap
(src: PixMapHandle; srcRect: Rect;
colorDepth: Integer; thumbnail: PicHandle;
progressProc: ProgressProcRecordPtr): OSErr;

Working With Sequences

FUNCTION CompressSequenceBegin
(VAR seqID: ImageSequence;
src: PixMapHandle; prev: PixMapHandle;
srcRect: Rect; prevRect: Rect;
colorDepth: Integer; cType: CodecType;
codec: CompressorComponent;
spatialQuality: CodecQ;
temporalQuality: CodecQ;
keyFrameRate: LongInt; clut: CTabHandle;
flags: CodecFlags;
desc: ImageDescriptionHandle): OSErr;

FUNCTION CompressSequenceFrame
(seqID: ImageSequence;
src: PixMapHandle; srcRect: Rect;
flags: CodecFlags; data: Ptr;
VAR dataSize: LongInt; VAR similarity: Char;
asyncCompletionProc: CompletionProcRecordPtr):
OSErr;

FUNCTION DecompressSequenceBegin
(VAR seqID: ImageSequence;
desc: ImageDescriptionHandle; port: CGrafPtr;
gdh: GDHandle; srcRect: Rect;
matrix: MatrixRecordPtr; mode: Integer;
mask: RgnHandle; flags: CodecFlags;
accuracy: CodecQ;
codec: DecompressorComponent): OSErr;

FUNCTION DecompressSequenceFrame
(seqID: ImageSequence; data: Ptr;
inFlags: CodecFlags; VAR outFlags: CodecFlags;
asyncCompletionProc: CompletionProcRecordPtr):
OSErr;

FUNCTION CDSequenceBusy (seqID: ImageSequence): OSErr;

FUNCTION CDSequenceEnd (seqID: ImageSequence): OSErr;

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-179

Changing Sequence-Compression Parameters

FUNCTION SetCSequenceQuality
(seqID: ImageSequence; spatialQuality: CodecQ;
temporalQuality: CodecQ): OSErr;

FUNCTION SetCSequenceKeyFrameRate
(seqID: ImageSequence;
keyframerate: LongInt): OSErr;

FUNCTION GetCSequenceKeyFrameRate
(seqID: ImageSequence;
VAR keyframerate: LongInt): OSErr;

FUNCTION GetCSequenceKeyFrameRate
(seqID: ImageSequence;
VAR keyframerate: LongInt): OSErr;

FUNCTION SetCSequenceFrameNumber
(seqID: ImageSequence;
frameNumber: LongInt): OSErr;

FUNCTION GetCSequenceFrameNumber
(seqID: ImageSequence;
VAR frameNumber: LongInt): OSErr;

FUNCTION SetCSequencePrev (seqID: ImageSequence; prev: PixMapHandle;
prevRect: Rect): OSErr;

FUNCTION SetCSequenceFlushProc
(seqID: ImageSequence;
flushProc: FlushProcRecordPtr;
bufferSize: LongInt): OSErr;

FUNCTION GetCSequencePrevBuffer
(seqID: ImageSequence;
VAR gworld: GWorldPtr): OSErr;

Constraining Compressed Data

FUNCTION SetCSequenceDataRateParams
(seqID: ImageSequence;
params: DataRateParamsPtr): OSErr;

FUNCTION GetCSequenceDataRateParams
(seqID: ImageSequence;
params: DataRateParamsPtr): OSErr;

Changing Sequence-Decompression Parameters

FUNCTION SetDSequenceTransferMode
(seqID: ImageSequence; mode: Integer;
opColor: RGBColor): OSErr;

C H A P T E R 3

Image Compression Manager

3-180 Summary of the Image Compression Manager

FUNCTION SetDSequenceSrcRect
(seqID: ImageSequence; srcRect: Rect): OSErr;

FUNCTION SetDSequenceMatrix
(seqID: ImageSequence;
matrix: MatrixRecordPtr): OSErr;

FUNCTION SetDSequenceMask (seqID: ImageSequence; mask: RgnHandle): OSErr;

FUNCTION SetDSequenceMatte (seqID: ImageSequence; matte: PixMapHandle;
matteRect: Rect): OSErr;

FUNCTION SetDSequenceAccuracy
(seqID: ImageSequence;
accuracy: CodecQ): OSErr;

FUNCTION SetDSequenceDataProc
(seqID: ImageSequence;
dataProc: DataProcRecordPtr;
bufferSize: LongInt): OSErr;

FUNCTION GetDSequenceImageBuffer
(seqID: ImageSequence;
VAR gworld: GWorldPtr): OSErr;

FUNCTION GetDSequenceScreenBuffer
(seqID: ImageSequence;
VAR gworld: GWorldPtr): OSErr;

Working With the StdPix Routine

FUNCTION StdPix (src: PixMapPtr; srcRect: Rect;
matrix: MatrixRecordPtr; mode: Integer;
mask: RgnHandle; matte: PixMapPtr;
matteRect: Rect; flags: Integer): OSErr

FUNCTION SetCompressedPixMapInfo
(pix: PixMapPtr; desc: ImageDescriptionHandle;
data: Ptr; bufferSize: LongInt;
dataProc: DataProcRecordPtr;
progressProc: ProgressProcRecordPtr): OSErr;

FUNCTION GetCompressedPixMapInfo
(pix: PixMapPtr;
VAR desc: ImageDescriptionHandle;
VAR data: Ptr; VAR bufferSize: LongInt;
VAR dataProc: DataProcRecord;
VAR progressProc: ProgressProcRecord): OSErr;

Aligning Windows

PROCEDURE AlignWindow (wp: WindowPtr; front: Boolean;
alignmentRect: RectPtr;
alignmentProc:AlignmentProcRecordPtr);

C H A P T E R 3

Image Compression Manager

Summary of the Image Compression Manager 3-181

PROCEDURE DragAlignedWindow
(wp: WindowPtr; startPt: Point;
VAR boundsRect: Rect; VAR alignmentRect: Rect;
alignmentProc:AlignmentProcRecordPtr);

FUNCTION DragAlignedGrayRgn
(theRgn: RgnHandle; startPt: Point;
VAR boundsRect: Rect; VAR slopRect: Rect;
axis: Integer; actionProc: ProcPtr;
VAR alignmentRect: Rect;
alignmentProc:AlignmentProcRecordPtr): LongInt;

PROCEDURE AlignScreenRect (VAR rp: Rect;
alignmentProc:AlignmentProcRecordPtr);

Working With Graphics Devices and Graphics Worlds

FUNCTION GetBestDeviceRect (VAR gdh: GDHandle; VAR rp: Rect): OSErr;

FUNCTION NewImageGWorld (VAR gworld: GWorldPtr;
idh: ImageDescriptionHandle;
flags :GWorldFlags): OSErr;

Application-Defined Routines

Data-Loading Functions

FUNCTION MyDataLoadingProc (VAR dataP: Ptr; bytesNeeded: LongInt;
refcon: LongInt): OSErr;

Data-Unloading Functions

FUNCTION MyDataUnloadingProc
(data: Ptr; bytesAdded: LongInt;
refcon: LongInt): OSErr;

Progress Functions

FUNCTION MyProgressProc (message: Integer; completeness: Fixed;
refcon: LongInt): OSErr;

Completion Functions

FUNCTION MyCompletionProc (result: OSErr; flag: Integer;
refcon: LongInt): OSErr;

Alignment Routines

PROCEDURE MyAlignmentProc (rp: RectPtr, refcon: LongInt);

C H A P T E R 3

Image Compression Manager

3-182 Summary of the Image Compression Manager

Result Codes
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecErr –8960 General error condition
noCodecErr –8961 Image Compression Manager could not find the

specified compressor
codecUnimpErr –8962 Feature not implemented by this compressor
codecSizeErr –8963 Invalid buffer size specified
codecScreenBufErr –8964 Could not allocate the screen buffer
codecImageBufErr –8965 Could not allocate the image buffer
codecSpoolErr –8966 Error loading or unloading data
codecAbortErr –8967 Operation aborted by the progress function
codecWouldOffScreenErr –8968 Compressor would use screen buffer if it could
codecBadDataErr –8969 Compressed data contains inconsistencies
codecDataVersErr –8970 Compressor does not support the compression version

used to compress the image
codecExtensionNotFoundErr –8971 Requested extension is not in the image description
codecConditionErr –8972 Component cannot perform requested operation
codecOpenErr –8973 Could not open the compressor or decompressor

Contents 4-1

C H A P T E R 4

Contents

Movie Resource Formats

Introduction to Movie Resources 4-3

Storing Movies in Files 4-4

Atoms 4-5

Atom Types 4-6

The Layout of a QuickTime Atom 4-7

Overview of the Movie Resource Atom 4-8

Movie Atoms 4-10

Movie Header Atoms 4-11

Track Atoms 4-13

Track Header Atoms 4-14

Media Atoms 4-16

Media Header Atoms 4-17

Handler Reference Atoms 4-18

User-Defined Data Atoms 4-19

Clipping Atoms 4-22

Clipping Region Atoms 4-22

Track Matte Atoms 4-23

Compressed Matte Atoms 4-23

Edit Atoms 4-24

Edit List Atoms 4-25

Media Information Atoms 4-26

Video Media Information Atoms 4-26

Video Media Information Header Atoms 4-27

Sound Media Information Atoms 4-28

Sound Media Information Header Atoms 4-29

Data Information Atoms 4-30

Data Reference Atoms 4-32

An Introduction to Samples 4-32

C H A P T E R 4

4-2 Contents

Sample Table Atoms 4-33

Sample Description Atoms 4-35

Time-to-Sample Atoms 4-36

Sync Sample Atoms 4-38

Sample-to-Chunk Atoms 4-39

Sample Size Atoms 4-41

Chunk Offset Atoms 4-42

Shadow Sync Atoms 4-44

Using Media Information Atoms 4-45

Finding a Sample 4-46

Finding a Key Frame 4-46

C H A P T E R 4

Introduction to Movie Resources 4-3

Movie Resource Formats

This chapter describes the format of QuickTime movie resources. Movie resources are

the data structures that provide the medium of exchange for movie data. Movie

resources may be exchanged between applications on a single Macintosh computer or

between applications on several Macintosh and non-Macintosh computers.

IMPORTANT

The information in this chapter is intended for developers who need to
know about the content of movie resources. You need to learn about
movie resources if you want to create movies on other computer
environments and import them to the Macintosh environment, or if you
want to interpret QuickTime movies on other types of computers.
Developers of Macintosh applications do not need to know about the
layout of movie resources—the Movie Toolbox functions handle the
details of movie storage and exchange. ▲

This chapter describes atoms, the basic storage elements that, taken together, make up a

movie resource.

The chapter is divided into the following major sections:

■ “Storing Movies in Files” describes the two ways that QuickTime movies may be
stored in files.

■ “Atoms” describes the format and content of the most basic movie storage element
and the standard atoms that may be found in a movie resource.

■ “Overview of the Movie Resource Atom” provides a look at the movie resource
structure of a QuickTime movie.

■ “Using Media Information Atoms” provides examples of the media information
atoms.

To understand fully the information presented in this chapter, you should be familiar

with the Movie Toolbox (see the chapter “Movie Toolbox” in this book). In particular,

you should read about the characteristics of movie, track, and media structures.

If you are developing a movie application that runs on another type of computer, you do

not have the facilities of the Movie Toolbox available to you. If you want that application

to exchange data with QuickTime applications on the Macintosh computer, you need to

know the format of QuickTime movie resources.

Introduction to Movie Resources

Movie resources define the data interchange format for movies. The Movie Toolbox

allows your application to create, view, edit, and store QuickTime movies. The functions

of the Movie Toolbox shield your program from the details of how a movie is stored in

the Macintosh file system (in the file type 'MooV'). As a result, applications that run on

Macintosh computers do not need to know anything about the internal structures of

movie resources or movie files.

C H A P T E R 4

Movie Resource Formats

4-4 Storing Movies in Files

Storing Movies in Files

In the Macintosh file system, the Movie Toolbox typically uses both the resource

fork and the data fork to store a QuickTime movie. The resource fork contains the movie

resource. The data fork contains the actual movie data (or references to external data).

To facilitate data exchange between Macintosh computers and other computers, the

Movie Toolbox can also understand movie files that store all the information for a movie

in the data fork. These movie files are called single-fork movie files. Single-fork movie

files are a possible way to export QuickTime movies to other systems, such as a

computer using QuickTime for Windows.

Your application can create single-fork movie files from normal movie files by calling the

Movie Toolbox’s FlattenMovieData function (see the chapter “Movie Toolbox” for

more information about this function). Your application can read single-fork movie files

using the standard Movie Toolbox functions—you do not need to perform any special

processing.

Figure 4-1 shows the difference between single-fork and normal movie files. A standard

Macintosh movie file contains information in both the data and the resource forks. A

single-fork movie file contains a data fork.

Figure 4-1 Movie files and single-fork movie files

C H A P T E R 4

Movie Resource Formats

Atoms 4-5

Single-fork movie files store all the information for a movie in the data fork. The data

fork contains two atoms: a movie data atom ('mdat') and a movie resource atom. The

movie’s media data is stored in the movie data atom. Other atoms may follow the movie

data atom. The movie resource atom follows the movie data atom and holds the

description of the movie. There is no resource fork for this kind of movie file. Figure 4-2

shows the layout of a single-fork movie file. The movie data atom contains no other

atoms, whereas the movie atom may contain other atoms.

Figure 4-2 The structure of a single-fork movie file

Atoms

The basic data unit in a QuickTime movie resource is the atom. Each atom contains size

and type information along with its data. The size field indicates the number of bytes

in the atom, including the size and type fields. The type field specifies the type of

data stored in the atom and, by implication, the format of that data.

C H A P T E R 4

Movie Resource Formats

4-6 Atoms

Atom Types
Table 4-1 lists the atom types defined by Apple and their corresponding constants and

atom names.

Table 4-1 Apple-defined atom types

Constant Atom type Atom name

MovieAID 'moov' Movie atom

MovieHeaderAID 'mvhd' Movie header atom

ClipAID 'clip' Clipping atom

RgnClipAID 'crgn' Clipping region atom

MatteAID 'matt' Track matte atom

MatteCompAID 'kmat' Compressed matte atom

TrackAID 'trak' Track atom

UserDataAID 'udta' User-defined data atom

TrackHeaderAID 'tkhd' Track header atom

EditsAID 'edts' Edit atom

EditsListAID 'elst' Edit list atom

MediaAID 'mdia' Media atom

MediaHeaderAID 'mdhd' Media header atom

MediaInfoAID 'minf' Media information atom

VideoMediaInfoHeaderAID 'vmhd' Video media information header atom

SoundMediaInfoHeaderAID 'smhd' Sound media information header atom

DataInfoAID 'dinf' Data information atom

DataRefAID 'dref' Data reference atom

SampleTableAID 'stbl' Sample table atom

STSampleDescAID 'stsd' Sample description atom

STTimeToSampAID 'stts' Time-to-sample atom

STSyncSampleAID 'stss' Sync sample atom

STShadowSyncAID 'stsh' Shadow sync atom

STSampleToChunkAID 'stsc' Sample-to-chunk atom

HandlerAID 'hdlr' Handler reference atom

STSampleSizeAID 'stsz' Sample size atom

STChunkOffsetAID 'stco' Chunk offset atom

C H A P T E R 4

Movie Resource Formats

Atoms 4-7

The Layout of a QuickTime Atom
Figure 4-3 shows the layout of a sample QuickTime atom. Each atom carries its own size

and type information as well as its data. Throughout this chapter, the name of a

container atom (an atom that contains other atoms, including other container atoms) is

printed across a horizontal gray band, and the name of a leaf atom (an atom that

contains no other atoms) is printed across a horizontal drop shadow box.

Leaf atoms contain data, usually in the form of tables.

Figure 4-3 A sample QuickTime atom

C H A P T E R 4

Movie Resource Formats

4-8 Overview of the Movie Resource Atom

Overview of the Movie Resource Atom

Movie resources consist of movie atoms, which in turn contain track atoms, which in

turn contain media atoms (see the chapter “Movie Toolbox” in this book for information

about the relationships between movies, tracks, and media structures). Leaf atoms

usually contain tables of data. For example, the track atom contains the edit atom, which

contains a leaf atom called the edit list atom. The edit list atom contains an edit list table.

(See Figure 4-15 on page 4-24 for an illustration of the edit atom, and see Figure 4-16 on

page 4-25 for an illustration of the edit list table.)

Figure 4-4 provides a conceptual view of the organization of a QuickTime movie, which,

in this case, has one track containing video information. Each nested box in the

illustration represents an atom that belongs to the atom underlying it. The figure does

not show the data regions of any of the atoms. These areas are described in the pertinent

sections that follow.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-9

Figure 4-4 Sample organization of a one-track video movie

C H A P T E R 4

Movie Resource Formats

4-10 Overview of the Movie Resource Atom

Movie Atoms
You can use movie atoms to specify information that defines a movie. The movie atom

contains the movie header atom, which defines the time scale and duration information

for the entire movie, as well as its display characteristics. In addition, the movie atom

contains each track in the movie.

The movie atom has an atom type of 'moov'. It contains other types of atoms, including

one leaf atom—the movie header ('mvhd')—and several atoms that contain other

atoms: a clipping atom ('clip'), one or more track atoms ('trak'), and user-defined

data ('udta').

Figure 4-5 shows the layout of a movie atom. The movie header atom is the only

required atom in the movie atom.

Figure 4-5 The layout of a movie atom

You define a movie atom by specifying these elements:

■ Size. The number of bytes in this movie atom.

■ Type. The type of this movie atom (the atom type, 'moov').

■ Movie header. The movie header atom associated with this movie. See the next section
for details on the movie header atom.

■ Movie clipping atom. The clipping atom associated with this movie. See “Clipping
Atoms,” which begins on page 4-22, for more information.

■ Track list. One or more track atoms associated with this movie. See “Track Atoms,”
which begins on page 4-13, for details on track atoms and their associated atoms.

■ User data. The user-defined data atom associated with this movie. See “User-Defined
Data Atoms,” which begins on page 4-19, for a discussion of user-defined data.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-11

Movie Header Atoms
You can use the movie header atom to specify the characteristics of an entire movie.

Figure 4-6 shows the layout of the movie header atom. The movie header atom is a leaf

atom, which contains time information for the entire movie, such as time scale and

duration. It also illustrates the data stream specified in the matrix structure field.

Figure 4-6 The layout of a movie header atom

C H A P T E R 4

Movie Resource Formats

4-12 Overview of the Movie Resource Atom

You define a movie header atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this movie header atom.

■ Type. A long integer that specifies the format of the data in this movie header atom
(defined by the atom type, 'mvhd').

■ Version. A 1-byte specification of the version of this movie header atom.

■ Flags. Three bytes of space for future movie header flags.

■ Creation time. A long integer that specifies (in seconds since midnight, January 1,
1904) when the movie atom was created.

■ Modification time. A long integer that specifies (in seconds since midnight, January 1,
1904) when the movie atom was changed.

■ Time scale. A time value that indicates the time scale for this movie—that is, the
number of time units that pass per second in its time coordinate system. A time
coordinate system that measures time in sixtieths of a second, for example, has a time
scale of 60.

■ Duration. A time value that indicates the duration of the movie in time scale units.

■ Preferred rate. A fixed number that specifies the rate at which to play this movie.

■ Preferred volume. A 16-bit fixed number that specifies how loud to play this movie’s
sound.

■ Reserved. Ten bytes reserved for use by Apple. Set to 0.

■ Matrix. The matrix structure associated with this movie. A matrix shows how to map
points from one coordinate space into another coordinate space. See the chapter
“Movie Toolbox” in this book for details on matrix structures.

■ Preview time. The time value in the movie at which the preview begins.

■ Preview duration. The duration of the movie preview in movie time scale units. For
more on time, see the chapter “Movie Toolbox” in this book.

■ Poster time. The time value of the time of the movie poster.

■ Selection time. The time value for the start time of the current selection.

■ Selection duration. The duration of the current selection in movie time scale units.

■ Current time. The time value for current time position within the movie.

■ Next track ID. A long integer that indicates a value to use for the track ID number of
the next track added to this movie.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-13

Track Atoms
Track atoms define a single track of a movie. A movie may consist of one or more tracks.

Each track is independent of the other tracks in the movie and carries its own temporal

and spatial information. Each track atom contains its associated media atom. Figure 4-7

shows the layout of a track atom. The track atom requires the track header atom and the

media atom.

Figure 4-7 The layout of a track atom

The track atom contains a track header atom ('tkhd'), a track clipping atom ('clip'),

a track matte atom ('matt'), an edit atom ('edts'), a media atom ('mdia'), and a

user-defined data atom ('udta'). You define a track atom by specifying these elements:

■ Size. The number of bytes in this track atom.

■ Type. The type of this track atom (the atom type, 'trak').

■ Track header. The track header atom associated with this track. See the next section for
details.

■ Track clipping. The track clipping atom associated with this track. See “Clipping
Atoms,” which begins on page 4-22, for more on clipping atoms.

■ Track matte. The track matte atom associated with this track. See “Track Matte
Atoms,” which begins on page 4-23, for more on track matte atoms.

■ Edits. The edit atom associated with this track. See “Edit Atoms,” which begins on
page 4-24, for details.

C H A P T E R 4

Movie Resource Formats

4-14 Overview of the Movie Resource Atom

■ Media. The media atom associated with this track. See “Media Atoms,” which begins
on page 4-16, for details.

■ User data. The user-defined data atom associated with this track. This field is used for
extension with new data types. See “User-Defined Data Atoms,” which begins on
page 4-19, for details.

Track Header Atoms
The track header atom specifies the characteristics of a single track within a movie. A

track header atom contains a size field that specifies the number of bytes and a type

field that indicates the format of the data (defined by the atom type, 'tkhd'). Figure 4-8

shows the structure of the track header atom.

Figure 4-8 The layout of a track header atom

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-15

The track header atom contains the track characteristics for the track, including

temporal, spatial, and volume information. You define a track header atom by specifying

these elements:

■ Size. A long integer that specifies the number of bytes in this track header atom.

■ Type. A long integer that specifies the type of data in this track header atom (defined
by the atom type, 'tkhd').

■ Version. A 1-byte specification of the version of this track header.

■ Track header flags. Three bytes that are reserved for the track header flags, which
adjust the remaining fields in the track header according to the kind of movie track
you specify with the following enumeration:

enum

{

TrackEnable = 1<<0, /* enabled track */

TrackInMovie = 1<<1, /* track in playback */

TrackInPreview = 1<<2,/* track in preview */

TrackInPoster = 1<<3 /* track in poster */

};

■ Creation time. A long integer that indicates (in seconds since midnight,
January 1, 1904) when the track header was created.

■ Modification time. A long integer that indicates (in seconds since midnight,
January 1, 1904) when the track header was changed.

■ Track ID. A long integer that specifies the value to use for the track ID number.

■ Reserved. A long integer that is reserved for use by Apple. Set the value of this
field to 0.

■ Duration. The duration of this track (in movie time).

■ Reserved. An 8-byte value that is reserved for use by Apple. Set the value of this
field to 0.

■ Layer. The priority of playing this track in a movie. When it plays a movie, the Movie
Toolbox displays the movie’s tracks according to their layer—tracks with lower layer
numbers are displayed in front; tracks with higher layer numbers are displayed in
back.

■ Alternate group. A short integer that specifies a collection of movie tracks that contain
alternate data for one another. QuickTime chooses one track from the group to be
used when the movie is played. The choice may be based on such considerations as
playback quality or language and the capabilities of the computer.

■ Volume. A short integer that indicates how loudly this track’s sound is to be played.

■ Reserved. A short integer that is reserved for use by Apple. Set the value of this
field to 0.

■ Matrix. The matrix structure associated with this track. See Figure 4-6 on page 4-11 for
an illustration of a matrix structure.

C H A P T E R 4

Movie Resource Formats

4-16 Overview of the Movie Resource Atom

■ Track width. A fixed number that specifies the width of this track.

■ Track height. A fixed number that indicates the height of this track.

Media Atoms
Media atoms define the data for a movie track. The media atom contains information

that specifies the component that is to interpret the media data, and it also specifies the

data references. Figure 4-9 shows the layout of a media atom.

Figure 4-9 The layout of a media atom

The media atom has an atom type of 'mdia'. It may contain other atoms, such as a

media header ('mdhd'), a handler reference ('hdlr'), media information ('minf'),

and user-defined data ('udta'). The only required atom in a media atom is the media

header atom.

Note

The handler reference atom lets you know what kind of media this
media atom contains—for example, video or sound. The layout of
the media information atom is specific to the media handler that is to
interpret the media. “Media Information Atoms,” which begins on
page 4-26, discusses how data may be stored in a media, using the video
media format defined by Apple as an example. ◆

You define a media atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this media atom.

■ Type. A long integer that specifies the type of the data in this media atom (defined by
the 'mdia' atom type).

■ Media header. The media header atom, which is described in the next section. It
contains the standard media information.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-17

■ Media handler. The media handler, which is defined by the handler reference atom,
described in “Handler Reference Atoms,” which begins on page 4-18.

■ Media information. The media information atom. For an example of a media
information atom, see “Video Media Information Atoms,” which begins on page 4-26.

■ User data. The user-defined data atom associated with this media. This field is used
for extension with new data types. See “User-Defined Data Atoms,” which begins on
page 4-19, for details.

Media Header Atoms
The media header atom specifies the characteristics of the media that is used to store

data for the movie track defined in its associated track atom. The media header atom

contains the number of bytes in the media header atom, the format of the data in the

media header atom (defined by the 'mdhd' atom type), and the media header.

The media characteristics include temporal information. Figure 4-10 shows the layout of

the media header atom.

Figure 4-10 The layout of a media header atom

You define a media header atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this media header atom.

■ Type. A long integer that specifies the type of data in this media header atom (defined
by the atom type, 'mdhd').

C H A P T E R 4

Movie Resource Formats

4-18 Overview of the Movie Resource Atom

■ Version. One byte that specifies the version of this movie.

■ Flags. Three bytes of space for future media header flags.

■ Creation time. A long integer that specifies (in seconds since midnight,
January 1, 1904) when the media atom was created.

■ Modification time. A long integer that specifies (in seconds since midnight,
January 1, 1904) when the media atom was changed.

■ Time scale. A time value that indicates the time scale for this media—that is, the
number of time units that pass per second in its time coordinate system.

■ Duration. The duration of this media in media time scale units.

■ Language. A short integer that specifies the language code for this media. See Inside
Macintosh: Text for more on language codes.

■ Quality. A short integer that specifies the playback quality (that is, its suitability for
playback in a given environment) for this media. See the chapter “Movie Toolbox” in
this book for details on playback quality.

Handler Reference Atoms
The handler reference atom specifies the component that is to interpret a media’s data.

This component is called a media handler. (See the chapter “Component Manager” in

Inside Macintosh: More Macintosh Toolbox for more information about components.)

Figure 4-11 shows the layout of a handler reference atom.

Figure 4-11 The layout of a handler reference atom

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-19

You define a handler reference atom by specifying these elements:

■ Size. The number of bytes in this handler reference atom.

■ Type. The type of the data (defined by the 'hdlr' atom type) in the handler reference
atom.

■ Flags. A 1-byte specification of the version of this handler information.

■ Version. A 3-byte space for future handler information flags.

■ Component type. A four-character code that identifies the type of the media handler.
All components of a particular type must support a common set of functions.
Examples of component types are 'mhlr' and 'dhlr'.

■ Component subtype. A four-character code that identifies the type of the media
handler. Different types of a component type may support additional features or
provide interfaces that extend beyond the standard functions for a given component
type value. For media handlers, this field defines the type of data—for example,
'vide' or 'soun'.

■ Component manufacturer. A four-character code that identifies the manufacturer of
this media handler. This field allows for further differentiation between individual
components. For example, components made by a specific manufacturer may support
an extended feature set.

■ Component flags. A 32-bit field that provides additional information about a
particular media handler. The most significant 8 bits are reserved for use by the
Component Manager and provide both static and dynamic information
about the component.

■ Component flags mask. A 32-bit field that indicates which flags in the component
mask are relevant to a particular search operation. These flags are used when
searching for a handler component.

■ Component name. A Pascal string that specifies the name of the component—that is,
the original handler used when this movie was created.

User-Defined Data Atoms
Many movie, track, and media atoms contain atoms that store user-defined data. Your

application may store data in these user-defined data atoms.

C H A P T E R 4

Movie Resource Formats

4-20 Overview of the Movie Resource Atom

Figure 4-12 shows the layout of a user-defined data atom.

Figure 4-12 The layout of a user-defined data atom

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-21

You define a user-defined data atom by specifying these elements:

■ Size. The number of bytes in the data element.

■ Type. The type of the data in the data element (defined by the 'udta' atom type).

■ User data list. The movie user data atom contains a user data list that is itself
formatted like a series of atoms. Each data element in the private data portion of the
user-defined data atom contains size and type information along with the data.
Furthermore, the list of atoms is optionally terminated by a 0.

The following user data types are currently defined:

User data items of these types must contain text data only.

'©cpy' Copyright statement

'©day' Date the movie content was created

'©dir' Name of movie’s director

'©ed1' to
'©ed9'

Edit dates and descriptions

'©fmt' Indication of movie format (computer-generated, digitized,
and so on)

'©inf' Information about the movie

'©prd' Name of movie’s producer

'©prf' Names of performers

'©req' Special hardware and software requirements

'©src' Credits for those who provided movie source content

'©wrt' Name of movie’s writer

C H A P T E R 4

Movie Resource Formats

4-22 Overview of the Movie Resource Atom

Clipping Atoms
Clipping atoms specify the clipping regions for movies and for tracks. Figure 4-13 shows

the layout of clipping atoms.

Figure 4-13 The layout of a clipping atom

You define a clipping atom by specifying these elements:

■ Size. The number of bytes in this clipping atom.

■ Type. The type of the data in this clipping atom (defined by the 'clip' atom type).

■ Clipping region atom. Described in the next section.

Clipping Region Atoms

The clipping region atom specifies the clipping data. The layout of the clipping region

atom is shown in Figure 4-13. You define a clipping region atom by specifying these

elements:

■ Size. A long integer that indicates the number of bytes in the clipping region data
atom.

■ Type. A long integer that indicates the type of the clipping region data (defined by the
'crgn' atom type).

The region size, region boundary box, and data fields constitute a QuickDraw region.

See the chapter “QuickDraw” in Inside Macintosh: Imaging for details on QuickDraw

regions.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-23

Track Matte Atoms
Track matte atoms specify the mattes for tracks. (A track matte is a pixel map that

defines the blending of visual track data. See the chapter “Movie Toolbox” in this book

for details.) Figure 4-14 shows the layout of track matte atoms.

Figure 4-14 The layout of a track matte atom

You define a track matte atom by specifying these elements:

■ Size. A long integer that specifies that number of bytes in this track matte atom.

■ Type. A long integer that specifies the type of this track matte atom (defined by the
'matt' atom type).

■ Compressed matte atom. The compressed matte atom, which is described in the next
section.

Compressed Matte Atoms
The compressed matte atom specifies the image description structure associated with a

particular matte atom. The layout of the compressed matte atom is shown in Figure 4-14.

C H A P T E R 4

Movie Resource Formats

4-24 Overview of the Movie Resource Atom

You define a compressed matte atom by specifying these elements:

■ Size. A long integer that indicates the number of bytes in this compressed matte atom.

■ Type. A long integer that indicates the type of the data in this atom (defined by the
'kmat' atom type).

■ Version. A 1-byte specification of the version of this compressed matte atom.

■ Flags. Three bytes of space for future flags associated with this compressed matte
atom.

■ Matte image description. An image description structure of variable length and
associated with this matte data. See the chapter “Image Compression Manager” in
this book for details on the image description structure.

■ Matte data. The compressed matte data, which is of variable length.

Edit Atoms
You can use edit atoms to define the portions of the media that are to be used to build up

a track for a movie. Figure 4-15 shows the layout of an edit atom.

Note

If the edit atom or the edit list atom is missing, you can assume that the
entire media is contained in the track. ◆

Figure 4-15 The layout of an edit atom

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-25

You define an edit atom by specifying these elements:

■ Size. A long integer that indicates the number of bytes in this edit atom.

■ Type. A long integer that indicates the type of the data in this edit atom (defined by
the 'edts' atom type).

■ Edit list. The edit list atom that contains the edit list information, described in the next
section.

Edit List Atoms
You can use the edit list atom, also shown in Figure 4-15, to tell QuickTime how to map

from a time in a movie to a time in a media, and ultimately to media data. This

information is in the form of an edit list table, shown in Figure 4-16.

You define an edit list atom by specifying the following elements:

■ Size. A long integer that specifies the number of bytes in the edit list atom.

■ Type. A long integer that specifies the type of the edit list data (defined by the 'elst'
atom type).

■ Version. A 1-byte specification of the version of this edit list atom.

■ Flags. Three bytes of space for future flags to be associated with this edit list atom.

■ Number of entries. The number of entries in the edit list atom.

■ Edit list table. Each entry in the edit list table (shown in Figure 4-16) describes a single
edit and contains a track duration field, a media time field, and a media rate field.

Figure 4-16 The layout of an edit list table

You create an edit list table by specifying these elements:

■ Track duration. The duration of this edit segment in movie time scale units.

■ Media time. The starting time within the media of this edit segment (in media time
scale units). If –1, it is an empty edit.

■ Media rate. A fixed number that specifies the relative rate at which to play the media
for this edit segment.

C H A P T E R 4

Movie Resource Formats

4-26 Overview of the Movie Resource Atom

Media Information Atoms
Media information atoms (defined by the 'minf' data type) store handler-specific

information for the media data that constitutes a track. The media handler uses

this information to map from media time to media data. These atoms are formatted

differently based on the type of media data stored in the atom. The format and content of

media information atoms are dictated by the media handler that is responsible

for interpreting the media data stream. Another media handler would not know how to

interpret this information. This section describes examples of atoms that store media

information for the video (defined by the 'vmhd' atom type) and sound (defined by the

'smhd' atom type) portions of QuickTime movies.

Note

“Using Media Information Atoms,” which begins on page 4-45,
discusses how the video media handler locates samples in a
video media. ◆

Video Media Information Atoms

Video media information atoms are the highest-level atoms in video media. A number of

other atoms define specific characteristics of the video media data. Figure 4-17 shows the

layout of a video media information atom.

Figure 4-17 The layout of a media information atom for video

You define a video media information atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this video media information
atom.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-27

■ Type. A long integer that specifies the type of the data (defined by the 'minf'
atom type) in this media information header.

■ Video media information. The video media information header atom (a required
atom), which is described in the next section.

■ Handler reference. The handler reference atom (a required atom), which contains
information specifying the data handler component that provides access to the media
data. See the chapter “Component Manager” in Inside Macintosh: More Macintosh
Toolbox for more information about components. Figure 4-11 on page 4-18 shows the
layout of a handler reference atom. The handler reference uses the data information
atom, described by the datainfo field in the video media information structure.

■ Data information. The data information atom, described in “Data Information Atoms”
on page 4-30.

■ Sample table. The sample table atom, described in “Sample Table Atoms” on
page 4-33.

Video Media Information Header Atoms

Video media information atoms are the highest-level atoms in video media. A number of

other atoms define specific characteristics of the video media data. Figure 4-18 shows the

structure of a video media information header atom.

Figure 4-18 The layout of a media information header atom for video

You define a video media information header atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in the media information in this
video media information header.

C H A P T E R 4

Movie Resource Formats

4-28 Overview of the Movie Resource Atom

■ Type. A long integer that specifies the type of the data (defined by the 'vmhd'
atom type) in this video media information header.

■ Version. A 1-byte specification of the version of this video media information header.

■ Flags. A 3-byte space for video media information flags. The
videoFlagNoLeanAhead flag is available, which instructs QuickTime that the video
was not created skewed and that it should use a technique having greater accuracy.

■ Graphics mode. A short integer that specifies the transfer mode, which is a
specification of which Boolean operation QuickDraw should perform when drawing
or transferring an image from one location to another.

■ Opcolor. Three 16-bit values that specify the red, green, and blue colors for the
transfer mode operation indicated in the graphics mode field.

For comprehensive details on QuickDraw’s transfer modes and opcolors and their

values, see Inside Macintosh: Imaging.

Sound Media Information Atoms

Sound media information atoms are the highest-level atoms in sound media. These

atoms define specific characteristics of the sound media data. Figure 4-19 shows the

layout of a sound media information atom.

Figure 4-19 The layout of a media information atom for sound

In addition to the size and type information, the sound media information atom contains

the sound media information header atom, which is described in the next section,

and the handler reference atom, the data information atom, and the sample table atom.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-29

You define a sound media information atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this sound media
information atom.

■ Type. A long integer that specifies the type of the data in this sound media
information header (defined by the 'minf' data type).

■ Sound media information. The sound media information header atom (a required
atom), which is described in the next section.

■ Handler reference. The handler reference atom (a required atom), which contains
information specifying the data handler component that provides access to the media
data. See the chapter “Component Manager” in Inside Macintosh: More Macintosh
Toolbox for more information about components. Figure 4-11 on page 4-18 shows the
layout of a handler reference atom. The handler reference atom uses the data
information atom, described by the dataInfo field in this sound media information
structure.

■ Data information. The data information atom, described in “Data Information
Atoms,” which begins on page 4-30.

■ Sample table. The sample table atom, described in “Sample Table Atoms,” which
begins on page 4-33.

Sound Media Information Header Atoms

The sound media information header atom (shown in Figure 4-20) stores the sound

media information.

Figure 4-20 The layout of a sound media information header atom

C H A P T E R 4

Movie Resource Formats

4-30 Overview of the Movie Resource Atom

You define a sound media information header atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this sound media
information header atom.

■ Type. A long integer that specifies the type of the data in this sound media
information header atom (defined by the 'smhd' data type).

■ Version. A 1-byte specification of the version of this sound media information header.

■ Flags. Three bytes of space for future associated flags.

■ Balance. A short integer that specifies the sound balance of this sound media. (Sound
balance is the setting that controls the mix of sound between the two speakers of a
computer.) This field is normally set to 0. See the chapter “Movie Toolbox” in this
book for more on sound balance.

■ Reserved. Reserved for use by Apple. Set this field to 0.

Data Information Atoms
The handler reference atom (described in “Handler Reference Atoms,” which begins on

page 4-18) contains information specifying the data handler component that provides

access to the media data. See the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox for more about components. The handler uses the data

information atom, which you can use to specify where the media data is stored. Figure

4-21 shows the layout of the data information atom.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-31

Figure 4-21 The layout of a data information atom

You define a data information atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this data information atom.

■ Type. A long integer that specifies the format (defined by the 'dinf' atom type) of
the data in this data information atom.

C H A P T E R 4

Movie Resource Formats

4-32 Overview of the Movie Resource Atom

■ Data references. The data reference atom, described in the next section, contains the
data references.

Data Reference Atoms
Figure 4-21 also shows the data reference atom, which encompasses the data references.

You define a data reference atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this data reference container
atom.

■ Type. A long integer that specifies the type of the data in the data reference atom
(defined by the 'dref' data type).

■ Version. A 1-byte specification of the version of this data reference atom.

■ Flags. Three bytes that contain space for future flags.

■ Number of entries. A count of entries in the data references field.

■ Data references. Data references are formatted like atoms, as follows:

■ Size. A long integer that specifies the number of bytes in these data references.

■ Type. A long integer that specifies the type of the data (currently defined by the
'alis' data type on the Macintosh computer) in the data references.

■ Version. A 1-byte specification of the version of these data references.

■ Flags. Three bytes that contain the attributes of the data in these data references.
One enumerated constant is available. The dataRefSelfReference attribute
denotes that the data comes from the same location as the movie resource. If the
movie resource came from a resource fork, the movie data is in the data fork of the
same file. In the case of a single-fork file, the movie data is also in the data fork of
the file.

■ Data references. The data reference information. (For the current data handlers, this
is an alias).

An Introduction to Samples
One way to describe a sample (that is, a single element of a sequence of time-ordered

data) is to include it in a sample table atom. Samples are stored sequentially in the

media, and they may have varying durations. This approach enforces an ordering of the

samples—it does not mean the sample data must be stored sequentially with respect to

movie time in the actual data stream. Figure 4-22 shows the way that samples are stored

in a series of chunks in a media. Chunks are a collection of data samples in a media that

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-33

allow optimized data access. A chunk may contain one or more samples. Chunks in a

media may have different sizes, and the samples within a chunk may have different sizes.

Figure 4-22 Samples in a media

Sample Table Atoms
The sample table atom contains information for converting from media time to sample

number to sample location. This atom also indicates how to interpret the sample (for

example, whether to decompress the video sample and, if so, how). This section

describes the format and content of the sample table atom.

The sample table has an atom type of 'stbl'. It contains the sample description atom,

the time-to-sample atom, the sample-to-chunk atom, the sync sample atom, the sample

size atom, the chunk offset atom, and the shadow sync atom.

C H A P T E R 4

Movie Resource Formats

4-34 Overview of the Movie Resource Atom

Figure 4-23 shows the layout of the sample table atom.

Figure 4-23 The layout of a sample table atom

You define a sample table atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in the sample table atom.

■ Type. A long integer that specifies the type of the data (defined by the 'stbl'
atom type) in the sample table atom.

■ Sample description. The sample description atom, described in the next section.

■ Time-to-sample. The time-to-sample atom, described in “Time-to-Sample Atoms,”
which begins on page 4-36.

■ Sync sample. The sync sample atom, described in “Sync Sample Atoms,” which
begins on page 4-38.

■ Sample-to-chunk. The sample-to-chunk atom, described in “Sample-to-Chunk
Atoms,” which begins on page 4-39.

■ Sample size. The sample size atom, described in “Sample Size Atoms,” which begins
on page 4-41.

■ Chunk offset. A chunk offset atom, described in “Chunk Offset Atoms,” which begins
on page 4-42.

■ Shadow sync. The shadow sync atom, described in “Shadow Sync Atoms,” which
begins on page 4-44.

The following sections discuss each of the atoms that may be contained in a sample table.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-35

Sample Description Atoms

The sample description atom stores information for the decoding of samples in the

media. In the case of video media, the sample descriptions are image description

structures (see the chapter “Image Compression Manager” earlier in this book for more

information about image descriptions). Figure 4-24 shows the layout of the sample

description atom.

The sample description atom has an atom type of 'stsd'. The sample description atom

contains a table of sample descriptions, each of which contains a single sample

description. A media may have one or more sample descriptions, depending upon the

number of different compression types used in the media. The sample-to-chunk atom

identifies the sample description for each sample in the media by specifying the index

into this table for the appropriate description (see “Sample-to-Chunk Atoms,” which

begins on page 4-39).

Figure 4-24 The layout of a sample description atom

You define a sample description atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this sample description atom.

■ Type. A long integer that specifies the type (defined by the atom type 'stsd') of the
data in this sample description atom.

■ Version. A 1-byte specification of the version number of this sample description atom.

■ Flags. Three bytes of space for future flags associated with it.

■ Number of entries. A long integer that specifies how many entries in the sample
description table are listed in the sample description table field of this atom.

■ Sample description table. The sample description table, which contains a list of
sample descriptions.

C H A P T E R 4

Movie Resource Formats

4-36 Overview of the Movie Resource Atom

Time-to-Sample Atoms

Time-to-sample atoms store duration information for the samples in a media, providing

a mapping from a time in a media to the corresponding data sample. The time-to-sample

atom has an atom type of 'stts'.

You can determine the appropriate sample for any given time in a media by examining

the time-to-sample atom (shown in Figure 4-25), which contains the time-to-sample atom

table.

Figure 4-25 The layout of a time-to-sample atom

You define a time-to-sample atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this time-to-sample atom.

■ Type. A long integer that specifies the type (defined by the 'stts' atom type) of the
data contained in the time-to-sample atom.

■ Version. A 1-byte specification of the version number of this time-to-sample atom.

■ Flags. Three bytes of space for any future flags associated with this time-to-sample
atom.

■ Number of entries. A long integer that specifies the number of entries in the
time-to-sample table.

■ Time-to-sample table. The time-to-sample atom contains a table that defines the
duration of each sample in the media. Each table entry contains a count field and
a duration field. The structure of the time-to-sample table is shown in Figure 4-26.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-37

Figure 4-26 The layout of a time-to-sample table

You define a time-to-sample table by specifying these entries:

■ Sample count. A long integer that specifies the number of consecutive samples that
have the same duration.

■ Sample duration. A long integer that specifies the duration of each sample.

Entries in the table collect samples according to their order in the media and their

duration. If consecutive samples have the same duration, a single table entry may be

used to define more than one sample. In these cases, the count field indicates the number

of consecutive samples that have the same duration. For example, if a video media has a

constant frame rate, this table would have one entry.

Figure 4-27 shows an example of a time-to-sample table that is based on the data stream

shown in Figure 4-22 on page 4-33. Figure 4-22 shows a total of nine samples that

correspond in count and duration to the entries of the table shown in Figure 4-27. Even

though samples 4, 5, and 6 are in the same chunk, sample 4 has a duration of 3, and

samples 5 and 6 have a duration of 2.

Figure 4-27 An example of a time-to-sample table

C H A P T E R 4

Movie Resource Formats

4-38 Overview of the Movie Resource Atom

Sync Sample Atoms

The sync sample atom identifies the key frames in the media. In a media that

contains compressed data, key frames define starting points for portions of a temporally

compressed sequence (see the chapter “Image Compression Manager” in this book for

more information about key frames and temporal compression in video data). The

key frame is self-contained—that is, it is independent of preceding frames. Subsequent

frames may depend on the key frame.

Sync sample atoms have an atom type of 'stss'. The sync sample atom contains a table

of sample numbers. Each entry in the table identifies a sample that is a key frame for the

media. Figure 4-28 shows the layout of a sync sample atom.

If no sync sample atom exists, then all the samples are key frames.

Figure 4-28 The layout of a sync sample atom

You define a sync sample atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this sync sample atom.

■ Type. A long integer that specifies the type of the data of this sync sample atom
(defined by the 'stss' atom type).

■ Version. A 1-byte specification of the version of this sync sample atom.

■ Flags. Three bytes of space for future flags.

■ Number of entries. A long integer that specifies how many sample numbers are in the
sync sample table contained in the sync sample table field.

■ Sync sample table. The sync sample table (shown in Figure 4-29) consists of an array
of sample numbers. Each entry in the table identifies a sample that is a key frame for
the media.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-39

Figure 4-29 The layout of a sync sample table

Sample-to-Chunk Atoms

As samples are added to a media, they are collected into chunks that allow optimized

data access. A chunk may contain one or more samples. Chunks in a media may have

different sizes, and the samples within a chunk may have different sizes. The

sample-to-chunk atom stores chunk information for the samples in a media. Figure 4-30

shows the layout of the sample-to-chunk atom. By examining the sample-to-chunk atom,

you can determine the chunk that contains a specific sample.

Figure 4-30 The layout of a sample-to-chunk atom

You define a sample-to-chunk atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this sample-to-chunk atom.

■ Type. A long integer that specifies the type of the data in this sample-to-chunk atom
(defined by the 'stsc' atom type).

■ Version. A 1-byte specification of the version of this sample-to-chunk atom.

■ Flags. Three bytes of space for future flags associated with this sample-to-chunk atom.

C H A P T E R 4

Movie Resource Formats

4-40 Overview of the Movie Resource Atom

■ Number of entries. The number of entries in the sample-to-chunk table.

■ Sample-to-chunk table. Figure 4-31 shows the structure of a sample-to-chunk table.
Each sample-to-chunk atom contains such a table, which identifies the chunk for each
sample in a media. Each entry in the table contains a first chunk field, a samples per
chunk field, and a sample description ID field. From this information, you can
ascertain where samples reside in the media data.

Figure 4-31 The layout of a sample-to-chunk table

You define a sample-to-chunk table by specifying these elements:

■ First chunk. The first chunk number using this table entry.

■ Samples per chunk. The number of samples in each chunk.

■ Sample description ID. The identification number associated with the sample
description containing the sample. For details on sample description atoms, see
“Sample Description Atoms,” which begins on page 4-35.

Figure 4-32 shows an example of a sample-to-chunk table that is based on the data

stream shown in Figure 4-22.

Figure 4-32 An example of a sample-to-chunk table

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-41

Each table entry corresponds to a set of consecutive chunks, each of which contains the

same number of samples. Furthermore, each of the samples in these chunks must use

the same sample description (see “Sample Description Atoms,” which begins on

page 4-35). Whenever the number of samples per chunk or the sample description

changes, you must create a new table entry. If all the chunks have the same number of

samples per chunk and use the same sample description, this table has one entry.

Sample Size Atoms

You use sample size atoms to identify the size of each sample in the media.

Sample size atoms have an atom type of 'stsz'. The sample size atom (shown in

Figure 4-33) contains sample size information.

Figure 4-33 The layout of a sample size atom

You define a sample size atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this sample size atom.

■ Type. A long integer that specifies the type (of atom type 'stsz') of the data in this
sample size atom.

■ Version. A 1-byte specification of the version number of this sample size atom.

■ Flags. Three bytes of space for future flags associated with the data in this sample size
atom.

■ Sample size. The number of bytes in the samples in the sample size table field. If all
the samples are the same size, the sample size field of this atom indicates the size of
all the samples. If this field is set to 0, then the samples have different sizes, and those
sizes are stored in the sample size table.

C H A P T E R 4

Movie Resource Formats

4-42 Overview of the Movie Resource Atom

■ Number of entries. The number of entries in the sample size table contained in the
sample size table field of this atom.

■ Sample size table. The sample size table, which contains the sample size information.
A sample size table contains an entry for every sample. Each table entry contains a
size field. There is one table entry for each sample in the media. The table is indexed
by sample number—the first entry corresponds to the first sample, the second entry is
for the second sample, and so on. The size field contains the size, in bytes, of the
sample in question.

Figure 4-34 shows the sample size table for the data stream represented in Figure 4-22 on

page 4-33.

Figure 4-34 An example of a sample size table

Chunk Offset Atoms

Chunk offset atoms identify the location of each chunk of data in the media’s data

stream.

Chunk offset atoms have an atom type of 'stco'. The chunk offset atom (shown in

Figure 4-35) contains a table of offset information.

C H A P T E R 4

Movie Resource Formats

Overview of the Movie Resource Atom 4-43

Figure 4-35 The layout of a chunk offset atom

You define a chunk offset atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this chunk offset atom.

■ Type. A long integer that specifies the type of the data in this chunk offset atom
(defined by the atom type 'stco').

■ Version. A 1-byte specification of the version of this chunk offset atom.

■ Flags. A 3-byte space for future flags associated with this chunk offset atom.

■ Number of entries. A long integer that specifies the number of entries in the chunk
offset table.

■ Chunk offset table. The chunk offset table, which consists of a number of offset fields.
Each entry in the chunk offset table contains an offset field. There is one table entry
for each chunk in the media. The table is indexed by chunk number—the first table
entry corresponds to the first chunk, the second table entry is for the second chunk,
and so on. The offset field contains the byte offset from the beginning of the data
stream to the chunk.

C H A P T E R 4

Movie Resource Formats

4-44 Overview of the Movie Resource Atom

Figure 4-36 shows an example of the chunk offset table for the data stream represented

by Figure 4-22 on page 4-33.

Figure 4-36 An example of a chunk offset table

Shadow Sync Atoms

Shadow sync atoms contain self-contained samples that are alternates for existing frame

difference samples. Shadow sync atoms are used to optimize random access operations

on a movie. Scrubbing is an example of such a random access operation. These atoms are

used to enhance playback performance. See the chapter “Movie Toolbox” in this book for

details on the SetMediaShadowSync and GetMediaShadowSync functions, which

allow you to create an association between a frame difference sample and a sync sample.

Figure 4-37 shows the layout of a shadow sync atom. Shadow sync atoms have an atom

type of 'stsh'. Each shadow sync atom contains a table with a frame difference

number and a sync sample number.

Figure 4-37 The layout of a shadow sync atom

C H A P T E R 4

Movie Resource Formats

Using Media Information Atoms 4-45

You define a shadow sync atom by specifying these elements:

■ Size. A long integer that specifies the number of bytes in this shadow sync atom.

■ Type. A long integer that specifies the type (defined by the atom type 'stsh') of the
data in this shadow sync atom.

■ Version. A 1-byte specification of the version number of this shadow sync atom.

■ Flags. Three bytes of space for future flags.

■ Number of entries. A long integer that specifies how many entries in the shadow sync
table are listed in the shadow sync table field of this atom.

■ Shadow sync table. The shadow sync table, which contains the shadow sync
information. The shadow sync table is shown in Figure 4-38.

Figure 4-38 The layout of a shadow sync table

A shadow sync table contains a frame difference sample number and a sync sample

number.

Using Media Information Atoms

This section presents examples using the atoms just described. These examples are

intended to help you understand the relationships between these atoms. The first

example, “Finding a Sample,” describes the steps that the video media handler uses to

find the sample that contains the media data for a particular time in a media. The second

example, “Finding a Key Frame,” describes the steps that the video media handler uses

to find an appropriate key frame for a specific time in a movie.

C H A P T E R 4

Movie Resource Formats

4-46 Using Media Information Atoms

Finding a Sample
When it displays a movie or track, QuickTime tells the appropriate media handler to

access the media data for a particular time. The media handler must correctly interpret

the data stream to retrieve the requested data. In the case of video media, the media

handler traverses several atoms to find the location and size of a sample for a given

media time. The media handler does the following:

1. Determines the time in the media time coordinate system.

2. Examines the time-to-sample atom to determine the sample number that contains the
data for the specified time.

3. Scans the sample-to-chunk atom to discover which chunk contains the sample in
question.

4. Extracts the offset to the chunk from the chunk offset atom.

5. Finds the offset within the chunk by using the sample size atom.

Finding a Key Frame
Finding a key frame for a specified time in a movie is slightly more complicated

than finding a sample for a specified time. The media handler must use the sync sample

atom and the time-to-sample atom together in order to find a key frame. The media

handler does the following:

1. Examines the time-to-sample atom to determine the sample number that contains the
data for the specified time.

2. Scans the sync sample atom to find the key frame that precedes the sample number
chosen in step 1.

3. Scans the sample-to-chunk atom to discover which chunk contains the key frame.

4. Extracts the offset to the chunk from the chunk offset atom.

5. Finds the offset within the chunk by using the sample size atom.

This chapter has described the format of QuickTime movie resources for those

developers who need to know about the content of movie resources. The knowledge you

have gained about movie resources should help you in the creation of movies on other

computers and in the process of importing them to the Macintosh environment, or in the

interpretation of QuickTime movies on other types of computers.

GL-1

action One of many integer constants used by
QuickTime movie controller components in the
MCDoAction function. Applications that include
action filters may receive any of these actions.

active movie segment A portion of a
QuickTime movie that is to be used for playback.
By default, the active segment is set to the entire
movie. You can change the active segment of
a movie by using the Movie Toolbox.

active source rectangle The portion of the
maximum source rectangle that contains active
video that can be digitized by a video digitizer
component.

aliasing The result of sampling a signal at less
than twice its natural frequency. Aliasing causes
data to be lost in the conversion that occurs when
resampling an existing signal at more than twice
its natural frequency.

alpha channel The portion of each display
pixel that represents the blending of video and
graphical image data for a video digitizer
component.

alternate group A collection of movie tracks
that contain alternate data for one another. The
Movie Toolbox chooses one track from the group
to be used when the movie is played. The choice
may be based on such considerations as quality
or language.

anti-aliasing The process of sampling a signal
at more than twice its natural frequency to ensure
that aliasing artifacts do not occur.

area of interest The portion of a test image
that is to be displayed in the standard
image-compression dialog box.

atom The basic unit of data in a movie resource.
There are a number of different atom types,
including movie atoms, track atoms, and media
atoms. There are two varieties of atoms:
container atoms, which contain other atoms, and
leaf atoms, which do not contain any other atoms.

attached controller A movie controller with
an attached movie.

automatic key frame A key frame that is
inserted automatically by the Image
Compression Manager when it detects a scene
change. When performing temporal
compression, the Image Compression Manager
looks for frames that have changed more than 90
percent since the previous frame. If such a
change occurs, the Image Compression Manager
assumes a scene change and inserts a key frame.
A key frame allows fast random access and
reverse play in addition to efficient compression
and picture quality of the frame.

badge A visual element in a movie’s display
that distinguishes a movie from a static image.
The movie controller component supplied by
Apple supports badges.

band A horizontal strip from an image.
The Image Compression Manager may break an
image into bands if a compressor or
decompressor component cannot handle an
entire image at once.

base media handler component A component
that handles most of the duties that must be
performed by all media handlers. See also
derived media handler component.

black level The degree of blackness in an
image. This is a common setting on a video
digitizer. The highest setting will produce an
all-black image whereas the lowest setting will
yield very little, if any, black even with black
objects in the scene. Black level is an important
digitization setting since it can be adjusted so
that there is little or no noise in an image.

blend matte A pixel map that defines the
blending of video and digital data for a video
digitizer component. The value of each pixel in
the pixel map governs the relative intensity of the
video data for the corresponding pixel in the
result image.

Glossary

G L O S S A R Y

GL-2

callback event A scheduled invocation of a
Movie Toolbox callback function. Applications
establish the criteria that determine when the
callback function is to be invoked. When those
criteria are met, the Movie Toolbox invokes the
callback function.

callback function An application-defined
function that is invoked at a specified time or
based on specified criteria. These callback
functions are data-loading functions,
data-unloading functions, completion functions,
and progress functions. See also callback event.

chunk In the movie resource formats, a
collection of sample data in a media. Chunks
allow optimized data access. A chunk may
contain one or more samples. Chunks in a media
may have different sizes and the samples within
a chunk may have different sizes. In the Sound
Manager, a chunk may refer to a collection of
sampled sound and definitions of the
characteristics of sampled sound and other
relevant details about the sound.

clipped movie boundary region The region
that is clipped by the Movie Toolbox. This region
combines the union of all track movie boundary
regions for a movie, which is the movie’s movie
boundary region, with the movie’s movie
clipping region, which defines the portion of the
movie boundary region that is to be used.

clock component A component that supplies
basic time information to its clients. Clock
components have a component type value of
'clok'.

color ramps Images in which the shading goes
from light to dark in smooth increments.

component A software entity, managed by the
Component Manager, that provides a defined set
of services to its clients. Examples include clock
components, movie controller components, and
image compressor components.

component instance A channel of
communication between a component and its
client.

component subtype An element in the
classification hierarchy used by the Component
Manager to define the services provided by a
component. Within a component type, the

component subtype provides additional
information about the component. For example,
image compressor components all have the same
component type value; the component subtype
value indicates the compression algorithm
implemented by the component.

component type An element in the
classification hierarchy used by the Component
Manager to define the services provided by a
component. The component type value indicates
the type of services provided by the component.
For example, all image compressor components
have a component type value of 'imco'. See
also component subtype.

compressor component A general term used to
refer to both image compressor components and
image decompressor components.

connection A channel of communication
between a component and its client. A
component instance is used to identify the
connection.

container atom A QuickTime atom that
contains other atoms, possibly including other
container atoms. Examples of container atoms are
track atoms and edit atoms. Compare leaf atom.

controller boundary rectangle The rectangle
that completely encloses a movie controller. If the
controller is attached to its movie, the rectangle
also encloses the movie image.

controller boundary region The region
occupied by a movie controller. If the controller is
attached to its movie, the region also includes the
movie image.

controller clipping region The clipping region
of a movie controller. Only the portion of the
controller and its movie that lies within the
clipping region is visible to the user.

controller window region The portion of a
movie controller and its movie that is visible to
the user.

cover function An application-defined function
that is called by the Movie Toolbox whenever a
movie covers a portion of the screen or reveals a
portion of the screen that was previously hidden
by the movie.

G L O S S A R Y

GL-3

current error One of two error values
maintained by the Movie Toolbox. The current
error value is updated by every Movie Toolbox
function. The other error value, the sticky error,
is updated only when an application directs the
Movie Toolbox to do so.

current selection A portion of a QuickTime
movie that has been selected for a cut, copy, or
paste operation.

current time The time value that represents the
point of a QuickTime movie that is currently
playing or would be playing if the movie had a
nonzero rate value.

data dependency An aspect of image
compression in which compression ratios are
highly dependent on the image content. Using an
algorithm with a high degree of data
dependency, an image of a crowd at a football
game (which contains a lot of detail) may
produce a very small compression ratio, whereas
an image of a blue sky (which consists mostly of
constant colors and intensities) may produce a
very high compression ratio.

data handler A piece of software that is
responsible for reading and writing a media’s
data. The data handler provides data input and
output services to the media’s media handler.

data reference A reference to a media’s data.

derived media handler component A
component that allows the Movie Toolbox to
access the data in a media. Derived media
handler components isolate the Movie Toolbox
from the details of how or where a particular
media is stored. This not only frees the Movie
Toolbox from reading and writing media data,
but also makes QuickTime extensible to new data
formats and storage devices. These components
are referred to as derived components because
they rely on the services of a common base media
handler component, which is supplied by Apple.
See also base media handler component.

detached controller A movie controller
component that is separate from its associated
movie.

digitizer rectangle The portion of the active
source rectangle that you want to capture and
convert with a video digitizer component.

display coordinate system The QuickDraw
graphics world, which can be used to display
QuickTime movies, as opposed to the movie’s
time coordinate system, which defines the
basic time unit for each of the movie’s tracks.

dithering A technique used to improve picture
quality when you are attempting to display an
image that exists at a higher bit-depth
representation on a lower bit-depth device. For
example, you might want to dither a 24 bits per
pixel image for display on an 8-bit screen.

duration A time interval. Durations are time
values that are interpreted as spans of time,
rather than as points in time.

edit state Information defining the current state
of a movie or track with respect to an edit
session. The Movie Toolbox uses edit states to
support its undo facilities.

fixed point A point that uses fixed-point
numbers to represent its coordinates. The Movie
Toolbox uses fixed points to provide greater
display precision for graphical and image data.

fixed rectangle A rectangle that uses fixed
points to represent its vertices. The Movie
Toolbox uses fixed rectangles to provide greater
display precision.

flattening The process of copying all of the
original data referred to by reference in
QuickTime tracks into a QuickTime movie file.
This can also be called resolving references.
Flattening is used to bring in all of the data that
may be referred to from multiple files after
QuickTime editing is complete. It makes
a QuickTime movie stand-alone—that is, it can be
played on any system without requiring any
additional QuickTime movie files or tracks, even
if the original file referenced hundreds of files.
The flattening operation is essential if QuickTime
movies are to be used with CD/ROM discs.

frame A single image in a sequence of images.

frame differencing A form of temporal
compression that involves examining
redundancies between adjacent frames in a
moving image sequence. Frame differencing can
improve compression ratios considerably for a
video sequence.

G L O S S A R Y

GL-4

frame rate The rate at which a movie is
displayed—that is, the number of frames per
second that are actually being displayed. In
QuickTime the frame rate at which a movie was
recorded may be different from the frame rate at
which it is displayed. On very fast machines, the
playback frame rate may be faster than the record
frame rate; on slow machines, the playback frame
rate may be slower than the record frame rate.
Frame rates may be fractional.

genlock A circuit that locks the frequency of an
internal clock to an external timing source. This
term is used to refer to the ability of a video
digitizer to rely on external clocking.

hue value A setting that is similar to the tint
control on a television. Hue value can be
specified in degrees with complementary colors
set 180˚ apart (red is 0˚, green is +120˚, and blue is
–120˚). Video digitizer components support hue
values that range from 0 (–180˚ shift in hue) to
65,535 (+179˚ shift in hue), where 32,767
represents a 0˚ shift in hue. Hue value is set with
the video digitizer component’s VDSetHue
function.

identity matrix A transformation matrix that
specifies no change in the coordinates of the
source image. The resulting image corresponds
exactly to the source image.

image compressor component A component
that provides image-compression services. Image
compressor components have a component type
of 'imco'.

image decompressor component A component
that provides image-decompression services.
Image decompressor components have a
component type value of 'imdc'.

image sequence A series of visual
representations usually represented by video
over time. Image sequences may also be
generated synthetically, such as from an
animation sequence.

interesting time A time value in a movie, track,
or media that meets certain search criteria. You
specify the search criteria in the Movie Toolbox.
The Movie Toolbox then scans the movie, track,
or media and locates time values that meet those
search criteria.

interlacing A video mode that updates half the
scan lines on one pass and goes through the
second half during the next pass.

interleaving A technique in which sound and
video data are alternated in small pieces, so the
data can be read off disk as it is needed.
Interleaving allows for movies of almost any
length with little delay on startup.

intraframe coding A process that compresses
only a single frame. It does not require looking at
adjacent frames in time to achieve compression,
but allows fast random access and reverse play.

Joint Photographic Experts Group
(JPEG) Refers to an international standard for
compressing still images. This standard supplies
the algorithm for image compression. The
version of JPEG supplied with QuickTime
complies with the baseline International
Standards Organization (ISO) standard bitstream,
version 9R9. This algorithm is best suited for use
with natural images.

JPEG See Joint Photographic Experts Group.

key color A color in a destination image that is
replaced with video data by a video digitizer
component. Key colors represent one technique
for selectively displaying video on a computer
display. Other techniques include the use of
alpha channels and blend mattes.

key frame A sample in a sequence of
temporally compressed samples that does not
rely on other samples in the sequence for any of
its information. Key frames are placed into
temporally compressed sequences at a frequency
that is determined by the key frame rate.
Typically, the term key frame is used with respect
to temporally compressed sequences of image
data. See also sync sample.

key frame rate The frequency with which key
frames are placed into temporally compressed
data sequences.

layer A mechanism for prioritizing the tracks in
a movie. When it plays a movie, the Movie
Toolbox displays the movie’s tracks according to
their layer—tracks with lower layer numbers are
displayed first; tracks with higher layer numbers
are displayed over those tracks.

G L O S S A R Y

GL-5

leaf atom A QuickTime atom that contains no
other atoms. A leaf atom, however, may contain a
table. An example of a leaf atom is an edit list
atom. The edit list atom contains the edit list
table. Compare container atom.

lossless compression A compression scheme
that preserves all of the original data.

lossy compression A compression scheme
that does not preserve the data precisely; some
data is lost, and it cannot be recovered after
compression. Most lossy schemes try to
compress the data as much as possible, without
decreasing the image quality in a noticeable way.

mask region A 1-bit-deep region that defines
how an image is to be displayed in the
destination coordinate system. For example,
during decompression the Image Compression
Manager displays only those pixels in the source
image that correspond to bits in the mask region
that are set to 1. Mask regions must be defined in
the destination coordinate system.

master clock component A movie’s clock
component.

matrix See transformation matrix.

matte See blend matte, track matte.

maximum source rectangle A rectangle
representing the maximum source area that a
video digitizer component can grab. This
rectangle usually encompasses both the vertical
and horizontal blanking areas.

media A Movie Toolbox data structure that
contains information that describes the data for a
track in a movie. Note that a media does not
contain its data; rather, a media contains a
reference to its data, which may be stored on
disk, CD-ROM disc, or any other mass storage
device.

media handler A piece of software that is
responsible for mapping from the movie’s time
coordinate system to the media’s time coordinate
system. The media handler also interprets the
media’s data. The data handler for the media is
responsible for reading and writing the media’s
data. See also base media handler component,
derived media handler component.

media information Control information about
a media’s data that is stored in the media
structure by the appropriate media handler.

movie A set of time-based data that is managed
by the Movie Toolbox. A QuickTime movie may
contain sound, video, animation, laboratory
results, financial data, or a combination of any of
these types of time-based data. A QuickTime
movie contains one or more tracks; each track
represents a single data stream in the movie.

movie boundary region A region that describes
the area occupied by a movie in the movie
coordinate system, before the movie has been
clipped by the movie clipping region. A
movie’s boundary region is built up from the
track movie boundary regions for each of the
movie’s tracks.

movie box A rectangle that completely encloses
the movie display boundary region. The movie
box is defined in the display coordinate system.

movie clipping region The clipping region of
a movie in the movie’s coordinate system. The
Movie Toolbox applies the movie’s clipping
region to the movie boundary region to obtain a
clipped movie boundary region. Only that
portion of the movie that lies in the clipped
movie boundary region is then transformed into
an image in the display coordinate system.

movie controller component A component that
manages movie controllers, which present a user
interface for playing and editing movies.

movie data exchange component A component
that allows applications to move various types of
data into and out of a QuickTime movie. The two
types of data exchange components, which
provide data conversion services to and from
standard QuickTime movie data formats, are the
movie import component and the movie export
component.

movie data export component A component
that converts QuickTime movie data into other
formats.

movie data import component A component
that converts other data formats into QuickTime
movie data format.

G L O S S A R Y

GL-6

movie display boundary region A region that
describes the display area occupied by a movie in
the display coordinate system, before the movie
has been clipped by the movie display clipping
region.

movie display clipping region The clipping
region of a movie in the display coordinate
system. Only that portion of the movie that lies in
the clipping region is visible to the user. The
Movie Toolbox applies the movie’s display
clipping region to the movie display boundary
region to obtain the visible image.

movie file A QuickTime file that stores all
information about the movie in a Macintosh
resource, and stores all the associated data for the
movie separately. The resource is stored in the
resource fork, and the data in the data fork. Most
QuickTime movies are stored in files with double
forks. Compare single-fork movie file.

movie poster A single visual image
representing a QuickTime movie. You specify a
poster as a point in time in the movie and specify
the tracks that are to be used to constitute the
poster image.

movie preview A short dynamic representation
of a QuickTime movie. Movie previews typically
last no more than 3 to 5 seconds, and they should
give the user some idea of what the movie
contains. You define a movie preview by
specifying its start time, duration, and its tracks.

movie resource One of several data structures
that provide the medium of exchange for
movie data between applications on a
Macintosh computer and between computers,
even computers of different types.

National Television System Committee
(NTSC) Refers to the color-encoding method
adopted by the committee in 1953. This standard
was the first monochrome-compatible,
simultaneous color transmission system used for
public broadcasting. This method is used widely
in the United States.

NTSC See National Television System
Committee.

offset-binary encoding A method of digitally
encoding sound that represents the range of
amplitude values as an unsigned number, with

the midpoint of the range representing silence.
For example, an 8-bit sound sample stored in
offset-binary format would contain sample
values ranging from 0 to 255, with a value of 128
specifying silence (no amplitude). Samples in
Macintosh sound resources are stored in
offset-binary form. Compare twos-complement
encoding.

PAL See Phase Alternation Line.

palindrome looping Running a movie in a
circular fashion from beginning to end and end
to beginning, alternating forward and backward.
Looping must also be enabled in order for
palindrome looping to take effect.

Phase Alternation Line (PAL) A color-
encoding system used widely in Europe, in
which one of the subcarrier phases derived from
the color burst is inverted in phase from one line
to the next. This technique minimizes hue errors
that may result during color video transmission.
Sometimes called Phase Alternating Line.

phase-locked loop (PLL) A piece of hardware
that synchronizes itself to an input signal—for
example, a video digitizer card that synchronizes
to an incoming video source. The video digitizer
component’s VDSetPLLFilterType function
allows applications to specify which
phase-locked loop is to be active.

playback quality A relative measure of the
fidelity of a track in a QuickTime movie. You can
control the playback (or language) quality of a
movie during movie playback. The Movie
Toolbox chooses tracks from alternate groups
that most closely correspond to the display
quality you desire. In this manner you can create
a single movie that can take advantage of the
hardware configurations of different computer
systems during playback.

PLL See phase-locked loop.

preferred rate The default playback rate for a
QuickTime movie.

preferred volume The default sound volume
for a QuickTime movie.

preroll A technique for improving movie
playback performance. This technique is used
when prerolling a movie. The Movie Toolbox

G L O S S A R Y

GL-7

informs the movie’s media handlers that the
movie is about to be played. The media handlers
can then load the appropriate movie data. In this
manner, the movie can play smoothly from the
start.

preview A short, potentially dynamic, visual
representation of the contents of a file. The
Standard File Package can use file previews in
file dialog boxes to give the user a visual cue
about a file’s contents.

preview component A component used by the
Movie Toolbox’s standard file preview functions
to display and create visual previews for files.
Previews usually consist of a single image, but
they may contain many kinds of data, including
sound. In QuickTime, the Movie Toolbox is the
primary client of preview components. Rarely, if
ever, do applications call preview components
directly.

progress function An application-defined
function that is invoked by the Movie Toolbox or
the Image Compression Manager. You can use
these functions to track the progress of
time-consuming activities, and thereby keep the
user informed about that progress.

rate A value that specifies the pace at which
time passes for a time base. A time base’s rate is
multiplied by the time scale to obtain the number
of time units that pass per second. For example,
consider a time base that operates in a time
coordinate system that has a time scale of 60. If
that time base has a rate of 1, 60 time units are
processed per second. If the rate is set to 1/2,
30 time units pass per second. If the rate is 2,
120 time units pass per second.

sample A single element of a sequence of
time-ordered data.

sample number A number that identifies the
sample with data for a specified time.

saturation value A setting that controls color
intensity. For example, at high saturation levels,
red appears to be red; at low saturation, red
appears pink. Valid saturation values range from
0 to 65,535, where 0 is the minimum saturation
value and 65,535 specifies maximum saturation.
Saturation value is set with the video digitizer
component’s VDSetSaturation function.

SECAM See Systeme Electronique Couleur
avec Memoire.

selection duration A time value that specifies
the duration of the current selection of a movie.

selection time A time value that specifies the
starting point of the current selection of a movie.

sequence A series of images that may be
compressed as a sequence. To do this, the images
must share an image description structure. In
other words, each image or frame in the
sequence must have the same compressor type,
pixel depth, color lookup table, and boundary
dimensions.

sequence grabber channel component A
component that manipulates captured data for
sequence grabber components.

sequence grabber component A component
that allows applications to obtain digitized data
from sources that are external to a Macintosh
computer. For example, you can use a sequence
grabber component to record video data from a
video digitizer component. Your application can
then request that the sequence grabber store the
captured video data in a QuickTime movie. In
this manner you can acquire movie data from
various sources that can augment the movie data
you create by other means, such as computer
animation. You can also use sequence grabber
components to obtain and display data from
external sources, without saving the captured
data in a movie.

sequence grabber panel component
A component that allows sequence grabber
components to obtain configuration information
from the user for a particular sequence grabber
channel component. An application never calls a
sequence grabber panel component directly;
application developers use panel components
only by calling the sequence grabber component.

shadow sync sample A self-contained sample
that is an alternate for an already existing frame
difference sample. During certain random access
operations, a shadow sync sample is used instead
of a normal key frame, which may be very far
away from the desired frame. See also frame
differencing.

G L O S S A R Y

GL-8

single-fork movie file A QuickTime movie file
that stores both the movie data and the movie
resource in the data fork of the movie file. You
can use single-fork movie files to ease the
exchange of QuickTime movie data between
Macintosh computers and other computer
systems. Compare movie file.

spatial compression Image compression that is
performed within the context of a single frame.
This compression technique takes advantage of
redundancy in the image to reduce the amount of
data required to accurately represent the image.
Compare temporal compression.

standard image-compression dialog
component A component that provides a
consistent user interface for selecting parameters
that govern compression of an image or image
sequence and then manages the compression
operation.

sticky error One of two error values
maintained by the Movie Toolbox. The sticky
error is updated only when an application directs
the Movie Toolbox to do so. The other error
value, the current error, is updated by every
Movie Toolbox function.

s-video A video format in which color and
brightness information are encoded as separate
signals. The s-video format is component video
as opposed to composite video, which is the
NTSC standard.

sync sample A sample that does not rely on
preceding frames for content. See also key frame.

Systeme Electronique Couleur avec Memoire
(SECAM) Sequential Color With Memory;
refers to a color-encoding system in which the
red and blue color-difference information is
transmitted on alternate lines, requiring a
one-line memory in order to decode green
information.

tearing The effect you obtain if you redraw the
screen from the buffer while the buffer is only
half updated, so that you get one half of one
image and one half of another on a single raster
scan.

temporal compression Image compression that
is performed between frames in a sequence. This
compression technique takes advantage of
redundancy between adjacent frames in a
sequence to reduce the amount of data that is
required to accurately represent each frame in the
sequence. Sequences that have been temporally
compressed typically contain key frames at
regular intervals. Compare spatial compression.

thumbnail picture A picture that can be
created from an existing image that is stored as a
pixel map, a picture, or a picture file. A
thumbnail picture is useful for creating small
representative images of a source image and in
previews for files that contain image data.

time base A set of values that define the time
basis for an entity, such as a QuickTime movie. A
time base consists of a time coordinate system
(that is, a time scale and a duration) along with a
rate value. The rate value specifies the speed
with which time passes for the time base.

time coordinate system A set of values that
defines the context for a time base. A time
coordinate system consists of a time scale and a
duration. Together, these values define the
coordinate system in which a time value or a
time base has meaning.

time scale The number of time units that pass
per second in a time coordinate system. A time
coordinate system that measures time in sixtieths
of a second, for example, has a time scale of 60.

time unit The basic unit of measure for time in
a time coordinate system. The value of the time
unit for a time coordinate system is represented
by the formula (1/time scale) seconds. A time
coordinate system that has a time scale of 60
measures time in terms of sixtieths of a second.

time value A value that specifies a number of
time units in a time coordinate system. A time
value may contain information about a point in
time or about a duration.

track A Movie Toolbox data structure that
represents a single data stream in a QuickTime
movie. A movie may contain one or more tracks.
Each track is independent of other tracks in the

G L O S S A R Y

GL-9

movie and represents its own data stream. Each
track has a corresponding media. The media
describes the data for the track.

track boundary region A region that describes
the area occupied by a track in the track’s
coordinate system. The Movie Toolbox obtains
this region by applying the track clipping region
and the track matte to the visual image contained
in the track rectangle.

track clipping region The clipping region of a
track in the track’s coordinate system. The Movie
Toolbox applies the track’s clipping region and
the track matte to the image contained in the
track rectangle to obtain the track boundary
region. Only that portion of the track that lies in
the track boundary region is then transformed
into an image in the movie coordinate system.

track height The height, in pixels, of the track
rectangle.

track matte A pixel map that defines the
blending of track visual data. The value of each
pixel in the pixel map governs the relative
intensity of the track data for the corresponding
pixel in the result image. The Movie Toolbox
applies the track matte, along with the track
clipping region, to the image contained in the
track rectangle to obtain the track boundary
region.

track movie boundary region A region that
describes the area occupied by a track in the
movie coordinate system, before the movie has
been clipped by the movie clipping region.
The movie boundary region is built up from the
track movie boundary regions for each of the
movie’s tracks.

track offset The blank space that represents the
intervening time between the beginning of a
movie and the beginning of a track’s data. In an
audio track, the blank space translates to silence;
in a video track, the blank space generates no
visual image. All of the tracks in a movie use
the movie’s time coordinate system. That is, the
movie’s time scale defines the basic time unit for
each of the movie’s tracks. Each track begins at
the beginning of the movie, but the track’s data
might not begin until some time value other
than 0.

track rectangle A rectangle that completely
encloses the visual representation of a track in a
QuickTime movie. The width of this rectangle in
pixels is referred to as the track width; the
height, as the track height.

track width The width, in pixels, of the track
rectangle.

transformation matrix A 3-by-3 matrix that
defines how to map points from one coordinate
space into another coordinate space.

twos-complement encoding A system for
digitally encoding sound that stores the
amplitude values as a signed number—silence is
represented by a sample with a value of 0. For
example, with 8-bit sound samples,
twos-complement values would range from –128
to 127, with 0 meaning silence. The Audio
Interchange File Format (AIFF) used by the
Sound Manager stores samples in
twos-complement form. Compare offset-binary
encoding.

user data Auxiliary data that your application
can store in a QuickTime movie, track, or media
structure. The user data is stored in a user data
list; items in the list are referred to as user data
items. Examples of user data include a copyright,
date of creation, name of a movie’s director, and
special hardware and software requirements.

user data item A single element in a user data
list.

user data list The collection of user data for a
QuickTime movie, track, or media. Each element
in the user data list is referred to as a user data
item.

vertical blanking rectangle A rectangle that
defines a portion of the input video signal that is
devoted to vertical blanking. This rectangle
occupies lines 10 through 19 of the input signal.
Broadcast video sources may use this portion of
the input signal for closed captioning, teletext,
and other nonvideo information. Note that the
blanking rectangle cannot be contained in the
maximum source rectangle.

G L O S S A R Y

GL-10

video digitizer component A component that
provides an interface for obtaining digitized
video from an analog video source. The typical
client of a video digitizer component is a
sequence grabber component, which uses the
services of video digitizer components to create a
very simple interface for making and previewing
movies. Video digitizer components can also
operate independently, placing live video into a
window.

white level The degree of whiteness in an
image. It is a common video digitizer setting.

IN-1

Index

Symbols

'©cpy' user data type 4-21
'©day' user data type 4-21
'©dir' user data type 4-21
'©ed1' to '©ed9' user data types 4-21
'©fmt' user data type 4-21
'©inf' user data type 4-21
'©prd' user data type 4-21
'©prf' user data type 4-21
'©req' user data type 4-21
'©src' user data type 4-21
'©wrt' user data type 4-21

A

accuracy
decompression of sequences 3-134
for a media 2-213 to 2-214

active movie segments
defined 2-16, 2-113, 2-134
repositioning at 2-113 to 2-114
setting 2-134 to 2-136

AddFilePreview function 2-303
AddHiliteSample function 2-297 to 2-298
adding movie resources to movie files 2-102
adding to movie files 2-105 to 2-107
AddMediaDataRef function 2-216
AddMediaSample function 2-273 to 2-275
AddMediaSampleReference function 2-275 to 2-276
AddMovieResource function 2-61, 2-100, 2-102 to 2-103
AddMovieSelection function 2-250 to 2-251, 2-356
AddTESample function 2-295 to 2-297
AddTextSample function 2-293 to 2-295
AddTime function 2-333
AddUserData function 2-235 to 2-236
AddUserDataText function 2-236 to 2-237
Alias Manager and the Movie Toolbox 2-64
aligning windows 3-143
alignment functions 3-155 to 3-156
alignment function structure 3-155 to 3-156
AlignmentProcRecord data type 3-156
AlignScreenRect function 3-146
AlignWindow function 3-143
'alis' data type 2-216, 2-217, 2-218, 4-32
alternate groups of tracks 2-207 to 2-215

assigning 2-210

defined 2-18
disabling automatic selection of 2-89, 2-91, 2-92,

2-97, 2-109, 2-245
enabling automatic selection 2-210
finding 2-211
language and quality of 2-19
selecting for a movie 2-209
in track header atoms 4-15
and languages 2-18

Animation Compressor 3-11, 3-64
application-defined functions

cover functions 2-155 to 2-157
Movie Toolbox 2-71 to 2-73, 2-354 to 2-364

callback event specification 2-364
cover functions 2-357 to 2-358
custom dialog functions 2-360 to 2-361
error-processing functions 2-358
file filter functions 2-360
modal dialog filter functions 2-362
movie callout functions 2-359
progress functions 2-354 to 2-357
standard file activation 2-363

text 2-364 to 2-365
asynchronous image compression 3-119
asynchronous image decompression 3-119
atoms 4-5 to 4-46

chunk offset 4-42 to 4-44
clipping 4-22
data information 4-30 to 4-32
edit 4-24 to 4-25
handler reference 4-18 to 4-19
layout of 4-7
leaf 4-7 to 4-8
matte 4-23 to 4-24
media 4-16 to 4-18
media information 4-26 to 4-30
movie 4-10 to 4-12
overview of 4-8 to 4-9
sample description 4-35
sample size 4-41 to 4-42
sample table 4-33 to 4-35
sample-to-chunk 4-39 to 4-41
sync sample 4-34, 4-38
time-to-sample 4-36 to 4-37
track 4-13 to 4-16
types of 4-6 to 4-7

atoms (continued)
user-defined data 4-19 to 4-21
video media information 4-26 to 4-28

I N D E X

IN-2

atom types
'clip' 4-6, 4-10, 4-13, 4-22
'crgn' 4-6, 4-22
'dinf' 4-6, 4-31
'dref' 4-6, 4-32
'edts' 4-6, 4-13, 4-25
'elst' 4-6, 4-25
'hdlr' 4-6, 4-16, 4-19
'kmat' 4-6, 4-24
'matt' 4-6, 4-13, 4-23
'mdat' 4-5
'mdhd' 4-6, 4-16, 4-17
'mdia' 4-6, 4-13, 4-16
'minf' 4-6, 4-16, 4-26, 4-27, 4-29
'moov' 4-6, 4-10
'mvhd' 4-6, 4-10, 4-12
'smhd' 4-6, 4-26, 4-30
'stbl' 4-6, 4-26, 4-33, 4-34
'stco' 4-6, 4-42, 4-43
'stsc' 4-6, 4-39
'stsd' 4-6, 4-35
'stsh' 4-6, 4-44 to 4-45
'stss' 4-6, 4-38
'stsz' 4-6, 4-41
'stts' 4-6, 4-36
'tkhd' 4-6, 4-13 to 4-15
'trak' 4-6, 4-10, 4-13
'udta' 4-6, 4-10, 4-13, 4-16, 4-21
'vmhd' 4-6, 4-26 to 4-28

audio compression 2-31
audio properties of movies 2-29 to 2-31
automatic selection, disabling 2-91

B

balance. See sound balance
banding images 3-45 to 3-46
BeginMediaEdits function 2-271 to 2-272
BeginUpdate function 2-62
blend colors of a video media 2-288
blend mattes 3-31, 3-33
block size

of compressor component 3-55
and images 3-45

boundary regions. See movie boundary regions
buffers

screen and image 3-34 to 3-35

C

callback events 2-335 to 2-341

assigning a callback function to 2-337, 2-339
canceling 2-339
creating 2-336 to 2-337
determining time base 2-340
determining type 2-340
disposing of 2-339
removing 2-339
rescheduling 2-339
scheduling 2-337 to 2-339, 2-340

callback functions
assigning to a callback event 2-337, 2-339
defined 3-48
identifiers 2-77
and the Image Compression Manager 3-48, 3-148 to

3-155
specifying optional data for 2-314
and time bases 2-335 to 2-341

callback identifiers 2-77
CallMeWhen function 2-337 to 2-339
CancelCallBack function 2-339
CDSequenceBusy function 3-119
CDSequenceEnd function 3-33, 3-34, 3-39, 3-119
'cdvc' compressor type 3-64
channel components 1-7
chunk offset atoms 4-6, 4-42 to 4-44

in sample table atoms 4-34
tables 4-43 to 4-44

ClearMovieChanged function 2-61, 2-102
ClearMovieSelection function 2-251
ClearMoviesStickyError function 2-86
'clip' atom type 4-6, 4-22

in movie atoms 4-10
in track atoms 4-13

clipping
movies 2-24 to 2-25, 2-165 to 2-166
tracks 2-22 to 2-23

clipping atoms 4-6, 4-10, 4-22
clipping region atoms 4-6, 4-22
clipping regions

in clipping atoms 4-22
determining movie 2-173 to 2-174
setting movie 2-173
setting track 2-178

clock components
assigning to a movie 2-317
assigning to a time base 2-318
and callback events 2-335 to 2-341
determining time base 2-319
and QuickTime 1-7. See also callback events
and time bases 2-8

CloseMovieFile function 2-61, 2-99
CodecFlags data type 3-58 to 3-61
CodecInfo data type 3-52 to 3-55
CodecManagerVersion function 3-24, 3-62 to 3-63
CodecNameSpec data type 3-55 to 3-56

I N D E X

IN-3

CodecNameSpecList data type 3-56 to 3-57
CodecQ data type 3-57 to 3-58
CodecType data type 3-38, 3-63 to 3-64
color ramps 3-39 to 3-41
color tables

for compressed images 3-52, 3-87
custom 3-49, 3-52
custom, updating 3-87

Compact Video Compressor 3-11, 3-64
comparing images 3-71
completion functions 3-154 to 3-155

performing compression asynchronously 3-113
performing decompression asynchronously 3-118

completion function structure. See
CompletionProcRecord data type

CompletionProcRecord data type 3-154, 3-156
component instances 2-319 to 2-320
Component Manager

and the Movie Toolbox 2-320
and QuickTime 1-6

components
and connections 2-320
defined 1-4
in QuickTime applications 1-3
multiple clients and 2-320
supplied with QuickTime 1-7

compressed images. See image description structures
compressed matte atoms 4-6
CompressImage function 3-28, 3-73 to 3-74
compressing

accuracy 3-53
images 3-27 to 3-30, 3-73, 3-75

algorithms for 3-5 to 3-11
asynchronous 3-118 to 3-119
clipping 3-98 to 3-102
completion testing 3-119
converting formats 3-82 to 3-85
graphics objects 3-7
key frame rate 3-121 to 3-123
PICT files 3-93 to 3-97
pictures 3-8, 3-89 to 3-92
pixel depth conversion 3-12
pixel maps 3-7, 3-8, 3-73 to 3-88
and previous buffer 3-126 to 3-127
previous frame 3-124 to 3-125
quality of 3-7 to 3-8, 3-51, 3-57 to 3-58, 3-120 to

3-121, 3-128
in QuickTime applications 1-4
sample routines 3-27 to 3-41. See also Image

Compression Manager; image description
structures

size of 3-32, 3-68 to 3-69, 3-72 to 3-73
spatial quality of 3-7, 3-109
temporal quality of 3-7, 3-107, 3-109, 3-120 to 3-121
time estimating 3-69 to 3-71

sequences 3-24 to 3-25, 3-35 to 3-41
beginning 3-106 to 3-111
ending 3-119 to 3-120
key frames in 3-47, 3-60, 3-109, 3-121 to 3-127
number of frames 3-51
parameters for 3-120 to 3-127
previous buffer 3-126 to 3-127
quality of 3-51
sample routines for 3-27 to 3-41
setting previous frame characteristics 3-124
similarity between frames 3-71 to 3-72

sound data 2-31
compression

interframe 3-7, 3-47, 3-109, 3-121
intraframe 3-7, 3-121
quality of 3-51, 3-70, 3-128

constants for 3-57 to 3-58
setting 3-120 to 3-121

spatial 3-7, 3-10, 3-32, 3-51, 3-70, 3-88, 3-120 to 3-121,
3-128, 3-130

changing 3-73, 3-88
control flags for 3-57 to 3-58
defined 3-7

speed 3-9
temporal 3-7, 3-10, 3-13, 3-31, 3-32, 3-47, 3-51, 3-60,

3-67, 3-70, 3-106, 3-109, 3-110, 3-112, 3-120 to
3-122, 3-128

control flags for 3-57 to 3-58, 3-109, 3-112
defined 3-7
and image sequences 3-106
previous frame settings, used for 3-107, 3-108
using 3-32, 3-47, 3-67

compression ratios 3-8 to 3-12
of image compressor component 3-55
for images 3-8 to 3-9

compression speed 3-9
compressor components 3-9 to 3-12

accuracy of 3-54
Animation Compressor 3-11
application-defined functions 3-148 to 3-156
block size of images 3-55
capabilities 3-24, 3-52 to 3-55, 3-62 to 3-67, 3-70
characteristics of 3-9 to 3-12, 3-48
Compact Video Compressor 3-11
compression ratios 3-55
data-loading functions 3-149 to 3-150
finding 3-66
format flags 3-53
functions 3-63 to 3-67
getting list of installed 3-63
Graphics Compressor 3-11 to 3-12
information about 3-62 to 3-67

compressor components (continued)
names 3-55 to 3-57
performance compared 3-9 to 3-23

I N D E X

IN-4

Photo Compressor 3-10
and QuickTime 1-7
Raw Compressor 3-12
registered by Component Manager 3-48
speed 3-54
supplied by Apple 3-9 to 3-12
type values 3-55, 3-63
Video Compressor 3-10

compressor information structure 3-52 to 3-55, 3-65
compressor name list structure 3-56 to 3-65

disposing of 3-64
retrieving 3-56

compressor name structure 3-55
compressors. See compressor components
compressor types 3-63 to 3-64
CompressPictureFile function 3-93 to 3-94
CompressPicture function 3-89 to 3-90
CompressSequenceBegin function 3-32, 3-36, 3-57,

3-106 to 3-111
CompressSequenceFrame function 3-32, 3-38, 3-47,

3-111 to 3-113
CompressSequence function 3-38
ConcatMatrix function 2-346
constraining compressed data 3-127
container atoms 4-7
control flags, setting for time bases 2-330
ConvertFileToMovieFile function 2-93 to 2-94
ConvertImage function 3-82 to 3-85
converting track time value to media time 2-193 to

2-194
ConvertMovieToFile function 2-95
ConvertTime function 2-334
ConvertTimeScale function 2-334
CopyMatrix function 2-343
CopyMovieSelection function 2-248, 2-356
CopyMovieSettings function 2-261 to 2-262
copyright statement, user data type for 4-21
CopyTrackSettings function 2-267 to 2-268
CountUserDataType function 2-234
cover functions 2-71 to 2-73, 2-155 to 2-157, 2-357 to

2-358
CreateMovieFile function 2-61, 2-96 to 2-98
creation time

for media atoms 4-18
for media structures 2-19, 2-221 to 2-222
for a movie 2-16
for movie atoms 4-12
for movies 2-219 to 2-222
for a track 2-18
for track atoms 4-15
for tracks 2-220 to 2-221

'crgn' atom type 4-6
current error values, in Movie Toolbox 2-85, 2-84 to

2-85
current selection, in movie 2-16

current selection, in movies 2-243, 2-247 to 2-251
current time

changing 2-186
for current selection in movie atom 4-12
defined 2-16
determining 2-187
setting 2-185 to 2-186

custom color tables, updating 3-87
CustomGetFilePreview function 2-68 to 2-71, 2-312

to 2-314
CutMovieSelection function 2-247, 2-356

D

data dependency 3-9
data handlers 2-284 to 2-286

data reference information for 4-32. See also media
handlers

in sound media information atoms 4-29
in video media information atoms 4-27

data information atoms 4-6, 4-30 to 4-32
data interchange 2-32
data interchange format 4-3
data-loading functions 3-44 to 3-45, 3-48, 3-149 to 3-150

assigning to an image 3-45
assigning to a sequence 3-135
identifying 3-82, 3-85, 3-140
minimum data size value 3-45
and spooling of compressed data 3-45

data-loading function structure 3-149
DataProcRecord data type 3-149
data rate parameters structure 3-127
DataRateParams data type 3-127
data rates

constraining 3-11
functions for constraining data to 3-127

data reference atoms 4-6, 4-32
data reference container atoms 4-32
data references

adding to a media 2-216
determining for a media 2-218
determining number in a media 2-219
format 4-32
introduced 2-13
resolving in a movie 2-89 to 2-91, 2-109
resolving in a movie resource 2-245

data-unloading functions 3-44 to 3-45, 3-150 to 3-152
assigning to a sequence 3-126
and compressor components 3-48
identifying 3-77, 3-86
minimum data size value 3-45
and spooling of compressed data 3-45, 3-148

data-unloading structure 3-151

I N D E X

IN-5

DecompressImage function 3-30, 3-31, 3-78 to 3-79
decompressing

images 3-30 to 3-31, 3-78 to 3-82
algorithms for 3-5 to 3-11
asynchronous 3-118 to 3-119
banding images 3-45 to 3-46
buffers 3-136 to 3-137
clipping regions, setting 3-98 to 3-102
image buffers 3-34 to 3-35
and key frames 3-34
key frames in 3-34, 3-47
mask region 3-132
matrices, setting 3-80, 3-114, 3-132
mattes, setting 3-81, 3-133 to 3-134, 3-139
quality of 3-57 to 3-58
sample routines 3-42 to 3-44
screen buffers 3-34, 3-59, 3-115
source rectangles, setting 3-131
speed of 3-9, 3-54
spooling of 3-44 to 3-45
starting sequences 3-114
testing for completion 3-119
transfer modes, setting 3-130

sequences 3-24, 3-33 to 3-34, 3-47, 3-106
beginning 3-113 to 3-116
and buffers 3-34
ending 3-119 to 3-120
key frames in 3-109
mask regions setting 3-132 to 3-133
matrices setting 3-132
mattes setting 3-133 to 3-134
offscreen image buffers 3-60
and parameters for 3-129 to 3-148
screen buffers 3-136 to 3-137
source rectangle setting 3-131
for still images 3-30 to 3-31
still images from 3-34
transfer modes, setting 3-130

decompressing sequences
and key frames 3-34

decompression
alignment and 3-142
speed 3-9

decompressor components 3-6
accuracy of 3-54
block sizes for 3-55
capabilities 3-32, 3-52 to 3-55, 3-65
characteristics of 3-48
defined 3-6
finding 3-66
format flags 3-53
getting list of installed 3-63
loading data 3-135
registered by Component Manager 3-48
speed of 3-54

supplied by Apple 3-9 to 3-12
type values 3-48, 3-55, 3-63

DecompressSequenceBegin function 3-33, 3-42, 3-114
to 3-116

DecompressSequenceFrame function 3-34, 3-42,
3-106, 3-116 to 3-118

DeleteMovieFile function 2-61, 2-100
DeleteMovieSegment function 2-260
DeleteTrackSegment function 2-266
'dinf' atom type 4-6, 4-31
DisposeCallBack function 2-339
DisposeCodecNameList function 3-64 to 3-65
DisposeMatte function 2-181
DisposeMovieEditState function 2-256
DisposeMovie function 2-96
DisposeMovieTrack function 2-152
DisposeTimeBase function 2-316 to 2-317
DisposeTrackEditState function 2-270 to 2-271
DisposeTrackMedia function 2-154
DisposeUserData function 2-241
dithering, fast 3-47
DragAlignedGrayRgn function 3-145 to 3-146
DragAlignedWindow function 3-144
dragging aligned windows 3-144
DrawPictureFile function 3-97
DrawTrimmedPictureFile function 3-101 to 3-102
DrawTrimmedPicture function 3-98 to 3-100
'dref' atom type 4-6, 4-32
duration

changing 2-270
defined 2-9
of media structures 2-194, 4-18
of movies 2-185, 4-12
samples of 2-273, 2-275
of tracks 2-9, 2-12, 2-191 to 2-192

E

edit atoms 4-6, 4-13, 4-24 to 4-25
editing media sessions 2-272
editing movies 1-12, 2-254 to 2-262
edit list atoms 4-6, 4-25
edit list tables 4-25
edit states

defined 2-254
disposing of 2-256
for movies 2-77, 2-255 to 2-256
for tracks 2-77, 2-268 to 2-271

'edts' atom type 4-6, 4-13, 4-25
'elst' atom type 4-6, 4-25
empty space

inserting into a movie 2-259
inserting into a track 2-264

I N D E X

IN-6

EndMediaEdits function 2-49, 2-272
EndUpdate function 2-62
EnterMovies function 2-35, 2-82 to 2-83
EqualMatrix function 2-343
error codes, retrieving from Movie Toolbox 2-84 to 2-87
events, callback. See callback events
exiting the Movie Toolbox 2-35
ExitMovies function 2-35, 2-83 to 2-84
extending images 3-45 to 3-46

F

FCompressImage function 3-28, 3-75 to 3-78
FCompressPictureFile function 3-94 to 3-97
FCompressPicture function 3-90 to 3-92
FDecompressImage function 3-31, 3-80 to 3-82
file previews 2-65 to 2-71

adding 2-303
creating 2-301 to 2-303
displaying 2-304 to 2-314
System 6 2-65 to 2-68
System 7 2-68 to 2-69

file types, 'MooV' 2-61, 2-70, 2-100, 4-3
FindCodec function 3-66 to 3-67
FindNextText function 2-298 to 2-299
first chunk, in sample-to-chunk tables 4-40
FixedPoint data type 2-79
fixed points 2-79, 2-348
fixed rectangles 2-79, 2-349
FixedRect data type 2-79
flags

for data reference atoms 4-6, 4-32
for data reference container atoms 4-32
for track atoms 4-6
function control 3-58 to 3-61
Image Compression Manager control 3-58 to 3-61
for matte atoms 4-6, 4-13, 4-23 to 4-24
media handler reference atoms 4-19
in media header atoms 4-18
for movie atoms 4-6
for sound media atoms 4-6
for time bases 2-330 to 2-331
for time-to-sample atoms 4-6
for video media atoms 4-6

FlattenMovieData function 2-31, 2-62, 2-107 to 2-108,
2-355, 4-4

FlattenMovie function 2-31, 2-53, 2-62, 2-105 to 2-107,
2-355

FlushProcRecord data type 3-151
Fract data type 2-28
frame differencing 3-7, 3-47, 3-109, 3-121
frames 3-7
FSMakeFSSpec function 2-64

FSpCatMove function 2-65
FSpCreate function 2-64
FSpCreateResFile function 2-65
FSpDelete function 2-64
FSpDirCreate function 2-64
FSpExchangeFiles function 2-65
FSpGetCatInfo function 2-65
FSpGetFInfo function 2-64
FSpOpenDF function 2-64
FSpOpenResFile function 2-65
FSpOpenRF function 2-64
FSpRename function 2-65
FSpRstFLock function 2-64
FSpSetFInfo function 2-64
FSpSetFLock function 2-64
function control flags. See CodecFlags data type

G

Gestalt Manager
and the Image Compression Manager 3-24
and the Movie Toolbox 2-33, 2-34

GetBestDeviceRect function 3-147, 3-147
GetCallBackTimeBase function 2-340
GetCallBackType function 2-340 to 2-341
GetCodecInfo function 3-32, 3-52, 3-65 to 3-66
GetCodecNameList function 3-32, 3-56, 3-63
GetCompressedImageSize function 3-72 to 3-73
GetCompressedPixMapInfo function 3-141 to 3-142
GetCompressionTime function 3-57, 3-69 to 3-71
GetCSequenceDataParams function 3-129
GetCSequenceFrameNumber function 3-124
GetCSequenceKeyFrameRate function 3-123
GetCSequencePrevBuffer function 3-126
GetDSequenceImageBuffer function 3-136
GetDSequenceScreenBuffer function 3-136 to 3-137
GetImageDescriptionCTable function 3-87 to 3-88
GetMatrixType function 2-342
GetMaxCompressionSize function 3-28, 3-32, 3-68 to

3-69
GetMediaCreationTime function 2-221
GetMediaDataHandlerDescription function 2-284

to 2-285
GetMediaDataHandler function 2-285 to 2-286
GetMediaDataRefCount function 2-219
GetMediaDataRef function 2-217 to 2-218
GetMediaDataSize function 2-224
GetMediaDuration function 2-49, 2-54, 2-194
GetMediaHandlerDescription function 2-282 to

2-283
GetMediaHandler function 2-283
GetMediaLanguage function 2-212 to 2-213
GetMediaModificationTime function 2-222

I N D E X

IN-7

GetMediaNextInterestingTime function 2-201 to
2-202

GetMediaQuality function 2-214 to 2-215
GetMediaSampleCount function 2-225
GetMediaSampleDescriptionCount function 2-225

to 2-227
GetMediaSampleDescription function 2-226 to 2-227
GetMediaSample function 2-277 to 2-279
GetMediaSampleReference function 2-279 to 2-281
GetMediaShadowSync function 2-144 to 2-145
GetMediaTimeScale function 2-195
GetMediaTrack function 2-206
GetMediaUserData function 2-233
GetMovieActive function 2-146
GetMovieActiveSegment function 2-137
GetMovieBoundsRgn function 2-171 to 2-172
GetMovieBox function 2-20, 2-162
GetMovieClipRgn function 2-173 to 2-174
GetMovieCreationTime function 2-220
GetMovieDataSize function 2-223
GetMovieDisplayBoundsRgn function 2-163
GetMovieDisplayClipRgn function 2-158, 2-166
GetMovieDuration function 2-185
GetMovieGWorld function 2-160 to 2-161
GetMovieIndTrack function 2-203 to 2-204
GetMovieMatrix function 2-170 to 2-171
GetMovieModificationTime function 2-220
GetMovieNextInterestingTime function 2-197 to

2-199
GetMoviePict function 2-148 to 2-149
GetMoviePosterPict function 2-149
GetMoviePosterTime function 2-119
GetMoviePreferredRate function 2-131
GetMoviePreferredVolume function 2-133
GetMoviePreviewMode function 2-122
GetMoviePreviewTime function 2-123
GetMovieRate function 2-188
GetMovieSegmentDisplayBoundsRgn function 2-164
GetMovieSelection function 2-247
GetMoviesError function 2-85
GetMoviesStickyError function 2-85
GetMovieStatus function 2-128 to 2-129
GetMovieTimeBase function 2-190 to 2-191
GetMovieTime function 2-187
GetMovieTimeScale function 2-190
GetMovieTrackCount function 2-203
GetMovieTrack function 2-204 to 2-205
GetMovieUserData function 2-231 to 2-232
GetMovieVolume function 2-182 to 2-183
GetNextUserDataType function 2-233 to 2-234
GetPictureFileHeader function 3-102 to 3-103
GetPosterBox function 2-118
GetSimilarity function 3-71 to 3-72
GetSoundMediaBalance function 2-289
GetTimeBaseFlags function 2-330 to 2-331

GetTimeBaseMasterClock function 2-319 to 2-320
GetTimeBaseMasterTimeBase function 2-321
GetTimeBaseRate function 2-326
GetTimeBaseStartTime function 2-328
GetTimeBaseStatus function 2-331
GetTimeBaseStopTime function 2-329
GetTimeBaseTime function 2-324 to 2-325
GetTrackAlternate function 2-211 to 2-212
GetTrackBoundsRgn function 2-175 to 2-176
GetTrackClipRgn function 2-178 to 2-179
GetTrackCreationTime function 2-220
GetTrackDataSize function 2-224
GetTrackDimensions function 2-177
GetTrackDisplayBoundsRgn function 2-166 to 2-167
GetTrackDuration function 2-191 to 2-192
GetTrackEditRate function 2-268
GetTrackEnabled function 2-147 to 2-148
GetTrackID function 2-205
GetTrackLayer function 2-169
GetTrackMatrix function 2-175
GetTrackMatte function 2-180
GetTrackMedia function 2-206
GetTrackModificationTime function 2-221
GetTrackMovieBoundsRgn function 2-172
GetTrackMovie function 2-205
GetTrackNextInterestingTime function 2-199 to

2-200
GetTrackOffset function 2-193
GetTrackPict function 2-150
GetTrackSegmentDisplayBoundsRgn function 2-167

to 2-168
GetTrackStatus function 2-129
GetTrackUsage function 2-116
GetTrackUserData function 2-232
GetTrackVolume function 2-184
GetUserData function 2-235
GetUserDataItem function 2-240
GetUserDataText function 2-237 to 2-238
GetVideoMediaGraphicsMode function 2-288
GoToBeginningOfMovie function 2-113
GoToEndOfMovie function 2-114
Graphics Compressor 3-11, 3-64
graphics devices, functions for 3-147
graphics mode

in video media information atoms 4-28
for a video media 2-287 to 2-288

graphics worlds
functions for working with 3-147
for movies 2-160

group, of samples 2-196, 2-201 to 2-202
grouping tracks. See alternate groups of tracks

I N D E X

IN-8

H

handle, loading a movie from 2-90 to 2-92
handler reference atoms 4-6, 4-18 to 4-19

layout of 4-18
in media atoms 4-17
in sound media information atoms 4-29

handlers, data. See data handlers
handlers, media. See media handlers
HasMovieChanged function 2-61, 2-101
'hdlr' atom type 4-6, 4-19

in media atoms 4-16
height, track. See track height
highlighting atoms 2-290
highlighting color atoms 2-291
HiliteTextSample function 2-300
human interface guidelines

for movies in text documents 2-41 to 2-42
getting movies from files 2-36 to 2-37
playing movies 2-41 to 2-42

I

identifiers, track. See tracks
identity matrices 2-26, 2-341, 2-342
image buffers

introduced 3-34
for a sequence 3-136
size of 3-68
using 3-59, 3-115

Image Compression Manager 3-5 to 3-182
alignment functions and 3-155 to 3-156
application-defined functions for 3-148 to 3-156
completion functions and 3-154 to 3-155
control flags 3-58 to 3-61
data-loading functions and 3-149 to 3-150
data structures in 3-49 to 3-61
data-unloading functions and 3-150 to 3-152
dithering, fast 3-47
functions in 3-61 to 3-156

compressing images 3-73 to 3-88
compressor data 3-62 to 3-67
decompressing images 3-73 to 3-88
image data 3-67 to 3-73
sequence compression parameters 3-120 to 3-129
sequence decompression parameters 3-129 to

3-148
working with pictures 3-88 to 3-103
working with sequences 3-106 to 3-120
working with thumbnails 3-103 to 3-106

image compressor, choosing 3-9 to 3-12
and Movie Toolbox 3-8
progress functions and 3-152 to 3-154

and QuickTime 1-6. See also compressing;
compressor components; decompressing;
decompressor components; image description
structures

testing for availability 3-24
version of 3-24, 3-62
working with the StdPix function 3-137 to 3-142

image compression. See compressing images
image compressor, choosing 3-9 to 3-12
image compressor components. See compressing

images; compressor components; Image
Compression Manager

image decompression. See decompressing images;
decompressor components

image decompressor, choosing 3-9 to 3-12
image decompressor components. See decompressing

images; decompressor components; Image
Compression Manager

ImageDescription data type 3-49 to 3-52
image description structures 3-45 to 3-46, 3-49 to 3-52

color tables for 3-52, 3-87 to 3-88
displaying 3-25
getting image size from 3-30, 3-33
information stored about 3-25
resizing 3-85
spooling 3-44 to 3-45
trimming 3-85

image quality, after compression 3-9
images

banding 3-45 to 3-46
comparing 3-71 to 3-72
extending 3-45 to 3-46
sequences of

creating key frames from 3-60, 3-112
drawing 3-38 to 3-41

'imco' component type value 3-48
'imdc' component type value 3-48
importing movies 4-3
InsertEmptyMovieSegment function 2-259
InsertEmptyTrackSegment function 2-264
InsertMediaIntoTrack function 2-48, 2-265
InsertMovieSegment function 2-257 to 2-259, 2-356
InsertTrackSegment function 2-262 to 2-263, 2-356
Int64 data type 2-78
interesting times, finding 2-196 to 2-202
interframe compression. See compression, interframe
interleaving movie data 2-30, 2-106, 2-108
interpreting movies on non-Macintosh computers 4-3
intraframe compression. See compression, intraframe
InverseMatrix function 2-346 to 2-347
IsMovieDone function 2-42, 2-125 to 2-126
IsScrapMovie function 2-252
items, user data. See user data items

I N D E X

IN-9

J

Joint Photographic Experts Group (JPEG) 3-10
'jpeg' compressor type 3-63, 3-64

K

key frames 2-134 to 2-135, 3-47
adding to a media 2-274, 2-276
defined 2-196, 3-47
finding 2-196 to 2-202, 2-279, 2-281, 4-46
rate 3-47, 3-109, 3-121, 3-122
and repositioning movies 2-138, 2-139

'kmat' atom type 4-6, 4-24

L

languages
and media structures 2-18, 4-15, 4-18
and movies 2-207 to 2-215. See also alternate groups

of tracks
layers

in movies 2-10, 2-24
in track atoms 4-15
in tracks 2-168 to 2-169

leaf atoms 4-7
linear PCM 2-31
lists, user data 2-230
LoadMediaIntoRam function 2-143, 2-356
LoadMovieIntoRam function 2-140 to 2-141, 2-356
LoadTrackIntoRam function 2-142, 2-356
lossless image compression 3-7
lossy image compression 3-7

M

MACE. See Macintosh Audio Compression and
Expansion

Macintosh Audio Compression and Expansion tools
(MACE) 2-31

MakeFilePreview function 2-302
MakeThumbnailFromPictureFile function 3-104 to

3-105
MakeThumbnailFromPicture function 3-103 to 3-104
MakeThumbnailFromPixMap function 3-105 to 3-106
MapMatrix function 2-352 to 2-353
mask regions 3-31, 3-33, 3-115, 3-132
master clock. See clock components
master time bases 2-320 to 2-321

MatchAlias function 2-64
matrices 2-26 to 2-28, 3-138

comparing 2-343
concatenating 2-344
copying 2-343
creating inverse matrices 2-346
for decompressing images 3-80, 3-132
determining for a movie 2-170 to 2-171
determining scaling operations 2-342
functions for 2-341 to 2-353
movies and 2-16, 2-24, 2-25
multiplication and 2-28
rotating 2-28, 2-342
scaling 2-27, 2-28, 2-344, 2-351
shearing 2-342, 2-345
skewing 2-342, 2-345
specifying scaling operations 2-344
specifying translation operations 2-351
testing for equality 2-343
transforming points 2-348
transforming rectangles 2-349 to 2-350
transforming regions 2-350
translating 2-27, 2-28, 2-342
types 2-26 to 2-28, 2-342

matrix structures
for movies in movie atoms 4-12
in track atoms 4-15

'matt' atom type 4-6, 4-23
in track atoms 4-13

matte atoms 4-23 to 4-24
matte data in compressed matte atom 4-24
mattes 3-31, 3-33

disposing of 2-181
tracks and 2-22, 2-179 to 2-180
using in decompressing images 3-81
using with decompressing sequences 3-133
using with StdPix 3-139

'mdat' atom type 4-5
'mdhd' atom type 4-6, 4-17

in media atoms 4-16, 4-17
'mdia' atom type 4-6, 4-13, 4-16

in media atoms 4-16
media

assigning to a track 2-265
determining duration 2-194
finding data 2-277, 2-279

media (continued)
getting data handler descriptions 2-284
getting media handler descriptions 2-282
getting media handlers 2-283. See also media

structures
media atoms 4-6, 4-16 to 4-18

layout of 4-16
in track atoms 4-14

media atom type. See 'mdia' atom type

I N D E X

IN-10

media data structures
media handlers 2-282, 2-284
quality of 2-214
region codes 2-212
sample descriptions 2-226
tracks, determining 2-206

Media data type 2-77
media handlers 2-19

component types 4-19
defined 2-13
functions 2-281 to 2-289
getting 2-283
getting descriptions of 2-282
in media atoms 4-17. See also handler reference

atoms
selecting 2-282 to 2-287
setting 2-284
using sound 2-288 to 2-289
using video 2-287 to 2-288

media header atoms 4-6, 4-16 to 4-18
media information 2-19
media information atoms 4-6, 4-17, 4-26 to 4-30
MediaInformationHandle data type 2-407
media rate, in edit list tables 4-25
media structures 2-18 to 2-19

accuracy 2-214
adding samples to 2-274, 2-276
and blend color 2-288
and data handlers 2-275 to 2-277
and data references

adding 2-216
and time scales 2-195
and tracks. See also tracks
assigning to tracks 2-265
converting track time to media time 2-193 to 2-194
creating 2-153 to 2-154
creation time 2-19, 2-219, 2-221 to 2-222
and data 2-13
and data handlers 2-284, 2-287
and data information atoms 4-30 to 4-32
and data references

counting 2-219
getting a copy of 2-217, 2-218

and data structures 2-15
defined 2-5
displaying key frames 2-139
duration 2-12, 2-19, 2-191 to 2-192, 4-15
and edit atoms 4-8, 4-24 to 4-25
editing session, ending 2-272
graphics mode 2-287 to 2-288
groups of 2-197, 2-199, 2-201
identifiers 2-77
key frames, finding 2-279, 2-281, 4-46
languages and 2-19, 2-212 to 2-213, 4-15
loading into memory 2-143

media atoms 4-16 to 4-18
media handlers 2-13, 2-283
media sample descriptions

counting 2-225 to 2-226
finding 2-226 to 2-227

media sample descriptions. See media structures,
sample descriptions

media samples 2-197 to 2-199
counting 2-225 to 2-226
size of 2-224

modification time 2-19, 2-219, 2-222
quality of 2-19, 2-207 to 2-208, 2-213 to 2-215, 4-15
region codes 2-238
removing from a track 2-154
sample descriptions 2-225, 2-273 to 2-274, 2-276,

2-280
sample references 2-273 to 2-281
samples 2-196 to 2-202, 2-273 to 2-281

adding 2-271 to 2-275
counting 2-225 to 2-226
editing 2-275 to 2-277
getting 2-277 to 2-279, 4-46
searching for 2-196 to 2-197, 2-199, 2-201, 2-277

sample size atoms 4-41 to 4-42
segment 2-18
size of 2-224
sound balance 2-289
sync samples, searching for 2-197, 2-200, 2-201,

2-279, 2-281
time coordinate systems for 2-13, 2-19
and time scales 2-19
and tracks 2-18, 2-202 to 2-205
tracks, inserting into 2-252 to 2-254
type values 2-153
user data

adding items to 2-235, 2-236 to 2-237
determining number of 2-234
finding item 2-235, 2-237
removing item 2-238
type values 4-21

using movie time base 2-19
media time

converting from track time 2-191, 2-193 to 2-194
in edit list tables 4-25

MediaTimeToSampleNum function 2-228 to 2-229
memory

loading a media into 2-143
loading a movie into 2-140
loading a track into 2-142

'minf' atom type 4-6, 4-16, 4-26, 4-27, 4-29
modification time

for tracks 2-18
for media atoms 4-18
for media structures 2-19, 2-219, 2-220, 2-222
for movie atoms 4-12

I N D E X

IN-11

for movies 2-16, 2-220
for track atoms 4-15
for tracks 2-221

monaural sound 2-31
'moov' atom type 4-6
'MooV' file type 2-61, 2-100, 4-3
movie atoms 4-6, 4-10 to 4-12

layout of 4-10
movie boundary regions 2-24, 2-158, 2-163 to 2-164,

2-171 to 2-172
movie boxes 2-20, 2-25, 2-161 to 2-162
movie clipping regions 2-24 to 2-25, 2-166, 2-172 to

2-174
movie clips, in movie atoms 4-10
movie controller components

playing movies with 2-38
and QuickTime 1-7

Movie data type 2-77
movie display boundary regions 2-24
movie display clipping regions 2-25, 2-165 to 2-166
MovieEditState data type 2-77
movie edit state identifiers 2-77
movie edit state. See undo for movies
movie files 2-32, 2-34, 2-35 to 2-36, 4-4 to 4-5

closing 2-61, 2-99
creating 2-46 to 2-48, 2-61, 2-96 to 2-98, 2-107
deleting 2-100
loading a movie from 2-35, 2-61, 2-88 to 2-92
opening 2-47 to 2-48, 2-61, 2-98 to 2-99
resources 2-103 to 2-104
saving movies in 2-32, 2-61 to 2-62
single-fork 2-32, 2-99, 2-100, 2-110 to 2-111, 4-4 to 4-5

movie header atoms 4-6, 4-11 to 4-12
movie identifiers 2-77
movie posters. See posters, movie
movie previews. See previews, movie
movie resource atoms. See 'moov' atom type
movie resources 4-3

changing 2-103 to 2-104
clipping atoms 4-22
edit atoms 4-24 to 4-25
exchanging 4-3
introduced 4-3
media atoms 4-16 to 4-18
movie atoms 4-10 to 4-12
removing 2-104
saving movies in 2-32
track atoms 4-13 to 4-16
updating 2-103 to 2-104
user-defined data atoms 4-19

movies
activating 2-89, 2-90, 2-92, 2-97, 2-109, 2-145 to 2-146
atoms 4-10 to 4-12
audio properties 2-30 to 2-31
changed flag 2-61, 2-101 to 2-102

characteristics 2-15 to 2-17
and the Clipboard 2-32
clipping regions of 2-25, 2-166, 2-172 to 2-174
and clock components 2-317
converting track time to media time 2-194
copying settings 2-261
creating 1-10, 2-45 to 2-61, 2-90, 2-92, 2-109, 2-146,

2-245
by copying from original 2-248 to 2-249
by cutting from original 2-247 to 2-248
empty 2-96 to 2-98
from a handle 2-90 to 2-92
pictures 2-148, 2-149
from a resource 2-90 to 2-92
from scrap 2-245 to 2-246
tracks 2-52 to 2-54, 2-151 to 2-152

creation dates, user data type for 4-21
creation time 2-16, 2-220
credits in, user data type for 4-21
current position in 2-16
current selections 2-16, 2-247 to 2-251
data references, resolving 2-89, 2-109, 2-245
data structures in 2-15 to 2-17, 2-76 to 2-81
defined 2-5, 2-9 to 2-11
deleting 2-61, 2-108, 2-260
director names, user data type for 4-21
display boundary regions 2-24, 2-163
display clipping regions of 2-24, 2-166
display coordinate systems of 2-159 to 2-160
displaying 2-42
disposing of 2-96
duration of 2-16, 2-185
edit atoms 4-24 to 4-25
edit dates and descriptions, user data type for 4-21
editing 1-10
edit states 2-254 to 2-256
and event loops 2-124 to 2-129
files. See movie files
formats, user data type for 4-21
graphics world for 2-93, 2-159 to 2-161
hardware requirements, user data type for 4-21
identifiers 2-77
information about, user data type for 4-21
interesting times, finding 2-196 to 2-202
key frames 2-138
layers in 2-10, 2-24, 2-169
loading 2-35, 2-61, 2-88 to 2-90

movies (continued)
loading into memory 2-140
locating a specified point 2-127
and master time bases 2-318
and matrices 2-24 to 2-28

determining 2-158, 2-170 to 2-171
getting 2-170 to 2-171
introduced 2-16, 2-26 to 2-28

I N D E X

IN-12

setting 2-161 to 2-162, 2-170
media handlers 2-284
media sample descriptions

counting 2-225
media sample references 2-275 to 2-277, 2-279 to

2-281
media samples. See media structures, samples 2-222
modification time 2-16, 2-220
performers, user data type for 4-21
playing 1-8 to 1-9, 2-41 to 2-45, 2-111 to 2-112
playing with a movie controller 2-38 to 2-41
prerolling 2-134, 2-135
preview time 2-123
producer, user data type for 4-21
putting on the scrap 2-45, 2-244
quality of 2-18, 2-207 to 2-215, 4-15
rate 2-130 to 2-131, 2-188, 4-12
region codes 2-208
removing

resources from 2-104
tracks from 2-152

removing segment from 2-251
repositioning at beginning 2-113
resolving data references 2-91
resource ID values 2-88, 2-103
resources. See movie resources
saving 2-100 to 2-103
and the scrap 2-32, 2-45, 2-61. See also Movie Toolbox
segments

changing duration of 2-260 to 2-261
clearing 2-251
combining 2-257 to 2-259
copying 2-243, 2-248 to 2-249
cutting 2-247 to 2-248
deleting 2-247 to 2-248, 2-260
inserting 2-257 to 2-259
pasting 2-243, 2-249 to 2-250
scaling 2-260 to 2-261

settings of
copying 2-261 to 2-262
preferred 2-111 to 2-112, 2-130 to 2-133
preferred volume 2-16, 2-29

software requirements, user data type for 4-21
sound 2-29 to 2-31
sound volume 2-132 to 2-133, 4-12

determining 2-182 to 2-183
setting 2-182

spatial properties 2-20 to 2-25, 2-158 to 2-181
specifying 2-87, 2-93 to 2-95
starting 2-111 to 2-112
status of 2-128 to 2-129
stopping 2-112
storing 2-32, 4-4 to 4-5
and time 2-9 to 2-12
time bases 2-8, 2-16, 2-185, 2-190 to 2-191

time coordinate systems 2-6 to 2-8, 2-191 to 2-194
time scales 2-189 to 2-190, 4-10, 4-12, 4-18
track atoms 4-13 to 4-16
undo for 2-254 to 2-257
update events 2-62 to 2-63
updating display 2-42, 2-62, 2-126 to 2-127
user data

type values 4-21
video and sound 2-30 to 2-31, 2-42
writers of, user data type for 4-21

movies, playback rates. See playback rates, movie
movies, segments, active. See active movie segments
MoviesTask function 2-42, 2-62, 2-124 to 2-125
Movie Toolbox 2-5 to 2-428

and Alias Manager 2-36, 2-63 to 2-64
application-defined functions 2-71 to 2-73, 2-354 to

2-365
and Component Manager 2-317, 2-319
current error values 2-85
displaying previews 2-304 to 2-314
editing movies 2-242 to 2-281
exiting 2-35
File Manager support 2-64
functions in 2-87 to 2-353

adding samples to media structures 2-271 to 2-281
alternate track functions 2-207 to 2-215
callback functions for time bases 2-335 to 2-341
characteristics for display 2-158 to 2-181
cover functions 2-71 to 2-73, 2-155 to 2-157, 2-357

to 2-358
creating and loading movies 2-87 to 2-100
creating file previews 2-301 to 2-315
creating tracks and media 2-150 to 2-154
for creation and modification time 2-219 to 2-222
for custom error-processing 2-358
data reference functions 2-215 to 2-219
data structures in 2-76 to 2-81
disabling movies and tracks 2-145 to 2-147
editing movies 2-242 to 2-262
editing tracks 2-262 to 2-268
enhancing movie playback performance 2-134 to

2-143
error-processing 2-84 to 2-87, 2-358 to 2-359
event loop functions 2-124 to 2-130
finding interesting times 2-196 to 2-202
generating pictures from movies 2-148 to 2-150
getting and playing movies 2-81 to 2-157
locating a movie’s tracks and media 2-202 to 2-206
matrix functions 2-116 to 2-117, 2-341 to 2-353
for media handlers 2-281 to 2-301
for media samples 2-222 to 2-230
for media time 2-194 to 2-196
modifying movie properties 2-157 to 2-242
for movie time 2-184 to 2-191
playing movies 2-111 to 2-114

I N D E X

IN-13

posters and previews 2-114 to 2-123
preferred movie settings 2-130 to 2-134
saving movies 2-100 to 2-111
sound volume functions 2-181 to 2-184
time base functions 2-315 to 2-341
track time functions 2-191 to 2-194
undo for movies 2-254 to 2-257
undo for tracks 2-268 to 2-271
user data functions 2-230 to 2-242

initializing 2-35, 2-82 to 2-83
low-level movie editing 2-257 to 2-268
and QuickTime 1-6
sound media handlers 2-288 to 2-289
sticky error values 2-84, 2-85, 2-86
and System 6 2-63 to 2-68
testing for availability 2-33 to 2-34
and time bases 2-315 to 2-341
undo for tracks 2-268 to 2-271
version number 2-33
video media handlers 2-287 to 2-288

movie user data atoms 4-21
moving QuickTime movies to other computer

systems 2-32, 2-107
muting a movie 2-29
'mvhd' atom type

directive 4-6
in movie atoms 4-10

MyActivateProc function 2-363
MyAlignmentProc function 3-156
MyCallBack function 2-364
MyCallOutProc function 2-359
MyCompletionProc function 3-154
MyCoverProc function 2-358
MyDataLoadingProc function 3-149
MyDataUnloadingProc function 3-151 to 3-152
MyDlgHook function 2-361
MyErrProc function 2-359
MyFileFilter function 2-360
MyModalFilter function 2-362
MyProgressProc function 2-355 to 2-357, 3-153 to

3-154
MyTextProc function 2-364

N

NewAlias function 2-64
NewAliasMinimalFromFullPath function 2-64
NewCallBack function 2-336 to 2-337
NewImageGWorld function 3-147 to 3-148
NewMovieEditState function 2-255
NewMovieFromDataFork function 2-109 to 2-110
NewMovieFromFile function 2-35, 2-61, 2-88 to 2-90
NewMovieFromHandle function 2-61, 2-90 to 2-92

NewMovieFromScrap function 2-45, 2-245 to 2-246
NewMovie function 2-92 to 2-93
NewMovieTrack function 2-48, 2-52, 2-151 to 2-152
NewTimeBase function 2-316
NewTrackEditState function 2-269
NewTrackMedia function 2-48, 2-52, 2-153 to 2-154
NewUserDataFromHandle function 2-242
NewUserData function 2-240 to 2-241

O

offset, determining track 2-193
offset-binary sound data encoding 2-31, 2-80
opcolors, for transfer modes 4-28
OpenMovieFile function 2-35, 2-61, 2-98 to 2-99

P

palindrome looping, of time bases 2-331
parsing a sound resource 2-59
PasteHandleIntoMovie function 2-252 to 2-253
PasteMovieSelection function 2-249 to 2-250
PCM (pulse-code modulation) 2-31
Photo Compressor 3-10, 3-64
PICT files

clipping images in 3-98 to 3-102
compressing 3-8, 3-24, 3-93 to 3-97
creating thumbnail from 3-104 to 3-105
drawing image from 3-97
getting picture frame 3-102
version 2 3-24

picture frames, getting 3-102
pictures

clipping compressed 3-100
compressing 3-8, 3-89 to 3-97
creating from a movie 2-148
creating from a movie’s preview 2-148
creating thumbnail from 3-103 to 3-105

pixel depth conversion, image compression 3-12
pixel maps

compressing 3-8
creating thumbnails from 3-105 to 3-106

playback rates, movie 2-16, 2-130 to 2-131, 2-185, 2-187
to 2-188

playing a movie 2-42
playing a movie with a movie controller 2-38
playing back a sequence 3-42 to 3-44
PlayMoviePreview function 2-120 to 2-121
points, transforming through a matrix 2-347
position in a movie. See current time
posters, movie 2-11, 2-114 to 2-116

I N D E X

IN-14

boundary rectangle for 2-118
creating a picture from 2-149
defined 2-11, 2-16
time 2-118 to 2-119
time, in movie atoms 4-12

preferred rates, movie
defined 2-16
getting 2-131
in movie atoms 4-12
setting 2-130 to 2-131

preferred volume, movie
defined 2-16
getting 2-133
in movie atoms 4-12
setting 2-132 to 2-133

PrerollMovie function 2-135
preview components 1-7
previews, files 2-65 to 2-71
previews, movie 2-114 to 2-123

defined 2-10, 2-16
determining preview mode 2-122
determining preview time 2-123
duration, in movie atoms 4-12
playing 2-120
setting preview mode 2-121
setting preview time 2-122 to 2-123, 4-12
time, in movie atoms 4-12

progress functions 2-155 to 2-156, 2-354 to 2-357, 3-48,
3-86, 3-95, 3-98, 3-101, 3-148, 3-152 to 3-154

assigning to an image 3-77, 3-82
creating a thumbnail 3-105
defined 2-71, 2-155
drawing a picture file 3-97
during picture compression 3-77, 3-86, 3-92
retrieving data about pixel map image 3-141

progress function structure. See ProgressProcRecord
data type

ProgressProcPtr data type 3-152
PtInMovie function 2-127
PtInTrack function 2-128
pulse-code modulation (PCM) 2-31
PutMovieIntoDataFork function 2-110 to 2-111
PutMovieIntoHandle function 2-104 to 2-105
PutMovieIntoTypedHandle function 2-253 to 2-254
PutMovieOnScrap function 2-45, 2-244
PutUserDataIntoHandle function 2-241 to 2-242

Q

QTCallBack data type 2-77
'qtim' selector 2-33
quality

of compressed images 3-51

determining compressor capability for 3-69 to 3-71
of images 3-9
for a media 2-19, 2-213 to 2-214, 4-18
for movies 2-18, 2-207 to 2-208
values for 3-57 to 3-58

QuickTime for Windows 4-4

R

random access operations 2-134
rate

defined 2-8
determining for a time base 2-326

rates, movie
getting 2-188
preferred 2-16, 2-130 to 2-131, 4-12. See also playback

rates, movie
setting 2-187 to 2-188

Raw Compressor 3-12, 3-64
'raw ' compressor type 3-64
'raw ' enumerator 2-80
recompressing images 3-82
rectangles, transforming with a matrix 2-348 to 2-353
RectMatrix function 2-351 to 2-352
region bounding box, in clipping atoms 4-22
region codes

media, determining 2-212 to 2-213
media, setting 2-212
movie, setting 2-208

regions
clipping. See clipping regions
transforming with a matrix 2-350

RemoveMovieResource function 2-61, 2-104
RemoveUserData function 2-236
RemoveUserDataText function 2-238
removing

callback events 2-339
part of a movie 2-260
part of a track 2-266

rescheduling a callback event 2-339
resizing a compressed image 3-85
resolution, horizontal 3-51
resolution, vertical 3-51
ResolveAliasFile function 2-64
ResolveAlias function 2-64
resource ID values for movies 2-88, 2-103
resource types
'SEQU' 3-42
'snd ' 2-59

result codes, retrieving from Movie Toolbox 2-84, 2-85,
2-86

'rle ' compressor type 3-64
RotateMatrix function 2-345

I N D E X

IN-15

rotation operations, and matrices 2-28, 2-342
'rpza' compressor type 3-64

S

sample count, in time-to-sample tables 4-37
sample data

adding to a media 2-273 to 2-277
getting information about 2-279 to 2-281
getting from a media 2-277 to 2-279
working with 2-275 to 2-277

sample description atoms 4-6, 4-35
in sample table atoms 4-34
tables 4-35

sample description atom type. See 'stsd' atom type
SampleDescription data type 2-405
SampleDescriptionHandle data type 2-405
SampleDescriptionPtr data type 2-405
sample description record. See SampleDescription

data type
sample descriptions 2-225. See also media structures

sample duration in time-to-sample tables 4-37
sample groups in a media 2-197, 2-199, 2-201
SampleNumToMediaTime function 2-229 to 2-230
sample rates, for sound data 2-31, 2-81
sample references, media 2-279 to 2-281
samples

finding in a media 2-201
sample size atoms 4-6, 4-41 to 4-42

in sample table atoms 4-34
tables 4-42

sample size of sound data 2-31
samples per chunk, in sample-to-chunk tables 4-40
samples. See media structures, samples
sample table atoms 4-6, 4-33 to 4-34

in sound media information atom 4-29
in video media information atom 4-27

sample-to-chunk atoms 4-6, 4-39 to 4-41
in sample table atoms 4-34
tables 4-40 to 4-41

saving image sequences to disk files 3-36 to 3-38
saving movies in movie files 2-61 to 2-62
ScaleMatrix function 2-344
ScaleMovieSegment function 2-260 to 2-261
ScaleTrackSegment function 2-266 to 2-267
scaling a movie segment 2-260 to 2-261
scaling a track segment 2-266 to 2-267
scaling operations

matrices for 2-27, 2-28, 2-342, 2-344, 2-351
scrap

getting a movie from 2-245
and movies 2-32, 2-45
putting a movie on 2-244

screen buffers
introduced 3-34
for a sequence 3-136 to 3-137
using 3-59, 3-115

scroll delay atoms 2-291
scrubbing 2-134
selection duration

in movie atoms 4-12
movies 2-16

selections, movie 2-16, 2-246 to 2-251
selection time

in movie atoms 4-12
movies 2-16

SelectMovieAlternates function 2-209
sequence grabber channel components 1-7
sequence grabber components 1-7
sequence grabber panel components 1-7
sequences, compressing. See compressing images
sequences, decompressing. See decompressing

sequences
sequences, images. See image sequences
'SEQU' resource 3-36, 3-42
SetAutoTrackAlternatesEnabled function 2-210
SetCompressedPixMapInfo function 3-139 to 3-140
SetCSequenceDataParams function 3-128
SetCSequenceFlushProc function 3-125 to 3-126
SetCSequenceFrameNumber function 3-123 to 3-124
SetCSequenceKeyFrameRate function 3-47, 3-121 to

3-122
SetCSequencePrev function 3-124 to 3-125
SetCSequenceQuality function 3-120 to 3-121
SetDSequenceAccuracy function 3-134
SetDSequenceDataProc function 3-135
SetDSequenceMask function 3-132
SetDSequenceMatrix function 3-131 to 3-132
SetDSequenceMatte function 3-133
SetDSequenceSrcRect function 3-131
SetDSequenceTransferMode function 3-130
SetIdentityMatrix function 2-341
SetImageDescriptionCTable function 3-87
SetMediaDataHandler function 2-286 to 2-287
SetMediaDataRef function 2-216 to 2-217
SetMediaHandler function 2-284
SetMediaLanguage function 2-212
SetMediaPlayHints function 2-139 to 2-140
SetMediaQuality function 2-213 to 2-214
SetMediaSampleDescription function 2-227 to 2-228
SetMediaShadowSync function 2-144
SetMediaTimeScale function 2-195
SetMovieActive function 2-145 to 2-146
SetMovieActiveSegment function 2-136
SetMovieBox function 2-20, 2-161 to 2-162
SetMovieClipRgn function 2-172 to 2-173
SetMovieCoverProcs function 2-156 to 2-157
SetMovieDisplayClipRgn function 2-158, 2-165

I N D E X

IN-16

SetMovieGWorld function 2-159 to 2-160
SetMovieLanguage function 2-208 to 2-209
SetMovieMasterClock function 2-317
SetMovieMasterTimeBase function 2-318
SetMovieMatrix function 2-170
SetMoviePlayHints function 2-137 to 2-138
SetMoviePosterTime function 2-118 to 2-119
SetMoviePreferredRate function 2-130 to 2-131
SetMoviePreferredVolume function 2-29, 2-132 to

2-133
SetMoviePreviewMode function 2-121
SetMoviePreviewTime function 2-122 to 2-123
SetMovieProgressProc function 2-155 to 2-156
SetMovieRate function 2-187 to 2-188
SetMovieSelection function 2-246
SetMoviesErrorProc function 2-86 to 2-87
SetMovieTime function 2-186
SetMovieTimeScale function 2-189
SetMovieTimeValue function 2-185 to 2-186
SetMovieVolume function 2-29, 2-182
SetPosterBox function 2-117
SetSoundMediaBalance function 2-289
SetTextProc function 2-301
SetTimeBaseEffectiveRate function 2-326 to 2-327
SetTimeBaseFlags function 2-330
SetTimeBaseMasterClock function 2-318 to 2-319
SetTimeBaseMasterTimeBase function 2-320 to 2-321
SetTimeBaseRate function 2-325 to 2-326
SetTimeBaseStartTime function 2-327
SetTimeBaseStopTime function 2-328 to 2-329
SetTimeBaseTime function 2-323
SetTimeBaseValue function 2-324
SetTimeBaseZero function 2-322
SetTrackAlternate function 2-210 to 2-211
SetTrackClipRgn function 2-178
SetTrackDimensions function 2-176 to 2-177
SetTrackEnabled function 2-147
SetTrackLayer function 2-168 to 2-169
SetTrackMatrix function 2-174
SetTrackMatte function 2-179 to 2-180
SetTrackOffset function 2-192
SetTrackUsage function 2-115
SetTrackVolume function 2-29, 2-183
SetUserDataItem function 2-239
SetVideoMediaGraphicsMode function 2-287
SFGetFilePreview function 2-65 to 2-68, 2-306 to

2-307
SFPGetFilePreview function 2-65 to 2-68, 2-308 to

2-310
SFTypeList data type 2-307, 2-309, 2-311
shadow sync atoms 4-6
shadow sync samples 2-134
shadow sync tables 4-45
shear operations and matrices 2-345, 2-346, 2-342
ShowMoviePoster function 2-116 to 2-117

shrunken text box atoms 2-290
similarity, in image sequence 3-71
single-fork movie files 2-99, 2-100, 2-103, 2-107, 2-108,

4-4 to 4-5
size

of compressed images 3-51, 3-68, 3-69
of media 2-224
of movie 2-223
of track 2-224

skewing operations
determining matrices for 2-342
specifying matrices for 2-342

SkewMatrix function 2-345 to 2-346
skew operations and matrices 2-345
'smc ' compressor type 3-64
'smhd' atom type 4-6, 4-26, 4-30
'snd ' resource 2-52
sound balance 2-29 to 2-30

determining media 2-289
in sound media information atoms 4-30
setting media 2-289

sound data 2-29 to 2-31
interleaving in a movie 2-30, 2-106, 2-108
sample rate 2-31, 2-81
sound description structure and 2-79
storage formats 2-31, 2-80

SoundDescription data type 2-79 to 2-81
SoundDescriptionHandle data type 2-405
SoundDescriptionPtr data type 2-405
sound descriptions, creating 2-55 to 2-59
sound description structure 2-79 to 2-81
Sound Manager and the Movie Toolbox 2-42
sound media handlers 2-288 to 2-289
sound media information atoms 4-28 to 4-29
sound media information header atoms 4-6, 4-29 to

4-30
sound playback of movies 2-29 to 2-30
sound resources, parsing 2-59 to 2-61
sound tracks, creating 2-18, 2-52 to 2-54
sound volume

of movies 2-29, 2-182 to 2-183
muting 2-29
of tracks 2-29
tracks, getting 2-184
tracks, setting 2-183
values 2-29

'soun' media type 4-19
spatial compression of images 3-7, 3-121
spatial dimensions, track 2-177
spatial properties of movies and tracks 2-20 to 2-25
speed

of compressor component 3-54
of decompressor component 3-54
of image compression 3-9

spooling compressed images 3-44 to 3-45

I N D E X

IN-17

standard compression dialog components 1-7
StandardGetFilePreview function 2-68 to 2-69,

2-310 to 2-311
StartMovie function 2-111 to 2-112
'stbl' atom type 4-6, 4-26, 4-33, 4-34
'stco' atom type 4-6, 4-42, 4-43
StdPix function 3-25, 3-138 to 3-139
stereo sound 2-31
sticky error values 2-84 to 2-86
StopMovie function 2-112
storing sound data 2-29 to 2-31
'stsc' atom type 4-6, 4-39
'stsd' atom type 4-6, 4-35
'stsh' atom type 4-6, 4-44 to 4-45
'stss' atom type 4-6, 4-38
'stsz' atom type 4-6, 4-41
'stts' atom type 4-6, 4-36
style atoms 2-290
subordinate time base, setting offset 2-322
subtracting time 2-333
SubtractTime function 2-333 to 2-334
sync sample atoms 4-6, 4-34, 4-38 to 4-39
sync sample atom type. See 'stss' atom type
sync samples 2-135, 2-196, 2-197, 2-200, 2-201

adding to a media 2-274, 2-276
finding in a media 2-279, 2-281

System 6
and the Movie Toolbox 2-65 to 2-68
and previewing files 2-65 to 2-67

T

temporal compression of images
controlling 3-109, 3-121
defined 3-7
and key frames 3-47

text atoms 2-290
TextDescription data type 2-291
text description structure 2-291
text media handlers 2-290 to 2-301
thumbnails

creating 3-103 to 3-106
creating from pixel maps 3-105 to 3-106
defined 2-65
for previewing files 2-65

time. See also time bases
time, image compression, estimating 3-69
time, media, determining for a sample 2-229
time, movie, determining 2-187
time, movie, setting 2-185, 2-186
time, track. See track time
time, units per second 2-6
TimeBase data type 2-77

time-based data 2-5
time bases 2-5 to 2-8

adding time values 2-333
and callback events

canceling 2-339
creating 2-336 to 2-337
determining 2-340
disposing of 2-339
scheduling 2-337 to 2-339

callback functions 2-335 to 2-341
and clock components 2-318 to 2-320
control flags 2-330 to 2-331
converting 2-334 to 2-335
creating 2-316
and current time 2-322 to 2-325
defined 2-6
disposing of 2-316 to 2-317
end times of 2-329
functions 2-315 to 2-341
identifiers 2-77
looping 2-330 to 2-331
offsets 2-322
rates of 2-326
start times of 2-328
status information from 2-331 to 2-332
time values 2-324 to 2-325

time bases, master
assigning to a movie 2-318
assigning to a time base 2-320 to 2-321
determining 2-321

time coordinate systems 2-5 to 2-8, 2-16
TimeRecord data type 2-77
times 2-5 to 2-8

adding 2-332 to 2-333
converting 2-334. See also time bases; time scales;

time values
subtracting 2-333 to 2-334
units per second 2-6

time scales 2-6 to 2-7
converting between 2-334
defined 2-6, 4-12
for media structures 2-195 to 2-196
for media 4-18
for movies 2-189 to 2-190, 4-12

time specification 2-77
time structures format 2-77 to 2-78
time-to-sample atoms 4-6, 4-36 to 4-37

in sample table atoms 4-34
tables 4-36 to 4-37

time units 2-6
time values 2-7 to 2-8

converting between time bases 2-334
defined 2-7
subtracting 2-333

'tkhd' atom type 4-6

I N D E X

IN-18

in track atoms 4-13
track atoms 4-6

layout of 4-13 to 4-14
track atom type. See 'trak' atom type
track boundary regions 2-22
track clipping regions

defined 2-22
determining 2-179
setting 2-178

track clips in track atoms 4-13
track coordinate systems 2-22
Track data type 2-77
track directories, in movie atoms 4-10
track duration

in edit list tables 4-25
in track header atoms 4-15

TrackEditState data type 2-77
track edit state identifiers 2-77
track edit state. See undo for tracks
track header atoms 4-6, 4-14 to 4-16
track header flags 4-15
track height 2-22, 2-177, 4-16
track identifiers 2-77
track ID number

in movie atoms 4-12
next value 4-12
in track header atoms 4-15

track matte atoms 4-6, 4-23
track mattes

creating 2-73 to 2-75
defined 2-22
determining 2-180
setting 2-179 to 2-180
in track matte atoms 4-23

track movie boundary regions
defined 2-23
for a segment 2-167 to 2-168

track rectangles, determining 2-177
tracks

adding to a movie 2-258
alternate groups of. See alternate groups of tracks
clipping for display 2-179
converting track time to media time 2-193 to 2-194
coordinate systems 2-22
copying settings of 2-267 to 2-268
count 2-203
creating 2-45 to 2-61, 2-150 to 2-152
creating a media for 2-151, 2-153 to 2-154
creation time 2-18, 2-219, 2-220 to 2-221
data structures in 2-17 to 2-18
deep-mask operations on 2-22
defined 2-5, 2-12 to 2-13, 2-17 to 2-18
defining parts of a media to use in 4-24
deleting segments from 2-266
dimensions 2-177

display boundary regions of 2-166 to 2-168
duration of 2-9, 2-10, 2-12, 2-191 to 2-192
edit states

creating 2-269
removing 2-270 to 2-271
restoring to previous 2-270

enabled 2-10, 2-147 to 2-148
height of 2-22, 2-177
ID 2-205
identifiers 2-77, 2-203 to 2-204, 2-204

determining 2-151 to 2-152, 2-204
inserting empty segment into 2-264
inserting media segment into 2-265
interesting times, finding 2-196, 2-199 to 2-200
in key frames 2-196 to 2-200
layers in 2-10, 2-24, 2-169, 4-15
loading into memory 2-142
locating a specified point 2-128
matrices for 2-18, 2-23, 2-175, 4-15
and media edit lists 2-12, 2-18
media handlers for 2-284
and media samples in

getting 2-197, 2-199
groups of 2-197, 2-199, 2-201

and media structures
creating for 2-150 to 2-154
number of samples 2-225 to 2-226
removing from 2-152, 2-154
size of 2-223 to 2-224
for a specific track 2-202 to 2-205

modification time 2-18, 2-221
movie 2-205
movie boundary regions 2-23
in a movie poster 2-10, 2-115, 2-116
in a movie preview 2-10, 2-115 to 2-116
and movies 2-12 to 2-13, 2-115 to 2-116

counting tracks in 2-203
finding specified track in 2-202 to 2-203, 2-205
removing tracks from 2-152

offsets for 2-193
point, locating in 2-124, 2-128
removing

media from 2-153 to 2-154
from a movie 2-152
segment from 2-266

scaling segments of 2-266 to 2-267
segments

adding to media 2-250 to 2-251
changing duration of 2-266 to 2-267
empty, adding 2-264
inserting 2-249 to 2-250, 2-262 to 2-263
removing from 2-251

setting matrices for 2-174
setting mattes for 2-179 to 2-180
size of 2-224

I N D E X

IN-19

sound volume 2-18, 2-29, 2-151, 2-183 to 2-184
spatial properties 2-20 to 2-25
status of 2-129
time scale 2-12, 2-18
track atoms 4-13 to 4-16
transforming 2-18, 2-23 to 2-28, 2-175
transforming for display 2-23
undo for 2-269
usage 2-115, 2-116
user data in 2-18
width of 2-22, 2-151, 2-177

tracks, mattes for. See track mattes
TrackTimeToMediaTime function 2-193 to 2-194
track volume 4-15
track width 2-151, 2-177

defined 2-22
in track header atoms 4-16

'trak' atom type 4-6, 4-13
in movie atoms 4-10

transfer modes
opcolors for 4-28
setting for decompressing images 3-130

transformation matrix 2-26 to 2-28
TransformFixedPoints function 2-348
TransformFixedRect function 2-349 to 2-350
TransformPoints function 2-347
TransformRect function 2-348 to 2-349
TransformRgn function 2-350
TranslateMatrix function 2-344
translation operations

determining matrices for 2-342
and matrices 2-27, 2-28
specifying matrices for 2-351

TrimImage function 3-85 to 3-86
trimming

compressed PICT files 3-102
compressed pictures 3-100
PICT files 3-101 to 3-102
picture 3-98 to 3-100

twos-complement sound data encoding 2-31

U

'udta' atom type 4-6, 4-21
in media atoms 4-16
in movie atoms 4-10
in track atoms 4-13

undo for movies 2-254 to 2-257
undo for tracks 2-269 to 2-271
UpdateAlias function 2-64
UpdateMovie function 2-62 to 2-63, 2-126 to 2-127
UpdateMovieResource function 2-61, 2-103 to 2-104
updating movie display 2-62

usage, track
determining 2-116
setting 2-115

UseMovieEditState function 2-255 to 2-256
user data

adding text items 2-236 to 2-237
counting number of types 2-234
determining next data type 2-233 to 2-234
finding text items 2-237
getting access to media's list 2-233
getting access to movie's list 2-231
identifiers 2-77
items 2-230

adding 2-235
finding 2-235
removing 2-236, 2-238

list 2-230
in media 2-19
in movie atoms 4-10
in movies 2-17
in track atoms 4-14
in tracks 2-18
type values 2-230

UserData data type 2-77
user data list identifiers 2-77
user data type values 4-21
user-defined atoms 4-20
user-defined data atoms 4-6, 4-19 to 4-21

layout of 4-20
in track atoms 4-14

user-defined data atom type. See 'udta' atom type
UseTrackEditState function 2-270

V

value 2-405
version, Image Compression Manager 3-24, 3-62
version 2 PICT files 3-24, 3-102 to 3-103
version number of the Movie Toolbox 2-33
'vers' resource 2-33
vertical resolution of compressed images 3-51
'vide' media type 4-19
Video Compressor 3-10, 3-64
video data

creating for a new movie 2-52
interleaving in a movie 2-30, 2-106, 2-108
storing in a movie 2-30

video digitizer components 1-7
videoFlagNoLeanAhead flag 4-28
video media blend color 2-287 to 2-288
video media handlers 2-287 to 2-288
video media information atoms 4-26 to 4-27
video media information header atoms 4-6, 4-27

I N D E X

IN-20

video samples, adding to a media 2-50 to 2-52
video tracks, creating 2-48 to 2-49
'vmhd' atom type 4-6, 4-26 to 4-28
volume, movie

current 2-29
determining 2-182 to 2-183
preferred 2-16, 2-29

setting 2-132 to 2-133
setting 2-151, 2-182

volume, track 2-18, 2-29
getting 2-184
setting 2-183
in track atoms 4-15

W, X, Y, Z

width, track. See track width
width of compressed images 3-51
Window Manager, and the Movie Toolbox 2-62, 2-126

to 2-127
windows, aligning 3-142

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an AGFA ProSet 9800 imagesetter.
Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS

Doug Engfer and Patria Brown

DEVELOPMENTAL EDITOR

Sue Factor

ILLUSTRATOR

Ruth Anderson

PRODUCTION EDITORS

Pat Christenson, Josephine Manuele

PROJECT MANAGER

Patricia Eastman

COVER DESIGNER

Barbara Smyth

Special thanks to Jim Batson,
Julie Callahan, Sean Callahan, Ken Doyle,
Peter Hoddie, Sanborn Hodgkins,
Mark Krueger, Bruce Leak, Kip Olson,
and Laurel Rezeau.

Acknowledgments to Rita Brennan,
Eric Chan, Mike Dodd, Bill Guschwan,
Eric Hoffert, Miki Lee, Guillermo Ortiz,
Martha Steffen, John Wang,
Gary Woodcock, Bill Wright, and the
entire Inside Macintosh team.

