INSIDE MACINTOSH

Sound

[
rTw

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

NuBus™ is a trademark of Texas
Instruments.

Optrotech is a trademark of Orbotech
Corporation.

authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
HyperCard, LaserWriter, Macintosh,
Macintosh Quadra, MPW, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
AppleDesign, AudioVision, Finder,
MacinTalk, QuickDraw, and QuickTime
are trademarks of Apple Computer, Inc.
Adobe lllustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
Classic® is a registered trademark
licensed to Apple Computer, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

Sony™ is a trademark of Sony
Corporation, registered in the U.S. and
other countries.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is

ISBN 0-201-62272-6
1234567 89-CRW-9897969594
First Printing, May 1994

The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. Sound 7/ [Apple Computer, Inc.]

p. cm.
Includes index.
ISBN 0-201-62272-6

1. Macintosh (Computer) 2. Computer sound processing.

Computer, Inc.
QAT76.8.M3153 1994
006.5--dc20

Preface

Contents

Figures, Tables, and Listings Xi

About This Book xv

Chapter 1

Format of a Typical Chapter XVi
Conventions Used in This Book XVi
Special Fonts XVi
Types of Notes XVvii
Assembly-Language Information XVii
Development Environment Xviii
For More Information XiX

Introduction to Sound on the Macintosh

1-1

About Sound on Macintosh Computers 1-4
Sound Capabilities 1-4
Sound Production 1-9
Sound Recording 1-15
Sound Resources 1-17
Sound Files 1-18
Speech Generation 1-20
The User Interface for Sound 1-23
Using Sound on Macintosh Computers 1-24
Producing an Alert Sound 1-24
Playing a Sound Resource 1-25
Playing a Sound File 1-26
Checking For Sound-Recording Equipment 1-27
Recording a Sound Resource 1-28
Recording a Sound File 1-31
Checking For Speech Capabilities 1-31
Generating Speech From a String 1-32
Sound Reference 1-34
Routines 1-34
Playing Sounds 1-34
Recording Sounds 1-38
Generating and Stopping Speech 1-41
Summary of Sound 1-44
Pascal Summary 1-44
Constants 1-44
Routines 1-44
C Summary 1-45

Chapter 2

Constants 1-45
Routines 1-46
Result Codes 1-47

Sound Manager 21

About the Sound Manager 2-6

Sound Data 2-7
Square-Wave Data 2-7
Wave-Table Data 2-8
Sampled-Sound Data 2-9
Sound Commands 2-11
Sound Channels 2-13
Sound Compression and Expansion 2-14

Using the Sound Manager 2-17

Managing Sound Channels 2-19
Allocating Sound Channels 2-20
Initializing Sound Channels 2-22
Releasing Sound Channels 2-24
Manipulating a Sound That Is Playing 2-25
Stopping Sound Channels 2-28
Pausing and Restarting Sound Channels 2-29
Synchronizing Sound Channels 2-30
Managing Sound Volumes 2-31
Obtaining Sound-Related Information 2-32
Obtaining Information About Available Sound Features 2-33
Obtaining Version Information 2-34
Testing for Multichannel Sound and Play-From-Disk Capabilities
Obtaining Information About a Single Sound Channel 2-37
Obtaining Information About All Sound Channels 2-39
Determining and Changing the Status of the System Alert Sound
Playing Notes 2-41
Installing Voices Into Channels 2-43
Looping a Sound Indefinitely 2-45
Playing Sounds Asynchronously 2-46
Using Callback Procedures 2-47
Synchronizing Sound With Other Actions 2-51
Managing an Asynchronous Play From Disk 2-52
Playing Selections 2-53
Managing Multiple Sound Channels 2-53
Parsing Sound Resources and Sound Files 2-56
Obtaining a Pointer to a Sound Header 2-57
Playing Sounds Using Low-Level Routines 2-61
Finding a Chunk in a Sound File 2-62
Compressing and Expanding Sounds 2-66
Using Double Buffers 2-68

2-35

2-40

Setting Up Double Buffers 2-70
Writing a Doubleback Procedure 2-72
Sound Storage Formats 2-73
Sound Resources 2-74
The Format 1 Sound Resource 2-75
The Format 2 Sound Resource 2-80
Sound Files 2-81
Chunk Organization and Data Types 2-82
The Form Chunk 2-83
The Format Version Chunk 2-84
The Common Chunk 2-85
The Sound Data Chunk 2-87
Format of Entire Sound Files 2-87
Sound Manager Reference 2-89
Constants 2-89
Gestalt Selector and Response Bits 2-90
Channel Initialization Parameters 2-91
Sound Command Numbers 2-92
Chunk IDs 2-98
Data Structures 2-99
Sound Command Records 2-99
Audio Selection Records 2-100
Sound Channel Status Records 2-101
Sound Manager Status Records 2-102
Sound Channel Records 2-103
Sound Header Records 2-104
Extended Sound Header Records 2-106
Compressed Sound Header Records 2-108
Sound Double Buffer Header Records 2-111
Sound Double Buffer Records 2-112
Chunk Headers 2-113
Form Chunks 2-113
Format Version Chunks 2-114
Common Chunks 2-115
Extended Common Chunks 2-115
Sound Data Chunks 2-117
Version Records 2-118
Leftover Blocks 2-119
State Blocks 2-119
Sound Manager Routines 2-119
Playing Sound Resources 2-120
Playing From Disk 2-123
Allocating and Releasing Sound Channels 2-127
Sending Commands to a Sound Channel 2-130
Obtaining Information 2-132
Controlling Volume Levels 2-139
Compressing and Expanding Audio Data 2-142

Managing Double Buffers 2-147

Performing Unsigned Fixed-Point Arithmetic 2-148

Linking Modifiers to Sound Channels 2-149
Application-Defined Routines 2-151

Completion Routines 2-151

Callback Procedures 2-152

Doubleback Procedures 2-153
Resources 2-154

The Sound Resource 2-154

Summary of the Sound Manager 2-157

Pascal Summary 2-157

Constants 2-157

Data Types 2-161

Sound Manager Routines 2-168

Application-Defined Routines 2-170
C Summary 2-170

Constants 2-170

Data Types 2-175

Sound Manager Routines 2-182

Application-Defined Routines 2-184
Assembly-Language Summary 2-184

Data Structures 2-184

Trap Macros 2-188
Result Codes 2-188

Chapter 3 Sound Input Manager 3-1

About the Sound Input Manager 3-3
Sound Recording Without the Standard Interface 3-4
Interaction With Sound Input Devices 3-4
Sound Input Device Drivers 3-5
Using the Sound Input Manager 3-5
Recording Sounds Directly From a Device 3-6
Defining a Sound Input Completion Routine 3-9
Defining a Sound Input Interrupt Routine 3-10
Getting and Setting Sound Input Device Information 3-10
Writing a Sound Input Device Driver 3-13
Responding to Status and Control Requests 3-13
Responding to Read Requests 3-15
Supporting Stereo Recording 3-16
Supporting Continuous Recording 3-17
Sound Input Manager Reference 3-17
Constants 3-17
Gestalt Selector and Response Bits 3-17
Sound Input Device Information Selectors 3-18
Data Structures 3-26

Vi

Sound Input Parameter Blocks 3-26
Sound Input Manager Routines 3-27
Recording Sounds 3-28

Opening and Closing Sound Input Devices 3-31
Recording Sounds Directly From Sound Input Devices

Manipulating Device Settings 3-41
Constructing Sound Resource and File Headers
Registering Sound Input Devices 3-48

Converting Between Milliseconds and Bytes 3-51

Obtaining Information 3-53
Application-Defined Routines 3-53
Sound Input Completion Routines 3-54
Sound Input Interrupt Routines 3-55
Summary of the Sound Input Manager 3-57
Pascal Summary 3-57
Constants 3-57
Data Types 3-58
Sound Input Manager Routines 3-59
Application-Defined Routines 3-60
C Summary 3-61
Constants 3-61
Data Types 3-62
Sound Input Manager Routines 3-63
Application-Defined Routines 3-65
Assembly-Language Summary 3-65
Data Structures 3-65
Trap Macros 3-66
Result Codes 3-66

Chapter 4 Speech Manager 41

3-33

3-44

About the Speech Manager 4-4
Voices 4-5
Speech Attributes 4-6
Speech Channels 4-9
Callback Routines 4-10
Using the Speech Manager 4-11
Checking for Speech Manager Capabilities 4-12
Creating, Using, and Disposing of a Speech Channel
Working With Different Voices 4-14
Adjusting Speech Attributes 4-16
Pausing Speech 4-18
Implementing Callback Procedures 4-19
Writing Embedded Speech Commands 4-23
Embedded Command Delimiters 4-23
Syntax of Embedded Speech Commands 4-24

4-13

Vii

viii

Examples of Embedded Speech Commands 4-30

Phonemic Representation of Speech 4-32

Phonemic Symbols 4-33
Prosodic Control Symbols 4-34

Including Pronunciation Dictionaries 4-36
Speech Manager Reference 4-39
Constants 4-39

Speech Information Selectors 4-39

Data Structures 4-45

Voice Specification Records 4-46

Voice Description Records 4-47

Voice File Information Records 4-48
Speech Status Information Records 4-48
Speech Error Information Records 4-49
Speech Version Information Records 4-50
Phoneme Information Records 4-52
Phoneme Descriptor Records 4-53
Speech Extension Data Records 4-53
Delimiter Information Records 4-54

Speech Manager Routines 4-54

Starting, Stopping, and Pausing Speech 4-55
Obtaining Information About Voices 4-63
Managing Speech Channels 4-69

Obtaining Information About Speech 4-71
Changing Speech Attributes 4-73
Converting Text To Phonemes 4-79
Installing a Pronunciation Dictionary 4-80

Application-Defined Routines 4-82

Text-Done Callback Procedure 4-82
Speech-Done Callback Procedure 4-84
Synchronization Callback Procedure 4-85
Error Callback Procedure 4-86

Phoneme Callback Procedure 4-87

Word Callback Procedure 4-88

Resources 4-89

The Pronunciation Dictionary Resource 4-89

Summary of the Speech Manager 4-94
Pascal Summary 4-94

Constants 4-94

Data Structures 4-95

Speech Manager Routines 4-98
Application-Defined Routines 4-100

C Summary 4-100

Constants 4-100

Data Types 4-102

Speech Manager Routines 4-105
Application-Defined Routines 4-106

Assembly-Language Information 4-107
Data Structures 4-107
Trap Macros 4-109

Result Codes 4-110

Chapter 5 Sound Components 51

About Sound Components 5-4
Sound Component Chains 5-4
The Apple Mixer 5-6
The Data Stream 5-7
Writing a Sound Component 5-8
Creating a Sound Component 5-8
Specifying Sound Component Capabilities 5-11
Dispatching to Sound Component-Defined Routines 5-12
Registering and Opening a Sound Component 5-16
Finding and Changing Component Capabilities 5-18
Sound Components Reference 5-22
Constants 5-22
Sound Component Information Selectors 5-22
Audio Data Types 5-26
Sound Component Features Flags 5-26
Action Flags 5-27
Data Format Flags 5-28
Data Structures 5-29
Sound Component Data Records 5-29
Sound Parameter Blocks 5-30
Sound Information Lists 5-31
Compression Information Records 5-32
Sound Manager Utilities 5-33
Opening and Closing the Apple Mixer Component 5-33
Saving and Restoring Sound Component Preferences 5-35
Sound Component-Defined Routines 5-36
Managing Sound Components 5-37
Creating and Removing Audio Sources 5-42
Getting and Setting Sound Component Information 5-44
Managing Source Data 5-46
Summary of Sound Components 5-50
C Summary 5-50
Constants 5-50
Data Types 5-53
Sound Manager Utilities 5-54
Sound Component-Defined Routines 5-55
Assembly-Language Summary 5-56
Data Structures 5-56

Chapter 6 Audio Components 61

About Audio Components 6-3
Writing an Audio Component 6-5
Creating an Audio Component 6-5
Dispatching to Audio Component-Defined Routines
Audio Components Reference 6-8
Data Structures 6-8
Audio Information Records 6-9
Audio Component-Defined Routines 6-9
Getting and Setting Volumes 6-10
Managing the Mute State 6-11
Resetting Audio Components 6-13
Getting Audio Component Information 6-13
Summary of Audio Components 6-15
C Summary 6-15
Constants 6-15
Data Types 6-16
Audio Component-Defined Routines 6-16
Assembly-Language Summary 6-17
Data Structures 6-17

Glossary L1

Index IN-1

Chapter 1

Chapter 2

Figures, Tables, and Listings

Introduction to Sound on the Macintosh 1-1

Figure 1-1 Basic sound capabilities on Macintosh computers 1-4
Figure 1-2 Enhanced sound capabilities on Macintosh computers 1-6
Figure 1-3 High quality sound capabilities on Macintosh computers 1-7
Figure 1-4 A sound component chain 1-8
Figure 1-5 A sound component chain with a DSP board 1-9
Figure 1-6 The Sound Out control panel 1-10
Figure 1-7 The relation of the Sound Manager to the audio hardware 1-11
Figure 1-8 Bypassing the command queue 1-13
Figure 1-9 Mixing multiple channels of sampled sound 1-14
Figure 1-10 The Sound In control panel 1-15
Figure 1-11 The Alert Sounds control panel 1-16
Figure 1-12 The sound recording dialog box 1-17
Figure 1-13 The speech generation process 1-21
Figure 1-14 The Speech Manager and multiple voices 1-21
Figure 1-15 An icon for a Finder sound 1-23
Figure 1-16 A sound in the Scrapbook 1-24
Table 1-1 AIFF and AIFF-C capabilities 1-19
Listing 1-1 Playing a sound resource with SndPl ay 1-25
Listing 1-2 Playing a sound file with SndSt art Fi | ePl ay 1-26
Listing 1-3 Determining whether sound recording equipment is
available 1-27
Listing 1-4 Recording through the sound recording dialog box 1-28
Listing 1-5 Recording a sound resource 1-29
Listing 1-6 Recording a sound file 1-31
Listing 1-7 Checking for speech generation capabilities 1-31
Listing 1-8 Using SpeakSt ri ng to generate speech from a string 1-32
Listing 1-9 Generating speech synchronously 1-33
Listing 1-10 Stopping speech generated by SpeakStri ng 1-34

Sound Manager 2-1

Figure 2-1 The position of the Sound Manager 2-6
Figure 2-2 A graph of a wave table 2-9

Figure 2-3 Interleaving stereo sample points 2-11
Figure 2-4 The structure of ' snd ' resources 2-74
Figure 2-5 The location of the data offset bit 2-75
Figure 2-6 The general structure of a chunk 2-83
Figure 2-7 A sample AIFF-C file 2-88

Figure 2-8 The'snd ' resource type 2-155

Figure 2-9 The sound resource header 2-156

Xi

Xil

Table 2-1
Table 2-2

Listing 2-1
Listing 2-2
Listing 2-3
Listing 2-4
Listing 2-5
Listing 2-6
Listing 2-7

Listing 2-8

Listing 2-9

Listing 2-10
Listing 2-11
Listing 2-12
Listing 2-13
Listing 2-14
Listing 2-15
Listing 2-16
Listing 2-17
Listing 2-18
Listing 2-19
Listing 2-20
Listing 2-21
Listing 2-22
Listing 2-23
Listing 2-24
Listing 2-25
Listing 2-26
Listing 2-27
Listing 2-28
Listing 2-29

Listing 2-30
Listing 2-31
Listing 2-32
Listing 2-33
Listing 2-34
Listing 2-35
Listing 2-36
Listing 2-37

Listing 2-38
Listing 2-39
Listing 2-40
Listing 2-41

Sample rates 2-16
Frequencies expressed as MIDI note values 2-43

Creating a sound channel 2-20

Reinitializing a sound channel 2-24

Disposing of memory associated with a sound channel 2-25
Halving the frequency of a sampled sound 2-26

Changing the amplitude of a sound channel 2-27

Getting the amplitude of a sound in progress 2-28

Adding a channel to a group of channels to be
synchronized 2-30

Setting left and right volumes 2-32

Determining if stereo capability is available 2-34
Determining if the enhanced Sound Manager is present 2-35
Testing for multichannel play capability 2-36

Testing for play-from-disk capability 2-37

Determining whether a sound channel is paused 2-39
Determining the number of allocated sound channels 2-40
Using the f reqDur at i onQrd command 2-42

Installing a sampled sound as a voice in a channel 2-44
Looping an entire sampled sound 2-45

Issuing a callback command 2-48

Defining a callback procedure 2-48

Checking whether a callback procedure has executed 2-49
Stopping a sound that is playing asynchronously 2-50
Starting an asynchronous sound play 2-50

Defining a completion routine 2-52

Defining a data structure to track many sound channels 2-54
Marking a channel for disposal 2-55

Disposing of channels that have been marked for disposal 2-55
Playing a sound resource 2-57

Obtaining the offset in bytes to a sound header 2-58

Converting an offset to a sound header into a pointer to a sound
header 2-60

Playing a sound using the buf f er Ond command 2-62
Finding a chunk in a sound file 2-63

Loading a chunk from a sound file 2-65

Compressing audio data 2-67

Setting up double buffers 2-70

Defining a doubleback procedure 2-73

Aformatl 'snd ' resource 2-76

Aformatl 'snd ' resource containing sampled-sound
data 2-77

An 'snd ' resource containing compressed sound data 2-78
A resource specification 2-79

A resource specification for the Simple Beep 2-79
Aformat2'snd ' resource 2-81

Chapter 3

Chapter 4

Chapter 5

Sound Input Manager 3-1

Figure 3-1
Figure 3-2

Table 3-1
Listing 3-1

Listing 3-2
Listing 3-3

An example of the csPar amfield for a Status request 3-14
An example of the csPar amfield for a Control request 3-14

The sampled sound header format used by
Set upSndHeader 3-45

Recording directly from a sound input device 3-7
Determining the name of a sound input device 3-12
Determining some sound input device settings 3-12

Speech Manager 4-1

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5

Listing 4-1
Listing 4-2
Listing 4-3
Listing 4-4
Listing 4-5
Listing 4-6
Listing 4-7
Listing 4-8
Listing 4-9

Listing 4-10

The speech generation process 4-4

The Speech Manager and multiple voices 4-5

MIDI note values and corresponding piano keys 4-7

An example of pitch range for a voice 4-8

Format of a pronunciation dictionary resource 4-90
Format of a dictionary entry in a dictionary resource 4-92
Format of a dictionary entry field 4-93

The embedded command syntax structure 4-25
Embedded speech commands 4-26

American English phoneme symbols 4-33
Prosodic control symbols 4-34

Effect of punctuation marks on English-language
synthesizers 4-35

Checking for speech generation capabilities 4-12
Speaking text with a speech channel 4-13
Getting a description of a voice 4-15

Changing the speech rate and pitch 4-16
Pausing and continuing speech production 4-18
Setting up a speech channel for callbacks 4-21
Installing a word callback procedure 4-21

A typical word callback procedure 4-22

Installing a pronunciation dictionary resource into a speech
channel 4-37

A sample pronunciation dictionary resource 4-38

Sound Components 5-1

Figure 5-1
Figure 5-2

Figure 5-3
Figure 5-4

The component-based sound architecture 5-5

A component chain for audio hardware that can convert sample
rates 5-5

Mixing multiple channels of sound 5-6

A sound output device component that can mix sound
channels 5-7

xiil

Chapter 6

Xiv

Listing 5-1
Listing 5-2
Listing 5-3
Listing 5-4
Listing 5-5

Rez input for a component resource 5-11

Handling Component Manager selectors 5-14

Finding the address of a component-defined routine 5-14
Initializing an output device 5-17

Getting sound component information 5-19

Audio Components 6-1

Figure 6-1
Figure 6-2

The Apple AudioVision 14 Display 6-4

The Volumes control panel for the Apple AudioVision 14
Display 6-4

P REFACE

About This Book

This book, Inside Macintosh: Sound, describes the parts of the Macintosh
system software that allow you to manage sounds. It describes the services
provided by the three principal sound-related system software managers (the
Sound Manager, the Sound Input Manager, and the Speech Manager) and
shows in detail how your application can record and play back sounds,
compress and expand audio data, convert text to speech, and perform other
similar operations.

If you are not yet experienced with playing or recording sounds on Macintosh
computers, you should begin with the chapter “Introduction to Sound on the
Macintosh.” That chapter describes the services provided by the system
software and shows how to use the most basic sound-related capabilities of
Macintosh computers. It provides complete source code examples illustrating
how to record sounds into resources and files, how to play sounds stored in
resources and files, and how to convert written text into spoken words. It’s
possible that this introductory chapter contains all the information you need
to successfully integrate sound into your application.

Once you are familiar with basic sound recording and production on
Macintosh computers, you might want to read other chapters in this book.
The chapter “Sound Manager” provides complete information about sound
output. It shows how to control sound production at a very low level, how to
produce sound asynchronously (that is, while other operations in the
computer take place), and how to compress and expand audio data. This
chapter also provides complete details about the structure of the two main
sound storage formats, sound resources and sound files.

If you need more control over the sound recording process than is offered by
the basic recording functions described in the chapter “Introduction to Sound
on the Macintosh,” you need to read the chapter “Sound Input Manager.”
That chapter shows how to record sound without displaying the sound
recording dialog box or to interact directly with a sound input device driver.

The chapter “Speech Manager” shows how you can convert written text into
speech. You’ll need to read this chapter if you want to convert arbitrary blocks
of text (such as very large buffers of text) into spoken words, or if you need to
gain very fine control over speech production (for example, to synchronize
speech production with other activities, or to use customized pronunciation
dictionaries).

The chapter “Sound Components” describes how to write sound components.
The Sound Manager uses sound components to manipulate audio data or to
communicate with sound output devices. You need to read this chapter only
if you are developing a new sound output device or want to use a custom
audio data compression and expansion scheme.

XV

P REFACE

The chapter “Audio Components” describes how to write audio components.
The Sound Manager uses audio components to adjust volumes or other
settings of a sound output device when the device contains multiple output
ports that can be independently controlled by software. You need to read this
chapter only if you are developing a new sound output device that contains
several sound-producing ports (such as both speakers and headphones).

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the
chapter “Sound Input Manager” contains these sections:

n “About the Sound Input Manager.” This section provides an overview of
the features provided by the Sound Input Manager.

n “Using the Sound Input Manager.” This section describes the tasks you can
accomplish using the Sound Input Manager. It describes how to use the
most common routines, gives related user interface information, provides
code samples, and supplies additional information.

n “Sound Input Manager Reference.” This section provides a complete
reference for the Sound Input Manager by describing the constants, data
structures, routines, and resources it uses. Each routine description also
follows a standard format, which presents the routine declaration followed
by a description of every parameter of the routine. Some routine
descriptions also give additional descriptive information, such as
assembly-language information or result codes.

n “Summary of the Sound Input Manager.” This section provides the Pascal
and C interfaces for the constants, data structures, routines, and result
codes associated with the Sound Input Manager. It also includes relevant
assembly-language interface information.

Conventions Used in This Book

XVi

Inside Macintosh uses special conventions to present certain types of
information. Words that require special treatment appear in specific fonts or
font styles. Certain information, such as parameter blocks, appears in special
formats so that you can scan it quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (t hi s
is Courier).

P REFACE

Words that appear in boldface are key terms or concepts and are defined in
the glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-6.) u

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-9.) s

WARNING

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on

page 2-24.) s

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines
in this format:

Registers on entry

A0 Contents of register A0 on entry

Registers on exit
DO Contents of register DO on exit

In the “Assembly-Language Summary” section at the end of each chapter,
Inside Macintosh presents information about the fields of data structures in
this format:

0 what word event code
2 nmessage long event message
6 when long ticks since startup

The left column indicates the byte offset of the field from the beginning of the
data structure. The second column shows the field name as defined in the
MPW Pascal interface files; the third column indicates the size of that field.
The fourth column provides a brief description of the use of the field. For a
complete description of each field, see the discussion of the data structure in
the reference section of the chapter.

Xvili

P REFACE

In addition, Inside Macintosh presents information about the fields of a
parameter block in this format:

Parameter block

« i nAndQut I nt eger Input/output parameter.
- out put 1 Ptr Output parameter.
® i nput 1 Ptr Input parameter.

The arrow in the far left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The routine returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal
interface files; the third column indicates the Pascal data type of that field.
The fourth column provides a brief description of the use of the field. For
a complete description of each field, see the discussion that follows the
parameter block or the description of the parameter block in the reference
section of the chapter.

Development Environment

Xviil

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. When showing
system software routines, this book uses the Pascal interfaces available with
the Macintosh Programmer’s Workshop (MPW). However, the chapters
“Sound Components” and “Audio Components” use C interfaces, because
Pascal interfaces are not currently available.

All code listings in this book are shown in Pascal or C. They show methods of
using various routines and illustrate techniques for accomplishing particular
tasks. All code listings have been compiled and, in most cases, tested.
However, Apple Computer, Inc. does not intend for you to use these code
samples in your application.

This book occasionally illustrates concepts by referring to a sample
application called SurfWriter. This application is not an actual product

of Apple Computer, Inc. This book also uses the names SurfBoard and
WaveMaker to refer to sample sound output and input devices. These devices
are not actual products of Apple Computer, Inc.

P REFACE

For More Information

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple and
the most popular third-party development tools. Ordering is easy; there are
no membership fees, and application forms are not required for most of our
products. APDA offers convenient payment and shipping options, including
site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information of registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 303-2T
Cupertino, CA 95014-6299

XiX

CHAPTER 1

Introduction to Sound on the

Macintosh

Contents

About Sound on Macintosh Computers
Sound Capabilities 1-4
Sound Production 1-9
Sound Recording 1-15
Sound Resources 1-17
Sound Files 1-18
Speech Generation 1-20
The User Interface for Sound 1-23
Using Sound on Macintosh Computers
Producing an Alert Sound 1-24
Playing a Sound Resource 1-25
Playing a Sound File 1-26

1-4

1-24

Checking For Sound-Recording Equipment 1-27

Recording a Sound Resource 1-28
Recording a Sound File 1-31
Checking For Speech Capabilities
Generating Speech From a String
Sound Reference 1-34
Routines 1-34
Playing Sounds 1-34
Recording Sounds 1-38
Generating and Stopping Speech
Summary of Sound 1-44
Pascal Summary 1-44
Constants 1-44
Routines 1-44
C Summary 1-45

Contents

1-31
1-32

1-41

1-1

1-2

CHAPTER 1

Constants
Routines
Result Codes

Contents

1-45
1-46
1-47

CHAPTER 1

Introduction to Sound on the Macintosh

This chapter provides an introduction to managing sound on Macintosh computers. It’s
intended to help you quickly get started integrating sound into your application. This
chapter introduces the concepts described in detail throughout the rest of this book and
provides source code examples that show you how to use the most basic sound-related
capabilities of Macintosh computers. These examples use the Sound Manager to play
sounds, the Sound Input Manager to record sounds, and the Speech Manager to convert
text strings into spoken words.

Even if your application is not specifically concerned with creating or playing sounds,
you can often improve your application at very little programming expense by using
these system software services to integrate sound or speech into its user interface. For
example, you might use the techniques described in this chapter to

n play a sound to alert the user that a lengthy spreadsheet calculation is completed
n provide voice annotations for a word-processing document
n read aloud the text string that is displayed in a dialog box

If you want to use sound in these simple ways, this chapter will probably provide all the
information you need. The Sound Manager, Sound Input Manager, and Speech Manager
provide high-level routines that make it very easy to play or record sounds without
knowing very much about how sounds are stored or produced electronically.

If, on the other hand, you are writing an application that is primarily concerned with
sound, you should read this chapter and some of the remaining chapters in this book.
You also need to read those chapters if you want to play computer-generated tones
without using sound resources or sound files, play sounds asynchronously, play sounds
at different pitches, record sounds without using the standard sound recording interface,
or customize the quality of speech output to make it easier to understand.

To benefit most from this chapter, you should already be familiar with simple resource
and file management, discussed in the chapters “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox and “Introduction to File Management” in Inside Macintosh: Files.
In particular, this chapter does not explain how to open or close resource or data files,
although it does provide source code examples that demonstrate how to play a sound
from, or record a sound to, a resource or data file that is already open.

This chapter begins with an overview of sound on Macintosh computers. It describes the
audio capabilities available on all Macintosh computers and some of the capabilities
achievable by adding additional hardware and software to Macintosh computers. Then
this chapter describes how you can use the available system software routines to

n play the system alert sound

n play sounds stored as resources

n play sampled sounds stored in sound files

n determine whether a particular Macintosh computer is capable of recording sounds
n record sounds into resources

n record sounds into sound files

n convert text strings into spoken words

1-3

CHAPTER 1

Introduction to Sound on the Macintosh

For your convenience, this chapter also includes a reference section containing complete
descriptions of the routines used to perform these tasks, and both Pascal and C language
summaries. All of the routines in the reference section of this chapter are also in the
reference sections of the chapter that describes the manager they are part of.

About Sound on Macintosh Computers

The Macintosh hardware and system software provide a standard and extensible set

of capabilities for producing and recording sounds. No matter what kind of application
you are developing, you can use these capabilities to enrich your application, often at
very little programming expense. For example, you might allow users to attach voice
annotations to documents or to other collections of data. Or, you might play a certain
sound to signal that some operation has completed.

This section provides a general overview of the sound input and output capabilities
available on Macintosh computers. It defines some of the concepts used throughout
this book and describes how sounds can be stored by your application. This section
also describes the standard ways of representing sounds in the Macintosh graphical
user interface.

Sound Capabilities

The Macintosh family of computers provides sound input and output capabilities that
far exceed the capabilities of most other personal computers. The principal reason

for this is that the hardware and software aspects of creating or recording sounds are
more tightly integrated with one another than they are on other personal computers.
Figure 1-1 illustrates the basic audio hardware and the sound-related system software
that are now standard on all Macintosh computers.

Figure 1-1 Basic sound capabilities on Macintosh computers

Speach Maneger

| Sownd Irputhaneger |4 Sound Menager :}[ﬂ}@

el
Euil*in spasker
m i ophere

1-4 About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

The audio hardware includes an internal speaker (for producing sounds), a microphone
(for recording sounds), and one or more integrated circuits that convert digital data to
analog signals, or analog signals to digital data. The actual integrated circuits that
perform the conversion of digital to analog data (and vice versa) vary among different
models of Macintosh computers. What’s important is that, together with the available
sound-related system software, the basic audio hardware provides a wide range of
sound input and output capabilities, including

n playback of digitally recorded (that is, sampled) sounds

n playback of simple sequences of notes or of complex waveforms

n recording of sampled sounds

n conversion of text to spoken words

n mixing and synchronization of multiple channels of sampled sounds

n compression and decompression of sound data to minimize storage space

In general, you'll interact directly with the system software that provides these and other
capabilities. The Macintosh sound architecture includes three principal system software
services:

n The Sound Manager provides the ability to play sounds through the speaker. It also
provides an extensive set of tools for manipulating sounds. You can use the Sound
Manager to alter virtually any characteristic of a sound, such as its loudness, pitch,
timbre, and duration. You can also use the Sound Manager to compress sounds so that
they occupy less disk space. The Sound Manager can work with sounds stored in
resources or in a file’s data fork. It can also play sounds that are generated
dynamically (and not necessarily stored on disk).

n The Sound Input Manager provides the ability to record sounds through a
microphone or other sound input device. It manages the standard sound recording
dialog box (shown in Figure 1-12 on page 1-17) and can record sounds into resources
or into files.

n The Speech Manager provides the ability to convert written text into spoken words.
You might use the Speech Manager to read aloud a block of text that for various
reasons cannot be sampled (perhaps the amount of text is too large to be recorded and
then replayed, or perhaps the text itself is generated dynamically by the user). The
Speech Manager allows you to select from among a number of different voices, alter
some of the readback characteristics (such as speech, pitch, and volume), and provide
custom pronunciation dictionaries.

The basic sound hardware and system software also provide the ability to integrate and
synchronize sound production with the display of other types of information, such as
video and still images. For example, QuickTime uses the Sound Manager to handle all
the sound data in a QuickTime movie.

It’s very easy for users to enhance the quality of the sounds they play back or record by
substituting different speakers or microphones for the ones built into a Macintosh
computer. All current Macintosh computers include a stereo sound output jack that
allows users to add high quality speakers (such as the AppleDesign Powered Speakers).
A user can also substitute a higher quality microphone for the one supplied with the

About Sound on Macintosh Computers 1-5

CHAPTER 1

Introduction to Sound on the Macintosh

computer. Figure 1-2 illustrates a slightly better audio configuration than the one shown
in Figure 1-1.

Figure 1-2 Enhanced sound capabilities on Macintosh computers

1-6

Spesch blanager

J

| Sound nput Manager E} Sourd Manager

l
40

Exiernal speskers

Exderrml
ey opte e

Note that the enhanced sound input and output capabilities shown in Figure 1-2 are
provided entirely by the improved hardware. The system software (in particular, the
Sound Manager and the Sound Input Manager) can support both the built-in audio
hardware and any external hardware connected to the built-in audio jacks.

It’s possible to enhance the audio capabilities of a Macintosh computer even further. For
example, a user can add a NuBus™ expansion card that contains very high quality
digital signal processing (DSP) circuitry, together with sound input or output hardware.
These cards typically bypass the standard Macintosh sound circuitry altogether and
therefore require additional software (a device driver) to work with the Sound Manager
or the Sound Input Manager. The system software is, however, designed to make it easy
for developers to add software to drive their sound output or sound input devices.

A user can also enhance the audio capabilities of a Macintosh computer by adding a
MIDI interface to one of its serial ports. MIDI (the Musical Instrument Digital Interface)
is a standard protocol for sending audio data and commands to digital devices. A user
can connect any MIDI devices (such as synthesizers, drum machines, or lighting
controllers) to a Macintosh computer through the MIDI interface. Apple Computer
supplies a software driver, the MIDI Manager, to control the flow of MIDI data and
commands through the MIDI interface.

Note

The MIDI Manager is not documented in this book. For complete
information about the MIDI Manager, contact APDA. u

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-3 illustrates a very high capability sound and music configuration built around
a Macintosh computer. This enhanced hardware and system software configuration
allows users to run digital sound editing or recording applications and MIDI sequencing

applications.
Figure 1-3 High quality sound capabilities on Macintosh computers
Sound Inpuathareger E} Soundareger
S port % Device drivar MID IManager

g Il
‘”"a) =<8

Diigited =ound card

Digwl zourd
compact dias

M 10 b rrimoled
imZnann s

It’s possible to enhance the sound environment on a Macintosh computer by adding
software alone, for example by adding custom sound compression/decompression
components (codecs). Apple Computer supplies codecs that can handle 3:1 and 6:1
compression and expansion, which are suitable for most audio requirements. For special
purposes, however, it might be advantageous to use other compression and expansion
ratios or algorithms. The Sound Manager can use any available codec to handle
compression and expansion of audio data.

More generally, the Sound Manager supports arbitrary modifications on sound data
using stand-alone code resources known as sound components. A sound component can

About Sound on Macintosh Computers 1-7

CHAPTER 1

Introduction to Sound on the Macintosh

perform one or more signal-processing operations on sound data. For example, the
Sound Manager includes sound components for compressing and decompressing sound
data (as described in the previous paragraph) and for converting sample rates. Sound
components have a standard programming interface and local storage, which allows
them to be hooked together in series to perform complex tasks. For instance, to play an
11 kHz compressed sampled sound on a Macintosh 1l computer, the Sound Manager
needs to expand the compressed data into audio samples, convert the samples from

11 kHz to 22 kHz, mix the samples with any other sounds that are playing, and then
send the mixed samples to the available audio hardware (in this case, the Apple Sound
Chip). The Sound Manager uses four different sound components to accomplish this
task, as shown in Figure 1-4.

Figure 1-4 A sound component chain
. Rt Chrpartdesion
|::,'r S:-ua:l::r COMTVET 5 O . O ot IZ::I'
=nam (B | e | Pl
L Budia

& pplication besr dmre

11kH=z D oo pr ez 22 kH=z 2 kH=z
o i e w o Sann ples audio samples e o presmed

zourd =ound

- T R T

Except for the lowest-level components that communicate directly with hardware (here,
the Apple Sound Chip), the components of this chain operate solely on a stream of bytes.
This allows Apple and other developers to create sound components that operate
independently of the actual sound-producing hardware available on a particular
Macintosh computer. This also allows the Sound Manager to modify the component
chain used at any time according to the actual capabilities of the output hardware. For
example, a digital signal processing card might be able to do rate conversion internally.
In that case, the Sound Manager can bypass the rate conversion component and send the
11 kHz samples directly to the DSP card, as shown in Figure 1-5.

1-8 About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-5 A sound component chain with a DSP board

B pplicaton

= 2o I s = ;ﬁ:;*%:}(el [O :::tjﬁ}jm

taresger [P drive

Aoy
hoar chasmre

In general, an application that wants to produce a sound is unaware of the sound
component chain required to produce that sound on the current sound output device.
The Sound Manager keeps track of which sound output device the user has selected and
constructs a component chain suitable for producing the desired quality of sound on that
device. As a result, even though the capabilities of the available sound output hardware
can vary greatly from one Macintosh computer to another, the Sound Manager ensures
that a given chunk of audio data always sounds as good as possible on the available
sound hardware. This means that you can use the same code to play sounds, regardless
of the actual sound-producing hardware that is available on a particular machine.

The Sound Manager provides sound components for modifying and producing sounds
on the built-in audio hardware and on any hardware attached to the sound output jack.
The Macintosh sound architecture currently allows you to add sound components for
two special purposes: to support alternate compression and decompression algorithms
and to support third-party audio hardware. See the chapter “Sound Components” in this
book for information on developing codecs and sound output device components.

IMPORTANT

You don’t need to know how to develop sound components simply to
play or record sounds on Macintosh computers using the available
sound output or input devices. s

The following sections describe in greater detail the operations of the Sound Manager,
the Sound Input Manager, and the Speech Manager. You’ll use the Sound Manager to
produce sounds, the Sound Input Manager to record sounds, and the Speech Manager to
generate speech from text.

Sound Production

A Macintosh computer produces sound when the Sound Manager sends some data
through a sound channel to the available audio hardware, usually at the request of an
application. The audio hardware is a digital-to-analog converter (DAC) that translates
digital sound data into analog audio signals. Those signals are then sent to the internal
speaker, to a sound output connector (to which the user can connect headphones,
external speakers, or sound amplification equipment), or to other sound output
hardware.

The DAC in Macintosh Plus and Macintosh SE computers is a Sony sound chip. The
Macintosh I, Macintosh Portable, Macintosh PowerBook and Macintosh Quadra

About Sound on Macintosh Computers 1-9

CHAPTER 1

Introduction to Sound on the Macintosh

families of computers contain two Sony sound chips (to provide stereo output
capability) as well as the Apple Sound Chip (ASC), a customized chip that provides
enhanced audio output characteristics as well as emulation capabilities for the earlier
sound hardware.

Some recent models of Macintosh computers contain built-in sound hardware that
extends the Apple Sound Chip’s features. For example, Macintosh computers with
built-in microphones include the Enhanced Apple Sound Chip (EASC). Some
Macintosh computers contain DSP chips that provide very high-quality sound (16-bit
stereo sound, at rates up to 44 kHz). There are also NuBus expansion cards available
from third-party developers that provide other audio DAC hardware.

A user can select a sound output device or control characteristics of the selected device
through the Sound Out control panel, shown in Figure 1-6. The available sound output
devices are listed in the center of the panel. In this case, two sound output devices are
attached to the computer, the built-in speaker and a speaker attached to the SurfBoard
DSP card. The highlighted icon shows which device is the current sound output device.
All sounds produced by the Sound Manager are sent to that device for playback, unless
you specify some other device when creating a sound channel. (See the description of
SndNewChannel in the chapter “Sound Manager” for details on specifying an output
device explicitly.)

Figure 1-6 The Sound Out control panel

1-10

S=——— Sound

-] Sound Dut |

Choose a source for playback:

; it
= Q<1
SurfBoard 6

Rate: | 22.254 kHz w |

Size: @ 8 bit (18 ni

Use: () »uns @ Stereo

Note

This book shows the Sound control panels introduced with version 3.0
of the Sound Manager. Users can use the pop-up menu at the top of the
panel to select one of four or more subpanels (Alert Sounds, Sound In,
Sound Out, and Volumes). It’s possible to add new subpanels to the
Sound control panel. See the chapter on control panel extensions in the
book Inside Macintosh: Operating System Utilities. u

You can play a sound by calling a Sound Manager routine such as SysBeep (to play the
system alert sound), SndPI ay (to play a sound stored in memory), or

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

SndSt art Fi | ePl ay (to play a sound stored in a file). The Sound Manager then issues
one or more sound commands to the audio hardware. A sound command is an
instruction to produce sound, modify sound, or otherwise assist in the overall process of
sound production.

To ensure that sound commands are issued in the correct order, the Sound Manager uses
a structure called a sound channel to store commands. A sound channel is associated
with a first-in, first-out (FIFO) queue of sound commands. Queued commands are sent
to the sound hardware through a sound output device component, a component that
manages the last stage of communication with the audio hardware. Figure 1-7 shows
how your application communicates, through the Sound Manager and the sound output
device component, with the current sound output device.

Figure 1-7 The relation of the Sound Manager to the audio hardware

Cnmmm-:kﬂ

| Sound Maneger I

I
4

Sourd channa

Foar chapar =

About Sound on Macintosh Computers 1-11

1-12

CHAPTER 1

Introduction to Sound on the Macintosh

Note

This chapter does not discuss sound commands or channels in detail,
because you do not need to know about these details to play sound data
stored in sound resources or sound files. This chapter describes only
how to play and record sampled sounds. For more information on
sound channels and sound commands, see the chapter “Sound
Manager” in this book. u

You can play sounds either synchronously or asynchronously. When you play a sound
synchronously, the Sound Manager alone has control over the CPU while it executes
commands in a sound channel. Your application does not continue executing until the
sound has finished playing. When you play a sound asynchronously, your application
can continue other processing while the sound is playing. This chapter shows how to
play sounds only synchronously. To learn how to play sounds asynchronously, see the
chapter “Sound Manager” in this book.

Sometimes it is necessary to bypass the queue of sound commands. If, for example, you
want to stop all sound production on a particular channel immediately, it would be
counterproductive to put the command into the sound channel because that command
wouldn’t be processed until any others already in the queue were processed. You can
send sound commands directly to the hardware component, as shown in Figure 1-8.

When you bypass the sound channel in this way, any commands that are already queued
but not yet sent to the sound output device component remain queued. You can,
however, flush the channel at any time by sending the Sound Manager the appropriate
request.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-8 Bypassing the command queue

C-:mrnm-:kﬂ

Sound Maneger I

Soured channad

Sourd com porenit
chein

[

ik
f(]&j)

It’s possible to have several channels of sound open at one time. The Sound Manager
(using a sound-mixing component called the Apple Mixer component) mixes together
the data coming from all open sound channels and sends a single stream of sound data
to the current sound output device. This allows a single application to play two or more
sounds at once. It also allows multiple applications to play sounds at the same time, as
illustrated in Figure 1-9.

About Sound on Macintosh Computers 1-13

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-9 Mixing multiple channels of sampled sound

Ao plicaion

B plicaton 2

{—E | B
gl Ny
&=

Chirpt davios
componant
LS drive

i

Ao
Fesr drimra

Ppple
Ieliar

Faie
2 R o
O PN

Fravie
II:::II Saoures :} o0 P S 0

S0 peoriEn

I'r'l-nmger"::} Seurce

1-14

The Sound Manager was first released for all Macintosh computers as part of system
software version 6.0. System software versions 6.0.7 and later include an enhanced
Sound Manager (that is, version 2.0) that provides routines for continuous play from
disk, sound mixing, and audio compression and expansion. System software versions
6.0.7 and later also include the Sound Input Manager, which allows for recording sounds
through either a built-in microphone or some other sound input device.

More recent versions of the Sound Manager significantly improve the performance of the
Sound Manager’s operations and extends its capabilities. Version 3.0 of the Sound
Manager is as much as two to three times more efficient than previous versions, which
allows your application to do more processing while a sound is playing. In addition,
version 3.0 of the Sound Manager provides three important new capabilities:

n Support for 16-bit audio samples. Versions of the Sound Manager earlier than
version 3.0 support only 8-bit monophonic or stereo audio samples with sample rates
up to 22 kHz. The Sound Manager version 3.0 supports 16-bit stereo audio samples
with sample rates up to 64 kHz, thereby allowing your application to produce
CD-quality sound. Moreover, the Sound Manager version 3.0 automatically converts
16-bit samples into 8-bit samples on Macintosh computers that do not have the
hardware to output 16-bit sounds.

n Support for non-Apple audio hardware. The Sound Manager version 3.0 and later
use a sound architecture that allows support for third-party audio hardware. This
allows a user to install audio hardware capable of recording and producing
CD-quality sound. Versions 3.0 and later also include a new Sound control panel that
allows the user to redirect sound output to any available audio hardware.

n Support for plug-in codecs. Versions of the Sound Manager earlier than version 3.0
support audio compression and expansion only at ratios of 3:1 and 6:1. The Sound
Manager version 3.0 provides support for other compressed audio data formats by
allowing plug-in audio compression and expansion components (or codecs).

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

You provide support for your own sound output devices or for your own compression
and decompression algorithms by writing an appropriate sound component. See the
chapter “Sound Components” later in this book for complete details.

The Sound Manager version 3.0 is supported only on Macintosh computers with an ASC
or comparable hardware. In particular, the Sound Manager version 3.0 is not supported
on Macintosh Classic, Macintosh Plus, or Macintosh SE computers. As a result, you
should always test whether the specific capabilities you want to use are present before
attempting to use them. You can use the Gest al t function to do this, as illustrated in
“Checking For Sound-Recording Equipment” beginning on page 1-27 and in “Checking
For Speech Capabilities” beginning on page 1-31.

This book describes the capabilities and programming interfaces of version 3.0 of the
Sound Manager. Many of the techniques described here can also be used with earlier
versions of the Sound Manager, but some cannot. Make sure to test your application
thoroughly with all versions of the Sound Manager you want to run under.

Sound Recording

The Sound Input Manager provides the ability to record and digitally store sounds in a
device-independent manner. You can create a resource or a file containing a recorded
sound simply by calling either the SndRecor d function or the SndRecor dToFi | e
function. You can then use the recorded sound in any way appropriate to your
application.

The sound input and storage routines can be used with any available sound input
hardware for which there is an appropriate device driver. A user can select from
among the available sound input devices through the Sound In control panel,
shown in Figure 1-10.

Figure 1-10 The Sound In control panel

S0=————— Sound

----- " Sound In |

Choose a source for recording:

o

Built-in Wavellaker

B2

il

About Sound on Macintosh Computers 1-15

CHAPTER 1

Introduction to Sound on the Macintosh

The available sound input devices are listed in the center of the panel. The control panel
lists a device if its driver has previously registered itself with the Sound Input Manager
and has provided a name and device icon. In Figure 1-10, two sound input devices are
available, a device named Built-in and a device named WaveMaker. The highlighted icon
shows which device is the current sound input device.

The Alert Sounds control panel lists the available system alert sounds, as illustrated in
Figure 1-11.

Figure 1-11 The Alert Sounds control panel

1-16

SO=————— Sound

- Alert Sounds w |

<

Nathan's Beep
Simple Beep
Tenli's HiHi
Wild Eep
wrnng

wrnng sick
Hylophone

Alert [Add...] [Hemuue]
lolume

The Alert Sounds control panel also includes two buttons, Add and Remove. These
buttons allow the user to add sounds to and remove sounds from the list of available
system alert sounds. The Add button is used to record a new alert sound and add it to
the list. Clicking the Add button causes the Sound Input Manager to display a sound
recording dialog box (described later in this section). Clicking the Remove button causes
the Sound Input Manager to remove the selected alert sound from the list. The user can
achieve the same effect by selecting a sound and then choosing the Clear command in
the Edit menu. If no sound input drivers are installed in the system, these two buttons
do not appear.

If the user records a sound using the Alert Sounds control panel, the recorded sound is
saved as a resource of type' snd ' in the System file. That sound then appears in the list
of available alert sounds. Note that the Alert Sounds control panel supports the standard
Edit menu commands on sounds stored in the System file. The Cut command copies the
selected sound to the Clipboard and removes it from the list of system alert sounds. The
Copy command just copies the selected sound to the Clipboard. The Paste command
takes a sound copied from the Clipboard and places it in the list of available alert
sounds. If your application allows users to manipulate sound resources, it should
support the copying and pasting of sound resources through the Clipboard. However,
the Undo command does not work with sound-related editing operations.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

The Sound Input Manager provides two high-level routines that allow your application
to record sounds from the user and store them in memory or in a file. When you call
either SndRecor d or SndRecor dToFi | e, the Sound Input Manager presents a sound
recording dialog box to the user, illustrated in Figure 1-12.

Figure 1-12 The sound recording dialog box

®] <
Record Stop Pause Play

|] :00 L
L -] [ssue |

seconds

Using the controls in this dialog box, the user can start, pause, resume, and stop
recording on the currently selected sound input device. The user can also play back the
recorded sound. The time indicator bar provides an indication of the current length of
the recorded sound.

When the user clicks the Save button after initiating a recording from the Sound control
panel, another dialog box appears asking the user to give the sound a hame. Unless the
user cancels the save operation at that point, the Sound control panel saves the recorded
sound into a sound resource in the System file. Note that if your application can save
recorded sound resources, the SndRecor d function does not present the dialog box that
allows the user to name the sound and does not automatically save the recorded sound
into a resource file. Your application must provide code to accomplish these tasks.

Sound Resources

Resources of type ' snd ' (also called sound resources) can contain both sound
commands and sound data, and are widely used by sound-producing applications.
These resources provide a simple and portable way for you to incorporate sounds into
your application. For example, the sounds that a user can select in the Sound control
panel as the system alert sound are stored in the System file as' snd ' resources. The
user can select the current system alert sound with the Alert Sounds control panel, as
illustrated in Figure 1-11. More generally, you can load a sound resource into memory
and then play it by calling the SndPI ay function.

Note

If you do not use the sound-recording routines provided by the Sound
Input Manager, you must know the structure of' snd ' resources
before you can create them. For information on this, see the chapter
“Sound Manager” in this book. You can also use the Set upSndHeader
function, described in the chapter “Sound Input Manager” in this book,
to help you create an ' snd ' resource. u

About Sound on Macintosh Computers 1-17

1-18

CHAPTER 1

Introduction to Sound on the Macintosh

The Sound Manager can read sound resources in two formats, format 1 or format 2.
However, the format 2' snd ' resource is obsolete, so your application should use
format1' snd ' resources. For more information on the differences between format 1
and format 2' snd ' resources, see the chapter “Sound Manager” in this book.

The format1 ' snd ' resource is the most general kind of sound resource. A format 1
"snd ' resource can contain a sequence of Sound Manager commands and associated
sound data (such as wave-table data or a sampled sound header that both describes a
digitally recorded sound and includes the sampled-sound data itself). Your application
can produce sounds simply by passing a handle to that resource to the SndPI ay
function, which opens a sound channel and sends the commands and data contained in
the resource into the channel. Alternatively, a format 1' snd ' resource might containa
sequence of commands that describe a sound, without providing any other sound data.
For example, such a resource could contain a command that alters the amplitude (or
loudness) of sound playing on a channel. In this case, your application can use the
SndPI ay function to execute the commands on any channel.

Sound Files

Although most sampled sounds that you want your application to produce can be stored
as sound resources, there are times when it is preferable to store sounds in sound files.
For example, it is usually easier for different applications to share files than it is to share
resources. So, if you want your application to play a sampled sound created by another
application (or if you want other applications to be able to play a sampled sound created
by your application), it might be better to store the sampled-sound data in a file, not in a
resource. Similarly, if you are developing versions of your application that run on other
operating systems, you might need a method of storing sounds that is independent of
the Macintosh Operating System and its reliance on resources to store data. Generally, it
is easier to transfer data stored in data files from one operating system to another than it
is to transfer data stored in resources.

There are other reasons you might want to store some sampled sounds in files and not in
resources. If you have a very large sampled sound, it might not be possible to create a
resource large enough to hold all the audio data. Resources are limited in size by the
structure of resource files (and in particular because offsets to resource data are stored as
24-bit quantities). Sound files, however, can be much larger because the only size
limitations are those imposed by the file system on all files. If the sampled-sound data
for some sound occupies more than about a half megabyte of space, you should
probably store the sound as a file.

To address these various needs, Apple and several third-party developers have defined
two sampled-sound file formats, known as the Audio Interchange File Format (AIFF)
and the Audio Interchange File Format Extension for Compression (AIFF-C). The
names emphasize that the formats are designed primarily as data interchange formats.
However, you should find both AIFF and AIFF-C flexible enough to use as data storage
formats as well. Even if you choose to use a different storage format, your application
should be able to convert to and from AIFF and AIFF-C if you want to facilitate sharing

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

of sound data among applications. AIFF format files have file type ' Al FF' and AIFF-C
format files have file type ' Al FC' .

Note

Do not confuse AIFF and AIFF-C files (referred to in this chapter as
sound files) with Finder sound files. Each Finder sound file contains a
sound resource that plays when the user double clicks on the file in the
Finder (or selects the file and chooses Open from the File menu). A user
can create a Finder sound file by dragging a sound out of the System
file, and a user can drag a Finder sound file into the System file to add
the file’s sound to the list of available system alert sounds. You can
create a Finder sound file by creating a file of type ' sfil' with a
creator of ' movr' and placing in the file a single sound resource. You
can play such a file by using Resource Manager routines to open the
Finder sound file and then by using the SndPI ay function to play the
single sound resource contained in it. u

The main difference between the AIFF and AIFF-C formats is that AIFF-C allows you to
store either compressed or noncompressed audio data, whereas AIFF allows you to store
noncompressed audio data only. The AIFF-C format is more general than the AIFF
format and is easier to modify. The AIFF-C format can be extended to handle new
compression types and application-specific data. As a result, if your application reads or
writes sound files, it should be able to handle both AIFF and AIFF-C files. Table 1-1
summarizes the capabilities of the AIFF and AIFF-C file formats.

Table 1-1 AIFF and AIFF-C capabilities

File Read Read Write Write

type sampled compressed sampled compressed
AIFF Yes No Yes No

AIFF-C Yes Yes Yes Yes

The enhanced Sound Manager includes play-from-disk routines that allow you to play
AIFF and AIFF-C files continuously from disk even while other tasks execute. You might
think of the play-from-disk routines as providing you with the ability to install a “tape
player” in a sound channel. Once the sound begins to play, it continues uninterrupted
until it finishes or until an application pauses or stops it.

You can play a sampled sound stored in a file of type AIFF or AIFF-C by opening the file
and passing its file reference number to the SndSt ar t Fi | ePl ay function. If the file is of
type AIFF-C and the data is compressed, then the data is automatically expanded during
playback. The SndSt art Fi | ePl ay function works like the SndPI ay function but does
not require the entire sound to be in RAM at one time. Instead, the Sound Manager uses
two buffers, each of which is smaller than the sound itself. The Sound Manager plays
one buffer of sound while filling the other with data from disk. After it finishes playing
the first buffer, the Sound Manager switches buffers, and plays data in the second while
refilling the first. This double buffering technique minimizes RAM usage at the expense

About Sound on Macintosh Computers 1-19

1-20

CHAPTER 1

Introduction to Sound on the Macintosh

of additional disk overhead. As a result, SndSt art Fi | ePl ay is ideal for playing very
large sounds.

The disk overhead incurred when using SndSt ar t Fi | ePl ay is relatively light, and
most mass-storage devices currently available for Macintosh computers have response
times that are good enough that SndSt art Fi | ePl ay can retrieve audio data from disk
and play a sound without audible gaps. There are no limits on the number of concurrent
disk-based sampled-sound playbacks other than those imposed by processor speed and
disk capability. On machines with sufficient CPU resources, several continuous
playbacks can occur at once. Disk fragmentation can affect the performance of playing
sampled-sound files from disk. In addition, playing multiple sounds from the same hard
disk may degrade overall performance.

The Sound Manager currently supports continuous play from disk only on certain
Macintosh computers. You should use the Gest al t function to determine whether a
specific machine supports play from disk. Also, if a sound channel is being used for
continuous play from disk, then no other sound commands can be sent to that channel.

Speech Generation

The Speech Manager converts text into sound data, which it passes to the Sound
Manager to play through the current sound output device. The Speech Manager’s
interaction with the Sound Manager is transparent to your application, so you don’t
need to be familiar with the Sound Manager to take advantage of the Speech Manager’s
capabilities. This section provides an overview of the Speech Manager and outlines the
process that the Speech Manager uses to convert text into speech.

Figure 1-13 illustrates the speech generation process. Your application can initiate speech
generation by passing a string or a buffer of text to the Speech Manager. The Speech
Manager is responsible for sending the text to a speech synthesizer, a component that
contains executable code that manages all communication between the Speech Manager
and the Sound Manager. A synthesizer is usually contained in a resource in a file within
the System Folder. The synthesizer uses built-in dictionaries and pronunciation rules to
help determine how to pronounce text. Your application can use the default system voice
to generate speech; it can also specify that some other available voice be used for speech
generation.

As Figure 1-13 suggests, the Speech Manager is a dispatching mechanism that allows
your application to take advantage of the capabilities of whatever speech synthesizers,
voices, and hardware are installed. The Speech Manager itself does not do any of the
work of converting text into speech; it just provides a convenient programming interface
that manages access to speech synthesizers and, indirectly, to the sound hardware. The
Speech Manager uses the Component Manager to access whatever speech synthesizers
are available and allows applications to take maximum advantage of a computer’s
speech facilities without knowing what those facilities are.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-13 The speech generation process

=| | SpeschMarmger | | Speech syrthesiar | T | Sourd Manager
Tawt ﬂ
Bdic
Fear drpmra
Note

The Component Manager is described in Inside Macintosh:
More Macintosh Toolbox, but you do not need to be familiar with
it to use the Speech Manager. u

A speech synthesizer can include one or more voices, as illustrated in Figure 1-14. Just as
different people’s voices have different tonal qualities, so too can different voices in a
synthesizer. A synthesized voice might sound male or female, and might sound like an
adult or child. Some voices sound distinctively synthetic, while others sound more like
real people. As speech synthesizing technology develops, the voices that your
application can access are likely to sound more and more human. Because the Speech
Manager’s routines work on all voices and synthesizers, you will not need to rewrite
your application to take advantage of improvements in speech technology.

Figure 1-14 The Speech Manager and multiple voices

ach Marmger
Spe 2=

\2/

ﬂ

o 2 Waicz 4

Waioe 1 Wioios 2 W

2

About Sound on Macintosh Computers 1-21

1-22

CHAPTER 1

Introduction to Sound on the Macintosh

Any given person has only one voice, but can alter the characteristics of his or her speech
in a number of different ways. For example, a person can speak slowly or quickly, and
with a low or a high pitch. Similarly, the Speech Manager provides routines that allow
you to modify these and other speech attributes, regardless of which voice is in use.

To indicate to the Speech Manager which voice or attributes you would like it to use in
generating speech, your application must use a speech channel. A speech channel is a
data structure that the Speech Manager uses when processing text; it can be associated
with a particular voice and particular speech attributes. Because multiple speech
channels can coexist, your application can create several different vocal environments (to
simulate a conversation, for example). Because a synthesizer can be associated with only
one language and region, your application would need to create a separate speech
channel to process each language in bilingual or multilingual text. (Currently, however,
only English-producing synthesizers are available.)

Different speech channels can even generate speech simultaneously, subject to processor
capabilities and Sound Manager limitations. This capability should be used with
restraint, however, because it can be hard for the user to understand any speech when
more than one channel is generating speech at a time. Also, your application should in
general generate speech only at the specific request of the user and should allow the user
to turn off speech output. At the very least, your application should include an option
that allows the user to view text instead of hearing it. Some users might have trouble
understanding speech generated by the Speech Manager, and others might be
hearing-impaired. Even users who are able to clearly understand computer-synthesized
speech might prefer to read rather than hear.

In general, your application does not need to know which speech synthesizer it is using.
You can obtain a list of all available voices, but in most cases, you do not need to be
concerned with which speech synthesizer a voice is associated. Sometimes, however, a
speech synthesizer may provide special capabilities beyond that provided by the Speech
Manager. For example, a speech synthesizer might allow you to select an option to read
numbers in a nonstandard way. The Speech Manager allows you to determine which
synthesizer is associated with a voice for these circumstances, and provides hooks that
allow your application to take advantage of synthesizer-specific capabilities.

In general, however, your application can achieve the best results by making no
assumptions about which synthesizers might be available. The user of a 2 MB Macintosh
Classic® might use a synthesizer with low RAM requirements, while the user of a 20 MB
Macintosh Quadra 950 might take advantage of a synthesizer that provides better audio
quality at the expense of memory usage. The Speech Manager makes it easy to
accommodate both kinds of users.

The most basic use of the Speech Manager is to convert a text string into speech. The
Speak St ri ng function, described in “Generating Speech From a String” beginning on
page 1-32, lets you do this even without allocating a speech channel. The chapter
“Speech Manager” in this book describes how you can customize the quality of speech
output to make it easier to understand and how you can obtain more control over speech
by allocating speech channels and embedding commands within text strings.

About Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

The User Interface for Sound

As you have seen, the Macintosh system software provides you with a wide array of
easy-to-use sound-input and sound-output services. With very little programming,
you can

n play the user’s system alert sound or any sound contained in a sound resource or file
n record sounds through the available sound-input hardware
n convert text into speech

The system software has already defined a set of user interface elements and metaphors
that are designed to facilitate the integration of sound into the Macintosh graphical user
interface. In general, you should use the existing system software services to present the
standard interface elements designed by Apple. For example, if you want to have the
user record through the available sound-input hardware, you can call the SndRecor d
function, which displays the sound recording dialog box (shown in Figure 1-12 on

page 1-17). That dialog box contains controls that are modelled on the buttons typically
found on an audio tape recorder or a video cassette recorder. In this way, the system
software draws on the user’s knowledge of how to operate a tape recorder and uses it as
a metaphor for recording sounds on Macintosh computers.

The system software also provides visual representations of sounds themselves. In some
cases, sounds are represented by their names only, as in the Alert Sounds control panel
(shown in Figure 1-11 on page 1-16). In other cases, sounds are represented by icons. For
example, the icon for a Finder sound looks like the one shown in Figure 1-15. All Finder
sounds are represented by the same icon; they are distinguished from each other by their
names.

Figure 1-15 An icon for a Finder sound

K

“ylophone

If the user copies or cuts a sound from the available system alert sounds and then pastes
the sound into the Scrapbook, the sound is shown as in Figure 1-16.

About Sound on Macintosh Computers 1-23

CHAPTER 1

Introduction to Sound on the Macintosh

Figure 1-16 A sound in the Scrapbook

I=—— Scrapbook

=)

/9 Play Sound snd

As you can see, the metaphor in both cases is that of a speaker, a sound-producing
device familiar to most computer users. If you need to design icons to represent sounds
created by your application, you might want to use (or suitably adapt) these existing
metaphors. For example, if your application supports document annotations with
recorded voices or other sounds, you can display a speaker icon within the document.
Clicking or double-clicking the icon should result in playing the sound.

Keep in mind that applications that play sound should allow users to turn off sound
output, because there might be users who object to it or environments where it is
inappropriate. Also, there might be cultural biases or preferences associated with certain
sounds. Thus, if your application plays specific sounds, you should store them as
resources, which can be easily modified for local regions, or if they are very large, in
sound files, which you can replace easily during localization.

Using Sound on Macintosh Computers

1-24

This section describes the most basic ways of using the Sound Manager, the Sound Input
Manager, and the Speech Manager. In particular, it provides source code examples that
show how to produce an alert sound, play a sound resource, play a sound file, determine
whether your application can access sound recording equipment, record a sound
resource, record a sound file, and convert a text string to spoken words.

Producing an Alert Sound

You can produce a system alert sound to catch the user’s attention by calling the
SysBeep procedure. The SysBeep procedure is a Sound Manager routine that plays the
alert sound selected by the user in the Alert Sounds control panel. Here’s an example of
calling SysBeep:

Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

I F myErr <> noErr THEN
SysBeep(30);

You must supply a parameter when you call the SysBeep procedure, even though the
Sound Manager ignores that parameter in most cases. All system alert sounds are stored
asformat1l' snd ' resources in the System file and are played by the Sound Manager.
There is one instance in which the number passed to SysBeep is not ignored: if the user
has selected the Simple Beep as the system alert sound on some Macintosh computers
(for example, a Macintosh Plus or Macintosh SE), the beep is generated by code stored in
ROM rather than by the Sound Manager, and the duration parameter is interpreted in
ticks (sixtieths of a second).

The SysBeep procedure has no effect if an application has disabled the system alert
sound. You might do this to prevent the system alert sound from interrupting some
other sound. For information on enabling and disabling the system alert sound, see the
chapter “Sound Manager” in this book.

You should not call the SysBeep procedure at interrupt time, because doing so causes
the Sound Manager to attempt to allocate memory and load a resource.

Note

If your primary use of the SysBeep procedure is to alert the user of
important or abnormal occurrences, it might be preferable to use the
Notification Manager. See the chapter “Notification Manager” in
Inside Macintosh: Processes for complete details on alerting the user. u

Playing a Sound Resource

You can play a sound stored in a resource by calling the SndPI ay function, which
requires a handle to an existing ' snd ' resource. An' snd ' resource contains sound
commands that play the desired sound. The' snd ' resource might also contain sound
data. If it does (as in the case of a sampled sound), that data might be either compressed
or noncompressed. SndPl ay decompresses the data, if necessary, to play the sound.
Listing 1-1 illustrates how to play a sound resource.

Listing 1-1 Playing a sound resource with SndPl ay

FUNCTI ON MyPl aySndResource (nySndlD: Integer): OSErr;
CONST

kAsync = TRUE; {for asynchronous pl ay}
VAR
my SndHandl e: Handl e; {handle to an 'snd ' resource}
nmyErr: CSErr;
BEG N
nmySndHandl e : = Get Resource('snd ', nySndlD);
myErr := ResError; {renmenber any error}
| F mySndHandl e <> NI L THEN {check for a NIL handl e}

Using Sound on Macintosh Computers 1-25

CHAPTER 1

Introduction to Sound on the Macintosh

BEG N
HLock(mySndHandl e) ; {lock the sound data}
myErr := SndPl ay(NI L, nySndHandl e, NOT kAsync);
HUnl ock(nySndHandl e) ; {unl ock the sound dat a}
Rel easeResour ce(nySndHandl e) ;

END,

My/Pl aySndResource : = nyErr; {return the result}

END;

When you pass SndPl ay a NI L sound channel pointer in its first parameter, the Sound
Manager automatically allocates a sound channel (in the application’s heap) and then
disposes of it when the sound has completed playing. Note, however, that when your
application does pass NI L as the pointer to a sound channel, the third parameter to
SndPl ay is ighored; the sound plays synchronously even if you specify that you want it
to play asynchronously.

IMPORTANT

The handle you pass to SndPI ay must be locked for as long as the
sound is playing. s

Playing a Sound File

You can initiate and control a playback of sampled sounds stored in a file using the
SndSt art Fi | ePl ay, SndPauseFi | ePl ay, and SndSt opFi | ePl ay functions. You use
SndSt art Fi | ePl ay to initiate the playing of a sound file. If you allocate your own
sound channel and specify that play be asynchronous, you can then use the
SndPauseFi | ePl ay and SndSt opFi | ePl ay functions to pause, resume, and stop
sound files that are playing. The chapter “Sound Manager” in this book describes these
two functions in detail.

To play a sampled sound that is contained in afile, you pass SndSt art Fi | ePl ay the
file reference number of the file to play. The sample should be stored in either AIFF or
AIFF-C format. If the sample is compressed, it is automatically expanded during
playback. If you specify NI L as the sound channel, then SndSt ar t Fi | ePl ay allocates
memory for a channel internally. Listing 1-2 defines a function that plays a file specified
by its file reference number.

Listing 1-2 Playing a sound file with SndStart Fi | ePl ay

1-26

FUNCTI ON MyPl aySoundFi l e (nyFil eRef Num |Integer): OSErr;
CONST

kAsync = TRUE; {for asynchronous pl ay}
kBuf fer Si ze = 20480; {20K play buffer}

VAR
nmyErr: CSErr;

BEG N

Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

myErr := SndStartFilePlay(NIL, nmyFileRefNum O, kBufferSize,
NIL, NIL, NL, NOT kAsync);
MyPl aySoundFil e := nyErr;
END,

To allow the Sound Manager to handle all memory allocation automatically, you should
pass NI L as the first and fifth parameters to SndSt ar t Fi | ePl ay, as done in Listing 1-2.
The first NI L specifies that you want SndSt art Fi | ePl ay to allocate a sound channel
itself. The NI L passed as the fifth parameter specifies that SndSt art Fi | ePl ay should
automatically allocate buffers to play the sound. The SndSt art Fi | ePl ay functionthen
allocates two buffers, each half the size specified in the fourth parameter; if the fourth
parameter is 0, the Sound Manager chooses a default size for the buffers.

The third parameter passed to SndSt art Fi | ePl ay here is set to 0. That parameter is
used only when playing sound resources from disk.

The seventh parameter to SndSt art Fi | ePl ay allows you to specify a routine to be
executed when the sound finishes playing. This is useful only for asynchronous play. In
Listing 1-2, the value NOT kAsync (that is, FALSE) is passed as the eighth parameter to
SndSt art Fi | ePl ay to request synchronous playback. SndSt art Fi | ePl ay would
return abadChannel result code if you request asynchronous playback because

MyPl aySoundFi | e does not allocate a sound channel.

Checking For Sound-Recording Equipment

Before allowing a user to record a sound, you must ensure that sound-recording
hardware and software are installed. You can record sound through the microphone built
into several Macintosh models, or through third-party sound input devices. Because
low-level sound input device drivers handle communication between your application
and the sound recording hardware, you do not need to know what type of microphone is
available. Listing 1-3 defines a function that determines whether sound recording
hardware is available.

Listing 1-3 Determining whether sound recording equipment is available

FUNCTI ON MyHasSoundl nput : Bool ean;

VAR
nyFeature: Longlnt;
nmyErr: CSErr;
BEG N
myErr := Gestalt(gestaltSoundAttr, nyFeature);
IF nmyErr = noErr THEN {test sound input device bit}

MyHasSoundl nput : = BTst (nyFeat ure, gestaltHasSoundl nput Devi ce)
ELSE
MyHasSoundl nput := FALSE; {no sound features avail abl e}
END;

Using Sound on Macintosh Computers 1-27

CHAPTER 1

Introduction to Sound on the Macintosh

The MyHasSoundlI nput function defined in Listing 1-3 uses the Gest al t function to
determine whether sound input hardware is available and usable on the current
Macintosh computer. MyHas Soundl nput tests the gest al t HasSound| nput Devi ce
bit and returns TRUE if you can record sounds. MyHas Sound| nput returns FALSE if you
cannot record sounds (either because no sound input device exists or because the Sound
Input Manager is not available).

Note

For more information on the Gest al t function, see Inside Macintosh:
Operating System Utilities. u

Recording a Sound Resource

You can record sounds from the current input device by using the SndRecor d function.
The SndRecor d function presents the sound recording dialog box. When calling
SndRecor d, you need to provide a handle to a block of memory where the incoming
data should be stored. If you pass the address of a NI L handle, however, the Sound
Input Manager allocates a large block of space in your application heap and resizes it
when the recording stops. Listing 1-4 illustrates how to call SndRecor d.

Listing 1-4 Recording through the sound recording dialog box

1-28

PROCEDURE MyRecor dThrubDi al og (VAR nySndHandl e: Handl e);
VAR

nmyErr: OSErr;
my Cor ner : Poi nt ;
BEG N
My Get TopLef t Cor ner (myCor ner) ;
mySndHandl e : = NI L; {use default nenory all ocation}

myErr := SndRecord(NI L, mnyCorner, siBestQuality, nySndHandle);
IF (nmyErr <> noErr) AND (nyErr <> userCancel edErr) THEN
DoError (nyErr);
END,

If the user cancels sound recording, then the SndRecor d function returns the result code
user Cancel edErr. The MyRecor dThr ubDi al og procedure defined in Listing 1-4
returns a NI L sound handle if the user cancels recording.

If you pass a sound handle that is not NI L as the fourth parameter to the SndRecor d
function, the Sound Input Manager derives the maximum time of recording from the
amount of space reserved by that handle. The handle is resized on completion of the
recording.

The first parameter in the call to SndRecor d is the address of a filter procedure
that determines how user actions in the dialog box are filtered. In Listing 1-4, no
filter procedure is desired, so the parameter is specified as NI L. For information

Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

on filter procedures, see the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The second parameter in the call to SndRecor d is the desired location (in global
coordinates) of the upper-left corner of the dialog box. For example, the Sound control
panel displays the dialog box near the control panel. Your application might place the
dialog box elsewhere (for example in the standard alert position on the main screen).
For more information on centering dialog boxes, see the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

The third parameter in the call to SndRecor d specifies the quality of the recording.
Currently three values are supported:

CONST
si BestQual ity = 'best"'; {the best quality avail abl e}
siBetterQuality = 'betr'; {a quality better than good}
si GoodQual ity = 'good'; {a good quality}

The precise meanings of these constants are defined by the current sound-input device
driver. The constant si Best Qual i t y indicates that you want the highest quality
recorded sound, usually at the expense of increased storage space (possibly because no
compression is performed on the sound data). The constant si GoodQual i t y indicates
that you are willing to sacrifice audio quality if necessary to minimize the amount of
storage space required (typically this means that 6:1 compression is performed on the
sound data). For most voice recording, you should specify si GoodQual i ty. The
constantsi Bet t er Qual i t y defines a quality and storage space combination that is
between those provided by the other two constants.

You could play the sound recorded using the MyRecor dThr uDi al og procedure defined
in Listing 1-4 by calling SndPI ay and passing it the sound handle nySndHandl e. That
handle refers to some data in memory that has the structure of an' snd ' resource, but
it is not a handle to an existing resource. To save the recorded data as a resource, you can
use the Resource Manager. Listing 1-5 calls the MyRecor dThr uDi al og procedure and
then uses the Resource Manager to save the recorded data as a resource in an open
resource file.

Listing 1-5 Recording a sound resource

PROCEDURE MyRecor dSndResource (resFil eRef Num | nteger);

CONST
kM nSysSndRes = 0; {l owest reserved 'snd ' resource |D}
kMaxSysSndRes = 8191; {hi ghest reserved | D}
VAR
myPr evResFi | e: I nt eger; {current resource file}
my SndHandl e: Handl e; {handl e to resource data}
nyRes| D: Longl nt ; {I D of resource}
myResNane: St r 255; {nane of resource}

Using Sound on Macintosh Computers 1-29

CHAPTER 1

Introduction to Sound on the Macintosh

nmyErr: CSErr;

BEG N
myPrevResFil e : = CurResFil e; {renmenber current resource file}
UseResFi | e(resFi |l eRef Nunj ; {tenporarily switch resource files}

MyRecor dThr uDi al og(mySndHandl e); {record via standard interface}

| F mySndHandl e <> NI L THEN
BEG N {recording finished successfully}
REPEAT {find acceptable resource |D nunber}
myResI D : = Uniquell D('snd ");
UNTIL (nmyResl D < kM nSysSndRes) OR (nyResl D > kMaxSysSndRes) ;
My Get SoundNare(nyResNane) ; {get nane for sound resource}
{add resource to file}
AddResour ce(mySndHandl e, 'snd ', nyResl D, nyResNane);
nyErr .= ResError,;
IF nyErr = noErr THEN
BEA N
Updat eResFi | e(resFi | eRef Num ; {update resource file}
nmyErr := ResError;
END;
IF myErr <> noErr THEN
DoError (nyErr);
END;
UseResFi | e(myPrevResFil e); {restore previous resource file}
END;
The MyRecor dSndResour ce procedure defined in Listing 1-5 takes as a parameter the
reference number of an open resource file to which you wish to record. The procedure
makes that resource file the current resource file and, after recording, reverts to what was
previously the active resource file. Note that you should not record to your application’s
resource fork, because applications that write to their own resource forks cannot be used
by multiple users at once over a network. For more information on reference numbers
for resource files, see the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox.
The MyRecor dSndResour ce procedure first presents the sound recording dialog box
by calling the MyRecor dThr uDi al og procedure defined in Listing 1-4 on page 1-28.
If that procedure returns a valid sound handle, MyRecor dSndResour ce finds an
acceptable resource ID for the resource file and then calls a procedure that returns a
name for the resource (perhaps by presenting a dialog box that asks the user to name the
sound). Finally, MyRecor dSndResour ce adds the resource to the specified resource file
and updates that file by calling the Resource Manager procedure Updat eResFi | e.
1-30 Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

Recording a Sound File

To record a sound directly into a file, you can call the SndRecor dToFi | e function,
which works exactly like SndRecor d except that you pass it the file reference number
of an open file instead of a handle to some memory. When SndRecor dToFi | e exits
successfully, that file contains the recorded audio data in AIFF or AIFF-C format.

You can then play the recorded sound by passing that file reference number to the
SndSt art Fi | ePl ay function. (See Listing 1-2 on page 1-26 for a sample function that
uses the SndSt art Fi | ePl ay function.) Listing 1-6 defines a procedure that records a
sound into a file using SndRecor dToFi | e.

Listing 1-6 Recording a sound file

PROCEDURE MyRecor dSoundFil e (myFil eRef Num | nteger);

VAR
nmyErr: CSErr;
my Cor ner : Poi nt ;
BEG N

My Cet TopLef t Cor ner (myCor ner) ;
nmyErr := SndRecordToFil e(N L, nyCorner, siBestQuality, nyFileRefNum;
IF (nmyErr <> noErr) AND (nyErr <> userCancel edErr) THEN
DoError (nyErr);
END;

The SndRecor dToFi | e function records the sound in the file specified in its

fourth parameter. You must open the file before calling the MyRecor dSoundFi | e
procedure, and you must close the file after calling it. For more information on creating,
opening, and closing files, see the chapter “Introduction to File Management” in

Inside Macintosh: Files.

Checking For Speech Capabilities

Because the Speech Manager is not available in all system software versions, your
application should always check for speech capabilities before attempting to use them.
Listing 1-7 defines a function that determines whether the Speech Manager is available.

Listing 1-7 Checking for speech generation capabilities

FUNCTI ON MyHasSpeech: Bool ean;

VAR
my Feat ur e: Longl nt; {feature being tested}
nmyErr: OSErr;

BEG N

myErr := Cestalt(gestaltSpeechAttr, nyFeature);

Using Sound on Macintosh Computers 1-31

CHAPTER 1

Introduction to Sound on the Macintosh

IF myErr = noErr THEN {test Speech Manager-present bit}
MyHasSpeech : = BTst (nyFeature, gestaltSpeechMyrPresent)
ELSE
MyHasSpeech : = FALSE; {no speech features avail abl e}

END;

The MyHas Speech function defined in Listing 1-7 uses the Gest al t function to
determine whether the Speech Manager is available. The MyHas Speech function tests
the gest al t SpeechMyr Pr esent bit and returns TRUE if and only if the Speech
Manager is present. If the Gest al t function cannot obtain the desired information and
returns a result code other than noEr r, the MyHas Speech function assumes that the
Speech Manager is not available and therefore returns FALSE.

Generating Speech From a String

It is easy to have the Speech Manager generate speech from a string stored as a variable
of type St r 255. The SpeakSt r i ng function takes one parameter, the string to be
spoken. SpeakSt ri ng automatically allocates a speech channel, uses that channel to
produce speech, and then disposes of the speech channel when speaking is complete.
Speech generation is asynchronous, but because SpeakSt r i ng copies the string you
pass it into an internal buffer, you are free to release the memory you allocated for the
string as soon as Speak St ri ng returns.

Listing 1-8 show how you can use the SpeakSt r i ng function to convert a string stored
in aresource of type' STR#' into speech.

Listing 1-8 Using SpeakStri ng to generate speech from a string

PROCEDURE MySpeakStringResource (nyStrListlD: |nteger; nylndex: |nteger);
VAR

myString: Str 255; {the string to speak}
nmyErr: OSErr;
BEG N
GetlndString(myString, nmyStrListlD, nylndex); {l oad the string}
nyErr := SpeakString(myString); {start speaking}
I'F myErr <> noErr THEN
DoError (nyErr);
END,

The MySpeakSt ri ngResour ce procedure defined in Listing 1-8 takes as parameters
the resource ID of the ' STR#' resource containing the string and the index of the
string within that resource. MySpeakSt r i ngResour ce passes these values to the

Get | ndSt ri ng procedure, which loads the string from the resource file into memory.
My SpeakSt ri ngResour ce then calls the SpeakSt ri ng function to convert the string
into speech; if an error occurs, it calls an application-defined error-handling procedure.

1-32 Using Sound on Macintosh Computers

CHAPTER 1

Introduction to Sound on the Macintosh

The speech that the SpeakSt ri ng function generates is asynchronous; that is, control
returns to your application before the function finishes speaking the string. If you would
like to generate speech synchronously, you can use SpeakSt ri ng in conjunction with
the SpeechBusy function, which returns the number of active speech channels,
including the speech channel created by the SpeakSt r i ng function.

Listing 1-9 illustrates how you can use SpeechBusy and SpeakSt r i ng to generate
speech synchronously.

Listing 1-9 Generating speech synchronously

PROCEDURE MySpeakStri ngResourceSync (myStrListlD: Integer; nylndex: Integer);
VAR

BEG N

acti veChannel s: I nt eger; {nunber of active speech channel s}
activeChannel s : = SpeechBusy; {find nunber of active channel s}
MySpeakSt ri ngResource(nyStrListlD, nylndex); {speak the string}

{Wait until channel is no |onger processing speech.}
REPEAT

UNTI L SpeechBusy = activeChannel s;

END;

The MySpeakSt ri ngResour ceSync procedure defined in Listing 1-9 uses the

My SpeakSt ri ngResour ce procedure defined in Listing 1-8 to speak a string. However,
before calling MySpeakSt ri ngResour ce, MySpeakSt ri ngResour ceSync calls the
SpeechBusy function to determine how many speech channels are active. After the
speech has begun, the My Speak St ri ngResour ceSync function does not return until
the number of speech channels active again falls to this level.

Note

Ordinarily, you should play speech asynchronously, to allow the user to
perform other activities while speech is being generated. You might play
speech synchronously if other activities performed by your application
should not occur while speech is being generated. u

You can use the SpeakSt ri ng function to stop speech being generated by a prior call
to SpeakSt ri ng. You might do this, for example, if the user switches to another
application or closes a document associated with speech being generated. To stop
speech, simply pass a zero-length string to the SpeakSt ri ng function (or if you are
programming in C, pass NULL).

Listing 1-10 shows how your application can stop speech generated by a call to the
SpeakSt ri ng function.

Using Sound on Macintosh Computers 1-33

CHAPTER 1

Introduction to Sound on the Macintosh

Listing 1-10 Stopping speech generated by SpeakStri ng

PROCEDURE My St opSpeech;

VAR
myString: St r 255; {an enpty string}
nyErr: OSErr;
BEG N
myString[0] := Char(0); {set length of string to 0}

myErr := SpeakString(nmyString); {stop previous speech}
I'F nyErr <> noErr THEN
DoError (nyErr);
END;

The MySt opSpeech procedure defined in Listing 1-10 sets the length byte of a string to
0 before calling the SpeakSt ri ng function. To execute this code in some development
systems, you need to ensure that range checking is disabled. Consult your development
system’s documentation for details on enabling and disabling range checking.

Sound Reference

Routines

This section describes the routines used in this chapter to illustrate basic sound
producing and recording operations. These are high-level routines that you can use to
play and record sound resources and sound files, and to convert text to speech. The
routines described in this section also appear in the appropriate reference sections of the
other chapters in this book.

For a description of sound-related data structures and other sound-related routines, see
the chapters “Sound Manager,” “Sound Input Manager,” and “Speech Manager” in this
book. For a detailed description of the formats of sound resources and sound files, see
the chapter “Sound Manager” in this book.

This section describes the high-level system software routines that you can use to play
and record sound resources and sound files, or to convert a text string to spoken words.
These routines belong to the Sound Manager.

Playing Sounds

1-34

You can use the SysBeep procedure to play the system alert sound, the SndPl ay
function to play the sound stored inany ' snd ' resource, and the SndSt art Fi | ePl ay
function to play a sound file.

Sound Reference

CHAPTER 1

Introduction to Sound on the Macintosh

SysBeep
You can use the SysBeep procedure to play the system alert sound.
PROCEDURE SysBeep (duration: Integer);
duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when
the system alert sound is the Simple Beep. The recommended duration is
30 ticks, which equals one-half second.
DESCRIPTION

The SysBeep procedure causes the Sound Manager to play the system alert sound at its
current volume. If necessary, the Sound Manager loads into memory the sound resource
containing the system alert sound and links it to a sound channel. The user selects a
system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert
sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound
control panel. The system alert sound volume can also be read and set by calling the

Get SysBeepVol une and Set SysBeepVol une routines. If the volume is set to 0 (silent)
and the system alert sound is enabled, calling SysBeep causes the menu bar to blink
once.

SPECIAL CONSIDERATIONS
Because the SysBeep procedure moves memory, you should not call it at interrupt time.

SEE ALSO
For information on enabling and disabling the system alert sound or for information on
reading and adjusting the system alert sound volume, see the chapter “Sound Manager”
in this book.

SndPlay

You can use the SndPI ay function to play a sound resource that your application has
loaded into memory.

FUNCTI ON SndPl ay (chan: SndChannel Ptr; sndHdl: Handl e;
async: Bool ean): OSErr;

chan A pointer to a valid sound channel. You can pass NI L instead of a pointer

to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

Sound Reference 1-35

DESCRIPTION

CHAPTER 1

Introduction to Sound on the Macintosh

sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NI L is passed in the
first parameter.

The SndPI ay function attempts to play the sound located at sndHdl , which is expected
to have the structure of aformat 1' snd ' resource. If the resource has not yet been
loaded, the SndPI ay function fails and returns the r esPr obl emresult code. The handle
you pass in the sndHdl parameter must be locked for as long as the sound is playing
asynchronously.

The chan parameter is a pointer to a sound channel. If chan isnot NI L, it is used as a
valid channel. If chan is NI L, an internally allocated sound channel is used. Commands
and data contained in the sound handle are then sent to the channel. Note that you can
pass SndPl ay a handle to some data created by calling the Sound Input Manager’s
SndRecor d function as well as a handle to an actual ' snd ' resource that you have
loaded into memory.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Because the SndPI ay function moves memory, you should not call it at interrupt time.

noErr 0 No error

not EnoughHar dwar eEr r -201 Insufficient hardware available
resProbl em -204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable
badFor mat -206 Resource is corrupt or unusable

For an example of how to play a sound resource using the SndPI ay function, see
“Playing a Sound Resource” on page 1-25. For more information on the SndPI ay
function, see the chapter “Sound Manager” in this book.

SndStartFilePlay

1-36

You can call the SndSt art Fi | ePl ay function to initiate a play from disk.

FUNCTI ON SndStartFil ePlay (chan: SndChannel Ptr; fRef Num |Integer;
resNum |Integer; bufferSize: Longlnt;
theBuffer: Ptr;

Sound Reference

DESCRIPTION

CHAPTER 1

Introduction to Sound on the Macintosh

t heSel ection: Audi oSel ectionPtr;
t heConpl etion: ProcPktr;
async: Bool ean): OSErr;

chan A pointer to a valid sound channel. You can pass NI L instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

f Ref Num The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

resNum The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

buf fer Si ze
The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndSt art Fi | ePl ay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

t heBuf f er A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NI L, the Sound
Manager allocates two buffers, each half the size of the value specified in
the buf f er Si ze parameter. If this parameter is not NI L, the buffer
should be a nonrelocatable block of size buf f er Si ze.

t heSel ecti on
A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NI L to specify that the Sound
Manager should play the entire sound.

t heConpl eti on
A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NI L to specify that the Sound
Manager should not execute a completion routine. This field is useful
only for asynchronous play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NI L in the chan parameter and TRUE for
this parameter, the SndSt art Fi | ePl ay function returns the
badChannel result code.

The SndSt ar t Fi | ePl ay function begins a continuous play from disk on a sound
channel. The chan parameter is a pointer to the sound channel. If chan isnot NI L, it

is used as a valid channel. If chan is NI L, an internally allocated sound channel is used
for play from disk. This internally allocated sound channel is not passed back to you.
Because SndPauseFi | ePl ay and SndSt opFi | ePl ay (described in the chapter
“Sound Manager”) require a sound-channel pointer, you must allocate your own
channel if you wish to use those routines.

Sound Reference 1-37

CHAPTER 1

Introduction to Sound on the Macintosh

The sounds you wish to play can be stored either in a file orinan ' snd

resource. If

you are playing a file, then f Ref Numshould be the file reference number of the file to be

played and the parameter r esNumshould be set to 0. If you are playingan' snd

resource, then f Ref Numshould be set to 0 and r esNumshould be the resource ID
number (not the file reference number) of the resource to play.

SPECIAL CONSIDERATIONS

Because the SndSt art Fi | ePl ay function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndSt art Fi | ePl ay function are

Trap macro Selector
_SoundDi spat ch $0D000008
RESULT CODES

nokErr 0
not EnoughHar dwar eEr r -201
queueFul | -203
resProbl em -204
badChannel -205
badFor mat —-206
not EnoughBuf f er Space =207
badFi | eFor mat -208
channel Busy -209
buf f er sTooSmal | -210
si I nval i dConpr essi on -223

SEE ALSO

No error

Insufficient hardware available
No room in the queue

Problem loading the resource
Channel is corrupt or unusable
Resource is corrupt or unusable
Insufficient memory available
File is corrupt or unusable, or not AIFF or
AIFF-C

Channel is busy

Buffer is too small

Invalid compression type

For an example of how to play a sound file using the SndSt ar t Fi | ePl ay function, see
“Playing a Sound File” on page 1-26. For information on completion routines, see the

chapter “Sound Manager” in this book.

Recording Sounds

The Sound Input Manager provides two high-level sound input routines, SndRecor d
and SndRecor dToFi | e, for recording sound. These input routines are analogous to the
two Sound Manager functions SndPl ay and SndSt ar t Fi | ePl ay. By using these
high-level routines, you can be assured that your application presents a user interface
that is consistent with that displayed by other applications recording sounds. Both
SndRecor d and SndRecor dToFi | e attempt to record sound data from the sound
input hardware currently selected in the Sound In control panel.

1-38 Sound Reference

CHAPTER 1

Introduction to Sound on the Macintosh

SndRecord

You can use the SndRecor d function to record sound resources into memory.

FUNCTI ON SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandl e: Handl e):
CSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar to thefi | t er Proc
parameter specified in a call to the Mbdal Di al og procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. If fil ter Proc isn’t NI L,
SndRecor d filters events by calling the function thatfi |l t er Proc
points to.

cor ner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandl e On entry, a handle to some storage space or NI L. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

DESCRIPTION

The SndRecor d function records sound into memory. The recorded data has the
structure ofaformat 1' snd ' resource and can later be played using the SndPl ay
function or can be stored as a resource. SndRecor d displays a sound recording dialog
box and is always called synchronously. Controls in the dialog box allow the user to
start, stop, pause, and resume sound recording, as well as to play back the recorded
sound. The dialog box also lists the remaining recording time and the current
microphone sound level.

The qual i t y parameter defines the desired quality of the recorded sound. Currently,
three values are recognized for the qual i t y parameter:

CONST
si Best Qual ity = 'best’; {the best quality avail abl e}
siBetterQuality = 'betr'; {a quality better than good}
si GoodQual ity = 'good'; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.
For Apple-supplied drivers, this parameter determines whether the recorded sound is to
be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality si Best Qual ity
does not compress the sound and provides the best quality output, but at the expense of
increased memory use. The quality si Bet t er Qual i ty is suitable for most honvoice
recording, and si GoodQual i t y is suitable for voice recording.

Sound Reference 1-39

CHAPTER 1

Introduction to Sound on the Macintosh

The sndHandl e parameter is a handle to some storage space. If the handle is NI L, the
Sound Input Manager allocates a handle of the largest amount of space that it can find in
your application’s heap and returns this handle in the sndHandl e parameter. The
Sound Input Manager resizes the handle when the user clicks the Save button in the
sound recording dialog box. If the sndHandl e parameter passed to SndRecor d is not

NI L, the Sound Input Manager simply stores the recorded data in the location specified
by that handle.

SPECIAL CONSIDERATIONS
Because the SndRecor d function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndRecor d function are
Trap macro Selector
_SoundDi spat ch $08040014

RESULT CODES
noErr 0 No error
user Cancel edErr -128 User canceled the operation
si BadSoundl nDevi ce =221 Invalid sound input device
si UnknownQual ity -232 Unknown quality

SEE ALSO

For an example of how to record a sound resource using the SndRecor d function, see
“Recording a Sound Resource” on page 1-28. See the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a complete description of event filter functions.

SndRecordToFile

You can use SndRecor dToFi | e to record sound data into a file.

FUNCTI ON SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType;
f Ref Num Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

1-40 Sound Reference

CHAPTER 1

Introduction to Sound on the Macintosh

quality The desired quality of the recorded sound. The values you can use for this
parameter are described on page 1-39.

f Ref Num The file reference number of an open file to save the audio data in.

DESCRIPTION

The SndRecor dToFi | e function works just like SndRecor d except that it stores the
sound input data into a file. The resulting file is in either AIFF or AIFF-C format and
contains the information necessary to play the file by using the Sound Manager’s
SndSt art Fi | ePl ay function. The SndRecor dToFi | e function is always called
synchronously.

Your application must open the file specified in the f Ref Numparameter before calling
the SndRecor dToFi | e function. Your application must close the file sometime after
calling SndRecor dToFi | e.

SPECIAL CONSIDERATIONS

Because the SndRecor dToFi | e function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndRecor dToFi | e function are
Trap macro Selector
_SoundDi spat ch $07080014

RESULT CODES
noErr 0 No error
user Cancel edErr -128 User canceled the operation
si BadSoundl nDevi ce =221 Invalid sound input device
si UnknownQual ity -232 Unknown quality

SEE ALSO

For an example of how to record a sound file using the SndRecor dToFi | e function, see
“Recording a Sound File” on page 1-31. See the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a complete description of event filter functions.

Generating and Stopping Speech

Your application can use the SpeakSt ri ng function to generate speech or stop speech
currently being generated by SpeakSt ri ng. By calling the SpeechBusy function
before and after a call to SpeaksSt ri ng, your application can determine when speaking
is complete. These routines belong to the Speech Manager.

Sound Reference 1-41

CHAPTER 1

Introduction to Sound on the Macintosh

SpeakString

DESCRIPTION

You can use the SpeakSt ri ng function to have the Speech Manager read a text string.
FUNCTI ON SpeakString (s: Str255): OSErr;

s The string to be spoken.

The SpeaksSt ri ng function attempts to speak the Pascal-style text string contained in
the string s. Speech is produced asynchronously using the default system voice. When
an application calls this function, the Speech Manager makes a copy of the passed string
and creates any structures required to speak it. As soon as speaking has begun, control is
returned to the application. The synthesized speech is generated asynchronously to the
application so that normal processing can continue while the text is being spoken. No
further interaction with the Speech Manager is required at this point, and the application
is free to release the memory that the original string occupied.

If SpeakSt ri ng is called while a prior string is still being spoken, the sound currently
being synthesized is interrupted immediately. Conversion of the new text into speech is
then begun. If you pass a zero-length string (or, in C, anul | pointer) to SpeakStri ng,
the Speech Manager stops any speech previously being synthesized by SpeakSt ri ng
without generating additional speech. If your application uses SpeakSt ri ng, it is often
a good idea to stop any speech in progress whenever your application receives a
suspend event. (Note, however, that calling SpeakSt ri ng with a zero-length string has
no effect on speech channels other than the one managed internally by the Speech
Manager for the SpeakSt ri ng function.)

The text passed to the Speak St ri ng function may contain embedded speech
commands, which are described in the chapter “Speech Manager” in this book.

SPECIAL CONSIDERATIONS

Because the SpeakSt ri ng function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

1-42

The trap macro and routine selector for the SpeakSt ri ng function are

Trap macro Selector
_SoundDi spat ch $0220000C

Sound Reference

CHAPTER 1

Introduction to Sound on the Macintosh

RESULT CODES

noErr 0 No error

menful | Err -108 Not enough memory to speak

synt hOpenFai | ed -241 Could not open another speech synthesizer channel
SEE ALSO

For an example of how to read a text string using the SpeakSt ri ng function, see
“Generating Speech From a String” on page 1-32. See the chapter “Dialog Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for a complete description of event
filter functions.

SpeechBusy

You can use the SpeechBusy function to determine whether any channels of speech are
currently synthesizing speech.

FUNCTI ON SpeechBusy: | nteger;

DESCRIPTION

The SpeechBusy function returns the number of speech channels that are currently
synthesizing speech in the application. This is useful when you want to ensure that an
earlier speech request has been completed before having the system speak again. Note
that paused speech channels are counted among those that are synthesizing speech.

The speech channel that the Speech Manager allocates internally in response to calls to
the SpeaksSt ri ng function is counted in the number returned by SpeechBusy. Thus, if
you use just Speak St ri ng to initiate speech, SpeechBusy always returns 1 as long as
speech isbeing produced. When SpeechBusy returns 0, all initiated speech has finished.

SPECIAL CONSIDERATIONS
You can call the SpeechBusy function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SpeechBusy function are

Trap macro Selector
_SoundDi spat ch $003C000C

Sound Reference 1-43

CHAPTER 1

Introduction to Sound on the Macintosh

Summary of Sound

Pascal Summary

Constants

CONST

{Gestalt sound attributes selector and response bits}

gestal t SoundAttr

gestal t StereoCapability
gestal t Ster eoM xi ng

gest al t Soundl Ovbr Pr esent
gestal t Bui | t1 nSoundl nput

gest al t HasSoundl nput Devi ce

gest al t Pl ayAndRecord
gestal t 16Bi t Soundl O
gest al t St er eol nput
gestal t Li neLevel | nput

gest al t SndPl ayDoubl eBuf f er

gestal t Mul ti Channel s
gest al t 16Bi t Audi oSupport

0
1
3
4
5;
6
7
8
9

10;
= 11;
12;

= 'snd

;{sound attributes selector}

{built-in hw can play stereo sounds}
{built-in hw m xes stereo to nono}
{sound input routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recording}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}
{built-in input hw needs line |evel}
{play fromdisk routines avail abl e}
{mul ti ple channel s of sound support ed}
{16-bit audi o data support ed}

{Gestalt selector and response bits for speech attributes}

gest al t SpeechAttr

"ttsc';{speech attributes selector}

gest al t SpeechMyr Pr esent = 0; {Speech Manager is present}
{recording qualities}
si BestQual ity = 'best"'; {the best quality avail abl e}
siBetterQuality = 'betr'; {a quality better than good}
si GoodQual ity = 'good'; {a good quality}

Routines

Playing Sounds

PROCEDURE SysBeep (duration: Integer);

FUNCTI ON SndPl ay (chan: SndChannel Ptr; sndHdl : Handl e;

async: Bool ean): OSErr;

1-44 Summary of Sound

CHAPTER 1

Introduction to Sound on the Macintosh

FUNCTI ON SndSt art Fil ePl ay

Recording Sounds
FUNCTI ON SndRecord

FUNCTI ON SndRecor dToFi | e

Generating and Stopping Speech

FUNCTI ON SpeakString (
FUNCTI ON SpeechBusy

C Summary

S:

(chan:
resNum
t heBuf fer:
t heSel ecti on:

t heConpl et i on:

(filterProc:
quality: OSType;
(filterProc:
quality: OSType;

Str255):

SndChannel Ptr;

f Ref Num
bufferSi ze:

I nt eger;
I nt eger; Longl nt ;
Ptr;

Audi oSel ectionPtr;

ProcPtr; async: Bool ean): OSErr;

Poi nt ;
Handl e) :
Poi nt ;
I nteger):

ProcPtr; corner:
VAR sndHandl e:

ProcPtr; corner:
f Ref Num

CSErr ;

CSErr;

CSErr;

I nt eger;

Constants

/*Cestalt sound attributes selector and response bits*/

#def i ne gestalt SoundAttr '

enum {
gestal t StereoCapability
gestal t St ereoM xi ng
gest al t Soundl OVgr Pr esent
gest al t Bui | t 1 nSoundI nput

gest al t HasSoundl nput Devi ce

gest al t Pl ayAndRecord
gestal t 16Bi t Soundl O

gest al t St er eol nput

gestal t Li neLevel | nput

gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s

gest al t 16Bi t Audi oSupport

Summary of Sound

snd

© 0N UAWRO

e
N PO

/*sound attributes sel ector*/

[*built-in hw can play stereo sounds*/
[*built-in hw nixes stereo to nmono*/
/[*sound input routines avail abl e*/
[*built-in input hw avail abl e*/

/*sound input device avail abl e*/
[*built-in hw can play while recording*/
[*built-in hw can handle 16-bit data*/
/[*built-in hw can record stereo sounds*/
[*built-in input hw needs line |evel*/
[*play fromdisk routines avail abl e*/
/*mul tiple channel s of sound supported*/
/*16-bit audi o data supported*/

1-45

CHAPTER 1

Introduction to Sound on the Macintosh

/[*Cestalt selector and response bits for speech attributes*/

#def i ne gestalt SpeechAttr 'ttsc' [*speech attributes selector*/
enum {

gest al t SpeechMyr Pr esent =0 [*Speech Manager is present*/
s
[*recording qualities*/
#define siBestQuality ' best' /*the best quality avail abl e*/
#define siBetterQuality "betr' /[*a quality better than good*/
#def i ne si GoodQual ity ' good' /*a good quality*/
Routines

Playing Sounds

pascal void SysBeep (short duration);
pascal OCSErr SndPl ay (SndChannel Ptr chan, Handl e sndHdl,
Bool ean async);

pascal OSErr SndStartFil ePl ay
(SndChannel Ptr chan, short fRef Num
short resNum |ong bufferSize, void *theBuffer,
Audi oSel ectionPtr theSel ection
Fi | ePl ayConpl eti onProcPtr theConpl etion
Bool ean async);

Recording Sounds

pascal OSErr SndRecord (Modal FilterProcPtr filterProc, Point corner
CSType quality, Handl e *sndHandl e);

pascal OSErr SndRecordToFil e
(Modal FilterProcPtr filterProc, Point corner
OSType quality, short fRefNunj;

Generating and Stopping Speech

pascal OSErr SpeakString (StringPtr s);
pascal short SpeechBusy (void);

1-46 Summary of Sound

CHAPTER 1

Introduction to Sound on the Macintosh

Result Codes

nokErr

user Cancel edErr

noHar dwar eEr r

not EnoughHar dwar eEr r
queueFul |

resProbl em
badChannel

badFor mat

not EnoughBuf f er Space
badFi | eFor mat

channel Busy

buf f er sTooSnal |

si BadSoundl nDevi ce
si I nval i dConpr essi on
si UnknownQual ity
synt hOpenFai | ed

-128
-200
-201
-203
—204
—205
—206
-207
-208
-209
-210
-221
-223
-232
—241

Summary of Sound

No error

User canceled the operation

Required sound hardware not available
Insufficient hardware available

No room in the queue

Problem loading the resource

Channel is corrupt or unusable

Resource is corrupt or unusable

Insufficient memory available

File is corrupt or unusable, or not AIFF or AIFF-C
Channel is busy

Buffer is too small

Invalid sound input device

Invalid compression type

Unknown quality

Could not open another speech synthesizer channel

1-47

CHAPTER 2

Sound Manager

Contents

About the Sound Manager 2-6

Sound Data 2-7
Square-Wave Data 2-7
Wave-Table Data 2-8
Sampled-Sound Data 2-9

Sound Commands 2-11

Sound Channels 2-13

Sound Compression and Expansion 2-14

Using the Sound Manager 2-17

Managing Sound Channels 2-19
Allocating Sound Channels 2-20
Initializing Sound Channels 2-22
Releasing Sound Channels 2-24
Manipulating a Sound That Is Playing 2-25
Stopping Sound Channels 2-28
Pausing and Restarting Sound Channels 2-29
Synchronizing Sound Channels 2-30

Managing Sound Volumes 2-31

Obtaining Sound-Related Information 2-32
Obtaining Information About Available Sound Features 2-33
Obtaining Version Information 2-34
Testing for Multichannel Sound and Play-From-Disk Capabilities
Obtaining Information About a Single Sound Channel 2-37
Obtaining Information About All Sound Channels 2-39
Determining and Changing the Status of the System Alert Sound

Playing Notes 2-41
Installing Voices Into Channels 2-43
Looping a Sound Indefinitely 2-45

Playing Sounds Asynchronously 2-46
Using Callback Procedures 2-47

Contents

2-35

2-40

2-1

CHAPTER 2

Synchronizing Sound With Other Actions 2-51
Managing an Asynchronous Play From Disk 2-52
Playing Selections 2-53
Managing Multiple Sound Channels 2-53
Parsing Sound Resources and Sound Files 2-56
Obtaining a Pointer to a Sound Header 2-57
Playing Sounds Using Low-Level Routines 2-61
Finding a Chunk in a Sound File 2-62
Compressing and Expanding Sounds 2-66
Using Double Buffers 2-68
Setting Up Double Buffers 2-70
Writing a Doubleback Procedure 2-72
Sound Storage Formats 2-73
Sound Resources 2-74
The Format 1 Sound Resource 2-75
The Format 2 Sound Resource 2-80
Sound Files 2-81
Chunk Organization and Data Types 2-82
The Form Chunk 2-83
The Format Version Chunk 2-84
The Common Chunk 2-85
The Sound Data Chunk 2-87
Format of Entire Sound Files 2-87
Sound Manager Reference 2-89
Constants 2-89
Gestalt Selector and Response Bits 2-90
Channel Initialization Parameters 2-91
Sound Command Numbers 2-92
Chunk IDs 2-98
Data Structures 2-99
Sound Command Records 2-99
Audio Selection Records 2-100
Sound Channel Status Records 2-101
Sound Manager Status Records 2-102
Sound Channel Records 2-103
Sound Header Records 2-104
Extended Sound Header Records 2-106
Compressed Sound Header Records 2-108
Sound Double Buffer Header Records 2-111
Sound Double Buffer Records 2-112
Chunk Headers 2-113
Form Chunks 2-113
Format Version Chunks 2-114
Common Chunks 2-115
Extended Common Chunks 2-115
Sound Data Chunks 2-117
Version Records 2-118

Contents

CHAPTER 2

Leftover Blocks 2-119
State Blocks 2-119
Sound Manager Routines 2-119
Playing Sound Resources 2-120
Playing From Disk 2-123
Allocating and Releasing Sound Channels 2-127
Sending Commands to a Sound Channel 2-130
Obtaining Information 2-132
Controlling Volume Levels 2-139
Compressing and Expanding Audio Data 2-142
Managing Double Buffers 2-147
Performing Unsigned Fixed-Point Arithmetic 2-148
Linking Modifiers to Sound Channels 2-149
Application-Defined Routines 2-151
Completion Routines 2-151
Callback Procedures 2-152
Doubleback Procedures 2-153
Resources 2-154
The Sound Resource 2-154
Summary of the Sound Manager 2-157
Pascal Summary 2-157
Constants 2-157
Data Types 2-161
Sound Manager Routines 2-168
Application-Defined Routines 2-170
C Summary 2-170
Constants 2-170
Data Types 2-175
Sound Manager Routines 2-182
Application-Defined Routines 2-184
Assembly-Language Summary 2-184
Data Structures 2-184
Trap Macros 2-188
Result Codes 2-188

Contents

2-3

CHAPTER 2

Sound Manager

This chapter describes the Sound Manager, the part of the Macintosh system software
that controls the production and manipulation of sounds on Macintosh computers. You
can use the Sound Manager to create a wide variety of sounds and to manipulate sounds
in many ways. The Sound Manager is also used by other parts of the Macintosh system
software that produce sounds, such as the Speech Manager and QuickTime.

To use this chapter, you should already be familiar with the information in the chapter
“Introduction to Sound on the Macintosh” earlier in this book, especially with the
portions of that chapter that describe the Macintosh sound architecture and the routines
related to sound output. That chapter shows how your application can play a sound
resource or a sound file synchronously (that is, with other processing suspended while
the sound plays).

You should read this chapter if you need a greater degree of control over sound output
than the routines described in that introductory chapter provide. For example, if you
want to play sounds asynchronously or to exercise very fine control over the process of
sound production, this chapter contains information you need.

This chapter begins by describing the capabilities of the Sound Manager and the role of
sound commands and sound channels in producing sound. Then it explains how you
can use the Sound Manager to

n create and manage sound channels

n obtain information about available sound features and sound channels
n play notes and other sounds at various frequencies and volumes

n play one or more sounds asynchronously

n parse sound resources and sound files to obtain information about them
n compress and expand sound data

n use double buffers to bypass the normal play-from-disk routines

You're not likely to use all of these capabilities in a single application. In general, you
should read the section “About the Sound Manager” and then turn to the parts of the
section “Using the Sound Manager” that describe the features you want to use in your
application. The section “Sound Storage Formats” beginning on page 2-73 explains in
detail the format of sound resources and sound files. You can find a complete reference
to the Sound Manager data structures and routines in the section “Sound Manager
Reference” beginning on page 2-89.

IMPORTANT

This chapter describes the capabilities and programming interfaces of
version 3.0 of the Sound Manager. See the chapter “Introduction to
Sound on the Macintosh” for some information on how version 3.0
differs from earlier versions. The capabilities and performance of
version 3.0 are significantly better than those of all previous Sound
Manager versions, even though their programming interfaces are largely
identical. This chapter occasionally warns you about techniques or
routines that cannot be used in versions prior to 3.0, but it does not
provide an exhaustive comparison of all available versions. s

CHAPTER 2

Sound Manager

About the Sound Manager

The Sound Manager is a collection of routines that your application can use to create
sound without a knowledge of or dependence on the actual sound-producing hardware
available on any particular Macintosh computer. More generally, the Sound Manager is
responsible for managing all sound production on Macintosh computers. Other parts of
the Macintosh system software that need to create or modify sounds use the Sound
Manager to do so. Figure 2-1 shows the position of the Sound Manager in relation to
sound-producing applications and to other parts of the system software, such as the

Speech Manager and QuickTime.

Figure 2-1 The position of the Sound Manager

2-6

Moie Flager

& <o
I

Tkt spem o
Erplicaton

CuickTim e Speech

Maneger

] 1

Sourd Ihput
Manager

Il

Soundanager

J

Sound components

I
o

Sourdproducing
Spplicaton

The Sound Manager was first introduced in system software version 6.0 and has been
significantly enhanced since that time. Prior to system software version 6.0, applications

could create sounds using the Sound Driver.

About the Sound Manager

CHAPTER 2

Sound Manager

IMPORTANT
To ensure compatibility across all models of Macintosh computers, you
should always use the Sound Manager rather than the Sound Driver,
which is no longer documented or supported by Apple Computer, Inc.
The Sound Manager is simpler and much more powerful than the
Sound Driver. Moreover, Sound Driver code might not work on some
Macintosh computers. s

This section describes the three basic ways of defining sounds, namely using wave-table
data, square-wave data, or sampled-sound data. Usually, you’ll use sampled data to
define the sounds you want to create, because sampled data provides the greatest
flexibility and variety of sounds. You might use wave-table or square-wave data for very
simple sounds. For instance, the Simple Beep alert sound is defined using square-wave
data. Most other alert sounds are defined using sampled-sound data.

This section also describes sound commands and sound channels, which you need to
know about to be able to do anything more complex than play sound resources or files
synchronously using high-level Sound Manager routines.

Sound Data

The Sound Manager can play sounds defined using one of three kinds of sound data:

n square-wave data
n wave-table data
n sampled-sound data

This section provides a brief description of each of these kinds of audio data and
introduces some of the concepts that are used in the remainder of this chapter. A
complete description of the nature and format of audio data is beyond the scope of this
book. There are, however, numerous books available that provide complete discussions
of digital audio data.

Square-Wave Data

Square-wave data is the simplest kind of audio data supported by the Sound Manager.
You can use square-wave data to generate a sound based on a square wave. Your
application can use square-wave data to play a simple sequence of sounds in which each
sound is described completely by three factors: its frequency or pitch, its amplitude (or
volume), and its duration.

The frequency of a sound is the number of cycles per second (or hertz) of the sound
wave. Usually, you specify a sound’s frequency by a MIDI value. MIDI note values
correspond to frequencies for musical notes, such as middle C, which is defined to have
a MIDI value of 60, which on Macintosh computers is equivalent to 261.625 hertz.

Pitch is a lister’s subjective interpretation of the sound’s frequency. The terms frequency
and pitch are used interchangeably in this chapter.

A sound’s duration is the length of time a sound takes to play. In the Sound Manager,
durations are usually specified in half-milliseconds.

About the Sound Manager 2-7

2-8

CHAPTER 2

Sound Manager

The amplitude of a sound is the loudness at which it is being played. Two sounds
played at the same amplitude might not necessarily sound equally loud. For example,
one sound could be played at a lower volume (which the user may set with the Sound
control panel). Or, a sampled sound of a fleeting whisper might sound softer than a
sampled sound of continuous gunfire, even if your application plays them at the
same amplitude.

Note

Amplitude is traditionally considered to be the height of a sound wave,
so that two sounds with the same amplitude would always sound
equally loud. However, the Sound Manager considers amplitude to be
the adjustment to be made to an existing sound wave. A sound played
at maximum amplitude still might sound soft if the wave amplitude
issmall. u

A sound’stimbre is its clarity. A sound with a low timbre is very clear; a sound with a
high timbre is buzzing. Only sounds defined using square-wave data have timbres.

Wave-Table Data

To produce more complex sounds than are possible using square-wave data, your
applications can use wave-table data. As the name indicates, wave-table data is based on
a description of a single wave cycle. This cycle is called a wave table and is represented
as an array of bytes that describe the timbre (or tone) of a sound at any point in the cycle.

Your application can use any number of bytes to represent the wave, but 512 is the
recommended number because the Sound Manager resizes a wave table to 512 bytes if
the table is not exactly that long. Your application can compute the wave table at run
time or load it from a resource.

Awave table is a sequence of wave amplitudes measured at fixed intervals. For instance,
a sine wave can be converted into a wave table by taking the value of the wave’s
amplitude at every /=12 interval of the wave (see Figure 2-2).

A wave table is represented as a packed array of bytes. Each byte contains a value in the
range $00-$FF. These values are interpreted as offset values, where $80 represents an
amplitude of 0. The largest negative amplitude is $00 and the largest positive amplitude
is $FF. When playing a wave-table description of a sound, the Sound Manager loops
through the wave table for the duration of the sound.

About the Sound Manager

CHAPTER 2

Sound Manager

Figure 2-2 A graph of a wave table

Sngle weave cpde

3FF [

=0

o0
1 R F

Padked array ofbyres

Sampled-Sound Data

You can use sampled-sound data to play back sounds that have been digitally recorded
(that is, sampled sounds) as well as sounds that are computed, possibly at run time.
Sampled sounds are the most widely used of all the available sound types primarily
because it is relatively easy to generate a sampled sound and because sampled-sound
data can describe a wide variety of sounds. Sampled sounds are typically used to play
back prerecorded sounds such as speech or special sound effects.

You can use the Sound Manager to store sampled sounds in one of two ways, either as
resources of type' snd ' or as AIFF or AIFF-C format files. The structure of resources of
type ' snd ' isgiven in “Sound Resources” on page 2-74, and the structure of AIFF and
AIFF-C files is given in “Sound Files” on page 2-81. If you simply want to play short
prerecorded sampled sounds, you should probably include the sound datain' snd
resources. If you want to allow the user to transfer recorded sound data from one
application to another (or from one operating system to another), you should probably
store the sound data in an AIFF or AIFF-C file. In certain cases, you must store sampled
sounds in files and not in resources. For example, a sampled sound might be too large to
be stored in a resource.

Regardless of how you store a sampled sound, you can use Sound Manager routines to
play that sound. If you choose to store sampled sounds in files of type AIFF or AIFF-C,

About the Sound Manager 2-9

2-10

CHAPTER 2

Sound Manager

you can play those sounds by calling the SndSt ar t Fi | ePl ay function, introduced in
the chapter “Introduction to Sound on the Macintosh” in this book. If you store sampled
sounds in resources, your application can play those sounds by passing the Sound
Manager function SndPI ay a handle to a resource of type ' snd ' that contains a
sampled sound header. (The SndSt art Fi | ePl ay function can also play ' snd '
resources directly from disk, but this is not recommended.)

There are three types of sampled-sound headers: the standard sound header, the
extended sound header, and the compressed sound header. The sound header contains
information about the sample (such as the original sampling rate, the length of the
sample, and so forth), together with an indication of where the sample data is to be
found. The sampled sound header can reference only buffers of monophonic, 8-bit
sound. The extended sound header can be used for 8- or 16-bit stereo sound data as well
as monophonic sound data. The compressed sound header can be used to describe
compressed sound data, whether monophonic or stereo. Data can be stored in a buffer
separate from the sound resource or as part of the sound resource as the last field of the
sound header.

Note

The terminology sampled sound header can be confusing because in most
cases the sound header (and hence the ' snd ' resource) contains the
sound data as well as information describing the data. Also, do not
confuse sampled sound headers with sound resource headers. Sampled
sound headers contain information about sampled-sound data, but
sound resource headers contain information on the format of an entire
sound resource. u

You can play a sampled sound at its original rate or play it at some other rate to change
its pitch. Once you install a sampled sound header into a channel, you can play it at
varying rates to provide a number of pitches. In this way, you can use a sampled sound
as a voice or instrument to play a series of sounds.

Sampled-sound data is made up of a series of sample frames, which are stored
contiguously in order of increasing time. For noncompressed sound data, each sample
frame contains one or more sample points. For compressed sound data, each sample
frame contains one or more packets.

For multichannel sounds, a sample frame is an interleaved set of sample points or
packets. (For monophonic sounds, a sample frame is just a single sample point or a
single packet.) The sample points within a sample frame are interleaved by channel
number. For example, the sound data for a stereo, noncompressed sound is illustrated
in Figure 2-3.

About the Sound Manager

CHAPTER 2

Sound Manager

Figure 2-3 Interleaving stereo sample points

b=

l_,

—|_|_I Famaen Fame nH |_| Fram e rk2

= ||[L Lﬁg@))

Each sample point of noncompressed sound data in a sample frame is, for sound files, a
linear, two’s complement value, and, for sound resources, a binary offset value. Sample
points are from 1 to 32 bits wide. The size is usually 8 bits, but a different size can be
specified in the sanpl eSi ze field of the extended sound header (for sound resources)
or in the sanpl eSi ze field of the Common Chunk (for sound files). Each sample point
is stored in an integral number of contiguous bytes. Sample points that are from 1 to 8
bits wide are stored in 1 byte, sample points that are from 9 to 16 bits wide are stored in 2
bytes, and so forth. When the width of a sample point is less than a multiple of 8 bits, the
sample point data is left aligned (using a shift-left instruction), and the low-order bits at
the right end are set to 0.

For example, for 8-bit noncompressed sound data stored in a sound resource, each
sample point is similar to a value in a wave-table description. These values are
interpreted as offset values, where $80 represents an amplitude of 0. The value $00 is the
most negative amplitude, and $FF is the largest positive amplitude.

Each packet of 3:1 compressed sound data is 2 bytes; a packet of 6:1 compressed sound is
1 byte. These byte sizes are defined in bits by the constants t hr eeToOnePacket Si ze
and si xToOnePacket Si ze, respectively.

Sound Commands

The Sound Manager provides routines that allow you to create and dispose of sound
channels. These routines allow you to manipulate sound channels, but they do not
directly produce any sounds. To actually produce sounds, you need to issue sound
commands. A sound command is an instruction to produce sound, modify sound, or
otherwise assist in the overall process of sound production. For example, the anpCnd
sound command changes the amplitude (or volume) of a sound.

You can issue sound commands in several ways. You can send sound commands one at a
time into a sound channel by repeatedly calling the SndDoCommrand function. The
commands are held in a queue and processed in a first-in, first-out order. Alternatively,
you can bypass a sound queue altogether by calling the SndDol mredi at e function. You
can also issue sound commands by calling the function SndPI ay and specifying a sound
resource of type' snd ' that contains the sound commands you want to issue. A sound

About the Sound Manager 2-11

CHAPTER 2

Sound Manager

resource can contain any number of sound commands. As a result, you might be able to
accomplish all sound-related activity simply by creating sound resources and calling
SndPI ay in your application. See “Sound Resources” on page 2-74 for details on the
formatofan' snd ' resource.

Generally speaking, no matter how sound commands are issued, they are all eventually
sent to the Sound Manager, which interprets the commands and plays the sound on the
available audio hardware. The Sound Manager provides a rich set of sound commands.
The structure of a sound command is defined by the SndConmmand data type:

TYPE SndCommand =
PACKED RECORD

cnd: I nt eger; {command nunber}

par ant: I nt eger; {first paraneter}

par ani: Longl nt ; {second paraneter}
END,;

Commands are always 8 bytes in length. The first 2 bytes are the command number, and
the next 6 make up the command’s options. The format of the last 6 bytes depends on
the command in use, although typically those 6 bytes are interpreted as an integer
followed by a long integer. For example, an application can install a wave table into a
sound channel by using SndDoComrand with a sound command whose cnd field is the
waveTabl eCd constant. In that case, the par aml field specifies the length of the wave
table, and the par an® field is a pointer to the wave-table data itself. Other sound
commands may interpret the 6 parameter bytes differently or may not use them at all.

The sound commands available to your application are defined by constants.

CONST
nul | Crd = 0; {do not hi ng}
qui et Cnd = 3 {stop a sound that is playing}
flushCnd 4; {flush a sound channel}
relnitCnd 5; {reinitialize a sound channel}
wai t Crrd 10; {suspend processing in a channel}
pauseCrd 11; {pause processing in a channel}
resuneCnd 12; {resune processing in a channel}
cal | BackCnd 13; {execute a cal |l back procedure}
syncCnd 14; {synchroni ze channel s}
avai | abl eCrd 24; {see if initialization options are supported}
versi onCnd 25; {det erni ne version}
t ot al LoadCnd 26; {report total CPU | oad}
| oadCd 27; {report CPU | oad for a new channel}
freqDurati onCnd 40; {play a note for a duration}
rest Cnd 41; {rest a channel for a duration}
freqCrd 42; {change the pitch of a sound}
anpCnd 43; {change the anplitude of a sound}
ti mbreCnd 44; {change the tinbre of a sound}

2-12 About the Sound Manager

CHAPTER 2

Sound Manager

get AnpCd = 45; {get the anplitude of a sound}

vol umeCnd = 46; {set vol une}

get Vol umeCnd = 47; {get vol une}

waveTabl eCd = 60; {install a wave table as a voice}
soundCnd = 80; {install a sanpled sound as a voice}
buf f er Cnd = 81; {pl ay a sanpl ed sound}

r at eCnd = 82; {set the pitch of a sanpled sound}
get Rat eCnd = 85; {get the pitch of a sanpled sound}

For details on individual sound commands, see the relevant sections in “Using the
Sound Manager” beginning on page 2-17. Also see “Sound Command Numbers”
beginning on page 2-92 for a complete summary of the available sound commands, their
parameters, and their uses.

Sound Channels

A sound channel is a queue of sound commands that is managed by the Sound
Manager, together with other information about the sounds to be played in that channel.
The commands placed into the channel might originate from an application or from the
Sound Manager itself. The commands in the queue are passed one by one, in a first-in,
first-out (FIFO) manner, to the Sound Manager for interpretation and processing.

The Sound Manager uses the SndChannel data type to define a sound channel.

TYPE SndChannel =
PACKED RECCRD

next Chan: SndChannel Ptr; {pointer to next channel}
firstMd: Ptr; {used internally}
cal | Back: ProcPtr; {pointer to call back procedure}
user | nf o: Longl nt; {free for application's use}
wai t: Longl nt; {used internally}
cmdl nProgress: SndConmand; {used internally}
fl ags: I nt eger; {used internally}
gLengt h: I nt eger; {used internally}
gHead: I nt eger; {used internally}
gTai | : I nt eger; {used internally}
queue: ARRAY[0. . st dQL.engt h-1] OF SndComand;
END,

Most of the fields of the sound channel record are used internally by the Sound
Manager, and you should not access or change them. However, your application is free
to use the user | nf o field to store any information that you wish to associate with a
sound channel. For example, you might store a handle to an application-defined record
that contains information about how your application is using the channel.

Some applications do not need to worry about creating or disposing of sound channels
because the high-level Sound Manager routines take care of these automatically.

About the Sound Manager 2-13

2-14

CHAPTER 2

Sound Manager

However, if you wish to customize sound output or play sounds asynchronously, you
must create your own sound channels (with the SndNewChannel function).

The enhanced Sound Manager included in system software versions 6.0.7 and later
provides the ability to have multiple channels of sampled sound produce output on the
Macintosh audio hardware concurrently. (Previous versions of the Sound Manager could
play only a single channel of sampled sound at a time.) This allows a layering of sound
that can bring a touch of reality to a simulation or presentation and permits applications
to incorporate synthesized speech output with any other kind of Macintosh-generated
sound. Sound Manager version 3.0 extended this capability to allow multiple channels of
any kind of sound data to play simultaneously.

Your application can open several channels of sound for concurrent output on the
available audio hardware. Similarly, multiple applications can each open channels of
sound. The number and quality of concurrent channels of sound are limited only by the
abilities of the machine, particularly by the speed of the CPU. Different Macintosh
computers have different CPU clock speeds and execute instructions at quite different
rates. This means that some machines can manage more channels of sound and produce
higher-quality sound than other machines. For example, a Macintosh Quadra might be
able to support several channels of high-quality stereo sound without significant impact
on other processing, whereas a Macintosh Plus might be able to support only a single
channel of monophonic sound before other processing slows significantly.

The Sound Manager currently supports multiple channels of sound only on machines
equipped with an Apple Sound Chip or equivalent hardware. To maintain maximum
compatibility between machines for your applications, you should always check the
operating environment to make sure that the ability to play multiple channels of
sampled sound is present before attempting to do so. A technique for determining
whether your application can play multiple channels of sound is described in “Testing
for Multichannel Sound and Play-From-Disk Capabilities” on page 2-35.

Sound Compression and Expansion

One minute of monophonic sound recorded with the fidelity you would expect from a
commercial compact disc occupies about 5.3 MB of disk space. One minute of sound
digitized by the current low-fidelity digitizing peripherals for Macintosh computers
occupies more than 1 MB of disk space. Even one minute of telephone-quality speech
takes up more than half of a megabyte on a disk. Despite the increased capacities of
mass-storage devices, disk space can be a problem if your application incorporates large
amounts of sampled sound. The space problem is particularly acute for multimedia
applications. Because a large portion of the space occupied by a multimedia application
is likely to be taken up by sound data, the complexity and richness of the application’s
sound component are limited.

To help remedy this problem, the Sound Manager includes a set of routines known
collectively as Macintosh Audio Compression and Expansion (MACE). MACE enables
you to provide more audio information in a given amount of storage space by allowing
you to compress sound data and then expand it for playback. These enhancements are
based entirely in software and require no specialized hardware.

About the Sound Manager

CHAPTER 2

Sound Manager

The audio compression and expansion features allow you to enhance your application
by including more audio data. MACE also relieves some distribution problems by
reducing the number of disks required for shipping an application that relies heavily on
sound. MACE has made some kinds of applications, such as talking dictionaries and
foreign language-instruction software, more feasible than before.

MACE adds three main kinds of capabilities to those already present in the Sound
Manager: audio data compression, real-time expansion and playback of compressed
audio data, and buffered expansion and playback of compressed audio data.

n Compression. The Sound Manager can compress a buffer of digital audio data either
in the original buffer or in a separate buffer. If a segment of audio data is too large to
fit into a single buffer, your application can make repeated calls to the compression
routine.

n Real-time expansion playback. The Sound Manager can expand compressed audio
data contained in a small internal buffer and play it back at the same time. Because the
audio data expansion and playback occur at the same time, there is more of a strain on
the CPU when using this method of sound expansion rather than buffered expansion.

n Buffered expansion. The Sound Manager can expand a specified buffer of
compressed audio data and store the result in a separate buffer. The expanded buffer
can then be played back using other Sound Manager routines with minimal processor
overhead during playback. Applications that require screen updates or user
interaction during playback (such as animation or multimedia applications) should
use buffered expansion.

MACE provides audio data compression and expansion capabilities in ratios of either 3:1
or 6:1 for all currently supported Macintosh models, from the Macintosh Plus forward.
The principal tradeoff when using MACE is that the expanded audio data suffers a loss
of fidelity in comparison to the original data. A small amount of noise is introduced into
a 3:1 compressed sound when it is expanded and played back, and a greater amount of
noise for the 6:1 ratio. The 3:1 buffer-to-buffer compression and expansion option is well
suited for high-fidelity sounds. The 6:1 buffer-to-buffer compression and expansion
option provides greater compression at the expense of lower-fidelity results and is
recommended for voice data only. This technique reduces the frequency bandwidth of
the audio signal by a factor of two to achieve the higher compression ratio.

MACE allows for the compression of both monophonic and stereo sounds. However,
some Macintosh computer models (such as the Macintosh Plus and Macintosh SE)
cannot expand stereo sounds.

Note

With Sound Manager versions prior to 3.0, some Macintosh computers
play only the right channel of stereo ' snd ' data through the internal
speaker. Certain Macintosh Il models can play only a single channel
through the internal speaker. Sound Manager version 3.0 removes both
of these limitations. u

Existing applications that use the Sound Manager’s SndPl ay function to play digitized
audio signals can play compressed audio signals without modification or recompilation.

About the Sound Manager 2-15

2-16

CHAPTER 2

Sound Manager

The MACE routines assume that each original sample consists of 8-bit sound in binary

offset format. The compression techniques do not, however, depend on a particular
sample rate (the rate at which samples are recorded). Table 2-1 shows some common
sample rates, expressed both as hertz and as unsigned fixed-point values.

Table 2-1 Sample rates

Rate (Hz) Sample rate value (Fixed)
44100.00000 $AC440000

22254.54545 $56EE8BA3

22050.00000 $56EE8BA3

11127.27273 $2B7745D1

11025.00000 $2B110000

7418.1818 $1CFA2ESB

5563.6363 $15BBA2ES

The Sound Manager defines constants for the most common sample rates:

CONST
r at e44khz = $AC440000; {44100. 00000 in fixed-point}
rat e22khz = $56EE8BA3; {22254. 54545 in fixed-point}
rat e22050hz = $56220000; {22050. 00000 in fixed-point}
ratellkhz = $2B7745D1; {11127. 27273 in fixed-point}
ratell1025hz = $2B110000; {11025. 00000 in fixed-point}

The compression techniques produce their best quality output when the sample rate is
the same as the output rate of the sound hardware of the machine playing the audio
data. The output rate used in most current Macintosh computers is 22.254 kilohertz
(hereafter referred to as the 22 kHz rate). Because of speed limitations, the Macintosh
Plus and Macintosh SE cannot perform sample-rate conversion during expansion
playback. On those machines, all sounds are played back at a 22 kHz rate. To provide
consistent quality in sounds that might be played on different machines, you should
record all sounds at a 22 kHz sample rate.

The MACE algorithms are optimized to provide the best sound quality possible through
the internal speaker in real time. However, the user who employs high-quality speakers
might notice a high-frequency hiss for some sounds compressed at the 3:1 ratio. This hiss
results from a design tradeoff between maintaining real-time operation on the Macintosh
Plus and preserving as much frequency bandwidth of the signal as possible. If you think
that your output might be played on high-quality speakers, you might want to filter out
the hiss before compression by passing the audio output through an equalizer that
removes frequencies above 10 kHz. When you use the 6:1 compression and expansion
ratio, your frequency response is cut in half. For example, when you use the 22 kHz

About the Sound Manager

CHAPTER 2

Sound Manager

sample rate, the highest frequency possible would normally be 11 kHz; however, after
compressing and expanding the data at the 6:1 ratio, the highest frequency you could get
would be only 5.5 kHz.

Note

The Sound Manager uses compressions and decompression components
(codecs) to handle the MACE capabilities. You can provide custom
codecs to use other compression and decompression algorithms. See the
chapter “Sound Components” in this book for information on
developing audio codecs. u

Using the Sound Manager

The Sound Manager provides a wide variety of methods for creating sound and
manipulating audio data on Macintosh computers. Usually, your application needs
to use only a few of the many routines or sound commands that are available.

The Sound Manager routines can be divided into high-level routines and low-level
routines. The high-level routines (like SndPl ay and SysBeep) give you the ability to
produce very complex audio output at very little programming expense. The majority of
applications interact with the Sound Manager using these high-level routines, which
allow you to play sounds without knowing anything about the structure of sound
commands or sampled-sound data. You can let the high-level routines automatically
allocate channels, or, for increased control, you can allocate your own sound channels.

Applications that have more sophisticated sound capabilities use the low-level routines
(like SndDoConmand and SndDol medi at e) to send sound commands to sound
channels. For example, your application might send a sound command to alter the
amplitude of a sound that is playing (or is about to play).

Finally, a few very specialized applications use the Sound Manager’s low-level sound
playback routines, which allow fine-tuning of the algorithms the Sound Manager uses to
manage the double buffering of sound for its play-from-disk routines.

In general, you should use the highest-level routines capable of producing the kind of
sound you want. Many applications can simply play sounds stored in resources or files
and do not need to customize the sounds or continue with other processing while those
sounds are playing. In such cases, you can use the high-level Sound Manager routines,
as illustrated in the chapter “Introduction to Sound on the Macintosh” in this book. If,
however, you need to be able to exercise very fine control over sound output or to play
sounds asynchronously, you must manage your own sound channels. See “Managing
Sound Channels” on page 2-19 to learn how you can use the Sound Manager to

n allocate and dispose of sound channels manually by using the SndNewChannel and
SndDi sposeChannel functions

n manipulate sound that is playing (for example, by sending the anmpCnd command to a
sound channel to change the amplitude of sound playing)

Using the Sound Manager 2-17

2-18

CHAPTER 2

Sound Manager

n stop sounds and flush sound channels by using the qui et Crd andf | ushCnd
commands

n pause and restart sound channels by using the pauseCnd and r esuneCnd commands
n synchronize sound channels by using the sync Cnd command

As you’ve learned, the capabilities of the Sound Manager vary greatly from one
Macintosh computer to another, depending on which version of the Sound Manager is
available on a particular computer and on what audio hardware is available. To create
sounds effectively on all computers, you might need to obtain information about the
available sound features. “Obtaining Sound-Related Information” on page 2-32 explains
how you can

n use the Gest al t function to determine which basic sound features are available

n find the version number of the available Sound Manager or of the MACE compression
and expansion routines

n determine whether your application can take advantage of multichannel sound and
the play-from-disk routines

n obtain information about a single sound channel

Some applications need to be able to play computer-generated tones at different pitches.
In addition, some applications need to play waveforms or sampled sounds at different
pitches. For example, if you are writing an application that converts musical notes to
sound, you might record the sound of a violin playing middle C and then replay the
sound at a variety of pitches to simulate a violinist’s playing a concerto. The Sound
Manager allows you to do this by allocating a sound channel and sending sound
commands to it. “Playing Notes” on page 2-41 explains how you can

n play simple sequences of notes by using the f r eqCnd and f r eqDur at i onCnd
commands

n install waveforms or sampled sounds into channels by using the soundCnd and
waveTabl eCrd commands so that you can play them at different frequencies

n setasound resource’s loop points so that the sound repeats if af r eqCnd or
f reqDur at i onCnd command lasts longer than the sound

Although some applications do not need to do other processing while sounds are
playing, others do. If your application allocates sound channels itself, it can request that
the Sound Manager play sounds asynchronously. By using callback procedures and
completion routines, your application can arrange for a sound channel to be disposed
when a sound finishes playing. “Playing Sounds Asynchronously” on page 2-46 explains
how you can

n play a sound resource asynchronously by defining a callback procedure

n use callback procedures to synchronize sounds you play asynchronously with
other actions

n play a sound file asynchronously and pause, restart, or stop such an asynchronous
playback

Using the Sound Manager

CHAPTER 2

Sound Manager

n manage multiple channels of sound to play more than one sound asynchronously at
the same time

The high-level Sound Manager routines automatically parse sound resources and sound
files to determine the information the Sound Manager needs to play the sounds
contained in the resources and files. However, you might need to obtain information
about sound resources or sound files for some other reason. Or, you might need to locate
a certain part of a sound resource or sound file. For example, to use the buf f er Cnd
sound command to play a buffer of sampled sound, you must obtain a pointer to the
sound header contained in that buffer. See the section “Parsing Sound Resources and
Sound Files” on page 2-56 for information on how to

n parse sound resources containing sampled-sound data to obtain information from the
sampled-sound data’s sound header

n use the buf f er Cnd command to play sampled-sound data stored within a sound
resource

n parse sound files to find a particular chunk and to extract the data from that chunk

High-level Sound Manager routines automatically expand sound data in real time when
playing compressed sounds. However, you might need to manually compress or expand
sound data at a time when you are not playing sounds. “Compressing and Expanding
Sounds” on page 2-66 explains how you can use the Sound Manager’s built-in sound
compression and expansion routines to compress or expand sounds.

The Sound Manager’s high-level play-from-disk routines use highly optimized
algorithms to manage the double buffering of data so that the play from disk is
continuous and without audible gaps. However, if you wish to bypass the high-level
Sound Manager play-from-disk routines, you may define your own double-buffering
routines. This might be useful if you need to change the sound data on disk before the
Sound Manager can process it. The section “Using Double Buffers” on page 2-68 explains
how you can set up your own double buffers and use a doubleback procedure to bypass
the normal play-from-disk routines.

Managing Sound Channels

To use most of the low-level Sound Manager routines, you must specify a sound channel
that maintains a queue of commands. Also, to take advantage of the full capabilities of
the high-level Sound Manager routines, including asynchronous sound play, you must
allocate your own sound channels. This section explains how your application can
allocate, dispose of, and use its own sound channels.

This section first describes how you can allocate and dispose of sound channels.
Then it explains how you can manipulate sounds playing in sound channels, stop
sounds playing in sound channels, and pause and restart the execution of sounds
in sound channels.

Using the Sound Manager 2-19

CHAPTER 2

Sound Manager

Allocating Sound Channels

Usually, you do not need to worry about allocating memory for sound channels because
the SndNewChannel function automatically allocates a sound channel record in the
application’s heap if passed a pointer to a NI L sound channel. SndNewChannel also
internally allocates memory for the sound channel’s queue of sound commands. For
example, the following lines of code request that the Sound Manager open a new sound
channel for playing sampled sounds:

mySndChan : = NI L;
myErr : = SndNewChannel (nySndChan, sanpl edSynth, 0, N L);

If you are concerned with managing memory yourself, you can allocate your own
memory for a sound channel record and pass the address of that memory as the first
parameter to SndNewChannel . By allocating a sound channel record manually, you not
only obtain control over the allocation of the sound channel record, but you can specify
the size of the queue of sound commands that the Sound Manager internally allocates.
Listing 2-1 illustrates one way to do this.

Listing 2-1 Creating a sound channel

FUNCTI ON MyCr eat eSndChannel (synth: Integer; initOptions: Longlnt;

user Routine: ProcPtr;
queuelLengt h: I nteger): SndChannel Ptr;

VAR
mySndChan: SndChannel Ptr; {pointer to a sound channel}
nyErr: CSErr;

BEG N

{All ocate nmenory for sound channel .}

nmySndChan : = SndChannel Pt r (NewPt r (Si zeof (SndChannel)));
I F mySndChan <> NIL THEN

BEG N

nmySndChan”. qLengt h : = queuelLength; {set nunber of comrands in queue}
{Create a new sound channel .}

myErr : = SndNewChannel (nySndChan, synth, initOptions, userRoutine);
IF myErr <> noErr THEN

BEA N {couldn't allocate channel}
Di sposePtr (Ptr(nmySndChan)); {free nenory already all ocated}
nmySndChan : = NIL; {return N L}
END
ELSE
nmySndChan”. userinfo : = 0; {reset userlinfo field}
END,
M/ Cr eat eSndChannel : = nySndChan; {return new sound channel }
END;
2-20 Using the Sound Manager

CHAPTER 2

Sound Manager

The MyCr eat eSndChannel function defined in Listing 2-1 first allocates memory for a
sound channel record and then calls the ShdNewChannel function to attempt to allocate
a channel. Note that MyCr eat eSndChannel checks the result code returned by
SndNewChannel to determine whether the function was able to allocate a channel. The
SndNewChannel function might not be able to allocate a channel if there are so many
channels open that allocating another would put too much strain on the CPU. Also,
SndNewChannel might fail if memory is low. (In addition to the memory for a sound
channel record that is passed in the first parameter to SndNewChannel , the function
must internally allocate memory in which to store sound commands.)

If you allocate memory for a sound channel record, you should specify the size of the
queue of sound commands by assigning a value to the gLengt h field of the sound
channel record you allocate. You can use the constant st dQ.engt h to obtain a standard
queue of 128 sound commands, or you can provide a value of your own.

CONST
stdQL.engt h = 128; {default size of a sound channel}

If you know that your application will play only resources containing sampled sound,
you might set the qLengt h field to a considerably lower value, because resources
created with the SndRecor d function (described in the chapter “Introduction to Sound
on the Macintosh” in this book) contain only one sound command, the buf f er Cnd
command, which specifies that a buffer of sound should be played. For example, if your
application uses a sound channel only to play a single sampled sound asynchronously,
you can set gLengt h to 2, to allow for the buf f er Crd command and acal | BackCnd
command that your application issues manually, as described in “Playing Sounds
Asynchronously” on page 2-46. By using a smaller than standard queue length, your
application can conserve memory.

Note

The number of sound commands in a channel should be an integer
greater than 0. If you open a channel with a 0-length queue, most of the
Sound Manager routines will return a badChannel result code. u

IMPORTANT

In general, however, you should let the Sound Manager allocate sound
channel records for you. The amount of memory you might save by
allocating your own is usually negligible. s

The second parameter in the SndNewChannel function specifies the kind of data you
want to play on that channel. You can specify one of the following constants:

CONST
squar eWAveSynt h = 1, {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-t abl e dat a}
sampl edSynt h = b5; {sanpl ed- sound dat a}

In some versions of system software prior to system software version 7.0 (including
system software version 6.0.7), high-level Sound Manager routines do not work properly

Using the Sound Manager 2-21

2-22

CHAPTER 2

Sound Manager

with sound resources that specify the sound data type twice. This might happen if a
resource specifies that a sound consists of sampled-sound data and an application does
the same when creating a sound channel. This might also happen if an application uses
the same sound channel to play several sound resources that contain different kinds of
sound data. There are several solutions to this problem that you can use if you must
maintain compatibility with old versions of system software:

n If your application plays only sampled-sound resources, then you need only ensure
that none of the sound resources specifies that it contains sampled-sound data. Then,
when you create a sound channel, pass sanpl edSynt h as the second parameter to
SndNewChannel so that the Sound Manager interprets the data in the sound
resources correctly. Do not use the SndPl ay routine.

n If your application must be able to play sampled-sound resources as well as resources
that contain square-wave or wave-table data, ensure that all sound resources that
your application uses specify their data type. (Sound resources created with the
Sound Input Manager automatically specify that they contain sampled-sound data.)
Then, when creating a channel in which you plan to play a sound resource, pass 0 as
the second parameter to SndNewChannel , and then use the channel to play no more
than one sound resource.

n If you do not wish to modify your application’s sound resources, and your
application plays only sampled-sound resources, then you can play sounds with
low-level Sound Manager routines, a technique described in “Playing Sounds Using
Low-Level Routines” on page 2-61.

Note that this problem does not occur with sound files, because sound files always
contain sampled-sound data and thus do not explicitly declare their data type. As a
result, when creating a channel in which you plan to play a sound file, pass

sanpl edSynt h as the second parameter to SndNewChannel .

The third parameter in the SndNewChannel function specifies the initialization
parameters to be associated with the new channel. These are discussed in the following
section. The fourth parameter in the SndNewChannel function is a pointer to a callback
procedure. If your application produces sounds asynchronously or needs to be alerted
when a command has completed, you can specify a callback procedure by passing the
address of that procedure in the fourth parameter and then by installing a callback
procedure into the sound channel. If you pass NI L as the fourth parameter, then

no callback procedure is associated with the channel. See “Playing Sounds
Asynchronously” on page 2-46 for more information on setting up and using

callback procedures.

Initializing Sound Channels

When you first create a sound channel with SndNewChannel , you can request that the
channel have certain characteristics as specified by a sound channel initialization
parameter. For example, to indicate that you want to allocate a channel capable of
producing stereo sound, you might use the following code:

myErr : = SndNewChannel (nySndChan, sanpl edSynth, initStereo, NL);

Using the Sound Manager

CHAPTER 2

Sound Manager

These are the currently recognized constants for the sound channel initialization
parameter.

CONST
i ni t ChanLeft = $0002; {l eft stereo channel}
i ni t ChanRi ght = $0003; {right stereo channel}
wavel ni t Channel 0 = $0004; {wave-tabl e channel 0}
wavel ni t Channel 1 = $0005; {wave-tabl e channel 1}
wavel ni t Channel2 = $0006; {wave-tabl e channel 2}
wavel ni t Channel 3 = $0007; {wave-tabl e channel 3}
i ni t Mono = $0080; {monophoni ¢ channel }
initStereo = $00C0; {stereo channel}
i ni t MACE3 = $0300; {3:1 conpression}
i ni t MACEG6 = $0400; {6:1 conpression}
initNolnterp = $0004; {no linear interpolation}
i ni t NoDr op = $0008; {no drop-sanpl e conversion}

See “Channel Initialization Parameters” beginning on page 2-91 for a complete
description of these constants.

Note

Some Macintosh computers play only the left channel of stereo sounds
out the internal speaker. Other machines (for example, the Macintosh
SE/30 and Macintosh lIsi) mix both channels together before sending a
signal to the internal speaker. You can use the Gest al t function to
determine if a particular machine mixes both left and right channels to
the internal speaker. All Macintosh computers except the Macintosh SE
and the Macintosh Plus, however, play stereo signals out the headphone
jack. u

The initialization parameters are additive. To initialize a channel for stereo sound with
no linear interpolation, simply pass an initialization parameter that is the sum of the
desired characteristics, as follows:

myErr : = SndNewChannel (nySndChan, sanpl edSynt h,
initStereotinitNolnterp, NL);

A call to SndNewChannel is really only a request that the Sound Manager open a
channel having the desired characteristics. It is possible that the parameters requested
are not available. In that case, SndNewChannel returns a not EnoughHar dwar eEr r
error. In general, you should pass 0 as the third parameter to SndNewChannel unless
you know exactly what kind of sound is to be played.

You can alter certain initialization parameters, even while a channel is actively playing a
sound, by issuing the r el ni t Chd command. For example, you can change the output
channel from left to right, as shown in Listing 2-2.

Using the Sound Manager 2-23

CHAPTER 2

Sound Manager

2-24

Listing 2-2 Reinitializing a sound channel
VAR
my SndCnrd: SndConmand;
my SndChan: SndChannel Ptr;
nyErr: OSErr;

mySndCnd. cnd : = relnitCnd;

mySndCnd. paraml : = 0; {unused}

nmySndCnd. paran® : = initChanRi ght; {new init parameter}
myErr : = SndDol nmedi at e(mySndChan, nySndCnd);

The r el ni t Cnd command accepts the i ni t Nol nt er p constant to toggle linear
interpolation on and off; it should be used with noncompressed sounds only. If an
noncompressed sound is playing when you send ar el ni t Cnd command with this
constant, linear interpolation begins immediately. You can also passi ni t Mono,

i nitChanLeft,orinitChanRi ght to pan to both channels, to the left channel, or to
the right channel. This affects only monophonic sounds. The Sound Manager remembers
the settings you pass and applies them to all further sounds played on that channel.

Releasing Sound Channels

To dispose of a sound channel that you have allocated with SndNewChannel , use the
SndDi sposeChannel function. SndDi sposeChannel requires two parameters, a
pointer to the channel that is to be disposed and a Boolean value that indicates whether
the channel should be flushed before disposal. Here’s an example:

myErr : = SndDi sposeChannel (nmySndChan, TRUE);

Because the second parameter is TRUE, the Sound Manager sends both af | ushCnd
command and a qui et Cnd command to the sound channel (using SndDol mredi at e).
This removes all commands from the sound channel and stops any sound already in
progress. Then the Sound Manager disposes of the channel.

If the second parameter is FALSE, the Sound Manager simply queues a qui et Cnd
command (using SndDoConmmand) and waits until qui et Cnd is received by the channel
before disposing of the channel. In this case, the SndDi sposeChannel function does
not return until the channel has finished processing commands and the queue is empty.

WARNING

If you dispose of a channel currently playing from disk, then your
completion routine will still execute, but will receive a pointer to a
sound channel that no longer exists. Thus, you should stop a play from
disk before disposing of a channel. See “Managing an Asynchronous
Play From Disk” on page 2-52 for more information on completion
routines. s

Using the Sound Manager

CHAPTER 2

Sound Manager

Although the SndDi sposeChannel function always releases memory reserved for
sound commands, SndDi sposeChannel cannot release memory associated with a
sound channel record if you have allocated that memory yourself. For example, if you
use the MyCr eat eSndChannel function defined in Listing 2-1 to create a sound
channel, you must dispose first of the sound channel and then of the memory occupied
by the sound channel record, as illustrated in Listing 2-3.

Listing 2-3 Disposing of memory associated with a sound channel

FUNCTI ON MyDi sposeSndChannel (sndChan: SndChannel Ptr; qui et Now. Bool ean):

CSErr;
VAR
nyErr: OSErr;
BEG N
myErr : = SndDi sposeChannel (sndChan, qui etNow); {dispose of channel}
Di sposePtr(Ptr(sndChan)); {di spose of channel ptr}
MyDi sposeSndChannel : = nyErr;
END;

If you have played a sound resource through a channel, the SndDi sposeChannel
function does not free the memory taken by the resource. You must call the Resource
Manager’s Rel easeResour ce function to do so, or, if you have detached a resource
from a resource file, you could free the memory by making the handle unlocked and
purgeable. Note that if you play a sound resource asynchronously, you should not
release the memory occupied by the resource until the sound finishes playing or the
sound might not play properly. For information on releasing a sound resource after
playing a sound asynchronously, see “Playing Sounds Asynchronously” on page 2-46.

IMPORTANT

In Sound Manager versions 3.0 and later, you can play sounds in any
number of sound channels. In earlier Sound Manager versions, however,
only one kind of sound can be played at one time. This results in several
important restrictions on your application. In Sound Manager version 2
and earlier, you should create sound channels just before playing
sounds. Once the sound is completed, you should dispose of the
channel. If your application is switched out and does not release a sound
channel, then other applications may be unable to open sound channels.
In particular, the system alert sound might not be heard and the user
might not be notified of important system occurrences. In general, while
it is acceptable to issue a number of sound commands to the same sound
channel, it’s not a good idea to play more than one sampled sound on
the same sound channel. s

Manipulating a Sound That Is Playing

The Sound Manager provides a number of sound commands that you can use to change
some of the characteristics of sounds that are currently playing. For example, you can

Using the Sound Manager 2-25

CHAPTER 2

Sound Manager

alter the rate at which a sampled sound is played back, thereby lowering or increasing
the pitch of the sound. You can also pause or stop a sound that is currently in progress.
See “Pausing and Restarting Sound Channels” on page 2-29 for information on how to
pause the processing of a sound channel.

You can use the get Rat eCnd command to determine the rate at which a sampled sound
is currently playing. If SndDol medi at e returns noEr r when you pass get Rat eCnd,
the current sample rate of the channel is returned as a Fi xed value in the location that is
pointed to by par an? of the sound command. (As usual, the high bit of that value
returned is not interpreted as a sign bit.) Values that specify sampling rates are always
interpreted relative to the 22 kHz rate. That is, the Fi xed value $00010000 indicates a
rate of 22 kHz. The value $00020000 indicates a rate of 44 kHz. The value $00008000
indicates a rate of 11 kHz.

To modify the pitch of a sampled sound currently playing, use the r at eCnd command.
The current pitch is set to the rate specified in the par an® field of the sound command.
Listing 2-4 illustrates how to halve the frequency of a sampled sound that is already
playing. Note that sending the r at eCnmd command before a sound plays has no effect.

Listing 2-4 Halving the frequency of a sampled sound

2-26

FUNCTI ON MyHal veFreq (mySndChan: SndChannel Ptr): OSErr;
VAR

nyRat e: Longl nt ; {rate of sound play}
my SndCnrd: SndConmand; {a sound command}
nmyErr: CSErr;

BEG N

{Get the rate of the sanple currently playing.}

mySndCnd. cnd @ = get Rat eCnd, {the command is get Rat eCnd}
mySndCnd. paraml : = 0; {unused}

mySndCnd. paran®? : = Longl nt (@wyRate);

myErr : = SndDol nmedi at e(mySndChan, nySndCnd);

IF myErr = noErr THEN

BEG N
{Hal ve the sanple rate.}
mySndCnd. cnd : = rat eCnd; {the command is rateCnd}
mySndCnd. paraml : = 0; {unused}
nySndCnd. paran? : = Fi xDi v(nyRate, $00020000);
myErr : = SndDol nmedi at e(mySndChan, nySndCnd);

END;

MyHal veFreq : = nyErr;

END;

When you halve the frequency of a sampled sound using the technique in Listing 2-4,
the sound will play one octave lower than before. In addition, the sound will play twice

Using the Sound Manager

CHAPTER 2

Sound Manager

as slowly as before. Likewise, if you use the r at eCnd command to double the frequency
of a sound, it plays one octave higher and twice as fast. Using r at eCnd in this way is
like pressing the fast forward button on a tape player while the play button remains
depressed.

You can also use r at eCnd and get Rat eCnd to pause a sampled sound that is currently
playing. To do this, read the rate at which it is playing, issue a r at eCnd command with
arate of 0, and then issue a r at eCnrd command with the previous rate when you want
the sound to resume playing.

To change the amplitude (or loudness) of the sound in progress, issue the anpCnd
command. (See Listing 2-5 for an example.) If no sound is currently playing, anpCnd sets
the amplitude of the next sound. Specify the desired new amplitude in the par ami field
of the sound command as a value in the range 0 to 255.

Listing 2-5 Changing the amplitude of a sound channel

PROCEDURE MySet Anpl i tude (chan: SndChannel Ptr; nyAnp: |nteger);
VAR

my SndCnrd: SndConmand; {a sound command}
nmyErr: CSErr;
BEA N
I F chan <> NIL THEN
BEG N
W TH nmySndCnd DO
BEG N
cnmd = anmpCnd; {the command is anpCnd}
paranl : = nyAnp; {desired anplitude}
paran® := 0; {i gnor ed}
END;

myErr : = SndDol nmedi at e(chan, nySndCnd);
IF myErr <> noErr THEN
DoError (nyErr);
END;
END;

If your application has an option that allows users to turn off sound output, you could
call the MySet Anpl i t ude procedure on all open channels to set the amplitude of all
channels to 0. Note that the Sound control panel allows the user to adjust the sound from
0 (softest) to 7 (loudest). This value is independent of the values used for amplitudes of
sounds playing in channels, and the Sound Manager uses the Sound control panel value
jointly with the amplitude of a sound channel to determine how loudly to play a sound.
Sounds with low frequencies sound softer than sounds with high frequencies even if the
sounds play at the same amplitude. If the amplitude of a sound is 0, the sound hardware
produces no sound; however, when the value set in the Sound control panel is 0, sound
might still play, depending on the amplitude.

Using the Sound Manager 2-27

CHAPTER 2

Sound Manager

You can use the get AmpCrd command to determine the current amplitude of a sound in
progress. The get AnpCnd command is similar to get Rat eCrd, except that the value
returned is an integer. The value returned inpar an® is in the range 0-255. Listing 2-6

shows an example:

Listing 2-6 Getting the amplitude of a sound in progress

2-28

VAR
my Anp: I nt eger;
BEG N
mySndCnd. cnd @ = get AnpCnd;
mySndCnd. paraml : = 0; {unused}
mySndCnd. paran® : = Longl nt (@VvAM);
myErr : = SndDol nmedi at e(mySndChan, nySndCnd);
END;

To modify the timbre of a sound defined using by square-wave data, use the t i mbr eCnd
command. A sine wave is specified as 0 in par anil and produces a very clear sound. A
value of 254 in par aml represents a modified square wave and produces a buzzing
sound. To avoid a bug in some versions of the Sound Manager, you should not use the
value 255. You should change the timbre before playing the sound.

Stopping Sound Channels

The Sound Manager allows you both to stop a sound currently in progress in a channel
and to remove all pending sound commands from a channel.

Note

If you have started a sound playing by using the SndSt art Fi | ePl ay
function, then you can stop play by using the SndSt opFi | ePl ay
function. See “Managing an Asynchronous Play From Disk” on

page 2-52 for more details. u

To cause the Sound Manager to stop playing the sound in progress, send the qui et Cnd
command. Here’s an example:

mySndCrd. cnd : = qui et Cnd; {the command is qui et Cnd}
mySndCnd. paraml : = O; {unused}
mySndCnd. paran? : = 0; {unused}

{stop the sound now pl ayi ng}
myErr : = SndDol nmedi at e(mySndChan, nySndCnd, FALSE);

To bypass the command queue, you should issue qui et Crrd by using

SndDol medi at e. Any sound commands that are already in the sound channel
remain there, however, and further sound commands can be queued in that channel.

Using the Sound Manager

CHAPTER 2

Sound Manager

If you wish to flush a sound channel without disturbing any sounds already in progress,
issue the f I ushCmd command. Here’s an example:

mySndCnd. cnd @ = fl ushCnd; {the command is fl ushCrd}
mySndCnd. paraml : = 0; {unused}
mySndCnd. paran? : = 0; {unused}

{flush the channel}
myErr : = SndDol nmedi at e(mySndChan, nySndCnd, FALSE);

If you want to stop all sound production by a particular sound channel immediately, you
should issue af | ushCnd command and then a qui et Cnd command. If you issue only a
f I ushCnd command, the sound currently playing is not stopped. If you issue only a

qui et Cnd command, the Sound Manager stops the current sound but continues with

any other queued commands. (By calling f | ushCnd before qui et Cnd, you ensure that
no other queued commands are processed.)

Note

The Sound Manager sends a qui et Cnd command when your
application calls the SndDi sposeChannel function. The qui et Cnd
command is preceded by a f | ushCrd command if the qui et Now
parameter is TRUE. u

Pausing and Restarting Sound Channels

If you want to pause command processing in a particular channel, you can use either of
two sound commands, wai t Cnd or pauseCnd.

Note

If you have started a sound playing by using the SndSt art Fi | ePl ay
function, then you can pause and resume play by using the
SndPauseFi | ePl ay function. See “Managing an Asynchronous Play
From Disk” on page 2-52 for more details. u

The wai t Cnd command suspends all processing in a channel for a specified number of
half-milliseconds. Here’s an example:

mySndCrd. cnd = wai t Ond; {the comand is wait Cnd}
mySndCnd. paraml : = 2000; {1-second wait duration}
mySndCnd. paran? : = 0; {unused}

{pause the channel }
myErr : = SndDol nmedi at e(mySndChan, nySndCnd, FALSE);

To pause the processing of commands in a sound channel for an unspecified duration,
use the pauseCnd command. Unlike wai t Cnd, pauseCnd suspends processing for an
undetermined amount of time. Processing does not resume until the Sound Manager

receives ar esumeCnrd command for the specified channel.

Using the Sound Manager 2-29

CHAPTER 2

Sound Manager

Toissue wai t Cnd or pauseCnd, you can use either SndDol rmedi at e or
SndDoConmand, depending on whether you want the suspension of sound channel
processing to begin immediately or when the Sound Manager reaches that command in
the normal course of reading commands from a sound channel. The r esuneCnd
command, which is simply the opposite of pauseCnd, should be issued by using
SndDol rmedi at e. Neither wai t Crrd nor pauseCrd stops any sound that is currently
playing; these commands simply stop further processing of commands queued in the
sound channel.

Note

If no other commands are pending in the sound channel after a

r esuneCnd command, the Sound Manager sends an enpt yCnd
command. The enpt yCnd command is sent only by the Sound Manager
and should not be issued by your application. u

Synchronizing Sound Channels

You can synchronize several different sound channels by issuing sync Cnd commands.
The par aml field of the sound command contains a count, and the par an® field

contains an arbitrary identifier. The Sound Manager keeps track of the count for each
channel being synchronized. When the Sound Manager receives a sync Cnd command
for a certain channel, it decrements the count for each channel having the given
identifier, including the newly synchronized channel. Command processing resumes on
a channel when the count becomes 0. Thus, if you know how many channels you need to
synchronize, you can synchronize them all by arranging for all of their counts to become
zero simultaneously. Listing 2-7 illustrates the use of the syncCnrd command.

Listing 2-7 Adding a channel to a group of channels to be synchronized

PROCEDURE MySynclChan (chan: SndChannel Ptr; count: |nteger;
identifier: Longlnt);

VAR
my SndCnrd: SndConmrand; {a sound command}
nmyErr: CSErr;
BEG N
W TH nmySndCnd DO
BEG N
cmd = syncCOnd; {the comand is syncCnd}
paraml : = count;
paranR := identifier; {1 D of group to be synchroni zed}
END;

myErr : = SndDol nmedi at e(chan, nySndCnd);
IF myErr <> noErr THEN
DoError (nyErr);
END;

2-30 Using the Sound Manager

CHAPTER 2

Sound Manager

For example, to synchronize three channels, first create the channels and then call the

My Sync1Chan procedure defined in Listing 2-7 for the first channel with a count equal
to 4, for the second channel with a count equal to 3, and for the third channel with a
count equal to 2, using the same arbitrary identifier for each call to MySync1Chan. Then
fill all channels with appropriate sound commands. (For example, you might send
commands that will cause the same sequence of notes to be produced on all three
synchronized channels.) Finally, call the MySync1Chan procedure one final time,
passing any of the three channels and a count of 1. By that time, all of the other channels
will have counts of 1, and all counts will become 0 simultaneously, thus initiating
synchronized play.

Note

The syncCnd command is intended to make it easy to synchronize
sound channels. You can use the syncCrd command to start multiple
channels of sampled sound playing simultaneously, but if you require
precise synchronization of sampled-sound channels, you might
achieve better results with the Time Manager, which is described

in Inside Macintosh: Processes. u

Managing Sound Volumes

Versions of the Sound Manager prior to 3.0 allow you to set only one volume level,
which applies to all sounds produced by the audio hardware. The Sound Manager
versions 3.0 and later provide greatly improved control over the volumes of the sounds
you ask it to create. You can use new facilities to

n set the volumes of the left and right channels of sound independently of each other
n set the volume of the system alert sound
n set the default volume of a particular sound output device

You can set the system alert sound volume to a different level than that of any other
sounds you produce. For example, you can set the system alert sound to play at a lower
volume than other sounds. This would allow a user to hear QuickTime movies at full
volume and to hear system alert sounds at a lower volume.

You can use the vol umeCrd and get Vol umeCird sound commands to set and get the
right and left volumes of sound. You specify a channel’s volume with 16-bit value, where
0 represents no volume and hexadecimal $0100 represents full volume. The Sound
Manager defines constants for silence and full volume.

CONST
kFul | Vol ume = $0100;
kNoVol une = 0;

The vol umeCnd sound command expects the right and left volumes to be encoded as
the high word and low word, respectively, of par an®. For example, to set the left
channel to half volume and the right channel to full volume, you pass the value
$01000080 in par an®, as illustrated in Listing 2-8.

Using the Sound Manager 2-31

CHAPTER 2

Sound Manager

Listing 2-8 Setting left and right volumes

2-32

FUNCTI ON MySet Vol une (chan: SndChannel Ptr): OSErr;

VAR
my SndCnd: SndConmand;
nyRi ght Vol : I nt eger;
myLef t Vol : I nt eger;
nmyErr: CSErr;
BEG N
myRi ght Vol : = kFul | Vol une;
myLeft Vol := kFull Volunme DV 2;
mySndCnd. cnd : = vol uneCnd;
mySndCnd . paranl : = O; {unused wi th vol umeCnd}

mySndCd. paran®? : = BSL(nyRi ght Vol , 16) + nylLeft Vol ;
myErr : = SndDol nmedi at e(chan, nySndCnd);
My Set Vol une : = nyErr;

END;

You can also use the vol uneCnd sound command to pan a sound from one side to
another. For example, to send the output signal entirely to the right channel, pass

the value $01000000 in par an®. To send the output signal entirely to the left channel,
pass the value $00000100 in par an®. You can overdrive a channel’s volume by passing
volume levels greater than $0100. For example, to play the left channel of a stereo
sound at twice full volume while playing the right channel at full volume, pass the
value $01000200.

You can use the Get SysBeepVol une and Set SysBeepVol une functions to get and set
the output volume level of the system alert sound. Any calls to the SysBeep procedure
use the volume set by the previous call to Set SysBeepVol une. As you’ve learned, this
allows you to set a lower volume for the system alert sound than for your other sound
output.

You can use the Get Def aul t Qut put Vol une and Set Def aul t Qut put Vol une
functions to set the default output volumes for a particular output device. Each output
device has its own current volume setting and its own default setting. If the user changes
the output device (using the Sound control panel), the newly selected device will use its
own default volume level.

Obtaining Sound-Related Information

Developments in the sound hardware available on Macintosh computers and in the
Sound Manager routines that allow you to drive that hardware have made it imperative
that your application pay close attention to the sound-related features of the operating
environment. For example, some Macintosh computers do not have the sound input
hardware necessary to allow sound recording. Similarly, some other Macintosh
computers are not able to record sounds and play sounds simultaneously. Before taking

Using the Sound Manager

CHAPTER 2

Sound Manager

advantage of a sound-related feature that is not available on all Macintosh computers,
you should check to make sure that the target machine provides the features you need.

To make appropriate decisions about the sound you want to produce, you might need to
know some or all of the following types of information:

n whether a machine can produce stereophonic sounds
n what version of the Sound Manager is available

n whether a machine can play multiple channels of sound, and whether it can take
advantage of the enhanced Sound Manager’s play-from-disk capabilities

n whether a sound playing from disk is active or paused
n how many channels of sound are currently open
n whether the system beep has been disabled

The following sections describe how to use the Gest al t function and Sound Manager
routines to determine these types of information.

Obtaining Information About Available Sound Features

You can use the Gest al t function to obtain information about a number of hardware-
and software-related sound features. For instance, you can use Gest al t to determine
whether a machine can produce stereophonic sounds and whether it can mix both left
and right channels of sound on the internal speaker. Many applications don’t need to call
Gest al t to get this kind of information if they rely on the Sound Manager’s ability to
produce reasonable sounding output on whatever audio hardware is available. Other
applications, however, do need to use Gest al t to get this information if they depend on
specific hardware or software features that are not available on all Macintosh computers.

To get sound-related information from Gest al t, pass it the gest al t SoundAt t r
selector.

CONST
gestal t SoundAttr = 'snd '; {sound attributes}

If Gest al t returns successfully, it passes back to your application a 32-bit value that
represents a bit pattern. The following constants define the bits currently set or cleared
by Gestal t:

CONST

gestal t StereoCapability
gestal t St ereoM xi ng =
gest al t Soundl OVMgr Pr esent
gest al t Bui | t 1 nSoundI nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecord

gestal t 16Bi t Soundl O

gest al t St er eol nput =

{built-in hw can play stereo sounds}
{built-in hw m xes stereo to nono}
{sound input routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recording}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}

1
N OR RO

Using the Sound Manager 2-33

gestal t Li neLevel | nput

gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s = 11; {mul ti ple channel s of sound support ed}
gest al t 16Bi t Audi oSupport

CHAPTER 2

Sound Manager

9; {built-in input hw needs line |evel}
10; {play fromdisk routines avail abl e}

12; {16-bit audi o data support ed}

If the bit gest al t St er eoCapabi | i t y is TRUE, the built-in hardware can play stereo
sounds. The bitgest al t St er eoM xi ng indicates that the sound hardware of the
machine mixes both left and right channels of stereo sound into a single audio signal for
the internal speaker. Listing 2-9 demonstrates the use of the Gest al t function to
determine if a machine can play stereo sounds.

Listing 2-9 Determining if stereo capability is available

2-34

FUNCTI ON MyHasSt er eo: Bool ean;

VAR
nmyFeat ur e: Longl nt;
nmyErr: OSErr;
BEG N
myErr : = Cestalt(gestaltSoundAttr, nyFeature);
IF myErr = noErr THEN {test stereo capability bit}

MyHasSt ereo : = BTst(nmyFeature, gestaltStereoCapability)
ELSE
MyHasSt ereo : = FALSE; {no sound features avail abl e}
END;

As shown in the chapter “Introduction to Sound on the Macintosh,” you can determine
whether your application can record by testing the gest al t HasSoundI nput Devi ce
bit. To determine whether a built-in sound input device is available, you can test the
gestal t Bui | t 1 nSoundl nput bit. The gest al t Soundl OVgr Pr esent bit indicates
whether the sound input routines are available. Because the

gest al t HasSoundl nput Devi ce bit is not set if the routines are not available, only
sound input device drivers should need to use the gest al t Soundl Ovgr Pr esent bit.

For a complete description of the response bits set by Gest al t , see “Gestalt Selector and
Response Bits” beginning on page 2-90.

Obtaining Version Information

The Sound Manager provides functions that allow you to determine the version
numbers both of the Sound Manager itself and of the MACE compression and expansion
routines. Generally, you should avoid trying to determine which features or routines are
present by reading a version number. Usually, the Gest al t function (discussed in the
previous section) provides a better way to find out if some set of features, such as sound
input capability, is available. In some cases, however, you can use these version routines
to overcome current limitations of the information returned by Gest al t .

Using the Sound Manager

CHAPTER 2

Sound Manager

Both of these functions return a value of type NumVer si on that contains the same
information as the first 4 bytes of a resource of type ' ver s' . The first and second bytes
contain the major and minor version numbers, respectively; the third and fourth bytes
contain the release level and the stage of the release level. For most purposes, the major
and minor release version numbers are sufficient to identify the version. (See the chapter
“Finder Interface” of Inside Macintosh: Macintosh Toolbox Essentials for a complete
discussion of the format of ' ver s' resources.)

You can use the SndSoundManager Ver si on function to determine which version of
the Sound Manager is present. Listing 2-10 shows how to determine if the enhanced
Sound Manager is available.

Listing 2-10 Determining if the enhanced Sound Manager is present

FUNCTI ON MyHasEnhancedSoundManager : Bool ean;

VAR
my Ver si on: NunVer si on;

BEG N
| F MyTr apAvai | abl e(_SoundDi spat ch) THEN
BEG N

myVer si on : = SndSoundManager Ver si on;
MyHasEnhancedSoundManager : = nyVersion. maj or Rev >= 2;
END
ELSE
MyHasEnhancedSoundManager : = FALSE
END,;

The MyHasEnhancedSoundManager function defined in Listing 2-10 relies on the

My Tr apAvai | abl e function, which is an application-defined routine provided in
Inside Macintosh: Operating System Utilities. If the _SoundDi spat ch trap is not available,
the SndSoundManager Ver si on function is not available either, in which case the
enhanced Sound Manager is certainly not available.

You can use the MACEVer si on function to determine the version number of the
available MACE routines (for example, Conp3t 01).

Testing for Multichannel Sound and Play-From-Disk Capabilities

The ability to play multiple channels of sound simultaneously and the ability to initiate
plays from disk were first introduced with the enhanced Sound Manager. Even with the
enhanced Sound Manager, however, these capabilities are present only on computers
equipped with suitable sound output hardware (such as an Apple Sound Chip). Sound
Manager version 3.0 defines 2 additional bits in the Gest al t response parameter that
allow you to test directly for these two capabilities.

Using the Sound Manager 2-35

CHAPTER 2

Sound Manager

CONST
gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s

10; {play fromdisk routines avail abl e}
11; {multiple channels of sound supported}

Ideally, it should be sufficient to test directly, using Gest al t, for either multichannel
sound capability or play-from-disk capability. If your application happens to be running
under the enhanced Sound Manager, however, the two new response bits are not
defined. In that case, you’ll need to test also whether the Apple Sound Chip is available,
because multichannel sound and play from disk are supported by the enhanced Sound
Manager only if the Apple Sound Chip is available. To test for the presence of the Apple
Sound Chip, you can use the Gest al t function with the gest al t Har dwar eAt t r
selector and the gest al t HasASC bit. Listing 2-11 combines these two tests into a single
routine that returns TRUE if the computer supports multichannel sound.

Listing 2-11 Testing for multichannel play capability

FUNCTI ON MyCanPl ayMul t i Channel s: Bool ean;

VAR
nmyResponse: Longl nt;
myResul t: Bool ean;
nmyErr: OSErr;
myVer si on: NurmVer si on;
BEG N
myResult : = FALSE;

myVer si on : = SndSoundManager Ver si on;
myErr := Gestalt(gestaltSoundAttr, nyResponse);
I F nmyVersion. maj orRev >= 3 THEN
I F (nyErr = noErr) AND (BTst(myResponse, gestaltMiltiChannels)) THEN
myResult := TRUE

ELSE
BEG N
myErr := Gestalt(gestaltHardwareAttr, nyResponse);
IF (nmyErr = noErr) AND (BTst (nmyResponse, gestaltHasASC)) THEN
nmyResult := TRUE
END,;
MyCanPl ayMul ti Channel s : = nyResul t;
END,

The function MyCanPl ayMul t i Channel s first tries to get the desired information by
calling the Gest al t function with the gest al t SoundAt t r selector. If Gest al t
returns successfully and the gest al t Mul t i Channel s bit is set in the r esponse
parameter, then multichannel play capability is present. Notice that the multichannel bit
is checked only if the version of the Sound Manager is 3.0 or greater. If the version is not
at least 3.0, then MyCanPl ayMul t i Channel s calls the Gest al t function with the

2-36 Using the Sound Manager

CHAPTER 2

Sound Manager

gest al t Har dwar eAt t r selector. If the computer contains the Apple Sound Chip, then
again multichannel play capability is present.

Note

The gest al t HasASCbit is set only on machines that contain an Apple
Sound Chip. You should test for the presence of the Apple Sound Chip
only in the circumstances described above. u

You could write a similar function to test for the ability to initiate a play from disk.
Listing 2-12 shows an example.

Listing 2-12 Testing for play-from-disk capability

FUNCTI ON HasPl ayFr onDi sk: Bool ean;

VAR
nyResponse: Longl nt;
myResul t: Bool ean;
nyErr: OSErr;
myVer si on: NunVer si on;
BEG N
myResul t : = FALSE;
myVer si on : = SndSoundManager Ver si on;

myErr := Cestalt(gestaltSoundAttr, nyResponse);
| F myVersi on. maj orRev >= 3 THEN
IF (nmyErr = noErr) AND
(BTst (nmyResponse, gestalt SndPl ayDoubl eBuffer)) THEN
nmyResult := TRUE

ELSE
BEG N
myErr .= Cestalt(gestaltHardwareAttr, nyResponse);
IF (nmyErr = noErr) AND (BTst (nmyResponse, gestaltHasASC)) THEN
myResult : = TRUE
END;
HasPl ayFronDi sk : = nmyResul t;
END;

Obtaining Information About a Single Sound Channel

You can use the SndChannel St at us function to obtain information about a single
sound channel and about the status of a disk-based playback on that channel, if one
exists. For example, you can use SndChannel St at us to determine if a channel is being
used for play from disk, how many seconds of the sound have been played, and how
many seconds remain to be played.

Using the Sound Manager 2-37

CHAPTER 2

Sound Manager

One of the parameters required by the SndChannel St at us function is a pointer
to a sound channel status record, which you must allocate before calling
SndChannel St at us. A sound channel status record has this structure:

TYPE SCSt atus =

RECORD

scStartTi ne: Fi xed; {starting time for play from disk}
scEndTi ne: Fi xed; {ending time for play from disk}
scCurrent Ti ne: Fi xed; {current tine for play from di sk}
scChannel Busy: Bool ean; {TRUE if channel is processing cnds}
scChannel Di sposed: Bool ean; {reserved}

scChannel Paused: Bool ean; {TRUE i f channel is paused}
scUnused: Bool ean; {unused}

scChannel Attri butes: Longl nt ; {attributes of this channel}
scCPULoad: Longl nt; {CPU |l oad for this channel}

END;

2-38

The scSt art Ti me, scEndTi me, and scCur r ent Ti nre fields are 0 unless the Sound
Manager is currently playing from disk through the specified channel. If a play from
disk is occurring, the scSt art Ti me and scEndTi ne fields reflect the starting and
ending points of the play, defined in seconds; the scCur r ent Ti e field indicates the
number of seconds between the beginning of the sound on disk and the part of the
sound currently being played. The Sound Manager sets the values of the scSt art Ti ne
and scEndTi me fields based on the values you set in an audio selection record. (See
page 2-100 for a description of the audio selection record.)

Note that because the Sound Manager might be playing only a selection of a sound, the
scCurrent Ti e field does not reflect the number of seconds of sound play that have
elapsed. To compute the number of seconds of sound play elapsed, you can subtract the
value in the scSt ar t Ti me field from that in the scCur r ent Ti e field. However,
because the Sound Manager updates the value of the scCur r ent Ti ne field only
periodically, you should not rely on the accuracy of its value.

The scChannel Busy and scChannel Paused fields reflect whether a channel is
processing commands and whether a channel is paused, respectively. After issuing
a series of sound commands, you can use these fields to determine if the channel
has finished processing all of the commands. If both scChannel Busy and
scChannel Paused are FALSE, the Sound Manager has processed all of the
channel’s commands.

You can mask out certain values in the scChannel At t ri but es field to determine how
a channel has been initialized.

CONST
i ni t PanMask
i ni t SRat eMask
i nitStereoMask

$0003; {mask for right/left pan val ues}
$0030; {mask for sanple rate val ues}
$00C0; {mask for nono/stereo val ues}

Using the Sound Manager

CHAPTER 2

Sound Manager

The scCPULoad field previously reflected the percentage of CPU processing power
used by the sound channel. However, this field is obsolete, and you should not rely
on its value.

Listing 2-13 illustrates the use of the SndChannel St at us function. It defines a function
that takes a sound channel pointer as a parameter and determines whether a disk-based
playback on that channel is paused.

Listing 2-13 Determining whether a sound channel is paused

FUNCTI ON MyChannel | sPaused (chan: SndChannel Ptr): Bool ean;

VAR

nmyErr: CSErr;

my SCSt at us: SCSt at us;
BEG N

MyChannel | sPaused : = FALSE;
myErr := SndChannel St at us(chan, Sizeof (SCStatus), @ySCStatus);
IF myErr = noErr THEN
MyChannel | sPaused : = nySCSt at us. scChannel Paused;
END,

The function defined in Listing 2-13 simply reads the scChannel Paused field to see if
the playback is currently paused.

Note

In Sound Manager versions earlier than 3.0, pausing a sound channel by
issuing a pauseCnd command does not change the scChannel Paused
field. The scChannel Paused field is TRUE only if the Sound Manager
is executing a disk-based playback on the channel and that playback is
paused by the SndPauseFi | ePl ay function. This problem is fixed in
Sound Manager versions 3.0 and later. u

Obtaining Information About All Sound Channels

You can use the SndManager St at us function to determine information about all the
sound channels that are currently allocated by all applications. For example, you can use
this function to determine how many channels are currently allocated. One of the
parameters required by the SndManager St at us function is a pointer to a Sound
Manager status record, which you must allocate before calling SndManager St at us.

A Sound Manager status record has this structure;

TYPE SMsSt at us =
PACKED RECORD

smivax CPULoad: I nt eger; {maxi mum | oad on all channel s}

smNunthannel s: I nt eger; {nunber of allocated channel s}

snCur CPULoad: I nt eger; {current | oad on all channel s}
END;

Using the Sound Manager 2-39

CHAPTER 2

Sound Manager

The smNuChannel s field contains the number of sound channels currently allocated.
This does not mean that the channels are actually being used, only that they have been
created with the SndNewChannel function and not yet disposed.

The Sound Manager uses information that it returns in the smvlax CPULoad and

snCur CPULoad fields to help it determine whether it can allocate a new channel
when your application calls the SndNewChannel function. The Sound Manager sets
smvaxCPULoad to a default value of 100 at startup time, and the smCur CPULoad field
reflects the approximate percentage of CPU processing power currently taken by
allocated sound channels.

WARNING
Your application should not reply on the values returned in the
smvaxCPULoad and smCur CPULoad fields. To determine if it is safe to
allocate a channel, simply try to allocate it with the SndNewChannel
function. That function returns the appropriate result code if allocating
the channel would put too much of a strain on CPU processing. s

Listing 2-14 illustrates the use of SndManager St at us. It defines a function that returns
the number of sound channels currently allocated by all applications.

Listing 2-14 Determining the number of allocated sound channels

2-40

FUNCTI ON MyGet NuntChannel s: | nt eger;

VAR

nmyErr: CSErr;

my SVSt at us: SMSt at us;
BEG N

My Get NunChannel s : = 0;
myErr := SndManager St at us (Si zeof (SMSt at us), @rySMst at us) ;
I'F nyErr = noErr THEN
My Get NunChannel s : = nySMst at us. smNuntChannel s;
END,

Determining and Changing the Status of the System Alert Sound

The enhanced Sound Manager includes two routines—SndGet SysBeepSt at e and
SndSet SysBeepSt at e—that allow you to determine and alter the status of the system
alert sound. You might wish to disable the system alert sound if you are playing sound
and need to ensure that the sound you are playing is not interrupted. Currently, two
states are defined:

CONST
sysBeepDi sabl e = $0000; {system al ert sound di sabl ed}
sysBeepEnabl e = $0001; {system al ert sound enabl ed}

You can determine the status of the system alert sound like this:

Using the Sound Manager

CHAPTER 2

Sound Manager

SndGet SysBeepSt at e(current St ate) ;
And you can disable the system alert sound like this:
myErr : = SndSet SysBeepSt at e(sysBeepDi sabl e) ;

When the system alert sound is disabled, the Sound Manager effectively ignores all calls
to the SysBeep procedure. No sound is created and the menu bar does not flash. Also,
no resources are loaded into memory.

Note

Even when the system alert sound is enabled, it’s possible that the
system alert sound will not play; for example, the speaker volume might
be set to 0, or playing the requested system alert sound might require
too much CPU time. In such a case, the menu bar flashes. u

By default, the system alert sound is enabled. If you disable the system alert sound so
that your application can play a sound without being interrupted, be sure to enable the
sound when your application receives a suspend event or when the user quits your
application.

Playing Notes

You can play notes one at a time by using the SndDoCormmand or SndDol nmedi at e
function to issue f r eqDur at i onCnd sound commands. A sound plays for a specified
duration at a specified frequency. You can play sounds defined by any of the three sound
data formats. If you play wave-table data or sampled-sound data, then a voice must
previously have been installed in the channel. (See “Installing VVoices Into Channels” on
page 2-43 for instructions on installing wave tables and sampled sounds as voices.)

You can also play notes by issuing the f r eqCnd command, which is identical to
the f r eqDur at i onCnd command, except that no duration is specified when you
issuef r eqCnd.

Note

AfreqDurati onCnd command might in certain cases continue
playing until another command is available in the sound channel.
Therefore, to play a single note for a specified duration, you should
issuef reqDur at i onCnd followed immediately by qui et Cnd.
See “Stopping Sound Channels” on page 2-28 for further details
onqui et Cnd. u

The structure of af r eqDur at i onCrrd command is slightly different from that of most
other sound commands. The par ani field contains the duration of the sound, specified
in half-milliseconds. A value of 2000 represents a duration of 1 second. The maximum
duration is 32,767, or about 16 seconds, in Sound Manager versions 2.0 and earlier; the
maximum duration in Sound Manager version 3.0 and later is 65,536, or about

32 seconds. The par an® field specifies the frequency of the sound. The frequency is
specified as a MIDI note value (that is, a value defined by the established MIDI

Using the Sound Manager 2-41

CHAPTER 2

Sound Manager

standard). Listing 2-15 uses the f r eqDur at i onCrd command in a way that ensures the
sound stops after the specified duration.

Listing 2-15 Using the f r eqDur at i onCGd command

2-42

PROCEDURE MyPl ayFr equencyOnce (nySndChan: SndChannel Ptr;
myM DI Val ue: | nteger;
m | 1iseconds: |nteger);

CONST

kNoWait = TRUE; {add now to full queue?}
VAR

my SndCnrd: SndConmand; {a sound command}

nmyErr: CSErr;
BEG N

{Start the sound playing.}
W TH nySndCnd DO

BEG N
cnd : = freqgDurationCnd; {play for period of tine}
paranl := nilliseconds * 2; {hal f-nilliseconds}
paran? := nyM DI Val ue; {M DI value to play}

END,

myErr : = SndDoCommand(mySndChan, nySndCnhd, NOT kNoWit);
IF myErr <> noErr THEN

DoError (nyErr)
ELSE
BEA N {ensure that sound stops}
W TH nySndCnd DO
BEG N
cmd = qui et Cnd; {stop playing sound}
paranl : = O; {unused wi th qui et Cnd}
paran? := 0; {unused wi th qui et Cnd}
END;

myErr : = SndDoConmand(nmySndChan, nySndCnd, NOT kNoWait);
I F myErr <> noErr THEN
DoError (nyErr);
END;
END;

Table 2-2 shows the decimal values that can be sent with a f r eqDur at i onCnd or
f r eqCrd command. Middle C is represented by a value of 60 and is defined by a special
Sound Manager constant.

CONST
kM ddl eC = 60; {M D note value for mddle C}

Using the Sound Manager

CHAPTER 2

Sound Manager

Other specifiable frequencies correspond to MIDI note values.

Table 2-2 Frequencies expressed as MIDI note values

A A# B C C# D D# E F F# G G#
Octave 1 0 1 2 3 4 5 6 7 8
Octave 2 9 10 11 12 13 14 15 16 17 18 19 20
Octave 3 21 22 23 24 25 26 27 28 29 30 31 32
Octave 4 33 34 35 36 37 38 39 40 41 42 43 44
Octave 5 45 46 47 48 49 50 51 52 53 54 55 56
Octave 6 57 58 59 60 61 62 63 64 65 66 67 68
Octave 7 69 70 71 72 73 74 75 76 77 78 79 80
Octave 8 81 82 83 84 85 86 87 88 89 90 91 92
Octave 9 93 94 95 96 97 98 99 100 101 102 103 104
Octave 10 105 106 107 108 109 110 111 112 113 114 115 116
Octave 11 117 118 119 120 121 122 123 124 125 126 127

You can play square-wave and wave-table data at these frequencies only. If you are
playing a sampled sound, however, you can modify the sanpl eRat e field of the sound
header to play a sound at an arbitrary frequency. To do so, use the following formula:

new sample rate = (new frequency / original frequency) * original sample rate

where the new and original frequencies are measured in hertz. To convert a MIDI value
to hertz for use in this formula, note that middle C is defined as 261.625 Hz and that the
ratio between the frequencies of consecutive MIDI values equals the twelfth root of 2,
defined by the constant t wel f t hRoot Two.

CONST
twel f t hRoot Two = 1. 05946309434;

IMPORTANT

When calculating with numbers of type Fi xed, pay attention to possible
overflows. The maximum value of a number of type Fi xed is 65,535.0.
As a result, some sample rates and pitches cannot be specified. Sound
Manager version 3.0 fixes these overflow problems. s

You can rest a channel for a specified duration by issuing ar est Cnd command. The
duration, specified in half-milliseconds, is passed in the par aml field of the sound
command.

Installing Voices Into Channels

You can play frequencies defined by any of the three sound data types. By playing a
frequency defined by wave-table or sampled-sound data, you can achieve a different

Using the Sound Manager 2-43

CHAPTER 2

Sound Manager

sound than by playing that same frequency using square-wave data. For example, you
might wish to play the sound of a dog’s barking at a variety of frequencies. To do that,
however, you need to install a voice of the barking into the sound channel to which you
want to send f r eqCnd or f r eqDur at i onCnd commands.

You can install a wave table into a channel as a voice by issuing the waveTabl eCnd
command. The par aml field of the sound command specifies the length of the wave
table, and the par an® field is a pointer to the wave-table data itself. Note that the Sound
Manager resamples the wave table so that it is exactly 512 bytes long.

You can install a sampled sound into a channel as a voice by issuing the soundCnd
command. You can either issue this command from your application or put it into an
"snd ' resource. If your application sends this command, par an® is a pointer to the
sampled sound locked in memory. If soundCnd is contained withinan ' snd ' resource,
the high bit of the command must be set. To use a sampled-sound ' snd ' as a voice,
first obtain a pointer to the sampled sound header locked in memory. Then pass this
pointer in par an? of a soundCnd command. After using the sound, your application is
expected to unlock this resource and allow it to be purged.

Listing 2-16 demonstrates how you can use the soundCrrd command to install a sampled
sound in memory as a voice in a channel.

Listing 2-16 Installing a sampled sound as a voice in a channel

FUNCTI ON Myl nst al | Sanpl edVoi ce (mySndHandl e: Handl e;

nmySndChan: SndChannel Ptr): CSErr;

VAR

my SndCnd: SndConmand; {a sound conmand}

mySndHeader : SoundHeader Ptr; {sound header from resource}
BEG N

{get pointer to sound header}

mySndHeader : = MyGet SoundHeader (mySndHandl e) ;
W TH nySndCnd DO

BEG N
cmd = soundCnd; {install sanpled voice}
paranl : = O; {ignored wi th soundCnd}
paran® : = Longl nt (nySndHeader); {store sound header |ocation}
END,
I F mySndHeader = NI L THEN {check for defective handl e}
Myl nst al | Sanpl edVoi ce : = badFor mat
ELSE {install sound as voice}
MW nst al | Sanpl edVoi ce : = SndDol mredi at e(mySndChan, mnmySndCnd) ;
END,
Listing 2-16 relies on the MyGet SoundHeader function to obtain a pointer to the sound
header within the sound handle. That function is defined in “Obtaining a Pointer to a
2-44 Using the Sound Manager

CHAPTER 2

Sound Manager

Sound Header” on page 2-57 and returns NI L if the sound handle does not include a
sound header. Note that the MyGet SoundHeader function locks the sound handle in
memory so that the pointer to the sound header remains valid. When you are done with
the sound channel in which you have installed the sampled sound, you should unlock
the sound handle and make it purgeable so that it does not waste memory.

Looping a Sound Indefinitely

If you install a sampled sound as a voice in a channel and then play the sound using
afreqCndorfreqbDurati onCrd command that lasts longer than the sound, the
sound will ordinarily stop before the end of the time specified by the f r eqCnd or

f reqDur at i onCnd command. Sometimes, however, this might not be what you’d like
to have happen. For example, you might have recorded the sound of a violin playing
and then stored that sound in a resource so that you could play the sound of a violin at
a number of different frequencies. Although you could record the sound so that it is
long enough to continue playing through the longest f r eqCrrd or f r eqDur at i onCnd
command that your application might require, this might not be practical. Fortunately,
the Sound Manager provides a mechanism that allows you to repeat sections of sampled
sound after the sound has finished playing once completely.

When you use the f r eqDur at i onCnd command with a sampled sound as the voice,

f reqDur at i onCnd starts at the beginning of the sampled sound. If necessary to achieve
the desired duration of sound, the command replays that part of the sound that is
between the loop points specified in the sampled sound header. Note that any sound
preceding or following the loop points will not be replayed. There must be an ending
point for the loop specified in the header in order for f r eqDur at i onCnd to work

properly.

Listing 2-17 Looping an entire sampled sound

PROCEDURE MyDolLoopEntireSound (sndHandl e: Handl e);

VAR
my SndHeader : SoundHeader Ptr; {sound header from resource}
myTot al Bytes: Longl nt; {bytes of data to | oop}

BEG N

mySndHeader : = MyGet SoundHeader (sndHandl e) ;
I F nmySndHeader <> NI L THEN

BEG N

{conput e bytes of sound data}

CASE nySndHeader ~. encode OF

st dSH: {standard sound header}

W TH nySndHeader* DO
myTot al Byt es : = nmySndHeader ~. | engt h;

ext SH: {ext ended sound header}

W TH Ext SoundHeader Pt r (mySndHeader)~ DO
myTot al Byt es : = nunChannel s * nunfranes * (sanpleSize DV 8);

chpSH: {conpressed sound header}

Using the Sound Manager 2-45

CHAPTER 2

Sound Manager

W TH CnpSoundHeader Pt r (mySndHeader)~ DO
myTot al Byt es : = nuntChannel s * nunfranes * (sanpleSize DV 8);

END;
W TH nySndHeader* DO
BEA N {set | oop points}

| oopStart := 0; {start with first byte}

| oopEnd : = nyTotal Bytes - 1; {end with |ast byte}
END;

END;

2-46

Listing 2-17 uses the MyGet SoundHeader function defined in “Obtaining a Pointer to a
Sound Header” on page 2-57. Note that the formula for computing the length of a sound
depends on the type of sound header. Also, while the formula is the same for both an
extended and a compressed sound header, you must write code that differentiates
between the two types of sound headers because the sanpl eSi ze field is not stored in
the same location in both sound headers.

Playing Sounds Asynchronously

The Sound Manager currently allows you to play sounds asynchronously only if you
allocate sound channels yourself, using techniques described in “Managing Sound
Channels” on page 2-19. But if you use such a technique, your application will need to
dispose of a sound channel whenever the application finishes playing a sound. In
addition, your application might need to release a sound resource that you played on a
sound channel.

To avoid the problem of not knowing when to dispose of a sound channel playing a
sound asynchronously, your application could simply allocate a single sound channel
when it starts up (or receives a resume event) and dispose of the channel when the user
quits (or the application receives a suspend event). However, this solution will not work
if you need to release a resource when a sound finishes playing. Also, you might not
want to keep a sound channel allocated when you are not using it. For instance, you
might want to use the memory taken up by a sound channel for other tasks when no
sound is playing.

Your application could call the SndChannel St at us function once each time through its
main event loop to determine if a channel is still making sound. When the scBusy field
of the sound channel status record becomes FALSE, your application could then dispose
of the channel. This technique is easy, but calling SndChannel St at us frequently uses
up processing time unnecessarily.

The Sound Manager provides other mechanisms that allow your application to find out
when a sound finishes playing, so that your application can arrange to dispose of sound
channels no longer being used and of other data (such as a sound resource) that you no
longer need after disposing of a channel. If you are using the SndPI ay function or
low-level commands to play sound in a channel, then you can use callback procedures. If
you are using the SndSt ar t Fi | ePl ay function to play sound in a channel, then you

Using the Sound Manager

CHAPTER 2

Sound Manager

can use completion routines. The following sections illustrate how to use callback
procedures and completion routines.

Note

Callback procedures are a form of completion routine. However, for
clarity, this section uses the terminology “completion routine” only for
the routines associated with the SndSt art Fi | ePl ay function. u

Using Callback Procedures

This section shows how you can use callback procedures to play one sound
asynchronously at a given time. “Managing Multiple Sound Channels” on page 2-53
expands the techniques in this section to show how you can play several asynchronous
sounds simultaneously.

The SndNewChannel function allows you to associate a callback procedure with a
sound channel. For example, the following code opens a new sound channel for which
memory has already been allocated and associates it with the callback procedure
MyCal | Back:

myErr : = SndNewChannel (gSndChan, sanpl edSynth, initMno, @wcCall back);

After filling a channel created by SndNewChannel with various commands to create
sound, you can then issue a cal | BackCrrd command to the channel. When the Sound
Manager encounters a cal | BackCnd command, it executes your callback procedure.
Thus, by placing the cal | BackCnd command last in a channel, you can ensure that the
Sound Manager executes your callback procedure only after it has processed all of the
channel’s other sound commands.

Note

Be sure to issue cal | BackCnd commands with the SndDoConmand
function and not the SndDol mredi at e function. If you issue a

cal | BackCnd command with SndDol rmedi at e, your callback
procedure might be called before other sound commands you have
issued finish executing. u

A callback procedure has the following syntax:
PROCEDURE MyCal | Back (chan: SndChannel Ptr; cnd: SndConmand) ;

Because the callback procedure executes at interrupt time, it cannot access its application
global variables unless the application’s A5 world is set correctly. (For more information
on the A5 world, see the chapter “Memory Management Utilities” in Inside Macintosh:
Memory.) When called, the callback procedure is passed two parameters: a pointer to the
sound channel that received the cal | BackChrd command and the sound command that
caused the callback procedure to be called. Applications can use par aml or par an®? of
the sound command as flags to pass information or instructions to the callback
procedure. If your callback procedure is to use your application’s global data storage, it
must first reset A5 to your application’s A5 and then restore it on exit. For example,
Listing 2-18 illustrates how to set up a cal | BackCrrd command that contains the

Using the Sound Manager 2-47

CHAPTER 2

Sound Manager

required A5 information in the par an® field. The Myl nst al | Cal | back function
defined there must be called at a time when your application’s A5 world is known
to be valid.

Listing 2-18 Issuing a callback command

FUNCTI ON Myl nstal | Cal | back (mySndChan: SndChannel Ptr): OSErr;

CONST

kWait 1 fFull = TRUE; {wait for roomin queue}

VAR

my SndCrd: SndConmand; {a sound command}

BEG N

W TH mySndCmd DO

BEG N
cmd

.= cal | BackCnd; {install the call back command}

paranl : = kSoundConpl ete; {last command for this channel}

paran® :

END,

Set Cur r ent A5; {pass the call back the A5}

Myl nstal | Cal | back : = SndDoCommand(nySndChan, nySndCnd, kWaitlfFull);

END;

In this function, k SoundConpl et e is an application-defined constant that indicates that
the requested sound has finished playing. You could define it like this:

CONST
kSoundConpl et e = 1, {sound is done pl ayi ng}

Because par an? of a sound command is a long integer, Listing 2-18 uses it to pass the
application’s A5 to the callback procedure. That allows the callback procedure to gain
access to the application’s A5 world.

Note

You can also pass information to a callback routine in the user | nf o
field of the sound channel. u

The sample callback procedure defined in Listing 2-19 can thus set A5 to access the
application’s global variables.

Listing 2-19 Defining a callback procedure

2-48

PROCEDURE MyCal | back (theChan: SndChannel Ptr; theCrd: SndComand) ;
VAR

my AS: Longl nt;
BEG N

| F theCmd. paraml = kSoundConpl et e THEN

Using the Sound Manager

CHAPTER 2

Sound Manager

BEG N
myA5 : = Set A5(t heCnd. par an®) ; {set ny A5}
gCal | backPerforned : = TRUE; {set a global flag}
nmyA5 : = Set A5(nyA5); {restore the original A5}
END;
END;
WARNING

Callback procedures are called at interrupt time and therefore must
not attempt to allocate, move, or dispose of memory, dereference
an unlocked handle, or call other routines that do so. Also,
assembly-language programmers should note that a callback
procedure is a Pascal procedure and must preserve all registers
other than A0O-A1 and D0-D2. s

Callback procedures cannot dispose of channels themselves, because that involves
disposing of memory. To circumvent this restriction, the callback procedure in Listing
2-19 simply sets the value of a global flag variable that your application defines. Then,
once each time through its main event loop, your application must call a routine that
checks to see if the flag is set. If the flag is set, the routine should dispose of the channel,
release any other memory allocated specifically for use in the channel, and reset the flag
variable. Listing 2-20 defines such a routine. Your application should call it once each
time through its main event loop.

Listing 2-20 Checking whether a callback procedure has executed

PROCEDURE My CheckSndChan;

CONST

kQui et Now = TRUE; {need to quiet channel ?}
VAR

nmyErr: CSErr;
BEG N

I F gCal | backPer f ormed THEN {check gl obal fl ag}

BEG N {channel is done}

gCal | backPerformed : = FALSE; {reset global flag}
| F gSndChan”. userlnfo <> 0 THEN
BEG N {rel ease sound dat a}
HUnl ock(Handl e(gSndChan”. user | nfo));
HPur ge(Handl e(gSndChan”. userInfo));

END;

myErr : = MyDi sposeSndChannel (gSndChan, kQui et Now) ;

gSndChan : = NIL; {set pointer to N L}
END;

END;

Using the Sound Manager 2-49

CHAPTER 2

Sound Manager

The MyCheckSndChan procedure defined in Listing 2-20 checks the user | nf o field of
the sound channel to see if it contains the address of a handle. Thus, if you would like
the MyCheckSndChan procedure to release memory associated with a sound handle,
you need only put the address of the handle in the user | nf o field of the sound channel.
(If you do not want the My Check SndChan procedure to release memory associated with
a handle, then you should set the user I nf o field to 0 when you allocate the channel.
The MyCr eat eSndChannel function defined in Listing 2-1 on page 2-20 automatically
sets this field to 0.) After releasing the memory associated with the sound handle, the

My CheckSndChan procedure calls the MyDi sposeSndChannel function (defined in
Listing 2-3 on page 2-25) to release the memory occupied by both the sound channel and
the sound channel record.

To ensure that the MyCheck SndChan procedure defined in Listing 2-20 does not
attempt to dispose a channel before you have created one, you should initialize the
gCal | backPer f or med variable to FALSE. Also, you should initialize the gSndChan
variable to NI L, so that other parts of your application can check to see if a sound is
playing simply by checking this variable. For example, if your application must play a
sound but another sound is currently playing, you might ensure that the application
gives priority to the newer sound by stopping the old one. Listing 2-21 defines a
procedure that stops the sound that is playing.

Listing 2-21 Stopping a sound that is playing asynchronously

PROCEDURE My St opPI ayi ng;

BEG N
I F gSndChan <> NIL THEN {is sound really playing?}
gCal | backPerformed : = TRUE; {set global flag}
My CheckSndChan; {call routine to do disposing}
END;

Once you have defined a callback procedure, a routine that installs the callback
procedure, a routine that checks the status of the callback procedure, and a routine that
can stop sound play, you need only allocate a sound channel, call the SndPI ay function,
and install your callback procedure to start an asynchronous sound play. Listing 2-22
defines a procedure that starts an asynchronous play.

Listing 2-22 Starting an asynchronous sound play

PROCEDURE My St art Pl ayi ng (nmySndl D: | nteger);

CONST
kAsync = TRUE; {play is asynchronous}

VAR
my SndHandl e: Handl e; {handle to an 'snd ' resource}
nmyErr: CSErr;

BEG N

2-50 Using the Sound Manager

CHAPTER 2

Sound Manager

I F gSndChan <> NIL THEN {check if channel is active}
My St opPI ayi ng;
gSndChan : = MyCr eat eSndChannel (0, 0, @wCal |l backProc, stdQ.ength);
mySndHandl e : = Get Resource('snd ', nySndl D);
I F (nySndHandl e <> NIL) AND (gSndChan <> NI L) THEN
BEA N {start sound pl ayi ng}
Det achResour ce(nySndHandl e) ; {detach resource fromfile}
{remenber to rel ease sound handl e}
gSndChan”. userInfo : = Longl nt (nySndHandl e);
HLock(mySndHandl e) ; {lock the resource data}
nyErr := SndPl ay(gSndChan, nySndHandl e, kAsync);
IF myErr = noErr THEN
myErr := Myl nstall Cal | back(gSndChan) ;
IF myErr <> noErr THEN
DoError (nyErr);
END,
END;

The MySt art Pl ayi ng procedure uses the MyCr eat eSndChannel function defined

in Listing 2-1 to create a sound channel, requesting that the function allocate a
standard-sized sound channel command queue. By using such a queue, you can be

sure that your application can play any sound resource that contains up to 127 sound
commands. If you are sure that your application will play only sampled-sound resources
created by the Sound Input Manager, you should request a queue of only two sound
commands, thereby leaving enough room for just the buf f er Cd command contained
within the sound resource and the cal | BackCnd command that your application issues.

Before playing the sound, the MySt ar t Pl ayi ng procedure defined in Listing 2-22
detaches the sound resource from its resource file after loading it. This is important if
the resource file could close while the sound is still playing, or if your application
might create another sound channel to play the same sound resource while the sound
is still playing.

Synchronizing Sound With Other Actions

If your application uses callback procedures to play sound asynchronously, you might
wish to synchronize sound play with other activity, such as an onscreen animation.

Callback procedures allow your application to do that by using different constant values
in the par am field of the callback command. For example, you could define a constant
kFi r st SoundFi ni shed to signal to your application that the first of a series of sounds
has finished playing. Then, your callback procedure could set an appropriate global flag
depending on whether the par anl field equals kFi r st SoundFi ni shed,
kSoundConpl et e, or some other constant that your application defines. Finally, a
procedure that you call once each time through your application’s event loop could
check to see which of the various global flag variables are set and respond appropriately.
Meanwhile, sound continues to play.

Using the Sound Manager 2-51

CHAPTER 2

Sound Manager

Managing an Asynchronous Play From Disk

The Sound Manager allows you to play a sound file asynchronously with the

SndSt art Fi | ePl ay function by defining a completion routine that sets a global flag to
alert the application to dispose of the sound channel when the sound is done playing.
Completion routines are thus similar to callback procedures, but they are easier to use in
that you do not need to install them. The Sound Manager automatically executes them
when a play from disk ends, whether it has ended because the application called the
SndSt opFi | ePl ay function, because the application disposed of the sound channel in
which the sound was playing, or because the sound has finished playing.

You define a completion routine like this:
PROCEDURE MySoundConpl eti onRouti ne (chan: SndChannel Ptr);

Note that unlike callback procedures, completion routines have only one parameter, a
pointer to a sound channel. Thus, for the completion routine to set the application’s A5
world properly, you should pass the value of the application’s A5 in the user | nf o field
of the sound channel, like this:

gSndChan”. userInfo : = Set Current A5;

Then your completion routine can look in the user | nf o field of the sound channel to
set A5 correctly before it can access any application global variables. Listing 2-23 defines
a completion routine that sets A5 correctly.

Listing 2-23 Defining a completion routine

2-52

PROCEDURE MySoundConpl eti onRouti ne (chan: SndChannel Ptr);
VAR

my AS5: Longl nt;
BEG N

myA5 : = Set A5(chan”. userl nfo); {set ny A5}

gConpl eti onPerforned : = TRUE; {set a global flag}

myA5 : = Set A5(nyA5); {restore the original A5}
END;

The completion routine defined in Listing 2-23 sets a global flag variable to indicate that
the completion routine has been called. To start a sound file playing, you can use a
routine analogous to that defined in Listing 2-22, but when allocating a sound channel,
you need only allocate a queue of a single sound command. You can than use a
procedure analogous to that defined in Listing 2-20 to check the flag once each time
through the application’s event loop and dispose of the sound channel if the flag is set.

If you do use the SndSt ar t Fi | ePl ay function to play sounds asynchronously, then
you can pause, restart, and stop play simply by using the SndPauseFi | ePl ay and
SndSt opFi | ePl ay functions.

Using the Sound Manager

CHAPTER 2

Sound Manager

You use SndPauseFi | ePl ay to temporarily suspend a sound from playing. If a sound

is playing and you call SndPauseFi | ePl ay, then the sound is paused. If the sound is
paused and you call SndPauseFi | ePl ay again, then the sound resumes playing.
Hence, the SndPauseFi | ePl ay routine acts like a pause button on a tape player, which
toggles the tape between playing and pausing. (You can determine the current state of a
play from disk by using the SndChannel St at us function. See “Obtaining Information
About a Single Sound Channel” on page 2-37 for more details.) Finally, you can use
SndSt opFi | ePl ay to stop the file from playing.

Playing Selections

The sixth parameter passed to the SndSt art Fi | ePl ay function is a pointer to an
audio selection record, which allows you to specify that only part of the sound be
played. If that parameter has a value different from NI L, then SndSt art Fi | ePl ay
plays only a specified selection of the entire sound. You indicate which part of the entire
sound to play by giving two offsets from the beginning of the sound, a time at which to
start the selection and a time at which to end the selection. Currently, both time offsets
must be specified in seconds.

Here is the structure of an audio selection record:

TYPE Audi 0Sel ection =
PACKED RECCRD

uni t Type: Longl nt; {type of tine unit}

sel Start: Fi xed; {starting point of selection}

sel End: Fi xed; {endi ng point of selection}
END,

To play a selection, you should specify in the sel St art andsel End fields the starting
and ending point in seconds of the sound to play. Also, you must set the uni t Type field
to the constant uni t TypeSeconds.

If you wish to play an entire sound, you can simply pass NI L to the

SndSt art Fi | ePl ay function. Alternatively, you can set the uni t Type field to the
constantuni t TypeNoSel ect i on, in which case the values in the sel St art and
sel End fields are ignored.

Managing Multiple Sound Channels

If you are writing an application that can play multiple channels of sound on Macintosh
computers that support that feature, you can use the Sound Manager’s asynchronous
playing abilities, but you might encounter some special obstacles. The technique for
playing sounds asynchronously described in “Playing Sounds Asynchronously” on

page 2-46 has a limitation if you are using multiple sound channels. Using that technique
without modification, you would need to define each separate sound channel in a
different global variable, and you would need to use several global flags in your callback
procedure to signal which sound channels have finished processing sound commands.

Using the Sound Manager 2-53

CHAPTER 2

Sound Manager

Although it is easy to modify the code in “Playing Sounds Asynchronously” to use
several flags, this solution might not be satisfactory for an application in which the
number of sound channels open can vary. For example, suppose that you are writing
entertainment software with dozens of sound effects that correspond to actions on the
screen and you wish to use the Sound Manager asynchronously so that several sound
effects can be played at once. It would be cumbersome to associate a separate global
sound channel variable with each sound and create a flag variable for each of these
sound channels. Also, you might wish to play the same sound simultaneously in two
separate channels. It would be better to write code that manages a global list of sound
channels and then provides a simple routine that allows you to add a channel to the list.
This section shows how you might implement such a list of sound channels. Listing 2-24
defines a data structure that you could use to track multiple sound channels.

Listing 2-24 Defining a data structure to track many sound channels

CONST
kMaxNunsndChans = 20; {max nunber of sound channel s}
TYPE
SCinfo =
RECORD
sndChan: SndChannel Ptr; {NIL or pointer to channel}
nmust Di spose: Bool ean; {flag to dispose channel}
i tsDat a: Handl e; {data to dispose with channel}
END,
SCLi st = ARRAY[1.. kMaxNunsSndChans] OF SCl nf o;
VAR
gSndChans: SCLi st ;

The SCI nf o data structure defined in Listing 2-24 allows you to keep track of which
channels in the collection are being used and which were being used but currently need
disposal; it also allows you to associate data with a sound channel so that you can
dispose of the data when you dispose of the sound channel. Note that the value of the
kMaxNurBndChans constant might vary from application to application. Having
defined the data structure, you must initialize it (so that the sndChan andi t sDat a
fields are NI L and the must Di spose field is FALSE). You must also write a procedure
that finds an available channel. You might declare such a procedure like this:

PROCEDURE DoTrackChan (chanToTrack: SndChannel Ptr; associ atedData: Handl e);

2-54

Using such a procedure, you could simply create sound channels by using local variables
and then add them to the tracking list so that your application disposes of them when
they finish executing. The exact implementation of such a procedure would depend on
the needs of your application. For example, if there are no channels available in the
global list of sound channels, your application might report an error, stop sound on all
active channels, or stop sound on the channel that has been playing the longest. If you
want your application to be compatible with computers that do not support

Using the Sound Manager

CHAPTER 2

Sound Manager

multichannel sound, this procedure could check whether multichannel sound is
supported, and if not, would stop any sound playing on other channels. This is
particularly useful if your application plays sound effects in response to actions on the
screen; overlapping sound effects sound best, but if this is unattainable, the newest
sound should have the highest priority.

One advantage of maintaining a list of sound channels is that you can use it in
conjunction with both callback procedures and completion routines. Listing 2-25 defines
a procedure that either your callback procedure or completion routine could call after
setting the application’s A5 world correctly.

Listing 2-25 Marking a channel for disposal

PROCEDURE My Set Tr ackChanDi spose (mySndChannel : SndChannel Ptr);

VAR
i ndex: | nt eger; {channel i ndex}
f ound: Bool ean; {flag vari abl e}
BEG N
i ndex := 1; {start at first spot}
found : = FALSE; {initialize flag vari abl e}

VWHI LE (i ndex <= kMaxNuntSndChans) AND (NOT found) DO
I F gSndChans|[i ndex] . sndChan = nySndChannel THEN
found : = TRUE {proper channel found}
ELSE
index :=index + 1; {nove to next spot}
| F found THEN
gSndChans[i ndex] . nust Di spose : = TRUE;
END;

The final thing you need to do is to define a procedure that your application calls once
each time through its main event loop. This procedure must dispose of sound channels
that are marked for disposal. Listing 2-26 defines such a routine.

Listing 2-26 Disposing of channels that have been marked for disposal

PROCEDURE Myd eanUpTr ackedChans;

CONST

kQui et Now = TRUE; {need to quiet channel ?}
VAR

i ndex: I nt eger;

nmyErr: CSErr;
BEG N

FOR index := 1 TO kMaxNuntSndChans DO {go through all channel s}

W TH gSndChans[i ndex] DO

Using the Sound Manager 2-55

END;

2-56

CHAPTER 2

Sound Manager

I F nmust Di spose THEN {check gl obal fl ag}
BEA N {channel needs disposal}

I F gSndChans[index].itsData <> NIL THEN
BEG N {rel ease ot her dat a}
HUnl ock(gSndChans[i ndex] .itsData);
HPur ge(gSndChans|[i ndex] .itsData);
END;
{free channel -rel ated nenory}
myErr : = MyDi sposeSndChannel (sndChan, kQui et Now);

sndChan : = NI L; {set pointer to N L}
must Di spose : = FALSE; {reset global flag}
IF myErr <> noErr THEN

DoError (nyErr);

END;

The Myd eanUpTr ackedChans procedure defined in Listing 2-26 works just like the
My CheckSndChan procedure defined in Listing 2-20, but instead of checking a single
global flag, it checks the flag associated with each allocated sound channel. Now that
you have defined such a procedure, you can easily write a routine to stop sound in all
active channels (for example, if your application receives a suspend event). Simply set
the nust Di spose flag on all sound channels that are allocated (that is for all channels
that are not NI L) and then call Myl eanUpTr ackedChans. Note, however, that when
the Myd eanUpTr ackedChans procedure disposes of a sound channel processing a

play from disk, the completion routine will be called and will thus set the nust Di spose
flag to TRUE. Thus, the must Di spose flag must be reset to FAL SE after the sound
channel has been disposed. Otherwise, the Myl eanUpTr ackedChans procedure
would try to dispose of the same sound channel again when the application called it
from its main event loop.

Parsing Sound Resources and Sound Files

This section explains how you can parse sound resources and sound files to find the
component of a sound resource or sound file that contains information about the sound.
For sound resources, this information is stored in the sound header. In addition to
obtaining information about a sound from a sound header, you might need a pointer to a
sound header to use any of several low-level sound commands. For sound files,
information is stored in the Form and Common Chunks. This section shows how you
can find those chunks and extract information from them.

Note

The techniques shown in this section assume that you are familiar with
the format of sound resources and sound files. See “Sound Storage
Formats” beginning on page 2-73 for complete information on sound
storage formats. u

Using the Sound Manager

CHAPTER 2

Sound Manager

Obtaining a Pointer to a Sound Header

This section shows how you can obtain a pointer to a sound header stored in a sound
resource. You can use this pointer to obtain information about the sound. You also need a
pointer to a sound header to install a sampled sound as a voice in a channel (as
described in “Installing Voices Into Channels” on page 2-43) and to play sounds using
low-level sound commands (as described below and in the next section). You can use a
technique similar to the one described in this section if you wish to obtain a pointer to
wave-table data that is stored in a sound resource.

Sound Manager versions 3.0 and later include the Get SoundHeader O f set function
that you can use to locate a sound header embedded in a sound resource. Listing 2-27
shows how to call the Get SoundHeader O f set function and then pass the returned
offset to the buf f er Cnd sound command, to play a sampled sound using low-level
Sound Manager routines.

Listing 2-27 Playing a sound resource

FUNCTI ON MyPI aySanpl edSound (chan: SndChannel Ptr; sndHandl e: Handl e): OSErr;
VAR

my fset: Longl nt;
my SndCnrd: SndConmand; {a sound command}
nmyErr: CSErr;

BEG N

myErr : = Get SoundHeader O f set (sndHandl e, nyCffset);
IF nyErr = noErr THEN

BEG N
HLock(sndHandl e) ;
mySndCnd. cnd @ = buf f er Cnd; {command i s bufferCnd}
nmySndCnd. parantl : = O; {unused with bufferCnrd}

mySndCnd. paran? : = Longl nt (ORD4(sndHandl e®) + nyCOffset);
myErr : = SndDol nmedi at e(chan, nySndCnd);
END;
M/ Pl aySanpl edSound : = nyErr;
END;

If the Get SoundHeader O f set function is not available but you still need to obtain a
pointer to a sound header, you can use the function MyGet SoundHeader O f set

defined in Listing 2-28. The function defined there traverses a sound resource until it
reaches the sound data. It returns, in the of f set parameter, the offset in bytes from the
beginning of a sound resource to the sound header.

Using the Sound Manager 2-57

CHAPTER 2

Sound Manager

IMPORTANT
The Get SoundHeader O f set function is available in Sound Manager
versions 3.0 and later. As a result, you’ll need to use the techniques
illustrated in Listing 2-28 only if you want your application to find

a sound header when earlier versions of the Sound Manager

are available. s

Listing 2-28 Obtaining the offset in bytes to a sound header

FUNCTI ON MyGet SoundHeader Of f set (sndHdl : Handl e; VAR offset: Longlint): CSErr;
TYPE

Snd1Header = {format 1 'snd ' resource header}
RECORD

format: I nt eger; {format of resource}

nunBSynt hs: | nteger; {nunber of data types}

{synths, init option foll ow}

END;
Snd1Hdr Ptr = ~SndlHeader;
Snd2Header = {format 2 'snd ' resource header}
RECORD

format: I nt eger; {format of resource}

r ef Count : I nt eger; {for application use}
END;
Snd2Hdr Pt r = ~Snd2Header;
IntPtr = ~Integer; {for type coercion}
SndCndPtr = ~SndConmand; {for type coercion}

VAR
myPtr: Ptr; {to navigate resource}
my fset: Longl nt; {offset into resource}
nuntynt hs: I nt eger; {info about resource}
nuntCnds: I nt eger; {info about resource}
i sDone: Bool ean; {are we done yet?}
nmyErr: OSErr;
BEG N

{Initialize variables.}
myofset 1= 0; {return 0 if no sound header found}
myPtr := Ptr(sndHdl *); {point to start of resource data}
i sDhone : = FALSE; {haven't yet found sound header}
nmyErr := noErr;
{Ski p everything before sound conmands. }
CASE SndlHdr Ptr(myPtr)~. format OF

firstSoundFor mat : {format 1 'snd ' resource}

BEG N {skip header start, synth ID, etc.}

2-58 Using the Sound Manager

CHAPTER 2

Sound Manager

nunBSynt hs : = Snd1Hdr Ptr (nmyPtr)~. nunBSynt hs;
myPtr .= Ptr(ORD4A(nmyPtr) + SizeO (SndlHeader));
myPtr := Ptr(ORD4(nyPtr) +
nunBSynths * (SizeO(Integer) + SizeO (Longlnt)));

END;

secondSoundFor mat : {format 2 'snd ' resource}
myPtr = Ptr(ORDA(nyPtr) + SizeOf (Snd2Header));

OTHERW SE {unrecogni zed resource format}
BEG N

myErr : = badFor mat;
i sDone : = TRUE;
END,
END,

{Find nunber of comands and nove to start of first conmmand.}
nunCnds = IntPtr(myPtr)”;
nyPtr := Ptr(ORD4(nyPtr) + SizeO (Integer));

{Search for bufferChd or soundCnd to obtain sound header.}
VWH LE (nunCnds >= 1) AND (NOT isDone) DO
BEG N

IF (IntPtr(myPtr)~ = bufferCnd + dataOffsetFl ag) OR

(IntPtr(mPtr)” = soundCnd + dataC fset Flag) THEN
BEA N {bufferCnd or soundCnd found}
{copy offset from sound comrand}
myafset = SndCndPtr (nmyPtr)”. parant;

i sDone : = TRUE; {get out of |oop}
END
ELSE
BEA N {soundCnd or bufferCnd not found}

{move to next conmmand}
nmyPtr := Ptr(ORD4A(nyPtr) + SizeO (SndCommand));
nunmCrds : = nunCnds - 1;

END;
END; {WH LE}
of fset := myOfset; {return offset}
My Get SoundHeader Of f set : = nyErr; {return result code}

END;

The MyGet SoundHeader O f set function defined in Listing 2-28 begins by initializing
several variables, including a pointer that it sets to point to the beginning of the data
contained in the sound resource. Then, after determining whether the sound resource is

Using the Sound Manager 2-59

CHAPTER 2

Sound Manager

format 1 or format 2, the function skips data contained in the format 1' snd
header or in the format 2' snd ' resource header, as appropriate.

resource

Note

Do not confuse the format 1 or format2' snd ' header with the sound
header the MyGet SoundHeader O f set function defined in Listing
2-28 is designed to find. A sound header contains information about the
sampled-sound data stored in a sound resource; a sound resource
header contains information about the format of the sound resource. u

After skipping information in the sound resource header, MyGet SoundHeader O f set
simply looks through all sound commands in the resource for a buf f er Cnd or
soundCnd command, either of which must contain the offset from the beginning of the
resource to the sound header in its par an® field. If the given sound resource contains no
sound header (and thus no sampled-sound data), the MyGet SoundHeader O f set
function returns an error and sets the of f set variable parameter to 0.

After using the MyGet SoundHeader O f set function to obtain an offset to the sound
header, you can easily obtain a pointer to a sound header. Note, however, that because

a handle to a sound resource is contained in a relocatable block, you must lock the
relocatable block before you obtain a pointer to a sound header, and you must not
unlock it until you are through using the pointer. Listing 2-29 demonstrates how you can
convert an offset to a sound header into a pointer to a sound header after locking a
relocatable block.

Listing 2-29 Converting an offset to a sound header into a pointer to a sound header

FUNCTI ON MyGet SoundHeader (sndHandl e: Handl e): SoundHeaderPtr;

VAR
my fset: Longl nt; {of fset to sound header}
nyErr: OSEr v
BEG N
HLockHi (sndHandl e) ; {lock data in high nenory}
{conpute offset to sound header}
myErr := MyGet SoundHeader O f set (sndHandl e, nyOffset);
IF myErr <> noErr THEN
My Get SoundHeader := N L {no sound header in resource}
ELSE
{conput e address of sound header}
My Get SoundHeader : = SoundHeader Pt r (ORD4(sndHandl e®) + nyCffset);
END;
The MyGet SoundHeader function defined in Listing 2-29 locks the sound handle you
pass it in high memory and then attempts to find an offset to the sound header in the
sound handle. If the MyGet SoundHeader O f set function defined in Listing 2-28
returns an offset of 0, then MyGet SoundHeader returns a NI L pointer to a sound
2-60 Using the Sound Manager

CHAPTER 2

Sound Manager

header; otherwise, it returns a pointer that remains valid as long as you do not unlock
the sound handle.

The MyGet SoundHeader function returns a pointer to a sampled sound header even if
the sound header is actually an extended sound header or a compressed sound header.
Thus, before accessing any other fields of the sound header, you should test the encode
field of the sound header to determine what type of sound header it is. Then, if the
sound header is, for example, an extended sound header, cast the sampled sound header
to an extended sound header. Then you can access any of the fields of the extended
sound header. For an example of this technique, see Listing 2-16 on page 2-44.

Playing Sounds Using Low-Level Routines

Once you obtain a pointer to a sampled sound header, you can use the buf f er Cnd
sound command to play a sound without using the high-level Sound Manager routines.
Many sampled-sound resources include buf f er Cnrd commands, so the high-level
Sound Manager routines often issue the buf f er Crd command indirectly. Thus, you
might in some cases be able to make your application slightly more efficient by issuing
the buf f er Crd command directly. Also, you might issue a buf f er Cmd command
directly if you want the Sound Manager to ignore other parts of a sound resource.

Finally, you might issue buf f er Cmd commands directly if you want your application to
be able to play a large sound resource without loading the entire resource at once. By
issuing several successive buf f er Cnd commands, you can play a large sound resource
using a small buffer. In this case, each buffer must contain a sampled sound header. In
most cases, the sound will play smoothly, without audible gaps. It’s generally easier,
however, to play large sampled sounds from disk by using the play-from-disk routines
or the SndPl ayDoubl eBuf f er function. See “Managing Double Buffers” on page 2-147
for complete details.

Note

Using the buf f er Cmd command to play several consecutive
compressed samples on the Macintosh Plus, the Macintosh SE, or the
Macintosh Classic is not guaranteed to work without an audible pause
or click. u

The pointer in the par an® field of a buf f er Cnd command is the location of a sampled
sound header. A buf f er Crd command is queued in the channel until the preceding
commands have been processed. If the buf f er Chd command is contained within an
"snd ' resource, the high bit of the command must be set. If the sound was loaded in
froman' snd ' resource, your application is expected to unlock this resource and allow
it to be purged after using it. Listing 2-30 shows how your application can play a
sampled sound stored in a resource using the buf f er Cnd command.

Using the Sound Manager 2-61

CHAPTER 2

Sound Manager

Listing 2-30 Playing a sound using the buf f er Ohvd command

FUNCTI ON MyLowLevel Sanpl edSndPl ay (chan: SndChannel Ptr; sndHandl e: Handl e):

CSErr;
CONST
kWaitlfFull = TRUE {wait for roomin queue?}
VAR
mySndHeader : SoundHeader Ptr;
my SndCnd: SndConmand; {a sound command}
BEG N

mySndHeader : = MyGet SoundHeader (sndHandl e);
W TH nmySndCnd DO

BEG N
cmd : = bufferCnd; {command i s bufferCnd}
paranl : = O; {unused wi th bufferCnd}

paran® : = Longlnt(nmySndHeader); {pointer to sound header}
END;
| F mySndHeader <> NI L THEN

MyLowLevel Sanpl edSndPl ay : =

SndDoConmand(chan, mnmySndCnd, NOT kWaitlfFull)

ELSE

MyLowLevel Sanpl edSndPl ay : = badFor mat ;

END;

For the MyLowlLevel Sanpl edSndPI ay function defined in Listing 2-30 to play a sound,
the channel passed to it must already be configured to play sampled-sound data.
Otherwise, the function returns a badChannel result code. Also, because the

buf f er Cnd command works asynchronously, you might want to associate a callback
procedure with the sound channel when you create the channel. For more information
on playing sounds asynchronously, see “Playing Sounds Asynchronously” on page 2-46.

You can use the buf f er Cmd command to handle compressed sound samples in addition
to sounds that are not compressed. To expand and play back a buffer of compressed
samples, you pass the Sound Manager a buf f er Cnd command where par an? points to
a compressed sound header.

To play sampled sounds that are not compressed, pass buf f er Crd a standard or
extended sound header. The extended sound header can be used for stereo sampled
sounds. The standard sampled sound header is used for all other noncompressed
sampled sounds.

Finding a Chunk in a Sound File

Sound files are not as tightly structured as sound resources. As explained in “Sound
Files” on page 2-81, the chunks in a sound file can appear in any order, except that the
Form Chunk is always first. Most information about a sampled sound stored in a sound
file is contained in the Common Chunk. Thus, to be able to access this information, you

2-62 Using the Sound Manager

CHAPTER 2

Sound Manager

must be able to find a particular kind of chunk in a sound file. Listing 2-31 defines a
procedure that you can use to find the location of the first chunk of a specified type
beginning at the chunk you specify.

IMPORTANT

The techniques illustrated in this section are provided primarily to help
you understand the structure of sound files. Most sound-producing
applications don’t need to parse sound files. s

Listing 2-31 Finding a chunk in a sound file

FUNCTI ON MyFi ndChunk (nyFile: |nteger; {file reference nunber}
nmy ChunkSought : | D; {I D of chunk sought}
start Pos: Longlnt; {file position to start at}
VAR chunkFPos: Longlnt) {file position of found chunk}
OSErr;
VAR
myLengt h: Longl nt; {nunber of bytes to read}
nmy ChunkHeader : ChunkHeader ; {characteristics of chunk}
f ound: Bool ean; {flag vari abl e}
myErr: CSErr; {error fromFile Manager call s}
BEG N
found : = FALSE; {initialize flag vari abl e}
{set file mark at start}
nyErr := Set FPos(nyFile, fsFronttart, startPos);

{Search file's chunks for desired chunk ID.}

VWH LE
BEG N

(NOT found) AND (nyErr = noErr) DO
{check current chunk}

myLength : = Si zeOf (myChunkHeader) ;
{Load chunk header.}
myErr := FSRead(nyFile, nmyLength, @ryChunkHeader);

I F

myErr = noErr THEN {chunk header | oaded okay}
I F myChunkHeader . ckl D = nyChunkSought THEN
BEG N
found : = TRUE; {chunk has been found}
{find position in file}
myErr := Get FPos(nyFil e, chunkFPos);
{conput e chunk's start position}
chunkFPos : = chunkFPos - SizeO (nyChunkHeader);
END
ELSE
BEG N {nove to next chunk}

I F myChunkHeader.ckl D = I D(Forml D) THEN

Using the Sound Manager 2-63

CHAPTER 2

Sound Manager

{Adj ust Form Chunk's size to size of fornilype field.}
myChunkHeader . ckSi ze : = SizeO (1 D);
I F myChunkHeader. ckSize MOD 2 = 1 THEN
{Conpensate for pad byte.}
myChunkHeader . ckSi ze : = nyChunkHeader. ckSi ze + 1;
myErr := SetFPos(nyFile, fsFromvark, myChunkHeader.ckSi ze);

END;

END, {WH LE}
MyFi ndChunk : = nyErr;

END;

2-64

The MyFi ndChunk function defined in Listing 2-31 accepts four parameters. The

nyFi | e parameter is the file reference number of an open sound file. (For information
on file reference numbers, see Inside Macintosh: Files.) In the myChunkSought parameter,
you pass the ID of the type of chunk you wish to find. For example, you might pass

| D(For m D) to find the Form Chunk. The third parameter, st ar t Pos, is the file
position at which MyFi ndChunk should start searching for a chunk. This file position
must be the beginning of a chunk. To start at the beginning of a file, specify 0. Finally,

if the MyFi ndChunk function is successful, it returns in the chunkFPos parameter the
file position of the first chunk of the specified type that it found. If the function is
unsuccessful, it returns the appropriate File Manager result code (such as an end-of-file
error) and the chunkFPos parameter is undefined.

The MyFi ndChunk function works by looking at each chunk of the sound file, beginning
at the file position st art Pos and checking to see if the chunk is of the type sought. If a
chunk matches, the MyFi ndChunk function returns the file position of the start of the
chunk; otherwise, the function moves onto the next chunk. For each chunk, the

MyFi ndChunk function reads in the chunk header, checks for a match, and then moves
to the next chunk.

The MyFi ndChunk function moves from one chunk to the next by identifying the size of
the current chunk, not including the chunk header, from the ckSi ze field of the chunk
header. Whenever you parse sound files, you should always use the ckSi ze field of the
chunk header to determine the size of a chunk if the size of the chunk could vary in size.
The MyFi ndChunk function adjusts the value in the ckSi ze field before advancing to
the next chunk in two cases. First, the ckSi ze field for the Form Chunk reflects the size
of the entire sound file, so this function changes it to the size of the f or mType field so
that the function does not skip the file’s local chunks. Second, if the ckSi ze field is odd,
1 byte is added because the number of bytes in a chunk is always even.

After using the MyFi ndChunk function defined in Listing 2-31, you might still need to
read the data contained in a chunk into memory. For example, you might read in the
Form and Common Chunks to obtain information about a sound file. Listing 2-32 uses
the MyFi ndChunk function to find a chunk in a sound file, allocates an appropriately
sized block of memory for that chunk, and reads the chunk into that block.

Using the Sound Manager

CHAPTER 2

Sound Manager

Listing 2-32 Loading a chunk from a sound file

FUNCTI ON MyGet ChunkData (nyFile: |nteger; {file reference nunber}
my ChunkSought : | D; {1 D of chunk sought}
startPos: Longlint): {file position to start at}

Ptr; {pointer to data or N L}
VAR
my FPos: Longl nt; {position in file}
nmyLengt h: Longl nt ; {nunber of bytes to read}
my ChunkHeader : ChunkHeader ; {characteristics of a chunk}
my ChunkDat a: Ptr; {pointer to chunk data}
nyErr: OSErr;
BEG N
myChunkData : = N L; {initialize variabl e}

nyErr = MyFi ndChunk(nyFile, nmyChunkSought, startPos, nyFPos);
IF myErr = noErr THEN
{move to start of chunk}
myErr := SetFPos(nyFile, fsFronStart, nyFPos);
IF myErr = noErr THEN
BEG N {deterni ne how much data to copy}
myLength : = Si zeOf (ChunkHeader) ;
myErr := FSRead(nyFile, nyLength, @ryChunkHeader);
I F myChunkHeader . ckl D = | D(Forml D) THEN
myChunkHeader . ckSi ze : = SizeO (1 D); {don't return local chunks}
myLengt h : = nyChunkHeader. ckSi ze + Si zeOf (ChunkHeader);
IF nyErr = noErr THEN
{return to chunk's start}
myErr := SetFPos(nyFile, fsFronStart, nyFPos);
END;
I'F nyErr = noErr THEN
BEA N {read chunk data i nto RAM
myChunkDat a : = NewPtr (nyLength);
| F myChunkData <> N L THEN
myErr := FSRead(nyFile, nyLength, myChunkData);
END;
IF myErr <> noErr THEN
| F myChunkData <> N L THEN
Di sposePt r (myChunkDat a) ;
My Get ChunkDat a : = nyChunkDat a;
END;

The MyGet ChunkDat a function defined in Listing 2-32 attempts to find a chunk in a file.
If it finds the chunk, it reads the chunk header to determine the chunk’s size, and if the
chunk is the Form Chunk, adjusts the chunk size so that the sound file’s local chunks are

Using the Sound Manager 2-65

2-66

CHAPTER 2

Sound Manager

not included in the chunk size. Then the function attempts to allocate memory for the
chunk and read the chunk into the memory. If a problem occurs at any time, the function
simply returns NI L.

Note

The format of a sound file might not be the same as its operating-system
type. In particular, a file might have an operating-system type ' Al FC
but be formatted as an AIFF file because the sampled-sound data
contained in the file is noncompressed. u

Compressing and Expanding Sounds

Some of the capabilities provided by MACE are transparently available to your
application. For example, if you pass the SndPl ay function a handletoan' snd '
resource that contains a compressed sampled sound, the Sound Manager automatically
expands the sound data for playback in real time. Your application does not need to
know whether the ' snd ' resource contains compressed or noncompressed samples
when it calls SndPl ay. This is because sufficient information is in the resource itself to
allow the Sound Manager to determine whether it should expand the data samples.

However, aside from expansion playback, all of the MACE capabilities need to be
specifically requested by your application. For example, you can use the procedure
Conp3t 01 or Conp6t 0l if you want to compress a sampled sound (for example, to
createan ' snd ' resource containing compressed audio data). You can use the
procedures Explt 03 and Explt 06 to expand compressed audio data.

All of these procedures require you to specify both an input and an output buffer,
from and to which the sampled-sound data to be converted is read and written. Your
application must allocate the appropriate amount of storage for each buffer. For
example, if you want to expand a buffer of compressed monophonic sampled-sound
data by using Exp1t 06, the output buffer must be at least six times the size of the
input buffer.

The MACE compression and expansion routines can work on only one channel of sound.
The nunthannel s parameter of all four procedures allows you to specify how many
channels are in the original sample, and the whi chChannel parameter allows you to
specify which channel you wish to compress or expand. Because the MACE routines can
compress or expand only one channel of sound, you must make adjustments when
allocating an output buffer for stereo sound. For example, if you are compressing
two-channel sound using the Conp3t 01 procedure, your output buffer need only be
one-sixth the size of your input buffer.

Often when compressing polyphonic sound, being able to compress only one channel is
not a problem, because you lose sound quality during compression anyway. However,
you might at times wish to maintain more than one channel of a multichannel sound
even after compression and expansion. For example, two channels of a stereo sound
might be quite different and might both be necessary to achieve a full sound after
expansion. In these cases, you can compress each channel of a multichannel sound
individually and then manually interleave the samples on a packet basis. When you

Using the Sound Manager

CHAPTER 2

Sound Manager

expand polyphonic compressed sound data, you must interleave the channels of sound
on a sample frame basis.

The MACE routines work only with sampled-sound data in offset binary format. If you
are compressing data in a sound file, you must convert that data from linear, two’s
complement format to binary offset format before compression.

When calling the MACE routines, you can also specify addresses of two small buffers
(128 bytes each) that the Sound Manager uses to maintain state information about the
compression or expansion process. When you first call a MACE routine, the state buffers
should be filled with zeros to initialize the state information. When you subsequently
call another MACE routine, you can use the same state buffers. You can pass NI L for
both buffers if you do not want to save state information across calls to the MACE
routines. Listing 2-33 illustrates the use of the Conp3t 01 procedure when using

state buffers.

Listing 2-33 Compressing audio data

PROCEDURE MyConpressBy3 (inBuf: Ptr; outBuf: Ptr; nunfSanp: Longlnt);
CONST
kSt at eBuffer Si ze = 128;

VAR
myl nSt at e: Ptr; {input state buffer}
myQut St at e: Ptr; {output state buffer}
BEG N

myl nState : = NewPtrd ear (kSt at eBuf ferSi ze);
myQut State : = NewPtrd ear (kSt at eBuf ferSi ze);
IF (nylnState <> NIL) AND (nyQutState <> NI L) THEN
Conp3tol(i nBuf, outBuf, nunBSanp, nylnState, nyQutState, 1, 1);
END;

Because the last two parameters (nunmChannel s andwhi chChannel) are both set to 1,
My Conpr essBy 3 compresses monophonic audio data.

In practice, compressing a sound resource or sound file is considerably more complex
than calling the MyConpr essBy3 procedure defined in Listing 2-33. To compress a
sound resource containing monophonic sampled-sound data, you would need to

n load the data into a handle and lock the handle

n ensure that the data in the handle is not already compressed by examining the sound
header

n find a pointer to the sampled-sound data by examining the sanpl ePt r field of the
sound header

n allocate an output buffer of the appropriate size, taking into account that only one
channel of the original data can be compressed

n compress the sampled-sound data by calling the Conp3To1 procedure

Using the Sound Manager 2-67

2-68

CHAPTER 2

Sound Manager

n determine the size that the header information (including, for example, sound
commands and the sampled sound header excluding the sampled-sound data itself)
will take in the resource by using the Sound Input Manager’s Set upSndHeader
function to create a sound resource header and sampled sound header with the
same sample rate, base frequency, and other characteristics as the original
sampled-sound data

n resize the handle so that it is large enough to contain both the non—-sampled-sound
data information and the compressed sound data

n fill this handle by first calling Set upSndHeader once again and by then copying the
compressed sound data to the end of the header information

n update the resource file

Techniques for compressing sound files and for expanding both sound resources and
sound files are analogous to that sketched here. Remember that after compressing or
expanding each channel of polyphonic sampled-sound data, you must interleave frames
of sound data, on a packet basis after compression or on a sample basis after expansion.

Using Double Buffers

The play-from-disk routines make extensive use of the SndPl ayDoubl eBuf f er
function. You can use this function in your application directly if you wish to bypass the
normal play-from-disk routines. You might want to do this to maximize the efficiency of
your application while maintaining compatibility with the Sound Manager. Or, you
might define your own double-buffering routines so that your application can convert
16-bit sound data on disk to 8-bit data that all versions of the Sound Manager can play.
By using SndPl ayDoubl eBuf f er instead of the normal play-from-disk routines, you
can specify your own doubleback procedure (that is, the algorithm used to switch back
and forth between buffers) and customize several other buffering parameters.

IMPORTANT

SndPI ayDoubl eBuf f er is a very low-level routine and is not intended
for general use. In most cases, you should use the high-level Sound
Manager routines (such as SndPl ay or SndSt art Fi | ePl ay) or
standard sound commands (such as buf f er Cnrd) to play sounds.

You should use SndPI ayDoubl eBuf f er only if you require very

fine control over double buffering. Remember also that the

SndPl ayDoubl eBuf f er function is not always available. You’ll need
to ensure that it’s available in the current operating environment before
calling it. See “Testing for Multichannel Sound and Play-From-Disk
Capabilities” beginning on page 2-35 for details. s

You call SndPl ayDoubl eBuf f er by passing it a pointer to a sound channel (into which
the double-buffered data is to be written) and a pointer to a sound double buffer header
record. Here’s an example:

myErr : = SndPl ayDoubl eBuf f er (mySndChan, @ryDoubl eHeader);

A sound double buffer header record has the following structure:

Using the Sound Manager

CHAPTER 2

Sound Manager

TYPE SndDoubl eBuf f er Header =
PACKED RECORD

dbhNuntChannel s: I nt eger; {nunber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanpl e size, if nonconpressed}
dbhConpr essi onl D: | nt eger; {I D of conpression algorithn}
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sanpl e rate}
dbhBuf ferPtr: ARRAY[0. .1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {pointer to doubl eback procedure}

END;

The values for the dbhConpr essi onl D, dbhNuntChannel s, and dbhPacket Si ze
fields are the same as those for the conpr essi onl D, nuntChannel s, and packet Si ze
fields of the compressed sound header, respectively.

The dbhBuf f er Pt r array contains pointers to two records of type SndDoubl eBuf f er.
These are the two buffers between which the Sound Manager switches until all

the sound data has been sent into the sound channel. When the call to

SndPI ayDoubl eBuf f er is made, the two buffers should both already contain

a nonzero number of frames of data.

IMPORTANT
The Sound Manager defines the data type SndDoubl eBuf f er Header 2
that is identical to the SndDoubl eBuf f er Header data type except that
it contains the dbhFor mat field (of type OSType) that defines a custom
codec to be used to decompress the sound data. The dbhFor nat field is
used only if the dbhConpr essi onl Dfield contains the value

fi xedConpr essi on. See “Sound Double Buffer Header Records”
beginning on page 2-111 for details. s

Here is the structure of a sound double buffer:

TYPE SndDoubl eBuf fer =
PACKED RECCRD

dbNuntr anes: Longl nt; {nunber of frames in buffer}
dbFl ags: Longl nt; {buffer status flags}
dbUser I nf o: ARRAY[0. . 1] OF Longlnt;

{for application's use}
dbSoundDat a: PACKED ARRAY[0..0] OF Byte;
{array of data}
END,

The buffer status flags field for each of the two buffers might contain either of
these values:

Using the Sound Manager 2-69

CHAPTER 2

Sound Manager

CONST
dbBuf f er Ready = $00000001;
dbLast Buf f er = $00000004;

All other bits in the dbFl ags field are reserved by Apple; your application should not
modify them.

The following two sections illustrate how to fill out these data structures, create your
two buffers, and define a doubleback procedure to refill the buffers when they
become empty.

Setting Up Double Buffers

Before you can call ShndPl ayDoubl eBuf f er, you need to allocate two buffers (of type
SndDoubl eBuf f er), fill them both with data, set the flags for the two buffers to
dbBuf f er Ready, and then fill out a record of type SndDoubl eBuf f er Header with the
appropriate information. Listing 2-34 illustrates how you can accomplish these tasks.

Listing 2-34 Setting up double buffers

CONST
kDoubl eBuf fer Si ze = 4096; {size of each buffer (in bytes)}
TYPE
Local Vars = {vari abl es used by the doubl eback procedure}
RECORD
byt esTot al : Longl nt; {total number of sanpl es}
byt esCopi ed: Longl nt; {nunber of sanples copied to buffers}
dataPtr: Ptr; {pointer to sanple to copy}
END;

Local VarsPtr = ~Local Vars;

{This function uses SndPl ayDoubl eBuffer to play the sound specified.}
FUNCTI ON MyDBSndPIl ay (chan: SndChannel Ptr; sndHeader: SoundHeaderPtr): OSErr;
VAR

myVar s: Local Vars;
my Dbl Header : SndDoubl eBuf f er Header ;
my Dbl Buf f er: SndDoubl eBuf ferPtr;
my St at us: SCSt at us;
nyl ndex: I nt eger;
nyErr: OSEr v
BEG N
{Set up nyVars with initial information.}
myVar s. byt esTot al : = sndHeader”™. | engt h;
myVar s. byt esCopi ed : = 0; {no sanpl es copi ed yet}

myVars. dataPtr : = Ptr(@ndHeader”. sanpl eArea[0]);

2-70 Using the Sound Manager

CHAPTER 2

Sound Manager

{pointer to first sanpl e}
{Set up SndDoubl eBuf f er Header . }
W TH nyDbl Header DO

BEG N
dbhNumChannel s : = 1, {one channel }
dbhSanpl eSi ze : = 8; {8-bit sanpl es}
dbhConpr essi onl D : = 0; {no conpression}
dbhPacket Si ze : = 0; {no conpression}

dbhSanpl eRat e : = sndHeader . sanpl eRat ¢;
dbhDoubl eBack : = @Doubl eBackPr oc;
END;

FOR nylndex := 0 TO 1 DO {initialize both buffers}
BEG N
{Get nenory for double buffer.}
myDbl Buf f er : = SndDoubl eBufferPtr(NewPtr (Si zeof (SndDoubl eBuf fer) +
kDoubl eBuf fer Si ze)) ;
I F nmyDbl Buffer = NIL THEN
BEG N
MyDBSndPl ay : = MenError;
Exi t (MyDBSndPI ay) ;

END,
my Dbl Buf f er~. dbNunframes : = O; {no franes yet}
myDbl Buf f er~. dbFl ags : = 0; {buffer is empty}

myDbl Buf f er~. dbUser | nfo[0] := Longl nt(@ryVars);

{Fill buffer with sanples.}
MyDoubl eBackProc(sndChan, nyDbl Buffer);

{Store buffer pointer in header.}

nmy Dbl Header . dbhBuf fer Pt r[nyl ndex] := nyDbl Buffer;
END,
{Start the sound playing.}
myErr : = SndPl ayDoubl eBuf f er (sndChan, @ryDbl Header) ;
IF myErr <> noErr THEN
BEG N

MyDBSndPl ay : = nyErr;

Exi t (MyDBSndPI ay) ;
END,

{Wait for the sound' s end by checking the channel status.}
REPEAT

Using the Sound Manager 2-71

nmyErr

CHAPTER 2

Sound Manager

: = SndChannel St at us(chan, sizeof (nmyStatus), @tatus);

UNTI L NOT nySt at us. scChannel Busy;

{Di spose doubl e buffer nmenory.}
FOR nylndex := 0 TO 1 DO
Di sposePt r (Pt r (nyDbl Header . dbhBuf ferPtr[nmyl ndex]));

MyDBSndPl ay : = noErr;

END;

2-72

The function MyDBSndPI ay takes two parameters, a pointer to a sound channel and a
pointer to a sound header. For information about obtaining a pointer to a sound header,
see “Obtaining a Pointer to a Sound Header” on page 2-57. The MyDBSndPI ay function
reads the sound header to determine the characteristics of the sound to be played (for
example, how many samples are to be sent into the sound channel). Then MyDBSndPI ay
fills in the fields of the double buffer header, creates two buffers, and starts the sound
playing. The doubleback procedure MyDoubl eBackPr oc is defined in the next section.

Writing a Doubleback Procedure

The dbhDoubl eBack field of a double buffer header specifies the address of a
doubleback procedure, an application-defined procedure that is called when the double
buffers are switched and the exhausted buffer needs to be refilled. The doubleback
procedure should have this format:

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
exhaust edBuf fer: SndDoubl eBufferPtr);

The primary responsibility of the doubleback procedure is to refill an exhausted buffer
of samples and to mark the newly filled buffer as ready for processing. Listing 2-35
illustrates how to define a doubleback procedure. Note that the sound channel pointer
passed to the doubleback procedure is not used in this procedure.

This doubleback procedure extracts the address of its local variables from the

dbUser I nf o field of the double buffer record passed to it. These variables are used to
keep track of how many total bytes need to be copied and how many bytes have been
copied so far. Then the procedure copies at most a bufferfull of bytes into the empty
buffer and updates several fields in the double buffer record and in the structure
containing the local variables. Finally, if all the bytes to be copied have been copied,
the buffer is marked as the last buffer.

Note

Because the doubleback procedure is called at interrupt time, it cannot
make any calls that move memory either directly or indirectly. (Despite
its name, the Bl ockMove procedure does not cause blocks of memory to
move or be purged, so you can safely call it in your doubleback
procedure, as illustrated in Listing 2-35.) u

Using the Sound Manager

CHAPTER 2

Sound Manager

Listing 2-35 Defining a doubleback procedure

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
doubl eBuf fer: SndDoubl eBufferPtr);

VAR
myVar sPtr: Local VarsPtr;
myNunByt es: Longl nt;

BEG N

{Get pointer to ny local variables.}
myVarsPtr : = Local VarsPtr (doubl eBuffer”. dbUserInfo[0]);

{Get nunber of bytes left to copy.}
myNunByt es : = nyVarsPtr”. bytesTotal - nyVarsPtr”. byt esCopi ed;

{If the anobunt left is greater than double buffer size, limt the nunber }
{ of bytes to copy to the size of the buffer.}
I F myNunmByt es > kDoubl eBuf fer Si ze THEN

nmyNunByt es : = kDoubl eBuf f er Si ze;

{Copy sanples to double buffer.}
Bl ockMove(nyVarsPtr”. dataPtr, @loubl eBuffer”. dbSoundDat a] 0], myNunBytes);

{Store nunber of sanples in buffer and mark buffer as ready.}
doubl eBuf f er . dbNunfr anes : = nyNunByt es;
doubl eBuf f er~. dbFl ags : = BOR(doubl eBuf f er~. dbFl ags, dbBuffer Ready);

{Updat e data pointer and nunber of bytes copied.}
myVarsPtr~. dataPtr := Ptr(ORD4(nyVarsPtr”~. dataPtr) + nmyNunBytes);
myVar sPtr”~. byt esCopi ed : = nmyVarsPtr”. byt esCopi ed + nyNunByt es;

{1f all sanples have been copied, then this is the | ast buffer.}
I F myVarsPtr”. byt esCopi ed = nyVarsPtr”. bytesTotal THEN
doubl eBuf f er . dbFl ags : = BOR(doubl eBuf f er~. dbFl ags, dbLast Buffer);
END,

Sound Storage Formats

This section describes in detail the formats of sound resources and sound files, which are
the two principal storage formats for sound data on Macintosh computers. In general, an
application that uses the services provided by the Sound Manager and the Sound Input
Manager to play and record sounds does not need to know how the sound data is

Sound Storage Formats 2-73

CHAPTER 2

Sound Manager

organized in memory or on disk. For some special purposes, however, you might need
the information in this section.

Sound Resources

Asound resource is a resource of type ' snd ' that contains sound commands and
possibly also sound data. Sound resources are widely used by Macintosh applications
that produce sounds. These resources provide a simple and portable way for you to
incorporate sounds into your application. For example, the sounds that a user can select
in the Sound control panel as the system alert sound are stored in the System file as
"snd ' resources.

There are two types of ' snd ' resources, known as format 1 and format 2. Figure 2-4
illustrates the structures of both kinds of ' snd ' resources.

Figure 2-4 The structure of 'snd ' resources

Theass k=
Tiay b
abeza ik i
Mumbar of
At foras’
i=0

Optons { S pled-sourd date {'U'Hid:dt

" * formatd

Format b=}
Mumber ofdsts fom ats b=}
Rrstdats fom st 1D 2 "yod ' awat?
Forrn &t 2
hitopion fr dhanne 4
By ancs oot 2
P ber of soord commards b=} Murber of zoard oo m ands 2
‘_r" Rrst soured com nnoared f =} Rrstzourd comm and ;5:

g

of wave-mble date

4
4
‘_r" Lt oard oo mared fe {, Leaest oared 2o moand ;5:

Samplad-courd dee { Wariable

2-74

IMPORTANT

The format2 ' snd ' resource is obsolete. Your application should
create only format 1' snd ' resources. The format2' snd ' resource
was designed for use by HyperCard and can be used with
sampled-sound data only. s

Sound Storage Formats

CHAPTER 2

Sound Manager

Resource IDs for ' snd ' resources in the range 0 to 8191 are reserved for use by
Apple Computer, Inc. The' snd ' resources numbered 1 through 4 are defined to be
the standard system alert sounds, although more recent versions of system software
have included more standard system alert sounds.

When a sound command contained inan' snd ' resource has associated sound data,

the high bit of the command is set. This changes the meaning of the par an® field of the
command from a pointer to a location in RAM to an offset value that specifies the offset
in bytes from the resource’s beginning to the location of the associated sound data (such
as a sampled sound header). Figure 2-5 illustrates the location of this data offset bit.

Figure 2-5 The location of the data offset bit

= iord — - ord —e———— | ong word ————

I

Date offretbit jused by ' socd ' resource onbd

ol parand param

The offset bit is used only by sound commands that are stored in sound resources of
type ' snd ' and that have associated sound data (that is, sampled-sound or
wave-table data).

You can use a constant to access that flag.

CONST
dat aOf f set Fl ag = $8000; {sound command data of fset bit}

If the dat aOx f set Fl ag bit is not set, par an? is interpreted instead as a pointer to the
location in memory (outside the sound resource) where the data is located.

The first few bytes of the resource contain ' snd ' header information and are a
different size for each format. An audio data type specified in a format 1 ' snd
requires 6 bytes. The number of data types multiplied by 6 is added to this offset. The
number of commands multiplied by 8 bytes, the size of a sound command, is added to
the offset.

The Format 1 Sound Resource

Figure 2-4 shows the fields of aformat 1' snd ' resource. Aformat1l' snd ' resource
header contains information about the format of the resource (namely, 1), the data type,
and the initialization options for that data type. A format1' snd ' resource contains
sound commands and might also contain the actual sound data for wave-table sounds or
sampled sounds. Note that if a sound resource includes sampled-sound data, then part
of the sound data section is devoted to a sound header that describes the sampled-sound
data in the remainder of the sound data section.

Sound Storage Formats 2-75

CHAPTER 2

Sound Manager

Ifan' snd ' resource specifies a data type, it can supply an initialization option in the
field immediately following the type. You specify the number of commands in the
resource in the number of sound commands field. The sound commands follow, in the
order in which they should be sent to the sound channel.

Theformat1' snd ' resource might contain only a sequence of commands describing a
sound. In this case, the number of data types should be 0, and there should be no data
type specification or initialization option in the ' snd ' resource. This allows the
"snd ' resource to be used with any kind of sound data.

Listing 2-36 shows the output of the MPW tool DeRez when applied to the ' snd
resource with resource ID 1 contained in the System file.

Listing 2-36 Aformatl 'snd ' resource

2-76

data 'snd ' (1, "Sinple Beep", purgeable) {
/*the sound resource header*/
$"0001" [*format type*/
$"0001" /*nunber of data types*/
$"0001" / *squar e-wave dat a*/

$"00000000" /*initialization option*/
/*t he sound commands*/

$"001B" / *number of sound comands (27)*/
$"002C' /*command 1--tinbreCrd 090 000*/
$" 005A00000000"

$" 002B" [*command 2--ampCnd 224 000*/

$" 00E000000000"

$" 002A" / *command 3--freqCrd 000 069*/
$"000000000045"

$" 000A" /*command 4--wait Crd 040 000*/
$"002800000000"

$" 002B" [*command 5--ampCnd 200 000*/

$" 00C800000000"

/[*commands 6 through 26 are onmitted; they are */

/* alternating pairs of waitCnd and anpCnd commands */
/* where the first paraneter of anpCrd has the */

/* values 192, 184, 176, 168, 160, 144, 128, 96, */

/* 64, and 32*/

$" 002B" / *command 27--anpCnd 000 000*/
$"000000000000"

H

As you can see, the Simple Beep is actually a rather sophisticated sound, in which the
loudness (or amplitude) of the beep gradually decreases from an initial value of 224 to 0.

Sound Storage Formats

CHAPTER 2

Sound Manager

Notice that the sound shown in Listing 2-36 is defined using square-wave data and is
completely determined by a sequence of specific commands. (“Play an A at loudness

224, wait 20 milliseconds, play it at loudness 200....”) Often, an ' snd ' resourceconsists
only of a single sound command (usually the buf f er Cnd command) together with data
that describes a sampled sound to be played. Listing 2-37 shows an example like this.

Listing 2-37 Aformat1l 'snd ' resource containing sampled-sound data

data 'snd ' (19068, "hello daddy",
/ *t he sound resource header*/

pur geabl e) {

$"0001" [*format type*/

$"0001" / *nunber of data types*/

$" 0005" / *sanpl ed- sound dat a*/

$"00000080" /*initialization option: initMno*/

/*the sound conmmands*/

$"0001" / *nunmber of sound commuands that follow (1)*/
$"8051" / *conmmand 1- - buf f er Crd*/

$" 0000" [*paraml = 0*/

$"00000014" [*paran? = offset to sound header (20 bytes)*/

/*the sanpl ed sound header*/

b

$"00000000" /*pointer to data (it follows imediately)*/

$"00000BB8" / *nunmber of bytes in sanple (3000 bytes)*/

$" 56 EE8BA3" /*sanpling rate of this sound (22 kHz)*/

$"000007D0" /*starting of the sanple's |oop point*/

$"00000898" /*ending of the sanple's |oop point*/

$" 00" / *standard sanpl e encodi ng*/

$" 3C / *baseFrequency at which sanpl e was taken*/
/*t he sanpl ed- sound dat a*/

$"80 80 81 81 81 81 81 81 80 80 80 80 80 81 82 82"

$"82 83 82 82 81 80 80 7F 7F 7F 7E 7D 7D 7D 7C 7C'

$"7C 7C 7D 7D 7D 7D 7E 7F 80 80 81 81 82 82 83 83"

$"83 83 82 81 81 80 80 81 81 81 81 81 82 81 81 80"

$"80 80 81 81 81 83 83 83 82 81 81 80 7F 7E 7D 7D'

$"7F 7TF 7F 7F YTE 7TF 7F 7F 7F 7TF 7F 7F 7F 7F 7F 80"

[*rest of d

ata omtted

in

this exanpl e*/

This' snd ' resource indicates that the sound is defined using sampled-sound data.
The resource includes a call to a single sound command, the buf f er Chd command. The
offset bit of the command number is set to indicate that the sound data is contained in
the resource itself. Following the command and its two parameters is the sampled sound
header, the first part of which contains important information about the sample. The
second parameter to the buf f er Cmd command indicates the offset from the beginning
of the resource to the sampled sound header, in this case 20 bytes. After the sound

Sound Storage Formats

2-77

CHAPTER 2

Sound Manager

commands, this resource includes a sampled sound header, which includes the
sampled-sound data. The format of a sampled sound header is described in “Sound
Header Records” on page 2-104

For compressed sound data, the sampled sound header is replaced by a compressed
sampled sound header. Listing 2-38 illustrates the structure of an' snd ' resource that
contains compressed sound data.

Listing 2-38 An 'snd ' resource containing compressed sound data

data 'snd ' (9004, "Raisa's Cry", purgeable) {
/ *t he sound resource header*/

$"0001" [*format type*/
$"0001" [*nunber of data types*/
$" 0005" /[*first data type*/

$"00000380" /*initialization option: initMACE3 + initMno*/
/*the sound conmand*/

$"0001" / *nunber of sound conmmands that follow (1)*/
$" 8051" /*cmd: buf f er Cd*/
$" 0000" [*paraml: unused*/

$"00000014" /*paran®: offset to sound header (20 bytes)*/

[/ *the conpressed sanpl ed sound header*/

$"00000000" /*pointer to data (it follows inmmediately)*/
$"00000001" /*nunber of channels in sanple*/

$"56EE8BA3" /*sanpling rate of this sound (22 kHz)*/
$"00000000" /*starting of the sanmple's |oop point; not used*/
$"00000000" /*ending of the sanple's |oop point; not used*/
$" FE" / *conpr essed sanpl e encodi ng*/

$" 00" / *baseFrequency; not used*/

$"00006590" /*nunber of frames in sanple (26,000)*/

$" 400DADDD1745D145826B"

[*Al FFSanpl eRate (22 kHz in extended type)*/
$"00000000" /*marker Chunk; NIL for 'snd ' resource*/
$"4D414333" /*format; MACE 3:1 conpression*/
$"00000000" /*futureUse2; NIL for 'snd ' resource*/
$"00000000" /*stateVars; NIL for 'snd ' resource*/
$"00000000" /*| eftOverBl ockPtr; not used here*/

$" FFFF" [*compressionl D, -1 nmeans use format field*/
$"0010" / *packet Si ze, packetSize for 3:1 is 16 bits*/

$" 0000" /*snthlDis 0*/

$" 0008" [*sampl eSi ze, sound was 8-bit before processing*/
$"2F 85 81 32 64 87 33 86" /*the conpressed sound data*/

$"6F 48 6D 65 72 6B 82 88"
$"91 FE 8D 8E 86 4E 7C E9"

2-78 Sound Storage Formats

CHAPTER 2

Sound Manager

$"6F 6D 71 70 7E 79 4F 83"
$"59 8F 8F 65" /*rest of data omtted in this exanple*/

b

This resource has the same general structure as the ' snd ' resource illustrated in
Listing 2-36. The principal difference is that the standard sound header is replaced by
the compressed sound header. This example resource specifies a monophonic sound
compressed by using the 3:1 compression algorithm. A multichannel compressed
sound’s data would be interleaved on a packet basis. See “Compressed Sound Header
Records” beginning on page 2-108 for a complete explanation of the compressed sound
header.

As you’ve seen, it is not always necessary to specify ' snd ' resources by listing the raw
data stream contained in them; indeed, for certain types of format 1' snd ' resources, it
can be easier to supply a resource specification like the one given in Listing 2-39.

Listing 2-39 A resource specification

resource 'snd ' (9000, "Nathan's Beep", purgeable) {
For mat One {
{ [/*array of data types: 1 elenent*/

I*[1]*/
squar eWaveSynth, O
}
b
{ [*array SoundCmds: 3 el ements*/

[*[1]*/ noData, tinbreCnrd {90},
[*[2]*] noData, fregDurationCnd {480, $00000045},
/[*[3]*/ noData, quietCrd {},
b
{ [*array DataTables: 0 el enments*/
b
b

When you pass a handle to this resource to the SndPI ay function, three commands are
executed by the Sound Manager: at i nbr eCnd command, af r eqDur ati onCnd
command, and a qui et Cd command. The sound specified in Listing 2-39 is just like the
Simple Beep, except that there is no gradual reduction in the loudness. Listing 2-40
shows a resource specification for the Simple Beep.

Listing 2-40 A resource specification for the Simple Beep

resource 'snd ' (9001, "Copy of Sinple Beep", purgeable) {
For mat One {
{ [/*array of data types: 1 elenment*/

Sound Storage Formats 2-79

CHAPTER 2

Sound Manager

[*[1]*/
squar eWaveSynth, 0

}

H

{ [*array SoundCmds: 27 el enents*/
[*[1]*/ nodata, tinbreCnd {90},
[*[2]*/ nodata, anmpCnd {224},
[*]3]*/ nodata, freqCrd {69},
[*[4]*/ nodata, waitCnd {40},
[*[5]*/ nodata, anmpCnd {200},
[*][6]*/ nodata, waitCnrd {40},
[*[7]*/ nodata, anpCnd {192},
[*][8]*/ nodata, waitCrd {40},
[*[9]*/ nodata, anpCnd {184},
[*[10] */ nodata, waitCnd {40},
[*]11]*/ nodata, anpCnd {176},
[*[12]*/ nodata, waitCrd {40},
[*]13]*/ nodata, anpCnd {168},
[*]14]*]/ nodata, waitCrd {40},
[*[15]*/ nodata, anpCnd {160},
[*][16]*/ nodata, waitCnd {40},
[*[17]*] nodata, anpCnd {144},
[*[18]*/ nodata, waitCnrd {40},
[*][19]*/ nodata, anpCnd {128},
[*[20]*/ nodata, waitCrd {40},
[*[21]*/ nodata, anpCnd {96},
[*][22]*] nodata, waitCnd {40},
[*][23]*]/ nodata, anpCnd {64},
[*[24]*] nodata, waitCrd {40},
[*[25]*/ nodata, anpCnd {32},
[*][26] */ nodata, waitCrd {40},
[*][27]*] nodata, anpCnd {0},

b

{ [/*array DataTables: 0 el ements*/

}

The Format 2 Sound Resource

The SndPI ay function can also play format 2' snd ' resources, which are designed
for use only with sampled sounds. The SndPI ay function supports this format by
automatically opening a sound channel and using the buf f er Crd command to send the
data contained in the resource to the channel.

2-80 Sound Storage Formats

CHAPTER 2

Sound Manager

Figure 2-4 illustrates the fields of a format 2 ' snd ' resource. The reference count field
is for your application’s use and is not used by the Sound Manager. The number of
sound commands field and the sound command fields are the same as described in a
format 1 resource. The last field of this resource contains the sampled sound. The first
command should be either a soundCnd command or buf f er Cnd command with the
data offset bit set in the command to specify the location of this sampled sound header.

Listing 2-41 shows a resource specification that illustrates the structure of a format 2
"snd ' resource.

Listing 2-41 Aformat2' snd ' resource

data 'snd ' (9003, "Pig Squeal", purgeable) {
/*the sound resource header*/
$"0002" [*format type*/
$" 0000" /*reference count for application's use*/
/*t he sound command*/
$"0001" / *nunmber of sound commands that follow (1)*/
$" 8051" / *command 1- - buf f er Cnd*/
$" 0000" [*paraml = 0*/
$" 0000000E" [*paran? = offset to sound header (14 bytes)*/
/*the sanpl ed sound header*/
$"00000000" /*pointer to data (it follows imedi ately)*/
$"00000BB8" [*nunber of bytes in sanple (3000 bytes)*/
$" 56 EESBA3" /*sanpling rate of this sound (22 kHz)*/
$"000007D0" /*starting of the sanple's |oop point*/
$"00000898" /*ending of the sanple's | oop point*/
$" 00" / *standard sanpl e encodi ng*/
$"3C / *baseFrequency at which sanple was taken*/
$"80 80 81 82 84 87 93 84" /*t he sanpl ed- sound dat a*/
$"6F 68 6D 65 72 7B 82 88"
$"91 8E 8D 8F 86 7E 7C 79"
$"6F 6D 71 70 70 79 7F 81"
$"89 8F 8D 8B" /*rest of data onitted in this exanpl e*/

b

Note

Remember that format 2' snd ' resources are obsolete. You should
create only format 1' snd ' resources. u

Sound Files

This section describes in detail the structure of AIFF and AIFF-C files. Both of these types
of sound files are collections of chunks that define characteristics of the sampled sound
or other relevant data about the sound.

Sound Storage Formats 2-81

2-82

CHAPTER 2

Sound Manager

Note

Most applications only need to read AIFF and AIFF-C files or to record
sampled-sound data directly to them. You can both play and record
AIFF and AIFF-C files without knowing the details of the AIFF and
AIFF-C file formats, as explained in the chapter “Introduction to Sound
on the Macintosh” in this book. Thus, the information in this section is
for advanced programmers only. u

Currently, the AIFF and AIFF-C specifications include the following chunk types.

Chunk type
Form Chunk

Format Version Chunk

Common Chunk
Sound Data Chunk

Marker Chunk
Comments Chunk
Sound Accelerator Chunk

Instrument Chunk

MIDI Data Chunk
Audio Recording Chunk

Application Specific
Chunk

Name Chunk
Author Chunk

Copyright Chunk
Annotation Chunk

Description

Contains information about the format of an AIFF or
AIFF-C file and contains all the other chunks of such a file.

Contains an indication of the version of the AIFF-C
specification according to which this file is structured
(AIFF-C only).

Contains information about the sampled sound such as
the sampling rate and sample size.

Contains the sample frames that comprise the
sampled sound.

Contains markers that point to positions in the sound data.
Contains comments about markers in the file.

Contains information intended to allow applications to
accelerate the decompression of compressed audio data.

Defines basic parameters that an instrument (such as a
sampling keyboard) can use to play back the sound data.

Contains MIDI data.

Contains information pertaining to audio recording
devices.

Contains application-specific information.

Contains the name of the sampled sound.

Contains one or more names of the authors (or creators) of
the sampled sound.

Contains a copyright notice for the sampled sound.
Contains a comment.

The following sections document the four principal kinds of chunks that can occur in

AIFF and AIFF-C files.

Chunk Organization and Data Types

An AIFF or AIFF-C file contains several different types of chunks. For example, there is a
Common Chunk that specifies important parameters of the sampled sound, such as its
size and sample rate. There is also a Sound Data Chunk that contains the actual audio
samples. A chunk consists of some header information followed by some data. The

Sound Storage Formats

CHAPTER 2

Sound Manager

header information consists of a chunk ID number and a number that indicates the size
of the chunk data. In general, therefore, a chunk has the structure shown in Figure 2-6.

Figure 2-6 The general structure of a chunk
!
okTD
— header i
k&l o
-
dete — dee byrtes
—

The header information of a chunk has this structure:

TYPE ChunkHeader =

RECORD

ckl D: | D {chunk type |D}

ckSi ze: Longlnt; {nunber of bytes of data}
END,

The ckl Dfield specifies the chunk type. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range ' ' (space character, ASCII value $20) through
" ~' (ASCII value $7E). Spaces cannot precede printing characters, but trailing spaces are
allowed. Control characters are not allowed. You can specify values for the four types of
chunks described later by using these constants:

CONST
Form D = 'FORM ; {1 D for Form Chunk}
Format VersionlD = 'FVER ; {I1D for Format Version Chunk}
Commonl D = ' COW ; {I D for Common Chunk}
SoundDat al D = 'SSND ; {ID for Sound Data Chunk}

The ckSi ze field specifies the size of the data portion of a chunk and does not include
the length of the chunk header information.

The Form Chunk

The chunks that define the characteristics of a sampled sound and that contain the actual
sound data are grouped together into a container chunk, known as the Form Chunk. The
Form Chunk defines the type and size of the file and holds all remaining chunks in the
file. The chunk ID for this container chunk is' FORM .

Sound Storage Formats 2-83

2-84

CHAPTER 2

Sound Manager

A chunk of type' FORM has this structure:

TYPE Cont ai ner Chunk =

RECORD
ckl D | D {' FORM }
ckSi ze: Longl nt; {nunber of bytes of data}
f or niType: | D {type of file}

END,

For a Form Chunk, the ckSi ze field contains the size of the data portion of this chunk.
Note that the data portion of a Form Chunk is divided into two parts, f or mlype and the
rest of the chunks of the file, which follow the f or niType field. These chunks are called
local chunks because their chunk IDs are local to the Form Chunk.

The local chunks can occur in any order in a sound file. As a result, your application
should be designed to get a local chunk, identify it, and then process it without making
any assumptions about what kind of chunk it is based on its order in the Form Chunk.

The f or nilype field of the Form Chunk specifies the format of the file. For AIFF files,
fornTypeis' Al FF' . For AIFF-C files, f or niType is' Al FC . Note that this type might
not be the same as the operating-system type with which the File Manager identifies the
file. In particular, a file of operating-system type ' Al FC might be formatted as an AIFF
file.

The Format Version Chunk

One difference between the AIFF and AIFF-C file formats is that files of type AIFF-C
contain a Format Version Chunk and files of type AIFF do not. The Format Version
Chunk contains at i nest anp field that indicates when the format version of this
AIFF-C file was defined. This in turn indicates what format rules this file conforms to
and allows you to ensure that your application can handle a particular AIFF-C file. Every
AIFF-C file must contain one and only one Format Version Chunk.

In AIFF-C files, a Format Version Chunk has this structure:

TYPE For mat Ver si onChunk =

RECORD

ckl D | D {' FVER }

ckSi ze: Longl nt; {4}

ti mestanp: Longlnt; {date of format version}
END;
Note

In AIFF files, there is no Format Version Chunk. u

The ti mest anp field indicates when the format version for this kind of file was created.
The value indicates the number of seconds since January 1, 1904, following the normal
time conventions used by the Macintosh Operating System. (See the chapter on date and

Sound Storage Formats

CHAPTER 2

Sound Manager

time utilities in Inside Macintosh: Operating System Ultilities for several routines that allow

you to manipulate time stamps.)

You should not confuse the format version time stamp with the creation date of the file.
The format version time stamp indicates the time of creation of the version of the format
according to which this file is structured. Because Apple defines the formats of AIFF-C

files, only Apple can change this value. The current version is defined by a constant:

CONST
Al FCVersionl = $A2805140; {May 23, 1990, 2:40 p.m}

The Common Chunk

Every AIFF and AIFF-C file must contain a Common Chunk that defines some
fundamental characteristics of the sampled sound contained in the file. Note that the
format of the Common Chunk is different for AIFF and AIFF-C files. As a result, you
need to determine the type of file format (by inspecting the f or nilype field of the
Form Chunk) before reading the Common Chunk.

For AIFF files, the Common Chunk has this structure:

TYPE ComonChunk =

RECORD
ckl D | D {' cOW }
ckSi ze: Longl nt; {size of chunk data}
nunChannel s: I nt eger; {nunber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended; {nunber of franmes per second}
END;

For AIFF-C files, the Common Chunk has this structure:

TYPE Ext CommpbnChunk =

RECORD
ckl D | D {' COW }
ckSi ze: Longl nt; {size of chunk dat a}
nuntChannel s: I nt eger; {nunber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sanpl eSi ze: I nt eger; {nunber of bits per sanple}
sanpl eRat e: Ext ended; {nunber of franes per second}
conmpressi onType: |D; {conpression type | D}

conpressi onNanme: PACKED ARRAY[0..0] OF Byte;
{conpressi on type nane}
END;

The fields that exist in both types of Common Chunk have the following meanings:

Sound Storage Formats

2-85

2-86

CHAPTER 2

Sound Manager

The nuntChannel s field of both types of Common Chunk indicate the number of audio
channels contained in the sampled sound. A value of 1 indicates monophonic sound, a
value of 2 indicates stereo sound, a value of 4 indicates four-channel sound, and so forth.
Any number of audio channels may be specified. The actual sound data is stored
elsewhere, in the Sound Data Chunk.

The nunanpl eFr anes field indicates the number of sample frames in the Sound Data
Chunk. Note that this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For noncompressed sound data, the
total number of sample points in the file is nunChannel s * nunSanpl eFr anes. (For
more information on sample points, see “Sampled-Sound Data” on page 2-9.)

The sanpl eSi ze field indicates the number of bits in each sample point of
noncompressed sound. Although the field can contain any integer from 1 to 32, the
Sound Manager currently supports only 8- and 16-bit sound. For compressed sound
data, this field indicates the number of bits per sample in the original sound data, before
compression.

The sanpl eRat e field contains the sample rate at which the sound is to be played back,
in sample frames per second. For a list of common sample rates, see Table 2-1 on
page 2-16.

An AIFF-C Common Chunk includes two fields that describe the type of compression
(if any) used on the audio data. The conpr essi onType field contains the type of the
compression algorithm, if any, used on the sound data. Here are the currently available
compression types and their associated compression names:

CONST
{conpressi on types}
NoneType = ' NONE' ;
ACE2Type = " ACE2';
ACE8Type = ' ACE8';
MACE3Type = ' MAC3';
MACEGType = ' MACE' ;

You can define your own compression types, but you should register them with Apple.

Finally, the conpr essi onNane field contains a human-readable name for the
compression algorithm ID specified in the conpr essi onType field. Compression
names for Apple-supplied codecs are defined by constants:

CONST
{conpressi on nanes}
NoneName = 'not conpressed';
ACE2t o1Nane = "ACE 2-to-1';
ACES8t 03Nane = '"ACE 8-t0-3';
MACE3t o1Nane = "MACE 3-to-1';
MACE6t o1Nane = 'MACE 6-to-1';

Sound Storage Formats

CHAPTER 2

Sound Manager

This string is useful when putting up alert boxes (perhaps because a necessary
decompression routine is missing). Pad the end of this array with a byte having the value
0 if the length of this array is not an even number (but do not include the pad byte in the
count).

The Sound Data Chunk

The Sound Data Chunk contains the actual sample frames that make up the sampled
sound. The Sound Data Chunk has this structure:

TYPE SoundDat aChunk =

RECORD

ckl Dt I D {' SSND }

ckSi ze: Longl nt; {size of chunk data}

of fset: Longl nt; {offset to sound data}

bl ockSi ze: Longlnt; {si ze of alignment bl ocks}
END,

The of f set field indicates an offset (in bytes) to the beginning of the first sample frame
in the chunk data. Most applications do not need to use the of f set field and should set
itto 0.

The bl ockSi ze field contains the size (in bytes) of the blocks to which the sound data
is aligned. This field is used in conjunction with the of f set field for aligning sound
data to blocks. As with the of f set field, most applications do not need to use the

bl ockSi ze field and should set it to 0.

The sampled-sound data follows the bl ockSi ze field. For information on the format of
sampled-sound data, see “Sampled-Sound Data” on page 2-9.

Note

The Sound Data Chunk is required unless the nunSanpl eFr anes field
in the Common Chunk is 0. A maximum of one Sound Data Chunk can
appear in an AIFF or AIFF-C file. u

Format of Entire Sound Files

Figure 2-7 illustrates an AIFF-C file that contains approximately 4.476 seconds of 8-bit
monophonic sound data sampled at 22 kHz. The sound data is hot compressed. Note
that the number of sample frames in this example is odd, forcing a pad byte to be
inserted after the sound data. This pad byte is not reflected in the ckSi ze field of the
Sound Data Chunk, which means that special processing is required to correctly
determine the actual chunk size.

On a Macintosh computer, the Form Chunk (and hence all the other chunks in an AIFF
or AIFF-C file) is stored in the data fork of the file. The file type of an AIFF format file is

" Al FF' , and the file type of an AIFF-C format file is' Al FC . Macintosh applications
should not store any information in the resource fork of an AIFF or AIFF-C file because
that information might not be preserved by other applications that edit sound files.

Sound Storage Formats 2-87

CHAPTER 2

Sound Manager

Figure 2-7 A sample AIFF-C file

Byie= Eample
"_ "_ =kID 4 FOIF
Form -
C-'l‘i.ll'k_ cksire q4 o= =
- Lo Ty pe 4 BIFFLC
—
Forrn at ckIm 4 Py ER
Wearsion — ckEize 4 4
Chark | [tinestang 4 2B L4
i okTD # COhid
cksize 4 =
LIFFE | numCharnnels 2 1
L Comman | oA pleFr ames | 4 a5 11
Churk samplesize 2 o
zampleFfata 2 =204 54
conpressionTyps | 4 MORME
- compre L iontame | 16 "hiicik oo pr e
i kTD # == 1]
Sound chsize 4 49
Dy
Churk of feat. 4 1]
L L blocksize 4 1]
Sound i sourd date Verisble Fame 1 oflame n (o 2964 1)
daim
L ped byre i 0

Every Form Chunk must contain a Common Chunk, and every AIFF-C file must contain

a Format Version Chunk. In addition, if the sampled sound has a length greater than 0,

there must be a Sound Data Chunk in the Form Chunk. All other chunk types are

optional. Your application should be able to read all the required chunks if it uses AIFF
or AIFF-C files, but it can choose to ignore any of the optional chunks.

When reading AIFF or AIFF-C files, you should keep the following points in mind:

n Remember that the local chunks in an AIFF or AIFF-C file can occur in any order. An
application that reads these types of files should be designed to get a chunk, identify
it, and then process it without making any assumptions about what kind of chunk it is
based on its order.

n If your application allows modification of a chunk, then it must also update other
chunks that might be based on the modified chunk. However, if there are chunks
in the file that your application does not recognize, you must discard those
unrecognized chunks. Of course, if your application is simply copying the AIFF or
AIFF-C file without any modification, you should copy the unrecognized chunks, too.

2-88 Sound Storage Formats

CHAPTER 2

Sound Manager

n You can get the clearest indication of the number of sample frames contained in an
AIFF or AIFF-C file from the nunSanpl eFr anes parameter in the Common Chunk,
not from the ckSi ze parameter in the Sound Data Chunk. The ckSi ze parameter is
padded to include the fields that follow it, but it does not include the byte with a
value of 0 at the end if the total number of sound data bytes is odd.

n Remember that each chunk must contain an even number of bytes. Chunks whose
total contents would yield an odd number of bytes must have a pad byte with a value
of 0 added at the end of the chunk. This pad byte is not included in the ckSi ze field.

n Remember that the ckSi ze field of any chunk does not include the first 8 bytes of the
chunk (which specify the chunk type).

Sound Manager Reference

This section describes the constants, data structures, and routines provided by the Sound
Manager. It also describes the format of data stored in sound resources and files that the
Sound Manager can play.

The section “Constants” describes the constants defined by the Sound Manager that you
can use to specify channel initialization parameters and sound commands. It also lists
the sound attributes selector for the Gest al t function and the returned bit numbers. See
the section “Summary of the Sound Manager” on page 2-157 for a list of all the constants
defined by the Sound Manager.

The section “Data Structures” beginning on page 2-99 describes the Pascal data
structures for all of the Sound Manager records that applications can use, including
sound commands, sound channels, and sound headers.

The section “Sound Manager Routines” beginning on page 2-119 describes the routines
that allow you to play sounds, manage sound channels, and obtain sound-related
information. That section also includes information on routines that give you low-level
control over sound output.

The section “Application-Defined Routines” beginning on page 2-151 describes callback
procedures and completion routines that your application might need to define.

The section “Resources” beginning on page 2-154 describes the organization of format 1
and format2' snd ' resources.

Constants

This section describes the constants that you can use to specify channel initialization
parameters, sound commands, and chunk IDs. It also lists the Gest al t function sound
attributes selector and the returned bit numbers. All other constants defined by the
Sound Manager are described at the appropriate location in this chapter. (For example,
the constants that you can use to specify sound data types are described in connection
with the SndNewChannel function beginning on page 2-127.)

Sound Manager Reference 2-89

CHAPTER 2

Sound Manager

Gestalt Selector and Response Bits

You can pass the gest al t SoundAt t r selector to the Gest al t function to determine
information about the sound capabilities of a Macintosh computer.

CONST
gestal t SoundAttr ='snd '; {sound attributes selector}
The Gest al t function returns information by setting or clearing bits in ther esponse
parameter. The bits currently used are defined by constants. Note that most of these bits
provide information about the built-in hardware only.
IMPORTANT
Bits 7 through 12 are not defined for versions of the Sound Manager
prior to version 3.0. s
CONST
gestal t StereoCapability = 0; {built-in hw can play stereo sounds}
gestal t St er eoM xi ng = 1, {built-in hw m xes stereo to nono}
gest al t Soundl Ovgr Pr esent = 3 {sound input routines avail abl e}
gestal t Bui | t 1 nSoundl nput = 4, {built-in input hw avail abl e}
gest al t HasSoundl nput Devi ce = 5; {sound i nput device avail abl e}
gestal t Pl ayAndRecord = 6; {built-in hw can play while recording}
gestal t 16Bi t Soundl O =7, {built-in hw can handl e 16-bit data}
gest al t St er eol nput = 8; {built-in hw can record stereo sounds}
gestal t Li neLevel | nput = 9; {built-in input hw needs line |evel}
gest al t SndPl ayDoubl eBuf fer = 10; {play fromdi sk routines avail abl e}
gestal t Mul ti Channel s = 11; {mul ti pl e channel s of sound support ed}
gest al t 16Bi t Audi oSupport = 12; {16-bit audi o data supported}

2-90

Constant descriptions

gestal t StereoCapability
Set if the built-in sound hardware is able to produce stereo sounds.

gestal t Ster eoM xi ng
Set if the built-in sound hardware mixes both left and right channels
of stereo sound into a single audio signal for the internal speaker.

gest al t Soundl Ovbr Pr esent
Set if the Sound Input Manager is available.

gestal t Bui | t 1 nSoundl nput
Set if a built-in sound input device is available.

gest al t HasSoundl nput Devi ce
Set if a sound input device is available. This device can be either
built-in or external.

gest al t Pl ayAndRecord
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if

Sound Manager Reference

CHAPTER 2

Sound Manager

the gest al t Bui | t I nSoundI nput bit is set, and it applies only to
any built-in sound input and output hardware.
gestal t 16Bi t Soundl O
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.
gest al t St er eol nput
Set if the built-in sound hardware can record stereo sounds.
gestal t Li neLevel | nput
Set if the built-in sound input port requires line level input.
gest al t SndPl ayDoubl eBuf f er
Set if the Sound Manager supports the play-from-disk routines.
gestal t Mul ti Channel s
Set if the Sound Manager supports multiple channels of sound.
gest al t 16Bi t Audi oSupport
Set if the Sound Manager can handle 16-bit audio data. This
indicates that software necessary to handle 16-bit data is available.

Note

For complete information about the Gest al t function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. u

Channel Initialization Parameters

You can use the following constants to specify initialization parameters for a sound
channel. You need to specify initialization parameters when you call SndNewChannel .

CONST
i nitChanLeft = $0002; {l eft stereo channel}
i ni t ChanRi ght = $0003; {right stereo channel}
wavel ni t Channel 0 = $0004; {wave-t abl e channel 0}
wavel ni t Channel 1 = $0005; {wave-tabl e channel 1}
wavel ni t Channel?2 = $0006; {wave-tabl e channel 2}
wavel ni t Channel 3 = $0007; {wave-tabl e channel 3}
i nit Mbno = $0080; {monophoni ¢ channel }
initStereo = $00C0; {stereo channel}
i ni t MACE3 = $0300; {3:1 conpression}
i ni t MACE6 = $0400; {6:1 conpression}
i nitNolnterp = $0004; {no linear interpolation}
i ni t NoDrop = $0008; {no drop-sanpl e conversion}

Constant descriptions
i nitChanLeft Play sounds through the left channel of the Macintosh audio jack.
i nit ChanRi ght Play sounds through the right channel of the Macintosh audio jack.

Sound Manager Reference 2-91

CHAPTER 2

Sound Manager

wavel ni t Channel 0

Play sounds through the first wave-table channel.

wavel ni t Channel 1

Play sounds through the second wave-table channel.

wavel ni t Channel 2

Play sounds through the third wave-table channel.

wavel ni t Channel 3

i ni t Mono

initStereo

i ni t MACES3

i ni t MACEG

i nitNolnterp

i ni t NoDrop

Play sounds through the fourth wave-table channel.

Play the same sound through both channels of the Macintosh audio
jack and the internal speaker. This is the default channel mode.

Play stereo sounds through both channels of the Macintosh audio
jack and the internal speaker. Note that some machines cannot play
stereo sounds.

Assume that the sounds to be played through the channel are
MACE 3:1 compressed. The ShdNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

Assume that the sounds to be played through the channel are
MACE 6:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

Do not use linear interpolation to smooth a sound played back at a
different sample rate from the sound’s recorded sample rate. Using
the i ni t Nol nt er p initialization parameter decreases the CPU load
for this channel. Sounds most affected by the absence of linear
interpolation are sinusoidal sounds. Sounds least affected are noisy
sound effects like explosions and screams.

Do not use drop-sample conversion to fake sample rate conversion.
Using the i ni t NoDr op initialization parameter increases the CPU
load for the channel but results in a smoother sound.

The Sound Manager also recognizes the following masks, which you can use to select
various channel attributes:

CONST
i ni t PanMask

i ni t SRat eiask
i nitStereoMask

i ni t ConpMask

Sound Command Numbers

= $0003; {mask for right/left pan val ues}
= $0030; {mask for sample rate val ues}

= $00C0; {mask for nono/stereo val ues}

= $FFO00; {mask for conpression |Ds}

You can perform many sound-related operations by sending sound commands to a
sound channel. For example, to change the volume of a sound that is currently playing,
you can send the anpCnd sound command to the channel using the SndDol medi at e

2-92 Sound Manager Reference

CHAPTER 2

Sound Manager

routine. Similarly, to change the volume of all sounds subsequently to be played in a
sound channel, you can send the vol umeCnd sound command to that channel using the
SndDoConmand routine.

The cnd field of the SndComand data structure (described on page 2-99) specifies the
sound command you want to execute. The par aml and par an® fields of that structure
contain any additional information that might be needed to complete the command. One
or both of these parameter fields might be ignored by a particular sound command. In
some cases, the Sound Manager returns information to your application in one of the
parameter fields.

IMPORTANT

In general, you’ll use either SndDoConmmand or SndDol rmedi at e to
send sound commands to a sound channel. With several commands,
however, you must use the SndCont r ol function to issue the sound
command. In Sound Manager version 3.0 and later, however, you
virtually never need to use SndCont r ol because the commands that
require it are either no longer supported (for example, avai | abl eCnd,
t ot al LoadCnd, and | oadCnd) or are obsolete (for example,

ver si onCnd). The sound commands specific to the SndCont r ol
function are documented here for completeness only. s

The sound commands available to your application are defined by constants.

CONST
nul | Cd = 0; {do not hi ng}
qui et Cnd = 3 {stop a sound that is playing}
flushCnd = 4, {flush a sound channel }
relnitCnd 5; {reinitialize a sound channel}
wai t Crrd 10; {suspend processing in a channel}
pauseCnd 11; {pause processing in a channel}
resuneCnd 12; {resune processing in a channel}
cal | BackCnd 13; {execute a cal |l back procedure}
syncCnd 14; {'synchroni ze channel s}
avai | abl eCd 24; {see if initialization options are }

{ supported}

versi onCnd 25; {det erni ne version}
t ot al LoadCnd 26; {report total CPU | oad}
| oadCd 27; {report CPU | oad for a new channel}

freqgDurati onCnd
rest Crd

= 40;

41;

{play a note for a duration}
{rest a channel for a duration}

freqCrd 42; {change the pitch of a sound
anpCnd 43; {change the anplitude of a sound}
ti mbreCnd 44; {change the tinbre of a sound}
get AnmpCd 45; {get the anplitude of a sound}
vol umeCd 46; {set vol une}

get Vol unmeCnd a47; {get vol une}

Sound Manager Reference

2-93

waveTabl eCnd
soundCnd

2-94

CHAPTER 2

Sound Manager

buf f er Cnd =

rat eCmd

get Rat eCnd

60;
80;
81;
82;
85;

{install a wave table as a voice}
{install a sanpled sound as a voice}
{pl ay a sanpl ed sound}

{set the pitch of a sanpled sound}
{get the pitch of a sanpled sound}

Constant descriptions

nul | Cd

qui et Cnd

fl ushCmd

rel nitCnd

wai t Cnd

pauseCrd

resuneCnd

cal | BackCnd

syncCmd

Do nothing.
par aml: 0 (ignored on input and output)
par an®: 0 (ignored on input and output)

Stop the sound that is currently playing. You should send
qui et Crd by using SndDol mredi at e.

par aml: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Remove all commands currently queued in the specified sound
channel. A f I ushCnd command does not affect any sound that is
currently in progress. You should send f I ushCnd by using
SndDol medi at e.

par aml: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Reset the initialization parameters specified in par an® for the
specified channel.

par aml: 0 (ignored on input and output)

par an®: initialization parameters

Suspend further command processing in a channel until the
specified duration has elapsed. To achieve sounds longer than
32,767 half-milliseconds, Pascal programmers can pass a negative
number in par aml, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of par aml.

par aml: duration in half-milliseconds (0 to 65,565)

par an®: 0 (ignored on input and output)

Pause any further command processing in a channel until
resuneCnd is received.

par aml: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Resume command processing in a channel that was previously
paused by pauseCnd.

par aml: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Execute the callback procedure specified as a parameter to the
SndNewChannel function. Both par anil and par an® are
application-specific; you can use these two parameters to send data
to your callback routine.

par aml: application-defined

par an®: application-defined

Synchronize multiple channels of sound. A syncCd command is
held in the specified channel, suspending all further command

Sound Manager Reference

CHAPTER 2

Sound Manager

avai | abl eCmd

ver si onCd

total LoadCnd

| oadCnd

freqbDurati onCnd

processing. The par an? parameter contains an identifier that is
arbitrary. Each time the Sound Manager receives syncCmd, it
decrements the count parameter for each channel having that
identifier. When the count for a specific channel reaches 0,
command processing in that channel resumes.

par aml: count

par an?: identifier

Return 1 in par ant if the Sound Manager supports the
initialization options specified in par an? and 0 otherwise.
However, the Sound Manager might support certain initialization
parameters in general but not on a specific machine. You should
send avai | abl eCnd using the SndCont r ol function.

par aml: 0 on input; result of command on output

par an®: initialization parameters

Previously, this command determined which version of a sound
data format is available. The result is returned in par an®. The high
word of the result indicates the major revision number, and the low
word indicates the minor revision number. For example, version 2.0
of a data format would be returned as $00020000. However, this
command is obsolete, and your application should not rely on it.
You send ver si onCd by using the SndCont r ol function.

par aml: 0 (ignored on input and output)

par an?: 0 on input; version on output

Previously, this command determined the total CPU load factor for
all existing sound activity and for a new sound channel having the
initialization parameters specified in par an2. However, this
command is obsolete, and your application should not rely on it.
Yousendt ot al LoadCnd by using the SndCont r ol function.

par amlL: 0 on input, load factor on output

par an®: initialization parameters

Previously, this command determined the CPU load factor that
would be incurred by a new channel of sound having the
initialization parameters specified in par an?. The load factor
returned in par aml is the percentage of CPU processing power that
the specified sound channel would require. However, this
command is obsolete, and your application should not rely on it.
You send | oadCnd by using the SndCont r ol function.

par aml: 0 on input, load factor on output

par an®: initialization parameters

Play the note specified in par an® for the duration specified in
par aml. To achieve sounds longer than 32,767 half-milliseconds,
Pascal programmers can pass a hegative number in par anti, in
which case the sound plays for 32,767 half-milliseconds plus the
absolute value of par aml. The par an2 parameter must contain a
value in the range 0 to 127. If you want the note to stop playing
after the duration specified in par ani, you must send qui et Cnd
after freqDur ati onCnd.

Sound Manager Reference 2-95

2-96

CHAPTER 2

Sound Manager

rest Cnd

freqCrd

anmpCnd

ti mbreCnd

get AnpCnd

vol umeCnd

get Vol unmeCnd

par aml: duration in half-milliseconds (0 to 65,565)
par an®: desired frequency

Rest a channel for a specified duration. The duration is specified in
half-milliseconds in par aml. To achieve sounds longer than 32,767
half-milliseconds, Pascal programmers can pass a hegative number
in par anil, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of par aml.

par aml: duration in half-milliseconds (0 to 65,565)

par an®: 0 (ignored on input and output)

Change the frequency (or pitch) of a sound. If no sound is currently
playing, then f r eqCnd causes the Sound Manager to begin playing
indefinitely at the frequency specified in par an®. If, however, no
instrument is installed in the channel and you attempt to play either
wave-table or sampled-sound data, no sound is produced. The

par an® parameter must contain a value in the range 0 to 127. The
f r eqgCnd command is identical to the f r eqDur at i onCnd
command, except that no duration is specified toa f r eqCnd
command.

par aml: 0 (ignored on input and output)

par an®: desired frequency

Change the amplitude (or loudness) of a sound. If no sound is
currently playing, then ampCnd sets the amplitude of the next
sound to be played. You specify the amplitude in par ani; the
amplitude should be an integer in the range 0 to 255.

par aml: desired amplitude

par an®: 0 (ignored on input and output)

Change the timbre (or tone) of a sound currently being defined
using square-wave data. A timbre value of 0 produces a clear tone; a
timbre value of 254 produces a buzzing tone. You can use

t i mbr eCd only for sounds defined using square-wave data.

par aml: desired timbre (0 to 254)

par an®: 0 (ignored on input and output)

Determine the current amplitude (or loudness) of a sound. The
amplitude is returned in an integer variable whose address you
pass in par an® and is in the range 0 to 255.

par aml: 0 (ignored on input and output)

par an®: pointer to amplitude variable

Set the right and left volumes of the specified sound channel to the
volumes specified in the high and low words of par an®. The value
$0100 represents full volume, and $0080 represents half volume.
You can specify values larger than $0100 to overdrive the volume.
For example, setting par an® to $02000200 sets the volume on both
left and right speakers to twice full volume. Note, however, that
vol umeCmd is available only in Sound Manager versions 3.0 and
later.

par aml: 0 (ignored on input and output)

par an?: high word is right volume, low word is left volume

Get the current right and left volumes of the specified sound
channel. The volumes are returned in the high and low words of the

Sound Manager Reference

CHAPTER 2

Sound Manager

waveTabl eCmd

soundCnd

buf f er Cnd

r at eCmd

get Rat eCd

long integer pointed to by par an®. The value $0100 represents full
volume, and $0080 represents half volume. Note, however, that
get Vol uneCnd is available only in Sound Manager versions 3.0
and later.

par aml: 0 (ignored on input and output)

par an®: pointer to volume data

Install a wave table as a voice in the specified channel. The par aml
parameter specifies the length of the wave table, and the par an
parameter is a pointer to the wave-table data itself. You can use
waveTabl eCd only for sounds defined using wave-table data.

par aml: length of wave table

par an®: pointer to wave-table data

Install a sampled sound as a voice in a channel. If the high bit of the
command is set, par an® is interpreted as an offset from the
beginning of the' snd ' resource containing the command to the
sound header. If the high bit is not set, par an® is interpreted as a
pointer to the sound header. You can use the soundCnd command
only with noncompressed sampled-sound data. You can also use
soundCnd to preconfigure a sound channel, so that you can later
send sound commands to it at interrupt time.

par aml: 0 (ignored on input and output)

par an®: offset or pointer to sound header

Play a buffer of sampled-sound data. If the high bit of the command
is set, par an® is interpreted as an offset from the beginning of the
"snd ' resource containing the command to the sound header. If
the high bit is not set, par an® is interpreted as a pointer to the
sound header. You can use buf f er Cnd only with sampled-sound
data. Note that sending a buf f er Cnd resets the rate of the channel
to 1.0.

par aml: 0 (ignored on input and output)

par an®: offset or pointer to sound header

Set the rate of a sampled sound that is currently playing, thus
effectively altering its pitch and duration. Your application can set a
rate of 0 to pause a sampled sound that is playing. The new rate is
set to the value specified in par an®, which is interpreted relative to
22 kHz. (For example, to set the rate to 44 kHz, pass $00020000 in
par an®; see Listing 2-4 on page 2-26 for sample code that uses

rat eCnd.) You can use r at eCnd only with sampled-sound data.
par aml: 0 (ignored on input and output)

par an®: desired rate of sound

Determine the sample rate of the sampled sound currently playing.
The current rate of the channel is returned in a Fi xed variable
whose address you pass in par an® of the sound command. The
values returned are always relative to the 22 kHz sampling rate, as
with the r at eCnd sound command. You can use get Rat eCnd only
with sampled-sound data, and you should send it by using

SndDol medi at e.

par aml: 0 (ignored on input and output)

par an®: pointer to rate variable

Sound Manager Reference 2-97

Chunk IDs

CHAPTER 2

Sound Manager

CONST
{IDs for ALFF and AIFF-C file chunks}

2-98

Form D

You can use the following constants to specify a chunk ID, a 4-byte value that identifies
the type of a chunk in an AIFF or AIFF-C file.

= 'FORM ; {ID for Form Chunk}

For mat Ver si onl D = 'FVER ; {ID for Format Version Chunk}
Conmonl D = ' COW ; {1 D for Common Chunk}
SoundDat al D = ' SSND ; {ID for Sound Data Chunk}
Mar ker | D = ' MARK' ; {1 D for Marker Chunk}
Instrument| D = "I NST"; {1D for Instrument Chunk}
M DI Dat al D ='MD",; {IDfor MD Data Chunk}
Audi oRecor di ngl D = ' AESD ; {1 D for Recordi ng Chunk}
ApplicationSpecificlD = "'APPL'; {1D for Application Chunk}
Comment | D = ' covr {I D for Comrent Chunk}
Nanel D = ' NAME' ; {ID for Nanme Chunk}
Aut hor I D = " AUTH ; {1 D for Author Chunk}
Copyright1 D ='(c) *; {I D for Copyright Chunk}

Annot ati onl D

= " ANNO ; {1 D for Annotation Chunk}

Constant descriptions

Form D The Form Chunk. A Form Chunk contains information about the
format of the file, and contains all the other chunks of the file.

For mat Ver si onl D
The Format Version Chunk. A Format Version Chunk contains an
indication of the version of the AIFF-C specification according to
which this file is structured (AIFF-C only).

Conmonl D The Common Chunk. A Common Chunk contains information
about the sampled sound, such as the sampling rate and
sample size.

SoundDat al D The Sound Data Chunk. A Sound Data Chunk contains the sample
frames that comprise the sampled sound.

Mar ker | D The Marker Chunk. A Marker Chunk contains markers that point to
positions in the sound data.

I nstrunment| D The Instrument Chunk. An Instrument Chunk defines basic
parameters that an instrument (such as a sampling keyboard) can
use to play back the sound data.

M DI Dat al D The MIDI Data Chunk. A MIDI Chunk contains MIDI data.

Audi oRecor di ngl D
The Audio Recording Chunk. An Audio Recording Chunk contains
information pertaining to audio recording devices.

Appli cationSpecificlD
The Application Chunk. An Application Chunk contains
application-specific information.

Sound Manager Reference

CHAPTER 2

Sound Manager

Comment | D The Comment Chunk. A Comment Chunk contains a comment.

Narel D The Name Chunk. A Name Chunk contains the name of the
sampled sound.

Aut hor | D The Author Chunk. An Author Chunk contains one or more names

of the authors (or creators) of the sampled sound.

CopyrightI D The Copyright Chunk. A Copyright Chunk contains a copyright
notice for the sampled sound.

Annot ati onl D The Annotation Chunk. An Annotation Chunk contains a comment.

Data Structures

This section describes the data structures that the Sound Manager defines. The Sound
Manager uses many of these data structures (such as sound headers) to store information
about sounds or sound channels. You should use these data structures only if you need
to access this information or to customize sound play. The Sound Manager also defines
several data structures that allow you to control sound output or to receive information
about its status.

You use the sound command record to define a sound command that you send to the
Sound Manager using either the SndDoConmmand or SndDol rmedi at e functions.

If you want to play only a portion of a sound, you can use an audio selection record in
conjunction with the SndSt ar t Fi | ePl ay function.

You use the sound channel status record to obtain information from the Sound Manager
about a specific sound channel, and you use the Sound Manager status record to obtain
information about all sound channels.

The sound channel record stores information about a sound channel. Many of the fields
of this record are for internal Sound Manager use only, but there are a few that you can
access directly.

The sound header record stores information about sampled-sound data. You can use a
sound header record to obtain information on a sound or to change a sound’s loop
points. The extended sound header record and the compressed sound header record add
several fields to the sound header record that provide more information about a sound.

If your application uses the SndPI ayDoubl eBuf f er function to customize the double
buffering of sound data, you need to set up a sound double buffer header record, which
must include pointers to two sound double buffer records.

Sound Command Records

A sound command record describes a sound command that you send to a sound
channel using the SndDoConmand or SndDol nmedi at e function. The ShdConmand
data type defines a sound command record.

Sound Manager Reference 2-99

CHAPTER 2

Sound Manager

TYPE SndConmmand =
PACKED RECORD

cnd: I nt eger; {command nunber}

par ant: I nt eger; {first paraneter}

par an®: Longl nt; {second paraneter}
END;

Field descriptions

cmd The number of the sound command you wish to execute.
par aml The first parameter of the sound command.
par an? The second parameter of the sound command.

The meaning of the par ani and par an® fields depends on the particular sound
command being issued. See “Sound Command Numbers” beginning on page 2-92 for
a description of the sound commands your application can use.

Audio Selection Records

2-100

You can pass a pointer to an audio selection record to the SndSt art Fi | ePl ay function
to play only part of a sound in a file on disk. The Audi 0Sel ect i on data type defines an
audio selection record.

TYPE Audi oSel ection =
PACKED RECCRD

uni t Type: Longl nt ; {type of time unit}

sel Start: Fi xed; {starting point of selection}

sel End: Fi xed; {endi ng point of selection}
END;

Field descriptions

uni t Type The type of unit of time used in the sel St art andsel End fields.
You can set this to seconds by specifying the constant
uni t TypeSeconds.

sel Start The starting point in seconds of the sound to play. If sel St art is
greater than sel End, SndSt art Fi | ePl ay returns an error.
sel End The ending point in seconds of the sound to play.

Use a constant to specify the unit type.

CONST
uni t TypeSeconds = $0000; {seconds}
uni t TypeNoSel ecti on = $FFFF; {no sel ection}

If the value in the uni t Type field is uni t TypeNoSel ect i on, then the values in the
sel St art andsel End fields are ignored and the entire sound plays. Alternatively, if
you wish to play an entire sound, you can pass NI L instead of a pointer to an audio
selection record to the SndSt art Fi | ePl ay function.

Sound Manager Reference

CHAPTER 2

Sound Manager

Sound Channel Status Records

To obtain information about a sound channel, you can pass a pointer to asound channel
status record to the SndChannel St at us function. The SCSt at us data type defines a
sound channel status record.

TYPE SCStatus =

RECORD
scStart Ti ne: Fi xed; {starting time for play from di sk}
scEndTi me: Fi xed; {ending tinme for play from di sk}
scCurrent Ti ne: Fi xed; {current tine for play from di sk}
scChannel Busy: Bool ean; {TRUE if channel is processing cnds}
scChannel Di sposed: Bool ean; {reserved}
scChannel Paused: Bool ean; {TRUE if channel is paused}
scUnused: Bool ean; {unused}
scChannel Attri butes: Longl nt; {attributes of this channel}
scCPULoad: Longl nt; {CPU | oad for this channel}

END;

Field descriptions

scStartTi ne If the Sound Manager is playing from disk through the specified
sound channel, thenscSt ar t Ti ne is the starting time in seconds
from the beginning of the sound for the play from disk. Otherwise,
scStartTineisO0.

scEndTi me If the Sound Manager is playing from disk through the specified
sound channel, thenscEndTi ne is the ending time in seconds from
the beginning of the sound for the play from disk. Otherwise,
scEndTi ne is 0.

scCurrentTi me If the Sound Manager is playing from disk through the specified
sound channel, thenscCur r ent Ti ne is the current time in
seconds from the beginning of the disk play. Otherwise,
scCurrent Ti ne is 0. The Sound Manager updates the value of this
field only periodically, and you should not rely on the accuracy of
its value.

scChannel Busy If the specified channel is currently processing sound commands,
then scChannel Busy is TRUE; otherwise, scChannel Busy is
FALSE.

scChannel Di sposed
Reserved for use by Apple Computer, Inc.

scChannel Paused
If the Sound Manager is playing from disk through the specified
sound channel and the play from disk is paused, then
scChannel Paused is TRUE; otherwise, scChannel Paused is
FALSE. This field is also TRUE if the channel was paused with the
pauseCnd sound command.

scUnused Reserved for use by Apple Computer, Inc.

Sound Manager Reference 2-101

CHAPTER 2

Sound Manager

scChannel Attri butes

scCPULoad

The current attributes of the specified channel. These attributes are
in the channel initialization parameters format. The value returned
in this field is always identical to the value passed in the i ni t
parameter to SndNewChannel .

The CPU load for the specified channel. You should not rely on the
value in this field.

You can mask out certain values in the scChannel At t ri but es field to determine how
a channel has been initialized.

CONST
i ni t PanMask

i ni t SRat eiask
i nitStereoMask

i ni t ConpMask

= $0003; {mask for right/left pan val ues}
= $0030; {mask for sample rate val ues}

= $00C0; {mask for nono/stereo val ues}

= $FFO00; {mask for conpression |Ds}

Sound Manager Status Records

2-102

You can use the SndManager St at us function to get a Sound Manager status record,
which gives information on the current CPU loading caused by all open channels of
sound. The SMVSt at us data type defines a Sound Manager status record.

TYPE SMsSt at us =

PACKED RECORD

smivax CPULoad: I nt eger; {maxi mum | oad on all channel s}

smNunthannel s: I nt eger; {nunber of allocated channel s}

snCur CPULoad: I nt eger; {current | oad on all channel s}
END;

Field descriptions
smvaxCPULoad

smNuntChannel s

smCur CPULoad

IMPORTANT

The maximum CPU load that the Sound Manager will not exceed
when allocating channels. The smvaxCPULoad field is set to a
default value of 100 when the system starts up.

The number of sound channels that are currently allocated by all
applications. This does not mean that the channels allocated are
being used, only that they have been allocated and that CPU
loading is being reserved for these channels.

The CPU load that is being taken up by currently allocated channels.

Although you can use the information contained in the Sound Manager
status record to determine how many channels are allocated, you should
not rely on the information in the snivax CPULoad or snCur CPULoad
field. To determine whether the Sound Manager can create a new
channel, simply call the SndNewChannel function, which returns

an appropriate result code if it is unable to allocate a new channel. s

Sound Manager Reference

CHAPTER 2

Sound Manager

Sound Channel Records

The Sound Manager maintains a sound channel record to store information about each
sound channel that you allocate directly by calling the SndNewChannel function or
indirectly by passing a NI L channel to a high-level Sound Manager routine like the
SndPl ay function. The SndChannel data type defines a sound channel record.

TYPE SndChannel =
PACKED RECORD

next Chan: SndChannel Ptr; {pointer to next channel}
firstMd: Ptr; {used internally}
cal | Back: ProcPtr; {pointer to call back procedure}
user | nf o: Longl nt; {free for application's use}
wai t : Longl nt; {used internally}
cmdl nProgress: SndCommrand; {used internally}
fl ags: I nt eger; {used internally}
gLengt h: I nt eger; {used internally}
gHead: I nt eger; {used internally}
qTai l : I nt eger; {used internally}
queue: ARRAY[0. . st dQLengt h-1] OF SndCommand;
END;

Field descriptions

next Chan A pointer to the next sound channel in a single queue of channels
that the Sound Manager maintains for all applications.

firsthd Used internally.

cal | Back A pointer to the callback procedure associated with the sound
channel. See page 2-152 for information on this callback procedure.

userinfo A value that your application can use to store information.

wai t Used internally.

cndl nPr ogr ess
flags

Used internally.
Used internally.

gLength Used internally.
gqHead Used internally.
qTai | Used internally.
queue The sound commands pending for the sound channel.

The only field of the sound channel record that you are likely to need to access directly is
the user | nf o field. This field is useful if you need to pass a value to a Sound Manager
callback procedure or completion routine. For example, you might pass the value stored
in the A5 register so that your callback procedure can access your application’s global
variables. Or, you might store a handle to sound data here so that a routine that disposes
of an allocated channel can also release the sound data that the channel played.

In rarer instances, you might need to access the cal | Back field of the sound channel
record directly. Ordinarily, you set this field by specifying a callback procedure when

Sound Manager Reference 2-103

CHAPTER 2

Sound Manager

you call the SndNewChannel function. However, you can change the callback procedure
associated with a channel by changing this field directly. The Sound Manager will then
execute the procedure you specify in this field whenever the channel processes a

cal | BackCrrd command.

WARNING

You should not attempt to manipulate all open sound channels by using
the next Chan field to walk the sound channel queue. The queue might
contain channels opened by other applications. If you need to perform
some operation on all sound channels that your application has
allocated, you should maintain your own data structure that keeps track
of your application’s channels. s

Sound Header Records

2-104

Sound resources often contain sampled-sound data as well as sound commands. The
sound data is contained in the last field of the sound header. You can access a sound
header record to find information about sampled-sound data. The standard sound
header is used only for simple monophonic sounds. The SoundHeader data type
defines a sampled sound header record.

TYPE SoundHeader =
PACKED RECCRD

sampl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
| engt h: Longl nt;; {nunber of sanples in array}
sampl eRat e: Fi xed; {sanpl e rate}
| oopStart: Longl nt; {l oop poi nt begi nni ng}
| copENd: Longl nt;; {l oop point endi ng}
encode: Byt e; {sanpl e' s encodi ng opti on}
baseFrequency: Byte; {base frequency of sanpl e}
sanpl eAr ea: PACKED ARRAY[0..0] OF Byte;

END;

Field descriptions

sanmpl ePtr A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the baseFr equency field,
then this field should be set to NI L. Otherwise, this field is a pointer
to the memory location of the sampled-sound data. (This might be
useful if you want to change some fields of a sound header but do
not want to modify a handle to a sound resource directly.)

| ength The number of bytes of sound data.

sanpl eRat e The rate at which the sample was originally recorded. The Sound
Manager can play sounds sampled at any rate up to 64 kHz. The
values corresponding to the three most common sample rates
(11 kHz, 22 kHz, and 44 kHz) are defined by constants:

Sound Manager Reference

CHAPTER 2

Sound Manager

| oopStart

| oopEnd

encode

baseFr equency

sanmpl eAr ea

CONST
r at e44khz = $AC440000; {44100. 00000 Fi xed}
rat e22khz = $56EE8BAS3; {22254. 54545 Fi xed}
ratellkhz = $2B7745D1,; {11127. 27273 Fi xed}

Note that the sample rate is declared as a Fi xed data type, but the
most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

The starting point of the portion of the sampled sound header that
is to be used by the Sound Manager when determining the duration
of f reqDur at i onCnd. These loop points specify the byte numbers
in the sampled data to be used as the beginning and end points to
cycle through when playing the sound. The loop starting and
ending points are 0-based.

The end point of the portion of the sampled sound header that is to
be used by the Sound Manager when determining the duration of
f reqDur at i onCnd. If no looping is desired, set both | oopSt art
and | oopEnd to 0.

The method of encoding used to generate the sampled-sound data.
The current encoding option values are

CONST
st dSH = $00; {standard sound header}
ext SH = $FF; {ext ended sound header}
cnhpSH = $FE; {conpressed sound header}

For a standard sound header, you should specify the constant

st dSH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in
the range 64 through 127 for your own encode options.

The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 2-43 lists the
possible baseFr equency values. The baseFr equency value
allows the Sound Manager to calculate the proper playback rate of
the sample when an application uses the f r eqDur at i onCnd
command. Applications should not alter the baseFr equency field
of a sampled sound; to play the sample at different pitches, use
freqDurati onCndorfreqCnd.

If the value of sanpl ePtr is NI L, this field is an array of bytes,
each of which contains a value similar to the values in a wave-table
description. These values are interpreted as offset values, where $80
represents an amplitude of 0. The value $00 is the most negative
amplitude, and $FF is the largest positive amplitude. The samples
are numbered 1 through the value in the | engt h parameter.

If you need to create a sound header for sampled-sound data that your application has
recorded, then you should use the Set upSndHeader function, described in the chapter
“Sound Input Manager” in this book.

Sound Manager Reference 2-105

CHAPTER 2

Sound Manager

Extended Sound Header Records

For sampled-sound data that is more complex than a standard sound header can
describe, the Sound Manager uses an extended sound header record. Sound data
described by such a header can be monophonic or stereo, but it cannot be compressed.

Most of the fields of the extended sound header correspond to fields of the sampled
sound header. However, the extended sound header allows the encoding of stereo
sound. The nunChannel s field contains the number of channels of sound recorded, and
the nunfr ames field contains the number of frames of sound recorded in each channel.
For more information on the format of sampled sound frames, see “Sound Files” on

page 2-81.

Note

The word *“channel” can be confusing in this context, because a sound
resource containing polyphonic sound (that is, multichannel sound) can
be played on a single Sound Manager sound channel. Channel is a
general term for the portion of sound data that can be described by a
single sound wave. Monophonic sound is composed of a single channel.
Stereo sound (also called polyphonic sound) is composed of several
channels of sound played simultaneously. “Sound channel” is a term
specific to the Sound Manager. u

TYPE Ext SoundHeader =
PACKED RECCRD

{if NL, sanples in sanpl eArea}
{nunber of channels in sanpl e}
{rate of original sanple}

{l oop poi nt begi nni ng}

{l oop point endi ng}

{sanpl e' s encodi ng option}
{base freq. of original sanple}
{total nunber of franes}

{rate of original sanple}
{reserved}

{pointer to instrunent
{pointer to audio info}
{nunber of bits per sanpl e}
{reserved}

{reserved}

{reserved}

{reserved}

i nf o}

PACKED ARRAY[0..0] OF Byte;

sampl ePtr: Ptr;
nuntChannel s: Longl nt;
sanpl eRat e: Fi xed;
| oopStart: Longl nt ;
| copENd: Longl nt;
encode: Byt e;
baseFr equency: Byt e;
nunfr anes: Longl nt;
Al FFSanpl eRat e: Ext ended80;
mar ker Chunk: Ptr;
i nstrunment Chunks: Ptr;
AESRecor di ng: Ptr;
sanpl eSi ze: I nt eger;
futureUsel: I nt eger;
futureUse2: Longl nt;
futureUse3: Longl nt;
futureUse4: Longl nt;
sampl eAr ea:

END;

2-106 Sound Manager Reference

CHAPTER 2

Sound Manager

Field descriptions

sanpl ePtr A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the f ut ur eUse4 field, then
this field should be set to NI L. Otherwise, this field is a pointer to
the memory location of the sampled-sound data.

nuntChannel s The number of channels in the sampled-sound data.

sanpl eRat e The rate at which the sample was originally recorded. The
approximate sample rates are shown in Table 2-1 on page 2-16. Note
that the sample rate is declared as a Fi xed data type, but the most
significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

| oopSt art The starting point of the portion of the extended sampled sound
header that is to be used by the Sound Manager when determining
the duration of f r eqDur at i onCnd. These loop points specify the
byte numbers in the sampled data to be used as the beginning and
end points to cycle through when playing the sound. The loop
starting and ending points are 0-based.

| oopEnd The end point of the portion of the extended sampled sound header
that is to be used by the Sound Manager when determining the
duration of f reqDur at i onCnd.

encode The method of encoding used to generate the sampled-sound data.
For an extended sound header, you should specify the constant
ext SH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in
the range 64 through 127 for your own encode options.

baseFrequency The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 2-43 lists the
possible baseFr equency values. The baseFr equency value
allows the Sound Manager to calculate the proper playback rate of
the sample when an application uses the f r eqDur at i onCnd
command. Applications should not alter the baseFr equency field
of a sampled sound; to play the sample at different pitches, use
freqbDurati onCnd orfreqCnd.

nunfr anes The number of frames in the sampled-sound data. Each frame
contains nuntChannel s bytes for 8-bit sound data.

Al FFSanpl eRat e The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

mar ker Chunk Synchronization information. The mar ker Chunk field is not
presently used and should be set to NI L.

i nst runment Chunks
Instrument information.

AESRecor di ng Information related to audio recording devices.
sanpl eSi ze The number of bits in each sample frame.
futureUsel Reserved.

futureUse2 Reserved.

futureUse3 Reserved.

Sound Manager Reference 2-107

CHAPTER 2

Sound Manager

futureUsed The four f ut ur eUse fields are reserved for use by Apple. To
maintain compatibility with future releases of system software, you
should always set these fields to 0.

sanpl eArea An array of interleaved sample points, each of which contains a
value similar to the values in a wave-table description. For 8-bit
sampled-sound data, these values are interpreted as offset values,
where $80 represents an amplitude of 0. The value $00 is the largest
negative amplitude, and $FF is the largest positive amplitude.

To compute the total number of bytes of a sample, multiply the values in the
nuntChannel s, nunfr anes, and sanpl eSi ze fields and divide by the number of bytes
per sample (typically 8 or 16).

Note

Although extended sound headers (and compressed sound headers,
described next) support the storage of 16-bit sound, only versions 3.0
and later of the Sound Manager can play 16-bit sounds. If your
application uses 16-bit sound, you must convert it to 8-bit sound before
earlier versions of the Sound Manager can play it. u

Compressed Sound Header Records

To describe compressed sampled-sound data, the Sound Manager uses a compressed
sound header record. Compressed sound headers include all of the essential fields of
extended sound headers in addition to several fields that pertain to compression. The
CpSoundHeader data type defines the compressed sound header record.

TYPE CnpSoundHeader =
PACKED RECORD

sampl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
nuntChannel s: Longl nt;; {nunber of channels in sanpl e}
sampl eRat e: Fi xed; {rate of original sanple}

| oopStart: Longl nt; {l oop poi nt begi nni ng}

| copENnd: Longl nt;; {l oop point endi ng}

encode: Byt e; {sanpl e's encodi ng opti on}
baseFr equency: Byt e; {base freq. of original sanple}
nunfr anes: Longl nt;; {length of sanple in franes}

Al FFSanpl eRat e: Ext ended80; {rate of original sanple}

mar ker Chunk: Ptr; {reserved}

format: CSType; {data format type}

futureUse2: Longl nt; {reserved}

st at eVars: St at eBl ockPtr; {pointer to StateBl ock}

| eft Over Sanpl es: Left Over Bl ockPtr;

{pointer to LeftOverBl ock}

conpr essi onl D I nt eger; {I D of conpression algorithn}
packet Si ze: I nt eger; {nunber of bits per packet}
snt hl D I nt eger; {unused}

2-108 Sound Manager Reference

CHAPTER 2

Sound Manager

sampl eSi ze: I nt eger; {bits in each sanple point}
sanpl eAr ea: PACKED ARRAY[0..0] OF Byte;
END,

Field descriptions

sampl ePtr The location of the compressed sound frames. If sanpl ePtr isNI L,
then the frames are located in the sanpl eAr ea field of the
compressed sound header. Otherwise, sanpl ePt r points to a
buffer that contains the frames.

nuntChannel s The number of channels in the sample.

sampl eRat e The sample rate at which the frames were sampled before
compression. The approximate sample rates are shown in Table 2-1
on page 2-16. Note that the sample rate is declared as a Fi xed data
type, but the most significant bit is not treated as a sign bit; instead,
that bit is interpreted as having the value 32,768.

| oopStart The beginning of the loop points of the sound before compression.
The loop starting and ending points are 0-based.

| oopEnd The end of the loop points of the sound before compression.

encode The method of encoding (if any) used to generate the

sampled-sound data. For a compressed sound header, you should
specify the constant cnpSH. Encode option values in the ranges

0 through 63 and 128 to 255 are reserved for use by Apple. You are
free to use numbers in the range 64 through 127 for your own
encode options.

baseFrequency The pitch of the original sampled sound. It is not used by
buf f er Cnd. If you wish to make use of baseFr equency with a
compressed sound, you must first expand it and then play it with
soundCnd andf r eqDur at i onCnd.

nunfr anes The number of frames contained in the compressed sound header.
When you store multiple channels of noncompressed sound, store
them as interleaved sample frames (as in AIFF). When you store
multiple channels of compressed sounds, store them as interleaved
packet frames.

Al FFSanpl eRat e
The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

mar ker Chunk Synchronization information. The mar ker Chunk field is not
presently used and should be set to NI L.
f or mat The data format type. This field contains a value of type OSType

that defines the compression algorithm, if any, used to generate the
audio data. For example, for data generated using MACE 3:1
compression, this field should contain the value ' MAC3' . See
page 2-86 for a list of the format types defined by Apple. This field
is used only if the conpr essi onl Dfield contains the value

fi xedConpr essi on.

Sound Manager Reference 2-109

CHAPTER 2

Sound Manager

futureUse2 This field is reserved for use by Apple. To maintain compatibility
with future releases of system software, you should always set this
field to 0.

stateVars A pointer to a state block. This field is used to store the state

variables for a given algorithm across consecutive calls. See “State
Blocks” on page 2-119 for a description of the state block.
| ef t Over Sanpl es
A pointer to a leftover block. You can use this block to store samples
that will be truncated across algorithm invocations. See “Leftover
Blocks” on page 2-119 for a description of the leftover block.
conpressi onl D The compression algorithm used on the samples in the compressed
sound header. You can use a constant to define the compression
algorithm.

CONST
vari abl eConpr essi on
= -2; {variable-ratio conpr.}

fi xedConpression = -1; {fixed-ratio conpr.}

not Conpr essed = 0; {nonconpressed sanpl es}
threeToOne = 3; {3:1 compressed sanpl es}
si XToOne = 4; {6:1 conpressed sanpl es}

The constant f i xedConpr essi on is available only with Sound
Manager versions 3.0 and later. If the conpr essi onl Dfield
contains the value f i xedConpr essi on, the Sound Manager reads
the f or mat field to determine the compression algorithm used to
generate the compressed data. Otherwise, the Sound Manager reads
the conpr essi onl Dfield. Apple reserves the right to use
compression IDs in the range 0 through 511. Currently the constant
vari abl eConpr essi on is not used by the Sound Manager.

packet Si ze The size, in bits, of the smallest element that a given expansion
algorithm can work with. You can use a constant to define the
packet size.

CONST
si xToOnePacket Si ze 8; {size for 6:1}
t hreeToOnePacket Si ze = 16; {size for 3:1}

Beginning with Sound Manager version 3.0, you can specify the
value 0 in this field to instruct the Sound Manager to determine the
packet size itself.

snthli D This field is unused. You should set it to 0.

sampl eSi ze The size of the sample before it was compressed. The samples
passed in the compressed sound header should always be
byte-aligned, and any padding done to achieve byte alignment
should be done from the left with zeros.

2-110 Sound Manager Reference

CHAPTER 2

Sound Manager

sampl eAr ea The sample frames, but only when the sanpl ePt r field is NI L.
Otherwise, the sample frames are in the location indicated
by sanpl ePtr.

Sound Double Buffer Header Records

You must fill in asound double buffer header record and two sound double
buffer records if you wish to manage your own double buffers. The
SndDoubl eBuf f er Header data type defines a sound double buffer header.

TYPE SndDoubl eBuf f er Header =
PACKED RECCRD

dbhNunChannel s: I nt eger; {nunber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanpl e size, if nonconpressed}
dbhConpr essi onl D I nt eger; {1 D of conpression al gorithn}
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sanpl e rate}
dbhBufferPtr: ARRAY[0. . 1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {pointer to doubl eback procedure}

END;

Sound Manager versions 3.0 and later support custom compression and decompression
algorithms by defining the revised sound double buffer header record, of type

SndDoubl eBuf f er Header 2. It’s identical to the SndDoubl eBuf f er Header data type
except that it contains the dbhFor mat field at the end.

TYPE SndDoubl eBuf f er Header 2 =
PACKED RECORD

dbhNuntChannel s: I nt eger; {nunber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanpl e size, if nonconpressed}
dbhConpr essi onl D I nt eger; {I D of conpression algorithn}
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sanpl e rate}

dbhBuf ferPtr: ARRAY[0. . 1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {pointer to doubl eback procedure}
dbhFor mat : OSType; {signature of codec}

END,

Field descriptions

dbhNunmChannel s
The number of channels for the sound (1 for monophonic sound,
2 for stereo).

dbhSanpl eSi ze The sample size for the sound if the sound is not compressed. If the
sound is compressed, dbhSanpl eSi ze should be set to 0. Samples

Sound Manager Reference 2-111

CHAPTER 2

Sound Manager

that are 1-8 bits have a dbhSanpl eSi ze value of 8; samples that
are 9-16 bits have a dbhSanpl eSi ze value of 16. Currently, only
8-bit samples are supported. For further information on sample
sizes, refer to the AIFF specification.

dbhConpr essi onl D

dbhPacket Si ze

dbhSanpl eRat e

dbhBuf ferPtr

dbhDoubl eBack

dbhFor mat

The compression identification number of the compression
algorithm, if the sound is compressed. If the sound is not
compressed, dbhConpr essi onl Dshould be set to 0.

The packet size in bits for the compression algorithm specified by
dbhConpr essi onl D, if the sound is compressed.

The sample rate for the sound. Note that the sample rate is declared
as a Fi xed data type, but the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.

An array of two pointers, each of which should point to a valid
SndDoubl eBuf f er record.

A pointer to the application-defined routine that is called when the
double buffers are switched and the exhausted buffer needs to
be refilled.

The data format type. This field contains a value of type OSType
that defines the compression algorithm, if any, to be used to
decompress the audio data. For example, for data generated using
MACE 3:1 compression, this field should contain the value ' MAC3' .
See page 2-86 for a list of the format types defined by Apple. This
field is used only if the dbhConpr essi onl Dfield contains the
value f i xedConpr essi on.

The dbhBuf f er Pt r array contains pointers to two sound double buffer records, whose
format is defined below. These are the two buffers between which the Sound Manager
switches until all the sound data has been sent into the sound channel. When you make
the call to SndPl ayDoubl eBuf f er, the two buffers should both already contain a
nonzero number of frames of data.

Sound Double Buffer Records

You must fill in asound double buffer header record if you wish to manage your own
double buffers. ThedbhBuf f er Pt r field of the sound double buffer header record
references two sound double buffer records, which you must also fill out. The
SndDoubl eBuf f er Header data type defines a sound double buffer header.

TYPE SndDoubl eBuf fer =
PACKED RECORD
dbNuntr anes: Longl nt;
dbFl ags: Longl nt ;
dbUser | nf o: ARRAY] 0.

{nunber of frames in buffer}
{buffer status fl ags}

.1] OF Longlnt; {for application's use}

dbSoundDat a: PACKED ARRAY[0..0] OF Byte; {array of data}

END;

2-112 Sound Manager Reference

CHAPTER 2

Sound Manager

Field descriptions

dbNunfr ames The number of frames in the dbSoundDat a array.

dbFl ags Buffer status flags.

dbUserInfo Two long words into which you can place information that you
need to access in your doubleback procedure.

dbSoundDat a A variable-length array. You write samples into this array, and the

Sound Manager reads samples out of this array.

The buffer status flags field for each of the two buffers can contain either of these values
that your doubleback procedure must set when appropriate:

CONST
dbBuf f er Ready = $00000001;
dbLast Buf f er = $00000004;

All other bits in the dbFl ags field are reserved by Apple; your application should not
modify them.

Chunk Headers

Every chunk in an AIFF or AIFF-C file contains achunk header that defines
characteristics of the chunk. The ChunkHeader data type defines a chunk header.

TYPE ChunkHeader =

RECORD

ckl D: | D {chunk type |D}

ckSi ze: Longl nt; {nunber of bytes of data}
END,

Field descriptions

ckl D The ID of the chunk. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range ' ' (space character, ASCII
value $20) through ' ~' (ASCII value $7E). Spaces cannot precede
printing characters, but trailing spaces are allowed. Control
characters are not allowed. See “Chunk IDs” on page 2-98 for a list
of the currently recognized chunk IDs.

ckSi ze The size of the chunk in bytes, not including the ckl Dand ckSi ze
fields.

Form Chunks

All sound files begin with a Form Chunk. This chunk defines the type and size of the file
and can be thought of as enclosing the remaining chunks in the sound file. The
Cont ai ner Chunk data type defines a Form Chunk.

Sound Manager Reference 2-113

CHAPTER 2

Sound Manager

TYPE Cont ai ner Chunk =

RECORD
ckl D | D {' FORM }
ckSi ze: Longl nt; {nunber of bytes of data}
f or nrype: | O {type of file}

END,

Field descriptions
ckl D The ID of this chunk. For a Form Chunk, this ID is' FORM .

ckSi ze The size of the data portion of this chunk. Note that the data portion
of a Form Chunk is divided into two parts, f or nType and the
remaining chunks of the sound file.

f or nType The type of audio file. For AIFF files, f or mlype is' Al FF' . For
AIFF-C files, f or nType is' Al FC .
The size of an entire sound file is ckSi ze+8, because the ckSi ze field incorporates the

size of all chunks of the sound file, except the sizes of the ckl Dand ckSi ze fields of the
Form Chunk itself.

Format Version Chunks

2-114

AIFF-C files each contain exactly one Format Version Chunk, but files of type AIFF do
not contain any. You can examine the Format Version Chunk to ensure that your
application can process an AIFF-C file. The For mat Ver si onChunk data type defines
a Format Version Chunk.

TYPE For mat Ver si onChunk =

RECORD

ckl D | D {' FVER }

ckSi ze: Longl nt; {4}

ti mestanp: Longlnt; {date of format version}
END;

Field descriptions

ckl D The ID of this chunk. For a Format Version Chunk, this ID is
'FVER .
ckSi ze The size of the data portion of this chunk. This value is always 4 in

a Format Version Chunk because thet i nest anp field is 4 bytes
long (the 8 bytes used by the ckl Dand ckSi ze fields are not
included).

ti mestanmp An indication of when the format version for this kind of file was
created. The value indicates the number of seconds between
midnight, January 1, 1904, and the time at which the AIFF-C file
format was created.

Sound Manager Reference

CHAPTER 2

Sound Manager

Common Chunks

Every AIFF and AIFF-C file contains a Common Chunk that defines some fundamental
characteristics of the sampled sound contained in the file. The format of the Common
Chunk is different for AIFF and AIFF-C files. As a result, you need to determine the type
of file format (by inspecting the f or niType field of the Form Chunk) before reading the
Common Chunk.

For AIFF files, the ConmonChunk data type defines a Common Chunk.

TYPE CommonChunk =

RECORD
ckl D | D {' COW }
ckSi ze: Longl nt; {size of chunk dat a}
numChannel s: I nt eger; {nunber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sampl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended; {nunber of frames per second}
END,

Field descriptions
ckl D The ID of this chunk. For a Common Chunk, this ID is' COVM .

ckSi ze The size of the data portion of this chunk. In AIFF files, this field is
always 18 because the 8 bytes used by the ckl Dand ckSi ze fields
are not included.

nuntChannel s The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

nunSanpl eFr anes
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in
the file is nunChannel s * nunSanpl eFr anes.

sampl eSi ze The number of bits in each sample point of noncompressed sound
data. The sanpl eSi ze field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sanpl eRat e The sample rate at which the sound is to be played back, in sample
frames per second.

Extended Common Chunks

An AIFF-C file contains an extended Common Chunk that includes all of the fields of
the Common Chunk, but adds two fields that describe the type of compression (if any)
used on the audio data. The Ext CommonChunk data type defines an extended
Common Chunk.

Sound Manager Reference 2-115

CHAPTER 2

Sound Manager

TYPE Ext CommpbnChunk =

RECORD
ckl D | D {' COW }
ckSi ze: Longl nt; {size of chunk dat a}
numChannel s: I nt eger; {nunber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sampl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended; {nunber of frames per second}
conpressi onType: |D; {conpression type | D}

conpressi onNanme: PACKED ARRAY[0..0] OF Byte;
{conpressi on type nane}
END;

Field descriptions

ckl D The ID of this chunk. For an extended Common Chunk, this ID
is' COW .
ckSi ze The size of the data portion of this chunk. For an extended

Common Chunk, this size is 22 plus the number of bytes in the
conpr essi onNane string.

nuntChannel s The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

nunSanpl eFr anes
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in
the file is nunChannel s * nunSanpl eFr anes.

sampl eSi ze The number of bits in each sample point of noncompressed sound
data. The sanpl eSi ze field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sanpl eRat e The sample rate at which the sound is to be played back, in sample
frames per second.

conpr essi onType
The ID of the compression algorithm, if any, used on the sound
data. Compression algorithms supplied by Apple have the
following types:

CONST
NoneType = " NONE' ;
ACE2Type = " ACE2';
ACE8Type = ' ACES8';
MACE3Type = ' MAC3';
MACE6Type = ' MACG' ;

2-116 Sound Manager Reference

CHAPTER 2

Sound Manager

conpr essi onNane

Sound Data Chunks

You can define your own compression types, but you should
register them with Apple.

A human-readable name for the compression algorithm 1D
specified in the conpr essi onType field. If the number of bytes in
this field is odd, then it is padded with the digit 0. Compression
algorithms supplied by Apple have the following names:

CONST
NoneName = 'not conpressed';
ACE2t o1Nane = "ACE 2-to-1';
ACES8t 03Nane = '"ACE 8-t0-3';
MACE3t o1Nane = "MACE 3-to-1';
MACE6t o1Nane = 'MACE 6-to-1';

You can define your own compression types, but you should
register them with Apple.

AIFF and AIFF-C files generally contain a Sound Data Chunk that contains the actual
sampled-sound data. The SoundDat aChunk data type defines a Sound Data Chunk.

TYPE SoundDat aChunk =

RECORD

ckl D:

ckSi ze:

of f set:

bl ockSi ze:
END;

Field descriptions
ckl D
ckSi ze

of f set

bl ockSi ze

| D {' SSND }

Longl nt; {size of chunk dat a}

Longl nt; {offset to sound data}
Longl nt; {size of alignment bl ocks}

The ID of this chunk. For a Sound Data Chunk, this ID is' SSND' .

The size of the data portion of this chunk. This size does not include
the 8 bytes occupied by the values in the ckl Dand the ckSi ze
fields.

An offset (in bytes) to the beginning of the first sample frame in the
chunk data. Most applications do not need to use the offset field
and should set it to 0.

The size (in bytes) of the blocks to which the sound data is aligned.
This field is used in conjunction with the of f set field for aligning
sound data to blocks. As with the of f set field, most applications
do not need to use the bl ockSi ze field and should set it to 0.

The sampled-sound data follows the bl ockSi ze field. If the data following the
bl ockSi ze field contains an odd number of bytes, a pad byte with a value of 0 is added
at the end to preserve an even length for this chunk. If there is a pad byte, it is not

Sound Manager Reference 2-117

CHAPTER 2

Sound Manager

included in the ckSi ze field. For information on the format of the sampled-sound data,
see “Sound Files” on page 2-81.

Version Records

2-118

The functions SndSoundManager Ver si on and MACEVer si on return version
information using aversion record. The NunVer si on data type defines a version record.

TYPE NunVersion =
PACKED RECCRD
CASE | NTEGER OF

0:
(maj or Rev: Si gnedByt e; {maj or revision | evel in BCD}
ni nor AndBugRev: Si gnedByt e; {m nor revision |evel}
st age: Si gnedByt e; {devel opnent stage}
nonRel Rev: Si gnedByt e) ; {nonrel eased revision | evel}
1:
(version: Longl nt); {all 4 fields together}
END,
IMPORTANT

A version record has the same structure as the first four fields of a
version resource (a resource of type ' ver s'). See the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials for complete
information about version resources. s

Field descriptions

maj or Rev The major revision level. This field is a signed byte in binary-coded
decimal format.

m nor AndBugRev
The minor revision level. This field is a signed byte in binary-coded
decimal format.

st age The development stage. You should use the following constants to
specify a development stage:

CONST
devel opSt age = $20; {preal pha rel ease}
al phaSt age = $40; {al pha rel ease}
bet aSt age = $60; {beta rel ease}
final St age = $80; {final rel ease}
nonRel Rev The revision level of a prereleased version.
version A long integer that contains all four version fields.

Sound Manager Reference

CHAPTER 2

Sound Manager

Leftover Blocks

The | ef t Over Sanpl es field of a compressed sound header contains a pointer to a
leftover block, defined by the Lef t Over Bl ock data type.

TYPE Left Over Bl ock =

RECORD

count: Longl nt;

sanpl eAr ea: PACKED ARRAY[0. .l eftOverBl ockSi ze - 1] OF Byte;
END;

Field descriptions
count The number of bytes in the sanpl eAr ea field.

sanpl eArea An array of bytes. This field contains samples that are truncated
across invocations of the compression algorithm. The size of this
field is defined by a constant.

CONST
| ef t Over Bl ockSi ze = 32;

State Blocks

The st at eVar s field of a compressed sound header contains a pointer to a state block,
defined by the St at eBl ock data type.

TYPE St at eBl ock =
RECORD

SstateVar: ARRAY[0. . st at eBl ockSi ze - 1] OF Integer;
END,

Field descriptions

st at eVar An array of integers. This field contains state variables that need to
be preserved across invocations of the compression algorithm. The
size of this field is defined by a constant.

CONST
st at eBl ockSi ze = 64;

Sound Manager Routines

This section describes the routines provided by the Sound Manager. You can use these
routines to

n play sound resources
n play sounds stored in files directly from disk

n allocate and release sound channels

Sound Manager Reference 2-119

CHAPTER 2

Sound Manager

n send commands to a sound channel

n obtain information about the Sound Manager, a sound channel, all sound channels, or
the system alert sound’s status

n compress and expand audio data
n manage the reading and writing of double sound buffers

The section “Application-Defined Routines” on page 2-151 describes routines that your
application might need to define, including callback procedures, completion routines,
and doubleback procedures.

Assembly-Language Note

Most Sound Manager routines are accessed through the

_SoundDi spat ch selector. However, the SndAddMbdi fi er,
SndCont r ol , SndDi sposeChannel , SndDoComrand,

SndDol medi at e, SndNewChannel , and SndPl ay functions and the
SysBeep procedure are accessed through their own trap macros. See
“Summary of the Sound Manager,” which begins on page 2-157, for a
list of trap selector numbers. u

Playing Sound Resources

You can use the SysBeep procedure to play the system alert sound. Alert sounds are
stored in the System file as format 1' snd ' resources. You can use the SndPI ay
function to play the sounds that are stored inany ' snd ' resource, either format 1 or
format 2.

The SysBeep and SndPI ay routines are the highest-level sound routines that the
Sound Manager provides. Depending on the needs of your application, you might be
able to accomplish all desired sound-related activity simply by using SysBeep to
produce the system alert sound or by using SndPI ay to play other sounds that are
stored as' snd ' resources.

SysBeep
You can use the SysBeep procedure to play the system alert sound.
PROCEDURE SysBeep (duration: Integer);
duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when the
system alert sound is the Simple Beep. The recommended duration is 30
ticks, which equals one-half second.
2-120 Sound Manager Reference

DESCRIPTION

CHAPTER 2

Sound Manager

The SysBeep procedure causes the Sound Manager to play the system alert sound at its
current volume. If necessary, the Sound Manager loads into memory the sound resource
containing the system alert sound and links it to a sound channel. The user selects a
system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert
sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound
control panel. The system alert sound volume can also be read and set by calling the

Get SysBeepVol une and Set SysBeepVol une routines. If the volume is set to 0 (silent)
and the system alert sound is enabled, calling SysBeep causes the menu bar to blink
once.

SPECIAL CONSIDERATIONS

SEE ALSO

SndPlay

Because the SysBeep procedure moves memory, you should not call it at interrupt time.

For information on enabling and disabling the system alert sound, see the description of
SndGet SysBeepSt at e and SndCGet SysBeepSt at e on page 2-137. For information on
reading or adjusting the system alert sound volume, see “Controlling Volume Levels”
beginning on page 2-139.

You can use the SndPI ay function to play a sound resource that your application has
loaded into memory.

FUNCTI ON SndPl ay (chan: SndChannel Ptr; sndHdl: Handl e;
async: Bool ean): OSErr;

chan A pointer to a valid sound channel. You can pass NI L instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NI L is passed in the first
parameter.

Sound Manager Reference 2-121

DESCRIPTION

CHAPTER 2

Sound Manager

The SndPI ay function attempts to play the sound located at sndHdl , which is expected
to have the structure of a format 1 or format2' snd ' resource. If the resource has not
yet been loaded, the SndPI ay function fails and returns the r esPr obl emresult code.

All commands and data contained in the sound handle are then sent to the channel. Note
that you can pass SndPI ay a handle to some data created by calling the Sound Input
Manager’s SndRecor d function as well as a handle to an actual ' snd ' resource that
you have loaded into memory.

WARNING

In some versions of system software prior to system software version

7.0, the SndPI ay function will not work properly with sound resources

that specify the sound data type twice. This might happen if a resource

specifies that a sound consists of sampled-sound data and an

application does the same when creating a sound channel. For more

information on this problem, see “Allocating Sound Channels” on

page 2-20. s

The chan parameter is a pointer to a sound channel. If chan isnot NI L, it is used as

a valid channel. If chan is NI L, an internally allocated sound channel is used. If you
do supply a sound channel pointer in the chan parameter, you can play the sound
asynchronously. When a sound is played asynchronously, a callback procedure can be
called when a cal | BackCnd command is processed by the channel. (This procedure

is the callback procedure supplied to SndNewChannel .) See “Playing Sounds
Asynchronously” on page 2-46 for more information on playing sounds asynchronously.
The handle you pass in the sndHdl parameter must be locked for as long as the sound is
playing asynchronously.

Ifaformat1l' snd ' resource does not specify which type of sound data is to be played,
SndPl ay defaults to square-wave data. SndPl ay also supports format2' snd '
resources using sampled-sound data and a buf f er Crd command. Note that to use
SndPI ay and sampled-sound data with a format 1' snd ' resource, the resource must
include a buf f er Cnd command.

SPECIAL CONSIDERATIONS

RESULT CODES

2-122

Because the SndPI ay function moves memory, you should not call it at interrupt time.

noErr 0 No error

not EnoughHar dwar eEr r =201 Insufficient hardware available
resProbl em -204 Problem loading the resource
badChannel —205 Channel is corrupt or unusable
badFor mat -206 Resource is corrupt or unusable
Sound Manager Reference

CHAPTER 2

Sound Manager

SEE ALSO

For an example of how to play a sound resource using the SndPI ay function, see the
chapter “Introduction to Sound on the Macintosh” in this book.

For information on playing a sound resource without using the SndPl ay function, see
“Playing Sounds Using Low-Level Routines” on page 2-61.

Playing From Disk

Use the SndSt art Fi | ePl ay, SndPauseFi | ePl ay, and SndSt opFi | ePl ay functions
to manage a continuous play from disk.

SndStartFilePlay

You can call the SndSt art Fi | ePl ay function to initiate a play from disk.

FUNCTI ON SndStartFil ePlay (chan: SndChannel Ptr; fRef Num |Integer;
resNum |Integer; bufferSize: Longlnt;
theBuffer: Ptr;

t heSel ecti on: Audi oSel ecti onPtr;
t heConpl etion: ProcPtr;
async: Bool ean): OSErr;

chan

f Ref Num

resNum

buf f er Si ze

t heBuf f er

A pointer to a valid sound channel. You can pass NI L instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate
a sound channel in your application’s heap zone.

The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndSt art Fi | ePl ay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NI L, the Sound
Manager allocates two buffers, each half the size of the value specified in
the buf f er Si ze parameter. If this parameter is not NI L, the buffer
should be a nonrelocatable block of size buf f er Si ze.

t heSel ecti on

Sound Manager Reference

A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NI L to specify that the Sound
Manager should play the entire sound.

2-123

CHAPTER 2

Sound Manager

t heConpl eti on
A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NI L to specify that the Sound
Manager should not execute a completion routine. This field is useful
only for asynchronous play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NI L in the chan parameter and TRUE for
this parameter, the SndSt art Fi | ePl ay function returns the
badChannel result code.

DESCRIPTION

The SndSt art Fi | ePl ay function begins a continuous play from disk on a sound
channel. The chan parameter is a pointer to the sound channel. If chan isnot NI L, it is
used as a valid channel. If chan is NI L, an internally allocated sound channel is used for
play from disk. This internally allocated sound channel is not passed back to you.
Because SndPauseFi | ePl ay and SndSt opFi | ePl ay require a sound-channel pointer,
you must allocate your own channel if you wish to use those routines.

The sounds you wish to play can be stored either inafileorinan' snd ' resource. If
you are playing a file, then f Ref Numshould be the file reference number of the file to be
played and the parameter r esNumshould be set to 0. If you are playingan' snd '
resource, then f Ref Numshould be set to 0 and r esNumshould be the resource ID

number (not the file reference number) of the resource to play.

S WARNING

The SndSt art Fi | ePl ay function might not play ' snd ' resources
from disk correctly. In particular, the function will not execute correctly
if any resource in the resource file containing the ' snd ' resource you
wish to play has been changed through a call to the Wi t eResour ce
procedure and you have not updated the resource file using the

Updat eResFi | e procedure. To avoid this and other problems, you
should use the SndSt art Fi | ePl ay function to play only sound files. s

SPECIAL CONSIDERATIONS

Because the SndSt art Fi | ePl ay function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndSt art Fi | ePl ay function are
Trap macro Selector
_SoundDi spat ch $0D000008

2-124 Sound Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 2

Sound Manager

nokErr 0 No error

not EnoughHar dwar eEr r -201 Insufficient hardware available

queueFul | -203 No room in the queue

badChannel -205 Channel is corrupt or unusable

badFor mat -206 Resource is corrupt or unusable

not EnoughBuf f er Space =207 Insufficient memory available

badFi | eFor mat -208 File is corrupt or unusable, or not AIFF or
AIFF-C

channel Busy -209 Channel is busy

buf f er sTooSmal | -210 Buffer is too small

si I nval i dConpr essi on -223 Invalid compression type

For an example of how to play a sound file, see the chapter “Introduction to Sound on
the Macintosh” in this book.

For information on the format of a completion routine, see “Completion Routines” on
page 2-151.

SndPauseFilePlay

DESCRIPTION

You can use the SndPauseFi | ePl ay function to toggle the state of a play from disk in
progress, just as you might use the pause button on an audiocassette tape player to
temporarily pause and then resume play.

FUNCTI ON SndPauseFi | ePl ay (chan: SndChannel Ptr): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndSt art Fi | ePl ay function.

The SndPauseFi | ePl ay function suspends the play from disk on the channel specified
by the chan parameter if that play from disk is not already paused; the function resumes
play if the play from disk is already paused.

The SndPauseFi | ePl ay function is used in conjunction with SndSt opFi | ePl ay to
control play from disk on a sound channel. Note that this call can be made only if your
application has already called SndSt art Fi | ePl ay with a valid sound channel. You
cannot use this function with a synchronous call to SndSt ar t Fi | ePl ay because, in that
case, program control does not return to the caller until after the sound has completely
finished playing.

If the channel specified by the chan parameter is not being used for play from disk, then
SndPauseFi | ePl ay returns the result code channel Not Busy. If the channel is busy

Sound Manager Reference 2-125

CHAPTER 2

Sound Manager

and paused, then play from disk is resumed. If the channel is busy and the channel is not
paused, then play from disk is suspended.

SPECIAL CONSIDERATIONS

You can call the SndPauseFi | ePl ay function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SndPauseFi | ePl ay function are

Trap macro Selector
_SoundDi spat ch $02040008

nokErr 0 No error

queueFul | -203 No room in the queue
badChannel -205 Channel is corrupt or unusable
channel Not Busy =211 Channel not currently used

SndStopFilePlay

DESCRIPTION

2-126

You can use SndSt opFi | ePl ay to stop an asynchronous play from disk.

FUNCTI ON SndSt opFi | ePl ay (chan: SndChannel Ptr;
qui et Now. Bool ean): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndSt art Fi | ePl ay function.

qui et Now A Boolean value that indicates whether the play from disk should be
stopped immediately (TRUE) or when it completes execution (FALSE).

The SndSt opFi | ePl ay function either can stop an asynchronous play from disk
immediately or can take control of the CPU until a play from disk finishes. The

SndSt opFi | ePl ay function does not return until all asynchronous file 170 calls have
completed and any internally allocated memory has been released. If async is FALSE,
then SndSt opFi | ePl ay lets the sound complete normally and returns only after the
sound has completed, all asynchronous file 1/0 calls have completed, and any internal
allocated memory has been released.

For example, you might use the function to stop the playing of a sound file if the user
selects an option that turns off sound output while the file is already playing. In that
case, you would pass TRUE to qui et Now Alternatively, you might have started a sound

Sound Manager Reference

CHAPTER 2

Sound Manager

playing asynchronously so that you could perform other tasks while the sound plays.
But you might then finish those other tasks and want to convert the play from disk into a
synchronous play. By passing FALSE to qui et Now you effectively achieve that.

SPECIAL CONSIDERATIONS

Because the SndSt opFi | ePl ay function might move memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndSt opFi | ePl ay function are
Trap macro Selector
_SoundDi spat ch $03080008

RESULT CODES

noErr 0 No error
badChannel -205 Channel is corrupt or unusable

Allocating and Releasing Sound Channels

If you use a high-level Sound Manager routine to play sounds, you might be able to let
the Sound Manager internally allocate a sound channel. However, to use low-level
sound commands or to take full advantage of the Sound Manager’s high-level routines,
you must allocate your own sound channels. The SndNewChannel function allows your
application to allocate a new sound channel, and the SndDi sposeChannel function
allows your application to dispose of it.

SndNewChannel

You can use the SndNewChannel function to allocate a new sound channel.

FUNCTI ON SndNewChannel (VAR chan: SndChannel Ptr; synth: |nteger;
init: Longlnt; userRoutine: ProcPtr):

CSErr;
chan A pointer to a sound channel record. You can pass a pointer whose value
is NI L to force the Sound Manager to allocate the sound channel record
internally.
synth The sound data type you intend to play on this channel. If you do not

want to specify a specific data type, pass 0 in this parameter. You might
do this if you plan to use the channel to play a single sound resource that
itself specifies the sound’s data type.

Sound Manager Reference 2-127

DESCRIPTION

2-128

CHAPTER 2

Sound Manager

init The desired initialization parameters for the channel. If you cannot
determine what types of sounds you will be playing on the channel, pass
0 in this parameter. Only sounds defined by wave-table data and
sampled-sound data currently use the i ni t options. You can use the
Gest al t function to determine if a sound feature (such as stereo output)
is supported by a particular computer.

user Rout i ne
A pointer to a callback procedure that the Sound Manager executes
whenever it receives a cal | BackCnd command. If you pass NI L as the
user Rout i ne parameter, then any cal | BackCnd commands sent to this
channel are ignored.

The SndNewChannel function internally allocates memory to store a queue of sound
commands. If you pass a pointer to NI L as the chan parameter, the function also
allocates a sound channel record in your application’s heap and returns a pointer to that
record. If you do not pass a pointer to NI L as the chan parameter, then that parameter
must contain a pointer to a sound channel record.

If you pass a pointer to NI L as the chan parameter, then the amount of memory the
SndNewChannel function allocates to store the sound commands is enough to store

128 sound commands. However, if you pass a pointer to the sound channel record rather
than a pointer to NI L, the amount of memory allocated is determined by the gLengt h
field of the sound channel record. Thus, if you wish to control the size of the sound
queue, you must allocate your own sound channel record. Regardless of whether you
allocate your own sound channel record, the Sound Manager allocates memory for the
sound command queue internally.

The synt h parameter specifies the sound data type you intend to play on this channel.
You can use these constants to specify the data type:

CONST
squar eWaveSynt h = 1, {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-t abl e dat a}
sanpl edSynt h = b5; {sanpl ed- sound dat a}

In Sound Manager versions earlier than version 3.0, only one data type can be produced
at any one time. As a result, SndNewChannel may fail if you attempt to open a channel
specifying a data type other than the one currently being played.

To specify a sound output device other than the current sound output device, pass the
value kUseOpt i onal Qut put Devi ce in the synt h parameter and the signature of the
desired sound output device component inthe i ni t parameter.

CONST
kUseOpt i onal Qut put Devi ce = -1;

The ability to redirect output away from the current sound output device is intended for
use by specialized applications that need to use a specific sound output device. In

Sound Manager Reference

CHAPTER 2

Sound Manager

general, your application should always send sound to the current sound output device
selected by the user.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Because the SndNewChannel function allocates memory, you should not call it at
interrupt time.

noErr 0 No error
resProblem -204 Problem loading the resource
badChannel —205 Channel is corrupt or unusable

For an example of a routine that uses the SndNewChannel function, see Listing 2-1 on
page 2-20.

For information on the format of a callback procedure, see “Callback Procedures” on
page 2-152.

SndDisposeChannel

DESCRIPTION

If you allocate a sound channel by calling the SndNewChannel function, you must
release the memory it occupies by calling the SndDi sposeChannel function.

FUNCTI ON SndDi sposeChannel (chan: SndChannel Ptr;
qui et Now. Bool ean): OSErr;

chan A pointer to a valid sound channel record.

qui et Now A Boolean value that indicates whether the channel should be disposed
immediately (TRUE) or after sound stops playing (FALSE).

The SndDi sposeChannel function disposes of the queue of sound commands

associated with the sound channel specified in the chan parameter. If your application
created its own sound channel record in memory or installed a sound as a voice in a
channel, the Sound Manager does not dispose of that memory. The Sound Manager also
does not release memory associated with a sound resource that you have played on

a channel. You might use the user | nf o field of the sound channel record to store

the address of a sound handle you wish to release before disposing of the sound

channel itself.

Sound Manager Reference 2-129

CHAPTER 2

Sound Manager

The SndDi sposeChannel function can dispose of a channel immediately or wait
until the queued commands are processed. If qui et Nowis set to TRUE, a f | ushCnd
command and then a qui et Cnd command are sent to the channel bypassing

the command queue. This removes all commands, stops any sound in progress, and
closes the channel. If qui et Nowis set to FALSE, then the Sound Manager issues a
qui et Cnd command only; it does not bypass the command queue, and it waits until
the qui et Crd command is processed before disposing of the channel.

SPECIAL CONSIDERATIONS

RESULT CODES

Because the SndDi sposeChannel function might dispose of memory, you should not
call it at interrupt time.

noErr 0 No error
badChannel —205 Channel is corrupt or unusable

Sending Commands to a Sound Channel

Once a sound channel is opened, you can send commands to that channel by issuing
requests with the SndDoComand and SndDol nredi at e functions.

The section “Sound Command Numbers” beginning on page 2-92 lists the sound
commands that you can send using SndDoConmand, SndDol mmedi at e, or (in several
cases) SndControl .

SndDoCommand

DESCRIPTION

2-130

You can queue a command in a sound channel by calling the SndDoConmand function.

FUNCTI ON SndDoConmmrand (chan: SndChannel Ptr; cnd: SndComrand;
noWai t: Bool ean): OSErr;

chan A pointer to a valid sound channel.

cmd A sound command to be sent to the channel specified in the chan
parameter.

no\i t A flag indicating whether the Sound Manager should wait for a free space

in a full queue (FALSE) or whether it should return immediately with a
queueFul | result code if the queue is full (TRUE).

The SndDoComrand function sends the sound command specified in the cnd parameter
to the end of the command queue of the channel specified in the chan parameter.

Sound Manager Reference

CHAPTER 2

Sound Manager

The noWai t parameter has meaning only if a sound channel’s queue of sound
commands is full. If the noWai t parameter is set to FALSE and the queue is full, the
Sound Manager waits until there is space to add the command, thus preventing your
application from doing other processing. If noWai t is set to TRUE and the queue is full,
the Sound Manager does not send the command and returns the queueFul | result code.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Whether SndDoComrand moves memory depends on the particular sound command
you're sending it. Most of the available sound commands do not cause ShdDoConmrand
to move memory and can therefore be issued at interrupt time. Moreover, you can
sometimes safely send commands at interrupt time that would otherwise cause memory
to move if you’ve previously issued the soundCrd sound command to preconfigure the
channel at noninterrupt time.

nokErr 0 No error
queueFul | -203 No room in the queue
badChannel -205 Channel is corrupt or unusable

For an example of a routine that uses the SndDoCommrand function, see Listing 2-15 on
page 2-42.

SndDolmmediate

DESCRIPTION

You can use the SndDol mmedi at e function to place a sound command in front of a
sound channel’s command queue.

FUNCTI ON SndDol medi at e (chan: SndChannel Ptr; cnd: SndConmand):

CSErr;
chan A pointer to a sound channel.
cmd A sound command to be sent to the channel specified in the

chan parameter.

The SndDol mmredi at e function operates much like SndDoConmrand, except that it
bypasses the existing command queue of the sound channel and sends the specified
command directly to the Sound Manager for immediate processing. This routine also
overrides any wai t Cnd, pauseCnd, or syncCrrd commands that might have already
been processed. However, other commands already received by the Sound Manager will

Sound Manager Reference 2-131

CHAPTER 2

Sound Manager

not be interrupted by the SndDol medi at e function (although a qui et Crd command
sent via SndDol rmedi at e will quiet a sound already playing).

SPECIAL CONSIDERATIONS

Whether SndDol nredi at e moves memory depends on the particular sound command
you’re sending it. Most of the available sound commands do not cause

SndDol medi at e to move memory and can therefore be issued at interrupt time.
Moreover, you can sometimes safely send commands at interrupt time that would
otherwise cause memory to move if you’ve previously issued the soundCnd sound
command to preconfigure the channel at noninterrupt time.

RESULT CODES

noErr 0 No error
badChannel —205 Channel is corrupt or unusable

SEE ALSO

For an example of a routine that uses the SndDol nredi at e function, see Listing 2-4 on
page 2-26.

Obtaining Information

To obtain information about whether a computer supports certain sound features, you
should use the Gest al t function, documented in Inside Macintosh: Operating System
Utilities. Sometimes, however, you might need information the Gest al t function is not
able to provide. The Sound Manager provides a number of routines that you can use to
obtain additional sound-related information.

You can obtain the version numbers of the Sound Manager and the MACE tools by
calling the SndSoundManager Ver si on and MACEVer si on functions, respectively. You
can obtain information about a sound channel and about all sound channels by calling
the SndCont r ol , SndChannel St at us, and SndManager St at us functions,
respectively.

The Sound Manager includes two routines—SndGet SysBeepSt at e and
SndSet SysBeepSt at e—that allow you to determine and alter the status of the
system alert sound.

To play a sound resource using low-level Sound Manager routines, you need the address
of the sound header stored in the sound resource. Sound Manager versions 3.0 and

later provide the Get SoundHeader O f set function that you can use to obtain

that information.

2-132 Sound Manager Reference

CHAPTER 2

Sound Manager

SndSoundManagerVersion

DESCRIPTION

You can use SndSoundManager Ver si on to determine the version of the Sound
Manager tools available on a computer.

FUNCTI ON SndSoundManager Ver si on: NumVer si on;

The SndSoundManager Ver si on function returns a version number that contains the
same information as in the first 4 bytes of a' vers' resource. You might use the
SndSoundManager Ver si on function to determine if a computer has the enhanced
Sound Manager, which is necessary for multichannel sound and for continuous plays
from disk.

SPECIAL CONSIDERATIONS

You can call the SndSoundManager Ver si on function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The trap macro and routine selector for the SndSoundManager Ver si on function are

Trap macro Selector
_SoundDi spat ch $000C0008

For information on how to use the SndSoundManager Ver si on function to determine
whether the enhanced Sound Manager is available, see “Obtaining Version Information”
on page 2-34.

MACEVersion

DESCRIPTION

You can use MACEVer si on to determine the version of the MACE tools available on a
machine.

FUNCTI ON MACEVer si on: NunVer si on;

The MACEVer si on function returns a version number that contains the same
information as in the first 4 bytesof a' vers' resource.

Sound Manager Reference 2-133

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS
You can call the MACEVer si on function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the MACEVer si on function are

Trap macro Selector
_SoundDi spat ch $00000010

SndControl

You can obtain information about a sound data type by using the SndCont r ol function.
In Sound Manager version 3.0 and later, however, you virtually never need to call
SndCont r ol . The capabilities that SndCont r ol provides are either provided by the
Gest al t function or are no longer supported. The SndCont r ol function is

documented here for completeness only.

FUNCTI ON SndControl (id: Integer; VAR cnd: SndConmand): OCSErr;

id The sound data type you want to get information about.
cmd A sound command.

DESCRIPTION

The SndCont r ol function sends a control command directly to the Sound Manager to
get information about a specific data type. The available data types are specified by

constants:

CONST
squar eWaveSynt h = 1, {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-t abl e dat a}
sampl edSynt h = b5; {sanpl ed- sound dat a}

You can call SndCont r ol even if no channel has been created for the type of data you
want to get information about. SndCont r ol can be used with the avai | abl eCnd or
ver si onCnd sound commands to request information. The requested information is
returned in the sound command record specified by the cnd parameter.

IMPORTANT

The SndCont r ol function can indicate only whether a particular data
format supports some feature (for example, stereo output), not whether
the available sound hardware also supports that feature. In general, you
should use the Gest al t function to determine whether the sound
features you need are available in the current operating environment. s

2-134 Sound Manager Reference

CHAPTER 2

Sound Manager

In Sound Manager version 2.0, you can also use the t ot al LoadCnd and| oadCnd
commands to get information about the amount of CPU time consumed by
sound-related processing. However, these commands are not very accurate and are
not supported by version 3.0 and later.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You should not call the SndCont r ol function at interrupt time.

noErr 0 No error

See the list of sound commands in “Sound Command Numbers” beginning on page 2-92
for a complete description of the sound commands supported by SndCont r ol .

SndChannelStatus

DESCRIPTION

You can use the SndChannel St at us function to determine the status of a sound
channel.

FUNCTI ON SndChannel St atus (chan: SndChannel Ptr;
t heLengt h: I nteger;
theStatus: SCStatusPtr): CSErr;

chan A pointer to a valid sound channel.

t heLengt h The size in bytes of the sound channel status record. You should set this
field to Si zeOf (SCSt at us) .

theSt at us A pointer to a sound channel status record.

If the SndChannel St at us function executes successfully, the fields of the record
specified by t heSt at us accurately describe the sound channel specified by chan.

SPECIAL CONSIDERATIONS

You can call the SndChannel St at us function at interrupt time.

Sound Manager Reference 2-135

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SndChannel St at us function are

Trap macro Selector

_SoundDi spat ch $00100008

noErr 0 No error
par antrr -50 A parameter is incorrect
badChannel —205 Channel is corrupt or unusable

For information on the structure of a sound channel status record, see “Sound Channel
Status Records” on page 2-101.

SndManagerStatus

DESCRIPTION

You can use the SndManager St at us function to determine information about all sound
channels currently allocated.

FUNCTI ON SndManager St atus (theLength: | nteger;
theStatus: SMstatusPtr): CSErr;

t heLengt h The size in bytes of the Sound Manager status record. You should set this
field to Si zeOf (SMVSt at us) .

t heSt at us A pointer to a Sound Manager status record.

The SndManager St at us function determines information about all currently allocated
sound channels. If the SndManager St at us function executes successfully, the fields

of the record specified by t heSt at us accurately describe the current status of the
Sound Manager.

SPECIAL CONSIDERATIONS

You can call the SndManager St at us function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

2-136

The trap macro and routine selector for the SndManager St at us function are

Trap macro Selector
_SoundDi spat ch $00140008

Sound Manager Reference

RESULT CODES

CHAPTER 2

Sound Manager

noErr 0 No error

SndGetSysBeepState

DESCRIPTION

You can use the SndGet SysBeepSt at e procedure to determine if the system alert
sound is enabled.

PROCEDURE SndGet SysBeepSt at e (VAR sysBeepState: |nteger);

sysBeepSt at e
On exit, the state of the system alert sound.

The SndGet SysBeepSt at e procedure returns one of two states in the sysBeepSt at e
parameter, either the sysBeepDi sabl e or the sysBeepEnabl e constant.

CONST
sysBeepDi sabl e = $0000; {system al ert sound di sabl ed}
sysBeepEnabl e = $0001; {system al ert sound enabl ed}

SPECIAL CONSIDERATIONS

You can call the SndGet SysBeepSt at e procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndGet SysBeepSt at e procedure are

Trap macro Selector
_SoundDi spat ch $00180008

SndSetSysBeepState

You can use the SndSet SysBeepSt at e function to set the state of the system alert
sound.

FUNCTI ON SndSet SysBeepState (sysBeepState: |Integer): COSErr;

sysBeepSt at e
The desired state of the system alert sound.

Sound Manager Reference 2-137

CHAPTER 2

Sound Manager

DESCRIPTION

Youcanusethe SndSet SysBeepSt at e function to temporarily disable the system alert
sound while you play a sound and then enable the alert sound when you are done.

The sysBeepSt at e parameter should be set to either sysBeepDi sabl e or
sysBeepEnabl e.

If your application disables the system alert sound, be sure to enable it when your
application gets a suspend event.

SPECIAL CONSIDERATIONS
You can call the SndSet SysBeepSt at e function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndSet SysBeepSt at e function are
Trap macro Selector
_SoundDi spat ch $001C0008

RESULT CODES
nokErr 0 No error
par antrr -50 A parameter is incorrect
GetSoundHeaderOffset

You can use the Get SoundHeader O f set function to get the offset from the beginning
of a sound resource to the embedded sound header.

FUNCTI ON Get SoundHeader O f set (sndHdl : Handl e;
VAR of fset: Longlint): OSErr;

sndHdl A handle to a sound resource.

of f set On exit, the offset from the beginning of the sound resource specified by
the sndHdl parameter to the beginning of the sound header within that
sound resource.

DESCRIPTION
The Get SoundHeader O f set function returns, in the of f set parameter, the number
of bytes from the beginning of the sound resource specified by the sndHdl parameter to
the sound header that is contained within that resource. You might need this information
if you want to use the address of that sound header in a sound command (such as the
soundCnd or buf f er Cd sound command).

The handle passed to Get SoundHeader O f set does not have to be locked.

2-138 Sound Manager Reference

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

The Get SoundHeader O f set function is available only in version 3.0 and later of the
Sound Manager. See “Obtaining a Pointer to a Sound Header” beginning on page 2-57
for a function you can call in earlier versions of the Sound Manager to obtain the same
information.

You can call the Get SoundHeader O f set function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get SoundHeader O f set function are
Trap macro Selector
_SoundDi spat ch $04040024

RESULT CODES

nokErr 0 No error
badFor mat -206 Resource is corrupt or unusable

SEE ALSO
See Listing 2-27 on page 2-57 for an example of calling Get SoundHeader Of f set .

Controlling Volume Levels

You can use the Get SysBeepVol une and Set SysBeepVol une functions to get and set
the volume level of the system alert sound. You can use Get Def aul t Qut put Vol une
and Set Def aul t Qut put Vol une to get and set the default output volume for a
particular output device.

IMPORTANT

These four functions are available only in Sound Manager version 3.0
and later. s

With all of these functions, you specify a volume with a 16-bit value, where 0 represents
no volume (that is, silence) and 256 (hexadecimal $0100) represents full volume. The
right and left volumes of a stereo sound are encoded as the high word and the low word,
respectively, of a 32-bit value. Moreover, it’s possible to overdrive a particular volume
level if you need to amplify a low signal. For example, the long word $02000200 specifies
a volume level of twice full volume on both the left and right channels of a stereo sound.

In addition to the four functions described in this section, Sound Manager version 3.0
introduces two new sound commands, get Vol uneCnd and vol unmeCnd, that you can

use to get and set the volume of a particular sound channel. See page 2-96 for details on
these two sound commands; see “Managing Sound VVolumes” beginning on page 2-31 for
a code listing that uses the vol uneCnd command.

Sound Manager Reference 2-139

CHAPTER 2

Sound Manager

GetSysBeepVolume

You can use the Get SysBeepVol une function to determine the current volume of the
system alert sound.

FUNCTI ON Get SysBeepVol une (VAR | evel : Longlnt): CSErr;

| evel On exit, the current volume level of the system alert sound.

DESCRIPTION

The Get SysBeepVol ume function returns, in the | evel parameter, the current volume
level of the system alert sound. The values returned in the high and low words of the
| evel parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The Get SysBeepVol une function is available only in versions 3.0 and later of the
Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get SysBeepVol une function are

Trap macro Selector
_SoundDi spat ch $02240024

RESULT CODES
noErr 0 No error

SetSysBeepVolume

You can use the Set SysBeepVol une function to set the current volume of the system
alert sound.

FUNCTI ON Set SysBeepVol une (Il evel: Longlnt): OSErr;

| evel The desired volume level of the system alert sound.

DESCRIPTION

The Set SysBeepVol ume function sets the current volume level of the system alert
sound. The values you can specify in the high and low words of the | evel parameter

2-140 Sound Manager Reference

CHAPTER 2

Sound Manager

range from O (silence) to $0100 (full volume). Any calls to the SysBeep procedure use
the volume set by the most recent call to Set SysBeepVol une.

SPECIAL CONSIDERATIONS

The Set SysBeepVol une function is available only in versions 3.0 and later of the
Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set SysBeepVol une function are

Trap macro Selector
_SoundDi spat ch $02280024

RESULT CODES

noErr 0 No error

GetDefaultOutputVVolume

You can use the Get Def aul t Qut put Vol une function to determine the default volume
of a sound output device.

FUNCTI ON Get Def aul t Qut put Vol ume (VAR | evel: Longlint): OSErr;

| evel On exit, the default volume level of a sound output device.

DESCRIPTION

The Get Def aul t Qut put Vol une function returns, in the | evel parameter, the default
volume of a sound output device. The values returned in the high and low words of the
| evel parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The Get Def aul t Qut put Vol une function is available only in versions 3.0 and later of
the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get Def aul t Qut put Vol une function are

Trap macro Selector
_SoundDi spat ch $022C0024

Sound Manager Reference 2-141

CHAPTER 2

Sound Manager

RESULT CODES
noErr 0 No error

SetDefaultOutputVVolume

You can use the Set Def aul t Qut put Vol une function to set the default volume of a
sound output device.

FUNCTI ON Set Def aul t Qut put Vol une (Il evel: Longlnt): OSErr;

| evel The desired default volume level of a sound output device.

DESCRIPTION

The Set Def aul t Qut put Vol une function sets the default volume of a sound output
device. The values you can specify in the high and low words of the | evel parameter
range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The Set Def aul t Qut put Vol une function is available only in versions 3.0 and later of
the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set Def aul t Qut put Vol urne function are

Trap macro Selector
_SoundDi spat ch $02300024

RESULT CODES
noErr 0 No error

Compressing and Expanding Audio Data

You can use the procedures Conp3t 01 and Conp6t 01 to compress sound data. You can
use the procedures Exp1t 03 and Exp1t 06 to expand compressed audio data.

2-142 Sound Manager Reference

CHAPTER 2

Sound Manager

Compa3tol
You can use the Conp3t 01 procedure to compress sound data at a ratio of 3:1.
PROCEDURE Conp3tol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel: Longlnt);

i nBuf f er A pointer to a buffer of samples to be compressed.

out Buf fer A pointer to a buffer where the samples are to be written.

cnt The number of samples to compress.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
isread, or NI L. To initialize the algorithm, this buffer should be filled
with zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i nSt at e parameter.

numChannel s
The number of channels in the buffer pointed to by thei nBuf f er
parameter.

whi chChannel
The channel to compress, when nunChannel s is greater than 1. This
parameter must be in the range of 1 tonunthannel s.

DESCRIPTION

The Conp3t 01 procedure compresses cnt samples of sound stored in the buffer
specified by i nBuf f er and places the result in the buffer specified by out Buf f er,
which must be at least cnt / 3 bytes in size. The original samples can be monophonic or
include multiple channels of sound, but they must be in 8-bit offset binary format. Also,
if numChannel s is greater than 1, then the noncompressed sound must be stored in
interleaved format on a sample basis.

If you compress polyphonic sound, you retain only one channel of sound, which you
specify in the whi chChannel parameter. Thus, if you use the Conp3t 01 procedure
to compress three-channel sound, you will have effectively compressed the sound to
one-ninth its original size in bytes. To retain multiple channels of sound after
compression, you must call the Conp3t 01 procedure for each channel to be compressed
and then interleave the compressed sound data on a packet basis.

The Conp3t 01 procedure compresses every 48 bytes of sound data to exactly 16 bytes of
compressed sound data and compresses remaining bytes to no more than one-third the
original size.

You can use thei nSt at e and out St at e parameters to allow the MACE compression
routines to preserve information about algorithms across calls. Alternatively, you may
pass NI L state buffers and let the Sound Manager allocate the buffers internally.

Sound Manager Reference 2-143

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

Because the Conp3t 01 procedure might allocate and dispose of memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Comp6tol

The trap macro and routine selector for the Conp3t 01 procedure are

Trap macro Selector
_SoundDi spat ch $00040010

DESCRIPTION

2-144

You can use the Conp6t 01 procedure to compress sound data at a ratio of 6:1.

PROCEDURE Comp6tol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel: Longlnt);

i nBuf f er A pointer to a buffer of samples to be compressed.
out Buf fer A pointer to a buffer where the samples are to be written.
cnt The number of samples to compress.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
isread, or NI L. To initialize the algorithm, this buffer should be filled
with zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i nSt at e parameter.

nunmChannel s
The number of channels in the buffer pointed to by thei nBuf f er
parameter.

whi chChannel
The channel to compress, when nuntChannel s is greater than 1. This
parameter must be in the range of 1 tonunmChannel s.

The Conp6t 01 procedure compresses cnt samples of sound stored in the buffer
specified by i nBuf f er and places the result in the buffer specified by out Buf f er,
which must be at least cnt / 6 bytes in size. The Conp6t 01 procedure works much like
the Conp3t 0l procedure, but compresses every 48 bytes of sound data to exactly 8 bytes
of compressed sound data and compresses remaining bytes to no more than one-sixth
the original size.

Sound Manager Reference

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

Because the Conp6t 01 procedure might allocate and dispose of memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Conp6t 01 procedure are

Trap macro Selector
_SoundDi spat ch $000C0010

Explto3

You can use the Exp1t 03 procedure to expand a buffer of sound samples you

previously have compressed with the Conp3t 01 procedure.

PROCEDURE Explto3 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;

inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel: Longlnt);

i nBuf f er A pointer to a buffer of packets to be expanded.

out Buf fer A pointer to a buffer where the expanded samples will be written.

cnt The number of packets to expand.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
isread, or NI L. To initialize the algorithm, this buffer should be filled
with zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i nSt at e parameter.

numChannel s
The number of channels in the buffer pointed to by thei nBuf f er
parameter.

whi chChannel
The channel to expand, when nuntChannel s is greater than 1. This
parameter must be in the range of 1 tonunthannel s.

DESCRIPTION

The Explt 03 procedure expands cnt packets of sound stored in the buffer specified by

i nBuf f er and places the result in the buffer specified by out Buf f er, whose size must
be at least cnt packets * 2 bytes per packet * 3, or cnt * 6 bytes. If nunChannel s is
greater than 1, then the compressed sound must be stored in interleaved format on a
packet basis.

Sound Manager Reference 2-145

CHAPTER 2

Sound Manager

If you expand compressed sound data that includes multiple sound channels, you retain
only one channel of sound, which you specify in the whi chChannel parameter. Thus, if
you use the Exp1t 03 procedure to expand three-channel sound, the output buffer will
be the same size as the input buffer since only one channel is retained. To retain multiple
channels of sound after expansion, you must call the Exp1t 03 procedure for each
channel to be expanded and then interleave the expanded sound data on a sample basis.

The Explt 03 procedure expands every packet of sampled-sound data to exactly 6 bytes.

You can use thei nSt at e and out St at e parameters to allow the MACE compression
routines to preserve information about algorithms across calls. Alternatively, you may
pass NI L state buffers and let the Sound Manager allocate the buffers internally.

SPECIAL CONSIDERATIONS

Because the Exp1t 03 procedure might allocate memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Explt 03 procedure are

Trap macro Selector
_SoundDi spat ch $00080010

Explto6
You can use the Exp1t 06 procedure to expand a buffer of sound samples you
previously have compressed with the Conp6t 01 procedure.
PROCEDURE Explto6 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
numChannel s: Longl nt; whi chChannel : Longlnt);
i nBuf f er A pointer to a buffer of packets to be expanded.
out Buf fer A pointer to a buffer where the expanded samples will be written.
cnt The number of packets to expand.
inState A pointer to a 128-byte buffer from which the input state of the algorithm
isread, or NI L. To initialize the algorithm, this buffer should be filled
with zeros.
out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i NSt at e parameter.
numChannel s
The number of channels in the buffer pointed to by thei nBuf f er
parameter.
2-146 Sound Manager Reference

CHAPTER 2

Sound Manager

whi chChannel
The channel to expand, when nuntChannel s is greater than 1. This
parameter must be in the range of 1 tonunthannel s.

DESCRIPTION

The Explt 06 procedure expands cnt packets of sound stored in the buffer specified by

i nBuf f er and places the result in the buffer specified by out Buf f er, whose size must
be at least cnt packets * 1 byte per packet * 6, or cnt * 6 bytes. If nunmChannel s is
greater than 1, then the compressed sound must be stored in interleaved format on a
packet basis. The Exp1t 06 procedure works just like the Exp1t 03 procedure, but
expands 1-byte packets rather than 2-byte packets.

SPECIAL CONSIDERATIONS

Because the Explt 06 procedure might allocate memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Exp1t 06 procedure are

Trap macro Selector
_SoundDi spat ch $00100010

Managing Double Buffers

If you wish to customize the double buffering algorithm that the Sound Manager uses to
manage a play from disk, you can use the SndPI ayDoubl eBuf f er function. The Sound
Manager’s high-level play-from-disk routines make extensive use of this function.

SndPlayDoubleBuffer

The SndPI ayDoubl eBuf f er function is a low-level routine that gives you maximum
efficiency and control over double buffering while still maintaining compatibility with
the Sound Manager.

FUNCTI ON SndPl ayDoubl eBuf f er (chan: SndChannel Ptr;
t hePar ans: SndDoubl eBuf f er HeaderPtr): OSErr;

chan A pointer to a valid sound channel.
t heParans A pointer to a sound double buffer header record.

Sound Manager Reference 2-147

CHAPTER 2

Sound Manager

DESCRIPTION

The SndPl ayDoubl eBuf f er function launches a low-level sound play using the
information in the double buffer header record specified by t hePar ans. After your
application calls this function, the Sound Manager repeatedly calls the doubleback
procedure you specify in the double buffer header record. The doubleback procedure
then manages the filling of buffers of sound data from disk whenever one of the two
buffers specified in the double buffer header record becomes exhausted.

SPECIAL CONSIDERATIONS
Because the SndPl ayDoubl eBuf f er function might move memory, you should not call
it at interrupt time.

You can use the SndPl ayDoubl eBuf f er function only on a Macintosh computer that
supports the play-from-disk routines. For information on how to determine whether a
computer supports these routines, see “Testing for Multichannel Sound and
Play-From-Disk Capabilities” on page 2-35.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndPl ay Doubl eBuf f er function are

Trap macro Selector
_SoundDi spat ch $00200008

RESULT CODES

noErr 0 No error
badChannel —205 Channel is corrupt or unusable

SEE ALSO

For information on the format of a doubleback procedure, see “Doubleback Procedures”
on page 2-153.

Performing Unsigned Fixed-Point Arithmetic

This section describes the Unsi gnedFi xMul Di v function provided by the Sound
Manager that you can use to perform multiplication and division on unsigned
fixed-point numbers.

2-148 Sound Manager Reference

CHAPTER 2

Sound Manager

UnsignedFixMulDiv

You can use the Unsi gnedFi xMul Di v function to perform multiplications and
divisions on unsigned fixed-point numbers. You'll typically use it to calculate
sample rates.

FUNCTI ON Unsi gnedFi xMul Di v (val ue: Unsi gnedFi xed;
mul tiplier: UnsignedFi xed;
di vi sor: Unsi gnedFi xed):
Unsi gnedFi xed;

val ue The value to be multiplied and divided.

mul tiplier
The multiplier to be applied to the value in the val ue parameter.

di vi sor The divisor to be applied to the value in the val ue parameter.

DESCRIPTION

The Unsi gnedFi xMul Di v function returns the fixed-point number that is the value of
the val ue parameter, multiplied by the value in the nul ti pl i er parameter and
divided by the value in the di vi sor parameter. Note that Unsi gnedFi xMul Di v
performs both operations before returning. If you want to perform only a multiplication
or only a division, pass the value $00010000 for whichever parameter you want to
ignore. For example, to determine the sample rate that is twice that of the 22 kHz rate,
you can use Unsi gnedFi xMul Di v as follows:

nyNewRat e : = Unsi gnedFi xMul Di v(rat e22kHz, $00020000, $00010000);

Similarly, to determine the sample rate that is half that of the 44 kHz rate, you can use
Unsi gnedFi xMul Di v as follows:

nyNewRat e : = Unsi gnedFi xMul Di v(rat e44kHz, $00010000, $00020000);

SPECIAL CONSIDERATIONS

The Unsi gnedFi xMul Di v function is available only in versions 3.0 and later of the
Sound Manager.

Linking Modifiers to Sound Channels

Early versions of the Sound Manager allowed application developers to use modifiers
to alter sound commands before being processed by the Sound Manager. The Sound
Manager no longer supports this capability. SndAddMbdi fi er is documented here for
completeness only.

Sound Manager Reference 2-149

CHAPTER 2

Sound Manager

SndAddModifier

DESCRIPTION

The Sound Manager previously used the SndAddModi f i er function to link modifiers to
sound channels.

FUNCTI ON SndAddModi fi er (chan: SndChannel Ptr; nodifier: ProcPtr;
id: Integer; init: Longlnt): OSErr;

chan A pointer to a valid sound channel.

nmodi fi er A pointer to a modifier function to be added to the sound channel
specified by chan. This field is obsolete.

id The resource ID of the modifier to be linked to the sound channel.
init The initialization parameters for the sound channel specified by chan.

The SndAddModi fi er function installs a modifier into an open channel specified in the
chan parameter. The nodi f i er parameter should be NI L, and the i d parameter is the
resource 1D of the modifier to be linked to the sound channel. SndAddModi f i er causes
the Sound Manager to load the specified ' snt h' resource, lock it in memory, and link it
to the channel specified.

IMPORTANT
The SndAddModi fi er function is for internal Sound Manager use only.
You should not call it in your application. s

The only supported use of the SndAddModi f i er function is to change the data

type associated with a sound channel. For example, you can pass the constant

sanpl edSynt h in the i d parameter to reconfigure a sound channel for sampled-sound
data. You should, however, set a sound channel’s data type when you call
SndNewChannel , not by calling SndAddMbdi fi er.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

2-150

You should not use the SndAddModi f i er function.

noErr 0 No error
resProblem -204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable

To modify sampled-sound data immediately before the Sound Manager plays it, you can
customize double buffering routines so that your application can modify sampled-sound

Sound Manager Reference

CHAPTER 2

Sound Manager

data when it fills a buffer of sound data for the Sound Manager to play. For more
information, see “Using Double Buffers” on page 2-68.

To change the initialization options for a sound channel, you can use the r el ni t Crd
command. For a description of that command, see “Sound Command Numbers”
beginning on page 2-92.

Application-Defined Routines

The Sound Manager allows you to define a completion routine that execute when a
play from disk finishes executing, a callback procedure that executes whenever your
application issues the cal | BackCnd command, and a doubleback procedure that
you must define if you wish to customize the double buffering of data during a play
from disk.

Completion Routines

You can specify a completion routine as the seventh parameter to the
SndSt art Fi | ePl ay function. The completion routine executes when the sound file
finishes playing (unless sound play was stopped by the SndSt opFi | ePl ay function).

MyCompletionRoutine

DESCRIPTION

A Sound Manager completion routine has the following syntax:
PROCEDURE MyFi | ePl ayConpl eti onRouti ne (chan: SndChannel Ptr);

chan A pointer to the sound channel on which a play from disk has completed.

The Sound Manager executes your completion routine when a play from disk on the
channel specified by the chan parameter finishes. You might use the completion routine
to set a global flag that alerts the application that it must dispose of the sound channel.

SPECIAL CONSIDERATIONS

A completion routine is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your completion routine needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use the user | nf o field of the sound channel pointed to by
the chan parameter to pass that value to your completion routine.)

Sound Manager Reference 2-151

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

Because this routine is called at interrupt time, it must preserve all registers other than
A0-Al and D0-D2.

SEE ALSO

For information on how you can use completion routines to help manage an
asynchronous play from disk, see “Managing an Asynchronous Play From Disk” on
page 2-52.

Callback Procedures

You can specify a callback procedure as the fourth parameter to the SndNewChannel
function. The callback procedure executes whenever the Sound Manager processes a
cal | BackCrd command for the channel.

MyCallbackProcedure

A callback procedure has the following syntax:

PROCEDURE MyCal | backProcedure (theChan: SndChannel Ptr;
t heCnmd: SndComand) ;

t heChan A pointer to the sound channel on which acal | BackCnd command
was issued.

t heCmd The sound command record in which a cal | Back Crd command was
issued.

DESCRIPTION
The Sound Manager executes the callback procedure associated with a sound channel
whenever it processes a cal | BackCnd command for the channel. You can use a callback
procedure to set a global flag that alerts the application that it must dispose of the sound
channel. Or, you can use a callback procedure so that your application can synchronize a
series of sound commands with other actions.

SPECIAL CONSIDERATIONS

A callback procedure is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your callback procedure needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use the user | nf o field of the sound channel pointed to by
the t heChan parameter or the par an® field of the sound command specified in the

t heCd parameter to pass that value to your callback procedure.)

2-152 Sound Manager Reference

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0-Al and D0-D2.

For information on how you can use callback procedures when playing sound
asynchronously, see “Using Callback Procedures” on page 2-47.

Doubleback Procedures

If you wish to customize the double buffering of sound during a play from disk, you
must use the SndPl ayDoubl eBuf f er function and define a doubleback procedure.
Doubleback procedures also give you the power to modify sampled-sound data
immediately before the Sound Manager plays it.

MyDoubleBackProc

DESCRIPTION

A doubleback procedure has the following syntax:

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
exhaust edBuf fer: SndDoubl eBufferPtr);

chan A pointer to a sound channel on which a play from disk is executing.

exhaust edBuf f er
A pointer to a sound double buffer record

The Sound Manager calls the doubleback procedure associated with a play from disk
whenever the Sound Manager has exhausted the buffer. As the doubleback procedure
refills the buffer, the Sound Manager plays the other buffer. Your application might also
call the doubleback procedure twice to fill both buffers before the initial call to

SndPl ayDoubl eBuf f er function.

When your doubleback procedure is called, it must

n fill the buffer specified in the exhaust edBuf f er parameter with the next set of
sound frames that the Sound Manager must play

n set the dbNunfr anes field of the sound double buffer record to the number of frames
in the buffer

n set the dbBuf f er Ready bit of the dbFI ags field of the sound double buffer record

If your doubleback procedure fills the buffer with the last frames of sound that need to
be played, then your procedure should set the dbLast Buf f er bit of the dbFl ags field
of the sound double buffer record.

Sound Manager Reference 2-153

CHAPTER 2

Sound Manager

Your doubleback procedure might fill the buffer with data from any of several sources.
For example, the doubleback procedure might compute the data, copy it from elsewhere
in RAM, or read it from disk. A doubleback procedure can also read data from disk and
then modify the data. This might be useful, for example, if you would like the Sound
Manager to be able to play sampled-sound data stored in 16-bit binary offset format.
Your doubleback procedure could translate the data to the 8-bit binary offset format that
the Sound Manager can read before placing it in the buffer.

SPECIAL CONSIDERATIONS

A doubleback procedure is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your callback procedure needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use one of the two long integers in the dbUser | nf o field of
the sound double buffer record specified by the exhaust edBuf f er parameter to pass
that value to your callback procedure.)

ASSEMBLY-LANGUAGE INFORMATION

Because a doubleback procedure is called at interrupt time, it must preserve all registers
other than A0O-A1 and D0-D2.

SEE ALSO

For an example of how you might use doubleback procedures, see “Using Double
Buffers” on page 2-68.

Resources

This section describes the structure of format 1 and format 2 sound resources. For a more
complete discussion of the structure of sound resources, see “Sound Resources” on
page 2-74.

The Sound Resource

You can store sound commands and sound data as a resource with the resource type
"snd ' .Resource IDs from 0 to 8191 are reserved by Apple Computer, Inc. You may use
all other resource IDs for your' snd ' resources.

You can use the Get Resour ce function to search all open resource files for the first
"snd ' resource type with the given ID. The ' snd ' resource type defines a sound
resource. Figure 2-8 shows the structure of a sound resource.

2-154 Sound Manager Reference

CHAPTER 2

Sound Manager

Figure 2-8 The'snd ' resource type
"yl ' esoane type Byle=

} Sourd resoros headar }'l.l'er'nl:vle

Mumber ofsourd oon mands 2

‘F Rrstzourd command fe

‘F Lt soiired wom moand fe

Sern pled-sound date ;

Opriors { o mble dae {'l.l'enal:vle

TI11AAAAAAIAAATITIAAAAAT AT AT T AAATITTAAAAAT A AT AAAAAI A AT

Often, you can create a sound resource simply by using the SndRecor d function,
documented in the chapter “Introduction to Sound on the Macintosh” in this book.
However, you can also define a sound resource manually. This is especially useful for
sound resources that are simply series of sound commands and contain no
sampled-sound data. Also, you might construct a sound resource that contains
wave-table data manually. A sound resource contains the following elements:

n Sound resource header. The gives information about the format of a sound resource,
as explained below.

n Number of sound commands. Following the sound resource header is a word
indicating the number of sound commands contained in the resource.

n Sound commands. Each sound command is 8 bytes, which includes 2 bytes that
identify the command, 2 bytes for the command’s first parameter, and 4 bytes for the
command’s second parameter. When a sound command contained inan' snd '
resource has associated sound data, the high bit (defined by the dat aCf f set Fl ag
constant) should be set. This tells the Sound Manager that the value in the second
parameter is an offset from the beginning of the resource and not a pointer to a
memory location.

n Sound data. Foraformatl' snd ' resource, this field might contain wave-table data
or a sampled sound header that includes sampled-sound data. For a format2' snd '
resource, this field should contain a sampled sound header that includes
sampled-sound data.

The format of the sound resource header differs depending on whether the' snd '
resource is format 1 or format 2. Figure 2-9 illustrates the formats of the two types of

Sound Manager Reference 2-155

CHAPTER 2

Sound Manager

sound resource header. Both sound headers begin with a format field, which defines the
format of the sound resource as either $0001 or $0002.

Figure 2-9 The sound resource header

P ber of date formats

Frst date format D

Init opfon for channel

Sound resounce heeder ' - I

n Format 1 sound resource header. For format1' snd ' resources, the sound resource
header includes a word that indicates the number of data types to be sent to the sound
channel. Because a sound channel cannot play more than one type of sound data, you
should typically specify either $00 or $01 in this field. If you specify $01 or more, then
the sound resource header contains both a word specifying the data type and a long
word specifying the initialization options for each data type.

n Format 2 sound resource header. For format2' snd ' resources, the sound resource
header next includes a single word that the Sound Manager ignores. This word is
known as the reference count field. Your application can use this field as it pleases.

2-156 Sound Manager Reference

CHAPTER 2

Sound Manager

Summary of the Sound Manager

Pascal Summary

Constants

CONST

{Gestalt sound attributes selector and response bits}

gestal t SoundAttr

gestal t StereoCapability
gestal t Ster eoM xi ng

gest al t Soundl Ovbr Pr esent
gestal t Bui | t1 nSoundl nput

gest al t HasSoundl nput Devi ce

gest al t Pl ayAndRecord
gestal t 16Bi t Soundl O

gest al t St er eol nput
gestal t Li neLevel | nput

gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s

gest al t 16Bi t Audi oSupport

{channel initialization paraneters}

i nitChanLeft

i ni t ChanRi ght
wavel ni t Channel 0
wavel ni t Channel 1
wavel ni t Channel2
wavel ni t Channel 3
ni t Mono
nitStereo

ni t MACE3

ni t MACE6
nitNolnterp

ni t NoDr op

snd '

CONO R RO

e
NP o

$0002;
$0003;
$0004;
$0005;
$0006;
$0007;
$0080;
$0000;
$0300;
$0400;
$0004;
$0008;

Summary of the Sound Manager

;{sound attributes selector}

{built-in hw can play stereo sounds}
{built-in hw m xes stereo to nono}
{sound input routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recording}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}
{built-in input hw needs line |evel}
{play fromdisk routines avail abl e}
{mul ti pl e channel s of sound support ed}
{16-bit audi o data support ed}

{left stereo channel}
{right stereo channel}
{wave-t abl e channel 0}
{wave-tabl e channel 1}
{wave-tabl e channel 2}
{wave-t abl e channel 3}
{monophoni ¢ channel }
{stereo channel}

{3:1 conpression}

{6:1 conpression}

{no linear interpolation}
{no drop-sanpl e conversion}

2-157

CHAPTER 2

Sound Manager

{masks for channel attributes}

i ni t PanMask = $0003; {mask for right/left pan val ues}
i ni t SRat eMask = $0030; {mask for sanple rate val ues}
i nitStereoMask = $00C0; {mask for nono/stereo val ues}
i ni t CompMask = $FF0O; {mask for conpression |Ds}
{sound data types}
squar eWaveSynt h = 1, {squar e-wave dat a}
waveTabl eSynt h 3; {wave-t abl e dat a}
sanpl edSynt h = b5; {sanpl ed- sound dat a}
{sound command nunber s}
nul I Crd = 0; {do not hi ng}
qui et Cnd 3; {stop a sound that is playing}
flushCnd = 4, {flush a sound channel}
relnitCnd 5; {reinitialize a sound channel}
wai t Crrd = 10; {suspend processing in a channel}
pauseCnd = 11; {pause processing in a channel}
resuneCnd = 12; {resunme processing in a channel}
cal | BackCnd = 13; {execute a cal |l back procedure}
syncCnd = 14; {synchroni ze channel s}
avai | abl eCrd = 24; {see if initialization options }

{ are supported}
versi onCnd = 25; {det erm ne version}
t ot al LoadCnd = 26; {report total CPU | oad}
| oadCd = 27, {report CPU |l oad for a new channel}
freqDurati onCnd = 40; {play a note for a duration}
rest Cd = 41; {rest a channel for a duration}
freqCrd = 42; {change the pitch of a sound
anmpCnd = 43; {change the anplitude of a sound}
ti mbreCd = 44; {change the tinbre of a sound}
get AnpCnd = 45; {get the anplitude of a sound}
vol uneCnd = 46; {set vol une}
get Vol unmeCd = 47; {get vol une}
waveTabl eCd = 60; {install a wave table as a voice}
soundCnd = 80; {install a sanpled sound as a voice}
buf f er Cnd = 81; {pl ay a sanpl ed sound}
r at eCnd = 82; {set the pitch of a sanpled sound}
get Rat eCd = 85; {get the pitch of a sanpled sound}

{sanpl ed sound header encodi ng options}

st dSH = $00; {standard sound header}

ext SH = $FF; {ext ended sound header}

cnpSH = $FE; {conpressed sound header}
2-158 Summary of the Sound Manager

CHAPTER 2

Sound Manager

{size of data structures}
stdQLengt h = 128; {default size of standard sound }
{ channel }

{sound resource formats}

firstSoundFor mat = $0001; {format 1 'snd ' resource}
secondSoundFor mat = $0002; {format 2 'snd ' resource}
{sound command nask}

dat aOf f set Fl ag = $8000; {sound conmand data offset bit}
{system beep st at es}

sysBeepDi sabl e = $0000; {system al ert sound disabl ed}
sysBeepEnabl e = $0001; {system al ert sound enabl ed}

{values for the unitType field in Audi oSel ecti on}
uni t TypeSeconds $0000; {seconds}
uni t TypeNoSel ecti on $FFFF; {no sel ection}

{doubl e buffer status flags}
dbBuf f er Ready $00000001; {doubl e buffer is filled}
dbLast Buf f er $00000004; {1 ast doubl e buffer to play}

{val ues for the conpressionlD field of CnpSoundHeader}

vari abl eConpr essi on = -2; {vari abl e-rati o conpression}
fi xedConpr essi on = -1; {fixed-ratio conpression}
not Conpr essed = 0; {nonconpressed sanpl es}

t hreeToOne = 3 {3:1 conpressed sanpl es}

si XToOne = 4, {6:1 conpressed sanpl es}

{val ues for the packetSize field of ChpSoundHeader}
si xToOnePacket Si ze = 8; {packet size in bits for 6:1}
t hr eeToOnePacket Si ze = 16; {packet size in bits for 3:1}

{conpressi on nanes and types}

NoneNane = 'not conpressed';
ACE2t o1Name = "ACE 2-to-1';
ACES8t o3Nane = "ACE 8-to-3';
MACE3t o1Nane = "MACE 3-to-1';
MACE6t o1Nane = 'MACE 6-to-1';
NoneType = ' NONE' ;

ACE2Type = " ACE2';

ACE8Type = ' ACE8';

MACE3Type = ' MAC3';

MACEG Ty pe = ' MAC6'

Summary of the Sound Manager

2-159

CHAPTER 2

Sound Manager

{IDs for AIFF and Al FF-C fil es}
Al FFI D = "AFF; {AIFF file}
Al FCI D = "AFC; {AIFF-C fil e}

{IDs for ALFF and AIFF-C file chunks}

Form D = 'FORM ; {1 D for Form Chunk}

For mat Ver si onl D = 'FVER ; {ID for Format Version Chunk}
Conmonl D = ' COW ; {1 D for Common Chunk}
SoundDat al D = ' SSND ; {ID for Sound Data Chunk}
Mar ker | D = ' MARK' ; {1 D for Marker Chunk}
Instrument| D = "I NST"; {1D for Instrument Chunk}
M DI Dat al D ='MD",; {IDfor MD Data Chunk}
Audi oRecor di ngl D = ' AESD ; {1 D for Recordi ng Chunk}
ApplicationSpecificlD = "'APPL'; {1D for Application Chunk}
Comment | D = ' covr {I D for Comrent Chunk}
Nanel D = ' NAME' ; {ID for Nanme Chunk}

Aut hor I D = " AUTH ; {1 D for Author Chunk}
Copyright1 D ='(c) *; {I D for Copyright Chunk}

Annot ati onl D " ANNO ; {1 D for Annotation Chunk}

{version of AIFC format specification}
Al FCVer si onl = $A2805140; {date of version creation}

{MDI note value for nddle C
kM ddl eC = 60;

{rati o between frequencies of MD note val ues}
twel ft hRoot Two = 1. 05946309434;

{standard sanpling rates}

r at e44khz = $AC440000; {44100. 00000 in fixed-point}
rat e22khz = $56EE8BA3; {22254. 54545 in fixed-point}
rat e22050hz = $56220000; {22050. 00000 in fixed-point}
ratellkhz = $2B7745D1; {11127. 27273 in fixed-point}

rat el1025hz

$2B110000; {11025.00000 in fi xed- poi nt}

{constant for synth paraneter of SndNewChannel}

kUseOpt i onal Qut put Devi ce = -1;
{vol unes}

kFul | Vol une = $0100;
kNoVol une = 0,

2-160 Summary of the Sound Manager

CHAPTER 2

Sound Manager

{devel opnent st ages}

devel opSt age = $20; {preal pha rel ease}
al phaSt age = $40; {al pha rel ease}
bet aSt age = $60; {beta rel ease}
final St age = $80; {final rel ease}
{sizes of data buffers}
st at eBl ockSi ze = 64; {size of state block buffer}
| ef t Over Bl ockSi ze = 32, {size of leftover block buffer}
Data Types
Unsigned Fixed-Point Numbers
TYPE
Unsi gnedFi xed = Longl nt; {unsi gned fi xed- poi nt nunber}
Times
TYPE
Time = Longlnt; {in half-mlliseconds}
Sound Command Record
SndCommand =
PACKED RECORD
cnd: I nt eger; {command nunber}
par ant: I nt eger; {first paraneter}
par an®: Longl nt; {second paraneter}
END;
Audio Selection Record
Audi oSel ection =
PACKED RECORD
uni t Type: Longl nt; {type of tine unit}
sel Start: Fi xed; {starting point of selection}
sel End: Fi xed; {endi ng point of selection}

END;
Audi 0Sel ecti onPtr = ~Audi 0Sel ecti on;

Summary of the Sound Manager 2-161

CHAPTER 2

Sound Manager

Sound Channel Status Record

SCStatus =

RECORD
scStart Ti ne: Fi xed; {starting tinme for play from disk}
scEndTi ne: Fi xed; {ending time for play from di sk}
scCurrent Ti ne: Fi xed; {current time for play from disk}
scChannel Busy: Bool ean; {TRUE if channel is processing cnds}
scChannel Di sposed: Bool ean; {reserved}
scChannel Paused: Bool ean; {TRUE if play fromdisk is paused}
scUnused: Bool ean; {unused}
scChannel Attributes: Longlnt; {attributes of this channel}
scCPULoad: Longl nt ; {CPU | oad for this channel}

END,

SCSt at usPtr = ~SCSt at us;

Sound Manager Status Record

SMst at us =

PACKED RECCORD
smivaxCPULoad: I nt eger; {maxi mum | oad on all channel s}
smNunthannel s: I nt eger; {nunber of allocated channel s}
snCur CPULoad: I nt eger; {current load on all channel s}

END;

SMBt at usPtr = ASMSt at us;

Sound Channel Record

SndChannel =
PACKED RECORD
next Chan: SndChannel Ptr; {pointer to next channel}
firstMd: Ptr; {used internally}
cal | Back: ProcPtr; {pointer to callback procedure}
user | nf o: Longl nt; {free for application's use}
wai t: Longl nt; {used internally}
cndl nPr ogr ess: SndConmand; {used internally}
fl ags: I nt eger; {used internally}
gLengt h: I nt eger; {used internally}
gHead: I nt eger; {used internally}
qTail : I nt eger; {used internally}
queue: ARRAY[0. . st dQ.engt h-1] OF SndComand;
END,;

SndChannel Ptr = ~SndChannel

2-162 Summary of the Sound Manager

CHAPTER 2

Sound Manager

Sound Header Record

SoundHeader =

PACKED RECORD
sanpl ePtr:
| engt h:
sanpl eRat e:
| oopStart:
| oopEnd:
encode:
baseFr equency:
sampl eAr ea:

END;

Ptr;
Longl nt;
Fi xed;
Longl nt;
Longl nt;
Byt e;
Byt e;

PACKED ARRAY] 0.

SoundHeader Ptr = ~SoundHeader

Extended Sound Header Record

Ext SoundHeader =
PACKED RECORD
sampl ePtr:
numChannel s:
sanpl eRat e:
| oopStart:
| oopENd:
encode:
baseFr equency:
nunfr anmes:
Al FFSanpl eRat e:
mar ker Chunk:

i nst runment Chunks:

AESRecor di ng:
sanpl eSi ze
futureUsel
futureUse2:
futureUse3:
futureUse4:
sampl eAr ea:
END;

Ext SoundHeader Pt r = ~Ext SoundHeader ;

Ptr;
Longl nt;
Fi xed;
Longl nt;
Longl nt;
Byt e;
Byt e;
Longl nt;
Ext ended80;
Ptr;
Ptr;
Ptr;

| nt eger;
| nt eger;
Longl nt;
Longl nt;
Longl nt;

{if NIL, sanples in sanpl eArea}
{nunber of sanples in array}
{sanpl e rate}

{l oop poi nt begi nni ng}

{l oop point endi ng}

{sanpl e's encodi ng option}
{base frequency of sanpl e}

.0] OF Byte;

{if NL, sanples in sanpl eArea}
{nunber of channels in sanpl e}
{rate of original sanple}

{l oop poi nt begi nni ng}

{l oop point endi ng}

{sanpl e' s encodi ng opti on}
{base frequency of sanpl e}
{total nunber of franes}

{rate of original sanple}
{reserved}

{pointer to instrument info}
{pointer to audio info}
{nunber of bits per sanpl e}
{reserved}

{reserved}

{reserved}

{reserved}

PACKED ARRAY[0..0] OF Byte;

Summary of the Sound Manager

2-163

CHAPTER 2

Sound Manager

Compressed Sound Header Record

CrpSoundHeader =

PACKED RECCORD
sanpl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
nunChannel s: Longl nt; {nunber of channels in sanpl e}
sanpl eRat e: Fi xed; {rate of original sanple}
| oopStart: Longl nt; {l oop poi nt begi nni ng}
| oopEnd: Longl nt; {l oop point endi ng}
encode: Byt e; {sanpl e's encodi ng option}
baseFr equency: Byt e; {base freq. of original sanple}
nunfr anes: Longl nt; {length of sanple in franes}
Al FFSanpl eRat e: Ext ended80; {rate of original sanple}
mar ker Chunk: Ptr; {reserved}
format: CSType; {data format type}
futureUse2: Longl nt; {reserved}
stateVars: St ateBl ockPtr; {pointer to StateBl ock}

| ef t Over Sanpl es: Left Over Bl ockPtr;
{pointer to LeftOverBl ock}

conpr essi onl D I nt eger; {1 D of conpression al gorithn}
packet Si ze: I nt eger; {nunber of bits per packet}
snt hl D I nt eger; {unused}
sanpl eSi ze: I nt eger; {bits in each sanple point}
sampl eAr ea: PACKED ARRAY[0..0] OF Byte;

END;

CmpSoundHeader Pt r = "CnpSoundHeader

Sound Double Buffer Header Record

SndDoubl eBuf f er Header =
PACKED RECCRD

dbhNumChannel s: I nt eger; {nunber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanpl e size, if nonconpressed}
dbhConpr essi onl D: | nt eger; {1 D of conpression algorithn}
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sanpl e rate}
dbhBuf ferPtr: ARRAY[0. . 1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {pointer to doubl eback procedure}

END;

SndDoubl eBuf f er Header Pt r = ~SndDoubl eBuf f er Header

2-164 Summary of the Sound Manager

CHAPTER 2

Sound Manager

SndDoubl eBuf f er Header 2 =

PACKED RECORD
dbhNumChannel s:
dbhSanpl eSi ze:
dbhConpr essi onl D
dbhPacket Si ze:
dbhSanpl eRat e:
dbhBuf ferPtr:

dbhDoubl eBack:
dbhFor mat :
END;

I nt eger; {nunber of sound channel s}

I nt eger; {sanpl e size, if nonconpressed}
I nt eger; {1 D of conpression al gorithn}

I nt eger; {nunber of bits per packet}

Fi xed; {sanpl e rate}

ARRAY[0. . 1] OF SndDoubl eBufferptr;

{pointers to SndDoubl eBuf f er}
ProcPtr; {pointer to doubl eback procedure}
OSType; {signature of codec}

SndDoubl eBuf f er Header Ptr 2 = ~SndDoubl eBuf f er Header 2;

Sound Double Buffer Record

SndDoubl eBuf fer =

PACKED RECORD
dbNuntr anes:
dbFl ags:
dbUser | nf o:

dbSoundDat a:

END;
SndDoubl eBuf ferPtr =

Chunk Header
I D = Longlnt;

ChunkHeader =
RECORD

ckl D

ckSi ze:
END;

Longl nt; {nunber of frames in buffer}
Longl nt; {buffer status fl ags}
ARRAY[0. .1] OF Longlnt;

{for application's use}
PACKED ARRAY[0..0] OF Byte;

{array of data}

~SndDoubl eBuf f er;

{chunk 1D type}

| D {chunk type |D}
Longl nt ; {nunber of bytes of data}

Summary of the Sound Manager

2-165

CHAPTER 2

Sound Manager

Form Chunk

Cont ai ner Chunk =
RECORD

ckl D

ckSi ze:

f or nrype:
END;

Format Version Chunk

For mat Ver si onChunk =
RECORD

ckl D

ckSi ze:

ti mest anp:
END,;

Common Chunk

ComonChunk =
RECORD
ckl D
ckSi ze:
nuntChannel s:
nunBanpl eFr anes:
sanpl eSi ze
sampl eRat e:
END;

Extended Common Chunk

Ext CommonChunk =
RECORD
ckl D
ckSi ze:
numChannel s:
nunSanpl eFr anes
sanpl eSi ze
sanpl eRat e:
conpr essi onType:
conpr essi onNarne:

END;

2-166 Summary of the Sound Manager

I D
Longl nt;
| D

| D
Longl nt;
Longl nt;

| D;

Longl nt;
| nt eger;
Longl nt;
| nt eger;
Ext ended;

I G

Longl nt;
| nt eger;
Longl nt;
I nt eger;
Ext ended;
I G

{' FORM }
{nunber of bytes of data}
{type of file}

{' FVER }
{4 bytes}
{date of format version}

{" cow }

{18 byt es}

{nunber of channel s}

{nunber of sanple franes}
{nunber of bits per sanpl e}
{nunber of franmes per second}

{" COWM }

{22 bytes + conpression name}
{nunber of channel s}

{nunber of sanple franes}
{nunber of bits per sanpl e}
{nunber of franes per second}
{conpression type |0}

PACKED ARRAY[0..0] OF Byte;

{conpressi on type nane}

CHAPTER 2

Sound Manager

Sound Data Chunk

SoundDat aChunk =

RECORD

ckl D | D {' SSND }

ckSi ze: Longl nt; {size of chunk dat a}

of fset: Longl nt; {offset to sound data}

bl ockSi ze: Longl nt; {size of alignnment bl ocks}
END;

Version Record

NunVer si on =
PACKED RECORD
CASE | NTEGER OF

0:
(maj or Rev: Si gnedByt e; {maj or revision |evel in BCD}
m nor AndBugRev: Si gnedByt €; {m nor revision |evel}
st age: Si gnedByt e; {devel opnent stage}
nonRel Rev: Si gnedByt e) ; {nonrel eased revision |evel}
1:
(version: Longl nt); {all 4 fields together}
END;

Leftover Block

Left Over Bl ock =

RECORD

count: Longl nt;

sanpl eAr ea: PACKED ARRAY[0. .l eftOverBl ockSi ze - 1] OF Byte;
END;

Left Over Bl ockPtr = ~Left Over Bl ock;

State Block

St at eBl ock =
RECORD
SstateVar: ARRAY[0. . st at eBl ockSi ze - 1] OF Integer;
END,
St at eBl ockPtr = ~St at eBl ock;

Summary of the Sound Manager 2-167

CHAPTER 2

Sound Manager

Sound Manager Routines

Playing Sound Resources

PROCEDURE SysBeep (duration: Integer);

FUNCTI ON SndPl ay (chan: SndChannel Ptr; sndHdl : Handl e;
async: Bool ean): OSErr;

Playing From Disk

FUNCTI ON SndStart Fi |l ePl ay (chan: SndChannel Ptr; fRef Num |nteger;
resNum Integer; bufferSize: Longlnt;
t heBuffer: Ptr;
t heSel ecti on: Audi 0oSel ectionPtr;
t heConpl etion: ProcPtr; async: Bool ean): OSErr;

FUNCTI ON SndPauseFi | ePl ay (chan: SndChannel Ptr): OSErr;
FUNCTI ON SndsSt opFi | ePl ay (chan: SndChannel Ptr; qui et Now. Bool ean): OSErr;

Allocating and Releasing Sound Channels

FUNCTI ON SndNewChannel (VAR chan: SndChannel Ptr; synth: Integer;
init: Longlnt; userRoutine: ProcPtr): OSErr;

FUNCTI ON SndDi sposeChannel (chan: SndChannel Ptr; qui et Now. Bool ean): OSErr;

Sending Commands to a Sound Channel

FUNCTI ON SndDoConmrand (chan: SndChannel Ptr; cnd: SndComand;
noWai t: Bool ean): OSErr;
FUNCTI ON SndDol mmedi at e (chan: SndChannel Ptr; cnd: SndCommand): OSErr;

Obtaining Information
FUNCTI ON SndSoundManager Ver si on
NunVer si on;
FUNCTI ON MACEVer si on : NumVer si on;
FUNCTI ON SndCont r ol (id: Integer; VAR cnd: SndCommand): OSErr;

FUNCTI ON SndChannel St at us (chan: SndChannel Ptr; thelLength: Integer;
t heStatus: SCStatusPtr): OSErr;

FUNCTI ON SndManager St at us (theLength: Integer; theStatus: SMstatusPtr):
OSErr;

PROCEDURE SndGet SysBeepSt at e
(VAR sysBeepState: Integer);

FUNCTI ON SndSet SysBeepSt at e
(sysBeepState: Integer): OSErr;

2-168 Summary of the Sound Manager

CHAPTER 2

Sound Manager

FUNCTI ON Get SoundHeader O f set

(sndHdl : Handl e; VAR offset: Longlnt): OSErr;
Controlling Volume Levels
FUNCTI ON Get SysBeepVol une (VAR l evel: Longlnt): OSErr;
FUNCTI ON Set SysBeepVol une (level: Longint): OSErr
FUNCTI ON Get Def aul t Qut put Vol une
(VAR | evel : Longlnt): OSErr;
FUNCTI ON Set Def aul t Qut put Vol une
(level: Longint): OSErr;
Compressing and Expanding Audio Data
PROCEDURE Conp3t ol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nuntChannel s: Longl nt; whi chChannel : Longlnt);
PROCEDURE Conp6t 01 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nuntChannel s: Longl nt; whi chChannel : Longlnt);
PROCEDURE Explt 03 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nuntChannel s: Longl nt; whi chChannel : Longlnt);
PROCEDURE Explt 06 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nuntChannel s: Longl nt; whi chChannel : Longlnt);
Managing Double Buffers
FUNCTI ON SndPl ayDoubl eBuf f er
(chan: SndChannel Ptr;
t hePar ams: SndDoubl eBuf f er Header Ptr): OSErr

Performing Unsigned Fixed-Point Arithmetic

FUNCTI ON Unsi gnedFi xMul Div ~ (val ue: Unsi gnedFi xed;
nmul tiplier: UnsignedFixed;
di vi sor: Unsi gnedFi xed) :

Linking Modifiers to Sound Channels

FUNCTI ON SndAddMbdi fi er (chan: SndChannel Ptr

id: Integer; init:

Summary of the Sound Manager

nodi fier:
Longlnt):

Unsi gnedFi xed,;

ProcPtr;
OSErr ;

2-169

CHAPTER 2

Sound Manager

Application-Defined Routines

PROCEDURE MyFi | ePl ayConpl eti onRout i ne

(chan: SndChannel Ptr);
PROCEDURE MyCal | back (chan: SndChannel Ptr; cnd: SndCommand);
PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
doubl eBuf ferPtr: SndDoubl eBufferPtr);
C Summary
Constants

/*Gestalt sound attributes sel ector

and response bits*/
/*sound attributes sel ector*/

/[*built-in hw can play stereo sounds*/
/[*built-in hw m xes stereo to nmono*/
/*sound input routines avail abl e*/
[*built-in input hw avail abl e*/

/*sound input device avail abl e*/
[*built-in hw can play while recording*/
[*built-in hw can handle 16-bit data*/
/*built-in hw can record stereo sounds*/
[*built-in input hw needs line |evel */
[*play fromdi sk routines avail abl e*/
/*mul tiple channel s of sound supported*/
/*16-bit audi o data supported*/

[*left stereo channel */
/*right stereo channel */

/ *monophoni ¢ channel */

[*stereo channel */

[*3:1 conpression*/

/[*6:1 conpression*/

/*no linear interpolation*/
/*no drop-sanpl e conversi on*/

#def i ne gestalt SoundAttr "snd '

enum {
gestal t StereoCapability = 0,
gestal t St ereoM xi ng =1,
gest al t Soundl OVgr Pr esent = 3,
gest al t Bui | t 1 nSoundl nput = 4,
gest al t HasSoundl nput Devi ce = 5,
gest al t Pl ayAndRecord = 6,
gestal t 16Bi t Soundl O =7,
gest al t St er eol nput = 8,
gestal t Li neLevel | nput =9,
gest al t SndPl ayDoubl eBuf fer = 10,
gestal t Mul ti Channel s = 11,
gestal t 16Bi t Audi oSupport = 12

b

/*channel initialization paraneters*/

enum {
i nit ChanLeft = 0x0002,
i ni t ChanRi ght = 0x0003,
i ni t Mono = 0x0080,
initStereo = 0x00C0,
i ni t MACE3 = 0x0300,
i ni t MACEG = 0x0400,
i nitNolnterp = 0x0004,
i ni t NoDr op = 0x0008

b

2-170 Summary of the Sound Manager

CHAPTER 2

Sound Manager

/[*wave channel initialization paraneters*/
enum {

wavel ni t Channel O = 0x04, / *wave-t abl e channel 0*/
wavel ni t Channel 1 = 0x05, /[*wave-tabl e channel 1*/
wavel ni t Channel 2 = 0x06, [*wave-tabl e channel 2*/
wavel ni t Channel 3 = 0x07, / *wave-t abl e channel 3*/
wavel ni t Channel Mask = 0x07 /*mask for wave-tabl e paraneters*/
b
/ *masks for channel attributes*/
enum {
i ni t PanMask = 0x0003, [*mask for left/right pan val ues*/
i ni t SRat eMask = 0x0030, /*mask for sanple rate val ues*/
i nit St ereoMask = 0x00C0, /[*mask for nono/stereo val ues*/
i ni t ConpMask = OxFFOO0 /*mask for conpression | Ds*/
b
/*sound data types*/
enum {
squar eWaveSynt h =1, / *squar e- wave data*/
waveTabl eSynt h = 3, /[*wave-tabl e data*/
sanpl edSynt h =5 / *sampl ed- sound dat a*/
b
/ *sound conmand nunber s*/
enum {
nul I Crd = 0, /*do not hi ng*/
qui et Cnd = 3, /*stop a sound that is playing*/
flushCnd = 4, [*flush a sound channel */
relnitCnd = 5, /*reinitialize a sound channel */
wai t Crrd = 10, [*suspend processing in a channel */
pauseCnd = 11, [*pause processing in a channel */
resumeCnd = 12, / *resume processing in a channel */
cal | BackCnd = 13, [*execute a cal | back procedure*/
syncCmd = 14, [*synchroni ze channel s*/
avai | abl eCrd = 24, [*see if initialization options */
[* are supported*/
versi onCnd = 25, [*det ermi ne version*/
t ot al LoadCnd = 26, /[*report total CPU | oad*/
| oadCnd = 27, /*report CPU | oad for a new channel */
freqDurati onCnd = 40, [*play a note for a duration*/
rest Cnd = 41, /*rest a channel for a duration*/
freqCrd = 42, /*change the pitch of a sound*/
anpCnd = 43, [/ *change the anplitude of a sound*/

Summary of the Sound Manager 2-171

CHAPTER 2

Sound Manager

ti nbreCnd
get AnpCnd
vol uneCnd
get Vol unmeCd
waveTabl eCnd
soundCnd
buf f er Cnd

r at eCnd
get Rat eCd

H

[*sampl ed sound header encodi

enum {
st dSH
ext SH
cnpSH
};

/*size of data structures*/
enum {

stdQL.ength
H

/*sound resource formats*/
enum {
first SoundFor mat
secondSoundFor mat

H

/ *sound command mask*/
enum {
dat aOf f set Fl ag

b

[*system beep states*/
enum {
sysBeepDi sabl e
sysBeepEnabl e

b

44,

= 45,

46,

= 47,

60,
80,
81,
82,
85

/*change the tinbre of a sound*/

/*get the anplitude of a sound*/

[*set vol ume*/

[*get vol ume*/

/*install a wave table as a voice*/
/*install a sanpled sound as a voi ce*/
[*play a sanpl ed sound*/

/*set the pitch of a sanpled sound*/
[*get the pitch of a sanpled sound*/

ng options*/

0x00,
OxFF,
OxXFE

128

0x0001,
0x0002

0x8000

0x0000,
0x0001

/ *standard sound header*/
/| *ext ended sound header*/
[*conpr essed sound header*/

/*default size of sound channel */

[*format 1 'snd ' resource*/
[*format 2 'snd ' resource*/

/ *sound command data offset bit*/

/*system al ert sound di sabl ed*/
/[*system al ert sound enabl ed*/

[*values for the unitType field in Audi oSel ection*/

enum {
uni t TypeSeconds
uni t TypeNoSel ecti on

b

0x0000,
OxFFFF

2-172 Summary of the Sound Manager

| *seconds*/
/*no sel ection*/

CHAPTER 2

Sound Manager

/[*doubl e buffer status flags*/

enum {
dbBuf f er Ready
dbLast Buf f er

b

0x00000001
0x00000004

, [/*double buffer is filled*/
/*1 ast double buffer to play*/

/*values for the conpressionlD field of CrpSoundHeader*/

enum {
vari abl eConpr essi on
fi xedConpr essi on
not Conpr essed
t hreeToOne
si xToOne

H

[*variabl e-rati o conpressi on*/
[*fixed-ratio conpression*/

/ *nonconpr essed sanpl es*/
[*3:1 conpressed sanpl es*/
[*6:1 conpressed sanpl es*/

[*val ues for the packetSize field of CrpSoundHeader */

enum {
si xToOnePacket Si ze
t hreeToOnePacket Si ze

b

81
16

[*conpressi on nanes and types*/

#def i ne NoneNane
#def i ne ACE2t o1Name
#defi ne ACE8t o3Nane
#def i ne MACE3t o1Nane
#def i ne MACE6t o1Nane
#def i ne NoneType
#defi ne ACE2Type
#def i ne ACE8Type
#def i ne MACE3Type
#def i ne MACE6Type

"\ pnot co
"\ pACE 2-
"\ pACE 8-
"\ pMACE 3
"\ pMACE 6
" NONE'
" ACE2'
" ACES'
" MAC3'
" MACS'

[*IDs for AIFF and AIFF-C fil es*/

#define Al FFID
#define Al FCI D

"Al FF'
"Al FC

/*IDs for AIFF and AIFF-C fil e chunks*/

#defi ne FORM D

#def i ne Fornmat Versi onl D
#defi ne Commonl D

#defi ne SoundDat al D
#def i ne Markerl D
#define Instrunmentl D

' FORM
' FVER
" COW
' SSND
" MARK'
"I NST'

Summary of the Sound Manager

[*packet size in bits for 6:1*/
[*packet size in bits for 3:1%/

nmpr essed”
to-1"
to-3"
-to-1"
-to-1"

I*AIFF filex/
I*AIFF-C file*/

[*1 D for Form Chunk*/

/[*1 D for Format Version Chunk*/
[*I D for Comon Chunk*/

[*1 D for Sound Data Chunk*/
[*1 D for Marker Chunk*/

[*ID for Instrunment Chunk*/

2-173

CHAPTER 2

Sound Manager

#define M DI Datal D "MD" [*ID for MDI Data Chunk*/
#defi ne Audi oRecordi ngl D " AESD /*1D for Recording Chunk*/
#defi ne ApplicationSpecificlD "APPL' [*1 D for Application Chunk*/
#define Conment| D " comr [*1 D for Comrent Chunk*/
#def i ne Nanel D " NAME' [*1 D for Nanme Chunk*/
#define AuthorlD " AUTH /*1D for Author Chunk*/
#defi ne CopyrightlD "(c) [*1 D for Copyright Chunk*/
#def i ne Annotationl D " ANNO [*1 D for Annotation Chunk*/

[*version of AIFC format specification*/
#defi ne Al FCVersi onl 0xA2805140
/*date of version creation*/

/*M DI note value for mddle C/
enum {
kM ddl eC = 60

b

/*ratio between frequencies of MDI note val ues*/
#defi ne twel ft hRoot Two 1. 05946309434

[*standard sanpling rates*/

#defi ne rateddkhz 0xAC440000 [/ *44100. 00000 in fixed-point*/
#defi ne rate22khz Ox56EE8BA3 [*22254. 54545 in fixed-point*/
#def i ne rat e22050hz 0x56220000 [*22050. 00000 in fixed-point*/
#defi ne ratellkhz 0x2B7745D1 [*11127.27273 in fixed-point*/
#defi ne ratell025hz 0x2B110000 /*11025. 00000 in fixed-point*/

/[*constant for synth parameter of SndNewChannel */
enum {
kUseOpt i onal Qut put Devi ce =-1

H

[*vol unes*/

enum {
kFul | Vol une
kNoVol une

0x0100,
0

b

/ *devel opnment st ages*/
enum {

devel opSt age

al phaSt age

0x20, [*preal pha rel ease*/
0x40, [*al pha rel ease*/

2-174 Summary of the Sound Manager

CHAPTER 2

Sound Manager

bet aSt age = 0x60, [*beta rel ease*/
final St age = 0x80 /*final rel ease*/
b
[/ *sizes of data buffers*/
enum {
st at eBl ockSi ze = 64, /*size of state bl ock buffer*/
| ef t Over Bl ockSi ze = 32 [*size of |eftover block buffer*/
b
Data Types

Unsigned Fixed-Point Numbers

typedef unsigned | ong Unsi gnedFi xed; [*unsi gned fi xed-poi nt nunber*/

Times

typedef |ong Tine; /[*in hal f-mlliseconds*/

Sound Command Record

struct SndConmand {

unsi gned short cnd, / *command number */
short par ant; [*first paraneter*/
| ong par an®; / *second par aneter*/

b
typedef struct SndCommand SndComand;

Audio Selection Record

struct Audi oSel ection {

| ong uni t Type; [*type of time unit*/
Fi xed sel Start; [*starting point of selection*/
Fi xed sel End; /*endi ng point of selection/*

b
typedef struct Audi oSel ecti on Audi 0Sel ecti on;
typedef Audi oSel ection *Audi 0Sel ectionPtr

Summary of the Sound Manager 2-175

CHAPTER 2

Sound Manager

Sound Channel Status Record

struct SCStatus {

Fi xed scStartTi ne; [*starting tine for play from di sk*/
Fi xed scEndTi ne; /*ending tine for play from di sk*/
Fi xed scCurrentTime; /*current tinme for play from di sk*/
Bool ean scChannel Busy; /*TRUE if channel is processing cnds*/
Bool ean scChannel Di sposed;

[*reserved*/
Bool ean scChannel Paused;

[*TRUE if play fromdisk is paused*/
Bool ean scUnused; [*unused*/
unsi gned | ong scChannel Attri but es;

[*attributes of this channel*/
| ong scCPULoad; [*CPU | oad for this channel */

s

typedef struct SCStatus SCStatus;
typedef SCStatus *SCStatusPtr;
Sound Manager Status Record

struct SMstatus {

short smvaxCPULoad; /*nmaxi mum | oad on all channel s*/
short smNunChannel s; /*nunber of all ocated channel s*/
short snCur CPULoad; /*current |oad on all channel s*/

s
typedef struct SMstatus SMstatus;
typedef SMstatus *SMstatusPtr;

Sound Channel Record

struct SndChannel {

struct SndChannel *next Chan; [*pointer to next channel */
Ptr firstMd; [*used internally*/

SndCal | BackProcPtr cal | Back; /*pointer to call back procedure*/
| ong user | nf o; [*free for application's use*/
| ong wai t ; [*used internally*/

SndConmrand cndl nProgress; /*used internally*/

short fl ags; [*used internally*/

short gLengt h; [*used internally*/

short gHead; [*used internally*/

short qTai l ; [*used internally*/

SndConmrand queue[st dQ.engt h] ;

2-176 Summary of the Sound Manager

CHAPTER 2

Sound Manager

b
typedef struct SndChannel SndChannel
typedef SndChannel *SndChannel Ptr;

Sound Header Record

struct SoundHeader {

Ptr sampl ePtr;
unsi gned | ong | engt h;

Fi xed sanpl eRat €;
unsi gned | ong | oopStart;
unsi gned | ong | oopEnd;

unsi gned char encode;

unsi gned char baseFr equency;
unsi gned char sanpl eAreal 1] ;

b
typedef struct SoundHeader SoundHeader;
typedef SoundHeader *SoundHeaderPtr;

Extended Sound Header Record

struct Ext SoundHeader ({

[*if NL, samples in sanpl eArea*/
[*nunber of sanples in array*/
[*sanple rate for this sound*/
/*1 oop poi nt begi nni ng*/

/*1 oop point ending*/

[*sanpl e' s encodi ng option*/

[*base frequency of sample*/

Ptr sampl ePtr; [*if NL, sanples in sanpl eArea*/
unsi gned | ong numChannel s; / *nunmber of channels in sanpl e*/
Fi xed sanpl eRat e; [*rate of original sanple*/
unsi gned | ong | oopStart; /*1 oop poi nt begi nni ng*/
unsi gned | ong | oopEnd; /*1 oop point ending*/
unsi gned char encode; [*sanpl e' s encodi ng option*/
unsi gned char baseFrequency; /*base frequency of sanple*/
unsi gned | ong nunfr anes; /*total nunber of franes*/
ext ended80 Al FFSanpl eRate; / *rate of original sanple*/
Ptr mar ker Chunk; [*reserved*/
Ptr i nstrument Chunks;

[*pointer to instrunent info*/
Ptr AESRecordi ng; /*pointer to audio info*/
unsi gned short sanpl eSi ze; [*nunber of bits per sanple*/
unsi gned short futureUsel; [*reserved*/
unsi gned | ong futureUse2; [*reserved*/
unsi gned | ong futureUsesS; / *reserved*/
unsi gned | ong futureUse4; [*reserved*/
unsi gned char sampl eAreal 1] ;

b

typedef struct Ext SoundHeader Ext SoundHeader
typedef Ext SoundHeader *Ext SoundHeader Ptr

Summary of the Sound Manager

2-177

CHAPTER 2

Sound Manager

Compressed Sound Header Record

struct CmpSoundHeader ({

Ptr sampl ePtr; [*if NL, sanples in sanpl eArea*/
unsi gned | ong nuntChannel s; [*nunber of channels in sanple*/
Fi xed sanpl eRat e; [*rate of original sanple*/
unsi gned | ong | oopStart; /*1 oop poi nt beginni ng*/
unsi gned | ong | oopEnd; /*1 oop point ending*/
unsi gned char encode; [*sampl e' s encodi ng option*/
unsi gned char baseFrequency; /*base frequency of original sanple*/
unsi gned | ong nunfr anes; [*length of sanple in franmes*/
ext ended80 Al FFSanpl eRate; / *rate of original sanple*/
Ptr mar ker Chunk; [*reserved*/
OSType format; [*data format type*/
unsi gned | ong futureUse2; [*reserved*/
St at eBl ockPtr stateVars; [*pointer to StateBl ock*/
Left Over Bl ockPtr | ef t Over Sanpl es;

[*pointer to LeftOverBl ock*/
unsi gned short conpressionlD; /*I D of conpression algorithnt/
unsi gned short packet Si ze; [*nunber of bits per packet*/
unsi gned short snt hl D [*unused*/
unsi gned short sanpl eSi ze; [*bits in each sanple point*/
unsi gned char sanpl eAreal 1] ;

b
typedef struct CnpSoundHeader CnpSoundHeader ;
typedef CnpSoundHeader *CnpSoundHeaderPtr;

Sound Double Buffer Header Record

struct SndDoubl eBuf f er Header {

short dbhNuntChannel s; / *nunber of sound channel s*/
short dbhSanpl eSi ze; /*sanple size, if nonconpressed*/
short dbhConpr essi onl D;

/*1 D of conpression algorithnt/
short dbhPacket Si ze; /*nunber of bits per packet*/
Fi xed dbhSanpl eRate; /*sanple rate*/

SndDoubl eBuf ferPtr dbhBufferPtr[2];
/*pointers to SndDoubl eBuffer*/
SndDoubl eBackProcPt r dbhDoubl eBack; /*pointer to doubl eback procedure*/
b
typedef struct SndDoubl eBuf f er Header SndDoubl eBuf f er Header ;
t ypedef SndDoubl eBuf f er Header *SndDoubl eBuf f er Header Pt r;

2-178 Summary of the Sound Manager

CHAPTER 2

Sound Manager

struct SndDoubl eBuf f er Header 2 {

short dbhNumChannel s; / *nunber of sound channel s*/
short dbhSanpl eSi ze; /*sanple size, if nonconpressed*/
short dbhConpr essi onl D;

/*1 D of conpression algorithnt/
short dbhPacket Si ze; /*nunber of bits per packet*/
Fi xed dbhSanpl eRate; /*sanple rate*/

SndDoubl eBuf f er Pt r dbhBuf ferPtr[2];
/*pointers to SndDoubl eBuffer*/
SndDoubl eBackProcPt r dbhDoubl eBack; /*pointer to doubl eback procedure*/
OSType dbhFor mat ; [*signature of codec*/
b
typedef struct SndDoubl eBuf f er Header 2 SndDoubl eBuf f er Header 2
typedef SndDoubl eBuf f er Header 2 *SndDoubl eBuf f er Header Pt r 2;

Sound Double Buffer Record

struct SndDoubl eBuf fer {

| ong dbNuntr anes; [*nunber of frames in buffer*/
| ong dbFl ags; [*buffer status flags*/

| ong dbUserInfo[2]; /*for application's use*/

char dbSoundDat a[1] ; / *array of data*/

b
typedef struct SndDoubl eBuf fer SndDoubl eBuf f er
t ypedef SndDoubl eBuffer *SndDoubl eBufferpPtr

Chunk Headers

typedef unsigned | ong ID; [*chunk I D type*/

struct ChunkHeader {

I D ckl D [*chunk type | D*/
| ong ckSi ze; [*nunber of bytes of data*/
b
typedef struct ChunkHeader ChunkHeader
Form Chunk
struct Cont ai ner Chunk {
I D ckl Dy /*" FORM */
| ong ckSi ze; [*nunber of bytes of data*/
I D f or nType; [*type of file*/

b
typedef struct Contai ner Chunk Cont ai ner Chunk

Summary of the Sound Manager 2-179

CHAPTER 2

Sound Manager

Format Version Chunk

struct Format Ver si onChunk {
I D ckl D
| ong ckSi ze
unsi gned | ong ti mest anp;

b

/*' FVER */
[*4 bytes*/
/*date of format version*/

typedef struct Format Versi onChunk For mat Ver si onChunk

Common Chunk

struct CommonChunk {

I D ckl D;
| ong ckSi ze
short nuntChannel s;

unsi gned | ong

short sanpl eSi ze;
sanpl eRat e;

ext ended80
b

typedef struct ComronChunk ConmonChunk

Extended Common Chunk

struct Ext CormonChunk {

I D ckl D,
| ong ckSi ze
short nunChannel s;

unsi gned | ong

[*' COW */
/[*18 bytes*/
[/ *nunber of channel s*/

nunSanpl eFr anes

[*nunber of sanple franes*/
[*nunber of bits per sanple*/
[*nunber of frames per second*/

/*' COW */
[*22 bytes + conpression nane*/
/ *number of channel s*/

nunSanpl eFr anes;

[*nunber of sanple franmes*/

short sanpl eSi ze; [*nunber of bits per sanple*/
ext ended80 sanpl eRat e; [*nunber of franmes per second*/
I D conpr essi onType;

/ *conpression type | D*/
char conpr essi onNane[1] ;

b

[*conpressi on type nane*/

typedef struct Ext CormonChunk Ext CommonChunk

2-180 Summary of the Sound Manager

CHAPTER 2

Sound Manager

Sound Data Chunk

struct SoundDat aChunk {

I D ckl D /*'" SSND */

| ong ckSi ze; [*size of chunk data*/

unsi gned | ong of f set; [*of fset to sound data*/
unsi gned | ong bl ockSi ze; /*size of alignment blocks*/

H
typedef struct SoundDat aChunk SoundDat aChunk

Version Record

struct NunVersion {

unsi gned char maj or Rev; /*maj or revision level in BCD*/

unsi gned char m nor AndBugRev; / *m nor revision |evel */

unsi gned char st age; / *devel opment st age*/

unsi gned char nonRel Rev; /*nonrel eased version revision |evel */

H
typedef struct NumVersi on NumVersion

Leftover Block

struct LeftOverBl ock {
unsi gned | ong count;
char sampl eArea[| ef t Over Bl ockSi ze] ;
b
typedef struct LeftOverBl ock LeftOverBl ock
typedef LeftOverBl ock *LeftOverBl ockPtr

State Block

struct StateBl ock {
short st at eVar [st at eBl ockSi ze] ;
b
typedef struct StateBl ock StateBl ock;
typedef StateBlock *StateBl ockPtr;

Procedure Types

typedef pascal void (*FilePlayConpl etionProcPtr)
(SndChannel Ptr chan);

typedef pascal void (*SndCal | BackProcPtr)
(SndChannel Ptr chan, SndCommand *cnd);

Summary of the Sound Manager 2-181

CHAPTER 2

Sound Manager

typedef pascal void (*SndDoubl eBackProcPtr)
(SndChannel Ptr chan,
SndDoubl eBuf fer Ptr doubl eBufferPtr);

Sound Manager Routines

Playing Sound Resources

pascal void SysBeep (short duration);

pascal OSErr SndPl ay (SndChannel Ptr chan, Handl e sndHdl,
Bool ean async);

Playing From Disk

pascal OSErr SndStartFil ePl ay
(SndChannel Ptr chan, short fRef Num
short resNum |ong bufferSize, void *theBuffer,
Audi oSel ectionPtr theSel ecti on,
Fi | ePl ayConpl eti onProcPtr theConpl etion,
Bool ean async);

pascal OSErr SndPauseFil ePl ay
(SndChannel Ptr chan);

pascal OSErr SndStopFil ePl ay
(SndChannel Ptr chan, Bool ean qui et Now) ;

Allocating and Releasing Sound Channels
pascal OSErr SndNewChannel (SndChannel Ptr *chan, short synth, long init,
SndCal | BackProcPtr userRoutine);

pascal OSErr SndDi sposeChannel
(SndChannel Ptr chan, Bool ean qui et Now) ;

Sending Commands to a Sound Channel

pascal OSErr SndDoComrand (SndChannel Ptr chan, const SndComand *cnd,
Bool ean noWait);

pascal OSErr SndDol medi at e
(SndChannel Ptr chan, const SndComand *cnd);

Obtaining Information

pascal NunVersi on SndSoundManager Ver si on
(void);
pascal NumVersi on MACEVer si on
(void);

2-182 Summary of the Sound Manager

CHAPTER 2

Sound Manager

pascal OSErr SndContr ol (short id, SndCommand *cnd);

pascal OSErr SndChannel St at us
(SndChannel Ptr chan, short thelLength,
SCSt at usPtr theStatus);

pascal OSErr SndManager St at us

(short theLength, SMstatusPtr theStatus);
pascal void SndGet SysBeepSt at e

(short *sysBeepState);
pascal OSErr SndSet SysBeepSt ate

(short sysBeepState);

pascal OSErr Get SoundHeader Of f set
(Handl e sndHandl e, |ong *offset);

Controlling Volume Levels

pascal OSErr Get SysBeepVol une

(long *level);
pascal OSErr Set SysBeepVol une

(long level);

pascal OSErr Get Def aul t Qut put Vol une
(long *level);

pascal OSErr Set Def aul t Qut put Vol une
(long level);

Compressing and Expanding Audio Data

pascal void Conp3tol (const void *inBuffer, void *outBuffer,
unsi gned | ong cnt, const void *inState,
void *out State, unsigned | ong nunChannel s,
unsi gned | ong whi chChannel) ;

pascal void Conp6tol (const void *inBuffer, void *outBuffer,
unsi gned long cnt, const void *inState,
void *out State, unsigned | ong nunChannel s,
unsi gned | ong whi chChannel) ;

pascal void Explto3 (const void *inBuffer, void *outBuffer,
unsi gned long cnt, const void *inState,
voi d *out State, unsigned | ong nunChannel s,
unsi gned | ong whi chChannel) ;

pascal void Explto6 (const void *inBuffer, void *outBuffer,
unsi gned long cnt, const void *inState,
voi d *out State, unsigned | ong nunChannel s,
unsi gned | ong whi chChannel);

Summary of the Sound Manager 2-183

CHAPTER 2

Sound Manager

Managing Double Buffers

pascal OSErr SndPl ayDoubl eBuf f er
(SndChannel Ptr chan,
SndDoubl eBuf f er Header Pt r t hePar ans) ;

Performing Unsigned Fixed-Point Arithmetic

pascal Unsi gnedFi xed Unsi gnedFi xMul Di v
(Unsi gnedFi xed val ue, Unsi gnedFi xed mul tiplier,
Unsi gnedFi xed di vi sor);

Linking Modifiers to Sound Channels

pascal OSErr SndAddModi fi er
(SndChannel Ptr chan, Ptr nodifier, short id,
long init);

Application-Defined Routines

pascal void MyFil ePl ayConpl eti onRouti ne
(SndChannel Ptr chan);

pascal void MyCall back (SndChannel Ptr chan, SndCommand *cnd);

pascal void MyDoubl eBackProc
(SndChannel Ptr chan,
SndDoubl eBuf fer Ptr doubl eBufferPtr);

Assembly-Language Summary

Data Structures

SndCommand Data Structure

0 cmd word command number
2 par aml word first parameter
4 par ang long second parameter

AudioSelection Data Structure

0 uni t Type long type of time unit
4 sel Start 4 bytes starting point of selection (Fixed)
8 sel End 4 bytes ending point of selection (Fixed)

2-184 Summary of the Sound Manager

CHAPTER 2

Sound Manager

SCStatus Data Structure

0
4
8
12
13
14
15
16
20

scStartTi me

scEndTi ne

scCurrent Ti ne
scChannel Busy
scChannel Di sposed
scChannel Paused
scUnused

scChannel Attri butes
scCPULoad

SMStatus Data Structure

0
2
4

smvaxCPULoad
smNuntChannel s
smCur CPULoad

SndChannel Data Structure

0

4

8
12
16
20
28
30
32
34
36

next Chan
firstMd
cal | Back
userinfo
wai t

cndl nProgr ess
flags
gLength
gHead
qTai |
queue

SoundHeader Data Structure

0
4
8
12
16
20
21
22

4 bytes starting time for play from disk (Fixed)
4 bytes ending time for play from disk (Fixed)
4 bytes current time for play from disk (Fixed)
byte channel playing sampled sound flag
byte reserved

byte play from disk is paused flag

byte unused

long attributes of channel

long CPU load for channel

word maximum load on all channels

word number of allocated channels

word current load on all channels

long pointer to next channel

long used internally

long pointer to callback procedure

long free for application’s use

long used internally

8 bytes used internally

word used internally

word used internally

word used internally

word used internally

variable gueue of sound commands

sanpl ePtr long
| ength long
sanpl eRat e 4 bytes
| oopStart long
| copEnd long
encode byte
baseFr equency byte
sanpl eAr ea variable

ExtSoundHeader Data Structure

0

4

8
12
16

sanpl ePtr

nuntChannel s
sanpl eRat e
| oopSt art

| oopEnd

Summary of the Sound Manager

long

long
4 bytes
long
long

pointer to samples (or NI L if samples follow data structure)
number of samples in array

sample rate (Fixed)

loop point beginning

loop point ending

sample’s encoding option

base frequency of sample

sampled-sound data

pointer to samples (or NI L if samples follow data
structure)

number of channels in sample

sample rate (Fixed)

loop point beginning

loop point ending

2-185

CHAPTER 2

Sound Manager

byte
byte
long

10 bytes
long
long
long
word
word
long
long
long
variable

long

long

4 bytes
long
long
byte
byte
long

10 bytes
long
OSType
long
long
long
word
word
word
word

20 encode

21 baseFr equency
22 nunfr anmes

26 Al FFSanpl eRat e
36 mar ker Chunk

40 i nstrunent Chunks
44 AESRecor di ng
48 sanpl eSi ze

50 futureUsel

52 futureUse2

56 futureUse3

60 futureUse4

64 sanpl eAr ea
CmpSoundHeader Data Structure
0 sampl ePtr

4 nuntChannel s

8 sampl eRat e

12 | oopSt art

16 | oopEnd

20 encode

21 baseFr equency
22 nunfr ames

26 Al FFSanpl eRat e
36 mar ker Chunk

40 f or mat

44 futureUse2

48 stat eVars

52 | ef t Over Sanpl es
56 conpr essi onl D
58 packet Si ze

60 snthl D

62 sampl eSi ze

64 sampl eAr ea

variable

sample’s encoding option
base frequency of sample
total number of frames
rate of original sample (Extended80)
reserved

pointer to instrument info
pointer to audio info
number of bits per sample
reserved

reserved

reserved

reserved

sampled-sound data

pointer to samples (or NI L if samples follow data
structure)

number of channels in sample
sample rate (Fixed)

loop point beginning

loop point ending

sample’s encoding option

base frequency of original sample
length of sample in frames

rate of original sample (Extended80)
reserved

data format type

reserved

pointer to St at eBl ock

pointer to Lef t Over Bl ock

ID of compression algorithm
number of bits per packet

unused

bits in each sample point
compressed sound data

SndDoubleBufferHeader Data Structure

O N B~DNO

N =

2-186

dbhNuntChannel s
dbhSanpl eSi ze
dbhConpr essi onl D
dbhPacket Si ze
dbhSanpl eRat e
dbhBufferPtr
dbhDoubl eBack

Summary of the Sound Manager

word
word
word
word

4 bytes
2 longs
long

number of sound channels

sample size, if noncompressed

ID of compression algorithm

number of bits per packet

sample rate (Fixed)

pointers to SndDoubl eBuf f er data structures
pointer to doubleback procedure

CHAPTER 2

Sound Manager

SndDoubleBuffer Data Structure

0 dbNuntr anes long

4 dbFl ags long

8 dbUserInfo 2 longs
16 dbSoundDat a variable
ChunkHeader Data Structure
0 ckl D long
4 ckSi ze long

ContainerChunk Data Structure

0 ckl D long
4 ckSi ze long
8 f or nType long

FormatVersionChunk Data Structure

0 ckl D long
4 ckSi ze long
8 ti mestanp long

CommonChunk Data Structure

0 ckl D long
4 ckSi ze long
8 numChannel s word
10 nunmBanpl eFr anes long
14 sanpl eSi ze word
16 sanpl eRat e 10 bytes

ExtCommonChunk Data Structure

0 ckl D long

4 ckSi ze long

8 numChannel s word
10 nunSanpl eFr anes long

14 sampl eSi ze word
16 sanmpl eRat e 10 bytes
26 conpr essi onType long
30 conpr essi onName variable
SoundDataChunk

0 ckl D long

4 ckSi ze long

8 of f set long

12 bl ockSi ze long

Summary of the Sound Manager

number of frames in buffer
buffer status flags

for application’s use

array of data

chunk type ID
number of bytes of data

chunk type ID (* FORM)
number of bytes of data
type of file

chunk type ID (' FVER)
number of bytes of data (4)
date of format version

chunk type ID (' COW)

number of bytes of data (18)

number of channels

number of sample frames

number of bits per sample

number of frames per second (Extended80)

chunk type ID (" COW)

number of bytes of data (22 + length of compression
name)

number of channels

number of sample frames

number of bits per sample

number of frames per second (Extended80)
compression type ID

compression type name

chunk type ID (* SSND)
number of bytes of data
offset to sound data

size of alignment blocks

2-187

CHAPTER 2

Sound Manager

Trap Macros

Trap Macro Requiring Routine Selectors

_SoundDi spat ch

Selector Routine

$00000010 MACEVer si on

$00040010 Conmp3t ol

$00080010 Explt 03

$000C0008 SndSoundManager Ver si on
$000C0010 Conp6t 01

$00100008 SndChannel St at us
$00100010 Explt 06

$00140008 SndManager St at us
$00180008 SndGet SysBeepSt at e
$001C0008 SndSet SysBeepSt at e
$00200008 SndPl ayDoubl eBuf f er
$02040008 SndPauseFi | ePl ay
$02240024 Cet SysBeepVol une
$02280024 Set SysBeepVol une
$022C0024 Get Def aul t Qut put Vol une
$02300024 Set Def aul t Qut put Vol unme
$03080008 SndSt opFi | ePl ay
$0D000008 SndStart Fi | ePl ay
$04040024 CGet SoundHeader O f set

Result Codes

noErr 0 No error

par antrr -50 A parameter is incorrect

noHar dwar eEr r -200 Required sound hardware not available
not EnoughHar dwar eEr r -201 Insufficient hardware available
queueFul | -203 No room in the queue

resProbl em -204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable

badFor mat -206 Resource is corrupt or unusable

not EnoughBuf f er Space =207 Insufficient memory available

badFi | eFor mat -208 File is corrupt or unusable, or not AIFF or AIFF-C
channel Busy -209 Channel is busy

buf f er sTooSnal | =210 Buffer is too small

2-188 Summary of the Sound Manager

CHAPTER 2

Sound Manager

channel Not Busy =211 Channel not currently used
nohMor eReal Ti me 212 Not enough CPU time available
si I nval i dConpr essi on -223 Invalid compression type

Summary of the Sound Manager 2-189

CHAPTER 3

Sound Input Manager

Contents

About the Sound Input Manager 3-3
Sound Recording Without the Standard Interface 3-4
Interaction With Sound Input Devices 3-4
Sound Input Device Drivers 3-5
Using the Sound Input Manager 3-5
Recording Sounds Directly From a Device 3-6
Defining a Sound Input Completion Routine 3-9
Defining a Sound Input Interrupt Routine 3-10

Getting and Setting Sound Input Device Information 3-10

Writing a Sound Input Device Driver 3-13
Responding to Status and Control Requests 3-13
Responding to Read Requests 3-15
Supporting Stereo Recording 3-16
Supporting Continuous Recording 3-17

Sound Input Manager Reference 3-17

Constants 3-17
Gestalt Selector and Response Bits 3-17
Sound Input Device Information Selectors 3-18

Data Structures 3-26
Sound Input Parameter Blocks 3-26

Sound Input Manager Routines 3-27
Recording Sounds 3-28
Opening and Closing Sound Input Devices 3-31
Recording Sounds Directly From Sound Input Devices
Manipulating Device Settings 3-41
Constructing Sound Resource and File Headers 3-44
Registering Sound Input Devices 3-48
Converting Between Milliseconds and Bytes 3-51
Obtaining Information 3-53

Application-Defined Routines 3-53

Contents

3-33

3-1

3-2

CHAPTER 3

Sound Input Completion Routines 3-54
Sound Input Interrupt Routines 3-55
Summary of the Sound Input Manager 3-57
Pascal Summary 3-57
Constants 3-57
Data Types 3-58
Sound Input Manager Routines 3-59
Application-Defined Routines 3-60
C Summary 3-61
Constants 3-61
Data Types 3-62
Sound Input Manager Routines 3-63
Application-Defined Routines 3-65
Assembly-Language Summary 3-65
Data Structures 3-65
Trap Macros 3-66
Result Codes 3-66

Contents

CHAPTER 3

Sound Input Manager

This chapter describes the Sound Input Manager, the part of the Macintosh system
software that controls the recording of sound through sound input devices. You can use
the Sound Input Manager to display and manage the sound recording dialog box. This
ensures that the user is presented with a consistent and standard user interface for sound
recording. You can, however, also use Sound Input Manager routines to record sound
without the sound recording dialog box or to interact directly with a sound input

device driver.

To use this chapter, you should already be familiar with the information in the chapter
“Introduction to Sound on the Macintosh” earlier in this book, and in particular with the
portions of that chapter that concern sound recording. That chapter explains how your
application can record either a sound resource or a sound file using the standard sound
recording dialog box. You need to read this chapter only if you need to interact with the
Sound Input Manager at a lower level than is allowed by the high-level functions
SndRecor d and SndRecor dToFi | e. For example, you need to read this chapter to
learn how to

n record sound without using the sound recording dialog box
n interact with a sound input device driver

n write a sound input device driver

To use this chapter, you should also be familiar with the chapter “Sound Manager” in
this book, especially the portions of that chapter that describe

n the format of sampled-sound data
n the Macintosh Audio Compression and Expansion (MACE) routines
n the structure of sound resources and sound files

n the use of the Gest al t function to determine whether certain sound-related facilities
are available.

If you are writing a sound input device driver, you should already be familiar with
writing device drivers in general, as described in the book Inside Macintosh: Devices.

About the Sound Input Manager

The Sound Input Manager uses sound input device drivers to allow applications to
access sound input hardware in a device-independent way. A sound input device driver
is a standard Macintosh device driver used to interface to an audio digitizer or other
recording hardware. If you use the Sound Input Manager’s high-level routines, the
Sound Input Manager handles all communication with a sound input device driver for
you. If, however, you need to use the Sound Input Manager’s low-level routines, you
must open a sound input device driver yourself. You might also need to get information
about certain attributes of a sound input device. Sound input device drivers allow your
application to query a device about such attributes.

About the Sound Input Manager 3-3

3-4

CHAPTER 3

Sound Input Manager

Sound Recording Without the Standard Interface

The Sound Input Manager provides your application with the ability to record and
digitally store sounds in a device-independent manner even if your application does not
use the standard sound recording interface. In cases where you need very fine control
over the recording process, you can call various low-level sound input routines.

Your application can obtain control over sound recording in two different ways. First, if
your application uses the sound recording dialog box, you can modify the dialog box’s
features by defining a custom filter procedure, as explained in detail in the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials. Second, if your
application needs to fine tune the sound recording process itself (or if your application
does not use the standard sound recording dialog box), then the application must use the
Sound Input Manager’s low-level routines.

In instances where you need to gain greater control over the recording process, you can
use a set of routines that manipulate the incoming sound data by using sound parameter
blocks. The parameter blocks contain information about the current recording device, the
length recorded, a routine to call on completion of the recording, and so forth. You can
call the SPBRecor d function (or the SPBRecor dToFi | e function) to begin a recording.
Then you can use the functions SPBPauseRecor di ng, SPBResuneRecor di ng, and
SPBSt opRecor di ng to control the recording. Note that you need to open a device
(using the SPBOpenDevi ce function) before you can record from it. On completion of

the recording, you should close the device (using the SPBCl oseDevi ce function).

If you do record sounds using the Sound Input Manager’s low-level routines, you also
need to set up your own sound resource headers or sound files, because the Sound Input
Manager’s low-level routines return raw sampled-sound data to your application.

The Sound Input Manager provides two functions, Set upSndHeader and

Set upAl FFHeader, that allow you to set up your own sound resource headers or

sound files.

Interaction With Sound Input Devices

The Sound Input Manager provides routines that allow your application to request
information about a sound input device or to change a sound input device’s settings.
The types of information you can obtain about a sound input device include

n the name, icon, and icon mask of the device driver
n whether the device driver supports asynchronous recording

n the device’s settings, such as the number of channels the device is to record, the
compression type, the number of bytes per sample at the current compression setting,
and the sample rate to be produced by the device

n the range of compression types, sample rates, and sample sizes that the device
supports

You can also use the Sound Input Manager to change some of a sound input device’s
settings and to turn features on and off. For example, you can turn on and off automatic
gain control on some device drivers. Automatic gain control moderates sound recording

About the Sound Input Manager

CHAPTER 3

Sound Input Manager

to give a consistent signal level. Second, you can turn on and off the playthrough
feature, which allows the user to hear through the Macintosh speaker the sound being
recorded. Third, you can turn on and off VOX recording, or voice-activated recording,
which allows your application to record only when the amplitude of sound input
exceeds a certain level. You can use VOX recording either to prevent recording from
starting until sound is at least a certain amplitude or to automatically stop recording
when sound falls below a certain amplitude. This latter capability is called

VOX stopping.

An important feature of sound input devices is continuous recording. All sound input
devices that support asynchronous recording should support continuous recording as
well. Continuous recording allows your application to make several consecutive calls to
the SPBRecor d function without losing data between calls. For example, you might
need to record a lengthy sound to disk but not be able to fit the entire sound into RAM.
Thus, it’s important to be able to save a buffer of data to disk while the sound input
device driver continues to collect recorded data. The Sound Input Manager’s

SndRecor dToFi | e function relies on continuous recording.

To get information about a device or to turn features on and off, you can use the
SPBGet Devi cel nf o and SPBSet Devi cel nf o functions. These functions allow you to
use sound input device information selectors to specify what type of information you
need to know about the device or what settings you wish to change.

Sound Input Device Drivers

The Sound Input Manager also provides several routines intended for use only by sound
input device drivers. Sound input device drivers need to register themselves with the
Sound Input Manager by calling the SPBSi gnl nDevi ce function. This makes that
device visible in the Sound In control panel for possible selection as the current input
device. You can remove a device from that panel by calling the SPBSi gnCQut Devi ce
function.

For Macintosh computers with built-in sound recording hardware, the system software
includes a sound input device driver. This driver automatically calls SPBSi gnl nDevi ce
when the computer starts up. If you are creating a sound input device driver for some
other sound recording hardware, your device driver must register itself at startup time.
Once your driver is registered, it must respond to Status, Control, and Read calls issued
by the Sound Input Manager. The Sound Input Manager issues Status calls to get
information about a device, Control calls to set device settings, and Read calls to

initiate recording.

Using the Sound Input Manager

You can use the Sound Input Manager to record sounds with the sound recording dialog
box, to record sounds directly from a device, to get and set information about a sound
input device, and to register your sound input device driver so that it can respond to

Using the Sound Input Manager 3-5

TYPE SPB =
RECORD

CHAPTER 3

Sound Input Manager

Read, Status, and Control calls. This section does not explain how to record sounds using
the sound recording dialog box; for information on that, see the chapter “Introduction to
Sound on the Macintosh” in this book.

Recording Sounds Directly From a Device

The Sound Input Manager provides a number of routines that you can use for low-level
control over the recording process (such as the ability to intercept sound input data at
interrupt time). You can open a sound input device and read data from it by calling these
low-level Sound Input Manager routines. Several of those routines access information
through a sound input parameter block, which is defined by the SPB data type:

i nRef Num Longl nt; {reference nunber of input device}

count:

Longl nt ; {nunber of bytes to record}

m | |iseconds: Longl nt;; {nunber of nmlliseconds to record}
buf f er Lengt h: Longl nt; {length of buffer to record into}
bufferPtr: Ptr; {pointer to buffer to record into}

conpl eti

onRout i ne: ProcPtr; {pointer to a conpletion routine}

i nt errupt Routi ne: ProcPtr; {pointer to an interrupt routine}
user Long: Longl nt; {for application's use}

error:
unusedl:
END;

3-6

CSErr; {error returned after recordi ng}
Longl nt; {reserved}

The i nRef Numfield indicates the reference number of the sound input device from
which the recording is to occur. You can obtain the reference number of the default
sound input device by using the SPBOpenDevi ce function.

The count, m | | i seconds, and buf f er Lengt h fields jointly determine the length of
recording. The count field indicates the number of bytes to record; themi | | i seconds
field indicates the number of milliseconds to record; and the buf f er Lengt h field
indicates the length in bytes of the buffer into which the recorded sound data is to be
placed. If the count andmi | | i seconds fields are not equivalent, then the field which
specifies the longer recording time is used. If the buffer specified by the buf f er Lengt h
field is shorter than this recording time, then the recording time is truncated so that the
recorded data can fit into the buffer specified by the buf f er Pt r field. The Sound

Input Manager provides two functions, SPBM | | i SecondsToByt es and

SPBByt esToM | | i Seconds, that allow you to convert between byte and

millisecond values.

After recording finishes, the count andni | | i seconds fields indicate the number of
bytes and milliseconds actually recorded.

The conpl et i onRout i ne andi nt er r upt Rout i ne fields allow your application
to define a sound input completion routine and a sound input interrupt routine,
respectively. More information on these routines is provided later in this section.

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

The user Long field contains a long integer that is provided for your application’s own
use. You can use this field, for instance, to pass a handle to an application-defined
structure to the sound input completion or interrupt routine. Or, you can use this field
to store the value of your application’s A5 register, so that your sound input completion
or interrupt routine can access your application’s global variables. For more information
on preserving the value of the A5 register, see the discussion of the Set A5 and

Set Cur r ent A5 functions in the chapter “Memory Management Utilities” in

Inside Macintosh: Memory.

The error field describes any errors that occur during the recording. This field contains
a value greater than 0 while recording unless an error occurs, in which case it contains a
value less than 0 that indicates an operating system error. Your application can poll this
field to check on the status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

Listing 3-1 shows how to set up a sound parameter block and record synchronously
using the SPBRecor d function. This procedure takes one parameter, a handle to a block
of memory in which the recorded sound data is to be stored. It is assumed that the

block of memory is large enough to hold the sound to be recorded.

Listing 3-1 Recording directly from a sound input device

PROCEDURE MyRecor dSnd (nySndH: Handl e) ;
CONST

kAsync = TRUE;

kM ddl eC = 60;

VAR
my SPB: SPB; {a sound i nput paraneter bl ock}
myl nRef Num Longl nt; {devi ce reference nunber}
nmyBuf f Si ze: Longl nt ; {size of buffer to record into}
myHeadr Len: I nt eger; {l ength of sound header}
myNuntChans: I nt eger; {nunber of channel s}
nmy SanpSi ze: I nt eger; {size of a sanpl e}
my SanpRat e: Fi xed; {sanpl e rate}
myConpType: OSType; {conpression type}
nmyErr: OSErr;

BEG N

{Open the default input device for reading and witing.}
nyErr := SPBOpenDevice('', siWitePernission, nylnRefNun;

IF nyErr = noErr THEN
BEG N
{Get current settings of sound input device.}
My Cet Devi ceSet ti ngs(nyl nRef Num nmyNuntChans, nySanpRat e,

nySanpSi ze, nyConpType);

Using the Sound Input Manager 3-7

CHAPTER 3

Sound Input Manager

{Set up handle to contain the 'snd ' resource header.}
myErr : = SetupSndHeader (nmySndH, nyNuntChans, nySanpRate, nySanpSi ze,
myConpType, kM ddl eC, 0, nyHeadrlLen);

{Leave roomin buffer for the sound resource header.}
myBuf f Si ze : = Get Handl eSi ze(nySndH) - nyHeadr Len;

{Lock down the sound handle until the recording is over.}
HLockHi (nySndH) ;

{Set up the sound input paraneter bl ock.}
W TH nySPB do

BEG N
i nRef Num : = nyl nRef Num {i nput device reference nunber}
count := nyBuffSize; {nunber of bytes to record}
mlliseconds := 0; {no mlliseconds}
bufferLength : = nyBuffSize; {l ength of buffer}
bufferPtr := Ptr(ORD4(nySndH') + nyHeadrLen);

{put data after 'snd ' header}
conpl eti onRoutine := N L; {no conpl etion routine}
interruptRoutine := NL; {no interrupt routine}
userLong := O; {no user data}
error := noErr; {clear error field}
unusedl : = 0; {clear reserved field}

END;

{Record synchronously through the open sound input device.}
myErr : = SPBRecord(@vySPB, NOT kAsync);

HUnl ock(nySndH) ; {unl ock the handl e}

{Indi cate the nunber of bytes actually recorded.}

myErr := SetupSndHeader (nmySndH, nyNuntChans, nySanpRate, nySanmpSi ze,
myConpType, kM ddl eC, nySPB. count,
myHeadr Len) ;

{C ose the input device.}
myErr : = SPBC oseDevi ce(nyl nRef Nunm ;

END;

3-8

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

The MyRecor dSnd procedure defined in Listing 3-1 opens the default sound input
device by using the SPBOpenDevi ce function. You can specify one of two values for the
per m ssi on parameter of SPBOpenDevi ce:

CONST
si ReadPermi ssion = 0; {open device for readi ng}
si WitePerm ssion 1; {open device for reading/witing}

You must open a device for both reading and writing if you intend to use the

SPBSet Devi cel nf o function or the SPBRecor d function. If SPBOpenDevi ce
successfully opens the specified device for reading and writing, MyRecor dSnd calls
the MyGet Devi ceSet ti ngs procedure (defined in Listing 3-3 on page 3-12). That
procedure calls the Sound Input Manager function SPBGet Devi cel nf o (explained in
“Getting and Setting Sound Input Device Information” on page 3-10) to determine the
current number of channels, sample rate, sample size, and compression type in use by
the device.

This information is then passed to the Set upSndHeader function, which sets up the
handle mySndHwith a sound header describing the current device settings. After doing
this, MyRecor dSnd sets up a sound input parameter block and calls the SPBRecor d
function to record a sound. Note that the handle must be locked during the recording
because the parameter block contains a pointer to the input buffer. After the recording is
done, MyRecor dSnd once again calls the Set upSndHeader function to fill in the actual
number of bytes recorded.

If the MyRecor dSnd procedure defined in Listing 3-1 executes successfully, the handle
my SndH points to a resource of type ' snd ' . Your application can then synchronously
play the recorded sound, for example, by executing the following line of code:

nmyErr := SndPlay(N L, nySndH, FALSE);

For more information on playing sounds your application has recorded, see the chapter
“Sound Manager” in this book.

Defining a Sound Input Completion Routine

The conpl eti onRout i ne field of the sound parameter block record contains the
address of a completion routine that is executed when the recording terminates
normally, either by reaching its prescribed time or size limits or by the application
calling the SPBSt opRecor di ng function. A completion routine should have the
following format:

PROCEDURE My SI Conpl eti onRoutine (inParanPtr: SPBPtr);

The completion routine is passed the address of the sound input parameter block that
was passed to the SPBRecor d function. You can gain access to other data structures in
your application by passing an address in the user Long field of the parameter block.
After the completion routine executes, your application should check the er r or field of
the sound input parameter block to see if an error code was returned.

Using the Sound Input Manager 3-9

CHAPTER 3

Sound Input Manager

Your sound input interrupt routine is always called at interrupt time, so it should not call
routines that might allocate or move memory or assume that A5 is set up. For more
information on sound input interrupt routines, see “Sound Input Interrupt Routines”
beginning on page 3-55.

Defining a Sound Input Interrupt Routine

The i nt errupt Rout i ne field of the sound input parameter block contains the address
of a routine that executes when the internal buffers of an asynchronous recording device
are filled. The internal buffers contain raw sound samples taken directly from the input
device. The interrupt routine can modify the samples in the buffer in any way it requires.
The processed samples are then written to the application buffer. If compression is
enabled, the modified data is compressed after your interrupt routine operates on the
samples and before the samples are written to the application buffer.

Your sound input interrupt routine is always called at interrupt time, so it should not call
routines that might allocate or move memory or assume that A5 is set up. For more
information on sound input interrupt routines, see “Sound Input Interrupt Routines”
beginning on page 3-55.

Getting and Setting Sound Input Device Information

You can get information about a specific sound input device and alter a sound

input device’s settings by calling the functions SPBGet Devi cel nf o and

SPBSet Devi cel nf 0. These functions accept sound input device information selectors
that determine which information you need or want to change. The selectors currently
available are defined by constants of type OSType.

Here is a list of the selectors that all sound input device drivers must support. For
complete details on all the selectors described in this section, see “Sound Input Device
Information Selectors” beginning on page 3-18.

CONST
si Async = 'asyn'; {asynchronous capability}
si Channel Avai | abl e = 'chav'; {nunber of channel s avail abl e}
si Conpressi onAvai l able = 'cmav'; {conpression types avail abl e}
si Conpr essi onFact or = 'cnfa'; {current conpression factor}
si Conpr essi onType = 'conp'; {conpressi on type}
si Cont i nuous ‘cont'; {continuous recording}
si Devi ceBufferinfo = 'dbin'; {size of interrupt buffer}
si Devi ceConnect ed = 'dcon'; {i nput device connection status}
si Devi cel con = 'icon'; {input device icon}
si Devi ceNane = 'nane'; {i nput device nane}
si Level Met er OnOF f ="'lnet'; {level meter state}
si Nunber Channel s = 'chan'; {current nunber of channel s}
si Recordi ngQual ity = 'qual '; {recording quality}
si Sanpl eRat e = 'srat'; {current sanple rate}

3-10

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

si Sanpl eRat eAvai | abl e = 'srav'; {sanpl e rates avail abl e}
si Sanpl eSi zeAvai | abl e = 'ssav'; {sanpl e sizes avail abl e}
si Sanpl eSi ze = 'ssiz'; {current sanple size}

si TwosConpl enment OnCOf f = 'twos'; {two's compl enent state}

The Sound Input Manager defines several selectors that specifically help it interact with
sound input device drivers. Your application should not use any of these selectors, but if
you are implementing a sound input device driver, you need to support these selectors.
They are:

CONST
si Cl oseDri ver = 'clos'; {rel ease driver}
silnitializeDriver ='init"; {initialize driver}
si PauseRecor di ng = 'paus'; {pause recording}
si UserInterrupt Proc = 'user'; {set sound input interrupt routine}

Finally, there are a number of sound input device information selectors that sound input
device drivers can optionally support. If you are writing an application, you can use
these selectors to interact with a sound input device driver, but you should be aware that
some drivers might not support all of them. To determine if a driver supports one of
these selectors, you can use the SPBGet Devi cel nf o function. If no errors are returned,
then the selector is supported when using the SPBGet Devi cel nf 0 and the

SPBSet Devi cel nf o functions.

CONST
si Acti veChannel s = 'chac'; {channel s active}
si ActivelLevel s = 'l mc'; {level s active}
si AGCOnOr f = 'agc '; {automatic gain control state}
si Conpr essi onHeader = 'cnhd' {get conpression header}
si Conpr essi onNanes = 'cnam ; {return conpression type names}
si Il nput Gai n = 'gain'; {input gain level}
si | nput Sour ce = 'sour'; {i nput source sel ector}
si | nput Sour ceNanes = 'snam ; {i nput source nanes}
si OptionsDi al og = 'optd'; {di splay options dial og box}
si Pl ayThr uOnOf f ='plth'; {pl ay-t hrough st at e}
si St er eol nput Gai n = 'sgai'; {stereo input gain |evel}
si VoxRecordl nfo = 'voxr'; {VOX record paraneters}
si VoxSt opl nfo = 'voxs'; {VOX stop paraneters}

The format of the relevant data (either returned by the Sound Input Manager or
provided by you) depends on the selector you provide. For example, if you want

to determine the name of some sound input device, you can pass to the

SPBGet Devi cel nf o function the si Devi ceNan®e selector and a pointer to a
256-byte buffer. If the SPBGet Devi cel nf o function can get the information, it fills
that buffer with the name of the specified sound input device. Listing 3-2 illustrates
one way you can determine the name of a particular sound input device.

Using the Sound Input Manager 3-11

CHAPTER 3

Sound Input Manager

Listing 3-2 Determining the name of a sound input device

FUNCTI ON MyGet Devi ceNane (nyRef Num Longl nt; VAR dNane: Str255): OSErr;
BEG N

My Cet Devi ceNane : = SPBGet Devi cel nf o(nyRef Num si Devi ceNane, Ptr(@Nane));
END;

Note

You can get the name and icon of all connected sound input devices
without using sound input information selectors by using the
SPBGet | ndexedDevi ce function, which is described on page 3-49. u

Some selectors cause the SPBGet Devi cel nf o function to return data of other types.
Listing 3-3 illustrates how to determine the number of channels, the sample rate, the
sample size, and the compression type currently in use by a given sound input device.
(The procedure defined in Listing 3-3 is called in the procedure defined in Listing 3-1.)

Listing 3-3 Determining some sound input device settings

PROCEDURE My Get Devi ceSettings (nyRef Num Longlnt;
VAR nuntChannel s: |nteger;
VAR sanpl eRat e: Fi xed;
VAR sanpl eSi ze: |nteger;
VAR conpressi onType: OSType);
VAR
nyErr: OSEr v
BEG N
{Get nunber of active channels.}
myErr : = SPBGet Devi cel nfo (nmyRef Num si Nunber Channel s, Ptr(@untChannel s));
{Get sanple rate.}
myErr : = SPBGet Devi cel nf o(myRef Num si Sanpl eRate, Ptr(@anpl eRate));
{Get sanpl e size.}
myErr : = SPBGet Devi cel nf o(myRef Num si Sanpl eSi ze, Ptr(@anpl eSi ze));
{Get conpression type.}
myErr : = SPBGet Devi cel nf o(myRef Num si Conpr essi onType,
Pt r (@onpressi onType)) ;
END;

All of the selectors that return a handle allocate the memory for that handle in the
current heap zone; you are responsible for disposing of that handle when you are done
with it, and you should verify that there is enough memory for such a handle before
calling the selector.

3-12 Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

Writing a Sound Input Device Driver

This section describes what you need to do when you do write a sound input device
driver. If you write a sound input device driver, you should set the dr vr Fl ags field of
the sound input device driver’s header to indicate that the driver can handle Status,
Control, and Read requests. The driver header should also indicate that the driver needs
to be locked.

IMPORTANT

You don’t need to write a device driver to use sound input
capabilities. s

After you create a device driver, you must write an extension that installs it. Before
your extension installs the driver, it should pass the Gest al t function the

gest al t SoundAt t r attribute selector and inspect the gest al t Soundl Ovgr Pr esent
bit to determine if the sound input routines are available. If so, the extension should
install the sound input device driver into the unit table just as any other driver must

be installed.

After installing the driver, the extension must then make an Open request to the driver,
so that the driver can perform any necessary initialization. In particular, the driver might
set the dCt | St or age field of the device control entry to a pointer or a handle to a block
in the system heap containing all of the variables that it might need. Finally, the device
driver signs into the Sound Input Manager by calling the SPBSi gnl nDevi ce function.

Once signed in, a driver can receive Status, Control, and Read requests from the
Sound Input Manager. On entry, the A0 register contains a pointer to a standard
Device Manager parameter block, and the Al register contains a pointer to the
device control entry. For more information on using registers in a device driver,
see Inside Macintosh: Devices.

Responding to Status and Control Requests

The Sound Input Manager supports sound input device information selectors by
sending your device driver Status and Control requests. It uses Status requests to get
information about your device; it uses Control requests to change settings of your sound
input device.

The behavior of your sound input device driver in response to Status and Control
requests depends on the value of the csCode field of the Device Manager control
parameter block. If the csCode field contains 2, then the sound input information
selector is passed in the first 4 bytes of the csPar amfield of the Device Manager control
parameter block. For Status requests, the next 18 bytes can be used for your device driver
to pass information back to an application. For Control requests, these 18 bytes are used
by an application to pass data to your sound input device driver.

Figure 3-1 shows the contents of the csPar amfield of the Device Manager control
parameter block for a sample Status request. The first four bytes of the csPar amfield
contain the input selector' srav' , which is a request for the available sample rates. The
next four bytes of the field contain a pointer to an application-supplied buffer in which
to return the data (the number of rates available) from the Status request.

Using the Sound Input Manager 3-13

CHAPTER 3

Sound Input Manager

Figure 3-1 An example of the csPar amfield for a Status request
ca¥arms ek Byie=
' LAt 3

Foinier 1o applicatior-spplisd bofier 4

On exit from the Status request, your sound input device driver can respond in one of
two ways. If you are returning fewer than 18 bytes of data, your device driver should
specify in the first 4 bytes of the csPar amfield of the Device Manager control parameter
block the number of bytes of data being returned and place the data in the following 18
bytes. In this case, the Sound Input Manager copies the data to the application-supplied
buffer identified in Figure 3-1. If you are returning more than 18 bytes of data, your
device driver should copy the data to the application-supplied buffer. In this case,

your device driver needs to place a zero in the first 4 bytes of the csPar amfield to
indicate to the Sound Input Manager that the data has already been copied to the
application-supplied buffer.

Figure 3-2 shows the contents of the csPar amfield of the Device Manager control
parameter block for a sample Control request. The first four bytes of the csPar amfield
contain the input selector ' srat' which determines the sample rate for the sound input
device. The next eighteen bytes contain the data, which in this example is the sample rate
to set for your sound input device. This is a Fi xed value of four bytes in length.

3-14

Figure 3-2 An example of the csPar amfield for a Control request
crParas fied Byie=
' sratt 4
e GEESE AT 4

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

Note

Some sound input information selectors require your sound input
device driver to allocate a handle in which to store information. In this
case, your driver should attempt to allocate an appropriately sized
handle in the current heap zone. If allocation fails, your driver should
return the appropriate Memory Manager result code. u

Your sound input device driver must respond to a core set of selectors, but the remaining
selectors defined by Apple are optional. Your device driver might also define private
selectors to support proprietary features. (Selectors containing all lowercase letters,
however, are reserved by Apple.) The section “Getting and Setting Sound Input Device
Information” beginning on page 3-10 lists the core selectors and other selectors that have
been defined.

If the csCode field contains 1 (which can occur only for Control requests), the Sound
Input Manager is attempting to stop asynchronous recording; that is, it is issuing a

Ki | I I Orequest. In response to this, the driver should stop copying data to the
application buffer, update the i oAct Count field of the request parameter block, and
return via an RTS instruction.

Before exiting after a Status and Control request, your sound input device driver should
fill the DO register with the appropriate result code or noEr r. To exit, your sound input
device driver should check whether the Status and Control request was executed
immediately or was queued.

Note

In current versions of system software, the Sound Input Manager always
issues Status and Control requests immediately. This might change in
future versions of system software. u

Your sound input device driver can determine whether a request is issued immediately
by checking the noQueueBi t in the i oTr ap field of the Device Manager control
parameter block. If the request was made immediately, the Control routine should return
via an RTS instruction; if the request was queued, the Control routine should jump to the
Device Manager’s | ODone function via the global jump vector J1 ODone. You need to
make sure that the A0 and Al registers are set the same as they are on entry to the device
driver or JI CDone will fail.

Responding to Read Requests

When a sound input device receives a Read request, it must start recording and saving
recorded data into the buffer specified by the i oBuf f er field of the request parameter
block. If that field is NI L, the driver should record but not save the data. During a Read
request, your sound input device driver can access the sound parameter block that
initiated recording through the i oM sc field of the request parameter block.

If a previous Control request has assigned a sound input interrupt routine to the device
driver and your driver records asynchronously, then the driver must call the routine
each time its internal buffer becomes filled, setting up registers as described in “Defining
a Sound Input Interrupt Routine” on page 3-10. The buffer size that your device driver
specifies in the D1 register should indicate how much your device records during every

Using the Sound Input Manager 3-15

3-16

CHAPTER 3

Sound Input Manager

interrupt. For example, a sound input device driver that uses the serial port might use a
buffer as small as 3 bytes. For the built-in sound input port on the Macintosh LC and
other Macintosh models, the buffer is 512 bytes long.

Your device driver should update the i oAct Count field of the request parameter block
with the actual number of bytes of sampled-sound data recorded. This allows the Sound
Input Manager to monitor the activity of your device driver. Whether your device driver
operates synchronously or asynchronously, it should complete recording by jumping to
the Device Manager’s | ODone function via the global jump vector JI ODone. You need
to set the DO register to the appropriate result code before jumping to the Device
Manager’s | ODone function.

Supporting Stereo Recording

Many sound input devices support recording stereo sounds (that is, sounds from two or
more channels). If you are writing a device driver for a stereo device, you need to make
sure that you support the si Nunber Channel s, si Acti veChannel s, and

si Acti velLevel s selectors.

The si Nurber Channel s selector controls the number of sound input channels and
thereby determines the format of the data stream your device driver produces. If the
number of channels is 1, the driver should produce monophonic data in response to a
Read request. If the number of channels is 2, the driver should produce interleaved
stereo data in response to a Read request.

The si Act i veChannel s selector controls which of the available input channels are
used for recording. The active channels are specified using a bitmap value. For example,
the value $01 indicates that the first channel (the left channel) is to be used. The value
$02 indicates that the second channel (the right channel) is to be used.

The si Nunber Channel s andsi Acti veChannel s selectors together determine the
exact format of the output data stream. If the current number of channels is 1 and the
current active channel bitmap is $01, the driver should produce a stream of monophonic
data containing samples only from the left input channel. If the current number of
channels is 1 and the current active channel bitmap is $02, the driver should produce a
stream of monophonic data containing samples only from the right input channel. If the
current number of channels is 1 and the current active channel bitmap is $03, the driver
should mix the right and left channels to produce a stream of monophonic data. If the
current number of channels is 2 and the current active channel bitmap is $03, the driver
should produce a stream of interleaved samples from the left and right input channels.

Note

If the si Act i veChannel s selector is never passed to a sound input
device driver, it’s recommended that the active channel default bitmap
for both monophonic and stereo recording should be $03. When the
active channel bitmap conflicts with the number of channels (for
example, there are two channels but the active channel bitmap is $01),
you should use the default value of $03. u

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

Supporting Continuous Recording

If your sound input device driver supports continuous recording, it must do more than
respond to Status, Control, and Read requests. It must also, if continuous recording is on,
begin recording into an internal ring buffer as soon as a Read request completes. The
buffer should be made large enough so that the sound input device driver can support
successive requests to the SPBRecor d function in most circumstances; however, if your
driver exhausts the internal buffer, your driver should begin recording again at the start
of the buffer.

When the sound input device driver receives a subsequent Read request, it should
record to the application’s buffer first all of the data in the internal ring buffer and then
as much fresh data as it can record during one interrupt.

If a Read terminates due to a Ki | | | Orequest, your sound input device driver does not
need to continue recording samples to the internal ring buffer until after the next
uninterrupted Read request.

Sound Input Manager Reference

Constants

This section describes the constants, data structure, and the routines provided by the
Sound Input Manager.

This section describes the constants you can use with the SPBSet Devi cel nf o and
SPBGet Devi cel nf o functions to set or get device information. It also lists the Gest al t
function sound attributes selector and the returned bit numbers that are relevant to the
Sound Input Manager. All other constants defined by the Sound Input Manager are
described at the appropriate location in this chapter. (For example, the constants that you
can use to specify sound recording qualities are described in connection with the
SndRecor d function beginning on page 3-28.)

Gestalt Selector and Response Bits

You can pass the gest al t SoundAt t r selector to the Gest al t function to determine
information about the sound input capabilities of a Macintosh computer.

gestal t SoundAttr = 'snd '; {sound attributes selector}

The Gest al t function returns information by setting or clearing bits in ther esponse
parameter. The bits relevant to the Sound Input Manager are defined by constants:

Sound Input Manager Reference 3-17

CONST

gest al t Soundl OVgr Pr esent
gest al t Bui | t 1 nSoundI nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecord

gestal t 16Bi t Soundl O

gest al t St er eol nput =
gestal t Li neLevel | nput

CHAPTER 3

Sound Input Manager

{sound input routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recording}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}
{built-in input hw needs line |evel}

I
©CoOoNgO R

Constant descriptions

gest al t Soundl Owvgr Pr esent
Set if the Sound Input Manager is available.

gest al t Bui | t 1 nSoundI nput
Set if a built-in sound input device is available.

gest al t HasSoundl nput Devi ce
Set if a sound input device is available. This device can be either
built-in or external.

gest al t Pl ayAndRecord
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if
the gest al t Bui | t I nSoundI nput bit is set, and it applies only to
any built-in sound input and output hardware.

gestal t 16Bi t Soundl O
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.

gest al t St er eol nput
Set if the built-in sound hardware can record stereo sounds.

gestal t Li neLevel | nput
Set if the built-in sound input port requires line level input.

Note

For complete information about the Gest al t function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. u

Sound Input Device Information Selectors

3-18

You can call the SPBSet Devi cel nf o and SPBGet Devi cel nf o functions to set or
get information about a sound input device. You pass each of those functions a sound
input device information selector in the i nf oType parameter to specify the type

of information you need. The available device information selectors are defined

by constants.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

IMPORTANT
Some of these selectors are intended for use only by the Sound Input
Manager and other parts of the system software that need to interact
directly with sound input device drivers. (For example, the Sound Input
Manager sends the si Cl oseDri ver selector to a sound input device
driver when it is closing the device.) In general, applications should not
use these reserved selectors. s

CONST
si Acti veChannel s = 'chac'; {channel s active}
si ActivelLevel s = 'l mc'; {l evel s active}
si AGCOnNOF f = 'agc '; {automatic gain control state}
si Async = 'asyn'; {asynchronous capability}
si Channel Avai | abl e = 'chav'; {nunber of channel s avail abl e}
si Cl oseDri ver = 'clos'; {reserved for internal use only}
si Conpressi onAvai l able = 'crmav'; {conpression types avail abl e}
si Conpr essi onFact or = 'cnfa'; {current conpression factor}
si Conpr essi onHeader = 'cnhd' {return conpression header}
si Conpr essi onNanes = 'cnam ; {return conpression type names}
si Conpr essi onType = 'conp'; {current conpression type}
si Cont i nuous = ‘'cont'; {conti nuous recordi ng}
si Devi ceBuf ferInfo = "dbin'; {size of interrupt buffer}
si Devi ceConnect ed = 'dcon'; {i nput device connection status}
si Devi cel con = 'icon'; {i nput device icon}
si Devi ceName = 'nane'; {i nput device nane}
silnitializeDriver ='init"; {reserved for internal use only}
si I nput Gai n = 'gain'; {input gain level}
si | nput Sour ce = 'sour'; {i nput source sel ector}
si | nput Sour ceNanes = 'snamn ; {i nput source nanes}
si Level Met er OnOF f ="'lnet'; {level neter state}
si Nunber Channel s = 'chan'; {current nunber of channel s}
si OptionsDi al og = 'optd'; {di splay options dial og box}
si PauseRecor di ng = ' paus'; {reserved for internal use only}
si Pl ayThr uOnOf f ='plth'; {pl ay-t hrough st at e}
si Recordi ngQual ity = 'qual '; {recording quality}
si Sanpl eRat e = 'srat'; {current sanple rate}
si Sanpl eRat eAvai | abl e = 'srav'; {sanmpl e rates avail abl e}
si Sanpl eSi ze = 'ssiz'; {current sanple size}
si Sanpl eSi zeAvai | abl e = 'ssav'; {sanpl e sizes avail abl e}
si St er eol nput Gai n = 'sgai'; {stereo input gain |evel}
si TwosConpl enment OnCOf f = 'twos'; {two's conpl enent state}
si UserInterrupt Proc = 'user'; {reserved for internal use only}
si VoxRecordl nfo = 'voxr'; {VOX record paraneters}
si VoxSt opl nfo = 'voxs'; {VOX stop paraneters}

Sound Input Manager Reference 3-19

3-20

CHAPTER 3

Sound Input Manager

Constant descriptions
si Acti veChannel s

si Acti velLevel s

si AGCONOX f

si Async

Get or set the channels to record from. When setting the active
channels, the data passed in is a long integer that is interpreted as a
bitmap describing the channels to record from. For example, if bit 0
is set, then the first channel is made active. The samples for each
active channel are interleaved in the application’s buffer. When
reading the active channels, the data returned is a bitmap of the
active channels.

Get the current signal level for each active channel. The i nf oDat a
parameter points to an array of integers, the size of which depends
on the number of active channels. You can determine how many
channels are active by calling SPBGet Devi cel nf o with the

si Nunmber Channel s selector.

Get or set the current state of the automatic gain control feature. The
i nf oDat a parameter points to an integer, which is 0 if gain control
isoffand 1 if it is on.

Determine whether the driver supports asynchronous recording
functions. Thei nf oDat a parameter points to an integer, which is
0 if the driver supports synchronous calls only and 1 otherwise.
Some sound input drivers do not support asynchronous recording
at all, and some might support asynchronous recording only on
certain hardware configurations.

si Channel Avai |l abl e

si Cl oseDri ver

Get the maximum number of channels this device can record. The
i nf oDat a parameter points to an integer, which is the number of
available channels.

The Sound Input Manager sends this selector when it closes a
device previously opened with write permission. The sound input
device driver should stop any recording in progress, deallocate the
input hardware, and initialize local variables to default settings.
Your application should never issue this selector directly. The

i nf oDat a parameter is unused with this selector.

si Conpr essi onAvai | abl e

Get the number and list of compression types this device can
produce. The i nf oDat a parameter points to an integer, which is
the number of compression types, followed by a handle. The handle
references a list of compression types, each of type OSType.

si Conpr essi onFact or

Get the compression factor of the current compression type. For
example, the compression factor for MACE 3:1 compression is 3. If a
sound input device driver supports only compression type ' NONE' ,
the returned compression type is 1. Thei nf oDat a parameter
points to an integer, which is the compression factor.

si Conpr essi onHeader

Get a compressed sound header for the current recording settings.
Your application passes in a pointer to a compressed sound header

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

and the driver fills it in. Before calling SPBGet Devi cel nf o with
this selector, you should set the nunfr anes field of the compressed
sound header to the number of bytes in the sound. When

SPBCet Devi cel nf o returns successfully, that field contains the
number of sample frames in the sound. This selector is needed

only by drivers that use compression types that are not directly
supported by Apple. If you call this selector after recording a sound,
your application can get enough information about the sound to
play it or save it in a file. The i nf oDat a parameter points to a
compressed sound header.

si Conpr essi onNanes

Get a list of names of the compression types supported by the
sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the i nf oDat a
parameter, a handle to a block of memory that contains the names
of all compression types supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach
any resource handles (by calling Det achResour ce) before
returning them to the caller. The data in the handle has the same
format asan ' STR#' resource; a two-byte count of the strings in the
resource, followed by the strings themselves. The strings should
occur in the same order as the compression types returned by the

si Conpr essi onAvai | abl e selector. If the driver does not
support compression, it returns si Unknownl nf oType. If the driver
supports compression but for some reason not all compression
types are currently selectable, it returns a list of all available
compression types.

si Conpr essi onType

si Cont i nuous

Get or set the compression type. Some devices allow the incoming
samples to be compressed before being placed in your application’s
input buffer. Thei nf oDat a parameter points to a buffer of type
OSType, which is the compression type.

Get or set the state of continuous recording from this device. If
recording is being turned off, the driver stops recording samples to
its internal buffer. Only sound input device drivers that support
asynchronous recording support continuous recording. The

i nf oDat a parameter points to an integer, which is the state of
continuous recording (0 is off, 1 is on).

si Devi ceBufferlnfo

Get the size of the device’s internal buffer. This information can be
useful when you want to modify sound input data at interrupt time.
Note, however, that if a driver is recording continuously, then the
size of the buffer passed to your sound input interrupt routine
might be greater than the size this selector returns because data
recorded between calls to SPBRecor d as well as recorded during
calls to SPBRecor d will be sent to your interrupt routine. The

i nf oDat a parameter points to a long integer, which is the size of
the device’s internal buffer.

Sound Input Manager Reference 3-21

3-22

CHAPTER 3

Sound Input Manager

si Devi ceConnect ed

si Devi cel con

si Devi ceNane

Get the state of the device connection. The i nf oDat a parameter
points to an integer, which is one of the following constants:

CONST
si Devi cel sConnect ed = 1;
si Devi ceNot Connect ed = 0;
si Dont Knowl f Connect ed = -1;

The si Devi cel sConnect ed constant indicates that the device is
connected and ready. The si Devi ceNot Connect ed constant
indicates that the device is not connected. The

si Dont Knowl f Connect ed constant indicates that the Sound
Input Manager cannot determine whether the device is connected.

Get the device’s icon and icon mask. In response to a Status call, a
sound input device driver should return, in the location specified
by the i nf oDat a parameter, a handle to a block of memory that
contains the icon and its mask in the format of an ' | CN#' resource.
It is the driver’s responsibility to allocate that block of memory, but
it should not releasee it. The software issuing this selector is
responsible for disposing of the handle. As a result, a device driver
should detach any resource handles (by calling Det achResour ce)
before returning them to the caller.

Get the name of the sound input device. Your application must pass
a pointer to a buffer that will be filled in with the device’s name.
The buffer needs to be large enough to hold a St r 255 data type.

silnitializeDriver

si Il nput Gain

si | nput Sour ce

The Sound Input Manager sends this selector when it opens a

sound input device with write permission. The sound input device
driver initializes local variables and prepares to start recording. If
possible, the driver initializes the device to a sampling rate of

22 kHz, a sample size of 8 bits, mono recording, no compression,
automatic gain control on, and all other features off. Your
application should never issue this selector directly. The i nf oDat a
parameter is unused with this selector.

Get and set the current sound input gain. If the available hardware
allows adjustment of the recording gain, this selector lets you get
and set the gain. In response to a Status call, a sound input driver
returns the current gain setting. In response to a Control call, a
sound input driver sets the gain level used for all subsequent
recording to the specified value. The i nf oDat a parameter points to
a 4-byte value of type Fi xed ranging from 0.5 to 1.5, where 1.5
specifies maximum gain.

Get and set the current sound input source. If the available
hardware allows recording from more than one source, this selector
lets you get and set the source. In response to a Status call, a sound
input driver returns the current source value; if the driver supports
only one source, it returns si Unknownl nf oType. In response to a
Control call, a sound input driver sets the source of all subsequent

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

recording to the value passed in. If the value is less than 1 or greater
than the number of input sources, the driver returns par aner r ; if
the driver supports only one source, it returns

si Unknownl nf oType. The i nf oDat a parameter points to an
integer, which is the index of the current sound input source.

si | nput Sour ceNanes

Get a list of the names of all the sound input sources supported by
the sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the i nf oDat a
parameter, a handle to a block of memory that contains the names
of all sound sources supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach
any resource handles (by calling Det achResour ce) before
returning them to the caller. The data in the handle has the same
format as an ' STR#' resource; a two-byte count of the strings in the
resource, followed by the strings themselves. The strings should
occur in the same order as the input sources returned by the

si | nput Sour ce selector. If the driver supports only one source, it
returns si Unknownl nf oType. If the driver supports more than
one source but for some reason not all of them are currently
selectable, it returns a list of all available input sources.

si Level Met er OnOf f

Get or set the current state of the level meter. For calls to set the
level meter, the i nf oDat a parameter points to an integer that
indicates whether the level meter is off (0) or on (1). To get the level
meter setting, the i nf oDat a parameter points to two integers; the
first integer indicates the state of the level meter, and the second
integer contains the level value of the meter. The level meter setting
is an integer that ranges from 0 (no volume) to 255 (full volume).

si Nunber Channel s

si OptionsDi al og

Get or set the number of channels this device is to record. The

i nf oDat a parameter points to an integer, which indicates the
number of channels. Note that this selector determines the format of
the data stream output by the driver. If the number of channels is 1,
the driver should output monophonic data in response to a Read
call. If the number of channels is 2, the driver should output
interleaved stereo data.

Determine whether the driver supports an Options dialog box
(SPBCet Devi cel nf 0) or cause the driver to display the Options
dialog box (SPBSet Devi cel nf 0). This dialog box is designed to
allow the user to configure device-specific features of the sound
input hardware. With SPBGet Devi cel nf o, the i nf oDat a
parameter points to an integer, which indicates whether the driver
supports an Options dialog box (1 if it supports it, 0 otherwise).
With SPBSet Devi cel nf o, the i nf oDat a parameter is unused.

Sound Input Manager Reference 3-23

3-24

CHAPTER 3

Sound Input Manager

si PauseRecor di ng
The Sound Input Manager uses this selector to get or set the current
pause state. The sound input device driver continues recording but
does not store the sampled data in a buffer. Your application should
never issue this selector directly. The i nf oDat a parameter points
to an integer, which indicates the state of pausing (0 is off, 1 is on).

si Pl ayThr uOnOf f
Get or set the current play-through state and volume. The
i nf oDat a parameter points to an integer, which indicates the
current play-through volume (1 to 7). If that integer is 0, then
play-through is off.

si Recordi ngQual ity
Get or set the current quality of recorded sound. The i nf oDat a
parameter points to a buffer of type OSType, which is the recording
quality. Currently three qualities are supported, defined by these

constants:

CONST
si BestQual ity = 'best"';
siBetterQuality = 'betr';
si GoodQual ity = 'good';

These qualities are defined by the sound input device driver.
Usually best means monaural, 8-bit, 22 kHz, sound with no
compression.

si Sanpl eRat e Get or set the sample rate to be produced by this device. The sample
rate must be in the range 0 to 65535.65535 Hz. The sample rate is
declared as a Fi xed data type. In order to accommodate sample
rates greater than 32 kHz, the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.
The i nf oDat a parameter points to a buffer of type Fi xed, which is
the sample rate.

si Sanpl eRat eAvai | abl e
Get the range of sample rates this device can produce. The
i nf oDat a parameter points to an integer, which is the number of
sample rates the device supports, followed by a handle. The handle
references a list of sample rates, each of type Fi xed. If the device
can record a range of sample rates, the number of sample rates is set
to 0 and the handle contains two rates, the minimum and the
maximum of the range of sample rates. Otherwise, a list is returned
that contains the sample rates supported. In order to accommodate
sample rates greater than 32 kHz, the most significant bit is not
treated as a sign bit; instead, that bit is interpreted as having the
value 32,768.

si Sanpl eSi ze Get or set the sample size to be produced by this device. Because
some compression formats require specific sample sizes, this
selector might return an error when compression is used. The
i nf oDat a parameter points to an integer, which is the sample size.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

si Sanpl eSi zeAvai | abl e

Get the range of sample sizes this device can produce. The

i nf oDat a parameter points to an integer, which is the number of
sample sizes the device supports, followed by a handle. The handle
references a list of sample sizes, each of type | nt eger.

si St er eol nput Gai n

Get and set the current stereo sound input gain. If the available
hardware allows adjustment of the recording gain, this selector lets
you get and set the gain for each of two channels (left or right). In
response to a Status call, a sound input driver should return the
current gain setting for the specified channel. In response to a
Control call, a sound input driver should set the gain level used for
all subsequent recording to the specified value. The i nf oDat a
parameter points to two 4-byte values of type Fi xed ranging from
0.5 to 1.5, where 1.5 specifies maximum gain. The first of these
values is equivalent to the gain for the left channel and the second
value is equivalent to the gain for the right channel.

si TwosConpl enment OnCOf f

Get or set the current state of the two’s complement feature. This
selector only applies to 8-bit data. (16-bit samples are always stored
in two’s complement format.) If on, the driver stores all samples in
the application buffer as two’s complement values (that is, -128 to
127). Otherwise, the driver stores the samples as offset binary
values (that is, 0 to 255). The i nf oDat a parameter points to an
integer, which is the current state of the two’s complement feature
(1 if two’s complement output is desired, 0 otherwise).

si UserInterrupt Proc

si VoxRecordl nfo

si VoxSt opl nfo

The Sound Input Manager sends this selector to specify the sound
input interrupt routine that the sound input device driver should
call. Your application should never issue this selector directly. The
i nf oDat a parameter points to a procedure pointer, which is the
address of the sound input interrupt routine.

Get or set the current VOX recording parameters. The i nf oDat a
parameter points to two integers. The first integer indicates whether
VVOX recording is on or off (0 if off, 1 if on). The second integer
indicates the VOX record trigger value. Trigger values range from

0 to 255 (0 is trigger immediately, 255 is trigger only on full volume).

Get or set the current VOX stopping parameters. The i nf oDat a
parameter points to three integers. The first integer indicates
whether VOX stopping is on or off (0 if off, 1 if on). The second
integer indicates the VOX stop trigger value. Trigger values range
from 0 to 255 (255 is stop immediately, 0 is stop only on total
silence). The third integer indicates how many milliseconds the
trigger value must be continuously valid for recording to be
stopped. Delay values range from 0 to 65,535.

Sound Input Manager Reference 3-25

CHAPTER 3

Sound Input Manager

Data Structures

This section describes the sound input parameter block.

Sound Input Parameter Blocks

The SPBRecor d and SPBRecor dToFi | e functions require a pointer to a sound input
parameter block that defines characteristics of the recording. If you define a sound input
completion routine or a sound input interrupt routine, your routine receives a pointer
to a sound input parameter block. If you are using only the Sound Input Manager’s
high-level SndRecor d and SndRecor dToFi | e functions, the operation of sound input
parameter blocks is transparent to your application. A sound input parameter block is

defined by the SPB data type.

TYPE SPB =
RECORD
i nRef Num Longl nt; {reference nunber of input device}
count : Longl nt; {nunber of bytes to record}
m | 1iseconds: Longl nt; {nunber of mlliseconds to record}
buf f er Lengt h: Longl nt; {length of buffer to record into}
bufferPtr: Ptr; {pointer to buffer to record into}
conpl eti onRout i ne: ProcPtr; {pointer to a conpletion routine}
i nterrupt Routi ne: ProcPtr; {pointer to an interrupt routine}
user Long: Longl nt; {for application's use}
error: OSErr; {error returned after recording}
unusedl: Longl nt; {reserved}
END;
Field descriptions
i nRef Num The reference number of the sound input device (as received from
the SPBOpenDevi ce function) from which the recording is to occur.
count On input, the number of bytes to record. On output, the number of
bytes actually recorded. If this field specifies a longer recording time
than the m | | i seconds field, thenthe m | | i seconds field is
ignored on input.
nmlliseconds On input, the number of milliseconds to record. On output, the
number of milliseconds actually recorded. If this field specifies a
longer recording time than the count field, then the count field is
ignhored on input.
buf f er Lengt h The length of the buffer into which recorded sound data is placed.
The recording time specified by the count ormi I | i seconds field
is truncated to fit into this length, if necessary.
bufferPtr A pointer to the buffer into which recorded data is placed. If this
field is NI L, then the count , ni | | i seconds, and buf f er Lengt h
fields are ignored and the recording will continue indefinitely until
the SPBSt opRecor di ng function is called. However, the data is
3-26 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

not stored anywhere, so setting this field to NI L is useful only if you
want to do something in a sound input interrupt routine but do not
want to save the recorded sound.

conpl eti onRouti ne
A pointer to a completion routine that is called when the recording
terminates as a result of your calling the SPBSt opRecor di ng
function or when the limit specified by the count or
m | | i seconds field is reached. The completion routine executes
only if SPBRecor d is called asynchronously and therefore is called
at interrupt time.

i nt errupt Routi ne
A pointer to a routine that is called by asynchronous recording
devices when their internal buffers are full. You can define a sound
input interrupt routine to modify uncompressed sound samples
before they are placed into the buffer specified in the buf f er Pt r
parameter. The interrupt routine executes only if SPBRecor d is
called asynchronously and therefore is called at interrupt time.

user Long A long integer available for the application’s own use. You can use
this field, for instance, to pass a handle to an application-defined
structure to the completion routine or to the interrupt routine.

error On exit, the error that occurred during recording. This field contains
a value greater than 0 while recording unless an error occurs, in
which case it contains a value less than 0 that indicates an operating
system error. Your application can poll this field to check on the
status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

unusedl Reserved for use by Apple. You should always initialize this
field to 0.

Sound Input Manager Routines

This section describes the routines provided by the Sound Input Manager. You can use
these routines to

n record sounds using the sound recording dialog box

n open and close sound input devices

n record sounds directly from sound input devices

n get information about sound input devices and change device settings

n construct sound resource and file headers

n register sound input devices with the Sound Input Manager

n convert recording times between millisecond and byte values

n obtain information about the version of the Sound Input Manager that is running

The section “Application-Defined Routines” on page 3-53 describes the format of sound
input completion routines and sound input interrupt routines.

Sound Input Manager Reference 3-27

CHAPTER 3

Sound Input Manager

Recording Sounds

SndRecord

The Sound Input Manager provides two high-level sound input functions, SndRecor d
and SndRecor dToFi | e, for recording sound. These input routines are analogous to the
two Sound Manager functions SndPl ay and SndSt ar t Fi | ePl ay. By using these
high-level routines, you can be assured that your application presents a user interface
that is consistent with that displayed by other applications doing sound input. Both
SndRecor d and SndRecor dToFi | e attempt to record sound data from the sound
input hardware currently selected in the Sound In control panel.

DESCRIPTION

3-28

You can use the SndRecor d function to record sound resources into memory.

FUNCTI ON SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandl e: Handl e):
OSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar to thefi | t er Proc
parameter specified in a call to the Mbdal Di al og procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. Iffi | t er Proc isn’t NI L,
SndRecor d filters events by calling the function thatfi | t er Proc
points to.

cor ner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandl e On entry, a handle to some storage space or NI L. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

The SndRecor d function records sound into memory. The recorded data has the
structure of aformat1' snd ' resource and can later be played using the SndPI ay
function or can be stored as a resource. SndRecor d displays a sound recording dialog
box and is always called synchronously. Controls in the dialog box allow the user to
start, stop, pause, and resume sound recording, as well as to play back the recorded
sound. The dialog box also lists the remaining recording time and the current
microphone sound level.

The qual i t y parameter defines the desired quality of the recorded sound. Currently,
three values are recognized for the qual i t y parameter:

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

CONST
si BestQuality = 'best"'; {the best quality avail abl e}
siBetterQuality = 'betr'; {a quality better than good}
si GoodQual ity = 'good'; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.
For Apple-supplied drivers, this parameter determines whether the recorded sound is to
be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality si Best Qual ity
does not compress the sound and provides the best quality output, but at the expense of
increased memory use. The quality si Bet t er Qual i ty is suitable for most nonvoice
recording, and si GoodQual i ty is suitable for voice recording.

The sndHandl e parameter is a handle to some storage space. If the handle is NI L, the
Sound Input Manager allocates a handle of the largest amount of space that it can find in
your application’s heap and returns this handle in the sndHandl e parameter. The
Sound Input Manager resizes the handle when the user clicks the Save button in the
sound recording dialog box. If the sndHandl e parameter passed to SndRecor d is not
NI L, the Sound Input Manager simply stores the recorded data in the location specified
by that handle.

SPECIAL CONSIDERATIONS
Because the SndRecor d function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndRecor d function are
Trap macro Selector
_SoundDi spat ch $08040014

RESULT CODES
nokErr 0 No error
user Cancel edErr -128 User canceled the operation
si BadSoundl nDevi ce -221 Invalid sound input device
si UnknownQual ity -232 Unknown quality

SEE ALSO

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a
complete description of event filter functions.

Sound Input Manager Reference 3-29

CHAPTER 3

Sound Input Manager

SndRecordToFile

You can use SndRecor dToFi | e to record sound data into a file.

FUNCTI ON SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType;
f Ref Num Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound, as described on page 3-28.
f Ref Num The file reference number of an open file to save the audio data in.

DESCRIPTION

The SndRecor dToFi | e function works just like ShndRecor d except that it stores the
sound input data into a file. The resulting file is in either AIFF or AIFF-C format and
contains the information necessary to play the file by using the Sound Manager’s
SndSt art Fi | ePl ay function. The SndRecor dToFi | e function is always called
synchronously.

Your application must open the file specified in the f Ref Numparameter before calling
the SndRecor dToFi | e function. Your application must close the file sometime after
calling SndRecor dToFi | e.

SPECIAL CONSIDERATIONS

Because the SndRecor dToFi | e function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndRecor dToFi | e function are

Trap macro Selector
_SoundDi spat ch $07080014

RESULT CODES
noErr 0 No error
user Cancel edErr -128 User canceled the operation
si BadSoundl nDevi ce =221 Invalid sound input device
si UnknownQual ity -232 Unknown quality

3-30 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

Opening and Closing Sound Input Devices

You can use the SPBOpenDevi ce function to open the default sound input device that
the user has selected in the Sound In control panel or to open a specific sound input
device. You must open a device before you can record from it by using SPBRecor d, but
the Sound Input Manager’s high-level routines automatically open the default sound
input device. You can close a sound input device by calling the SPBCl oseDevi ce
function.

SPBOpenDevice

DESCRIPTION

You can use the SPBOpenDevi ce function to open a sound input device.

FUNCTI ON SPBOpenDevi ce (devi ceNanme: Str255; pernission: |nteger;
VAR i nRef Num Longlnt): OSErr;

devi ceNane
The name of the sound input device to open, or the empty string if the
default sound input device is to be opened.

per ni ssi on
A flag that indicates whether subsequent operations with that device are
to be read/write or read-only.

i nRef Num On exit, if the function is successful, a device reference number for the
open sound input device.

The SPBOpenDevi ce function attempts to open a sound input device having the name
indicated by the devi ceNane parameter. If SPBOpenDevi ce succeeds, it returns a
device reference number in the i nRef Numparameter. The per m ssi on parameter
indicates whether subsequent operations with that device are to be read/write or
read-only. If the device is not already in use, read/write permission is granted,;
otherwise, only read-only operations are allowed. To make any recording requests or to
call the SPBSet Devi cel nf o function, read/write permission must be available. Use
these constants to request the appropriate permission:

CONST
si ReadPer m ssi on = 0; {open device for reading}
si WitePerm ssion 1, {open device for reading/witing}

You can request that the current default sound input device be opened by passing either
a zero-length string or a NI L string as the devi ceNane parameter. If only one sound
input device is installed, that device is used. Generally you should open the default
device unless you specifically want to use some other device. You can get a list of the
available devices by calling the SPBGet | ndexedDevi ce function.

Sound Input Manager Reference 3-31

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS

Because the SPBOpenDevi ce function allocates memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBOpenDevi ce function are

Trap macro Selector
_SoundDi spat ch $05180014

RESULT CODES
nokErr 0 No error
per nerr 54 Device already open for writing
si BadDevi ceNane -228 Invalid device name

SPBCloseDevice

You can use the SPBCl oseDevi ce function to close a sound input device.
FUNCTI ON SPBC oseDevi ce (i nRef Num Longlint): OSErr;

i nRef Num The device reference number of the sound input device to close.

DESCRIPTION

The SPBCI oseDevi ce function closes a device that was previously opened by
SPBOpenDevi ce and whose device reference number is specified in the
i nRef Numparameter.

SPECIAL CONSIDERATIONS

Because the SPBC oseDevi ce function moves or purges memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBCl oseDevi ce function are

Trap macro Selector
_SoundDi spat ch $021C0014

3-32 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

RESULT CODES

noErr 0 No error
si BadRef Num -229 Invalid reference number

Recording Sounds Directly From Sound Input Devices

The Sound Input Manager provides a number of routines that allow you to begin, pause,
resume, and stop recording directly from a sound input device. These low-level routines
do not display the sound recording dialog box to the user.

SPBRecord

You can use the SPBRecor d function to record audio data into memory, either
synchronously or asynchronously.

FUNCTI ON SPBRecord (inParanPtr: SPBPtr; asynchFl ag: Bool ean):
OSErr;

i nPar anPtr
A pointer to a sound input parameter block.

asynchFl ag
A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

You specify values and receive return values in the sound input parameter block.

Parameter block

® i nRef Num Longl nt A reference number of a sound input
device.

« count Longl nt The number of bytes of recording.

« m | 1iseconds Longl nt The number of milliseconds of
recording.

® buf f er Lengt h Longl nt The length of the buffer beginning at
bufferPtr.

® bufferPtr Ptr A pointer to a buffer for sampled-sound
data.

® conpl eti onRouti ne ProcPtr A pointer to a completion routine.

® i nterrupt Routi ne ProcPtr A pointer to an interrupt routine.

® user Long Longl nt Free for application’s use.

- error CSErr The error value returned after recording.

® unusedl Longl nt Reserved.

Field descriptions

i nRef Num The device reference number of the sound input device, as obtained

from the SPBOpenDevi ce function.
count On input, the number of bytes to record. If this field indicates a

longer recording time than the i | | i seconds field, then the

Sound Input Manager Reference 3-33

DESCRIPTION

3-34

CHAPTER 3

Sound Input Manager

m | liseconds

buf f er Lengt h

bufferPtr

m | |'i seconds field is ighored. On output, this field indicates the
number of bytes actually recorded.

On input, the number of milliseconds to record. If this field
indicates a longer recording time than the count field, then the
count field is ignored. On output, this field indicates the number of
milliseconds actually recorded.

The number of bytes in the buffer specified by the buf f er Pt r
parameter. If this buffer length is too small to contain the amount of
sampled-sound data specified in the count andmni | | i seconds
fields, then recording time is truncated so that the sampled-sound
data fits in the buffer.

A pointer to the buffer for the sampled-sound data, or NI L if you
wish to record sampled-sound data without saving it. On exit, this
buffer contains the sampled-sound data, which is interleaved for
stereo sound on a sample basis (or on a packet basis if the data is
compressed). This buffer contains only sampled-sound data, so if
you need a sampled sound header, you should set that up in a
buffer before calling SPBRecor d and then record into the buffer
following the sound header.

compl eti onRout i ne

A pointer to a completion routine. This routine is called when the
recording terminates (either after you call the SPBSt opRecor di ng
function or when the prescribed limit is reached). The completion
routine is called only for asynchronous recording.

i nterruptRouti ne

user Long

error

unusedl

A pointer to an interrupt routine. The interrupt routine specified in
the i nt er rupt Rout i ne field is called by asynchronous recording
devices when their internal buffers are full.

A long integer that your application can use to pass data to your
application’s completion or interrupt routines.

On exit, a value greater than 0 while recording unless an error
occurs, in which case it contains a value less than 0 that indicates an
operating system error. Your application can poll this field to check
on the status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

Reserved. You should set this field to 0 before calling SPBRecor d.

The SPBRecor d function starts recording into memory from a device specified in a
sound input parameter block. The sound data recorded is stored in the buffer specified
by the buf f er Pt r and buf f er Lengt h fields of the parameter block. Recording lasts
the longer of the times specified by the count andmi I | i seconds fields of the
parameter block, or until the buffer is filled. Recording is asynchronous if the
asynchFl ag parameter is TRUE and the specified sound input device supports
asynchronous recording.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

If the buf f er Pt r field of the parameter block contains NI L, then the count ,

m | i seconds, and buf f er Lengt h fields are ignored, and the recording continues
indefinitely until you call the SPBSt opRecor di ng function. In this case, the audio data
is not saved anywhere; this feature is useful only if you want to do something in your
interrupt routine and do not want to save the audio data. However, if the recording is
synchronous and buf f er Pt r is NI L, SPBRecor d returns the result code

si NoBuf f er Speci fi ed.

The SPBRecor d function returns the value that the er r or field of the parameter block
contains when recording finishes.

SPECIAL CONSIDERATIONS

You can call the SPBRecor d function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SPBRecor d function are

Trap macro Selector
_SoundDi spat ch $03200014

nokErr 0 No error

si NoSoundI nHar dwar e -220 No sound input hardware available
si BadSoundl nDevi ce =221 Invalid sound input device

si NoBuf f er Speci fi ed —222 No buffer specified

si Devi ceBusyErr 227 Sound input device is busy

For an example of the use of the SPBRecor d function, see Listing 3-1.

SPBRecordToFile

You can use the SPBRecor dToFi | e function to record audio data into a file, either
synchronously or asynchronously.

FUNCTI ON SPBRecor dToFil e (fRef Num |Integer; inParanPtr: SPBPtr;
asynchFl ag: Bool ean): OCSErr;

f Ref Num The file reference number of an open file in which to place the recorded
sound data.

i nPar anPt r
A pointer to a sound input parameter block.

Sound Input Manager Reference 3-35

3-36

CHAPTER 3

Sound Input Manager

asynchFl ag

A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

® i nRef Num Longl nt A reference number of a sound input
device.
« count Longl nt The number of bytes of recording.
« m | 1iseconds Longl nt The number of milliseconds of
recording.
® conpl eti onRouti ne ProcPtr A pointer to a completion routine.
® i nterruptRouti ne ProcPtr Unused.
® user Long Longl nt Free for application’s use.
- error OSEr r The error value returned after recording.
® unusedl Longl nt Reserved.
Field descriptions
i nRef Num The device reference number of the sound input device, as obtained
from the SPBOpenDevi ce function.
count On input, the number of bytes to record. If this field indicates a
longer recording time than the m | | i seconds field, then the
m | | i seconds field is ignored. On output, the number of bytes
actually recorded.
nmlliseconds On input, the number of milliseconds to record. If this field

indicates a longer recording time than the count field, then the
count field is ignored. On output, the number of milliseconds
actua