
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

Sound

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
HyperCard, LaserWriter, Macintosh,
Macintosh Quadra, MPW, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

AppleDesign, AudioVision, Finder,
MacinTalk, QuickDraw, and QuickTime
are trademarks of Apple Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

Classic® is a registered trademark
licensed to Apple Computer, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

NuBus™ is a trademark of Texas
Instruments.

Optrotech is a trademark of Orbotech
Corporation.

Sony™ is a trademark of Sony
Corporation, registered in the U.S. and
other countries.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is

authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62272-6
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, May 1994

The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. Sound / [Apple Computer, Inc.]
p. cm.

Includes index.
ISBN 0-201-62272-6
1. Macintosh (Computer) 2. Computer sound processing. I. Apple

Computer, Inc.
QA76.8.M3I53 1994
006.5--dc20 94-16209

CIP

iii

Contents

Figures, Tables, and Listings xi

Preface About This Book xv

Format of a Typical Chapter xvi

Conventions Used in This Book xvi

Special Fonts xvi

Types of Notes xvii

Assembly-Language Information xvii

Development Environment xviii

For More Information xix

Chapter 1 Introduction to Sound on the Macintosh 1-1

About Sound on Macintosh Computers 1-4

Sound Capabilities 1-4

Sound Production 1-9

Sound Recording 1-15

Sound Resources 1-17

Sound Files 1-18

Speech Generation 1-20

The User Interface for Sound 1-23

Using Sound on Macintosh Computers 1-24

Producing an Alert Sound 1-24

Playing a Sound Resource 1-25

Playing a Sound File 1-26

Checking For Sound-Recording Equipment 1-27

Recording a Sound Resource 1-28

Recording a Sound File 1-31

Checking For Speech Capabilities 1-31

Generating Speech From a String 1-32

Sound Reference 1-34

Routines 1-34

Playing Sounds 1-34

Recording Sounds 1-38

Generating and Stopping Speech 1-41

Summary of Sound 1-44

Pascal Summary 1-44

Constants 1-44

Routines 1-44

C Summary 1-45

iv

Constants 1-45

Routines 1-46

Result Codes 1-47

Chapter 2 Sound Manager 2-1

About the Sound Manager 2-6

Sound Data 2-7

Square-Wave Data 2-7

Wave-Table Data 2-8

Sampled-Sound Data 2-9

Sound Commands 2-11

Sound Channels 2-13

Sound Compression and Expansion 2-14

Using the Sound Manager 2-17

Managing Sound Channels 2-19

Allocating Sound Channels 2-20

Initializing Sound Channels 2-22

Releasing Sound Channels 2-24

Manipulating a Sound That Is Playing 2-25

Stopping Sound Channels 2-28

Pausing and Restarting Sound Channels 2-29

Synchronizing Sound Channels 2-30

Managing Sound Volumes 2-31

Obtaining Sound-Related Information 2-32

Obtaining Information About Available Sound Features 2-33

Obtaining Version Information 2-34

Testing for Multichannel Sound and Play-From-Disk Capabilities 2-35

Obtaining Information About a Single Sound Channel 2-37

Obtaining Information About All Sound Channels 2-39

Determining and Changing the Status of the System Alert Sound 2-40

Playing Notes 2-41

Installing Voices Into Channels 2-43

Looping a Sound Indefinitely 2-45

Playing Sounds Asynchronously 2-46

Using Callback Procedures 2-47

Synchronizing Sound With Other Actions 2-51

Managing an Asynchronous Play From Disk 2-52

Playing Selections 2-53

Managing Multiple Sound Channels 2-53

Parsing Sound Resources and Sound Files 2-56

Obtaining a Pointer to a Sound Header 2-57

Playing Sounds Using Low-Level Routines 2-61

Finding a Chunk in a Sound File 2-62

Compressing and Expanding Sounds 2-66

Using Double Buffers 2-68

v

Setting Up Double Buffers 2-70

Writing a Doubleback Procedure 2-72

Sound Storage Formats 2-73

Sound Resources 2-74

The Format 1 Sound Resource 2-75

The Format 2 Sound Resource 2-80

Sound Files 2-81

Chunk Organization and Data Types 2-82

The Form Chunk 2-83

The Format Version Chunk 2-84

The Common Chunk 2-85

The Sound Data Chunk 2-87

Format of Entire Sound Files 2-87

Sound Manager Reference 2-89

Constants 2-89

Gestalt Selector and Response Bits 2-90

Channel Initialization Parameters 2-91

Sound Command Numbers 2-92

Chunk IDs 2-98

Data Structures 2-99

Sound Command Records 2-99

Audio Selection Records 2-100

Sound Channel Status Records 2-101

Sound Manager Status Records 2-102

Sound Channel Records 2-103

Sound Header Records 2-104

Extended Sound Header Records 2-106

Compressed Sound Header Records 2-108

Sound Double Buffer Header Records 2-111

Sound Double Buffer Records 2-112

Chunk Headers 2-113

Form Chunks 2-113

Format Version Chunks 2-114

Common Chunks 2-115

Extended Common Chunks 2-115

Sound Data Chunks 2-117

Version Records 2-118

Leftover Blocks 2-119

State Blocks 2-119

Sound Manager Routines 2-119

Playing Sound Resources 2-120

Playing From Disk 2-123

Allocating and Releasing Sound Channels 2-127

Sending Commands to a Sound Channel 2-130

Obtaining Information 2-132

Controlling Volume Levels 2-139

Compressing and Expanding Audio Data 2-142

vi

Managing Double Buffers 2-147

Performing Unsigned Fixed-Point Arithmetic 2-148

Linking Modifiers to Sound Channels 2-149

Application-Defined Routines 2-151

Completion Routines 2-151

Callback Procedures 2-152

Doubleback Procedures 2-153

Resources 2-154

The Sound Resource 2-154

Summary of the Sound Manager 2-157

Pascal Summary 2-157

Constants 2-157

Data Types 2-161

Sound Manager Routines 2-168

Application-Defined Routines 2-170

C Summary 2-170

Constants 2-170

Data Types 2-175

Sound Manager Routines 2-182

Application-Defined Routines 2-184

Assembly-Language Summary 2-184

Data Structures 2-184

Trap Macros 2-188

Result Codes 2-188

Chapter 3 Sound Input Manager 3-1

About the Sound Input Manager 3-3

Sound Recording Without the Standard Interface 3-4

Interaction With Sound Input Devices 3-4

Sound Input Device Drivers 3-5

Using the Sound Input Manager 3-5

Recording Sounds Directly From a Device 3-6

Defining a Sound Input Completion Routine 3-9

Defining a Sound Input Interrupt Routine 3-10

Getting and Setting Sound Input Device Information 3-10

Writing a Sound Input Device Driver 3-13

Responding to Status and Control Requests 3-13

Responding to Read Requests 3-15

Supporting Stereo Recording 3-16

Supporting Continuous Recording 3-17

Sound Input Manager Reference 3-17

Constants 3-17

Gestalt Selector and Response Bits 3-17

Sound Input Device Information Selectors 3-18

Data Structures 3-26

vii

Sound Input Parameter Blocks 3-26

Sound Input Manager Routines 3-27

Recording Sounds 3-28

Opening and Closing Sound Input Devices 3-31

Recording Sounds Directly From Sound Input Devices 3-33

Manipulating Device Settings 3-41

Constructing Sound Resource and File Headers 3-44

Registering Sound Input Devices 3-48

Converting Between Milliseconds and Bytes 3-51

Obtaining Information 3-53

Application-Defined Routines 3-53

Sound Input Completion Routines 3-54

Sound Input Interrupt Routines 3-55

Summary of the Sound Input Manager 3-57

Pascal Summary 3-57

Constants 3-57

Data Types 3-58

Sound Input Manager Routines 3-59

Application-Defined Routines 3-60

C Summary 3-61

Constants 3-61

Data Types 3-62

Sound Input Manager Routines 3-63

Application-Defined Routines 3-65

Assembly-Language Summary 3-65

Data Structures 3-65

Trap Macros 3-66

Result Codes 3-66

Chapter 4 Speech Manager 4-1

About the Speech Manager 4-4

Voices 4-5

Speech Attributes 4-6

Speech Channels 4-9

Callback Routines 4-10

Using the Speech Manager 4-11

Checking for Speech Manager Capabilities 4-12

Creating, Using, and Disposing of a Speech Channel 4-13

Working With Different Voices 4-14

Adjusting Speech Attributes 4-16

Pausing Speech 4-18

Implementing Callback Procedures 4-19

Writing Embedded Speech Commands 4-23

Embedded Command Delimiters 4-23

Syntax of Embedded Speech Commands 4-24

viii

Examples of Embedded Speech Commands 4-30

Phonemic Representation of Speech 4-32

Phonemic Symbols 4-33

Prosodic Control Symbols 4-34

Including Pronunciation Dictionaries 4-36

Speech Manager Reference 4-39

Constants 4-39

Speech Information Selectors 4-39

Data Structures 4-45

Voice Specification Records 4-46

Voice Description Records 4-47

Voice File Information Records 4-48

Speech Status Information Records 4-48

Speech Error Information Records 4-49

Speech Version Information Records 4-50

Phoneme Information Records 4-52

Phoneme Descriptor Records 4-53

Speech Extension Data Records 4-53

Delimiter Information Records 4-54

Speech Manager Routines 4-54

Starting, Stopping, and Pausing Speech 4-55

Obtaining Information About Voices 4-63

Managing Speech Channels 4-69

Obtaining Information About Speech 4-71

Changing Speech Attributes 4-73

Converting Text To Phonemes 4-79

Installing a Pronunciation Dictionary 4-80

Application-Defined Routines 4-82

Text-Done Callback Procedure 4-82

Speech-Done Callback Procedure 4-84

Synchronization Callback Procedure 4-85

Error Callback Procedure 4-86

Phoneme Callback Procedure 4-87

Word Callback Procedure 4-88

Resources 4-89

The Pronunciation Dictionary Resource 4-89

Summary of the Speech Manager 4-94

Pascal Summary 4-94

Constants 4-94

Data Structures 4-95

Speech Manager Routines 4-98

Application-Defined Routines 4-100

C Summary 4-100

Constants 4-100

Data Types 4-102

Speech Manager Routines 4-105

Application-Defined Routines 4-106

ix

Assembly-Language Information 4-107

Data Structures 4-107

Trap Macros 4-109

Result Codes 4-110

Chapter 5 Sound Components 5-1

About Sound Components 5-4

Sound Component Chains 5-4

The Apple Mixer 5-6

The Data Stream 5-7

Writing a Sound Component 5-8

Creating a Sound Component 5-8

Specifying Sound Component Capabilities 5-11

Dispatching to Sound Component-Defined Routines 5-12

Registering and Opening a Sound Component 5-16

Finding and Changing Component Capabilities 5-18

Sound Components Reference 5-22

Constants 5-22

Sound Component Information Selectors 5-22

Audio Data Types 5-26

Sound Component Features Flags 5-26

Action Flags 5-27

Data Format Flags 5-28

Data Structures 5-29

Sound Component Data Records 5-29

Sound Parameter Blocks 5-30

Sound Information Lists 5-31

Compression Information Records 5-32

Sound Manager Utilities 5-33

Opening and Closing the Apple Mixer Component 5-33

Saving and Restoring Sound Component Preferences 5-35

Sound Component-Defined Routines 5-36

Managing Sound Components 5-37

Creating and Removing Audio Sources 5-42

Getting and Setting Sound Component Information 5-44

Managing Source Data 5-46

Summary of Sound Components 5-50

C Summary 5-50

Constants 5-50

Data Types 5-53

Sound Manager Utilities 5-54

Sound Component-Defined Routines 5-55

Assembly-Language Summary 5-56

Data Structures 5-56

x

Chapter 6 Audio Components 6-1

About Audio Components 6-3

Writing an Audio Component 6-5

Creating an Audio Component 6-5

Dispatching to Audio Component-Defined Routines 6-7

Audio Components Reference 6-8

Data Structures 6-8

Audio Information Records 6-9

Audio Component-Defined Routines 6-9

Getting and Setting Volumes 6-10

Managing the Mute State 6-11

Resetting Audio Components 6-13

Getting Audio Component Information 6-13

Summary of Audio Components 6-15

C Summary 6-15

Constants 6-15

Data Types 6-16

Audio Component-Defined Routines 6-16

Assembly-Language Summary 6-17

Data Structures 6-17

Glossary GL-1

Index IN-1

xi

Figures, Tables, and Listings

Chapter 1 Introduction to Sound on the Macintosh 1-1

Figure 1-1 Basic sound capabilities on Macintosh computers 1-4
Figure 1-2 Enhanced sound capabilities on Macintosh computers 1-6
Figure 1-3 High quality sound capabilities on Macintosh computers 1-7
Figure 1-4 A sound component chain 1-8
Figure 1-5 A sound component chain with a DSP board 1-9
Figure 1-6 The Sound Out control panel 1-10
Figure 1-7 The relation of the Sound Manager to the audio hardware 1-11
Figure 1-8 Bypassing the command queue 1-13
Figure 1-9 Mixing multiple channels of sampled sound 1-14
Figure 1-10 The Sound In control panel 1-15
Figure 1-11 The Alert Sounds control panel 1-16
Figure 1-12 The sound recording dialog box 1-17
Figure 1-13 The speech generation process 1-21
Figure 1-14 The Speech Manager and multiple voices 1-21
Figure 1-15 An icon for a Finder sound 1-23
Figure 1-16 A sound in the Scrapbook 1-24

Table 1-1 AIFF and AIFF-C capabilities 1-19

Listing 1-1 Playing a sound resource with SndPlay 1-25
Listing 1-2 Playing a sound file with SndStartFilePlay 1-26
Listing 1-3 Determining whether sound recording equipment is

available 1-27
Listing 1-4 Recording through the sound recording dialog box 1-28
Listing 1-5 Recording a sound resource 1-29
Listing 1-6 Recording a sound file 1-31
Listing 1-7 Checking for speech generation capabilities 1-31
Listing 1-8 Using SpeakString to generate speech from a string 1-32
Listing 1-9 Generating speech synchronously 1-33
Listing 1-10 Stopping speech generated by SpeakString 1-34

Chapter 2 Sound Manager 2-1

Figure 2-1 The position of the Sound Manager 2-6
Figure 2-2 A graph of a wave table 2-9
Figure 2-3 Interleaving stereo sample points 2-11
Figure 2-4 The structure of 'snd ' resources 2-74
Figure 2-5 The location of the data offset bit 2-75
Figure 2-6 The general structure of a chunk 2-83
Figure 2-7 A sample AIFF-C file 2-88
Figure 2-8 The 'snd ' resource type 2-155
Figure 2-9 The sound resource header 2-156

xii

Table 2-1 Sample rates 2-16
Table 2-2 Frequencies expressed as MIDI note values 2-43

Listing 2-1 Creating a sound channel 2-20
Listing 2-2 Reinitializing a sound channel 2-24
Listing 2-3 Disposing of memory associated with a sound channel 2-25
Listing 2-4 Halving the frequency of a sampled sound 2-26
Listing 2-5 Changing the amplitude of a sound channel 2-27
Listing 2-6 Getting the amplitude of a sound in progress 2-28
Listing 2-7 Adding a channel to a group of channels to be

synchronized 2-30
Listing 2-8 Setting left and right volumes 2-32
Listing 2-9 Determining if stereo capability is available 2-34
Listing 2-10 Determining if the enhanced Sound Manager is present 2-35
Listing 2-11 Testing for multichannel play capability 2-36
Listing 2-12 Testing for play-from-disk capability 2-37
Listing 2-13 Determining whether a sound channel is paused 2-39
Listing 2-14 Determining the number of allocated sound channels 2-40
Listing 2-15 Using the freqDurationCmd command 2-42
Listing 2-16 Installing a sampled sound as a voice in a channel 2-44
Listing 2-17 Looping an entire sampled sound 2-45
Listing 2-18 Issuing a callback command 2-48
Listing 2-19 Defining a callback procedure 2-48
Listing 2-20 Checking whether a callback procedure has executed 2-49
Listing 2-21 Stopping a sound that is playing asynchronously 2-50
Listing 2-22 Starting an asynchronous sound play 2-50
Listing 2-23 Defining a completion routine 2-52
Listing 2-24 Defining a data structure to track many sound channels 2-54
Listing 2-25 Marking a channel for disposal 2-55
Listing 2-26 Disposing of channels that have been marked for disposal 2-55
Listing 2-27 Playing a sound resource 2-57
Listing 2-28 Obtaining the offset in bytes to a sound header 2-58
Listing 2-29 Converting an offset to a sound header into a pointer to a sound

header 2-60
Listing 2-30 Playing a sound using the bufferCmd command 2-62
Listing 2-31 Finding a chunk in a sound file 2-63
Listing 2-32 Loading a chunk from a sound file 2-65
Listing 2-33 Compressing audio data 2-67
Listing 2-34 Setting up double buffers 2-70
Listing 2-35 Defining a doubleback procedure 2-73
Listing 2-36 A format 1 'snd ' resource 2-76
Listing 2-37 A format 1 'snd ' resource containing sampled-sound

data 2-77
Listing 2-38 An 'snd ' resource containing compressed sound data 2-78
Listing 2-39 A resource specification 2-79
Listing 2-40 A resource specification for the Simple Beep 2-79
Listing 2-41 A format 2 'snd ' resource 2-81

xiii

Chapter 3 Sound Input Manager 3-1

Figure 3-1 An example of the csParam field for a Status request 3-14
Figure 3-2 An example of the csParam field for a Control request 3-14

Table 3-1 The sampled sound header format used by
SetupSndHeader 3-45

Listing 3-1 Recording directly from a sound input device 3-7
Listing 3-2 Determining the name of a sound input device 3-12
Listing 3-3 Determining some sound input device settings 3-12

Chapter 4 Speech Manager 4-1

Figure 4-1 The speech generation process 4-4
Figure 4-2 The Speech Manager and multiple voices 4-5
Figure 4-3 MIDI note values and corresponding piano keys 4-7
Figure 4-4 An example of pitch range for a voice 4-8
Figure 4-5 Format of a pronunciation dictionary resource 4-90
Figure 4-6 Format of a dictionary entry in a dictionary resource 4-92
Figure 4-7 Format of a dictionary entry field 4-93

Table 4-1 The embedded command syntax structure 4-25
Table 4-2 Embedded speech commands 4-26
Table 4-3 American English phoneme symbols 4-33
Table 4-4 Prosodic control symbols 4-34
Table 4-5 Effect of punctuation marks on English-language

synthesizers 4-35

Listing 4-1 Checking for speech generation capabilities 4-12
Listing 4-2 Speaking text with a speech channel 4-13
Listing 4-3 Getting a description of a voice 4-15
Listing 4-4 Changing the speech rate and pitch 4-16
Listing 4-5 Pausing and continuing speech production 4-18
Listing 4-6 Setting up a speech channel for callbacks 4-21
Listing 4-7 Installing a word callback procedure 4-21
Listing 4-8 A typical word callback procedure 4-22
Listing 4-9 Installing a pronunciation dictionary resource into a speech

channel 4-37
Listing 4-10 A sample pronunciation dictionary resource 4-38

Chapter 5 Sound Components 5-1

Figure 5-1 The component-based sound architecture 5-5
Figure 5-2 A component chain for audio hardware that can convert sample

rates 5-5
Figure 5-3 Mixing multiple channels of sound 5-6
Figure 5-4 A sound output device component that can mix sound

channels 5-7

xiv

Listing 5-1 Rez input for a component resource 5-11
Listing 5-2 Handling Component Manager selectors 5-14
Listing 5-3 Finding the address of a component-defined routine 5-14
Listing 5-4 Initializing an output device 5-17
Listing 5-5 Getting sound component information 5-19

Chapter 6 Audio Components 6-1

Figure 6-1 The Apple AudioVision 14 Display 6-4
Figure 6-2 The Volumes control panel for the Apple AudioVision 14

Display 6-4

xv

P R E F A C E

About This Book

This book, Inside Macintosh: Sound, describes the parts of the Macintosh

system software that allow you to manage sounds. It describes the services

provided by the three principal sound-related system software managers (the

Sound Manager, the Sound Input Manager, and the Speech Manager) and

shows in detail how your application can record and play back sounds,

compress and expand audio data, convert text to speech, and perform other

similar operations.

If you are not yet experienced with playing or recording sounds on Macintosh

computers, you should begin with the chapter “Introduction to Sound on the

Macintosh.” That chapter describes the services provided by the system

software and shows how to use the most basic sound-related capabilities of

Macintosh computers. It provides complete source code examples illustrating

how to record sounds into resources and files, how to play sounds stored in

resources and files, and how to convert written text into spoken words. It’s

possible that this introductory chapter contains all the information you need

to successfully integrate sound into your application.

Once you are familiar with basic sound recording and production on

Macintosh computers, you might want to read other chapters in this book.

The chapter “Sound Manager” provides complete information about sound

output. It shows how to control sound production at a very low level, how to

produce sound asynchronously (that is, while other operations in the

computer take place), and how to compress and expand audio data. This

chapter also provides complete details about the structure of the two main

sound storage formats, sound resources and sound files.

If you need more control over the sound recording process than is offered by

the basic recording functions described in the chapter “Introduction to Sound

on the Macintosh,” you need to read the chapter “Sound Input Manager.”

That chapter shows how to record sound without displaying the sound

recording dialog box or to interact directly with a sound input device driver.

The chapter “Speech Manager” shows how you can convert written text into

speech. You’ll need to read this chapter if you want to convert arbitrary blocks

of text (such as very large buffers of text) into spoken words, or if you need to

gain very fine control over speech production (for example, to synchronize

speech production with other activities, or to use customized pronunciation

dictionaries).

The chapter “Sound Components” describes how to write sound components.

The Sound Manager uses sound components to manipulate audio data or to

communicate with sound output devices. You need to read this chapter only

if you are developing a new sound output device or want to use a custom

audio data compression and expansion scheme.

xvi

P R E F A C E

The chapter “Audio Components” describes how to write audio components.

The Sound Manager uses audio components to adjust volumes or other

settings of a sound output device when the device contains multiple output

ports that can be independently controlled by software. You need to read this

chapter only if you are developing a new sound output device that contains

several sound-producing ports (such as both speakers and headphones).

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the

chapter “Sound Input Manager” contains these sections:

■ “About the Sound Input Manager.” This section provides an overview of
the features provided by the Sound Input Manager.

■ “Using the Sound Input Manager.” This section describes the tasks you can
accomplish using the Sound Input Manager. It describes how to use the
most common routines, gives related user interface information, provides
code samples, and supplies additional information.

■ “Sound Input Manager Reference.” This section provides a complete
reference for the Sound Input Manager by describing the constants, data
structures, routines, and resources it uses. Each routine description also
follows a standard format, which presents the routine declaration followed
by a description of every parameter of the routine. Some routine
descriptions also give additional descriptive information, such as
assembly-language information or result codes.

■ “Summary of the Sound Input Manager.” This section provides the Pascal
and C interfaces for the constants, data structures, routines, and result
codes associated with the Sound Input Manager. It also includes relevant
assembly-language interface information.

Conventions Used in This Book

Inside Macintosh uses special conventions to present certain types of

information. Words that require special treatment appear in specific fonts or

font styles. Certain information, such as parameter blocks, appears in special

formats so that you can scan it quickly.

Special Fonts
All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and routines are shown in Courier (this
is Courier).

xvii

P R E F A C E

Words that appear in boldface are key terms or concepts and are defined in

the glossary.

Types of Notes
There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-6.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-9.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 2-24.) ▲

Assembly-Language Information
Inside Macintosh provides information about the registers for specific routines

in this format:

In the “Assembly-Language Summary” section at the end of each chapter,

Inside Macintosh presents information about the fields of data structures in

this format:

The left column indicates the byte offset of the field from the beginning of the

data structure. The second column shows the field name as defined in the

MPW Pascal interface files; the third column indicates the size of that field.

The fourth column provides a brief description of the use of the field. For a

complete description of each field, see the discussion of the data structure in

the reference section of the chapter.

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

D0 Contents of register D0 on exit

0 what word event code

2 message long event message

6 when long ticks since startup

xviii

P R E F A C E

In addition, Inside Macintosh presents information about the fields of a

parameter block in this format:

The arrow in the far left column indicates whether the field is an input

parameter, output parameter, or both. You must supply values for all input

parameters and input/output parameters. The routine returns values in

output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal

interface files; the third column indicates the Pascal data type of that field.

The fourth column provides a brief description of the use of the field. For

a complete description of each field, see the discussion that follows the

parameter block or the description of the parameter block in the reference

section of the chapter.

Development Environment

The system software routines described in this book are available using

Pascal, C, or assembly-language interfaces. How you access these routines

depends on the development environment you are using. When showing

system software routines, this book uses the Pascal interfaces available with

the Macintosh Programmer’s Workshop (MPW). However, the chapters

“Sound Components” and “Audio Components” use C interfaces, because

Pascal interfaces are not currently available.

All code listings in this book are shown in Pascal or C. They show methods of

using various routines and illustrate techniques for accomplishing particular

tasks. All code listings have been compiled and, in most cases, tested.

However, Apple Computer, Inc. does not intend for you to use these code

samples in your application.

This book occasionally illustrates concepts by referring to a sample

application called SurfWriter. This application is not an actual product

of Apple Computer, Inc. This book also uses the names SurfBoard and

WaveMaker to refer to sample sound output and input devices. These devices

are not actual products of Apple Computer, Inc.

Parameter block

↔ inAndOut Integer Input/output parameter.

← output1 Ptr Output parameter.

→ input1 Ptr Input parameter.

xix

P R E F A C E

For More Information

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple and

the most popular third-party development tools. Ordering is easy; there are

no membership fees, and application forms are not required for most of our

products. APDA offers convenient payment and shipping options, including

site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information of registering signatures, file types, and other technical

information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 303-2T

Cupertino, CA 95014-6299

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Introduction to Sound on the

Contents

Macintosh

About Sound on Macintosh Computers 1-4

Sound Capabilities 1-4

Sound Production 1-9

Sound Recording 1-15

Sound Resources 1-17

Sound Files 1-18

Speech Generation 1-20

The User Interface for Sound 1-23

Using Sound on Macintosh Computers 1-24

Producing an Alert Sound 1-24

Playing a Sound Resource 1-25

Playing a Sound File 1-26

Checking For Sound-Recording Equipment 1-27

Recording a Sound Resource 1-28

Recording a Sound File 1-31

Checking For Speech Capabilities 1-31

Generating Speech From a String 1-32

Sound Reference 1-34

Routines 1-34

Playing Sounds 1-34

Recording Sounds 1-38

Generating and Stopping Speech 1-41

Summary of Sound 1-44

Pascal Summary 1-44

Constants 1-44

Routines 1-44

C Summary 1-45

C H A P T E R 1

1-2 Contents

Constants 1-45

Routines 1-46

Result Codes 1-47

C H A P T E R 1

1-3

Introduction to Sound on the Macintosh

This chapter provides an introduction to managing sound on Macintosh computers. It’s

intended to help you quickly get started integrating sound into your application. This

chapter introduces the concepts described in detail throughout the rest of this book and

provides source code examples that show you how to use the most basic sound-related

capabilities of Macintosh computers. These examples use the Sound Manager to play

sounds, the Sound Input Manager to record sounds, and the Speech Manager to convert

text strings into spoken words.

Even if your application is not specifically concerned with creating or playing sounds,

you can often improve your application at very little programming expense by using

these system software services to integrate sound or speech into its user interface. For

example, you might use the techniques described in this chapter to

■ play a sound to alert the user that a lengthy spreadsheet calculation is completed

■ provide voice annotations for a word-processing document

■ read aloud the text string that is displayed in a dialog box

If you want to use sound in these simple ways, this chapter will probably provide all the

information you need. The Sound Manager, Sound Input Manager, and Speech Manager

provide high-level routines that make it very easy to play or record sounds without

knowing very much about how sounds are stored or produced electronically.

If, on the other hand, you are writing an application that is primarily concerned with

sound, you should read this chapter and some of the remaining chapters in this book.

You also need to read those chapters if you want to play computer-generated tones

without using sound resources or sound files, play sounds asynchronously, play sounds

at different pitches, record sounds without using the standard sound recording interface,

or customize the quality of speech output to make it easier to understand.

To benefit most from this chapter, you should already be familiar with simple resource

and file management, discussed in the chapters “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox and “Introduction to File Management” in Inside Macintosh: Files.

In particular, this chapter does not explain how to open or close resource or data files,

although it does provide source code examples that demonstrate how to play a sound

from, or record a sound to, a resource or data file that is already open.

This chapter begins with an overview of sound on Macintosh computers. It describes the

audio capabilities available on all Macintosh computers and some of the capabilities

achievable by adding additional hardware and software to Macintosh computers. Then

this chapter describes how you can use the available system software routines to

■ play the system alert sound

■ play sounds stored as resources

■ play sampled sounds stored in sound files

■ determine whether a particular Macintosh computer is capable of recording sounds

■ record sounds into resources

■ record sounds into sound files

■ convert text strings into spoken words

C H A P T E R 1

Introduction to Sound on the Macintosh

1-4 About Sound on Macintosh Computers

For your convenience, this chapter also includes a reference section containing complete

descriptions of the routines used to perform these tasks, and both Pascal and C language

summaries. All of the routines in the reference section of this chapter are also in the

reference sections of the chapter that describes the manager they are part of.

About Sound on Macintosh Computers

The Macintosh hardware and system software provide a standard and extensible set

of capabilities for producing and recording sounds. No matter what kind of application

you are developing, you can use these capabilities to enrich your application, often at

very little programming expense. For example, you might allow users to attach voice

annotations to documents or to other collections of data. Or, you might play a certain

sound to signal that some operation has completed.

This section provides a general overview of the sound input and output capabilities

available on Macintosh computers. It defines some of the concepts used throughout

this book and describes how sounds can be stored by your application. This section

also describes the standard ways of representing sounds in the Macintosh graphical

user interface.

Sound Capabilities
The Macintosh family of computers provides sound input and output capabilities that

far exceed the capabilities of most other personal computers. The principal reason

for this is that the hardware and software aspects of creating or recording sounds are

more tightly integrated with one another than they are on other personal computers.

Figure 1-1 illustrates the basic audio hardware and the sound-related system software

that are now standard on all Macintosh computers.

Figure 1-1 Basic sound capabilities on Macintosh computers

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-5

The audio hardware includes an internal speaker (for producing sounds), a microphone

(for recording sounds), and one or more integrated circuits that convert digital data to

analog signals, or analog signals to digital data. The actual integrated circuits that

perform the conversion of digital to analog data (and vice versa) vary among different

models of Macintosh computers. What’s important is that, together with the available

sound-related system software, the basic audio hardware provides a wide range of

sound input and output capabilities, including

■ playback of digitally recorded (that is, sampled) sounds

■ playback of simple sequences of notes or of complex waveforms

■ recording of sampled sounds

■ conversion of text to spoken words

■ mixing and synchronization of multiple channels of sampled sounds

■ compression and decompression of sound data to minimize storage space

In general, you’ll interact directly with the system software that provides these and other

capabilities. The Macintosh sound architecture includes three principal system software

services:

■ The Sound Manager provides the ability to play sounds through the speaker. It also
provides an extensive set of tools for manipulating sounds. You can use the Sound
Manager to alter virtually any characteristic of a sound, such as its loudness, pitch,
timbre, and duration. You can also use the Sound Manager to compress sounds so that
they occupy less disk space. The Sound Manager can work with sounds stored in
resources or in a file’s data fork. It can also play sounds that are generated
dynamically (and not necessarily stored on disk).

■ The Sound Input Manager provides the ability to record sounds through a
microphone or other sound input device. It manages the standard sound recording
dialog box (shown in Figure 1-12 on page 1-17) and can record sounds into resources
or into files.

■ The Speech Manager provides the ability to convert written text into spoken words.
You might use the Speech Manager to read aloud a block of text that for various
reasons cannot be sampled (perhaps the amount of text is too large to be recorded and
then replayed, or perhaps the text itself is generated dynamically by the user). The
Speech Manager allows you to select from among a number of different voices, alter
some of the readback characteristics (such as speech, pitch, and volume), and provide
custom pronunciation dictionaries.

The basic sound hardware and system software also provide the ability to integrate and

synchronize sound production with the display of other types of information, such as

video and still images. For example, QuickTime uses the Sound Manager to handle all

the sound data in a QuickTime movie.

It’s very easy for users to enhance the quality of the sounds they play back or record by

substituting different speakers or microphones for the ones built into a Macintosh

computer. All current Macintosh computers include a stereo sound output jack that

allows users to add high quality speakers (such as the AppleDesign Powered Speakers).

A user can also substitute a higher quality microphone for the one supplied with the

C H A P T E R 1

Introduction to Sound on the Macintosh

1-6 About Sound on Macintosh Computers

computer. Figure 1-2 illustrates a slightly better audio configuration than the one shown

in Figure 1-1.

Figure 1-2 Enhanced sound capabilities on Macintosh computers

Note that the enhanced sound input and output capabilities shown in Figure 1-2 are

provided entirely by the improved hardware. The system software (in particular, the

Sound Manager and the Sound Input Manager) can support both the built-in audio

hardware and any external hardware connected to the built-in audio jacks.

It’s possible to enhance the audio capabilities of a Macintosh computer even further. For

example, a user can add a NuBus™ expansion card that contains very high quality

digital signal processing (DSP) circuitry, together with sound input or output hardware.

These cards typically bypass the standard Macintosh sound circuitry altogether and

therefore require additional software (a device driver) to work with the Sound Manager

or the Sound Input Manager. The system software is, however, designed to make it easy

for developers to add software to drive their sound output or sound input devices.

A user can also enhance the audio capabilities of a Macintosh computer by adding a

MIDI interface to one of its serial ports. MIDI (the Musical Instrument Digital Interface)

is a standard protocol for sending audio data and commands to digital devices. A user

can connect any MIDI devices (such as synthesizers, drum machines, or lighting

controllers) to a Macintosh computer through the MIDI interface. Apple Computer

supplies a software driver, the MIDI Manager, to control the flow of MIDI data and

commands through the MIDI interface.

Note

The MIDI Manager is not documented in this book. For complete
information about the MIDI Manager, contact APDA. ◆

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-7

Figure 1-3 illustrates a very high capability sound and music configuration built around

a Macintosh computer. This enhanced hardware and system software configuration

allows users to run digital sound editing or recording applications and MIDI sequencing

applications.

Figure 1-3 High quality sound capabilities on Macintosh computers

It’s possible to enhance the sound environment on a Macintosh computer by adding

software alone, for example by adding custom sound compression/decompression
components (codecs). Apple Computer supplies codecs that can handle 3:1 and 6:1

compression and expansion, which are suitable for most audio requirements. For special

purposes, however, it might be advantageous to use other compression and expansion

ratios or algorithms. The Sound Manager can use any available codec to handle

compression and expansion of audio data.

More generally, the Sound Manager supports arbitrary modifications on sound data

using stand-alone code resources known as sound components. A sound component can

C H A P T E R 1

Introduction to Sound on the Macintosh

1-8 About Sound on Macintosh Computers

perform one or more signal-processing operations on sound data. For example, the

Sound Manager includes sound components for compressing and decompressing sound

data (as described in the previous paragraph) and for converting sample rates. Sound

components have a standard programming interface and local storage, which allows

them to be hooked together in series to perform complex tasks. For instance, to play an

11 kHz compressed sampled sound on a Macintosh II computer, the Sound Manager

needs to expand the compressed data into audio samples, convert the samples from

11 kHz to 22 kHz, mix the samples with any other sounds that are playing, and then

send the mixed samples to the available audio hardware (in this case, the Apple Sound

Chip). The Sound Manager uses four different sound components to accomplish this

task, as shown in Figure 1-4.

Figure 1-4 A sound component chain

Except for the lowest-level components that communicate directly with hardware (here,

the Apple Sound Chip), the components of this chain operate solely on a stream of bytes.

This allows Apple and other developers to create sound components that operate

independently of the actual sound-producing hardware available on a particular

Macintosh computer. This also allows the Sound Manager to modify the component

chain used at any time according to the actual capabilities of the output hardware. For

example, a digital signal processing card might be able to do rate conversion internally.

In that case, the Sound Manager can bypass the rate conversion component and send the

11 kHz samples directly to the DSP card, as shown in Figure 1-5.

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-9

Figure 1-5 A sound component chain with a DSP board

In general, an application that wants to produce a sound is unaware of the sound

component chain required to produce that sound on the current sound output device.

The Sound Manager keeps track of which sound output device the user has selected and

constructs a component chain suitable for producing the desired quality of sound on that

device. As a result, even though the capabilities of the available sound output hardware

can vary greatly from one Macintosh computer to another, the Sound Manager ensures

that a given chunk of audio data always sounds as good as possible on the available

sound hardware. This means that you can use the same code to play sounds, regardless

of the actual sound-producing hardware that is available on a particular machine.

The Sound Manager provides sound components for modifying and producing sounds

on the built-in audio hardware and on any hardware attached to the sound output jack.

The Macintosh sound architecture currently allows you to add sound components for

two special purposes: to support alternate compression and decompression algorithms

and to support third-party audio hardware. See the chapter “Sound Components” in this

book for information on developing codecs and sound output device components.

IMPORTANT

You don’t need to know how to develop sound components simply to
play or record sounds on Macintosh computers using the available
sound output or input devices. ▲

The following sections describe in greater detail the operations of the Sound Manager,

the Sound Input Manager, and the Speech Manager. You’ll use the Sound Manager to

produce sounds, the Sound Input Manager to record sounds, and the Speech Manager to

generate speech from text.

Sound Production
A Macintosh computer produces sound when the Sound Manager sends some data

through a sound channel to the available audio hardware, usually at the request of an

application. The audio hardware is a digital-to-analog converter (DAC) that translates

digital sound data into analog audio signals. Those signals are then sent to the internal

speaker, to a sound output connector (to which the user can connect headphones,

external speakers, or sound amplification equipment), or to other sound output

hardware.

The DAC in Macintosh Plus and Macintosh SE computers is a Sony sound chip. The

Macintosh II, Macintosh Portable, Macintosh PowerBook and Macintosh Quadra

C H A P T E R 1

Introduction to Sound on the Macintosh

1-10 About Sound on Macintosh Computers

families of computers contain two Sony sound chips (to provide stereo output

capability) as well as the Apple Sound Chip (ASC), a customized chip that provides

enhanced audio output characteristics as well as emulation capabilities for the earlier

sound hardware.

Some recent models of Macintosh computers contain built-in sound hardware that

extends the Apple Sound Chip’s features. For example, Macintosh computers with

built-in microphones include the Enhanced Apple Sound Chip (EASC). Some

Macintosh computers contain DSP chips that provide very high-quality sound (16-bit

stereo sound, at rates up to 44 kHz). There are also NuBus expansion cards available

from third-party developers that provide other audio DAC hardware.

A user can select a sound output device or control characteristics of the selected device

through the Sound Out control panel, shown in Figure 1-6. The available sound output

devices are listed in the center of the panel. In this case, two sound output devices are

attached to the computer, the built-in speaker and a speaker attached to the SurfBoard

DSP card. The highlighted icon shows which device is the current sound output device.
All sounds produced by the Sound Manager are sent to that device for playback, unless

you specify some other device when creating a sound channel. (See the description of

SndNewChannel in the chapter “Sound Manager” for details on specifying an output

device explicitly.)

Figure 1-6 The Sound Out control panel

Note

This book shows the Sound control panels introduced with version 3.0
of the Sound Manager. Users can use the pop-up menu at the top of the
panel to select one of four or more subpanels (Alert Sounds, Sound In,
Sound Out, and Volumes). It’s possible to add new subpanels to the
Sound control panel. See the chapter on control panel extensions in the
book Inside Macintosh: Operating System Utilities. ◆

You can play a sound by calling a Sound Manager routine such as SysBeep (to play the

system alert sound), SndPlay (to play a sound stored in memory), or

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-11

SndStartFilePlay (to play a sound stored in a file). The Sound Manager then issues

one or more sound commands to the audio hardware. A sound command is an

instruction to produce sound, modify sound, or otherwise assist in the overall process of

sound production.

To ensure that sound commands are issued in the correct order, the Sound Manager uses

a structure called a sound channel to store commands. A sound channel is associated

with a first-in, first-out (FIFO) queue of sound commands. Queued commands are sent

to the sound hardware through a sound output device component, a component that

manages the last stage of communication with the audio hardware. Figure 1-7 shows

how your application communicates, through the Sound Manager and the sound output

device component, with the current sound output device.

Figure 1-7 The relation of the Sound Manager to the audio hardware

C H A P T E R 1

Introduction to Sound on the Macintosh

1-12 About Sound on Macintosh Computers

Note
This chapter does not discuss sound commands or channels in detail,
because you do not need to know about these details to play sound data
stored in sound resources or sound files. This chapter describes only
how to play and record sampled sounds. For more information on
sound channels and sound commands, see the chapter “Sound
Manager” in this book. ◆

You can play sounds either synchronously or asynchronously. When you play a sound

synchronously, the Sound Manager alone has control over the CPU while it executes

commands in a sound channel. Your application does not continue executing until the

sound has finished playing. When you play a sound asynchronously, your application

can continue other processing while the sound is playing. This chapter shows how to

play sounds only synchronously. To learn how to play sounds asynchronously, see the

chapter “Sound Manager” in this book.

Sometimes it is necessary to bypass the queue of sound commands. If, for example, you

want to stop all sound production on a particular channel immediately, it would be

counterproductive to put the command into the sound channel because that command

wouldn’t be processed until any others already in the queue were processed. You can

send sound commands directly to the hardware component, as shown in Figure 1-8.

When you bypass the sound channel in this way, any commands that are already queued

but not yet sent to the sound output device component remain queued. You can,

however, flush the channel at any time by sending the Sound Manager the appropriate

request.

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-13

Figure 1-8 Bypassing the command queue

It’s possible to have several channels of sound open at one time. The Sound Manager

(using a sound-mixing component called the Apple Mixer component) mixes together

the data coming from all open sound channels and sends a single stream of sound data

to the current sound output device. This allows a single application to play two or more

sounds at once. It also allows multiple applications to play sounds at the same time, as

illustrated in Figure 1-9.

C H A P T E R 1

Introduction to Sound on the Macintosh

1-14 About Sound on Macintosh Computers

Figure 1-9 Mixing multiple channels of sampled sound

The Sound Manager was first released for all Macintosh computers as part of system

software version 6.0. System software versions 6.0.7 and later include an enhanced
Sound Manager (that is, version 2.0) that provides routines for continuous play from

disk, sound mixing, and audio compression and expansion. System software versions

6.0.7 and later also include the Sound Input Manager, which allows for recording sounds

through either a built-in microphone or some other sound input device.

More recent versions of the Sound Manager significantly improve the performance of the

Sound Manager’s operations and extends its capabilities. Version 3.0 of the Sound

Manager is as much as two to three times more efficient than previous versions, which

allows your application to do more processing while a sound is playing. In addition,

version 3.0 of the Sound Manager provides three important new capabilities:

■ Support for 16-bit audio samples. Versions of the Sound Manager earlier than
version 3.0 support only 8-bit monophonic or stereo audio samples with sample rates
up to 22 kHz. The Sound Manager version 3.0 supports 16-bit stereo audio samples
with sample rates up to 64 kHz, thereby allowing your application to produce
CD-quality sound. Moreover, the Sound Manager version 3.0 automatically converts
16-bit samples into 8-bit samples on Macintosh computers that do not have the
hardware to output 16-bit sounds.

■ Support for non-Apple audio hardware. The Sound Manager version 3.0 and later
use a sound architecture that allows support for third-party audio hardware. This
allows a user to install audio hardware capable of recording and producing
CD-quality sound. Versions 3.0 and later also include a new Sound control panel that
allows the user to redirect sound output to any available audio hardware.

■ Support for plug-in codecs. Versions of the Sound Manager earlier than version 3.0
support audio compression and expansion only at ratios of 3:1 and 6:1. The Sound
Manager version 3.0 provides support for other compressed audio data formats by
allowing plug-in audio compression and expansion components (or codecs).

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-15

You provide support for your own sound output devices or for your own compression

and decompression algorithms by writing an appropriate sound component. See the

chapter “Sound Components” later in this book for complete details.

The Sound Manager version 3.0 is supported only on Macintosh computers with an ASC

or comparable hardware. In particular, the Sound Manager version 3.0 is not supported

on Macintosh Classic, Macintosh Plus, or Macintosh SE computers. As a result, you

should always test whether the specific capabilities you want to use are present before

attempting to use them. You can use the Gestalt function to do this, as illustrated in

“Checking For Sound-Recording Equipment” beginning on page 1-27 and in “Checking

For Speech Capabilities” beginning on page 1-31.

This book describes the capabilities and programming interfaces of version 3.0 of the

Sound Manager. Many of the techniques described here can also be used with earlier

versions of the Sound Manager, but some cannot. Make sure to test your application

thoroughly with all versions of the Sound Manager you want to run under.

Sound Recording
The Sound Input Manager provides the ability to record and digitally store sounds in a

device-independent manner. You can create a resource or a file containing a recorded

sound simply by calling either the SndRecord function or the SndRecordToFile

function. You can then use the recorded sound in any way appropriate to your

application.

The sound input and storage routines can be used with any available sound input

hardware for which there is an appropriate device driver. A user can select from

among the available sound input devices through the Sound In control panel,
shown in Figure 1-10.

Figure 1-10 The Sound In control panel

C H A P T E R 1

Introduction to Sound on the Macintosh

1-16 About Sound on Macintosh Computers

The available sound input devices are listed in the center of the panel. The control panel

lists a device if its driver has previously registered itself with the Sound Input Manager

and has provided a name and device icon. In Figure 1-10, two sound input devices are

available, a device named Built-in and a device named WaveMaker. The highlighted icon

shows which device is the current sound input device.

The Alert Sounds control panel lists the available system alert sounds, as illustrated in

Figure 1-11.

Figure 1-11 The Alert Sounds control panel

The Alert Sounds control panel also includes two buttons, Add and Remove. These

buttons allow the user to add sounds to and remove sounds from the list of available

system alert sounds. The Add button is used to record a new alert sound and add it to

the list. Clicking the Add button causes the Sound Input Manager to display a sound

recording dialog box (described later in this section). Clicking the Remove button causes

the Sound Input Manager to remove the selected alert sound from the list. The user can

achieve the same effect by selecting a sound and then choosing the Clear command in

the Edit menu. If no sound input drivers are installed in the system, these two buttons

do not appear.

If the user records a sound using the Alert Sounds control panel, the recorded sound is

saved as a resource of type 'snd ' in the System file. That sound then appears in the list

of available alert sounds. Note that the Alert Sounds control panel supports the standard

Edit menu commands on sounds stored in the System file. The Cut command copies the

selected sound to the Clipboard and removes it from the list of system alert sounds. The

Copy command just copies the selected sound to the Clipboard. The Paste command

takes a sound copied from the Clipboard and places it in the list of available alert

sounds. If your application allows users to manipulate sound resources, it should

support the copying and pasting of sound resources through the Clipboard. However,

the Undo command does not work with sound-related editing operations.

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-17

The Sound Input Manager provides two high-level routines that allow your application

to record sounds from the user and store them in memory or in a file. When you call

either SndRecord or SndRecordToFile, the Sound Input Manager presents a sound
recording dialog box to the user, illustrated in Figure 1-12.

Figure 1-12 The sound recording dialog box

Using the controls in this dialog box, the user can start, pause, resume, and stop

recording on the currently selected sound input device. The user can also play back the

recorded sound. The time indicator bar provides an indication of the current length of

the recorded sound.

When the user clicks the Save button after initiating a recording from the Sound control

panel, another dialog box appears asking the user to give the sound a name. Unless the

user cancels the save operation at that point, the Sound control panel saves the recorded

sound into a sound resource in the System file. Note that if your application can save

recorded sound resources, the SndRecord function does not present the dialog box that

allows the user to name the sound and does not automatically save the recorded sound

into a resource file. Your application must provide code to accomplish these tasks.

Sound Resources
Resources of type 'snd ' (also called sound resources) can contain both sound

commands and sound data, and are widely used by sound-producing applications.

These resources provide a simple and portable way for you to incorporate sounds into

your application. For example, the sounds that a user can select in the Sound control

panel as the system alert sound are stored in the System file as 'snd ' resources. The

user can select the current system alert sound with the Alert Sounds control panel, as

illustrated in Figure 1-11. More generally, you can load a sound resource into memory

and then play it by calling the SndPlay function.

Note
If you do not use the sound-recording routines provided by the Sound
Input Manager, you must know the structure of 'snd ' resources
before you can create them. For information on this, see the chapter
“Sound Manager” in this book. You can also use the SetupSndHeader
function, described in the chapter “Sound Input Manager” in this book,
to help you create an 'snd ' resource. ◆

C H A P T E R 1

Introduction to Sound on the Macintosh

1-18 About Sound on Macintosh Computers

The Sound Manager can read sound resources in two formats, format 1 or format 2.

However, the format 2 'snd ' resource is obsolete, so your application should use

format 1 'snd ' resources. For more information on the differences between format 1

and format 2 'snd ' resources, see the chapter “Sound Manager” in this book.

The format 1 'snd ' resource is the most general kind of sound resource. A format 1

'snd ' resource can contain a sequence of Sound Manager commands and associated

sound data (such as wave-table data or a sampled sound header that both describes a

digitally recorded sound and includes the sampled-sound data itself). Your application

can produce sounds simply by passing a handle to that resource to the SndPlay

function, which opens a sound channel and sends the commands and data contained in

the resource into the channel. Alternatively, a format 1 'snd ' resource might contain a

sequence of commands that describe a sound, without providing any other sound data.

For example, such a resource could contain a command that alters the amplitude (or

loudness) of sound playing on a channel. In this case, your application can use the

SndPlay function to execute the commands on any channel.

Sound Files
Although most sampled sounds that you want your application to produce can be stored

as sound resources, there are times when it is preferable to store sounds in sound files.
For example, it is usually easier for different applications to share files than it is to share

resources. So, if you want your application to play a sampled sound created by another

application (or if you want other applications to be able to play a sampled sound created

by your application), it might be better to store the sampled-sound data in a file, not in a

resource. Similarly, if you are developing versions of your application that run on other

operating systems, you might need a method of storing sounds that is independent of

the Macintosh Operating System and its reliance on resources to store data. Generally, it

is easier to transfer data stored in data files from one operating system to another than it

is to transfer data stored in resources.

There are other reasons you might want to store some sampled sounds in files and not in

resources. If you have a very large sampled sound, it might not be possible to create a

resource large enough to hold all the audio data. Resources are limited in size by the

structure of resource files (and in particular because offsets to resource data are stored as

24-bit quantities). Sound files, however, can be much larger because the only size

limitations are those imposed by the file system on all files. If the sampled-sound data

for some sound occupies more than about a half megabyte of space, you should

probably store the sound as a file.

To address these various needs, Apple and several third-party developers have defined

two sampled-sound file formats, known as the Audio Interchange File Format (AIFF)
and the Audio Interchange File Format Extension for Compression (AIFF-C). The

names emphasize that the formats are designed primarily as data interchange formats.

However, you should find both AIFF and AIFF-C flexible enough to use as data storage

formats as well. Even if you choose to use a different storage format, your application

should be able to convert to and from AIFF and AIFF-C if you want to facilitate sharing

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-19

of sound data among applications. AIFF format files have file type 'AIFF' and AIFF-C

format files have file type 'AIFC'.

Note

Do not confuse AIFF and AIFF-C files (referred to in this chapter as
sound files) with Finder sound files. Each Finder sound file contains a
sound resource that plays when the user double clicks on the file in the
Finder (or selects the file and chooses Open from the File menu). A user
can create a Finder sound file by dragging a sound out of the System
file, and a user can drag a Finder sound file into the System file to add
the file’s sound to the list of available system alert sounds. You can
create a Finder sound file by creating a file of type 'sfil' with a
creator of 'movr' and placing in the file a single sound resource. You
can play such a file by using Resource Manager routines to open the
Finder sound file and then by using the SndPlay function to play the
single sound resource contained in it. ◆

The main difference between the AIFF and AIFF-C formats is that AIFF-C allows you to

store either compressed or noncompressed audio data, whereas AIFF allows you to store

noncompressed audio data only. The AIFF-C format is more general than the AIFF

format and is easier to modify. The AIFF-C format can be extended to handle new

compression types and application-specific data. As a result, if your application reads or

writes sound files, it should be able to handle both AIFF and AIFF-C files. Table 1-1

summarizes the capabilities of the AIFF and AIFF-C file formats.

The enhanced Sound Manager includes play-from-disk routines that allow you to play

AIFF and AIFF-C files continuously from disk even while other tasks execute. You might

think of the play-from-disk routines as providing you with the ability to install a “tape

player” in a sound channel. Once the sound begins to play, it continues uninterrupted

until it finishes or until an application pauses or stops it.

You can play a sampled sound stored in a file of type AIFF or AIFF-C by opening the file

and passing its file reference number to the SndStartFilePlay function. If the file is of

type AIFF-C and the data is compressed, then the data is automatically expanded during

playback. The SndStartFilePlay function works like the SndPlay function but does

not require the entire sound to be in RAM at one time. Instead, the Sound Manager uses

two buffers, each of which is smaller than the sound itself. The Sound Manager plays

one buffer of sound while filling the other with data from disk. After it finishes playing

the first buffer, the Sound Manager switches buffers, and plays data in the second while

refilling the first. This double buffering technique minimizes RAM usage at the expense

Table 1-1 AIFF and AIFF-C capabilities

File
type

Read
sampled

Read
compressed

Write
sampled

Write
compressed

AIFF Yes No Yes No

AIFF-C Yes Yes Yes Yes

C H A P T E R 1

Introduction to Sound on the Macintosh

1-20 About Sound on Macintosh Computers

of additional disk overhead. As a result, SndStartFilePlay is ideal for playing very

large sounds.

The disk overhead incurred when using SndStartFilePlay is relatively light, and

most mass-storage devices currently available for Macintosh computers have response

times that are good enough that SndStartFilePlay can retrieve audio data from disk

and play a sound without audible gaps. There are no limits on the number of concurrent

disk-based sampled-sound playbacks other than those imposed by processor speed and

disk capability. On machines with sufficient CPU resources, several continuous

playbacks can occur at once. Disk fragmentation can affect the performance of playing

sampled-sound files from disk. In addition, playing multiple sounds from the same hard

disk may degrade overall performance.

The Sound Manager currently supports continuous play from disk only on certain

Macintosh computers. You should use the Gestalt function to determine whether a

specific machine supports play from disk. Also, if a sound channel is being used for

continuous play from disk, then no other sound commands can be sent to that channel.

Speech Generation
The Speech Manager converts text into sound data, which it passes to the Sound

Manager to play through the current sound output device. The Speech Manager’s

interaction with the Sound Manager is transparent to your application, so you don’t

need to be familiar with the Sound Manager to take advantage of the Speech Manager’s

capabilities. This section provides an overview of the Speech Manager and outlines the

process that the Speech Manager uses to convert text into speech.

Figure 1-13 illustrates the speech generation process. Your application can initiate speech

generation by passing a string or a buffer of text to the Speech Manager. The Speech

Manager is responsible for sending the text to a speech synthesizer, a component that

contains executable code that manages all communication between the Speech Manager

and the Sound Manager. A synthesizer is usually contained in a resource in a file within

the System Folder. The synthesizer uses built-in dictionaries and pronunciation rules to

help determine how to pronounce text. Your application can use the default system voice

to generate speech; it can also specify that some other available voice be used for speech

generation.

As Figure 1-13 suggests, the Speech Manager is a dispatching mechanism that allows

your application to take advantage of the capabilities of whatever speech synthesizers,

voices, and hardware are installed. The Speech Manager itself does not do any of the

work of converting text into speech; it just provides a convenient programming interface

that manages access to speech synthesizers and, indirectly, to the sound hardware. The

Speech Manager uses the Component Manager to access whatever speech synthesizers

are available and allows applications to take maximum advantage of a computer’s

speech facilities without knowing what those facilities are.

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-21

Figure 1-13 The speech generation process

Note
The Component Manager is described in Inside Macintosh:
More Macintosh Toolbox, but you do not need to be familiar with
it to use the Speech Manager. ◆

A speech synthesizer can include one or more voices, as illustrated in Figure 1-14. Just as

different people’s voices have different tonal qualities, so too can different voices in a

synthesizer. A synthesized voice might sound male or female, and might sound like an

adult or child. Some voices sound distinctively synthetic, while others sound more like

real people. As speech synthesizing technology develops, the voices that your

application can access are likely to sound more and more human. Because the Speech

Manager’s routines work on all voices and synthesizers, you will not need to rewrite

your application to take advantage of improvements in speech technology.

Figure 1-14 The Speech Manager and multiple voices

C H A P T E R 1

Introduction to Sound on the Macintosh

1-22 About Sound on Macintosh Computers

Any given person has only one voice, but can alter the characteristics of his or her speech

in a number of different ways. For example, a person can speak slowly or quickly, and

with a low or a high pitch. Similarly, the Speech Manager provides routines that allow

you to modify these and other speech attributes, regardless of which voice is in use.

To indicate to the Speech Manager which voice or attributes you would like it to use in

generating speech, your application must use a speech channel. A speech channel is a

data structure that the Speech Manager uses when processing text; it can be associated

with a particular voice and particular speech attributes. Because multiple speech

channels can coexist, your application can create several different vocal environments (to

simulate a conversation, for example). Because a synthesizer can be associated with only

one language and region, your application would need to create a separate speech

channel to process each language in bilingual or multilingual text. (Currently, however,

only English-producing synthesizers are available.)

Different speech channels can even generate speech simultaneously, subject to processor

capabilities and Sound Manager limitations. This capability should be used with

restraint, however, because it can be hard for the user to understand any speech when

more than one channel is generating speech at a time. Also, your application should in

general generate speech only at the specific request of the user and should allow the user

to turn off speech output. At the very least, your application should include an option

that allows the user to view text instead of hearing it. Some users might have trouble

understanding speech generated by the Speech Manager, and others might be

hearing-impaired. Even users who are able to clearly understand computer-synthesized

speech might prefer to read rather than hear.

In general, your application does not need to know which speech synthesizer it is using.

You can obtain a list of all available voices, but in most cases, you do not need to be

concerned with which speech synthesizer a voice is associated. Sometimes, however, a

speech synthesizer may provide special capabilities beyond that provided by the Speech

Manager. For example, a speech synthesizer might allow you to select an option to read

numbers in a nonstandard way. The Speech Manager allows you to determine which

synthesizer is associated with a voice for these circumstances, and provides hooks that

allow your application to take advantage of synthesizer-specific capabilities.

In general, however, your application can achieve the best results by making no

assumptions about which synthesizers might be available. The user of a 2 MB Macintosh

Classic® might use a synthesizer with low RAM requirements, while the user of a 20 MB

Macintosh Quadra 950 might take advantage of a synthesizer that provides better audio

quality at the expense of memory usage. The Speech Manager makes it easy to

accommodate both kinds of users.

The most basic use of the Speech Manager is to convert a text string into speech. The

SpeakString function, described in “Generating Speech From a String” beginning on

page 1-32, lets you do this even without allocating a speech channel. The chapter

“Speech Manager” in this book describes how you can customize the quality of speech

output to make it easier to understand and how you can obtain more control over speech

by allocating speech channels and embedding commands within text strings.

C H A P T E R 1

Introduction to Sound on the Macintosh

About Sound on Macintosh Computers 1-23

The User Interface for Sound
As you have seen, the Macintosh system software provides you with a wide array of

easy-to-use sound-input and sound-output services. With very little programming,

you can

■ play the user’s system alert sound or any sound contained in a sound resource or file

■ record sounds through the available sound-input hardware

■ convert text into speech

The system software has already defined a set of user interface elements and metaphors

that are designed to facilitate the integration of sound into the Macintosh graphical user

interface. In general, you should use the existing system software services to present the

standard interface elements designed by Apple. For example, if you want to have the

user record through the available sound-input hardware, you can call the SndRecord

function, which displays the sound recording dialog box (shown in Figure 1-12 on

page 1-17). That dialog box contains controls that are modelled on the buttons typically

found on an audio tape recorder or a video cassette recorder. In this way, the system

software draws on the user’s knowledge of how to operate a tape recorder and uses it as

a metaphor for recording sounds on Macintosh computers.

The system software also provides visual representations of sounds themselves. In some

cases, sounds are represented by their names only, as in the Alert Sounds control panel

(shown in Figure 1-11 on page 1-16). In other cases, sounds are represented by icons. For

example, the icon for a Finder sound looks like the one shown in Figure 1-15. All Finder

sounds are represented by the same icon; they are distinguished from each other by their

names.

Figure 1-15 An icon for a Finder sound

If the user copies or cuts a sound from the available system alert sounds and then pastes

the sound into the Scrapbook, the sound is shown as in Figure 1-16.

C H A P T E R 1

Introduction to Sound on the Macintosh

1-24 Using Sound on Macintosh Computers

Figure 1-16 A sound in the Scrapbook

As you can see, the metaphor in both cases is that of a speaker, a sound-producing

device familiar to most computer users. If you need to design icons to represent sounds

created by your application, you might want to use (or suitably adapt) these existing

metaphors. For example, if your application supports document annotations with

recorded voices or other sounds, you can display a speaker icon within the document.

Clicking or double-clicking the icon should result in playing the sound.

Keep in mind that applications that play sound should allow users to turn off sound

output, because there might be users who object to it or environments where it is

inappropriate. Also, there might be cultural biases or preferences associated with certain

sounds. Thus, if your application plays specific sounds, you should store them as

resources, which can be easily modified for local regions, or if they are very large, in

sound files, which you can replace easily during localization.

Using Sound on Macintosh Computers

This section describes the most basic ways of using the Sound Manager, the Sound Input

Manager, and the Speech Manager. In particular, it provides source code examples that

show how to produce an alert sound, play a sound resource, play a sound file, determine

whether your application can access sound recording equipment, record a sound

resource, record a sound file, and convert a text string to spoken words.

Producing an Alert Sound
You can produce a system alert sound to catch the user’s attention by calling the

SysBeep procedure. The SysBeep procedure is a Sound Manager routine that plays the

alert sound selected by the user in the Alert Sounds control panel. Here’s an example of

calling SysBeep:

C H A P T E R 1

Introduction to Sound on the Macintosh

Using Sound on Macintosh Computers 1-25

IF myErr <> noErr THEN

SysBeep(30);

You must supply a parameter when you call the SysBeep procedure, even though the

Sound Manager ignores that parameter in most cases. All system alert sounds are stored

as format 1 'snd ' resources in the System file and are played by the Sound Manager.

There is one instance in which the number passed to SysBeep is not ignored: if the user

has selected the Simple Beep as the system alert sound on some Macintosh computers

(for example, a Macintosh Plus or Macintosh SE), the beep is generated by code stored in

ROM rather than by the Sound Manager, and the duration parameter is interpreted in

ticks (sixtieths of a second).

The SysBeep procedure has no effect if an application has disabled the system alert

sound. You might do this to prevent the system alert sound from interrupting some

other sound. For information on enabling and disabling the system alert sound, see the

chapter “Sound Manager” in this book.

You should not call the SysBeep procedure at interrupt time, because doing so causes

the Sound Manager to attempt to allocate memory and load a resource.

Note

If your primary use of the SysBeep procedure is to alert the user of
important or abnormal occurrences, it might be preferable to use the
Notification Manager. See the chapter “Notification Manager” in
Inside Macintosh: Processes for complete details on alerting the user. ◆

Playing a Sound Resource
You can play a sound stored in a resource by calling the SndPlay function, which

requires a handle to an existing 'snd ' resource. An 'snd ' resource contains sound

commands that play the desired sound. The 'snd ' resource might also contain sound

data. If it does (as in the case of a sampled sound), that data might be either compressed

or noncompressed. SndPlay decompresses the data, if necessary, to play the sound.

Listing 1-1 illustrates how to play a sound resource.

Listing 1-1 Playing a sound resource with SndPlay

FUNCTION MyPlaySndResource (mySndID: Integer): OSErr;

CONST

kAsync = TRUE; {for asynchronous play}

VAR

mySndHandle: Handle; {handle to an 'snd ' resource}

myErr: OSErr;

BEGIN

mySndHandle := GetResource('snd ', mySndID);

myErr := ResError; {remember any error}

IF mySndHandle <> NIL THEN {check for a NIL handle}

C H A P T E R 1

Introduction to Sound on the Macintosh

1-26 Using Sound on Macintosh Computers

BEGIN

HLock(mySndHandle); {lock the sound data}

myErr := SndPlay(NIL, mySndHandle, NOT kAsync);

HUnlock(mySndHandle); {unlock the sound data}

ReleaseResource(mySndHandle);

END;

MyPlaySndResource := myErr; {return the result}

END;

When you pass SndPlay a NIL sound channel pointer in its first parameter, the Sound

Manager automatically allocates a sound channel (in the application’s heap) and then

disposes of it when the sound has completed playing. Note, however, that when your

application does pass NIL as the pointer to a sound channel, the third parameter to

SndPlay is ignored; the sound plays synchronously even if you specify that you want it

to play asynchronously.

IMPORTANT

The handle you pass to SndPlay must be locked for as long as the
sound is playing. ▲

Playing a Sound File
You can initiate and control a playback of sampled sounds stored in a file using the

SndStartFilePlay, SndPauseFilePlay, and SndStopFilePlay functions. You use

SndStartFilePlay to initiate the playing of a sound file. If you allocate your own

sound channel and specify that play be asynchronous, you can then use the

SndPauseFilePlay and SndStopFilePlay functions to pause, resume, and stop

sound files that are playing. The chapter “Sound Manager” in this book describes these

two functions in detail.

To play a sampled sound that is contained in a file, you pass SndStartFilePlay the

file reference number of the file to play. The sample should be stored in either AIFF or

AIFF-C format. If the sample is compressed, it is automatically expanded during

playback. If you specify NIL as the sound channel, then SndStartFilePlay allocates

memory for a channel internally. Listing 1-2 defines a function that plays a file specified

by its file reference number.

Listing 1-2 Playing a sound file with SndStartFilePlay

FUNCTION MyPlaySoundFile (myFileRefNum: Integer): OSErr;

CONST

kAsync = TRUE; {for asynchronous play}

kBufferSize = 20480; {20K play buffer}

VAR

myErr: OSErr;

BEGIN

C H A P T E R 1

Introduction to Sound on the Macintosh

Using Sound on Macintosh Computers 1-27

myErr := SndStartFilePlay(NIL, myFileRefNum, 0, kBufferSize,

NIL, NIL, NIL, NOT kAsync);

MyPlaySoundFile := myErr;

END;

To allow the Sound Manager to handle all memory allocation automatically, you should

pass NIL as the first and fifth parameters to SndStartFilePlay, as done in Listing 1-2.

The first NIL specifies that you want SndStartFilePlay to allocate a sound channel

itself. The NIL passed as the fifth parameter specifies that SndStartFilePlay should

automatically allocate buffers to play the sound. The SndStartFilePlay function then

allocates two buffers, each half the size specified in the fourth parameter; if the fourth

parameter is 0, the Sound Manager chooses a default size for the buffers.

The third parameter passed to SndStartFilePlay here is set to 0. That parameter is

used only when playing sound resources from disk.

The seventh parameter to SndStartFilePlay allows you to specify a routine to be

executed when the sound finishes playing. This is useful only for asynchronous play. In

Listing 1-2, the value NOT kAsync (that is, FALSE) is passed as the eighth parameter to

SndStartFilePlay to request synchronous playback. SndStartFilePlay would

return a badChannel result code if you request asynchronous playback because

MyPlaySoundFile does not allocate a sound channel.

Checking For Sound-Recording Equipment
Before allowing a user to record a sound, you must ensure that sound-recording

hardware and software are installed. You can record sound through the microphone built

into several Macintosh models, or through third-party sound input devices. Because

low-level sound input device drivers handle communication between your application

and the sound recording hardware, you do not need to know what type of microphone is

available. Listing 1-3 defines a function that determines whether sound recording

hardware is available.

Listing 1-3 Determining whether sound recording equipment is available

FUNCTION MyHasSoundInput: Boolean;

VAR

myFeature: LongInt;

myErr: OSErr;

BEGIN

myErr := Gestalt(gestaltSoundAttr, myFeature);

IF myErr = noErr THEN {test sound input device bit}

MyHasSoundInput := BTst(myFeature, gestaltHasSoundInputDevice)

ELSE

MyHasSoundInput := FALSE; {no sound features available}

END;

C H A P T E R 1

Introduction to Sound on the Macintosh

1-28 Using Sound on Macintosh Computers

The MyHasSoundInput function defined in Listing 1-3 uses the Gestalt function to

determine whether sound input hardware is available and usable on the current

Macintosh computer. MyHasSoundInput tests the gestaltHasSoundInputDevice

bit and returns TRUE if you can record sounds. MyHasSoundInput returns FALSE if you

cannot record sounds (either because no sound input device exists or because the Sound

Input Manager is not available).

Note

For more information on the Gestalt function, see Inside Macintosh:
Operating System Utilities. ◆

Recording a Sound Resource
You can record sounds from the current input device by using the SndRecord function.

The SndRecord function presents the sound recording dialog box. When calling

SndRecord, you need to provide a handle to a block of memory where the incoming

data should be stored. If you pass the address of a NIL handle, however, the Sound

Input Manager allocates a large block of space in your application heap and resizes it

when the recording stops. Listing 1-4 illustrates how to call SndRecord.

Listing 1-4 Recording through the sound recording dialog box

PROCEDURE MyRecordThruDialog (VAR mySndHandle: Handle);

VAR

myErr: OSErr;

myCorner: Point;

BEGIN

MyGetTopLeftCorner(myCorner);

mySndHandle := NIL; {use default memory allocation}

myErr := SndRecord(NIL, myCorner, siBestQuality, mySndHandle);

IF (myErr <> noErr) AND (myErr <> userCanceledErr) THEN

DoError(myErr);

END;

If the user cancels sound recording, then the SndRecord function returns the result code

userCanceledErr. The MyRecordThruDialog procedure defined in Listing 1-4

returns a NIL sound handle if the user cancels recording.

If you pass a sound handle that is not NIL as the fourth parameter to the SndRecord

function, the Sound Input Manager derives the maximum time of recording from the

amount of space reserved by that handle. The handle is resized on completion of the

recording.

The first parameter in the call to SndRecord is the address of a filter procedure

that determines how user actions in the dialog box are filtered. In Listing 1-4, no

filter procedure is desired, so the parameter is specified as NIL. For information

C H A P T E R 1

Introduction to Sound on the Macintosh

Using Sound on Macintosh Computers 1-29

on filter procedures, see the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The second parameter in the call to SndRecord is the desired location (in global

coordinates) of the upper-left corner of the dialog box. For example, the Sound control

panel displays the dialog box near the control panel. Your application might place the

dialog box elsewhere (for example in the standard alert position on the main screen).

For more information on centering dialog boxes, see the chapter “Dialog Manager” in

Inside Macintosh: Macintosh Toolbox Essentials.

The third parameter in the call to SndRecord specifies the quality of the recording.

Currently three values are supported:

CONST

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

The precise meanings of these constants are defined by the current sound-input device

driver. The constant siBestQuality indicates that you want the highest quality

recorded sound, usually at the expense of increased storage space (possibly because no

compression is performed on the sound data). The constant siGoodQuality indicates

that you are willing to sacrifice audio quality if necessary to minimize the amount of

storage space required (typically this means that 6:1 compression is performed on the

sound data). For most voice recording, you should specify siGoodQuality. The

constant siBetterQuality defines a quality and storage space combination that is

between those provided by the other two constants.

You could play the sound recorded using the MyRecordThruDialog procedure defined

in Listing 1-4 by calling SndPlay and passing it the sound handle mySndHandle. That

handle refers to some data in memory that has the structure of an 'snd ' resource, but

it is not a handle to an existing resource. To save the recorded data as a resource, you can

use the Resource Manager. Listing 1-5 calls the MyRecordThruDialog procedure and

then uses the Resource Manager to save the recorded data as a resource in an open

resource file.

Listing 1-5 Recording a sound resource

PROCEDURE MyRecordSndResource (resFileRefNum: Integer);

CONST

kMinSysSndRes = 0; {lowest reserved 'snd ' resource ID}

kMaxSysSndRes = 8191; {highest reserved ID}

VAR

myPrevResFile: Integer; {current resource file}

mySndHandle: Handle; {handle to resource data}

myResID: LongInt; {ID of resource}

myResName: Str255; {name of resource}

C H A P T E R 1

Introduction to Sound on the Macintosh

1-30 Using Sound on Macintosh Computers

myErr: OSErr;

BEGIN

myPrevResFile := CurResFile; {remember current resource file}

UseResFile(resFileRefNum); {temporarily switch resource files}

MyRecordThruDialog(mySndHandle); {record via standard interface}

IF mySndHandle <> NIL THEN

BEGIN {recording finished successfully}

REPEAT {find acceptable resource ID number}

myResID := Unique1ID('snd ');

UNTIL (myResID < kMinSysSndRes) OR (myResID > kMaxSysSndRes);

MyGetSoundName(myResName); {get name for sound resource}

{add resource to file}

AddResource(mySndHandle, 'snd ', myResID, myResName);

myErr := ResError;

IF myErr = noErr THEN

BEGIN

UpdateResFile(resFileRefNum); {update resource file}

myErr := ResError;

END;

IF myErr <> noErr THEN

DoError(myErr);

END;

UseResFile(myPrevResFile); {restore previous resource file}

END;

The MyRecordSndResource procedure defined in Listing 1-5 takes as a parameter the

reference number of an open resource file to which you wish to record. The procedure

makes that resource file the current resource file and, after recording, reverts to what was

previously the active resource file. Note that you should not record to your application’s

resource fork, because applications that write to their own resource forks cannot be used

by multiple users at once over a network. For more information on reference numbers

for resource files, see the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox.

The MyRecordSndResource procedure first presents the sound recording dialog box

by calling the MyRecordThruDialog procedure defined in Listing 1-4 on page 1-28.

If that procedure returns a valid sound handle, MyRecordSndResource finds an

acceptable resource ID for the resource file and then calls a procedure that returns a

name for the resource (perhaps by presenting a dialog box that asks the user to name the

sound). Finally, MyRecordSndResource adds the resource to the specified resource file

and updates that file by calling the Resource Manager procedure UpdateResFile.

C H A P T E R 1

Introduction to Sound on the Macintosh

Using Sound on Macintosh Computers 1-31

Recording a Sound File
To record a sound directly into a file, you can call the SndRecordToFile function,

which works exactly like SndRecord except that you pass it the file reference number

of an open file instead of a handle to some memory. When SndRecordToFile exits

successfully, that file contains the recorded audio data in AIFF or AIFF-C format.

You can then play the recorded sound by passing that file reference number to the

SndStartFilePlay function. (See Listing 1-2 on page 1-26 for a sample function that

uses the SndStartFilePlay function.) Listing 1-6 defines a procedure that records a

sound into a file using SndRecordToFile.

Listing 1-6 Recording a sound file

PROCEDURE MyRecordSoundFile (myFileRefNum: Integer);

VAR

myErr: OSErr;

myCorner: Point;

BEGIN

MyGetTopLeftCorner(myCorner);

myErr := SndRecordToFile(NIL, myCorner, siBestQuality, myFileRefNum);

IF (myErr <> noErr) AND (myErr <> userCanceledErr) THEN

DoError(myErr);

END;

The SndRecordToFile function records the sound in the file specified in its

fourth parameter. You must open the file before calling the MyRecordSoundFile

procedure, and you must close the file after calling it. For more information on creating,

opening, and closing files, see the chapter “Introduction to File Management” in

Inside Macintosh: Files.

Checking For Speech Capabilities
Because the Speech Manager is not available in all system software versions, your

application should always check for speech capabilities before attempting to use them.

Listing 1-7 defines a function that determines whether the Speech Manager is available.

Listing 1-7 Checking for speech generation capabilities

FUNCTION MyHasSpeech: Boolean;

VAR

myFeature: LongInt; {feature being tested}

myErr: OSErr;

BEGIN

myErr := Gestalt(gestaltSpeechAttr, myFeature);

C H A P T E R 1

Introduction to Sound on the Macintosh

1-32 Using Sound on Macintosh Computers

IF myErr = noErr THEN {test Speech Manager-present bit}

MyHasSpeech := BTst(myFeature, gestaltSpeechMgrPresent)

ELSE

MyHasSpeech := FALSE; {no speech features available}

END;

The MyHasSpeech function defined in Listing 1-7 uses the Gestalt function to

determine whether the Speech Manager is available. The MyHasSpeech function tests

the gestaltSpeechMgrPresent bit and returns TRUE if and only if the Speech

Manager is present. If the Gestalt function cannot obtain the desired information and

returns a result code other than noErr, the MyHasSpeech function assumes that the

Speech Manager is not available and therefore returns FALSE.

Generating Speech From a String
It is easy to have the Speech Manager generate speech from a string stored as a variable

of type Str255. The SpeakString function takes one parameter, the string to be

spoken. SpeakString automatically allocates a speech channel, uses that channel to

produce speech, and then disposes of the speech channel when speaking is complete.

Speech generation is asynchronous, but because SpeakString copies the string you

pass it into an internal buffer, you are free to release the memory you allocated for the

string as soon as SpeakString returns.

Listing 1-8 show how you can use the SpeakString function to convert a string stored

in a resource of type 'STR#' into speech.

Listing 1-8 Using SpeakString to generate speech from a string

PROCEDURE MySpeakStringResource (myStrListID: Integer; myIndex: Integer);

VAR

myString: Str255; {the string to speak}

myErr: OSErr;

BEGIN

GetIndString(myString, myStrListID, myIndex); {load the string}

myErr := SpeakString(myString); {start speaking}

IF myErr <> noErr THEN

DoError(myErr);

END;

The MySpeakStringResource procedure defined in Listing 1-8 takes as parameters

the resource ID of the 'STR#' resource containing the string and the index of the

string within that resource. MySpeakStringResource passes these values to the

GetIndString procedure, which loads the string from the resource file into memory.

MySpeakStringResource then calls the SpeakString function to convert the string

into speech; if an error occurs, it calls an application-defined error-handling procedure.

C H A P T E R 1

Introduction to Sound on the Macintosh

Using Sound on Macintosh Computers 1-33

The speech that the SpeakString function generates is asynchronous; that is, control

returns to your application before the function finishes speaking the string. If you would

like to generate speech synchronously, you can use SpeakString in conjunction with

the SpeechBusy function, which returns the number of active speech channels,

including the speech channel created by the SpeakString function.

Listing 1-9 illustrates how you can use SpeechBusy and SpeakString to generate

speech synchronously.

Listing 1-9 Generating speech synchronously

PROCEDURE MySpeakStringResourceSync (myStrListID: Integer; myIndex: Integer);

VAR

activeChannels: Integer; {number of active speech channels}

BEGIN

activeChannels := SpeechBusy; {find number of active channels}

MySpeakStringResource(myStrListID, myIndex); {speak the string}

{Wait until channel is no longer processing speech.}

REPEAT

UNTIL SpeechBusy = activeChannels;

END;

The MySpeakStringResourceSync procedure defined in Listing 1-9 uses the

MySpeakStringResource procedure defined in Listing 1-8 to speak a string. However,

before calling MySpeakStringResource, MySpeakStringResourceSync calls the

SpeechBusy function to determine how many speech channels are active. After the

speech has begun, the MySpeakStringResourceSync function does not return until

the number of speech channels active again falls to this level.

Note

Ordinarily, you should play speech asynchronously, to allow the user to
perform other activities while speech is being generated. You might play
speech synchronously if other activities performed by your application
should not occur while speech is being generated. ◆

You can use the SpeakString function to stop speech being generated by a prior call

to SpeakString. You might do this, for example, if the user switches to another

application or closes a document associated with speech being generated. To stop

speech, simply pass a zero-length string to the SpeakString function (or if you are

programming in C, pass NULL).

Listing 1-10 shows how your application can stop speech generated by a call to the

SpeakString function.

C H A P T E R 1

Introduction to Sound on the Macintosh

1-34 Sound Reference

Listing 1-10 Stopping speech generated by SpeakString

PROCEDURE MyStopSpeech;

VAR

myString: Str255; {an empty string}

myErr: OSErr;

BEGIN

myString[0] := Char(0); {set length of string to 0}

myErr := SpeakString(myString); {stop previous speech}

IF myErr <> noErr THEN

DoError(myErr);

END;

The MyStopSpeech procedure defined in Listing 1-10 sets the length byte of a string to

0 before calling the SpeakString function. To execute this code in some development

systems, you need to ensure that range checking is disabled. Consult your development

system’s documentation for details on enabling and disabling range checking.

Sound Reference

This section describes the routines used in this chapter to illustrate basic sound

producing and recording operations. These are high-level routines that you can use to

play and record sound resources and sound files, and to convert text to speech. The

routines described in this section also appear in the appropriate reference sections of the

other chapters in this book.

For a description of sound-related data structures and other sound-related routines, see

the chapters “Sound Manager,” “Sound Input Manager,” and “Speech Manager” in this

book. For a detailed description of the formats of sound resources and sound files, see

the chapter “Sound Manager” in this book.

Routines

This section describes the high-level system software routines that you can use to play

and record sound resources and sound files, or to convert a text string to spoken words.

These routines belong to the Sound Manager.

Playing Sounds

You can use the SysBeep procedure to play the system alert sound, the SndPlay

function to play the sound stored in any 'snd ' resource, and the SndStartFilePlay

function to play a sound file.

C H A P T E R 1

Introduction to Sound on the Macintosh

Sound Reference 1-35

SysBeep

You can use the SysBeep procedure to play the system alert sound.

PROCEDURE SysBeep (duration: Integer);

duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when
the system alert sound is the Simple Beep. The recommended duration is
30 ticks, which equals one-half second.

DESCRIPTION

The SysBeep procedure causes the Sound Manager to play the system alert sound at its

current volume. If necessary, the Sound Manager loads into memory the sound resource

containing the system alert sound and links it to a sound channel. The user selects a

system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert

sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound

control panel. The system alert sound volume can also be read and set by calling the

GetSysBeepVolume and SetSysBeepVolume routines. If the volume is set to 0 (silent)

and the system alert sound is enabled, calling SysBeep causes the menu bar to blink

once.

SPECIAL CONSIDERATIONS

Because the SysBeep procedure moves memory, you should not call it at interrupt time.

SEE ALSO

For information on enabling and disabling the system alert sound or for information on

reading and adjusting the system alert sound volume, see the chapter “Sound Manager”

in this book.

SndPlay

You can use the SndPlay function to play a sound resource that your application has

loaded into memory.

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;

async: Boolean): OSErr;

chan A pointer to a valid sound channel. You can pass NIL instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

C H A P T E R 1

Introduction to Sound on the Macintosh

1-36 Sound Reference

sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NIL is passed in the
first parameter.

DESCRIPTION

The SndPlay function attempts to play the sound located at sndHdl, which is expected

to have the structure of a format 1 'snd ' resource. If the resource has not yet been

loaded, the SndPlay function fails and returns the resProblem result code. The handle

you pass in the sndHdl parameter must be locked for as long as the sound is playing

asynchronously.

The chan parameter is a pointer to a sound channel. If chan is not NIL, it is used as a

valid channel. If chan is NIL, an internally allocated sound channel is used. Commands

and data contained in the sound handle are then sent to the channel. Note that you can

pass SndPlay a handle to some data created by calling the Sound Input Manager’s

SndRecord function as well as a handle to an actual 'snd ' resource that you have

loaded into memory.

SPECIAL CONSIDERATIONS

Because the SndPlay function moves memory, you should not call it at interrupt time.

RESULT CODES

SEE ALSO

For an example of how to play a sound resource using the SndPlay function, see

“Playing a Sound Resource” on page 1-25. For more information on the SndPlay

function, see the chapter “Sound Manager” in this book.

SndStartFilePlay

You can call the SndStartFilePlay function to initiate a play from disk.

FUNCTION SndStartFilePlay (chan: SndChannelPtr; fRefNum: Integer;

 resNum: Integer; bufferSize: LongInt;

 theBuffer: Ptr;

noErr 0 No error
notEnoughHardwareErr –201 Insufficient hardware available
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable

C H A P T E R 1

Introduction to Sound on the Macintosh

Sound Reference 1-37

theSelection: AudioSelectionPtr;

theCompletion: ProcPtr;

async: Boolean): OSErr;

chan A pointer to a valid sound channel. You can pass NIL instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

fRefNum The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

resNum The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

bufferSize
The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndStartFilePlay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

theBuffer A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NIL, the Sound
Manager allocates two buffers, each half the size of the value specified in
the bufferSize parameter. If this parameter is not NIL, the buffer
should be a nonrelocatable block of size bufferSize.

theSelection
A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NIL to specify that the Sound
Manager should play the entire sound.

theCompletion
A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NIL to specify that the Sound
Manager should not execute a completion routine. This field is useful
only for asynchronous play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NIL in the chan parameter and TRUE for
this parameter, the SndStartFilePlay function returns the
badChannel result code.

DESCRIPTION

The SndStartFilePlay function begins a continuous play from disk on a sound

channel. The chan parameter is a pointer to the sound channel. If chan is not NIL, it

is used as a valid channel. If chan is NIL, an internally allocated sound channel is used

for play from disk. This internally allocated sound channel is not passed back to you.

Because SndPauseFilePlay and SndStopFilePlay (described in the chapter

“Sound Manager”) require a sound-channel pointer, you must allocate your own

channel if you wish to use those routines.

C H A P T E R 1

Introduction to Sound on the Macintosh

1-38 Sound Reference

The sounds you wish to play can be stored either in a file or in an 'snd ' resource. If

you are playing a file, then fRefNum should be the file reference number of the file to be

played and the parameter resNum should be set to 0. If you are playing an 'snd '

resource, then fRefNum should be set to 0 and resNum should be the resource ID

number (not the file reference number) of the resource to play.

SPECIAL CONSIDERATIONS

Because the SndStartFilePlay function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndStartFilePlay function are

RESULT CODES

SEE ALSO

For an example of how to play a sound file using the SndStartFilePlay function, see

“Playing a Sound File” on page 1-26. For information on completion routines, see the

chapter “Sound Manager” in this book.

Recording Sounds

The Sound Input Manager provides two high-level sound input routines, SndRecord

and SndRecordToFile, for recording sound. These input routines are analogous to the

two Sound Manager functions SndPlay and SndStartFilePlay. By using these

high-level routines, you can be assured that your application presents a user interface

that is consistent with that displayed by other applications recording sounds. Both

SndRecord and SndRecordToFile attempt to record sound data from the sound

input hardware currently selected in the Sound In control panel.

Trap macro Selector

_SoundDispatch $0D000008

noErr 0 No error
notEnoughHardwareErr –201 Insufficient hardware available
queueFull –203 No room in the queue
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
notEnoughBufferSpace –207 Insufficient memory available
badFileFormat –208 File is corrupt or unusable, or not AIFF or

AIFF-C
channelBusy –209 Channel is busy
buffersTooSmall –210 Buffer is too small
siInvalidCompression –223 Invalid compression type

C H A P T E R 1

Introduction to Sound on the Macintosh

Sound Reference 1-39

SndRecord

You can use the SndRecord function to record sound resources into memory.

FUNCTION SndRecord (filterProc: ProcPtr; corner: Point;

quality: OSType; VAR sndHandle: Handle):

OSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar to the filterProc
parameter specified in a call to the ModalDialog procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. If filterProc isn’t NIL,
SndRecord filters events by calling the function that filterProc
points to.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandle On entry, a handle to some storage space or NIL. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

DESCRIPTION

The SndRecord function records sound into memory. The recorded data has the

structure of a format 1 'snd ' resource and can later be played using the SndPlay

function or can be stored as a resource. SndRecord displays a sound recording dialog

box and is always called synchronously. Controls in the dialog box allow the user to

start, stop, pause, and resume sound recording, as well as to play back the recorded

sound. The dialog box also lists the remaining recording time and the current

microphone sound level.

The quality parameter defines the desired quality of the recorded sound. Currently,

three values are recognized for the quality parameter:

CONST

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.

For Apple-supplied drivers, this parameter determines whether the recorded sound is to

be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality siBestQuality

does not compress the sound and provides the best quality output, but at the expense of

increased memory use. The quality siBetterQuality is suitable for most nonvoice

recording, and siGoodQuality is suitable for voice recording.

C H A P T E R 1

Introduction to Sound on the Macintosh

1-40 Sound Reference

The sndHandle parameter is a handle to some storage space. If the handle is NIL, the

Sound Input Manager allocates a handle of the largest amount of space that it can find in

your application’s heap and returns this handle in the sndHandle parameter. The

Sound Input Manager resizes the handle when the user clicks the Save button in the

sound recording dialog box. If the sndHandle parameter passed to SndRecord is not

NIL, the Sound Input Manager simply stores the recorded data in the location specified

by that handle.

SPECIAL CONSIDERATIONS

Because the SndRecord function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecord function are

RESULT CODES

SEE ALSO

For an example of how to record a sound resource using the SndRecord function, see

“Recording a Sound Resource” on page 1-28. See the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a complete description of event filter functions.

SndRecordToFile

You can use SndRecordToFile to record sound data into a file.

FUNCTION SndRecordToFile (filterProc: ProcPtr; corner: Point;

quality: OSType;

fRefNum: Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

Trap macro Selector

_SoundDispatch $08040014

noErr 0 No error
userCanceledErr –128 User canceled the operation
siBadSoundInDevice –221 Invalid sound input device
siUnknownQuality –232 Unknown quality

C H A P T E R 1

Introduction to Sound on the Macintosh

Sound Reference 1-41

quality The desired quality of the recorded sound. The values you can use for this
parameter are described on page 1-39.

fRefNum The file reference number of an open file to save the audio data in.

DESCRIPTION

The SndRecordToFile function works just like SndRecord except that it stores the

sound input data into a file. The resulting file is in either AIFF or AIFF-C format and

contains the information necessary to play the file by using the Sound Manager’s

SndStartFilePlay function. The SndRecordToFile function is always called

synchronously.

Your application must open the file specified in the fRefNum parameter before calling

the SndRecordToFile function. Your application must close the file sometime after

calling SndRecordToFile.

SPECIAL CONSIDERATIONS

Because the SndRecordToFile function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecordToFile function are

RESULT CODES

SEE ALSO

For an example of how to record a sound file using the SndRecordToFile function, see

“Recording a Sound File” on page 1-31. See the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a complete description of event filter functions.

Generating and Stopping Speech

Your application can use the SpeakString function to generate speech or stop speech

currently being generated by SpeakString. By calling the SpeechBusy function

before and after a call to SpeakString, your application can determine when speaking

is complete. These routines belong to the Speech Manager.

Trap macro Selector

_SoundDispatch $07080014

noErr 0 No error
userCanceledErr –128 User canceled the operation
siBadSoundInDevice –221 Invalid sound input device
siUnknownQuality –232 Unknown quality

C H A P T E R 1

Introduction to Sound on the Macintosh

1-42 Sound Reference

SpeakString

You can use the SpeakString function to have the Speech Manager read a text string.

FUNCTION SpeakString (s: Str255): OSErr;

s The string to be spoken.

DESCRIPTION

The SpeakString function attempts to speak the Pascal-style text string contained in

the string s. Speech is produced asynchronously using the default system voice. When

an application calls this function, the Speech Manager makes a copy of the passed string

and creates any structures required to speak it. As soon as speaking has begun, control is

returned to the application. The synthesized speech is generated asynchronously to the

application so that normal processing can continue while the text is being spoken. No

further interaction with the Speech Manager is required at this point, and the application

is free to release the memory that the original string occupied.

If SpeakString is called while a prior string is still being spoken, the sound currently

being synthesized is interrupted immediately. Conversion of the new text into speech is

then begun. If you pass a zero-length string (or, in C, a null pointer) to SpeakString,

the Speech Manager stops any speech previously being synthesized by SpeakString

without generating additional speech. If your application uses SpeakString, it is often

a good idea to stop any speech in progress whenever your application receives a

suspend event. (Note, however, that calling SpeakString with a zero-length string has

no effect on speech channels other than the one managed internally by the Speech

Manager for the SpeakString function.)

The text passed to the SpeakString function may contain embedded speech

commands, which are described in the chapter “Speech Manager” in this book.

SPECIAL CONSIDERATIONS

Because the SpeakString function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeakString function are

Trap macro Selector

_SoundDispatch $0220000C

C H A P T E R 1

Introduction to Sound on the Macintosh

Sound Reference 1-43

RESULT CODES

SEE ALSO

For an example of how to read a text string using the SpeakString function, see

“Generating Speech From a String” on page 1-32. See the chapter “Dialog Manager”

in Inside Macintosh: Macintosh Toolbox Essentials for a complete description of event

filter functions.

SpeechBusy

You can use the SpeechBusy function to determine whether any channels of speech are

currently synthesizing speech.

FUNCTION SpeechBusy: Integer;

DESCRIPTION

The SpeechBusy function returns the number of speech channels that are currently

synthesizing speech in the application. This is useful when you want to ensure that an

earlier speech request has been completed before having the system speak again. Note

that paused speech channels are counted among those that are synthesizing speech.

The speech channel that the Speech Manager allocates internally in response to calls to

the SpeakString function is counted in the number returned by SpeechBusy. Thus, if

you use just SpeakString to initiate speech, SpeechBusy always returns 1 as long as

speech is being produced. When SpeechBusy returns 0, all initiated speech has finished.

SPECIAL CONSIDERATIONS

You can call the SpeechBusy function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechBusy function are

noErr 0 No error
memFullErr –108 Not enough memory to speak
synthOpenFailed –241 Could not open another speech synthesizer channel

Trap macro Selector

_SoundDispatch $003C000C

C H A P T E R 1

Introduction to Sound on the Macintosh

1-44 Summary of Sound

Summary of Sound

Pascal Summary

Constants

CONST

{Gestalt sound attributes selector and response bits}

gestaltSoundAttr = 'snd ';{sound attributes selector}

gestaltStereoCapability = 0; {built-in hw can play stereo sounds}

gestaltStereoMixing = 1; {built-in hw mixes stereo to mono}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

gestalt16BitAudioSupport = 12; {16-bit audio data supported}

{Gestalt selector and response bits for speech attributes}

gestaltSpeechAttr = 'ttsc';{speech attributes selector}

gestaltSpeechMgrPresent = 0; {Speech Manager is present}

{recording qualities}

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

Routines

Playing Sounds

PROCEDURE SysBeep (duration: Integer);

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;
async: Boolean): OSErr;

C H A P T E R 1

Introduction to Sound on the Macintosh

Summary of Sound 1-45

FUNCTION SndStartFilePlay (chan: SndChannelPtr; fRefNum: Integer;
resNum: Integer; bufferSize: LongInt;
theBuffer: Ptr;
theSelection: AudioSelectionPtr;
theCompletion: ProcPtr; async: Boolean): OSErr;

Recording Sounds

FUNCTION SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandle: Handle): OSErr;

FUNCTION SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType; fRefNum: Integer): OSErr;

Generating and Stopping Speech

FUNCTION SpeakString (s: Str255): OSErr;

FUNCTION SpeechBusy : Integer;

C Summary

Constants

/*Gestalt sound attributes selector and response bits*/

#define gestaltSoundAttr 'snd ' /*sound attributes selector*/

enum {

gestaltStereoCapability = 0, /*built-in hw can play stereo sounds*/

gestaltStereoMixing = 1, /*built-in hw mixes stereo to mono*/

gestaltSoundIOMgrPresent = 3, /*sound input routines available*/

gestaltBuiltInSoundInput = 4, /*built-in input hw available*/

gestaltHasSoundInputDevice = 5, /*sound input device available*/

gestaltPlayAndRecord = 6, /*built-in hw can play while recording*/

gestalt16BitSoundIO = 7, /*built-in hw can handle 16-bit data*/

gestaltStereoInput = 8, /*built-in hw can record stereo sounds*/

gestaltLineLevelInput = 9, /*built-in input hw needs line level*/

gestaltSndPlayDoubleBuffer = 10, /*play from disk routines available*/

gestaltMultiChannels = 11, /*multiple channels of sound supported*/

gestalt16BitAudioSupport = 12 /*16-bit audio data supported*/

};

C H A P T E R 1

Introduction to Sound on the Macintosh

1-46 Summary of Sound

/*Gestalt selector and response bits for speech attributes*/

#define gestaltSpeechAttr 'ttsc' /*speech attributes selector*/

enum {

gestaltSpeechMgrPresent = 0 /*Speech Manager is present*/

};

/*recording qualities*/

#define siBestQuality 'best' /*the best quality available*/

#define siBetterQuality 'betr' /*a quality better than good*/

#define siGoodQuality 'good' /*a good quality*/

Routines

Playing Sounds

pascal void SysBeep (short duration);

pascal OSErr SndPlay (SndChannelPtr chan, Handle sndHdl,
Boolean async);

pascal OSErr SndStartFilePlay
(SndChannelPtr chan, short fRefNum,
short resNum, long bufferSize, void *theBuffer,
AudioSelectionPtr theSelection,
FilePlayCompletionProcPtr theCompletion,
Boolean async);

Recording Sounds

pascal OSErr SndRecord (ModalFilterProcPtr filterProc, Point corner,
OSType quality, Handle *sndHandle);

pascal OSErr SndRecordToFile
(ModalFilterProcPtr filterProc, Point corner,
OSType quality, short fRefNum);

Generating and Stopping Speech

pascal OSErr SpeakString (StringPtr s);

pascal short SpeechBusy (void);

C H A P T E R 1

Introduction to Sound on the Macintosh

Summary of Sound 1-47

Result Codes
noErr 0 No error
userCanceledErr –128 User canceled the operation
noHardwareErr –200 Required sound hardware not available
notEnoughHardwareErr –201 Insufficient hardware available
queueFull –203 No room in the queue
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
notEnoughBufferSpace –207 Insufficient memory available
badFileFormat –208 File is corrupt or unusable, or not AIFF or AIFF-C
channelBusy –209 Channel is busy
buffersTooSmall –210 Buffer is too small
siBadSoundInDevice –221 Invalid sound input device
siInvalidCompression –223 Invalid compression type
siUnknownQuality –232 Unknown quality
synthOpenFailed –241 Could not open another speech synthesizer channel

Contents 2-1

C H A P T E R 2

Contents

Sound Manager

About the Sound Manager 2-6

Sound Data 2-7

Square-Wave Data 2-7

Wave-Table Data 2-8

Sampled-Sound Data 2-9

Sound Commands 2-11

Sound Channels 2-13

Sound Compression and Expansion 2-14

Using the Sound Manager 2-17

Managing Sound Channels 2-19

Allocating Sound Channels 2-20

Initializing Sound Channels 2-22

Releasing Sound Channels 2-24

Manipulating a Sound That Is Playing 2-25

Stopping Sound Channels 2-28

Pausing and Restarting Sound Channels 2-29

Synchronizing Sound Channels 2-30

Managing Sound Volumes 2-31

Obtaining Sound-Related Information 2-32

Obtaining Information About Available Sound Features 2-33

Obtaining Version Information 2-34

Testing for Multichannel Sound and Play-From-Disk Capabilities 2-35

Obtaining Information About a Single Sound Channel 2-37

Obtaining Information About All Sound Channels 2-39

Determining and Changing the Status of the System Alert Sound 2-40

Playing Notes 2-41

Installing Voices Into Channels 2-43

Looping a Sound Indefinitely 2-45

Playing Sounds Asynchronously 2-46

Using Callback Procedures 2-47

C H A P T E R 2

2-2 Contents

Synchronizing Sound With Other Actions 2-51

Managing an Asynchronous Play From Disk 2-52

Playing Selections 2-53

Managing Multiple Sound Channels 2-53

Parsing Sound Resources and Sound Files 2-56

Obtaining a Pointer to a Sound Header 2-57

Playing Sounds Using Low-Level Routines 2-61

Finding a Chunk in a Sound File 2-62

Compressing and Expanding Sounds 2-66

Using Double Buffers 2-68

Setting Up Double Buffers 2-70

Writing a Doubleback Procedure 2-72

Sound Storage Formats 2-73

Sound Resources 2-74

The Format 1 Sound Resource 2-75

The Format 2 Sound Resource 2-80

Sound Files 2-81

Chunk Organization and Data Types 2-82

The Form Chunk 2-83

The Format Version Chunk 2-84

The Common Chunk 2-85

The Sound Data Chunk 2-87

Format of Entire Sound Files 2-87

Sound Manager Reference 2-89

Constants 2-89

Gestalt Selector and Response Bits 2-90

Channel Initialization Parameters 2-91

Sound Command Numbers 2-92

Chunk IDs 2-98

Data Structures 2-99

Sound Command Records 2-99

Audio Selection Records 2-100

Sound Channel Status Records 2-101

Sound Manager Status Records 2-102

Sound Channel Records 2-103

Sound Header Records 2-104

Extended Sound Header Records 2-106

Compressed Sound Header Records 2-108

Sound Double Buffer Header Records 2-111

Sound Double Buffer Records 2-112

Chunk Headers 2-113

Form Chunks 2-113

Format Version Chunks 2-114

Common Chunks 2-115

Extended Common Chunks 2-115

Sound Data Chunks 2-117

Version Records 2-118

C H A P T E R 2

Contents 2-3

Leftover Blocks 2-119

State Blocks 2-119

Sound Manager Routines 2-119

Playing Sound Resources 2-120

Playing From Disk 2-123

Allocating and Releasing Sound Channels 2-127

Sending Commands to a Sound Channel 2-130

Obtaining Information 2-132

Controlling Volume Levels 2-139

Compressing and Expanding Audio Data 2-142

Managing Double Buffers 2-147

Performing Unsigned Fixed-Point Arithmetic 2-148

Linking Modifiers to Sound Channels 2-149

Application-Defined Routines 2-151

Completion Routines 2-151

Callback Procedures 2-152

Doubleback Procedures 2-153

Resources 2-154

The Sound Resource 2-154

Summary of the Sound Manager 2-157

Pascal Summary 2-157

Constants 2-157

Data Types 2-161

Sound Manager Routines 2-168

Application-Defined Routines 2-170

C Summary 2-170

Constants 2-170

Data Types 2-175

Sound Manager Routines 2-182

Application-Defined Routines 2-184

Assembly-Language Summary 2-184

Data Structures 2-184

Trap Macros 2-188

Result Codes 2-188

C H A P T E R 2

2-5

Sound Manager

This chapter describes the Sound Manager, the part of the Macintosh system software

that controls the production and manipulation of sounds on Macintosh computers. You

can use the Sound Manager to create a wide variety of sounds and to manipulate sounds

in many ways. The Sound Manager is also used by other parts of the Macintosh system

software that produce sounds, such as the Speech Manager and QuickTime.

To use this chapter, you should already be familiar with the information in the chapter

“Introduction to Sound on the Macintosh” earlier in this book, especially with the

portions of that chapter that describe the Macintosh sound architecture and the routines

related to sound output. That chapter shows how your application can play a sound

resource or a sound file synchronously (that is, with other processing suspended while

the sound plays).

You should read this chapter if you need a greater degree of control over sound output

than the routines described in that introductory chapter provide. For example, if you

want to play sounds asynchronously or to exercise very fine control over the process of

sound production, this chapter contains information you need.

This chapter begins by describing the capabilities of the Sound Manager and the role of

sound commands and sound channels in producing sound. Then it explains how you

can use the Sound Manager to

■ create and manage sound channels

■ obtain information about available sound features and sound channels

■ play notes and other sounds at various frequencies and volumes

■ play one or more sounds asynchronously

■ parse sound resources and sound files to obtain information about them

■ compress and expand sound data

■ use double buffers to bypass the normal play-from-disk routines

You’re not likely to use all of these capabilities in a single application. In general, you

should read the section “About the Sound Manager” and then turn to the parts of the

section “Using the Sound Manager” that describe the features you want to use in your

application. The section “Sound Storage Formats” beginning on page 2-73 explains in

detail the format of sound resources and sound files. You can find a complete reference

to the Sound Manager data structures and routines in the section “Sound Manager

Reference” beginning on page 2-89.

IMPORTANT

This chapter describes the capabilities and programming interfaces of
version 3.0 of the Sound Manager. See the chapter “Introduction to
Sound on the Macintosh” for some information on how version 3.0
differs from earlier versions. The capabilities and performance of
version 3.0 are significantly better than those of all previous Sound
Manager versions, even though their programming interfaces are largely
identical. This chapter occasionally warns you about techniques or
routines that cannot be used in versions prior to 3.0, but it does not
provide an exhaustive comparison of all available versions. ▲

C H A P T E R 2

Sound Manager

2-6 About the Sound Manager

About the Sound Manager

The Sound Manager is a collection of routines that your application can use to create

sound without a knowledge of or dependence on the actual sound-producing hardware

available on any particular Macintosh computer. More generally, the Sound Manager is

responsible for managing all sound production on Macintosh computers. Other parts of

the Macintosh system software that need to create or modify sounds use the Sound

Manager to do so. Figure 2-1 shows the position of the Sound Manager in relation to

sound-producing applications and to other parts of the system software, such as the

Speech Manager and QuickTime.

Figure 2-1 The position of the Sound Manager

The Sound Manager was first introduced in system software version 6.0 and has been

significantly enhanced since that time. Prior to system software version 6.0, applications

could create sounds using the Sound Driver.

C H A P T E R 2

Sound Manager

About the Sound Manager 2-7

IMPORTANT

To ensure compatibility across all models of Macintosh computers, you
should always use the Sound Manager rather than the Sound Driver,
which is no longer documented or supported by Apple Computer, Inc.
The Sound Manager is simpler and much more powerful than the
Sound Driver. Moreover, Sound Driver code might not work on some
Macintosh computers. ▲

This section describes the three basic ways of defining sounds, namely using wave-table

data, square-wave data, or sampled-sound data. Usually, you’ll use sampled data to

define the sounds you want to create, because sampled data provides the greatest

flexibility and variety of sounds. You might use wave-table or square-wave data for very

simple sounds. For instance, the Simple Beep alert sound is defined using square-wave

data. Most other alert sounds are defined using sampled-sound data.

This section also describes sound commands and sound channels, which you need to

know about to be able to do anything more complex than play sound resources or files

synchronously using high-level Sound Manager routines.

Sound Data
The Sound Manager can play sounds defined using one of three kinds of sound data:

■ square-wave data

■ wave-table data

■ sampled-sound data

This section provides a brief description of each of these kinds of audio data and

introduces some of the concepts that are used in the remainder of this chapter. A

complete description of the nature and format of audio data is beyond the scope of this

book. There are, however, numerous books available that provide complete discussions

of digital audio data.

Square-Wave Data

Square-wave data is the simplest kind of audio data supported by the Sound Manager.

You can use square-wave data to generate a sound based on a square wave. Your

application can use square-wave data to play a simple sequence of sounds in which each

sound is described completely by three factors: its frequency or pitch, its amplitude (or

volume), and its duration.

The frequency of a sound is the number of cycles per second (or hertz) of the sound

wave. Usually, you specify a sound’s frequency by a MIDI value. MIDI note values

correspond to frequencies for musical notes, such as middle C, which is defined to have

a MIDI value of 60, which on Macintosh computers is equivalent to 261.625 hertz.

Pitch is a lister’s subjective interpretation of the sound’s frequency. The terms frequency

and pitch are used interchangeably in this chapter.

A sound’s duration is the length of time a sound takes to play. In the Sound Manager,

durations are usually specified in half-milliseconds.

C H A P T E R 2

Sound Manager

2-8 About the Sound Manager

The amplitude of a sound is the loudness at which it is being played. Two sounds

played at the same amplitude might not necessarily sound equally loud. For example,

one sound could be played at a lower volume (which the user may set with the Sound

control panel). Or, a sampled sound of a fleeting whisper might sound softer than a

sampled sound of continuous gunfire, even if your application plays them at the

same amplitude.

Note

Amplitude is traditionally considered to be the height of a sound wave,
so that two sounds with the same amplitude would always sound
equally loud. However, the Sound Manager considers amplitude to be
the adjustment to be made to an existing sound wave. A sound played
at maximum amplitude still might sound soft if the wave amplitude
is small. ◆

A sound’s timbre is its clarity. A sound with a low timbre is very clear; a sound with a

high timbre is buzzing. Only sounds defined using square-wave data have timbres.

Wave-Table Data

To produce more complex sounds than are possible using square-wave data, your

applications can use wave-table data. As the name indicates, wave-table data is based on

a description of a single wave cycle. This cycle is called a wave table and is represented

as an array of bytes that describe the timbre (or tone) of a sound at any point in the cycle.

Your application can use any number of bytes to represent the wave, but 512 is the

recommended number because the Sound Manager resizes a wave table to 512 bytes if

the table is not exactly that long. Your application can compute the wave table at run

time or load it from a resource.

A wave table is a sequence of wave amplitudes measured at fixed intervals. For instance,

a sine wave can be converted into a wave table by taking the value of the wave’s

amplitude at every 1/512 interval of the wave (see Figure 2-2).

A wave table is represented as a packed array of bytes. Each byte contains a value in the

range $00–$FF. These values are interpreted as offset values, where $80 represents an

amplitude of 0. The largest negative amplitude is $00 and the largest positive amplitude

is $FF. When playing a wave-table description of a sound, the Sound Manager loops

through the wave table for the duration of the sound.

C H A P T E R 2

Sound Manager

About the Sound Manager 2-9

Figure 2-2 A graph of a wave table

Sampled-Sound Data

You can use sampled-sound data to play back sounds that have been digitally recorded

(that is, sampled sounds) as well as sounds that are computed, possibly at run time.

Sampled sounds are the most widely used of all the available sound types primarily

because it is relatively easy to generate a sampled sound and because sampled-sound

data can describe a wide variety of sounds. Sampled sounds are typically used to play

back prerecorded sounds such as speech or special sound effects.

You can use the Sound Manager to store sampled sounds in one of two ways, either as

resources of type 'snd ' or as AIFF or AIFF-C format files. The structure of resources of

type 'snd ' is given in “Sound Resources” on page 2-74, and the structure of AIFF and

AIFF-C files is given in “Sound Files” on page 2-81. If you simply want to play short

prerecorded sampled sounds, you should probably include the sound data in 'snd '

resources. If you want to allow the user to transfer recorded sound data from one

application to another (or from one operating system to another), you should probably

store the sound data in an AIFF or AIFF-C file. In certain cases, you must store sampled

sounds in files and not in resources. For example, a sampled sound might be too large to

be stored in a resource.

Regardless of how you store a sampled sound, you can use Sound Manager routines to

play that sound. If you choose to store sampled sounds in files of type AIFF or AIFF-C,

C H A P T E R 2

Sound Manager

2-10 About the Sound Manager

you can play those sounds by calling the SndStartFilePlay function, introduced in

the chapter “Introduction to Sound on the Macintosh” in this book. If you store sampled

sounds in resources, your application can play those sounds by passing the Sound

Manager function SndPlay a handle to a resource of type 'snd ' that contains a

sampled sound header. (The SndStartFilePlay function can also play 'snd '

resources directly from disk, but this is not recommended.)

There are three types of sampled-sound headers: the standard sound header, the

extended sound header, and the compressed sound header. The sound header contains

information about the sample (such as the original sampling rate, the length of the

sample, and so forth), together with an indication of where the sample data is to be

found. The sampled sound header can reference only buffers of monophonic, 8-bit

sound. The extended sound header can be used for 8- or 16-bit stereo sound data as well

as monophonic sound data. The compressed sound header can be used to describe

compressed sound data, whether monophonic or stereo. Data can be stored in a buffer

separate from the sound resource or as part of the sound resource as the last field of the

sound header.

Note

The terminology sampled sound header can be confusing because in most
cases the sound header (and hence the 'snd ' resource) contains the
sound data as well as information describing the data. Also, do not
confuse sampled sound headers with sound resource headers. Sampled
sound headers contain information about sampled-sound data, but
sound resource headers contain information on the format of an entire
sound resource. ◆

You can play a sampled sound at its original rate or play it at some other rate to change

its pitch. Once you install a sampled sound header into a channel, you can play it at

varying rates to provide a number of pitches. In this way, you can use a sampled sound

as a voice or instrument to play a series of sounds.

Sampled-sound data is made up of a series of sample frames, which are stored

contiguously in order of increasing time. For noncompressed sound data, each sample

frame contains one or more sample points. For compressed sound data, each sample

frame contains one or more packets.

For multichannel sounds, a sample frame is an interleaved set of sample points or

packets. (For monophonic sounds, a sample frame is just a single sample point or a

single packet.) The sample points within a sample frame are interleaved by channel

number. For example, the sound data for a stereo, noncompressed sound is illustrated

in Figure 2-3.

C H A P T E R 2

Sound Manager

About the Sound Manager 2-11

Figure 2-3 Interleaving stereo sample points

Each sample point of noncompressed sound data in a sample frame is, for sound files, a

linear, two’s complement value, and, for sound resources, a binary offset value. Sample

points are from 1 to 32 bits wide. The size is usually 8 bits, but a different size can be

specified in the sampleSize field of the extended sound header (for sound resources)

or in the sampleSize field of the Common Chunk (for sound files). Each sample point

is stored in an integral number of contiguous bytes. Sample points that are from 1 to 8

bits wide are stored in 1 byte, sample points that are from 9 to 16 bits wide are stored in 2

bytes, and so forth. When the width of a sample point is less than a multiple of 8 bits, the

sample point data is left aligned (using a shift-left instruction), and the low-order bits at

the right end are set to 0.

For example, for 8-bit noncompressed sound data stored in a sound resource, each

sample point is similar to a value in a wave-table description. These values are

interpreted as offset values, where $80 represents an amplitude of 0. The value $00 is the

most negative amplitude, and $FF is the largest positive amplitude.

Each packet of 3:1 compressed sound data is 2 bytes; a packet of 6:1 compressed sound is

1 byte. These byte sizes are defined in bits by the constants threeToOnePacketSize

and sixToOnePacketSize, respectively.

Sound Commands
The Sound Manager provides routines that allow you to create and dispose of sound

channels. These routines allow you to manipulate sound channels, but they do not

directly produce any sounds. To actually produce sounds, you need to issue sound

commands. A sound command is an instruction to produce sound, modify sound, or

otherwise assist in the overall process of sound production. For example, the ampCmd

sound command changes the amplitude (or volume) of a sound.

You can issue sound commands in several ways. You can send sound commands one at a

time into a sound channel by repeatedly calling the SndDoCommand function. The

commands are held in a queue and processed in a first-in, first-out order. Alternatively,

you can bypass a sound queue altogether by calling the SndDoImmediate function. You

can also issue sound commands by calling the function SndPlay and specifying a sound

resource of type 'snd ' that contains the sound commands you want to issue. A sound

C H A P T E R 2

Sound Manager

2-12 About the Sound Manager

resource can contain any number of sound commands. As a result, you might be able to

accomplish all sound-related activity simply by creating sound resources and calling

SndPlay in your application. See “Sound Resources” on page 2-74 for details on the

format of an 'snd ' resource.

Generally speaking, no matter how sound commands are issued, they are all eventually

sent to the Sound Manager, which interprets the commands and plays the sound on the

available audio hardware. The Sound Manager provides a rich set of sound commands.

The structure of a sound command is defined by the SndCommand data type:

TYPE SndCommand =

PACKED RECORD

cmd: Integer; {command number}

param1: Integer; {first parameter}

param2: LongInt; {second parameter}

END;

Commands are always 8 bytes in length. The first 2 bytes are the command number, and

the next 6 make up the command’s options. The format of the last 6 bytes depends on

the command in use, although typically those 6 bytes are interpreted as an integer

followed by a long integer. For example, an application can install a wave table into a

sound channel by using SndDoCommand with a sound command whose cmd field is the

waveTableCmd constant. In that case, the param1 field specifies the length of the wave

table, and the param2 field is a pointer to the wave-table data itself. Other sound

commands may interpret the 6 parameter bytes differently or may not use them at all.

The sound commands available to your application are defined by constants.

CONST

nullCmd = 0; {do nothing}

quietCmd = 3; {stop a sound that is playing}

flushCmd = 4; {flush a sound channel}

reInitCmd = 5; {reinitialize a sound channel}

waitCmd = 10; {suspend processing in a channel}

pauseCmd = 11; {pause processing in a channel}

resumeCmd = 12; {resume processing in a channel}

callBackCmd = 13; {execute a callback procedure}

syncCmd = 14; {synchronize channels}

availableCmd = 24; {see if initialization options are supported}

versionCmd = 25; {determine version}

totalLoadCmd = 26; {report total CPU load}

loadCmd = 27; {report CPU load for a new channel}

freqDurationCmd = 40; {play a note for a duration}

restCmd = 41; {rest a channel for a duration}

freqCmd = 42; {change the pitch of a sound}

ampCmd = 43; {change the amplitude of a sound}

timbreCmd = 44; {change the timbre of a sound}

C H A P T E R 2

Sound Manager

About the Sound Manager 2-13

getAmpCmd = 45; {get the amplitude of a sound}

volumeCmd = 46; {set volume}

getVolumeCmd = 47; {get volume}

waveTableCmd = 60; {install a wave table as a voice}

soundCmd = 80; {install a sampled sound as a voice}

bufferCmd = 81; {play a sampled sound}

rateCmd = 82; {set the pitch of a sampled sound}

getRateCmd = 85; {get the pitch of a sampled sound}

For details on individual sound commands, see the relevant sections in “Using the

Sound Manager” beginning on page 2-17. Also see “Sound Command Numbers”

beginning on page 2-92 for a complete summary of the available sound commands, their

parameters, and their uses.

Sound Channels
A sound channel is a queue of sound commands that is managed by the Sound

Manager, together with other information about the sounds to be played in that channel.

The commands placed into the channel might originate from an application or from the

Sound Manager itself. The commands in the queue are passed one by one, in a first-in,

first-out (FIFO) manner, to the Sound Manager for interpretation and processing.

The Sound Manager uses the SndChannel data type to define a sound channel.

TYPE SndChannel =

PACKED RECORD

nextChan: SndChannelPtr; {pointer to next channel}

firstMod: Ptr; {used internally}

callBack: ProcPtr; {pointer to callback procedure}

userInfo: LongInt; {free for application's use}

wait: LongInt; {used internally}

cmdInProgress: SndCommand; {used internally}

flags: Integer; {used internally}

qLength: Integer; {used internally}

qHead: Integer; {used internally}

qTail: Integer; {used internally}

queue: ARRAY[0..stdQLength-1] OF SndCommand;

END;

Most of the fields of the sound channel record are used internally by the Sound

Manager, and you should not access or change them. However, your application is free

to use the userInfo field to store any information that you wish to associate with a

sound channel. For example, you might store a handle to an application-defined record

that contains information about how your application is using the channel.

Some applications do not need to worry about creating or disposing of sound channels

because the high-level Sound Manager routines take care of these automatically.

C H A P T E R 2

Sound Manager

2-14 About the Sound Manager

However, if you wish to customize sound output or play sounds asynchronously, you

must create your own sound channels (with the SndNewChannel function).

The enhanced Sound Manager included in system software versions 6.0.7 and later

provides the ability to have multiple channels of sampled sound produce output on the

Macintosh audio hardware concurrently. (Previous versions of the Sound Manager could

play only a single channel of sampled sound at a time.) This allows a layering of sound

that can bring a touch of reality to a simulation or presentation and permits applications

to incorporate synthesized speech output with any other kind of Macintosh-generated

sound. Sound Manager version 3.0 extended this capability to allow multiple channels of

any kind of sound data to play simultaneously.

Your application can open several channels of sound for concurrent output on the

available audio hardware. Similarly, multiple applications can each open channels of

sound. The number and quality of concurrent channels of sound are limited only by the

abilities of the machine, particularly by the speed of the CPU. Different Macintosh

computers have different CPU clock speeds and execute instructions at quite different

rates. This means that some machines can manage more channels of sound and produce

higher-quality sound than other machines. For example, a Macintosh Quadra might be

able to support several channels of high-quality stereo sound without significant impact

on other processing, whereas a Macintosh Plus might be able to support only a single

channel of monophonic sound before other processing slows significantly.

The Sound Manager currently supports multiple channels of sound only on machines

equipped with an Apple Sound Chip or equivalent hardware. To maintain maximum

compatibility between machines for your applications, you should always check the

operating environment to make sure that the ability to play multiple channels of

sampled sound is present before attempting to do so. A technique for determining

whether your application can play multiple channels of sound is described in “Testing

for Multichannel Sound and Play-From-Disk Capabilities” on page 2-35.

Sound Compression and Expansion
One minute of monophonic sound recorded with the fidelity you would expect from a

commercial compact disc occupies about 5.3 MB of disk space. One minute of sound

digitized by the current low-fidelity digitizing peripherals for Macintosh computers

occupies more than 1 MB of disk space. Even one minute of telephone-quality speech

takes up more than half of a megabyte on a disk. Despite the increased capacities of

mass-storage devices, disk space can be a problem if your application incorporates large

amounts of sampled sound. The space problem is particularly acute for multimedia

applications. Because a large portion of the space occupied by a multimedia application

is likely to be taken up by sound data, the complexity and richness of the application’s

sound component are limited.

To help remedy this problem, the Sound Manager includes a set of routines known

collectively as Macintosh Audio Compression and Expansion (MACE). MACE enables

you to provide more audio information in a given amount of storage space by allowing

you to compress sound data and then expand it for playback. These enhancements are

based entirely in software and require no specialized hardware.

C H A P T E R 2

Sound Manager

About the Sound Manager 2-15

The audio compression and expansion features allow you to enhance your application

by including more audio data. MACE also relieves some distribution problems by

reducing the number of disks required for shipping an application that relies heavily on

sound. MACE has made some kinds of applications, such as talking dictionaries and

foreign language-instruction software, more feasible than before.

MACE adds three main kinds of capabilities to those already present in the Sound

Manager: audio data compression, real-time expansion and playback of compressed

audio data, and buffered expansion and playback of compressed audio data.

■ Compression. The Sound Manager can compress a buffer of digital audio data either
in the original buffer or in a separate buffer. If a segment of audio data is too large to
fit into a single buffer, your application can make repeated calls to the compression
routine.

■ Real-time expansion playback. The Sound Manager can expand compressed audio
data contained in a small internal buffer and play it back at the same time. Because the
audio data expansion and playback occur at the same time, there is more of a strain on
the CPU when using this method of sound expansion rather than buffered expansion.

■ Buffered expansion. The Sound Manager can expand a specified buffer of
compressed audio data and store the result in a separate buffer. The expanded buffer
can then be played back using other Sound Manager routines with minimal processor
overhead during playback. Applications that require screen updates or user
interaction during playback (such as animation or multimedia applications) should
use buffered expansion.

MACE provides audio data compression and expansion capabilities in ratios of either 3:1

or 6:1 for all currently supported Macintosh models, from the Macintosh Plus forward.

The principal tradeoff when using MACE is that the expanded audio data suffers a loss

of fidelity in comparison to the original data. A small amount of noise is introduced into

a 3:1 compressed sound when it is expanded and played back, and a greater amount of

noise for the 6:1 ratio. The 3:1 buffer-to-buffer compression and expansion option is well

suited for high-fidelity sounds. The 6:1 buffer-to-buffer compression and expansion

option provides greater compression at the expense of lower-fidelity results and is

recommended for voice data only. This technique reduces the frequency bandwidth of

the audio signal by a factor of two to achieve the higher compression ratio.

MACE allows for the compression of both monophonic and stereo sounds. However,

some Macintosh computer models (such as the Macintosh Plus and Macintosh SE)

cannot expand stereo sounds.

Note

With Sound Manager versions prior to 3.0, some Macintosh computers
play only the right channel of stereo 'snd ' data through the internal
speaker. Certain Macintosh II models can play only a single channel
through the internal speaker. Sound Manager version 3.0 removes both
of these limitations. ◆

Existing applications that use the Sound Manager’s SndPlay function to play digitized

audio signals can play compressed audio signals without modification or recompilation.

C H A P T E R 2

Sound Manager

2-16 About the Sound Manager

The MACE routines assume that each original sample consists of 8-bit sound in binary

offset format. The compression techniques do not, however, depend on a particular

sample rate (the rate at which samples are recorded). Table 2-1 shows some common

sample rates, expressed both as hertz and as unsigned fixed-point values.

The Sound Manager defines constants for the most common sample rates:

CONST

rate44khz = $AC440000; {44100.00000 in fixed-point}

rate22khz = $56EE8BA3; {22254.54545 in fixed-point}

rate22050hz = $56220000; {22050.00000 in fixed-point}

rate11khz = $2B7745D1; {11127.27273 in fixed-point}

rate11025hz = $2B110000; {11025.00000 in fixed-point}

The compression techniques produce their best quality output when the sample rate is

the same as the output rate of the sound hardware of the machine playing the audio

data. The output rate used in most current Macintosh computers is 22.254 kilohertz

(hereafter referred to as the 22 kHz rate). Because of speed limitations, the Macintosh

Plus and Macintosh SE cannot perform sample-rate conversion during expansion

playback. On those machines, all sounds are played back at a 22 kHz rate. To provide

consistent quality in sounds that might be played on different machines, you should

record all sounds at a 22 kHz sample rate.

The MACE algorithms are optimized to provide the best sound quality possible through

the internal speaker in real time. However, the user who employs high-quality speakers

might notice a high-frequency hiss for some sounds compressed at the 3:1 ratio. This hiss

results from a design tradeoff between maintaining real-time operation on the Macintosh

Plus and preserving as much frequency bandwidth of the signal as possible. If you think

that your output might be played on high-quality speakers, you might want to filter out

the hiss before compression by passing the audio output through an equalizer that

removes frequencies above 10 kHz. When you use the 6:1 compression and expansion

ratio, your frequency response is cut in half. For example, when you use the 22 kHz

Table 2-1 Sample rates

Rate (Hz) Sample rate value (Fixed)

44100.00000 $AC440000

22254.54545 $56EE8BA3

22050.00000 $56EE8BA3

11127.27273 $2B7745D1

11025.00000 $2B110000

7418.1818 $1CFA2E8B

5563.6363 $15BBA2E8

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-17

sample rate, the highest frequency possible would normally be 11 kHz; however, after

compressing and expanding the data at the 6:1 ratio, the highest frequency you could get

would be only 5.5 kHz.

Note

The Sound Manager uses compressions and decompression components
(codecs) to handle the MACE capabilities. You can provide custom
codecs to use other compression and decompression algorithms. See the
chapter “Sound Components” in this book for information on
developing audio codecs. ◆

Using the Sound Manager

The Sound Manager provides a wide variety of methods for creating sound and

manipulating audio data on Macintosh computers. Usually, your application needs

to use only a few of the many routines or sound commands that are available.

The Sound Manager routines can be divided into high-level routines and low-level

routines. The high-level routines (like SndPlay and SysBeep) give you the ability to

produce very complex audio output at very little programming expense. The majority of

applications interact with the Sound Manager using these high-level routines, which

allow you to play sounds without knowing anything about the structure of sound

commands or sampled-sound data. You can let the high-level routines automatically

allocate channels, or, for increased control, you can allocate your own sound channels.

Applications that have more sophisticated sound capabilities use the low-level routines

(like SndDoCommand and SndDoImmediate) to send sound commands to sound

channels. For example, your application might send a sound command to alter the

amplitude of a sound that is playing (or is about to play).

Finally, a few very specialized applications use the Sound Manager’s low-level sound

playback routines, which allow fine-tuning of the algorithms the Sound Manager uses to

manage the double buffering of sound for its play-from-disk routines.

In general, you should use the highest-level routines capable of producing the kind of

sound you want. Many applications can simply play sounds stored in resources or files

and do not need to customize the sounds or continue with other processing while those

sounds are playing. In such cases, you can use the high-level Sound Manager routines,

as illustrated in the chapter “Introduction to Sound on the Macintosh” in this book. If,

however, you need to be able to exercise very fine control over sound output or to play

sounds asynchronously, you must manage your own sound channels. See “Managing

Sound Channels” on page 2-19 to learn how you can use the Sound Manager to

■ allocate and dispose of sound channels manually by using the SndNewChannel and
SndDisposeChannel functions

■ manipulate sound that is playing (for example, by sending the ampCmd command to a
sound channel to change the amplitude of sound playing)

C H A P T E R 2

Sound Manager

2-18 Using the Sound Manager

■ stop sounds and flush sound channels by using the quietCmd and flushCmd
commands

■ pause and restart sound channels by using the pauseCmd and resumeCmd commands

■ synchronize sound channels by using the syncCmd command

As you’ve learned, the capabilities of the Sound Manager vary greatly from one

Macintosh computer to another, depending on which version of the Sound Manager is

available on a particular computer and on what audio hardware is available. To create

sounds effectively on all computers, you might need to obtain information about the

available sound features. “Obtaining Sound-Related Information” on page 2-32 explains

how you can

■ use the Gestalt function to determine which basic sound features are available

■ find the version number of the available Sound Manager or of the MACE compression
and expansion routines

■ determine whether your application can take advantage of multichannel sound and
the play-from-disk routines

■ obtain information about a single sound channel

Some applications need to be able to play computer-generated tones at different pitches.

In addition, some applications need to play waveforms or sampled sounds at different

pitches. For example, if you are writing an application that converts musical notes to

sound, you might record the sound of a violin playing middle C and then replay the

sound at a variety of pitches to simulate a violinist’s playing a concerto. The Sound

Manager allows you to do this by allocating a sound channel and sending sound

commands to it. “Playing Notes” on page 2-41 explains how you can

■ play simple sequences of notes by using the freqCmd and freqDurationCmd
commands

■ install waveforms or sampled sounds into channels by using the soundCmd and
waveTableCmd commands so that you can play them at different frequencies

■ set a sound resource’s loop points so that the sound repeats if a freqCmd or
freqDurationCmd command lasts longer than the sound

Although some applications do not need to do other processing while sounds are

playing, others do. If your application allocates sound channels itself, it can request that

the Sound Manager play sounds asynchronously. By using callback procedures and

completion routines, your application can arrange for a sound channel to be disposed

when a sound finishes playing. “Playing Sounds Asynchronously” on page 2-46 explains

how you can

■ play a sound resource asynchronously by defining a callback procedure

■ use callback procedures to synchronize sounds you play asynchronously with
other actions

■ play a sound file asynchronously and pause, restart, or stop such an asynchronous
playback

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-19

■ manage multiple channels of sound to play more than one sound asynchronously at
the same time

The high-level Sound Manager routines automatically parse sound resources and sound

files to determine the information the Sound Manager needs to play the sounds

contained in the resources and files. However, you might need to obtain information

about sound resources or sound files for some other reason. Or, you might need to locate

a certain part of a sound resource or sound file. For example, to use the bufferCmd

sound command to play a buffer of sampled sound, you must obtain a pointer to the

sound header contained in that buffer. See the section “Parsing Sound Resources and

Sound Files” on page 2-56 for information on how to

■ parse sound resources containing sampled-sound data to obtain information from the
sampled-sound data’s sound header

■ use the bufferCmd command to play sampled-sound data stored within a sound
resource

■ parse sound files to find a particular chunk and to extract the data from that chunk

High-level Sound Manager routines automatically expand sound data in real time when

playing compressed sounds. However, you might need to manually compress or expand

sound data at a time when you are not playing sounds. “Compressing and Expanding

Sounds” on page 2-66 explains how you can use the Sound Manager’s built-in sound

compression and expansion routines to compress or expand sounds.

The Sound Manager’s high-level play-from-disk routines use highly optimized

algorithms to manage the double buffering of data so that the play from disk is

continuous and without audible gaps. However, if you wish to bypass the high-level

Sound Manager play-from-disk routines, you may define your own double-buffering

routines. This might be useful if you need to change the sound data on disk before the

Sound Manager can process it. The section “Using Double Buffers” on page 2-68 explains

how you can set up your own double buffers and use a doubleback procedure to bypass

the normal play-from-disk routines.

Managing Sound Channels
To use most of the low-level Sound Manager routines, you must specify a sound channel

that maintains a queue of commands. Also, to take advantage of the full capabilities of

the high-level Sound Manager routines, including asynchronous sound play, you must

allocate your own sound channels. This section explains how your application can

allocate, dispose of, and use its own sound channels.

This section first describes how you can allocate and dispose of sound channels.

Then it explains how you can manipulate sounds playing in sound channels, stop

sounds playing in sound channels, and pause and restart the execution of sounds

in sound channels.

C H A P T E R 2

Sound Manager

2-20 Using the Sound Manager

Allocating Sound Channels

Usually, you do not need to worry about allocating memory for sound channels because

the SndNewChannel function automatically allocates a sound channel record in the

application’s heap if passed a pointer to a NIL sound channel. SndNewChannel also

internally allocates memory for the sound channel’s queue of sound commands. For

example, the following lines of code request that the Sound Manager open a new sound

channel for playing sampled sounds:

mySndChan := NIL;

myErr := SndNewChannel(mySndChan, sampledSynth, 0, NIL);

If you are concerned with managing memory yourself, you can allocate your own

memory for a sound channel record and pass the address of that memory as the first

parameter to SndNewChannel. By allocating a sound channel record manually, you not

only obtain control over the allocation of the sound channel record, but you can specify

the size of the queue of sound commands that the Sound Manager internally allocates.

Listing 2-1 illustrates one way to do this.

Listing 2-1 Creating a sound channel

FUNCTION MyCreateSndChannel (synth: Integer; initOptions: LongInt;

userRoutine: ProcPtr;

queueLength: Integer): SndChannelPtr;

VAR

mySndChan: SndChannelPtr; {pointer to a sound channel}

myErr: OSErr;

BEGIN

{Allocate memory for sound channel.}

mySndChan := SndChannelPtr(NewPtr(Sizeof(SndChannel)));

IF mySndChan <> NIL THEN

BEGIN

mySndChan^.qLength := queueLength; {set number of commands in queue}

{Create a new sound channel.}

myErr := SndNewChannel(mySndChan, synth, initOptions, userRoutine);

IF myErr <> noErr THEN

BEGIN {couldn't allocate channel}

DisposePtr(Ptr(mySndChan)); {free memory already allocated}

mySndChan := NIL; {return NIL}

END

ELSE

mySndChan^.userInfo := 0; {reset userInfo field}

END;

MyCreateSndChannel := mySndChan; {return new sound channel}

END;

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-21

The MyCreateSndChannel function defined in Listing 2-1 first allocates memory for a

sound channel record and then calls the SndNewChannel function to attempt to allocate

a channel. Note that MyCreateSndChannel checks the result code returned by

SndNewChannel to determine whether the function was able to allocate a channel. The

SndNewChannel function might not be able to allocate a channel if there are so many

channels open that allocating another would put too much strain on the CPU. Also,

SndNewChannel might fail if memory is low. (In addition to the memory for a sound

channel record that is passed in the first parameter to SndNewChannel, the function

must internally allocate memory in which to store sound commands.)

If you allocate memory for a sound channel record, you should specify the size of the

queue of sound commands by assigning a value to the qLength field of the sound

channel record you allocate. You can use the constant stdQLength to obtain a standard

queue of 128 sound commands, or you can provide a value of your own.

CONST

stdQLength = 128; {default size of a sound channel}

If you know that your application will play only resources containing sampled sound,

you might set the qLength field to a considerably lower value, because resources

created with the SndRecord function (described in the chapter “Introduction to Sound

on the Macintosh” in this book) contain only one sound command, the bufferCmd

command, which specifies that a buffer of sound should be played. For example, if your

application uses a sound channel only to play a single sampled sound asynchronously,

you can set qLength to 2, to allow for the bufferCmd command and a callBackCmd

command that your application issues manually, as described in “Playing Sounds

Asynchronously” on page 2-46. By using a smaller than standard queue length, your

application can conserve memory.

Note

The number of sound commands in a channel should be an integer
greater than 0. If you open a channel with a 0-length queue, most of the
Sound Manager routines will return a badChannel result code. ◆

IMPORTANT

In general, however, you should let the Sound Manager allocate sound
channel records for you. The amount of memory you might save by
allocating your own is usually negligible. ▲

The second parameter in the SndNewChannel function specifies the kind of data you

want to play on that channel. You can specify one of the following constants:

CONST

squareWaveSynth = 1; {square-wave data}

waveTableSynth = 3; {wave-table data}

sampledSynth = 5; {sampled-sound data}

In some versions of system software prior to system software version 7.0 (including

system software version 6.0.7), high-level Sound Manager routines do not work properly

C H A P T E R 2

Sound Manager

2-22 Using the Sound Manager

with sound resources that specify the sound data type twice. This might happen if a

resource specifies that a sound consists of sampled-sound data and an application does

the same when creating a sound channel. This might also happen if an application uses

the same sound channel to play several sound resources that contain different kinds of

sound data. There are several solutions to this problem that you can use if you must

maintain compatibility with old versions of system software:

■ If your application plays only sampled-sound resources, then you need only ensure
that none of the sound resources specifies that it contains sampled-sound data. Then,
when you create a sound channel, pass sampledSynth as the second parameter to
SndNewChannel so that the Sound Manager interprets the data in the sound
resources correctly. Do not use the SndPlay routine.

■ If your application must be able to play sampled-sound resources as well as resources
that contain square-wave or wave-table data, ensure that all sound resources that
your application uses specify their data type. (Sound resources created with the
Sound Input Manager automatically specify that they contain sampled-sound data.)
Then, when creating a channel in which you plan to play a sound resource, pass 0 as
the second parameter to SndNewChannel, and then use the channel to play no more
than one sound resource.

■ If you do not wish to modify your application’s sound resources, and your
application plays only sampled-sound resources, then you can play sounds with
low-level Sound Manager routines, a technique described in “Playing Sounds Using
Low-Level Routines” on page 2-61.

Note that this problem does not occur with sound files, because sound files always

contain sampled-sound data and thus do not explicitly declare their data type. As a

result, when creating a channel in which you plan to play a sound file, pass

sampledSynth as the second parameter to SndNewChannel.

The third parameter in the SndNewChannel function specifies the initialization

parameters to be associated with the new channel. These are discussed in the following

section. The fourth parameter in the SndNewChannel function is a pointer to a callback

procedure. If your application produces sounds asynchronously or needs to be alerted

when a command has completed, you can specify a callback procedure by passing the

address of that procedure in the fourth parameter and then by installing a callback

procedure into the sound channel. If you pass NIL as the fourth parameter, then

no callback procedure is associated with the channel. See “Playing Sounds

Asynchronously” on page 2-46 for more information on setting up and using

callback procedures.

Initializing Sound Channels

When you first create a sound channel with SndNewChannel, you can request that the

channel have certain characteristics as specified by a sound channel initialization

parameter. For example, to indicate that you want to allocate a channel capable of

producing stereo sound, you might use the following code:

myErr := SndNewChannel(mySndChan, sampledSynth, initStereo, NIL);

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-23

These are the currently recognized constants for the sound channel initialization

parameter.

CONST

initChanLeft = $0002; {left stereo channel}

initChanRight = $0003; {right stereo channel}

waveInitChannel0 = $0004; {wave-table channel 0}

waveInitChannel1 = $0005; {wave-table channel 1}

waveInitChanne12 = $0006; {wave-table channel 2}

waveInitChannel3 = $0007; {wave-table channel 3}

initMono = $0080; {monophonic channel}

initStereo = $00C0; {stereo channel}

initMACE3 = $0300; {3:1 compression}

initMACE6 = $0400; {6:1 compression}

initNoInterp = $0004; {no linear interpolation}

initNoDrop = $0008; {no drop-sample conversion}

See “Channel Initialization Parameters” beginning on page 2-91 for a complete

description of these constants.

Note

Some Macintosh computers play only the left channel of stereo sounds
out the internal speaker. Other machines (for example, the Macintosh
SE/30 and Macintosh IIsi) mix both channels together before sending a
signal to the internal speaker. You can use the Gestalt function to
determine if a particular machine mixes both left and right channels to
the internal speaker. All Macintosh computers except the Macintosh SE
and the Macintosh Plus, however, play stereo signals out the headphone
jack. ◆

The initialization parameters are additive. To initialize a channel for stereo sound with

no linear interpolation, simply pass an initialization parameter that is the sum of the

desired characteristics, as follows:

myErr := SndNewChannel(mySndChan, sampledSynth,

initStereo+initNoInterp, NIL);

A call to SndNewChannel is really only a request that the Sound Manager open a

channel having the desired characteristics. It is possible that the parameters requested

are not available. In that case, SndNewChannel returns a notEnoughHardwareErr

error. In general, you should pass 0 as the third parameter to SndNewChannel unless

you know exactly what kind of sound is to be played.

You can alter certain initialization parameters, even while a channel is actively playing a

sound, by issuing the reInitCmd command. For example, you can change the output

channel from left to right, as shown in Listing 2-2.

C H A P T E R 2

Sound Manager

2-24 Using the Sound Manager

Listing 2-2 Reinitializing a sound channel

VAR

mySndCmd: SndCommand;

mySndChan: SndChannelPtr;

myErr: OSErr;

.

.

.

mySndCmd.cmd := reInitCmd;

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := initChanRight; {new init parameter}

myErr := SndDoImmediate(mySndChan, mySndCmd);

The reInitCmd command accepts the initNoInterp constant to toggle linear
interpolation on and off; it should be used with noncompressed sounds only. If an

noncompressed sound is playing when you send a reInitCmd command with this

constant, linear interpolation begins immediately. You can also pass initMono,

initChanLeft, or initChanRight to pan to both channels, to the left channel, or to

the right channel. This affects only monophonic sounds. The Sound Manager remembers

the settings you pass and applies them to all further sounds played on that channel.

Releasing Sound Channels

To dispose of a sound channel that you have allocated with SndNewChannel, use the

SndDisposeChannel function. SndDisposeChannel requires two parameters, a

pointer to the channel that is to be disposed and a Boolean value that indicates whether

the channel should be flushed before disposal. Here’s an example:

myErr := SndDisposeChannel(mySndChan, TRUE);

Because the second parameter is TRUE, the Sound Manager sends both a flushCmd

command and a quietCmd command to the sound channel (using SndDoImmediate).

This removes all commands from the sound channel and stops any sound already in

progress. Then the Sound Manager disposes of the channel.

If the second parameter is FALSE, the Sound Manager simply queues a quietCmd

command (using SndDoCommand) and waits until quietCmd is received by the channel

before disposing of the channel. In this case, the SndDisposeChannel function does

not return until the channel has finished processing commands and the queue is empty.

▲ W A R N I N G

If you dispose of a channel currently playing from disk, then your
completion routine will still execute, but will receive a pointer to a
sound channel that no longer exists. Thus, you should stop a play from
disk before disposing of a channel. See “Managing an Asynchronous
Play From Disk” on page 2-52 for more information on completion
routines. ▲

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-25

Although the SndDisposeChannel function always releases memory reserved for

sound commands, SndDisposeChannel cannot release memory associated with a

sound channel record if you have allocated that memory yourself. For example, if you

use the MyCreateSndChannel function defined in Listing 2-1 to create a sound

channel, you must dispose first of the sound channel and then of the memory occupied

by the sound channel record, as illustrated in Listing 2-3.

Listing 2-3 Disposing of memory associated with a sound channel

FUNCTION MyDisposeSndChannel (sndChan: SndChannelPtr; quietNow: Boolean):

OSErr;

VAR

myErr: OSErr;

BEGIN

myErr := SndDisposeChannel(sndChan, quietNow); {dispose of channel}

DisposePtr(Ptr(sndChan)); {dispose of channel ptr}

MyDisposeSndChannel := myErr;

END;

If you have played a sound resource through a channel, the SndDisposeChannel

function does not free the memory taken by the resource. You must call the Resource

Manager’s ReleaseResource function to do so, or, if you have detached a resource

from a resource file, you could free the memory by making the handle unlocked and

purgeable. Note that if you play a sound resource asynchronously, you should not

release the memory occupied by the resource until the sound finishes playing or the

sound might not play properly. For information on releasing a sound resource after

playing a sound asynchronously, see “Playing Sounds Asynchronously” on page 2-46.

IMPORTANT

In Sound Manager versions 3.0 and later, you can play sounds in any
number of sound channels. In earlier Sound Manager versions, however,
only one kind of sound can be played at one time. This results in several
important restrictions on your application. In Sound Manager version 2
and earlier, you should create sound channels just before playing
sounds. Once the sound is completed, you should dispose of the
channel. If your application is switched out and does not release a sound
channel, then other applications may be unable to open sound channels.
In particular, the system alert sound might not be heard and the user
might not be notified of important system occurrences. In general, while
it is acceptable to issue a number of sound commands to the same sound
channel, it’s not a good idea to play more than one sampled sound on
the same sound channel. ▲

Manipulating a Sound That Is Playing

The Sound Manager provides a number of sound commands that you can use to change

some of the characteristics of sounds that are currently playing. For example, you can

C H A P T E R 2

Sound Manager

2-26 Using the Sound Manager

alter the rate at which a sampled sound is played back, thereby lowering or increasing

the pitch of the sound. You can also pause or stop a sound that is currently in progress.

See “Pausing and Restarting Sound Channels” on page 2-29 for information on how to

pause the processing of a sound channel.

You can use the getRateCmd command to determine the rate at which a sampled sound

is currently playing. If SndDoImmediate returns noErr when you pass getRateCmd,

the current sample rate of the channel is returned as a Fixed value in the location that is

pointed to by param2 of the sound command. (As usual, the high bit of that value

returned is not interpreted as a sign bit.) Values that specify sampling rates are always

interpreted relative to the 22 kHz rate. That is, the Fixed value $00010000 indicates a

rate of 22 kHz. The value $00020000 indicates a rate of 44 kHz. The value $00008000

indicates a rate of 11 kHz.

To modify the pitch of a sampled sound currently playing, use the rateCmd command.

The current pitch is set to the rate specified in the param2 field of the sound command.

Listing 2-4 illustrates how to halve the frequency of a sampled sound that is already

playing. Note that sending the rateCmd command before a sound plays has no effect.

Listing 2-4 Halving the frequency of a sampled sound

FUNCTION MyHalveFreq (mySndChan: SndChannelPtr): OSErr;

VAR

myRate: LongInt; {rate of sound play}

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

{Get the rate of the sample currently playing.}

mySndCmd.cmd := getRateCmd; {the command is getRateCmd}

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := LongInt(@myRate);

myErr := SndDoImmediate(mySndChan, mySndCmd);

IF myErr = noErr THEN

BEGIN

{Halve the sample rate.}

mySndCmd.cmd := rateCmd; {the command is rateCmd}

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := FixDiv(myRate, $00020000);

myErr := SndDoImmediate(mySndChan, mySndCmd);

END;

MyHalveFreq := myErr;

END;

When you halve the frequency of a sampled sound using the technique in Listing 2-4,

the sound will play one octave lower than before. In addition, the sound will play twice

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-27

as slowly as before. Likewise, if you use the rateCmd command to double the frequency

of a sound, it plays one octave higher and twice as fast. Using rateCmd in this way is

like pressing the fast forward button on a tape player while the play button remains

depressed.

You can also use rateCmd and getRateCmd to pause a sampled sound that is currently

playing. To do this, read the rate at which it is playing, issue a rateCmd command with

a rate of 0, and then issue a rateCmd command with the previous rate when you want

the sound to resume playing.

To change the amplitude (or loudness) of the sound in progress, issue the ampCmd

command. (See Listing 2-5 for an example.) If no sound is currently playing, ampCmd sets

the amplitude of the next sound. Specify the desired new amplitude in the param1 field

of the sound command as a value in the range 0 to 255.

Listing 2-5 Changing the amplitude of a sound channel

PROCEDURE MySetAmplitude (chan: SndChannelPtr; myAmp: Integer);

VAR

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

IF chan <> NIL THEN

BEGIN

WITH mySndCmd DO

BEGIN

cmd := ampCmd; {the command is ampCmd}

param1 := myAmp; {desired amplitude}

param2 := 0; {ignored}

END;

myErr := SndDoImmediate(chan, mySndCmd);

IF myErr <> noErr THEN

DoError(myErr);

END;

END;

If your application has an option that allows users to turn off sound output, you could

call the MySetAmplitude procedure on all open channels to set the amplitude of all

channels to 0. Note that the Sound control panel allows the user to adjust the sound from

0 (softest) to 7 (loudest). This value is independent of the values used for amplitudes of

sounds playing in channels, and the Sound Manager uses the Sound control panel value

jointly with the amplitude of a sound channel to determine how loudly to play a sound.

Sounds with low frequencies sound softer than sounds with high frequencies even if the

sounds play at the same amplitude. If the amplitude of a sound is 0, the sound hardware

produces no sound; however, when the value set in the Sound control panel is 0, sound

might still play, depending on the amplitude.

C H A P T E R 2

Sound Manager

2-28 Using the Sound Manager

You can use the getAmpCmd command to determine the current amplitude of a sound in

progress. The getAmpCmd command is similar to getRateCmd, except that the value

returned is an integer. The value returned in param2 is in the range 0–255. Listing 2-6

shows an example:

Listing 2-6 Getting the amplitude of a sound in progress

VAR

myAmp: Integer;

BEGIN

mySndCmd.cmd := getAmpCmd;

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := LongInt(@myAmp);

myErr := SndDoImmediate(mySndChan, mySndCmd);

END;

To modify the timbre of a sound defined using by square-wave data, use the timbreCmd

command. A sine wave is specified as 0 in param1 and produces a very clear sound. A

value of 254 in param1 represents a modified square wave and produces a buzzing

sound. To avoid a bug in some versions of the Sound Manager, you should not use the

value 255. You should change the timbre before playing the sound.

Stopping Sound Channels

The Sound Manager allows you both to stop a sound currently in progress in a channel

and to remove all pending sound commands from a channel.

Note

If you have started a sound playing by using the SndStartFilePlay
function, then you can stop play by using the SndStopFilePlay
function. See “Managing an Asynchronous Play From Disk” on
page 2-52 for more details. ◆

To cause the Sound Manager to stop playing the sound in progress, send the quietCmd

command. Here’s an example:

mySndCmd.cmd := quietCmd; {the command is quietCmd}

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := 0; {unused}

{stop the sound now playing}

myErr := SndDoImmediate(mySndChan, mySndCmd, FALSE);

To bypass the command queue, you should issue quietCmd by using

SndDoImmediate. Any sound commands that are already in the sound channel

remain there, however, and further sound commands can be queued in that channel.

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-29

If you wish to flush a sound channel without disturbing any sounds already in progress,

issue the flushCmd command. Here’s an example:

mySndCmd.cmd := flushCmd; {the command is flushCmd}

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := 0; {unused}

{flush the channel}

myErr := SndDoImmediate(mySndChan, mySndCmd, FALSE);

If you want to stop all sound production by a particular sound channel immediately, you

should issue a flushCmd command and then a quietCmd command. If you issue only a

flushCmd command, the sound currently playing is not stopped. If you issue only a

quietCmd command, the Sound Manager stops the current sound but continues with

any other queued commands. (By calling flushCmd before quietCmd, you ensure that

no other queued commands are processed.)

Note

The Sound Manager sends a quietCmd command when your
application calls the SndDisposeChannel function. The quietCmd
command is preceded by a flushCmd command if the quietNow
parameter is TRUE. ◆

Pausing and Restarting Sound Channels

If you want to pause command processing in a particular channel, you can use either of

two sound commands, waitCmd or pauseCmd.

Note

If you have started a sound playing by using the SndStartFilePlay
function, then you can pause and resume play by using the
SndPauseFilePlay function. See “Managing an Asynchronous Play
From Disk” on page 2-52 for more details. ◆

The waitCmd command suspends all processing in a channel for a specified number of

half-milliseconds. Here’s an example:

mySndCmd.cmd := waitCmd; {the command is waitCmd}

mySndCmd.param1 := 2000; {1-second wait duration}

mySndCmd.param2 := 0; {unused}

{pause the channel}

myErr := SndDoImmediate(mySndChan, mySndCmd, FALSE);

To pause the processing of commands in a sound channel for an unspecified duration,

use the pauseCmd command. Unlike waitCmd, pauseCmd suspends processing for an

undetermined amount of time. Processing does not resume until the Sound Manager

receives a resumeCmd command for the specified channel.

C H A P T E R 2

Sound Manager

2-30 Using the Sound Manager

To issue waitCmd or pauseCmd, you can use either SndDoImmediate or

SndDoCommand, depending on whether you want the suspension of sound channel

processing to begin immediately or when the Sound Manager reaches that command in

the normal course of reading commands from a sound channel. The resumeCmd

command, which is simply the opposite of pauseCmd, should be issued by using

SndDoImmediate. Neither waitCmd nor pauseCmd stops any sound that is currently

playing; these commands simply stop further processing of commands queued in the

sound channel.

Note

If no other commands are pending in the sound channel after a
resumeCmd command, the Sound Manager sends an emptyCmd
command. The emptyCmd command is sent only by the Sound Manager
and should not be issued by your application. ◆

Synchronizing Sound Channels

You can synchronize several different sound channels by issuing syncCmd commands.

The param1 field of the sound command contains a count, and the param2 field

contains an arbitrary identifier. The Sound Manager keeps track of the count for each

channel being synchronized. When the Sound Manager receives a syncCmd command

for a certain channel, it decrements the count for each channel having the given

identifier, including the newly synchronized channel. Command processing resumes on

a channel when the count becomes 0. Thus, if you know how many channels you need to

synchronize, you can synchronize them all by arranging for all of their counts to become

zero simultaneously. Listing 2-7 illustrates the use of the syncCmd command.

Listing 2-7 Adding a channel to a group of channels to be synchronized

PROCEDURE MySync1Chan (chan: SndChannelPtr; count: Integer;

 identifier: LongInt);

VAR

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

WITH mySndCmd DO

BEGIN

cmd := syncCmd; {the command is syncCmd}

param1 := count;

param2 := identifier; {ID of group to be synchronized}

END;

myErr := SndDoImmediate(chan, mySndCmd);

IF myErr <> noErr THEN

DoError(myErr);

END;

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-31

For example, to synchronize three channels, first create the channels and then call the

MySync1Chan procedure defined in Listing 2-7 for the first channel with a count equal

to 4, for the second channel with a count equal to 3, and for the third channel with a

count equal to 2, using the same arbitrary identifier for each call to MySync1Chan. Then

fill all channels with appropriate sound commands. (For example, you might send

commands that will cause the same sequence of notes to be produced on all three

synchronized channels.) Finally, call the MySync1Chan procedure one final time,

passing any of the three channels and a count of 1. By that time, all of the other channels

will have counts of 1, and all counts will become 0 simultaneously, thus initiating

synchronized play.

Note

The syncCmd command is intended to make it easy to synchronize
sound channels. You can use the syncCmd command to start multiple
channels of sampled sound playing simultaneously, but if you require
precise synchronization of sampled-sound channels, you might
achieve better results with the Time Manager, which is described
in Inside Macintosh: Processes. ◆

Managing Sound Volumes
Versions of the Sound Manager prior to 3.0 allow you to set only one volume level,

which applies to all sounds produced by the audio hardware. The Sound Manager

versions 3.0 and later provide greatly improved control over the volumes of the sounds

you ask it to create. You can use new facilities to

■ set the volumes of the left and right channels of sound independently of each other

■ set the volume of the system alert sound

■ set the default volume of a particular sound output device

You can set the system alert sound volume to a different level than that of any other

sounds you produce. For example, you can set the system alert sound to play at a lower

volume than other sounds. This would allow a user to hear QuickTime movies at full

volume and to hear system alert sounds at a lower volume.

You can use the volumeCmd and getVolumeCmd sound commands to set and get the

right and left volumes of sound. You specify a channel’s volume with 16-bit value, where

0 represents no volume and hexadecimal $0100 represents full volume. The Sound

Manager defines constants for silence and full volume.

CONST

kFullVolume = $0100;

kNoVolume = 0;

The volumeCmd sound command expects the right and left volumes to be encoded as

the high word and low word, respectively, of param2. For example, to set the left

channel to half volume and the right channel to full volume, you pass the value

$01000080 in param2, as illustrated in Listing 2-8.

C H A P T E R 2

Sound Manager

2-32 Using the Sound Manager

Listing 2-8 Setting left and right volumes

FUNCTION MySetVolume (chan: SndChannelPtr): OSErr;

VAR

mySndCmd: SndCommand;

myRightVol: Integer;

myLeftVol: Integer;

myErr: OSErr;

BEGIN

myRightVol := kFullVolume;

myLeftVol := kFullVolume DIV 2;

mySndCmd.cmd := volumeCmd;

mySndCmd .param1 := 0; {unused with volumeCmd}

mySndCmd.param2 := BSL(myRightVol, 16) + myLeftVol;

myErr := SndDoImmediate(chan, mySndCmd);

MySetVolume := myErr;

END;

You can also use the volumeCmd sound command to pan a sound from one side to

another. For example, to send the output signal entirely to the right channel, pass

the value $01000000 in param2. To send the output signal entirely to the left channel,

pass the value $00000100 in param2. You can overdrive a channel’s volume by passing

volume levels greater than $0100. For example, to play the left channel of a stereo

sound at twice full volume while playing the right channel at full volume, pass the

value $01000200.

You can use the GetSysBeepVolume and SetSysBeepVolume functions to get and set

the output volume level of the system alert sound. Any calls to the SysBeep procedure

use the volume set by the previous call to SetSysBeepVolume. As you’ve learned, this

allows you to set a lower volume for the system alert sound than for your other sound

output.

You can use the GetDefaultOutputVolume and SetDefaultOutputVolume

functions to set the default output volumes for a particular output device. Each output

device has its own current volume setting and its own default setting. If the user changes

the output device (using the Sound control panel), the newly selected device will use its

own default volume level.

Obtaining Sound-Related Information
Developments in the sound hardware available on Macintosh computers and in the

Sound Manager routines that allow you to drive that hardware have made it imperative

that your application pay close attention to the sound-related features of the operating

environment. For example, some Macintosh computers do not have the sound input

hardware necessary to allow sound recording. Similarly, some other Macintosh

computers are not able to record sounds and play sounds simultaneously. Before taking

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-33

advantage of a sound-related feature that is not available on all Macintosh computers,

you should check to make sure that the target machine provides the features you need.

To make appropriate decisions about the sound you want to produce, you might need to

know some or all of the following types of information:

■ whether a machine can produce stereophonic sounds

■ what version of the Sound Manager is available

■ whether a machine can play multiple channels of sound, and whether it can take
advantage of the enhanced Sound Manager’s play-from-disk capabilities

■ whether a sound playing from disk is active or paused

■ how many channels of sound are currently open

■ whether the system beep has been disabled

The following sections describe how to use the Gestalt function and Sound Manager

routines to determine these types of information.

Obtaining Information About Available Sound Features

You can use the Gestalt function to obtain information about a number of hardware-

and software-related sound features. For instance, you can use Gestalt to determine

whether a machine can produce stereophonic sounds and whether it can mix both left

and right channels of sound on the internal speaker. Many applications don’t need to call

Gestalt to get this kind of information if they rely on the Sound Manager’s ability to

produce reasonable sounding output on whatever audio hardware is available. Other

applications, however, do need to use Gestalt to get this information if they depend on

specific hardware or software features that are not available on all Macintosh computers.

To get sound-related information from Gestalt, pass it the gestaltSoundAttr

selector.

CONST

gestaltSoundAttr = 'snd '; {sound attributes}

If Gestalt returns successfully, it passes back to your application a 32-bit value that

represents a bit pattern. The following constants define the bits currently set or cleared

by Gestalt:

CONST

gestaltStereoCapability = 0; {built-in hw can play stereo sounds}

gestaltStereoMixing = 1; {built-in hw mixes stereo to mono}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

C H A P T E R 2

Sound Manager

2-34 Using the Sound Manager

gestaltLineLevelInput = 9; {built-in input hw needs line level}

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

gestalt16BitAudioSupport = 12; {16-bit audio data supported}

If the bit gestaltStereoCapability is TRUE, the built-in hardware can play stereo

sounds. The bit gestaltStereoMixing indicates that the sound hardware of the

machine mixes both left and right channels of stereo sound into a single audio signal for

the internal speaker. Listing 2-9 demonstrates the use of the Gestalt function to

determine if a machine can play stereo sounds.

Listing 2-9 Determining if stereo capability is available

FUNCTION MyHasStereo: Boolean;

VAR

myFeature: LongInt;

myErr: OSErr;

BEGIN

myErr := Gestalt(gestaltSoundAttr, myFeature);

IF myErr = noErr THEN {test stereo capability bit}

MyHasStereo := BTst(myFeature, gestaltStereoCapability)

ELSE

MyHasStereo := FALSE; {no sound features available}

END;

As shown in the chapter “Introduction to Sound on the Macintosh,” you can determine

whether your application can record by testing the gestaltHasSoundInputDevice

bit. To determine whether a built-in sound input device is available, you can test the

gestaltBuiltInSoundInput bit. The gestaltSoundIOMgrPresent bit indicates

whether the sound input routines are available. Because the

gestaltHasSoundInputDevice bit is not set if the routines are not available, only

sound input device drivers should need to use the gestaltSoundIOMgrPresent bit.

For a complete description of the response bits set by Gestalt, see “Gestalt Selector and

Response Bits” beginning on page 2-90.

Obtaining Version Information

The Sound Manager provides functions that allow you to determine the version

numbers both of the Sound Manager itself and of the MACE compression and expansion

routines. Generally, you should avoid trying to determine which features or routines are

present by reading a version number. Usually, the Gestalt function (discussed in the

previous section) provides a better way to find out if some set of features, such as sound

input capability, is available. In some cases, however, you can use these version routines

to overcome current limitations of the information returned by Gestalt.

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-35

Both of these functions return a value of type NumVersion that contains the same

information as the first 4 bytes of a resource of type 'vers'. The first and second bytes

contain the major and minor version numbers, respectively; the third and fourth bytes

contain the release level and the stage of the release level. For most purposes, the major

and minor release version numbers are sufficient to identify the version. (See the chapter

“Finder Interface” of Inside Macintosh: Macintosh Toolbox Essentials for a complete

discussion of the format of 'vers' resources.)

You can use the SndSoundManagerVersion function to determine which version of

the Sound Manager is present. Listing 2-10 shows how to determine if the enhanced

Sound Manager is available.

Listing 2-10 Determining if the enhanced Sound Manager is present

FUNCTION MyHasEnhancedSoundManager: Boolean;

VAR

myVersion: NumVersion;

BEGIN

IF MyTrapAvailable(_SoundDispatch) THEN

BEGIN

myVersion := SndSoundManagerVersion;

MyHasEnhancedSoundManager := myVersion.majorRev >= 2;

END

ELSE

MyHasEnhancedSoundManager := FALSE

END;

The MyHasEnhancedSoundManager function defined in Listing 2-10 relies on the

MyTrapAvailable function, which is an application-defined routine provided in

Inside Macintosh: Operating System Utilities. If the _SoundDispatch trap is not available,

the SndSoundManagerVersion function is not available either, in which case the

enhanced Sound Manager is certainly not available.

You can use the MACEVersion function to determine the version number of the

available MACE routines (for example, Comp3to1).

Testing for Multichannel Sound and Play-From-Disk Capabilities

The ability to play multiple channels of sound simultaneously and the ability to initiate

plays from disk were first introduced with the enhanced Sound Manager. Even with the

enhanced Sound Manager, however, these capabilities are present only on computers

equipped with suitable sound output hardware (such as an Apple Sound Chip). Sound

Manager version 3.0 defines 2 additional bits in the Gestalt response parameter that

allow you to test directly for these two capabilities.

C H A P T E R 2

Sound Manager

2-36 Using the Sound Manager

CONST

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

Ideally, it should be sufficient to test directly, using Gestalt, for either multichannel

sound capability or play-from-disk capability. If your application happens to be running

under the enhanced Sound Manager, however, the two new response bits are not

defined. In that case, you’ll need to test also whether the Apple Sound Chip is available,

because multichannel sound and play from disk are supported by the enhanced Sound

Manager only if the Apple Sound Chip is available. To test for the presence of the Apple

Sound Chip, you can use the Gestalt function with the gestaltHardwareAttr

selector and the gestaltHasASC bit. Listing 2-11 combines these two tests into a single

routine that returns TRUE if the computer supports multichannel sound.

Listing 2-11 Testing for multichannel play capability

FUNCTION MyCanPlayMultiChannels: Boolean;

VAR

myResponse: LongInt;

myResult: Boolean;

myErr: OSErr;

myVersion: NumVersion;

BEGIN

myResult := FALSE;

myVersion := SndSoundManagerVersion;

myErr := Gestalt(gestaltSoundAttr, myResponse);

IF myVersion.majorRev >= 3 THEN

IF (myErr = noErr) AND (BTst(myResponse, gestaltMultiChannels)) THEN

myResult := TRUE

ELSE

BEGIN

myErr := Gestalt(gestaltHardwareAttr, myResponse);

IF (myErr = noErr) AND (BTst(myResponse, gestaltHasASC)) THEN

myResult := TRUE

END;

MyCanPlayMultiChannels := myResult;

END;

The function MyCanPlayMultiChannels first tries to get the desired information by

calling the Gestalt function with the gestaltSoundAttr selector. If Gestalt

returns successfully and the gestaltMultiChannels bit is set in the response

parameter, then multichannel play capability is present. Notice that the multichannel bit

is checked only if the version of the Sound Manager is 3.0 or greater. If the version is not

at least 3.0, then MyCanPlayMultiChannels calls the Gestalt function with the

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-37

gestaltHardwareAttr selector. If the computer contains the Apple Sound Chip, then

again multichannel play capability is present.

Note

The gestaltHasASC bit is set only on machines that contain an Apple
Sound Chip. You should test for the presence of the Apple Sound Chip
only in the circumstances described above. ◆

You could write a similar function to test for the ability to initiate a play from disk.

Listing 2-12 shows an example.

Listing 2-12 Testing for play-from-disk capability

FUNCTION HasPlayFromDisk: Boolean;

VAR

myResponse: LongInt;

myResult: Boolean;

myErr: OSErr;

myVersion: NumVersion;

BEGIN

myResult := FALSE;

myVersion := SndSoundManagerVersion;

myErr := Gestalt(gestaltSoundAttr, myResponse);

IF myVersion.majorRev >= 3 THEN

IF (myErr = noErr) AND

(BTst(myResponse, gestaltSndPlayDoubleBuffer)) THEN

myResult := TRUE

ELSE

BEGIN

myErr := Gestalt(gestaltHardwareAttr, myResponse);

IF (myErr = noErr) AND (BTst(myResponse, gestaltHasASC)) THEN

myResult := TRUE

END;

HasPlayFromDisk := myResult;

END;

Obtaining Information About a Single Sound Channel

You can use the SndChannelStatus function to obtain information about a single

sound channel and about the status of a disk-based playback on that channel, if one

exists. For example, you can use SndChannelStatus to determine if a channel is being

used for play from disk, how many seconds of the sound have been played, and how

many seconds remain to be played.

C H A P T E R 2

Sound Manager

2-38 Using the Sound Manager

One of the parameters required by the SndChannelStatus function is a pointer

to a sound channel status record, which you must allocate before calling

SndChannelStatus. A sound channel status record has this structure:

TYPE SCStatus =

RECORD

scStartTime: Fixed; {starting time for play from disk}

scEndTime: Fixed; {ending time for play from disk}

scCurrentTime: Fixed; {current time for play from disk}

scChannelBusy: Boolean; {TRUE if channel is processing cmds}

scChannelDisposed: Boolean; {reserved}

scChannelPaused: Boolean; {TRUE if channel is paused}

scUnused: Boolean; {unused}

scChannelAttributes: LongInt; {attributes of this channel}

scCPULoad: LongInt; {CPU load for this channel}

END;

The scStartTime, scEndTime, and scCurrentTime fields are 0 unless the Sound

Manager is currently playing from disk through the specified channel. If a play from

disk is occurring, the scStartTime and scEndTime fields reflect the starting and

ending points of the play, defined in seconds; the scCurrentTime field indicates the

number of seconds between the beginning of the sound on disk and the part of the

sound currently being played. The Sound Manager sets the values of the scStartTime

and scEndTime fields based on the values you set in an audio selection record. (See

page 2-100 for a description of the audio selection record.)

Note that because the Sound Manager might be playing only a selection of a sound, the

scCurrentTime field does not reflect the number of seconds of sound play that have

elapsed. To compute the number of seconds of sound play elapsed, you can subtract the

value in the scStartTime field from that in the scCurrentTime field. However,

because the Sound Manager updates the value of the scCurrentTime field only

periodically, you should not rely on the accuracy of its value.

The scChannelBusy and scChannelPaused fields reflect whether a channel is

processing commands and whether a channel is paused, respectively. After issuing

a series of sound commands, you can use these fields to determine if the channel

has finished processing all of the commands. If both scChannelBusy and

scChannelPaused are FALSE, the Sound Manager has processed all of the

channel’s commands.

You can mask out certain values in the scChannelAttributes field to determine how

a channel has been initialized.

CONST

initPanMask = $0003; {mask for right/left pan values}

initSRateMask = $0030; {mask for sample rate values}

initStereoMask = $00C0; {mask for mono/stereo values}

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-39

The scCPULoad field previously reflected the percentage of CPU processing power

used by the sound channel. However, this field is obsolete, and you should not rely

on its value.

Listing 2-13 illustrates the use of the SndChannelStatus function. It defines a function

that takes a sound channel pointer as a parameter and determines whether a disk-based

playback on that channel is paused.

Listing 2-13 Determining whether a sound channel is paused

FUNCTION MyChannelIsPaused (chan: SndChannelPtr): Boolean;

VAR

myErr: OSErr;

mySCStatus: SCStatus;

BEGIN

MyChannelIsPaused := FALSE;

myErr := SndChannelStatus(chan, Sizeof(SCStatus), @mySCStatus);

IF myErr = noErr THEN

MyChannelIsPaused := mySCStatus.scChannelPaused;

END;

The function defined in Listing 2-13 simply reads the scChannelPaused field to see if

the playback is currently paused.

Note

In Sound Manager versions earlier than 3.0, pausing a sound channel by
issuing a pauseCmd command does not change the scChannelPaused
field. The scChannelPaused field is TRUE only if the Sound Manager
is executing a disk-based playback on the channel and that playback is
paused by the SndPauseFilePlay function. This problem is fixed in
Sound Manager versions 3.0 and later. ◆

Obtaining Information About All Sound Channels

You can use the SndManagerStatus function to determine information about all the

sound channels that are currently allocated by all applications. For example, you can use

this function to determine how many channels are currently allocated. One of the

parameters required by the SndManagerStatus function is a pointer to a Sound

Manager status record, which you must allocate before calling SndManagerStatus.

A Sound Manager status record has this structure:

TYPE SMStatus =

PACKED RECORD

smMaxCPULoad: Integer; {maximum load on all channels}

smNumChannels: Integer; {number of allocated channels}

smCurCPULoad: Integer; {current load on all channels}

END;

C H A P T E R 2

Sound Manager

2-40 Using the Sound Manager

The smNumChannels field contains the number of sound channels currently allocated.

This does not mean that the channels are actually being used, only that they have been

created with the SndNewChannel function and not yet disposed.

The Sound Manager uses information that it returns in the smMaxCPULoad and

smCurCPULoad fields to help it determine whether it can allocate a new channel

when your application calls the SndNewChannel function. The Sound Manager sets

smMaxCPULoad to a default value of 100 at startup time, and the smCurCPULoad field

reflects the approximate percentage of CPU processing power currently taken by

allocated sound channels.

▲ W A R N I N G

Your application should not reply on the values returned in the
smMaxCPULoad and smCurCPULoad fields. To determine if it is safe to
allocate a channel, simply try to allocate it with the SndNewChannel
function. That function returns the appropriate result code if allocating
the channel would put too much of a strain on CPU processing. ▲

Listing 2-14 illustrates the use of SndManagerStatus. It defines a function that returns

the number of sound channels currently allocated by all applications.

Listing 2-14 Determining the number of allocated sound channels

FUNCTION MyGetNumChannels: Integer;

VAR

myErr: OSErr;

mySMStatus: SMStatus;

BEGIN

MyGetNumChannels := 0;

myErr := SndManagerStatus (Sizeof(SMStatus), @mySMStatus);

IF myErr = noErr THEN

MyGetNumChannels := mySMStatus.smNumChannels;

END;

Determining and Changing the Status of the System Alert Sound

The enhanced Sound Manager includes two routines—SndGetSysBeepState and

SndSetSysBeepState—that allow you to determine and alter the status of the system

alert sound. You might wish to disable the system alert sound if you are playing sound

and need to ensure that the sound you are playing is not interrupted. Currently, two

states are defined:

CONST

sysBeepDisable = $0000; {system alert sound disabled}

sysBeepEnable = $0001; {system alert sound enabled}

You can determine the status of the system alert sound like this:

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-41

SndGetSysBeepState(currentState);

And you can disable the system alert sound like this:

myErr := SndSetSysBeepState(sysBeepDisable);

When the system alert sound is disabled, the Sound Manager effectively ignores all calls

to the SysBeep procedure. No sound is created and the menu bar does not flash. Also,

no resources are loaded into memory.

Note

Even when the system alert sound is enabled, it’s possible that the
system alert sound will not play; for example, the speaker volume might
be set to 0, or playing the requested system alert sound might require
too much CPU time. In such a case, the menu bar flashes. ◆

By default, the system alert sound is enabled. If you disable the system alert sound so

that your application can play a sound without being interrupted, be sure to enable the

sound when your application receives a suspend event or when the user quits your

application.

Playing Notes
You can play notes one at a time by using the SndDoCommand or SndDoImmediate

function to issue freqDurationCmd sound commands. A sound plays for a specified

duration at a specified frequency. You can play sounds defined by any of the three sound

data formats. If you play wave-table data or sampled-sound data, then a voice must

previously have been installed in the channel. (See “Installing Voices Into Channels” on

page 2-43 for instructions on installing wave tables and sampled sounds as voices.)

You can also play notes by issuing the freqCmd command, which is identical to

the freqDurationCmd command, except that no duration is specified when you

issue freqCmd.

Note

A freqDurationCmd command might in certain cases continue
playing until another command is available in the sound channel.
Therefore, to play a single note for a specified duration, you should
issue freqDurationCmd followed immediately by quietCmd.
See “Stopping Sound Channels” on page 2-28 for further details
on quietCmd. ◆

The structure of a freqDurationCmd command is slightly different from that of most

other sound commands. The param1 field contains the duration of the sound, specified

in half-milliseconds. A value of 2000 represents a duration of 1 second. The maximum

duration is 32,767, or about 16 seconds, in Sound Manager versions 2.0 and earlier; the

maximum duration in Sound Manager version 3.0 and later is 65,536, or about

32 seconds. The param2 field specifies the frequency of the sound. The frequency is

specified as a MIDI note value (that is, a value defined by the established MIDI

C H A P T E R 2

Sound Manager

2-42 Using the Sound Manager

standard). Listing 2-15 uses the freqDurationCmd command in a way that ensures the

sound stops after the specified duration.

Listing 2-15 Using the freqDurationCmd command

PROCEDURE MyPlayFrequencyOnce (mySndChan: SndChannelPtr;

myMIDIValue: Integer;

milliseconds: Integer);

CONST

kNoWait = TRUE; {add now to full queue?}

VAR

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

{Start the sound playing.}

WITH mySndCmd DO

BEGIN

cmd := freqDurationCmd; {play for period of time}

param1 := milliseconds * 2; {half-milliseconds}

param2 := myMIDIValue; {MIDI value to play}

END;

myErr := SndDoCommand(mySndChan, mySndCmd, NOT kNoWait);

IF myErr <> noErr THEN

DoError(myErr)

ELSE

BEGIN {ensure that sound stops}

WITH mySndCmd DO

BEGIN

cmd := quietCmd; {stop playing sound}

param1 := 0; {unused with quietCmd}

param2 := 0; {unused with quietCmd}

END;

myErr := SndDoCommand(mySndChan, mySndCmd, NOT kNoWait);

IF myErr <> noErr THEN

DoError(myErr);

END;

END;

Table 2-2 shows the decimal values that can be sent with a freqDurationCmd or

freqCmd command. Middle C is represented by a value of 60 and is defined by a special

Sound Manager constant.

CONST

kMiddleC = 60; {MIDI note value for middle C}

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-43

Other specifiable frequencies correspond to MIDI note values.

You can play square-wave and wave-table data at these frequencies only. If you are

playing a sampled sound, however, you can modify the sampleRate field of the sound

header to play a sound at an arbitrary frequency. To do so, use the following formula:

new sample rate = (new frequency / original frequency) * original sample rate

where the new and original frequencies are measured in hertz. To convert a MIDI value

to hertz for use in this formula, note that middle C is defined as 261.625 Hz and that the

ratio between the frequencies of consecutive MIDI values equals the twelfth root of 2,

defined by the constant twelfthRootTwo.

CONST

twelfthRootTwo = 1.05946309434;

IMPORTANT

When calculating with numbers of type Fixed, pay attention to possible
overflows. The maximum value of a number of type Fixed is 65,535.0.
As a result, some sample rates and pitches cannot be specified. Sound
Manager version 3.0 fixes these overflow problems. ▲

You can rest a channel for a specified duration by issuing a restCmd command. The

duration, specified in half-milliseconds, is passed in the param1 field of the sound

command.

Installing Voices Into Channels

You can play frequencies defined by any of the three sound data types. By playing a

frequency defined by wave-table or sampled-sound data, you can achieve a different

Table 2-2 Frequencies expressed as MIDI note values

A A# B C C# D D# E F F# G G#

Octave 1 0 1 2 3 4 5 6 7 8

Octave 2 9 10 11 12 13 14 15 16 17 18 19 20

Octave 3 21 22 23 24 25 26 27 28 29 30 31 32

Octave 4 33 34 35 36 37 38 39 40 41 42 43 44

Octave 5 45 46 47 48 49 50 51 52 53 54 55 56

Octave 6 57 58 59 60 61 62 63 64 65 66 67 68

Octave 7 69 70 71 72 73 74 75 76 77 78 79 80

Octave 8 81 82 83 84 85 86 87 88 89 90 91 92

Octave 9 93 94 95 96 97 98 99 100 101 102 103 104

Octave 10 105 106 107 108 109 110 111 112 113 114 115 116

Octave 11 117 118 119 120 121 122 123 124 125 126 127

C H A P T E R 2

Sound Manager

2-44 Using the Sound Manager

sound than by playing that same frequency using square-wave data. For example, you

might wish to play the sound of a dog’s barking at a variety of frequencies. To do that,

however, you need to install a voice of the barking into the sound channel to which you

want to send freqCmd or freqDurationCmd commands.

You can install a wave table into a channel as a voice by issuing the waveTableCmd

command. The param1 field of the sound command specifies the length of the wave

table, and the param2 field is a pointer to the wave-table data itself. Note that the Sound

Manager resamples the wave table so that it is exactly 512 bytes long.

You can install a sampled sound into a channel as a voice by issuing the soundCmd

command. You can either issue this command from your application or put it into an

'snd ' resource. If your application sends this command, param2 is a pointer to the

sampled sound locked in memory. If soundCmd is contained within an 'snd ' resource,

the high bit of the command must be set. To use a sampled-sound 'snd ' as a voice,

first obtain a pointer to the sampled sound header locked in memory. Then pass this

pointer in param2 of a soundCmd command. After using the sound, your application is

expected to unlock this resource and allow it to be purged.

Listing 2-16 demonstrates how you can use the soundCmd command to install a sampled

sound in memory as a voice in a channel.

Listing 2-16 Installing a sampled sound as a voice in a channel

FUNCTION MyInstallSampledVoice (mySndHandle: Handle;

mySndChan: SndChannelPtr): OSErr;

VAR

mySndCmd: SndCommand; {a sound command}

mySndHeader: SoundHeaderPtr; {sound header from resource}

BEGIN

{get pointer to sound header}

mySndHeader := MyGetSoundHeader(mySndHandle);

WITH mySndCmd DO

BEGIN

cmd := soundCmd; {install sampled voice}

param1 := 0; {ignored with soundCmd}

param2 := LongInt(mySndHeader); {store sound header location}

END;

IF mySndHeader = NIL THEN {check for defective handle}

MyInstallSampledVoice := badFormat

ELSE {install sound as voice}

MyInstallSampledVoice := SndDoImmediate(mySndChan, mySndCmd);

END;

Listing 2-16 relies on the MyGetSoundHeader function to obtain a pointer to the sound

header within the sound handle. That function is defined in “Obtaining a Pointer to a

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-45

Sound Header” on page 2-57 and returns NIL if the sound handle does not include a

sound header. Note that the MyGetSoundHeader function locks the sound handle in

memory so that the pointer to the sound header remains valid. When you are done with

the sound channel in which you have installed the sampled sound, you should unlock

the sound handle and make it purgeable so that it does not waste memory.

Looping a Sound Indefinitely

If you install a sampled sound as a voice in a channel and then play the sound using

a freqCmd or freqDurationCmd command that lasts longer than the sound, the

sound will ordinarily stop before the end of the time specified by the freqCmd or

freqDurationCmd command. Sometimes, however, this might not be what you’d like

to have happen. For example, you might have recorded the sound of a violin playing

and then stored that sound in a resource so that you could play the sound of a violin at

a number of different frequencies. Although you could record the sound so that it is

long enough to continue playing through the longest freqCmd or freqDurationCmd

command that your application might require, this might not be practical. Fortunately,

the Sound Manager provides a mechanism that allows you to repeat sections of sampled

sound after the sound has finished playing once completely.

When you use the freqDurationCmd command with a sampled sound as the voice,

freqDurationCmd starts at the beginning of the sampled sound. If necessary to achieve

the desired duration of sound, the command replays that part of the sound that is

between the loop points specified in the sampled sound header. Note that any sound

preceding or following the loop points will not be replayed. There must be an ending

point for the loop specified in the header in order for freqDurationCmd to work

properly.

Listing 2-17 Looping an entire sampled sound

PROCEDURE MyDoLoopEntireSound (sndHandle: Handle);

VAR

mySndHeader: SoundHeaderPtr; {sound header from resource}

myTotalBytes: LongInt; {bytes of data to loop}

BEGIN

mySndHeader := MyGetSoundHeader(sndHandle);

IF mySndHeader <> NIL THEN

BEGIN {compute bytes of sound data}

CASE mySndHeader^.encode OF

stdSH: {standard sound header}

WITH mySndHeader^ DO

myTotalBytes := mySndHeader^.length;

extSH: {extended sound header}

WITH ExtSoundHeaderPtr(mySndHeader)^ DO

myTotalBytes := numChannels * numFrames * (sampleSize DIV 8);

cmpSH: {compressed sound header}

C H A P T E R 2

Sound Manager

2-46 Using the Sound Manager

WITH CmpSoundHeaderPtr(mySndHeader)^ DO

myTotalBytes := numChannels * numFrames * (sampleSize DIV 8);

END;

WITH mySndHeader^ DO

BEGIN {set loop points}

loopStart := 0; {start with first byte}

loopEnd := myTotalBytes - 1; {end with last byte}

END;

END;

END;

Listing 2-17 uses the MyGetSoundHeader function defined in “Obtaining a Pointer to a

Sound Header” on page 2-57. Note that the formula for computing the length of a sound

depends on the type of sound header. Also, while the formula is the same for both an

extended and a compressed sound header, you must write code that differentiates

between the two types of sound headers because the sampleSize field is not stored in

the same location in both sound headers.

Playing Sounds Asynchronously

The Sound Manager currently allows you to play sounds asynchronously only if you

allocate sound channels yourself, using techniques described in “Managing Sound

Channels” on page 2-19. But if you use such a technique, your application will need to

dispose of a sound channel whenever the application finishes playing a sound. In

addition, your application might need to release a sound resource that you played on a

sound channel.

To avoid the problem of not knowing when to dispose of a sound channel playing a

sound asynchronously, your application could simply allocate a single sound channel

when it starts up (or receives a resume event) and dispose of the channel when the user

quits (or the application receives a suspend event). However, this solution will not work

if you need to release a resource when a sound finishes playing. Also, you might not

want to keep a sound channel allocated when you are not using it. For instance, you

might want to use the memory taken up by a sound channel for other tasks when no

sound is playing.

Your application could call the SndChannelStatus function once each time through its

main event loop to determine if a channel is still making sound. When the scBusy field

of the sound channel status record becomes FALSE, your application could then dispose

of the channel. This technique is easy, but calling SndChannelStatus frequently uses

up processing time unnecessarily.

The Sound Manager provides other mechanisms that allow your application to find out

when a sound finishes playing, so that your application can arrange to dispose of sound

channels no longer being used and of other data (such as a sound resource) that you no

longer need after disposing of a channel. If you are using the SndPlay function or

low-level commands to play sound in a channel, then you can use callback procedures. If

you are using the SndStartFilePlay function to play sound in a channel, then you

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-47

can use completion routines. The following sections illustrate how to use callback

procedures and completion routines.

Note

Callback procedures are a form of completion routine. However, for
clarity, this section uses the terminology “completion routine” only for
the routines associated with the SndStartFilePlay function. ◆

Using Callback Procedures

This section shows how you can use callback procedures to play one sound

asynchronously at a given time. “Managing Multiple Sound Channels” on page 2-53

expands the techniques in this section to show how you can play several asynchronous

sounds simultaneously.

The SndNewChannel function allows you to associate a callback procedure with a

sound channel. For example, the following code opens a new sound channel for which

memory has already been allocated and associates it with the callback procedure

MyCallBack:

myErr := SndNewChannel(gSndChan, sampledSynth, initMono, @MyCallback);

After filling a channel created by SndNewChannel with various commands to create

sound, you can then issue a callBackCmd command to the channel. When the Sound

Manager encounters a callBackCmd command, it executes your callback procedure.

Thus, by placing the callBackCmd command last in a channel, you can ensure that the

Sound Manager executes your callback procedure only after it has processed all of the

channel’s other sound commands.

Note

Be sure to issue callBackCmd commands with the SndDoCommand
function and not the SndDoImmediate function. If you issue a
callBackCmd command with SndDoImmediate, your callback
procedure might be called before other sound commands you have
issued finish executing. ◆

A callback procedure has the following syntax:

PROCEDURE MyCallBack (chan: SndChannelPtr; cmd: SndCommand);

Because the callback procedure executes at interrupt time, it cannot access its application

global variables unless the application’s A5 world is set correctly. (For more information

on the A5 world, see the chapter “Memory Management Utilities” in Inside Macintosh:
Memory.) When called, the callback procedure is passed two parameters: a pointer to the

sound channel that received the callBackCmd command and the sound command that

caused the callback procedure to be called. Applications can use param1 or param2 of

the sound command as flags to pass information or instructions to the callback

procedure. If your callback procedure is to use your application’s global data storage, it

must first reset A5 to your application’s A5 and then restore it on exit. For example,

Listing 2-18 illustrates how to set up a callBackCmd command that contains the

C H A P T E R 2

Sound Manager

2-48 Using the Sound Manager

required A5 information in the param2 field. The MyInstallCallback function

defined there must be called at a time when your application’s A5 world is known

to be valid.

Listing 2-18 Issuing a callback command

FUNCTION MyInstallCallback (mySndChan: SndChannelPtr): OSErr;

CONST

kWaitIfFull = TRUE; {wait for room in queue}

VAR

mySndCmd: SndCommand; {a sound command}

BEGIN

WITH mySndCmd DO

BEGIN

cmd := callBackCmd; {install the callback command}

param1 := kSoundComplete; {last command for this channel}

param2 := SetCurrentA5; {pass the callback the A5}

END;

MyInstallCallback := SndDoCommand(mySndChan, mySndCmd, kWaitIfFull);

END;

In this function, kSoundComplete is an application-defined constant that indicates that

the requested sound has finished playing. You could define it like this:

CONST

kSoundComplete = 1; {sound is done playing}

Because param2 of a sound command is a long integer, Listing 2-18 uses it to pass the

application’s A5 to the callback procedure. That allows the callback procedure to gain

access to the application’s A5 world.

Note

You can also pass information to a callback routine in the userInfo
field of the sound channel. ◆

The sample callback procedure defined in Listing 2-19 can thus set A5 to access the

application’s global variables.

Listing 2-19 Defining a callback procedure

PROCEDURE MyCallback (theChan: SndChannelPtr; theCmd: SndCommand);

VAR

myA5: LongInt;

BEGIN

IF theCmd.param1 = kSoundComplete THEN

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-49

BEGIN

myA5 := SetA5(theCmd.param2); {set my A5}

gCallbackPerformed := TRUE; {set a global flag}

myA5 := SetA5(myA5); {restore the original A5}

END;

END;

▲ W A R N I N G

Callback procedures are called at interrupt time and therefore must
not attempt to allocate, move, or dispose of memory, dereference
an unlocked handle, or call other routines that do so. Also,
assembly-language programmers should note that a callback
procedure is a Pascal procedure and must preserve all registers
other than A0–A1 and D0–D2. ▲

Callback procedures cannot dispose of channels themselves, because that involves

disposing of memory. To circumvent this restriction, the callback procedure in Listing

2-19 simply sets the value of a global flag variable that your application defines. Then,

once each time through its main event loop, your application must call a routine that

checks to see if the flag is set. If the flag is set, the routine should dispose of the channel,

release any other memory allocated specifically for use in the channel, and reset the flag

variable. Listing 2-20 defines such a routine. Your application should call it once each

time through its main event loop.

Listing 2-20 Checking whether a callback procedure has executed

PROCEDURE MyCheckSndChan;

CONST

kQuietNow = TRUE; {need to quiet channel?}

VAR

myErr: OSErr;

BEGIN

IF gCallbackPerformed THEN {check global flag}

BEGIN {channel is done}

gCallbackPerformed := FALSE; {reset global flag}

IF gSndChan^.userInfo <> 0 THEN

BEGIN {release sound data}

HUnlock(Handle(gSndChan^.userInfo));

HPurge(Handle(gSndChan^.userInfo));

END;

myErr := MyDisposeSndChannel(gSndChan, kQuietNow);

gSndChan := NIL; {set pointer to NIL}

END;

END;

C H A P T E R 2

Sound Manager

2-50 Using the Sound Manager

The MyCheckSndChan procedure defined in Listing 2-20 checks the userInfo field of

the sound channel to see if it contains the address of a handle. Thus, if you would like

the MyCheckSndChan procedure to release memory associated with a sound handle,

you need only put the address of the handle in the userInfo field of the sound channel.

(If you do not want the MyCheckSndChan procedure to release memory associated with

a handle, then you should set the userInfo field to 0 when you allocate the channel.

The MyCreateSndChannel function defined in Listing 2-1 on page 2-20 automatically

sets this field to 0.) After releasing the memory associated with the sound handle, the

MyCheckSndChan procedure calls the MyDisposeSndChannel function (defined in

Listing 2-3 on page 2-25) to release the memory occupied by both the sound channel and

the sound channel record.

To ensure that the MyCheckSndChan procedure defined in Listing 2-20 does not

attempt to dispose a channel before you have created one, you should initialize the

gCallbackPerformed variable to FALSE. Also, you should initialize the gSndChan

variable to NIL, so that other parts of your application can check to see if a sound is

playing simply by checking this variable. For example, if your application must play a

sound but another sound is currently playing, you might ensure that the application

gives priority to the newer sound by stopping the old one. Listing 2-21 defines a

procedure that stops the sound that is playing.

Listing 2-21 Stopping a sound that is playing asynchronously

PROCEDURE MyStopPlaying;

BEGIN

IF gSndChan <> NIL THEN {is sound really playing?}

gCallbackPerformed := TRUE; {set global flag}

MyCheckSndChan; {call routine to do disposing}

END;

Once you have defined a callback procedure, a routine that installs the callback

procedure, a routine that checks the status of the callback procedure, and a routine that

can stop sound play, you need only allocate a sound channel, call the SndPlay function,

and install your callback procedure to start an asynchronous sound play. Listing 2-22

defines a procedure that starts an asynchronous play.

Listing 2-22 Starting an asynchronous sound play

PROCEDURE MyStartPlaying (mySndID: Integer);

CONST

kAsync = TRUE; {play is asynchronous}

VAR

mySndHandle: Handle; {handle to an 'snd ' resource}

myErr: OSErr;

BEGIN

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-51

IF gSndChan <> NIL THEN {check if channel is active}

MyStopPlaying;

gSndChan := MyCreateSndChannel(0, 0, @MyCallbackProc, stdQLength);

mySndHandle := GetResource('snd ', mySndID);

IF (mySndHandle <> NIL) AND (gSndChan <> NIL) THEN

BEGIN {start sound playing}

DetachResource(mySndHandle); {detach resource from file}

{remember to release sound handle}

gSndChan^.userInfo := LongInt(mySndHandle);

HLock(mySndHandle); {lock the resource data}

myErr := SndPlay(gSndChan, mySndHandle, kAsync);

IF myErr = noErr THEN

myErr := MyInstallCallback(gSndChan);

IF myErr <> noErr THEN

DoError(myErr);

END;

END;

The MyStartPlaying procedure uses the MyCreateSndChannel function defined

in Listing 2-1 to create a sound channel, requesting that the function allocate a

standard-sized sound channel command queue. By using such a queue, you can be

sure that your application can play any sound resource that contains up to 127 sound

commands. If you are sure that your application will play only sampled-sound resources

created by the Sound Input Manager, you should request a queue of only two sound

commands, thereby leaving enough room for just the bufferCmd command contained

within the sound resource and the callBackCmd command that your application issues.

Before playing the sound, the MyStartPlaying procedure defined in Listing 2-22

detaches the sound resource from its resource file after loading it. This is important if

the resource file could close while the sound is still playing, or if your application

might create another sound channel to play the same sound resource while the sound

is still playing.

Synchronizing Sound With Other Actions

If your application uses callback procedures to play sound asynchronously, you might

wish to synchronize sound play with other activity, such as an onscreen animation.

Callback procedures allow your application to do that by using different constant values

in the param1 field of the callback command. For example, you could define a constant

kFirstSoundFinished to signal to your application that the first of a series of sounds

has finished playing. Then, your callback procedure could set an appropriate global flag

depending on whether the param1 field equals kFirstSoundFinished,

kSoundComplete, or some other constant that your application defines. Finally, a

procedure that you call once each time through your application’s event loop could

check to see which of the various global flag variables are set and respond appropriately.

Meanwhile, sound continues to play.

C H A P T E R 2

Sound Manager

2-52 Using the Sound Manager

Managing an Asynchronous Play From Disk

The Sound Manager allows you to play a sound file asynchronously with the

SndStartFilePlay function by defining a completion routine that sets a global flag to

alert the application to dispose of the sound channel when the sound is done playing.

Completion routines are thus similar to callback procedures, but they are easier to use in

that you do not need to install them. The Sound Manager automatically executes them

when a play from disk ends, whether it has ended because the application called the

SndStopFilePlay function, because the application disposed of the sound channel in

which the sound was playing, or because the sound has finished playing.

You define a completion routine like this:

PROCEDURE MySoundCompletionRoutine (chan: SndChannelPtr);

Note that unlike callback procedures, completion routines have only one parameter, a

pointer to a sound channel. Thus, for the completion routine to set the application’s A5

world properly, you should pass the value of the application’s A5 in the userInfo field

of the sound channel, like this:

gSndChan^.userInfo := SetCurrentA5;

Then your completion routine can look in the userInfo field of the sound channel to

set A5 correctly before it can access any application global variables. Listing 2-23 defines

a completion routine that sets A5 correctly.

Listing 2-23 Defining a completion routine

PROCEDURE MySoundCompletionRoutine (chan: SndChannelPtr);

VAR

myA5: LongInt;

BEGIN

myA5 := SetA5(chan^.userInfo); {set my A5}

gCompletionPerformed := TRUE; {set a global flag}

myA5 := SetA5(myA5); {restore the original A5}

END;

The completion routine defined in Listing 2-23 sets a global flag variable to indicate that

the completion routine has been called. To start a sound file playing, you can use a

routine analogous to that defined in Listing 2-22, but when allocating a sound channel,

you need only allocate a queue of a single sound command. You can than use a

procedure analogous to that defined in Listing 2-20 to check the flag once each time

through the application’s event loop and dispose of the sound channel if the flag is set.

If you do use the SndStartFilePlay function to play sounds asynchronously, then

you can pause, restart, and stop play simply by using the SndPauseFilePlay and

SndStopFilePlay functions.

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-53

You use SndPauseFilePlay to temporarily suspend a sound from playing. If a sound

is playing and you call SndPauseFilePlay, then the sound is paused. If the sound is

paused and you call SndPauseFilePlay again, then the sound resumes playing.

Hence, the SndPauseFilePlay routine acts like a pause button on a tape player, which

toggles the tape between playing and pausing. (You can determine the current state of a

play from disk by using the SndChannelStatus function. See “Obtaining Information

About a Single Sound Channel” on page 2-37 for more details.) Finally, you can use

SndStopFilePlay to stop the file from playing.

Playing Selections

The sixth parameter passed to the SndStartFilePlay function is a pointer to an

audio selection record, which allows you to specify that only part of the sound be

played. If that parameter has a value different from NIL, then SndStartFilePlay

plays only a specified selection of the entire sound. You indicate which part of the entire

sound to play by giving two offsets from the beginning of the sound, a time at which to

start the selection and a time at which to end the selection. Currently, both time offsets

must be specified in seconds.

Here is the structure of an audio selection record:

TYPE AudioSelection =

PACKED RECORD

unitType: LongInt; {type of time unit}

selStart: Fixed; {starting point of selection}

selEnd: Fixed; {ending point of selection}

END;

To play a selection, you should specify in the selStart and selEnd fields the starting

and ending point in seconds of the sound to play. Also, you must set the unitType field

to the constant unitTypeSeconds.

If you wish to play an entire sound, you can simply pass NIL to the

SndStartFilePlay function. Alternatively, you can set the unitType field to the

constant unitTypeNoSelection, in which case the values in the selStart and

selEnd fields are ignored.

Managing Multiple Sound Channels

If you are writing an application that can play multiple channels of sound on Macintosh

computers that support that feature, you can use the Sound Manager’s asynchronous

playing abilities, but you might encounter some special obstacles. The technique for

playing sounds asynchronously described in “Playing Sounds Asynchronously” on

page 2-46 has a limitation if you are using multiple sound channels. Using that technique

without modification, you would need to define each separate sound channel in a

different global variable, and you would need to use several global flags in your callback

procedure to signal which sound channels have finished processing sound commands.

C H A P T E R 2

Sound Manager

2-54 Using the Sound Manager

Although it is easy to modify the code in “Playing Sounds Asynchronously” to use

several flags, this solution might not be satisfactory for an application in which the

number of sound channels open can vary. For example, suppose that you are writing

entertainment software with dozens of sound effects that correspond to actions on the

screen and you wish to use the Sound Manager asynchronously so that several sound

effects can be played at once. It would be cumbersome to associate a separate global

sound channel variable with each sound and create a flag variable for each of these

sound channels. Also, you might wish to play the same sound simultaneously in two

separate channels. It would be better to write code that manages a global list of sound

channels and then provides a simple routine that allows you to add a channel to the list.

This section shows how you might implement such a list of sound channels. Listing 2-24

defines a data structure that you could use to track multiple sound channels.

Listing 2-24 Defining a data structure to track many sound channels

CONST

kMaxNumSndChans = 20; {max number of sound channels}

TYPE

SCInfo =

RECORD

sndChan: SndChannelPtr; {NIL or pointer to channel}

mustDispose: Boolean; {flag to dispose channel}

itsData: Handle; {data to dispose with channel}

END;

SCList = ARRAY[1..kMaxNumSndChans] OF SCInfo;

VAR

gSndChans: SCList;

The SCInfo data structure defined in Listing 2-24 allows you to keep track of which

channels in the collection are being used and which were being used but currently need

disposal; it also allows you to associate data with a sound channel so that you can

dispose of the data when you dispose of the sound channel. Note that the value of the

kMaxNumSndChans constant might vary from application to application. Having

defined the data structure, you must initialize it (so that the sndChan and itsData

fields are NIL and the mustDispose field is FALSE). You must also write a procedure

that finds an available channel. You might declare such a procedure like this:

PROCEDURE DoTrackChan (chanToTrack: SndChannelPtr; associatedData: Handle);

Using such a procedure, you could simply create sound channels by using local variables

and then add them to the tracking list so that your application disposes of them when

they finish executing. The exact implementation of such a procedure would depend on

the needs of your application. For example, if there are no channels available in the

global list of sound channels, your application might report an error, stop sound on all

active channels, or stop sound on the channel that has been playing the longest. If you

want your application to be compatible with computers that do not support

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-55

multichannel sound, this procedure could check whether multichannel sound is

supported, and if not, would stop any sound playing on other channels. This is

particularly useful if your application plays sound effects in response to actions on the

screen; overlapping sound effects sound best, but if this is unattainable, the newest

sound should have the highest priority.

One advantage of maintaining a list of sound channels is that you can use it in

conjunction with both callback procedures and completion routines. Listing 2-25 defines

a procedure that either your callback procedure or completion routine could call after

setting the application’s A5 world correctly.

Listing 2-25 Marking a channel for disposal

PROCEDURE MySetTrackChanDispose (mySndChannel: SndChannelPtr);

VAR

index: Integer; {channel index}

found: Boolean; {flag variable}

BEGIN

index := 1; {start at first spot}

found := FALSE; {initialize flag variable}

WHILE (index <= kMaxNumSndChans) AND (NOT found) DO

IF gSndChans[index].sndChan = mySndChannel THEN

found := TRUE {proper channel found}

ELSE

index := index + 1; {move to next spot}

IF found THEN

gSndChans[index].mustDispose := TRUE;

END;

The final thing you need to do is to define a procedure that your application calls once

each time through its main event loop. This procedure must dispose of sound channels

that are marked for disposal. Listing 2-26 defines such a routine.

Listing 2-26 Disposing of channels that have been marked for disposal

PROCEDURE MyCleanUpTrackedChans;

CONST

kQuietNow = TRUE; {need to quiet channel?}

VAR

index: Integer;

myErr: OSErr;

BEGIN

FOR index := 1 TO kMaxNumSndChans DO {go through all channels}

WITH gSndChans[index] DO

C H A P T E R 2

Sound Manager

2-56 Using the Sound Manager

IF mustDispose THEN {check global flag}

BEGIN {channel needs disposal}

IF gSndChans[index].itsData <> NIL THEN

BEGIN {release other data}

HUnlock(gSndChans[index].itsData);

HPurge(gSndChans[index].itsData);

END;

{free channel-related memory}

myErr := MyDisposeSndChannel(sndChan, kQuietNow);

sndChan := NIL; {set pointer to NIL}

mustDispose := FALSE; {reset global flag}

IF myErr <> noErr THEN

DoError(myErr);

END;

END;

The MyCleanUpTrackedChans procedure defined in Listing 2-26 works just like the

MyCheckSndChan procedure defined in Listing 2-20, but instead of checking a single

global flag, it checks the flag associated with each allocated sound channel. Now that

you have defined such a procedure, you can easily write a routine to stop sound in all

active channels (for example, if your application receives a suspend event). Simply set

the mustDispose flag on all sound channels that are allocated (that is for all channels

that are not NIL) and then call MyCleanUpTrackedChans. Note, however, that when

the MyCleanUpTrackedChans procedure disposes of a sound channel processing a

play from disk, the completion routine will be called and will thus set the mustDispose

flag to TRUE. Thus, the mustDispose flag must be reset to FALSE after the sound

channel has been disposed. Otherwise, the MyCleanUpTrackedChans procedure

would try to dispose of the same sound channel again when the application called it

from its main event loop.

Parsing Sound Resources and Sound Files
This section explains how you can parse sound resources and sound files to find the

component of a sound resource or sound file that contains information about the sound.

For sound resources, this information is stored in the sound header. In addition to

obtaining information about a sound from a sound header, you might need a pointer to a

sound header to use any of several low-level sound commands. For sound files,

information is stored in the Form and Common Chunks. This section shows how you

can find those chunks and extract information from them.

Note

The techniques shown in this section assume that you are familiar with
the format of sound resources and sound files. See “Sound Storage
Formats” beginning on page 2-73 for complete information on sound
storage formats. ◆

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-57

Obtaining a Pointer to a Sound Header

This section shows how you can obtain a pointer to a sound header stored in a sound

resource. You can use this pointer to obtain information about the sound. You also need a

pointer to a sound header to install a sampled sound as a voice in a channel (as

described in “Installing Voices Into Channels” on page 2-43) and to play sounds using

low-level sound commands (as described below and in the next section). You can use a

technique similar to the one described in this section if you wish to obtain a pointer to

wave-table data that is stored in a sound resource.

Sound Manager versions 3.0 and later include the GetSoundHeaderOffset function

that you can use to locate a sound header embedded in a sound resource. Listing 2-27

shows how to call the GetSoundHeaderOffset function and then pass the returned

offset to the bufferCmd sound command, to play a sampled sound using low-level

Sound Manager routines.

Listing 2-27 Playing a sound resource

FUNCTION MyPlaySampledSound (chan: SndChannelPtr; sndHandle: Handle): OSErr;

VAR

myOffset: LongInt;

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

myErr := GetSoundHeaderOffset(sndHandle, myOffset);

IF myErr = noErr THEN

BEGIN

HLock(sndHandle);

mySndCmd.cmd := bufferCmd; {command is bufferCmd}

mySndCmd.param1 := 0; {unused with bufferCmd}

mySndCmd.param2 := LongInt(ORD4(sndHandle^) + myOffset);

myErr := SndDoImmediate(chan, mySndCmd);

END;

MyPlaySampledSound := myErr;

END;

If the GetSoundHeaderOffset function is not available but you still need to obtain a

pointer to a sound header, you can use the function MyGetSoundHeaderOffset

defined in Listing 2-28. The function defined there traverses a sound resource until it

reaches the sound data. It returns, in the offset parameter, the offset in bytes from the

beginning of a sound resource to the sound header.

C H A P T E R 2

Sound Manager

2-58 Using the Sound Manager

IMPORTANT

The GetSoundHeaderOffset function is available in Sound Manager
versions 3.0 and later. As a result, you’ll need to use the techniques
illustrated in Listing 2-28 only if you want your application to find
a sound header when earlier versions of the Sound Manager
are available. ▲

Listing 2-28 Obtaining the offset in bytes to a sound header

FUNCTION MyGetSoundHeaderOffset (sndHdl: Handle; VAR offset: LongInt): OSErr;

TYPE

Snd1Header = {format 1 'snd ' resource header}

RECORD

format: Integer; {format of resource}

numSynths: Integer; {number of data types}

{synths, init option follow}

END;

Snd1HdrPtr = ^Snd1Header;

Snd2Header = {format 2 'snd ' resource header}

RECORD

format: Integer; {format of resource}

refCount: Integer; {for application use}

END;

Snd2HdrPtr = ^Snd2Header;

IntPtr = ^Integer; {for type coercion}

SndCmdPtr = ^SndCommand; {for type coercion}

VAR

myPtr: Ptr; {to navigate resource}

myOffset: LongInt; {offset into resource}

numSynths: Integer; {info about resource}

numCmds: Integer; {info about resource}

isDone: Boolean; {are we done yet?}

myErr: OSErr;

BEGIN

{Initialize variables.}

myOffset := 0; {return 0 if no sound header found}

myPtr := Ptr(sndHdl^); {point to start of resource data}

isDone := FALSE; {haven't yet found sound header}

myErr := noErr;

{Skip everything before sound commands.}

CASE Snd1HdrPtr(myPtr)^.format OF

firstSoundFormat: {format 1 'snd ' resource}

BEGIN {skip header start, synth ID, etc.}

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-59

numSynths := Snd1HdrPtr(myPtr)^.numSynths;

myPtr := Ptr(ORD4(myPtr) + SizeOf(Snd1Header));

myPtr := Ptr(ORD4(myPtr) +

numSynths * (SizeOf(Integer) + SizeOf(LongInt)));

END;

secondSoundFormat: {format 2 'snd ' resource}

myPtr := Ptr(ORD4(myPtr) + SizeOf(Snd2Header));

OTHERWISE {unrecognized resource format}

BEGIN

myErr := badFormat;

isDone := TRUE;

END;

END;

{Find number of commands and move to start of first command.}

numCmds := IntPtr(myPtr)^;

myPtr := Ptr(ORD4(myPtr) + SizeOf(Integer));

{Search for bufferCmd or soundCmd to obtain sound header.}

WHILE (numCmds >= 1) AND (NOT isDone) DO

BEGIN

IF (IntPtr(myPtr)^ = bufferCmd + dataOffsetFlag) OR

(IntPtr(myPtr)^ = soundCmd + dataOffsetFlag) THEN

BEGIN {bufferCmd or soundCmd found}

{copy offset from sound command}

myOffset := SndCmdPtr(myPtr)^.param2;

isDone := TRUE; {get out of loop}

END

ELSE

BEGIN {soundCmd or bufferCmd not found}

{move to next command}

myPtr := Ptr(ORD4(myPtr) + SizeOf(SndCommand));

numCmds := numCmds - 1;

END;

END; {WHILE}

offset := myOffset; {return offset}

MyGetSoundHeaderOffset := myErr; {return result code}

END;

The MyGetSoundHeaderOffset function defined in Listing 2-28 begins by initializing

several variables, including a pointer that it sets to point to the beginning of the data

contained in the sound resource. Then, after determining whether the sound resource is

C H A P T E R 2

Sound Manager

2-60 Using the Sound Manager

format 1 or format 2, the function skips data contained in the format 1 'snd ' resource

header or in the format 2 'snd ' resource header, as appropriate.

Note

Do not confuse the format 1 or format 2 'snd ' header with the sound
header the MyGetSoundHeaderOffset function defined in Listing
2-28 is designed to find. A sound header contains information about the
sampled-sound data stored in a sound resource; a sound resource
header contains information about the format of the sound resource. ◆

After skipping information in the sound resource header, MyGetSoundHeaderOffset

simply looks through all sound commands in the resource for a bufferCmd or

soundCmd command, either of which must contain the offset from the beginning of the

resource to the sound header in its param2 field. If the given sound resource contains no

sound header (and thus no sampled-sound data), the MyGetSoundHeaderOffset

function returns an error and sets the offset variable parameter to 0.

After using the MyGetSoundHeaderOffset function to obtain an offset to the sound

header, you can easily obtain a pointer to a sound header. Note, however, that because

a handle to a sound resource is contained in a relocatable block, you must lock the

relocatable block before you obtain a pointer to a sound header, and you must not

unlock it until you are through using the pointer. Listing 2-29 demonstrates how you can

convert an offset to a sound header into a pointer to a sound header after locking a

relocatable block.

Listing 2-29 Converting an offset to a sound header into a pointer to a sound header

FUNCTION MyGetSoundHeader (sndHandle: Handle): SoundHeaderPtr;

VAR

myOffset: LongInt; {offset to sound header}

myErr: OSErr;

BEGIN

HLockHi(sndHandle); {lock data in high memory}

{compute offset to sound header}

myErr := MyGetSoundHeaderOffset(sndHandle, myOffset);

IF myErr <> noErr THEN

MyGetSoundHeader := NIL {no sound header in resource}

ELSE

{compute address of sound header}

MyGetSoundHeader := SoundHeaderPtr(ORD4(sndHandle^) + myOffset);

END;

The MyGetSoundHeader function defined in Listing 2-29 locks the sound handle you

pass it in high memory and then attempts to find an offset to the sound header in the

sound handle. If the MyGetSoundHeaderOffset function defined in Listing 2-28

returns an offset of 0, then MyGetSoundHeader returns a NIL pointer to a sound

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-61

header; otherwise, it returns a pointer that remains valid as long as you do not unlock

the sound handle.

The MyGetSoundHeader function returns a pointer to a sampled sound header even if

the sound header is actually an extended sound header or a compressed sound header.

Thus, before accessing any other fields of the sound header, you should test the encode

field of the sound header to determine what type of sound header it is. Then, if the

sound header is, for example, an extended sound header, cast the sampled sound header

to an extended sound header. Then you can access any of the fields of the extended

sound header. For an example of this technique, see Listing 2-16 on page 2-44.

Playing Sounds Using Low-Level Routines

Once you obtain a pointer to a sampled sound header, you can use the bufferCmd

sound command to play a sound without using the high-level Sound Manager routines.

Many sampled-sound resources include bufferCmd commands, so the high-level

Sound Manager routines often issue the bufferCmd command indirectly. Thus, you

might in some cases be able to make your application slightly more efficient by issuing

the bufferCmd command directly. Also, you might issue a bufferCmd command

directly if you want the Sound Manager to ignore other parts of a sound resource.

Finally, you might issue bufferCmd commands directly if you want your application to

be able to play a large sound resource without loading the entire resource at once. By

issuing several successive bufferCmd commands, you can play a large sound resource

using a small buffer. In this case, each buffer must contain a sampled sound header. In

most cases, the sound will play smoothly, without audible gaps. It’s generally easier,

however, to play large sampled sounds from disk by using the play-from-disk routines

or the SndPlayDoubleBuffer function. See “Managing Double Buffers” on page 2-147

for complete details.

Note

Using the bufferCmd command to play several consecutive
compressed samples on the Macintosh Plus, the Macintosh SE, or the
Macintosh Classic is not guaranteed to work without an audible pause
or click. ◆

The pointer in the param2 field of a bufferCmd command is the location of a sampled

sound header. A bufferCmd command is queued in the channel until the preceding

commands have been processed. If the bufferCmd command is contained within an

'snd ' resource, the high bit of the command must be set. If the sound was loaded in

from an 'snd ' resource, your application is expected to unlock this resource and allow

it to be purged after using it. Listing 2-30 shows how your application can play a

sampled sound stored in a resource using the bufferCmd command.

C H A P T E R 2

Sound Manager

2-62 Using the Sound Manager

Listing 2-30 Playing a sound using the bufferCmd command

FUNCTION MyLowLevelSampledSndPlay (chan: SndChannelPtr; sndHandle: Handle):

OSErr;

CONST

kWaitIfFull = TRUE; {wait for room in queue?}

VAR

mySndHeader: SoundHeaderPtr;

mySndCmd: SndCommand; {a sound command}

BEGIN

mySndHeader := MyGetSoundHeader(sndHandle);

WITH mySndCmd DO

BEGIN

cmd := bufferCmd; {command is bufferCmd}

param1 := 0; {unused with bufferCmd}

param2 := LongInt(mySndHeader); {pointer to sound header}

END;

IF mySndHeader <> NIL THEN

MyLowLevelSampledSndPlay :=

SndDoCommand(chan, mySndCmd, NOT kWaitIfFull)

ELSE

MyLowLevelSampledSndPlay := badFormat;

END;

For the MyLowLevelSampledSndPlay function defined in Listing 2-30 to play a sound,

the channel passed to it must already be configured to play sampled-sound data.

Otherwise, the function returns a badChannel result code. Also, because the

bufferCmd command works asynchronously, you might want to associate a callback

procedure with the sound channel when you create the channel. For more information

on playing sounds asynchronously, see “Playing Sounds Asynchronously” on page 2-46.

You can use the bufferCmd command to handle compressed sound samples in addition

to sounds that are not compressed. To expand and play back a buffer of compressed

samples, you pass the Sound Manager a bufferCmd command where param2 points to

a compressed sound header.

To play sampled sounds that are not compressed, pass bufferCmd a standard or

extended sound header. The extended sound header can be used for stereo sampled

sounds. The standard sampled sound header is used for all other noncompressed

sampled sounds.

Finding a Chunk in a Sound File

Sound files are not as tightly structured as sound resources. As explained in “Sound

Files” on page 2-81, the chunks in a sound file can appear in any order, except that the

Form Chunk is always first. Most information about a sampled sound stored in a sound

file is contained in the Common Chunk. Thus, to be able to access this information, you

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-63

must be able to find a particular kind of chunk in a sound file. Listing 2-31 defines a

procedure that you can use to find the location of the first chunk of a specified type

beginning at the chunk you specify.

IMPORTANT

The techniques illustrated in this section are provided primarily to help
you understand the structure of sound files. Most sound-producing
applications don’t need to parse sound files. ▲

Listing 2-31 Finding a chunk in a sound file

FUNCTION MyFindChunk (myFile: Integer; {file reference number}

myChunkSought: ID; {ID of chunk sought}

startPos: LongInt; {file position to start at}

VAR chunkFPos: LongInt) {file position of found chunk}

: OSErr;

VAR

myLength: LongInt; {number of bytes to read}

myChunkHeader: ChunkHeader; {characteristics of chunk}

found: Boolean; {flag variable}

myErr: OSErr; {error from File Manager calls}

BEGIN

found := FALSE; {initialize flag variable}

{set file mark at start}

myErr := SetFPos(myFile, fsFromStart, startPos);

{Search file's chunks for desired chunk ID.}

WHILE (NOT found) AND (myErr = noErr) DO

BEGIN {check current chunk}

myLength := SizeOf(myChunkHeader);

{Load chunk header.}

myErr := FSRead(myFile, myLength, @myChunkHeader);

IF myErr = noErr THEN {chunk header loaded okay}

IF myChunkHeader.ckID = myChunkSought THEN

BEGIN

found := TRUE; {chunk has been found}

{find position in file}

myErr := GetFPos(myFile, chunkFPos);

{compute chunk's start position}

chunkFPos := chunkFPos - SizeOf(myChunkHeader);

END

ELSE

BEGIN {move to next chunk}

IF myChunkHeader.ckID = ID(FormID) THEN

C H A P T E R 2

Sound Manager

2-64 Using the Sound Manager

{Adjust Form Chunk's size to size of formType field.}

myChunkHeader.ckSize := SizeOf(ID);

IF myChunkHeader.ckSize MOD 2 = 1 THEN

{Compensate for pad byte.}

myChunkHeader.ckSize := myChunkHeader.ckSize + 1;

myErr := SetFPos(myFile, fsFromMark, myChunkHeader.ckSize);

END;

END; {WHILE}

MyFindChunk := myErr;

END;

The MyFindChunk function defined in Listing 2-31 accepts four parameters. The

myFile parameter is the file reference number of an open sound file. (For information

on file reference numbers, see Inside Macintosh: Files.) In the myChunkSought parameter,

you pass the ID of the type of chunk you wish to find. For example, you might pass

ID(FormID) to find the Form Chunk. The third parameter, startPos, is the file

position at which MyFindChunk should start searching for a chunk. This file position

must be the beginning of a chunk. To start at the beginning of a file, specify 0. Finally,

if the MyFindChunk function is successful, it returns in the chunkFPos parameter the

file position of the first chunk of the specified type that it found. If the function is

unsuccessful, it returns the appropriate File Manager result code (such as an end-of-file

error) and the chunkFPos parameter is undefined.

The MyFindChunk function works by looking at each chunk of the sound file, beginning

at the file position startPos and checking to see if the chunk is of the type sought. If a

chunk matches, the MyFindChunk function returns the file position of the start of the

chunk; otherwise, the function moves onto the next chunk. For each chunk, the

MyFindChunk function reads in the chunk header, checks for a match, and then moves

to the next chunk.

The MyFindChunk function moves from one chunk to the next by identifying the size of

the current chunk, not including the chunk header, from the ckSize field of the chunk

header. Whenever you parse sound files, you should always use the ckSize field of the

chunk header to determine the size of a chunk if the size of the chunk could vary in size.

The MyFindChunk function adjusts the value in the ckSize field before advancing to

the next chunk in two cases. First, the ckSize field for the Form Chunk reflects the size

of the entire sound file, so this function changes it to the size of the formType field so

that the function does not skip the file’s local chunks. Second, if the ckSize field is odd,

1 byte is added because the number of bytes in a chunk is always even.

After using the MyFindChunk function defined in Listing 2-31, you might still need to

read the data contained in a chunk into memory. For example, you might read in the

Form and Common Chunks to obtain information about a sound file. Listing 2-32 uses

the MyFindChunk function to find a chunk in a sound file, allocates an appropriately

sized block of memory for that chunk, and reads the chunk into that block.

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-65

Listing 2-32 Loading a chunk from a sound file

FUNCTION MyGetChunkData (myFile: Integer; {file reference number}

myChunkSought: ID; {ID of chunk sought}

startPos: LongInt): {file position to start at}

Ptr; {pointer to data or NIL}

VAR

myFPos: LongInt; {position in file}

myLength: LongInt; {number of bytes to read}

myChunkHeader: ChunkHeader; {characteristics of a chunk}

myChunkData: Ptr; {pointer to chunk data}

myErr: OSErr;

BEGIN

myChunkData := NIL; {initialize variable}

myErr := MyFindChunk(myFile, myChunkSought, startPos, myFPos);

IF myErr = noErr THEN

{move to start of chunk}

myErr := SetFPos(myFile, fsFromStart, myFPos);

IF myErr = noErr THEN

BEGIN {determine how much data to copy}

myLength := SizeOf(ChunkHeader);

myErr := FSRead(myFile, myLength, @myChunkHeader);

IF myChunkHeader.ckID = ID(FormID) THEN

myChunkHeader.ckSize := SizeOf(ID); {don't return local chunks}

myLength := myChunkHeader.ckSize + SizeOf(ChunkHeader);

IF myErr = noErr THEN

{return to chunk's start}

myErr := SetFPos(myFile, fsFromStart, myFPos);

END;

IF myErr = noErr THEN

BEGIN {read chunk data into RAM}

myChunkData := NewPtr(myLength);

IF myChunkData <> NIL THEN

myErr := FSRead(myFile, myLength, myChunkData);

END;

IF myErr <> noErr THEN

IF myChunkData <> NIL THEN

DisposePtr(myChunkData);

MyGetChunkData := myChunkData;

END;

The MyGetChunkData function defined in Listing 2-32 attempts to find a chunk in a file.

If it finds the chunk, it reads the chunk header to determine the chunk’s size, and if the

chunk is the Form Chunk, adjusts the chunk size so that the sound file’s local chunks are

C H A P T E R 2

Sound Manager

2-66 Using the Sound Manager

not included in the chunk size. Then the function attempts to allocate memory for the

chunk and read the chunk into the memory. If a problem occurs at any time, the function

simply returns NIL.

Note

The format of a sound file might not be the same as its operating-system
type. In particular, a file might have an operating-system type 'AIFC'
but be formatted as an AIFF file because the sampled-sound data
contained in the file is noncompressed. ◆

Compressing and Expanding Sounds
Some of the capabilities provided by MACE are transparently available to your

application. For example, if you pass the SndPlay function a handle to an 'snd '

resource that contains a compressed sampled sound, the Sound Manager automatically

expands the sound data for playback in real time. Your application does not need to

know whether the 'snd ' resource contains compressed or noncompressed samples

when it calls SndPlay. This is because sufficient information is in the resource itself to

allow the Sound Manager to determine whether it should expand the data samples.

However, aside from expansion playback, all of the MACE capabilities need to be

specifically requested by your application. For example, you can use the procedure

Comp3to1 or Comp6to1 if you want to compress a sampled sound (for example, to

create an 'snd ' resource containing compressed audio data). You can use the

procedures Exp1to3 and Exp1to6 to expand compressed audio data.

All of these procedures require you to specify both an input and an output buffer,

from and to which the sampled-sound data to be converted is read and written. Your

application must allocate the appropriate amount of storage for each buffer. For

example, if you want to expand a buffer of compressed monophonic sampled-sound

data by using Exp1to6, the output buffer must be at least six times the size of the

input buffer.

The MACE compression and expansion routines can work on only one channel of sound.

The numChannels parameter of all four procedures allows you to specify how many

channels are in the original sample, and the whichChannel parameter allows you to

specify which channel you wish to compress or expand. Because the MACE routines can

compress or expand only one channel of sound, you must make adjustments when

allocating an output buffer for stereo sound. For example, if you are compressing

two-channel sound using the Comp3to1 procedure, your output buffer need only be

one-sixth the size of your input buffer.

Often when compressing polyphonic sound, being able to compress only one channel is

not a problem, because you lose sound quality during compression anyway. However,

you might at times wish to maintain more than one channel of a multichannel sound

even after compression and expansion. For example, two channels of a stereo sound

might be quite different and might both be necessary to achieve a full sound after

expansion. In these cases, you can compress each channel of a multichannel sound

individually and then manually interleave the samples on a packet basis. When you

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-67

expand polyphonic compressed sound data, you must interleave the channels of sound

on a sample frame basis.

The MACE routines work only with sampled-sound data in offset binary format. If you

are compressing data in a sound file, you must convert that data from linear, two’s

complement format to binary offset format before compression.

When calling the MACE routines, you can also specify addresses of two small buffers

(128 bytes each) that the Sound Manager uses to maintain state information about the

compression or expansion process. When you first call a MACE routine, the state buffers

should be filled with zeros to initialize the state information. When you subsequently

call another MACE routine, you can use the same state buffers. You can pass NIL for

both buffers if you do not want to save state information across calls to the MACE

routines. Listing 2-33 illustrates the use of the Comp3to1 procedure when using

state buffers.

Listing 2-33 Compressing audio data

PROCEDURE MyCompressBy3 (inBuf: Ptr; outBuf: Ptr; numSamp: LongInt);

CONST

kStateBufferSize = 128;

VAR

myInState: Ptr; {input state buffer}

myOutState: Ptr; {output state buffer}

BEGIN

myInState := NewPtrClear(kStateBufferSize);

myOutState := NewPtrClear(kStateBufferSize);

IF (myInState <> NIL) AND (myOutState <> NIL) THEN

Comp3to1(inBuf, outBuf, numSamp, myInState, myOutState, 1, 1);

END;

Because the last two parameters (numChannels and whichChannel) are both set to 1,

MyCompressBy3 compresses monophonic audio data.

In practice, compressing a sound resource or sound file is considerably more complex

than calling the MyCompressBy3 procedure defined in Listing 2-33. To compress a

sound resource containing monophonic sampled-sound data, you would need to

■ load the data into a handle and lock the handle

■ ensure that the data in the handle is not already compressed by examining the sound
header

■ find a pointer to the sampled-sound data by examining the samplePtr field of the
sound header

■ allocate an output buffer of the appropriate size, taking into account that only one
channel of the original data can be compressed

■ compress the sampled-sound data by calling the Comp3To1 procedure

C H A P T E R 2

Sound Manager

2-68 Using the Sound Manager

■ determine the size that the header information (including, for example, sound
commands and the sampled sound header excluding the sampled-sound data itself)
will take in the resource by using the Sound Input Manager’s SetupSndHeader
function to create a sound resource header and sampled sound header with the
same sample rate, base frequency, and other characteristics as the original
sampled-sound data

■ resize the handle so that it is large enough to contain both the non–sampled-sound
data information and the compressed sound data

■ fill this handle by first calling SetupSndHeader once again and by then copying the
compressed sound data to the end of the header information

■ update the resource file

Techniques for compressing sound files and for expanding both sound resources and

sound files are analogous to that sketched here. Remember that after compressing or

expanding each channel of polyphonic sampled-sound data, you must interleave frames

of sound data, on a packet basis after compression or on a sample basis after expansion.

Using Double Buffers
The play-from-disk routines make extensive use of the SndPlayDoubleBuffer

function. You can use this function in your application directly if you wish to bypass the

normal play-from-disk routines. You might want to do this to maximize the efficiency of

your application while maintaining compatibility with the Sound Manager. Or, you

might define your own double-buffering routines so that your application can convert

16-bit sound data on disk to 8-bit data that all versions of the Sound Manager can play.

By using SndPlayDoubleBuffer instead of the normal play-from-disk routines, you

can specify your own doubleback procedure (that is, the algorithm used to switch back

and forth between buffers) and customize several other buffering parameters.

IMPORTANT

SndPlayDoubleBuffer is a very low-level routine and is not intended
for general use. In most cases, you should use the high-level Sound
Manager routines (such as SndPlay or SndStartFilePlay) or
standard sound commands (such as bufferCmd) to play sounds.
You should use SndPlayDoubleBuffer only if you require very
fine control over double buffering. Remember also that the
SndPlayDoubleBuffer function is not always available. You’ll need
to ensure that it’s available in the current operating environment before
calling it. See “Testing for Multichannel Sound and Play-From-Disk
Capabilities” beginning on page 2-35 for details. ▲

You call SndPlayDoubleBuffer by passing it a pointer to a sound channel (into which

the double-buffered data is to be written) and a pointer to a sound double buffer header

record. Here’s an example:

myErr := SndPlayDoubleBuffer(mySndChan, @myDoubleHeader);

A sound double buffer header record has the following structure:

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-69

TYPE SndDoubleBufferHeader =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

END;

The values for the dbhCompressionID, dbhNumChannels, and dbhPacketSize

fields are the same as those for the compressionID, numChannels, and packetSize

fields of the compressed sound header, respectively.

The dbhBufferPtr array contains pointers to two records of type SndDoubleBuffer.

These are the two buffers between which the Sound Manager switches until all

the sound data has been sent into the sound channel. When the call to

SndPlayDoubleBuffer is made, the two buffers should both already contain

a nonzero number of frames of data.

IMPORTANT

The Sound Manager defines the data type SndDoubleBufferHeader2
that is identical to the SndDoubleBufferHeader data type except that
it contains the dbhFormat field (of type OSType) that defines a custom
codec to be used to decompress the sound data. The dbhFormat field is
used only if the dbhCompressionID field contains the value
fixedCompression. See “Sound Double Buffer Header Records”
beginning on page 2-111 for details. ▲

Here is the structure of a sound double buffer:

TYPE SndDoubleBuffer =

PACKED RECORD

dbNumFrames: LongInt; {number of frames in buffer}

dbFlags: LongInt; {buffer status flags}

dbUserInfo: ARRAY[0..1] OF LongInt;

{for application's use}

dbSoundData: PACKED ARRAY[0..0] OF Byte;

{array of data}

END;

The buffer status flags field for each of the two buffers might contain either of

these values:

C H A P T E R 2

Sound Manager

2-70 Using the Sound Manager

CONST

dbBufferReady = $00000001;

dbLastBuffer = $00000004;

All other bits in the dbFlags field are reserved by Apple; your application should not

modify them.

The following two sections illustrate how to fill out these data structures, create your

two buffers, and define a doubleback procedure to refill the buffers when they

become empty.

Setting Up Double Buffers

Before you can call SndPlayDoubleBuffer, you need to allocate two buffers (of type

SndDoubleBuffer), fill them both with data, set the flags for the two buffers to

dbBufferReady, and then fill out a record of type SndDoubleBufferHeader with the

appropriate information. Listing 2-34 illustrates how you can accomplish these tasks.

Listing 2-34 Setting up double buffers

CONST

kDoubleBufferSize = 4096; {size of each buffer (in bytes)}

TYPE

LocalVars = {variables used by the doubleback procedure}

RECORD

bytesTotal: LongInt; {total number of samples}

bytesCopied: LongInt; {number of samples copied to buffers}

dataPtr: Ptr; {pointer to sample to copy}

END;

LocalVarsPtr = ^LocalVars;

{This function uses SndPlayDoubleBuffer to play the sound specified.}

FUNCTION MyDBSndPlay (chan: SndChannelPtr; sndHeader: SoundHeaderPtr): OSErr;

VAR

myVars: LocalVars;

myDblHeader: SndDoubleBufferHeader;

myDblBuffer: SndDoubleBufferPtr;

myStatus: SCStatus;

myIndex: Integer;

myErr: OSErr;

BEGIN

{Set up myVars with initial information.}

myVars.bytesTotal := sndHeader^.length;

myVars.bytesCopied := 0; {no samples copied yet}

myVars.dataPtr := Ptr(@sndHeader^.sampleArea[0]);

C H A P T E R 2

Sound Manager

Using the Sound Manager 2-71

{pointer to first sample}

{Set up SndDoubleBufferHeader.}

WITH myDblHeader DO

BEGIN

dbhNumChannels := 1; {one channel}

dbhSampleSize := 8; {8-bit samples}

dbhCompressionID := 0; {no compression}

dbhPacketSize := 0; {no compression}

dbhSampleRate := sndHeader^.sampleRate;

dbhDoubleBack := @MyDoubleBackProc;

END;

FOR myIndex := 0 TO 1 DO {initialize both buffers}

BEGIN

{Get memory for double buffer.}

myDblBuffer := SndDoubleBufferPtr(NewPtr(Sizeof(SndDoubleBuffer) +

 kDoubleBufferSize));

IF myDblBuffer = NIL THEN

BEGIN

MyDBSndPlay := MemError;

Exit(MyDBSndPlay);

END;

myDblBuffer^.dbNumFrames := 0; {no frames yet}

myDblBuffer^.dbFlags := 0; {buffer is empty}

myDblBuffer^.dbUserInfo[0] := LongInt(@myVars);

{Fill buffer with samples.}

MyDoubleBackProc(sndChan, myDblBuffer);

{Store buffer pointer in header.}

myDblHeader.dbhBufferPtr[myIndex] := myDblBuffer;

END;

{Start the sound playing.}

myErr := SndPlayDoubleBuffer(sndChan, @myDblHeader);

IF myErr <> noErr THEN

BEGIN

MyDBSndPlay := myErr;

Exit(MyDBSndPlay);

END;

{Wait for the sound's end by checking the channel status.}

REPEAT

C H A P T E R 2

Sound Manager

2-72 Using the Sound Manager

myErr := SndChannelStatus(chan, sizeof(myStatus), @status);

UNTIL NOT myStatus.scChannelBusy;

{Dispose double buffer memory.}

FOR myIndex := 0 TO 1 DO

DisposePtr(Ptr(myDblHeader.dbhBufferPtr[myIndex]));

MyDBSndPlay := noErr;

END;

The function MyDBSndPlay takes two parameters, a pointer to a sound channel and a

pointer to a sound header. For information about obtaining a pointer to a sound header,

see “Obtaining a Pointer to a Sound Header” on page 2-57. The MyDBSndPlay function

reads the sound header to determine the characteristics of the sound to be played (for

example, how many samples are to be sent into the sound channel). Then MyDBSndPlay

fills in the fields of the double buffer header, creates two buffers, and starts the sound

playing. The doubleback procedure MyDoubleBackProc is defined in the next section.

Writing a Doubleback Procedure

The dbhDoubleBack field of a double buffer header specifies the address of a

doubleback procedure, an application-defined procedure that is called when the double

buffers are switched and the exhausted buffer needs to be refilled. The doubleback

procedure should have this format:

PROCEDURE MyDoubleBackProc (chan: SndChannelPtr;

exhaustedBuffer: SndDoubleBufferPtr);

The primary responsibility of the doubleback procedure is to refill an exhausted buffer

of samples and to mark the newly filled buffer as ready for processing. Listing 2-35

illustrates how to define a doubleback procedure. Note that the sound channel pointer

passed to the doubleback procedure is not used in this procedure.

This doubleback procedure extracts the address of its local variables from the

dbUserInfo field of the double buffer record passed to it. These variables are used to

keep track of how many total bytes need to be copied and how many bytes have been

copied so far. Then the procedure copies at most a bufferfull of bytes into the empty

buffer and updates several fields in the double buffer record and in the structure

containing the local variables. Finally, if all the bytes to be copied have been copied,

the buffer is marked as the last buffer.

Note

Because the doubleback procedure is called at interrupt time, it cannot
make any calls that move memory either directly or indirectly. (Despite
its name, the BlockMove procedure does not cause blocks of memory to
move or be purged, so you can safely call it in your doubleback
procedure, as illustrated in Listing 2-35.) ◆

C H A P T E R 2

Sound Manager

Sound Storage Formats 2-73

Listing 2-35 Defining a doubleback procedure

PROCEDURE MyDoubleBackProc (chan: SndChannelPtr;

doubleBuffer: SndDoubleBufferPtr);

VAR

myVarsPtr: LocalVarsPtr;

myNumBytes: LongInt;

BEGIN

{Get pointer to my local variables.}

myVarsPtr := LocalVarsPtr(doubleBuffer^.dbUserInfo[0]);

{Get number of bytes left to copy.}

myNumBytes := myVarsPtr^.bytesTotal - myVarsPtr^.bytesCopied;

{If the amount left is greater than double buffer size, limit the number }

{ of bytes to copy to the size of the buffer.}

IF myNumBytes > kDoubleBufferSize THEN

myNumBytes := kDoubleBufferSize;

{Copy samples to double buffer.}

BlockMove(myVarsPtr^.dataPtr, @doubleBuffer^.dbSoundData[0], myNumBytes);

{Store number of samples in buffer and mark buffer as ready.}

doubleBuffer^.dbNumFrames := myNumBytes;

doubleBuffer^.dbFlags := BOR(doubleBuffer^.dbFlags, dbBufferReady);

{Update data pointer and number of bytes copied.}

myVarsPtr^.dataPtr := Ptr(ORD4(myVarsPtr^.dataPtr) + myNumBytes);

myVarsPtr^.bytesCopied := myVarsPtr^.bytesCopied + myNumBytes;

{If all samples have been copied, then this is the last buffer.}

IF myVarsPtr^.bytesCopied = myVarsPtr^.bytesTotal THEN

doubleBuffer^.dbFlags := BOR(doubleBuffer^.dbFlags, dbLastBuffer);

END;

Sound Storage Formats

This section describes in detail the formats of sound resources and sound files, which are

the two principal storage formats for sound data on Macintosh computers. In general, an

application that uses the services provided by the Sound Manager and the Sound Input

Manager to play and record sounds does not need to know how the sound data is

C H A P T E R 2

Sound Manager

2-74 Sound Storage Formats

organized in memory or on disk. For some special purposes, however, you might need

the information in this section.

Sound Resources
A sound resource is a resource of type 'snd ' that contains sound commands and

possibly also sound data. Sound resources are widely used by Macintosh applications

that produce sounds. These resources provide a simple and portable way for you to

incorporate sounds into your application. For example, the sounds that a user can select

in the Sound control panel as the system alert sound are stored in the System file as

'snd ' resources.

There are two types of 'snd ' resources, known as format 1 and format 2. Figure 2-4

illustrates the structures of both kinds of 'snd ' resources.

Figure 2-4 The structure of 'snd ' resources

IMPORTANT

The format 2 'snd ' resource is obsolete. Your application should
create only format 1 'snd ' resources. The format 2 'snd ' resource
was designed for use by HyperCard and can be used with
sampled-sound data only. ▲

C H A P T E R 2

Sound Manager

Sound Storage Formats 2-75

Resource IDs for 'snd ' resources in the range 0 to 8191 are reserved for use by

Apple Computer, Inc. The 'snd ' resources numbered 1 through 4 are defined to be

the standard system alert sounds, although more recent versions of system software

have included more standard system alert sounds.

When a sound command contained in an 'snd ' resource has associated sound data,

the high bit of the command is set. This changes the meaning of the param2 field of the

command from a pointer to a location in RAM to an offset value that specifies the offset

in bytes from the resource’s beginning to the location of the associated sound data (such

as a sampled sound header). Figure 2-5 illustrates the location of this data offset bit.

Figure 2-5 The location of the data offset bit

The offset bit is used only by sound commands that are stored in sound resources of

type 'snd ' and that have associated sound data (that is, sampled-sound or

wave-table data).

You can use a constant to access that flag.

CONST

dataOffsetFlag = $8000; {sound command data offset bit}

If the dataOffsetFlag bit is not set, param2 is interpreted instead as a pointer to the

location in memory (outside the sound resource) where the data is located.

The first few bytes of the resource contain 'snd ' header information and are a

different size for each format. An audio data type specified in a format 1 'snd '

requires 6 bytes. The number of data types multiplied by 6 is added to this offset. The

number of commands multiplied by 8 bytes, the size of a sound command, is added to

the offset.

The Format 1 Sound Resource

Figure 2-4 shows the fields of a format 1 'snd ' resource. A format 1 'snd ' resource

header contains information about the format of the resource (namely, 1), the data type,

and the initialization options for that data type. A format 1 'snd ' resource contains

sound commands and might also contain the actual sound data for wave-table sounds or

sampled sounds. Note that if a sound resource includes sampled-sound data, then part

of the sound data section is devoted to a sound header that describes the sampled-sound

data in the remainder of the sound data section.

C H A P T E R 2

Sound Manager

2-76 Sound Storage Formats

If an 'snd ' resource specifies a data type, it can supply an initialization option in the

field immediately following the type. You specify the number of commands in the

resource in the number of sound commands field. The sound commands follow, in the

order in which they should be sent to the sound channel.

The format 1 'snd ' resource might contain only a sequence of commands describing a

sound. In this case, the number of data types should be 0, and there should be no data

type specification or initialization option in the 'snd ' resource. This allows the

'snd ' resource to be used with any kind of sound data.

Listing 2-36 shows the output of the MPW tool DeRez when applied to the 'snd '

resource with resource ID 1 contained in the System file.

Listing 2-36 A format 1 'snd ' resource

data 'snd ' (1, "Simple Beep", purgeable) {

/*the sound resource header*/

$"0001" /*format type*/

$"0001" /*number of data types*/

$"0001" /*square-wave data*/

$"00000000" /*initialization option*/

/*the sound commands*/

$"001B" /*number of sound commands (27)*/

$"002C" /*command 1--timbreCmd 090 000*/

$"005A00000000"

$"002B" /*command 2--ampCmd 224 000*/

$"00E000000000"

$"002A" /*command 3--freqCmd 000 069*/

$"000000000045"

$"000A" /*command 4--waitCmd 040 000*/

$"002800000000"

$"002B" /*command 5--ampCmd 200 000*/

$"00C800000000"

/*commands 6 through 26 are omitted; they are */

/* alternating pairs of waitCmd and ampCmd commands */

/* where the first parameter of ampCmd has the */

/* values 192, 184, 176, 168, 160, 144, 128, 96, */

/* 64, and 32*/

$"002B" /*command 27--ampCmd 000 000*/

$"000000000000"

};

As you can see, the Simple Beep is actually a rather sophisticated sound, in which the

loudness (or amplitude) of the beep gradually decreases from an initial value of 224 to 0.

C H A P T E R 2

Sound Manager

Sound Storage Formats 2-77

Notice that the sound shown in Listing 2-36 is defined using square-wave data and is

completely determined by a sequence of specific commands. (“Play an A at loudness

224, wait 20 milliseconds, play it at loudness 200....”) Often, an 'snd ' resource consists

only of a single sound command (usually the bufferCmd command) together with data

that describes a sampled sound to be played. Listing 2-37 shows an example like this.

Listing 2-37 A format 1 'snd ' resource containing sampled-sound data

data 'snd ' (19068, "hello daddy", purgeable) {

/*the sound resource header*/

$"0001" /*format type*/

$"0001" /*number of data types*/

$"0005" /*sampled-sound data*/

$"00000080" /*initialization option: initMono*/

/*the sound commands*/

$"0001" /*number of sound commands that follow (1)*/

$"8051" /*command 1--bufferCmd*/

$"0000" /*param1 = 0*/

$"00000014" /*param2 = offset to sound header (20 bytes)*/

/*the sampled sound header*/

$"00000000" /*pointer to data (it follows immediately)*/

$"00000BB8" /*number of bytes in sample (3000 bytes)*/

$"56EE8BA3" /*sampling rate of this sound (22 kHz)*/

$"000007D0" /*starting of the sample's loop point*/

$"00000898" /*ending of the sample's loop point*/

$"00" /*standard sample encoding*/

$"3C" /*baseFrequency at which sample was taken*/

/*the sampled-sound data*/

$"80 80 81 81 81 81 81 81 80 80 80 80 80 81 82 82"

$"82 83 82 82 81 80 80 7F 7F 7F 7E 7D 7D 7D 7C 7C"

$"7C 7C 7D 7D 7D 7D 7E 7F 80 80 81 81 82 82 83 83"

$"83 83 82 81 81 80 80 81 81 81 81 81 82 81 81 80"

$"80 80 81 81 81 83 83 83 82 81 81 80 7F 7E 7D 7D"

$"7F 7F 7F 7F 7E 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 80"

/*rest of data omitted in this example*/

};

This 'snd ' resource indicates that the sound is defined using sampled-sound data.

The resource includes a call to a single sound command, the bufferCmd command. The

offset bit of the command number is set to indicate that the sound data is contained in

the resource itself. Following the command and its two parameters is the sampled sound

header, the first part of which contains important information about the sample. The

second parameter to the bufferCmd command indicates the offset from the beginning

of the resource to the sampled sound header, in this case 20 bytes. After the sound

C H A P T E R 2

Sound Manager

2-78 Sound Storage Formats

commands, this resource includes a sampled sound header, which includes the

sampled-sound data. The format of a sampled sound header is described in “Sound

Header Records” on page 2-104.

For compressed sound data, the sampled sound header is replaced by a compressed

sampled sound header. Listing 2-38 illustrates the structure of an 'snd ' resource that

contains compressed sound data.

Listing 2-38 An 'snd ' resource containing compressed sound data

data 'snd ' (9004, "Raisa's Cry", purgeable) {

/*the sound resource header*/

$"0001" /*format type*/

$"0001" /*number of data types*/

$"0005" /*first data type*/

$"00000380" /*initialization option: initMACE3 + initMono*/

/*the sound command*/

$"0001" /*number of sound commands that follow (1)*/

$"8051" /*cmd: bufferCmd*/

$"0000" /*param1: unused*/

$"00000014" /*param2: offset to sound header (20 bytes)*/

/*the compressed sampled sound header*/

$"00000000" /*pointer to data (it follows immediately)*/

$"00000001" /*number of channels in sample*/

$"56EE8BA3" /*sampling rate of this sound (22 kHz)*/

$"00000000" /*starting of the sample's loop point; not used*/

$"00000000" /*ending of the sample's loop point; not used*/

$"FE" /*compressed sample encoding*/

$"00" /*baseFrequency; not used*/

$"00006590" /*number of frames in sample (26,000)*/

$"400DADDD1745D145826B"

/*AIFFSampleRate (22 kHz in extended type)*/

$"00000000" /*markerChunk; NIL for 'snd ' resource*/

$"4D414333" /*format; MACE 3:1 compression*/

$"00000000" /*futureUse2; NIL for 'snd ' resource*/

$"00000000" /*stateVars; NIL for 'snd ' resource*/

$"00000000" /*leftOverBlockPtr; not used here*/

$"FFFF" /*compressionID, -1 means use format field*/

$"0010" /*packetSize, packetSize for 3:1 is 16 bits*/

$"0000" /*snthID is 0*/

$"0008" /*sampleSize, sound was 8-bit before processing*/

$"2F 85 81 32 64 87 33 86" /*the compressed sound data*/

$"6F 48 6D 65 72 6B 82 88"

$"91 FE 8D 8E 86 4E 7C E9"

C H A P T E R 2

Sound Manager

Sound Storage Formats 2-79

$"6F 6D 71 70 7E 79 4F 83"

$"59 8F 8F 65" /*rest of data omitted in this example*/

};

This resource has the same general structure as the 'snd ' resource illustrated in

Listing 2-36. The principal difference is that the standard sound header is replaced by

the compressed sound header. This example resource specifies a monophonic sound

compressed by using the 3:1 compression algorithm. A multichannel compressed

sound’s data would be interleaved on a packet basis. See “Compressed Sound Header

Records” beginning on page 2-108 for a complete explanation of the compressed sound

header.

As you’ve seen, it is not always necessary to specify 'snd ' resources by listing the raw

data stream contained in them; indeed, for certain types of format 1 'snd ' resources, it

can be easier to supply a resource specification like the one given in Listing 2-39.

Listing 2-39 A resource specification

resource 'snd ' (9000, "Nathan's Beep", purgeable) {

FormatOne {

{ /*array of data types: 1 element*/

/*[1]*/

squareWaveSynth, 0

}

},

{ /*array SoundCmnds: 3 elements*/

/*[1]*/ noData, timbreCmd {90},

/*[2]*/ noData, freqDurationCmd {480, $00000045},

/*[3]*/ noData, quietCmd {},

},

{ /*array DataTables: 0 elements*/

};

};

When you pass a handle to this resource to the SndPlay function, three commands are

executed by the Sound Manager: a timbreCmd command, a freqDurationCmd

command, and a quietCmd command. The sound specified in Listing 2-39 is just like the

Simple Beep, except that there is no gradual reduction in the loudness. Listing 2-40

shows a resource specification for the Simple Beep.

Listing 2-40 A resource specification for the Simple Beep

resource 'snd ' (9001, "Copy of Simple Beep", purgeable) {

FormatOne {

{ /*array of data types: 1 element*/

C H A P T E R 2

Sound Manager

2-80 Sound Storage Formats

/*[1]*/

squareWaveSynth, 0

}

},

{ /*array SoundCmnds: 27 elements*/

/*[1]*/ nodata, timbreCmd {90},

/*[2]*/ nodata, ampCmd {224},

/*[3]*/ nodata, freqCmd {69},

/*[4]*/ nodata, waitCmd {40},

/*[5]*/ nodata, ampCmd {200},

/*[6]*/ nodata, waitCmd {40},

/*[7]*/ nodata, ampCmd {192},

/*[8]*/ nodata, waitCmd {40},

/*[9]*/ nodata, ampCmd {184},

/*[10]*/ nodata, waitCmd {40},

/*[11]*/ nodata, ampCmd {176},

/*[12]*/ nodata, waitCmd {40},

/*[13]*/ nodata, ampCmd {168},

/*[14]*/ nodata, waitCmd {40},

/*[15]*/ nodata, ampCmd {160},

/*[16]*/ nodata, waitCmd {40},

/*[17]*/ nodata, ampCmd {144},

/*[18]*/ nodata, waitCmd {40},

/*[19]*/ nodata, ampCmd {128},

/*[20]*/ nodata, waitCmd {40},

/*[21]*/ nodata, ampCmd {96},

/*[22]*/ nodata, waitCmd {40},

/*[23]*/ nodata, ampCmd {64},

/*[24]*/ nodata, waitCmd {40},

/*[25]*/ nodata, ampCmd {32},

/*[26]*/ nodata, waitCmd {40},

/*[27]*/ nodata, ampCmd {0},

},

{ /*array DataTables: 0 elements*/

}

};

The Format 2 Sound Resource

The SndPlay function can also play format 2 'snd ' resources, which are designed

for use only with sampled sounds. The SndPlay function supports this format by

automatically opening a sound channel and using the bufferCmd command to send the

data contained in the resource to the channel.

C H A P T E R 2

Sound Manager

Sound Storage Formats 2-81

Figure 2-4 illustrates the fields of a format 2 'snd ' resource. The reference count field

is for your application’s use and is not used by the Sound Manager. The number of

sound commands field and the sound command fields are the same as described in a

format 1 resource. The last field of this resource contains the sampled sound. The first

command should be either a soundCmd command or bufferCmd command with the

data offset bit set in the command to specify the location of this sampled sound header.

Listing 2-41 shows a resource specification that illustrates the structure of a format 2

'snd ' resource.

Listing 2-41 A format 2 'snd ' resource

data 'snd ' (9003, "Pig Squeal", purgeable) {

/*the sound resource header*/

$"0002" /*format type*/

$"0000" /*reference count for application's use*/

/*the sound command*/

$"0001" /*number of sound commands that follow (1)*/

$"8051" /*command 1--bufferCmd*/

$"0000" /*param1 = 0*/

$"0000000E" /*param2 = offset to sound header (14 bytes)*/

/*the sampled sound header*/

$"00000000" /*pointer to data (it follows immediately)*/

$"00000BB8" /*number of bytes in sample (3000 bytes)*/

$"56EE8BA3" /*sampling rate of this sound (22 kHz)*/

$"000007D0" /*starting of the sample's loop point*/

$"00000898" /*ending of the sample's loop point*/

$"00" /*standard sample encoding*/

$"3C" /*baseFrequency at which sample was taken*/

$"80 80 81 82 84 87 93 84" /*the sampled-sound data*/

$"6F 68 6D 65 72 7B 82 88"

$"91 8E 8D 8F 86 7E 7C 79"

$"6F 6D 71 70 70 79 7F 81"

$"89 8F 8D 8B" /*rest of data omitted in this example*/

};

Note

Remember that format 2 'snd ' resources are obsolete. You should
create only format 1 'snd ' resources. ◆

Sound Files
This section describes in detail the structure of AIFF and AIFF-C files. Both of these types

of sound files are collections of chunks that define characteristics of the sampled sound

or other relevant data about the sound.

C H A P T E R 2

Sound Manager

2-82 Sound Storage Formats

Note
Most applications only need to read AIFF and AIFF-C files or to record
sampled-sound data directly to them. You can both play and record
AIFF and AIFF-C files without knowing the details of the AIFF and
AIFF-C file formats, as explained in the chapter “Introduction to Sound
on the Macintosh” in this book. Thus, the information in this section is
for advanced programmers only. ◆

Currently, the AIFF and AIFF-C specifications include the following chunk types.

The following sections document the four principal kinds of chunks that can occur in

AIFF and AIFF-C files.

Chunk Organization and Data Types

An AIFF or AIFF-C file contains several different types of chunks. For example, there is a

Common Chunk that specifies important parameters of the sampled sound, such as its

size and sample rate. There is also a Sound Data Chunk that contains the actual audio

samples. A chunk consists of some header information followed by some data. The

Chunk type Description

Form Chunk Contains information about the format of an AIFF or
AIFF-C file and contains all the other chunks of such a file.

Format Version Chunk Contains an indication of the version of the AIFF-C
specification according to which this file is structured
(AIFF-C only).

Common Chunk Contains information about the sampled sound such as
the sampling rate and sample size.

Sound Data Chunk Contains the sample frames that comprise the
sampled sound.

Marker Chunk Contains markers that point to positions in the sound data.

Comments Chunk Contains comments about markers in the file.

Sound Accelerator Chunk Contains information intended to allow applications to
accelerate the decompression of compressed audio data.

Instrument Chunk Defines basic parameters that an instrument (such as a
sampling keyboard) can use to play back the sound data.

MIDI Data Chunk Contains MIDI data.

Audio Recording Chunk Contains information pertaining to audio recording
devices.

Application Specific
Chunk

Contains application-specific information.

Name Chunk Contains the name of the sampled sound.

Author Chunk Contains one or more names of the authors (or creators) of
the sampled sound.

Copyright Chunk Contains a copyright notice for the sampled sound.

Annotation Chunk Contains a comment.

C H A P T E R 2

Sound Manager

Sound Storage Formats 2-83

header information consists of a chunk ID number and a number that indicates the size

of the chunk data. In general, therefore, a chunk has the structure shown in Figure 2-6.

Figure 2-6 The general structure of a chunk

The header information of a chunk has this structure:

TYPE ChunkHeader =

RECORD

ckID: ID; {chunk type ID}

ckSize: LongInt; {number of bytes of data}

END;

The ckID field specifies the chunk type. An ID is a 32-bit concatenation of any four

printable ASCII characters in the range ' ' (space character, ASCII value $20) through

'~' (ASCII value $7E). Spaces cannot precede printing characters, but trailing spaces are

allowed. Control characters are not allowed. You can specify values for the four types of

chunks described later by using these constants:

CONST

FormID = 'FORM'; {ID for Form Chunk}

FormatVersionID = 'FVER'; {ID for Format Version Chunk}

CommonID = 'COMM'; {ID for Common Chunk}

SoundDataID = 'SSND'; {ID for Sound Data Chunk}

The ckSize field specifies the size of the data portion of a chunk and does not include

the length of the chunk header information.

The Form Chunk

The chunks that define the characteristics of a sampled sound and that contain the actual

sound data are grouped together into a container chunk, known as the Form Chunk. The

Form Chunk defines the type and size of the file and holds all remaining chunks in the

file. The chunk ID for this container chunk is 'FORM'.

C H A P T E R 2

Sound Manager

2-84 Sound Storage Formats

A chunk of type 'FORM' has this structure:

TYPE ContainerChunk =

RECORD

ckID: ID; {'FORM'}

ckSize: LongInt; {number of bytes of data}

formType: ID; {type of file}

END;

For a Form Chunk, the ckSize field contains the size of the data portion of this chunk.

Note that the data portion of a Form Chunk is divided into two parts, formType and the

rest of the chunks of the file, which follow the formType field. These chunks are called

local chunks because their chunk IDs are local to the Form Chunk.

The local chunks can occur in any order in a sound file. As a result, your application

should be designed to get a local chunk, identify it, and then process it without making

any assumptions about what kind of chunk it is based on its order in the Form Chunk.

The formType field of the Form Chunk specifies the format of the file. For AIFF files,

formType is 'AIFF'. For AIFF-C files, formType is 'AIFC'. Note that this type might

not be the same as the operating-system type with which the File Manager identifies the

file. In particular, a file of operating-system type 'AIFC' might be formatted as an AIFF

file.

The Format Version Chunk

One difference between the AIFF and AIFF-C file formats is that files of type AIFF-C

contain a Format Version Chunk and files of type AIFF do not. The Format Version

Chunk contains a timestamp field that indicates when the format version of this

AIFF-C file was defined. This in turn indicates what format rules this file conforms to

and allows you to ensure that your application can handle a particular AIFF-C file. Every

AIFF-C file must contain one and only one Format Version Chunk.

In AIFF-C files, a Format Version Chunk has this structure:

TYPE FormatVersionChunk =

RECORD

ckID: ID; {'FVER'}

ckSize: LongInt; {4}

timestamp: LongInt; {date of format version}

END;

Note

In AIFF files, there is no Format Version Chunk. ◆

The timestamp field indicates when the format version for this kind of file was created.

The value indicates the number of seconds since January 1, 1904, following the normal

time conventions used by the Macintosh Operating System. (See the chapter on date and

C H A P T E R 2

Sound Manager

Sound Storage Formats 2-85

time utilities in Inside Macintosh: Operating System Utilities for several routines that allow

you to manipulate time stamps.)

You should not confuse the format version time stamp with the creation date of the file.

The format version time stamp indicates the time of creation of the version of the format

according to which this file is structured. Because Apple defines the formats of AIFF-C

files, only Apple can change this value. The current version is defined by a constant:

CONST

AIFCVersion1 = $A2805140; {May 23, 1990, 2:40 p.m.}

The Common Chunk

Every AIFF and AIFF-C file must contain a Common Chunk that defines some

fundamental characteristics of the sampled sound contained in the file. Note that the

format of the Common Chunk is different for AIFF and AIFF-C files. As a result, you

need to determine the type of file format (by inspecting the formType field of the

Form Chunk) before reading the Common Chunk.

For AIFF files, the Common Chunk has this structure:

TYPE CommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

END;

For AIFF-C files, the Common Chunk has this structure:

TYPE ExtCommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

compressionType: ID; {compression type ID}

compressionName: PACKED ARRAY[0..0] OF Byte;

{compression type name}

END;

The fields that exist in both types of Common Chunk have the following meanings:

C H A P T E R 2

Sound Manager

2-86 Sound Storage Formats

The numChannels field of both types of Common Chunk indicate the number of audio

channels contained in the sampled sound. A value of 1 indicates monophonic sound, a

value of 2 indicates stereo sound, a value of 4 indicates four-channel sound, and so forth.

Any number of audio channels may be specified. The actual sound data is stored

elsewhere, in the Sound Data Chunk.

The numSampleFrames field indicates the number of sample frames in the Sound Data

Chunk. Note that this field contains the number of sample frames, not the number of

bytes of data and not the number of sample points. For noncompressed sound data, the

total number of sample points in the file is numChannels * numSampleFrames. (For

more information on sample points, see “Sampled-Sound Data” on page 2-9.)

The sampleSize field indicates the number of bits in each sample point of

noncompressed sound. Although the field can contain any integer from 1 to 32, the

Sound Manager currently supports only 8- and 16-bit sound. For compressed sound

data, this field indicates the number of bits per sample in the original sound data, before

compression.

The sampleRate field contains the sample rate at which the sound is to be played back,

in sample frames per second. For a list of common sample rates, see Table 2-1 on

page 2-16.

An AIFF-C Common Chunk includes two fields that describe the type of compression

(if any) used on the audio data. The compressionType field contains the type of the

compression algorithm, if any, used on the sound data. Here are the currently available

compression types and their associated compression names:

CONST

{compression types}

NoneType = 'NONE';

ACE2Type = 'ACE2';

ACE8Type = 'ACE8';

MACE3Type = 'MAC3';

MACE6Type = 'MAC6';

You can define your own compression types, but you should register them with Apple.

Finally, the compressionName field contains a human-readable name for the

compression algorithm ID specified in the compressionType field. Compression

names for Apple-supplied codecs are defined by constants:

CONST

{compression names}

NoneName = 'not compressed';

ACE2to1Name = 'ACE 2-to-1';

ACE8to3Name = 'ACE 8-to-3';

MACE3to1Name = 'MACE 3-to-1';

MACE6to1Name = 'MACE 6-to-1';

C H A P T E R 2

Sound Manager

Sound Storage Formats 2-87

This string is useful when putting up alert boxes (perhaps because a necessary

decompression routine is missing). Pad the end of this array with a byte having the value

0 if the length of this array is not an even number (but do not include the pad byte in the

count).

The Sound Data Chunk

The Sound Data Chunk contains the actual sample frames that make up the sampled

sound. The Sound Data Chunk has this structure:

TYPE SoundDataChunk =

RECORD

ckID: ID; {'SSND'}

ckSize: LongInt; {size of chunk data}

offset: LongInt; {offset to sound data}

blockSize: LongInt; {size of alignment blocks}

END;

The offset field indicates an offset (in bytes) to the beginning of the first sample frame

in the chunk data. Most applications do not need to use the offset field and should set

it to 0.

The blockSize field contains the size (in bytes) of the blocks to which the sound data

is aligned. This field is used in conjunction with the offset field for aligning sound

data to blocks. As with the offset field, most applications do not need to use the

blockSize field and should set it to 0.

The sampled-sound data follows the blockSize field. For information on the format of

sampled-sound data, see “Sampled-Sound Data” on page 2-9.

Note

The Sound Data Chunk is required unless the numSampleFrames field
in the Common Chunk is 0. A maximum of one Sound Data Chunk can
appear in an AIFF or AIFF-C file. ◆

Format of Entire Sound Files

Figure 2-7 illustrates an AIFF-C file that contains approximately 4.476 seconds of 8-bit

monophonic sound data sampled at 22 kHz. The sound data is not compressed. Note

that the number of sample frames in this example is odd, forcing a pad byte to be

inserted after the sound data. This pad byte is not reflected in the ckSize field of the

Sound Data Chunk, which means that special processing is required to correctly

determine the actual chunk size.

On a Macintosh computer, the Form Chunk (and hence all the other chunks in an AIFF

or AIFF-C file) is stored in the data fork of the file. The file type of an AIFF format file is

'AIFF', and the file type of an AIFF-C format file is 'AIFC'. Macintosh applications

should not store any information in the resource fork of an AIFF or AIFF-C file because

that information might not be preserved by other applications that edit sound files.

C H A P T E R 2

Sound Manager

2-88 Sound Storage Formats

Figure 2-7 A sample AIFF-C file

Every Form Chunk must contain a Common Chunk, and every AIFF-C file must contain

a Format Version Chunk. In addition, if the sampled sound has a length greater than 0,

there must be a Sound Data Chunk in the Form Chunk. All other chunk types are

optional. Your application should be able to read all the required chunks if it uses AIFF

or AIFF-C files, but it can choose to ignore any of the optional chunks.

When reading AIFF or AIFF-C files, you should keep the following points in mind:

■ Remember that the local chunks in an AIFF or AIFF-C file can occur in any order. An
application that reads these types of files should be designed to get a chunk, identify
it, and then process it without making any assumptions about what kind of chunk it is
based on its order.

■ If your application allows modification of a chunk, then it must also update other
chunks that might be based on the modified chunk. However, if there are chunks
in the file that your application does not recognize, you must discard those
unrecognized chunks. Of course, if your application is simply copying the AIFF or
AIFF-C file without any modification, you should copy the unrecognized chunks, too.

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-89

■ You can get the clearest indication of the number of sample frames contained in an
AIFF or AIFF-C file from the numSampleFrames parameter in the Common Chunk,
not from the ckSize parameter in the Sound Data Chunk. The ckSize parameter is
padded to include the fields that follow it, but it does not include the byte with a
value of 0 at the end if the total number of sound data bytes is odd.

■ Remember that each chunk must contain an even number of bytes. Chunks whose
total contents would yield an odd number of bytes must have a pad byte with a value
of 0 added at the end of the chunk. This pad byte is not included in the ckSize field.

■ Remember that the ckSize field of any chunk does not include the first 8 bytes of the
chunk (which specify the chunk type).

Sound Manager Reference

This section describes the constants, data structures, and routines provided by the Sound

Manager. It also describes the format of data stored in sound resources and files that the

Sound Manager can play.

The section “Constants” describes the constants defined by the Sound Manager that you

can use to specify channel initialization parameters and sound commands. It also lists

the sound attributes selector for the Gestalt function and the returned bit numbers. See

the section “Summary of the Sound Manager” on page 2-157 for a list of all the constants

defined by the Sound Manager.

The section “Data Structures” beginning on page 2-99 describes the Pascal data

structures for all of the Sound Manager records that applications can use, including

sound commands, sound channels, and sound headers.

The section “Sound Manager Routines” beginning on page 2-119 describes the routines

that allow you to play sounds, manage sound channels, and obtain sound-related

information. That section also includes information on routines that give you low-level

control over sound output.

The section “Application-Defined Routines” beginning on page 2-151 describes callback

procedures and completion routines that your application might need to define.

The section “Resources” beginning on page 2-154 describes the organization of format 1

and format 2 'snd ' resources.

Constants

This section describes the constants that you can use to specify channel initialization

parameters, sound commands, and chunk IDs. It also lists the Gestalt function sound

attributes selector and the returned bit numbers. All other constants defined by the

Sound Manager are described at the appropriate location in this chapter. (For example,

the constants that you can use to specify sound data types are described in connection

with the SndNewChannel function beginning on page 2-127.)

C H A P T E R 2

Sound Manager

2-90 Sound Manager Reference

Gestalt Selector and Response Bits

You can pass the gestaltSoundAttr selector to the Gestalt function to determine

information about the sound capabilities of a Macintosh computer.

CONST

gestaltSoundAttr = 'snd '; {sound attributes selector}

The Gestalt function returns information by setting or clearing bits in the response

parameter. The bits currently used are defined by constants. Note that most of these bits

provide information about the built-in hardware only.

IMPORTANT

Bits 7 through 12 are not defined for versions of the Sound Manager
prior to version 3.0. ▲

CONST

gestaltStereoCapability = 0; {built-in hw can play stereo sounds}

gestaltStereoMixing = 1; {built-in hw mixes stereo to mono}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

gestalt16BitAudioSupport = 12; {16-bit audio data supported}

Constant descriptions

gestaltStereoCapability
Set if the built-in sound hardware is able to produce stereo sounds.

gestaltStereoMixing
Set if the built-in sound hardware mixes both left and right channels
of stereo sound into a single audio signal for the internal speaker.

gestaltSoundIOMgrPresent
Set if the Sound Input Manager is available.

gestaltBuiltInSoundInput
Set if a built-in sound input device is available.

gestaltHasSoundInputDevice
Set if a sound input device is available. This device can be either
built-in or external.

gestaltPlayAndRecord
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-91

the gestaltBuiltInSoundInput bit is set, and it applies only to
any built-in sound input and output hardware.

gestalt16BitSoundIO
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.

gestaltStereoInput
Set if the built-in sound hardware can record stereo sounds.

gestaltLineLevelInput
Set if the built-in sound input port requires line level input.

gestaltSndPlayDoubleBuffer
Set if the Sound Manager supports the play-from-disk routines.

gestaltMultiChannels
Set if the Sound Manager supports multiple channels of sound.

gestalt16BitAudioSupport
Set if the Sound Manager can handle 16-bit audio data. This
indicates that software necessary to handle 16-bit data is available.

Note

For complete information about the Gestalt function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. ◆

Channel Initialization Parameters

You can use the following constants to specify initialization parameters for a sound

channel. You need to specify initialization parameters when you call SndNewChannel.

CONST

initChanLeft = $0002; {left stereo channel}

initChanRight = $0003; {right stereo channel}

waveInitChannel0 = $0004; {wave-table channel 0}

waveInitChannel1 = $0005; {wave-table channel 1}

waveInitChanne12 = $0006; {wave-table channel 2}

waveInitChannel3 = $0007; {wave-table channel 3}

initMono = $0080; {monophonic channel}

initStereo = $00C0; {stereo channel}

initMACE3 = $0300; {3:1 compression}

initMACE6 = $0400; {6:1 compression}

initNoInterp = $0004; {no linear interpolation}

initNoDrop = $0008; {no drop-sample conversion}

Constant descriptions

initChanLeft Play sounds through the left channel of the Macintosh audio jack.

initChanRight Play sounds through the right channel of the Macintosh audio jack.

C H A P T E R 2

Sound Manager

2-92 Sound Manager Reference

waveInitChannel0
Play sounds through the first wave-table channel.

waveInitChannel1
Play sounds through the second wave-table channel.

waveInitChannel2
Play sounds through the third wave-table channel.

waveInitChannel3
Play sounds through the fourth wave-table channel.

initMono Play the same sound through both channels of the Macintosh audio
jack and the internal speaker. This is the default channel mode.

initStereo Play stereo sounds through both channels of the Macintosh audio
jack and the internal speaker. Note that some machines cannot play
stereo sounds.

initMACE3 Assume that the sounds to be played through the channel are
MACE 3:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

initMACE6 Assume that the sounds to be played through the channel are
MACE 6:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

initNoInterp Do not use linear interpolation to smooth a sound played back at a
different sample rate from the sound’s recorded sample rate. Using
the initNoInterp initialization parameter decreases the CPU load
for this channel. Sounds most affected by the absence of linear
interpolation are sinusoidal sounds. Sounds least affected are noisy
sound effects like explosions and screams.

initNoDrop Do not use drop-sample conversion to fake sample rate conversion.
Using the initNoDrop initialization parameter increases the CPU
load for the channel but results in a smoother sound.

The Sound Manager also recognizes the following masks, which you can use to select

various channel attributes:

CONST

initPanMask = $0003; {mask for right/left pan values}

initSRateMask = $0030; {mask for sample rate values}

initStereoMask = $00C0; {mask for mono/stereo values}

initCompMask = $FF00; {mask for compression IDs}

Sound Command Numbers

You can perform many sound-related operations by sending sound commands to a

sound channel. For example, to change the volume of a sound that is currently playing,

you can send the ampCmd sound command to the channel using the SndDoImmediate

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-93

routine. Similarly, to change the volume of all sounds subsequently to be played in a

sound channel, you can send the volumeCmd sound command to that channel using the

SndDoCommand routine.

The cmd field of the SndCommand data structure (described on page 2-99) specifies the

sound command you want to execute. The param1 and param2 fields of that structure

contain any additional information that might be needed to complete the command. One

or both of these parameter fields might be ignored by a particular sound command. In

some cases, the Sound Manager returns information to your application in one of the

parameter fields.

IMPORTANT

In general, you’ll use either SndDoCommand or SndDoImmediate to
send sound commands to a sound channel. With several commands,
however, you must use the SndControl function to issue the sound
command. In Sound Manager version 3.0 and later, however, you
virtually never need to use SndControl because the commands that
require it are either no longer supported (for example, availableCmd,
totalLoadCmd, and loadCmd) or are obsolete (for example,
versionCmd). The sound commands specific to the SndControl
function are documented here for completeness only. ▲

The sound commands available to your application are defined by constants.

CONST

nullCmd = 0; {do nothing}

quietCmd = 3; {stop a sound that is playing}

flushCmd = 4; {flush a sound channel}

reInitCmd = 5; {reinitialize a sound channel}

waitCmd = 10; {suspend processing in a channel}

pauseCmd = 11; {pause processing in a channel}

resumeCmd = 12; {resume processing in a channel}

callBackCmd = 13; {execute a callback procedure}

syncCmd = 14; {synchronize channels}

availableCmd = 24; {see if initialization options are }

{ supported}

versionCmd = 25; {determine version}

totalLoadCmd = 26; {report total CPU load}

loadCmd = 27; {report CPU load for a new channel}

freqDurationCmd = 40; {play a note for a duration}

restCmd = 41; {rest a channel for a duration}

freqCmd = 42; {change the pitch of a sound

ampCmd = 43; {change the amplitude of a sound}

timbreCmd = 44; {change the timbre of a sound}

getAmpCmd = 45; {get the amplitude of a sound}

volumeCmd = 46; {set volume}

getVolumeCmd = 47; {get volume}

C H A P T E R 2

Sound Manager

2-94 Sound Manager Reference

waveTableCmd = 60; {install a wave table as a voice}

soundCmd = 80; {install a sampled sound as a voice}

bufferCmd = 81; {play a sampled sound}

rateCmd = 82; {set the pitch of a sampled sound}

getRateCmd = 85; {get the pitch of a sampled sound}

Constant descriptions

nullCmd Do nothing.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

quietCmd Stop the sound that is currently playing. You should send
quietCmd by using SndDoImmediate.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

flushCmd Remove all commands currently queued in the specified sound
channel. A flushCmd command does not affect any sound that is
currently in progress. You should send flushCmd by using
SndDoImmediate.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

reInitCmd Reset the initialization parameters specified in param2 for the
specified channel.
param1: 0 (ignored on input and output)
param2: initialization parameters

waitCmd Suspend further command processing in a channel until the
specified duration has elapsed. To achieve sounds longer than
32,767 half-milliseconds, Pascal programmers can pass a negative
number in param1, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of param1.
param1: duration in half-milliseconds (0 to 65,565)
param2: 0 (ignored on input and output)

pauseCmd Pause any further command processing in a channel until
resumeCmd is received.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

resumeCmd Resume command processing in a channel that was previously
paused by pauseCmd.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

callBackCmd Execute the callback procedure specified as a parameter to the
SndNewChannel function. Both param1 and param2 are
application-specific; you can use these two parameters to send data
to your callback routine.
param1: application-defined
param2: application-defined

syncCmd Synchronize multiple channels of sound. A syncCmd command is
held in the specified channel, suspending all further command

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-95

processing. The param2 parameter contains an identifier that is
arbitrary. Each time the Sound Manager receives syncCmd, it
decrements the count parameter for each channel having that
identifier. When the count for a specific channel reaches 0,
command processing in that channel resumes.
param1: count
param2: identifier

availableCmd Return 1 in param1 if the Sound Manager supports the
initialization options specified in param2 and 0 otherwise.
However, the Sound Manager might support certain initialization
parameters in general but not on a specific machine. You should
send availableCmd using the SndControl function.
param1: 0 on input; result of command on output
param2: initialization parameters

versionCmd Previously, this command determined which version of a sound
data format is available. The result is returned in param2. The high
word of the result indicates the major revision number, and the low
word indicates the minor revision number. For example, version 2.0
of a data format would be returned as $00020000. However, this
command is obsolete, and your application should not rely on it.
You send versionCmd by using the SndControl function.
param1: 0 (ignored on input and output)
param2: 0 on input; version on output

totalLoadCmd Previously, this command determined the total CPU load factor for
all existing sound activity and for a new sound channel having the
initialization parameters specified in param2. However, this
command is obsolete, and your application should not rely on it.
You send totalLoadCmd by using the SndControl function.
param1: 0 on input, load factor on output
param2: initialization parameters

loadCmd Previously, this command determined the CPU load factor that
would be incurred by a new channel of sound having the
initialization parameters specified in param2. The load factor
returned in param1 is the percentage of CPU processing power that
the specified sound channel would require. However, this
command is obsolete, and your application should not rely on it.
You send loadCmd by using the SndControl function.
param1: 0 on input, load factor on output
param2: initialization parameters

freqDurationCmd
Play the note specified in param2 for the duration specified in
param1. To achieve sounds longer than 32,767 half-milliseconds,
Pascal programmers can pass a negative number in param1, in
which case the sound plays for 32,767 half-milliseconds plus the
absolute value of param1. The param2 parameter must contain a
value in the range 0 to 127. If you want the note to stop playing
after the duration specified in param1, you must send quietCmd
after freqDurationCmd.

C H A P T E R 2

Sound Manager

2-96 Sound Manager Reference

param1: duration in half-milliseconds (0 to 65,565)
param2: desired frequency

restCmd Rest a channel for a specified duration. The duration is specified in
half-milliseconds in param1. To achieve sounds longer than 32,767
half-milliseconds, Pascal programmers can pass a negative number
in param1, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of param1.
param1: duration in half-milliseconds (0 to 65,565)
param2: 0 (ignored on input and output)

freqCmd Change the frequency (or pitch) of a sound. If no sound is currently
playing, then freqCmd causes the Sound Manager to begin playing
indefinitely at the frequency specified in param2. If, however, no
instrument is installed in the channel and you attempt to play either
wave-table or sampled-sound data, no sound is produced. The
param2 parameter must contain a value in the range 0 to 127. The
freqCmd command is identical to the freqDurationCmd
command, except that no duration is specified to a freqCmd
command.
param1: 0 (ignored on input and output)
param2: desired frequency

ampCmd Change the amplitude (or loudness) of a sound. If no sound is
currently playing, then ampCmd sets the amplitude of the next
sound to be played. You specify the amplitude in param1; the
amplitude should be an integer in the range 0 to 255.
param1: desired amplitude
param2: 0 (ignored on input and output)

timbreCmd Change the timbre (or tone) of a sound currently being defined
using square-wave data. A timbre value of 0 produces a clear tone; a
timbre value of 254 produces a buzzing tone. You can use
timbreCmd only for sounds defined using square-wave data.
param1: desired timbre (0 to 254)
param2: 0 (ignored on input and output)

getAmpCmd Determine the current amplitude (or loudness) of a sound. The
amplitude is returned in an integer variable whose address you
pass in param2 and is in the range 0 to 255.
param1: 0 (ignored on input and output)
param2: pointer to amplitude variable

volumeCmd Set the right and left volumes of the specified sound channel to the
volumes specified in the high and low words of param2. The value
$0100 represents full volume, and $0080 represents half volume.
You can specify values larger than $0100 to overdrive the volume.
For example, setting param2 to $02000200 sets the volume on both
left and right speakers to twice full volume. Note, however, that
volumeCmd is available only in Sound Manager versions 3.0 and
later.
param1: 0 (ignored on input and output)
param2: high word is right volume, low word is left volume

getVolumeCmd Get the current right and left volumes of the specified sound
channel. The volumes are returned in the high and low words of the

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-97

long integer pointed to by param2. The value $0100 represents full
volume, and $0080 represents half volume. Note, however, that
getVolumeCmd is available only in Sound Manager versions 3.0
and later.
param1: 0 (ignored on input and output)
param2: pointer to volume data

waveTableCmd Install a wave table as a voice in the specified channel. The param1
parameter specifies the length of the wave table, and the param2
parameter is a pointer to the wave-table data itself. You can use
waveTableCmd only for sounds defined using wave-table data.
param1: length of wave table
param2: pointer to wave-table data

soundCmd Install a sampled sound as a voice in a channel. If the high bit of the
command is set, param2 is interpreted as an offset from the
beginning of the 'snd ' resource containing the command to the
sound header. If the high bit is not set, param2 is interpreted as a
pointer to the sound header. You can use the soundCmd command
only with noncompressed sampled-sound data. You can also use
soundCmd to preconfigure a sound channel, so that you can later
send sound commands to it at interrupt time.
param1: 0 (ignored on input and output)
param2: offset or pointer to sound header

bufferCmd Play a buffer of sampled-sound data. If the high bit of the command
is set, param2 is interpreted as an offset from the beginning of the
'snd ' resource containing the command to the sound header. If
the high bit is not set, param2 is interpreted as a pointer to the
sound header. You can use bufferCmd only with sampled-sound
data. Note that sending a bufferCmd resets the rate of the channel
to 1.0.
param1: 0 (ignored on input and output)
param2: offset or pointer to sound header

rateCmd Set the rate of a sampled sound that is currently playing, thus
effectively altering its pitch and duration. Your application can set a
rate of 0 to pause a sampled sound that is playing. The new rate is
set to the value specified in param2, which is interpreted relative to
22 kHz. (For example, to set the rate to 44 kHz, pass $00020000 in
param2; see Listing 2-4 on page 2-26 for sample code that uses
rateCmd.) You can use rateCmd only with sampled-sound data.
param1: 0 (ignored on input and output)
param2: desired rate of sound

getRateCmd Determine the sample rate of the sampled sound currently playing.
The current rate of the channel is returned in a Fixed variable
whose address you pass in param2 of the sound command. The
values returned are always relative to the 22 kHz sampling rate, as
with the rateCmd sound command. You can use getRateCmd only
with sampled-sound data, and you should send it by using
SndDoImmediate.
param1: 0 (ignored on input and output)
param2: pointer to rate variable

C H A P T E R 2

Sound Manager

2-98 Sound Manager Reference

Chunk IDs

You can use the following constants to specify a chunk ID, a 4-byte value that identifies

the type of a chunk in an AIFF or AIFF-C file.

CONST

{IDs for AIFF and AIFF-C file chunks}

FormID = 'FORM'; {ID for Form Chunk}

FormatVersionID = 'FVER'; {ID for Format Version Chunk}

CommonID = 'COMM'; {ID for Common Chunk}

SoundDataID = 'SSND'; {ID for Sound Data Chunk}

MarkerID = 'MARK'; {ID for Marker Chunk}

InstrumentID = 'INST'; {ID for Instrument Chunk}

MIDIDataID = 'MIDI'; {ID for MIDI Data Chunk}

AudioRecordingID = 'AESD'; {ID for Recording Chunk}

 ApplicationSpecificID = 'APPL'; {ID for Application Chunk}

CommentID = 'COMT'; {ID for Comment Chunk}

NameID = 'NAME'; {ID for Name Chunk}

AuthorID = 'AUTH'; {ID for Author Chunk}

CopyrightID = '(c) '; {ID for Copyright Chunk}

AnnotationID = 'ANNO'; {ID for Annotation Chunk}

Constant descriptions

FormID The Form Chunk. A Form Chunk contains information about the
format of the file, and contains all the other chunks of the file.

FormatVersionID
The Format Version Chunk. A Format Version Chunk contains an
indication of the version of the AIFF-C specification according to
which this file is structured (AIFF-C only).

CommonID The Common Chunk. A Common Chunk contains information
about the sampled sound, such as the sampling rate and
sample size.

SoundDataID The Sound Data Chunk. A Sound Data Chunk contains the sample
frames that comprise the sampled sound.

MarkerID The Marker Chunk. A Marker Chunk contains markers that point to
positions in the sound data.

InstrumentID The Instrument Chunk. An Instrument Chunk defines basic
parameters that an instrument (such as a sampling keyboard) can
use to play back the sound data.

MIDIDataID The MIDI Data Chunk. A MIDI Chunk contains MIDI data.

AudioRecordingID
The Audio Recording Chunk. An Audio Recording Chunk contains
information pertaining to audio recording devices.

ApplicationSpecificID
The Application Chunk. An Application Chunk contains
application-specific information.

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-99

CommentID The Comment Chunk. A Comment Chunk contains a comment.

NameID The Name Chunk. A Name Chunk contains the name of the
sampled sound.

AuthorID The Author Chunk. An Author Chunk contains one or more names
of the authors (or creators) of the sampled sound.

CopyrightID The Copyright Chunk. A Copyright Chunk contains a copyright
notice for the sampled sound.

AnnotationID The Annotation Chunk. An Annotation Chunk contains a comment.

Data Structures

This section describes the data structures that the Sound Manager defines. The Sound

Manager uses many of these data structures (such as sound headers) to store information

about sounds or sound channels. You should use these data structures only if you need

to access this information or to customize sound play. The Sound Manager also defines

several data structures that allow you to control sound output or to receive information

about its status.

You use the sound command record to define a sound command that you send to the

Sound Manager using either the SndDoCommand or SndDoImmediate functions.

If you want to play only a portion of a sound, you can use an audio selection record in

conjunction with the SndStartFilePlay function.

You use the sound channel status record to obtain information from the Sound Manager

about a specific sound channel, and you use the Sound Manager status record to obtain

information about all sound channels.

The sound channel record stores information about a sound channel. Many of the fields

of this record are for internal Sound Manager use only, but there are a few that you can

access directly.

The sound header record stores information about sampled-sound data. You can use a

sound header record to obtain information on a sound or to change a sound’s loop

points. The extended sound header record and the compressed sound header record add

several fields to the sound header record that provide more information about a sound.

If your application uses the SndPlayDoubleBuffer function to customize the double

buffering of sound data, you need to set up a sound double buffer header record, which

must include pointers to two sound double buffer records.

Sound Command Records

A sound command record describes a sound command that you send to a sound

channel using the SndDoCommand or SndDoImmediate function. The SndCommand

data type defines a sound command record.

C H A P T E R 2

Sound Manager

2-100 Sound Manager Reference

TYPE SndCommand =

PACKED RECORD

cmd: Integer; {command number}

param1: Integer; {first parameter}

param2: LongInt; {second parameter}

END;

Field descriptions

cmd The number of the sound command you wish to execute.

param1 The first parameter of the sound command.

param2 The second parameter of the sound command.

The meaning of the param1 and param2 fields depends on the particular sound

command being issued. See “Sound Command Numbers” beginning on page 2-92 for

a description of the sound commands your application can use.

Audio Selection Records

You can pass a pointer to an audio selection record to the SndStartFilePlay function

to play only part of a sound in a file on disk. The AudioSelection data type defines an

audio selection record.

TYPE AudioSelection =

PACKED RECORD

unitType: LongInt; {type of time unit}

selStart: Fixed; {starting point of selection}

selEnd: Fixed; {ending point of selection}

END;

Field descriptions

unitType The type of unit of time used in the selStart and selEnd fields.
You can set this to seconds by specifying the constant
unitTypeSeconds.

selStart The starting point in seconds of the sound to play. If selStart is
greater than selEnd, SndStartFilePlay returns an error.

selEnd The ending point in seconds of the sound to play.

Use a constant to specify the unit type.

CONST

unitTypeSeconds = $0000; {seconds}

unitTypeNoSelection = $FFFF; {no selection}

If the value in the unitType field is unitTypeNoSelection, then the values in the

selStart and selEnd fields are ignored and the entire sound plays. Alternatively, if

you wish to play an entire sound, you can pass NIL instead of a pointer to an audio

selection record to the SndStartFilePlay function.

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-101

Sound Channel Status Records

To obtain information about a sound channel, you can pass a pointer to a sound channel
status record to the SndChannelStatus function. The SCStatus data type defines a

sound channel status record.

TYPE SCStatus =

RECORD

scStartTime: Fixed; {starting time for play from disk}

scEndTime: Fixed; {ending time for play from disk}

scCurrentTime: Fixed; {current time for play from disk}

scChannelBusy: Boolean; {TRUE if channel is processing cmds}

scChannelDisposed: Boolean; {reserved}

scChannelPaused: Boolean; {TRUE if channel is paused}

scUnused: Boolean; {unused}

scChannelAttributes: LongInt; {attributes of this channel}

scCPULoad: LongInt; {CPU load for this channel}

END;

Field descriptions

scStartTime If the Sound Manager is playing from disk through the specified
sound channel, then scStartTime is the starting time in seconds
from the beginning of the sound for the play from disk. Otherwise,
scStartTime is 0.

scEndTime If the Sound Manager is playing from disk through the specified
sound channel, then scEndTime is the ending time in seconds from
the beginning of the sound for the play from disk. Otherwise,
scEndTime is 0.

scCurrentTime If the Sound Manager is playing from disk through the specified
sound channel, then scCurrentTime is the current time in
seconds from the beginning of the disk play. Otherwise,
scCurrentTime is 0. The Sound Manager updates the value of this
field only periodically, and you should not rely on the accuracy of
its value.

scChannelBusy If the specified channel is currently processing sound commands,
then scChannelBusy is TRUE; otherwise, scChannelBusy is
FALSE.

scChannelDisposed
Reserved for use by Apple Computer, Inc.

scChannelPaused
If the Sound Manager is playing from disk through the specified
sound channel and the play from disk is paused, then
scChannelPaused is TRUE; otherwise, scChannelPaused is
FALSE. This field is also TRUE if the channel was paused with the
pauseCmd sound command.

scUnused Reserved for use by Apple Computer, Inc.

C H A P T E R 2

Sound Manager

2-102 Sound Manager Reference

scChannelAttributes
The current attributes of the specified channel. These attributes are
in the channel initialization parameters format. The value returned
in this field is always identical to the value passed in the init
parameter to SndNewChannel.

scCPULoad The CPU load for the specified channel. You should not rely on the
value in this field.

You can mask out certain values in the scChannelAttributes field to determine how

a channel has been initialized.

CONST

initPanMask = $0003; {mask for right/left pan values}

initSRateMask = $0030; {mask for sample rate values}

initStereoMask = $00C0; {mask for mono/stereo values}

initCompMask = $FF00; {mask for compression IDs}

Sound Manager Status Records

You can use the SndManagerStatus function to get a Sound Manager status record,
which gives information on the current CPU loading caused by all open channels of

sound. The SMStatus data type defines a Sound Manager status record.

TYPE SMStatus =

PACKED RECORD

smMaxCPULoad: Integer; {maximum load on all channels}

smNumChannels: Integer; {number of allocated channels}

smCurCPULoad: Integer; {current load on all channels}

END;

Field descriptions

smMaxCPULoad The maximum CPU load that the Sound Manager will not exceed
when allocating channels. The smMaxCPULoad field is set to a
default value of 100 when the system starts up.

smNumChannels The number of sound channels that are currently allocated by all
applications. This does not mean that the channels allocated are
being used, only that they have been allocated and that CPU
loading is being reserved for these channels.

smCurCPULoad The CPU load that is being taken up by currently allocated channels.

IMPORTANT

Although you can use the information contained in the Sound Manager
status record to determine how many channels are allocated, you should
not rely on the information in the smMaxCPULoad or smCurCPULoad
field. To determine whether the Sound Manager can create a new
channel, simply call the SndNewChannel function, which returns
an appropriate result code if it is unable to allocate a new channel. ▲

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-103

Sound Channel Records

The Sound Manager maintains a sound channel record to store information about each

sound channel that you allocate directly by calling the SndNewChannel function or

indirectly by passing a NIL channel to a high-level Sound Manager routine like the

SndPlay function. The SndChannel data type defines a sound channel record.

TYPE SndChannel =

PACKED RECORD

nextChan: SndChannelPtr; {pointer to next channel}

firstMod: Ptr; {used internally}

callBack: ProcPtr; {pointer to callback procedure}

userInfo: LongInt; {free for application's use}

wait: LongInt; {used internally}

cmdInProgress: SndCommand; {used internally}

flags: Integer; {used internally}

qLength: Integer; {used internally}

qHead: Integer; {used internally}

qTail: Integer; {used internally}

queue: ARRAY[0..stdQLength-1] OF SndCommand;

END;

Field descriptions

nextChan A pointer to the next sound channel in a single queue of channels
that the Sound Manager maintains for all applications.

firstMod Used internally.

callBack A pointer to the callback procedure associated with the sound
channel. See page 2-152 for information on this callback procedure.

userInfo A value that your application can use to store information.

wait Used internally.

cmdInProgress Used internally.

flags Used internally.

qLength Used internally.

qHead Used internally.

qTail Used internally.

queue The sound commands pending for the sound channel.

The only field of the sound channel record that you are likely to need to access directly is

the userInfo field. This field is useful if you need to pass a value to a Sound Manager

callback procedure or completion routine. For example, you might pass the value stored

in the A5 register so that your callback procedure can access your application’s global

variables. Or, you might store a handle to sound data here so that a routine that disposes

of an allocated channel can also release the sound data that the channel played.

In rarer instances, you might need to access the callBack field of the sound channel

record directly. Ordinarily, you set this field by specifying a callback procedure when

C H A P T E R 2

Sound Manager

2-104 Sound Manager Reference

you call the SndNewChannel function. However, you can change the callback procedure

associated with a channel by changing this field directly. The Sound Manager will then

execute the procedure you specify in this field whenever the channel processes a

callBackCmd command.

▲ W A R N I N G

You should not attempt to manipulate all open sound channels by using
the nextChan field to walk the sound channel queue. The queue might
contain channels opened by other applications. If you need to perform
some operation on all sound channels that your application has
allocated, you should maintain your own data structure that keeps track
of your application’s channels. ▲

Sound Header Records

Sound resources often contain sampled-sound data as well as sound commands. The

sound data is contained in the last field of the sound header. You can access a sound

header record to find information about sampled-sound data. The standard sound

header is used only for simple monophonic sounds. The SoundHeader data type

defines a sampled sound header record.

TYPE SoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

length: LongInt; {number of samples in array}

sampleRate: Fixed; {sample rate}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base frequency of sample}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

Field descriptions

samplePtr A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the baseFrequency field,
then this field should be set to NIL. Otherwise, this field is a pointer
to the memory location of the sampled-sound data. (This might be
useful if you want to change some fields of a sound header but do
not want to modify a handle to a sound resource directly.)

length The number of bytes of sound data.

sampleRate The rate at which the sample was originally recorded. The Sound
Manager can play sounds sampled at any rate up to 64 kHz. The
values corresponding to the three most common sample rates
(11 kHz, 22 kHz, and 44 kHz) are defined by constants:

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-105

CONST

rate44khz = $AC440000; {44100.00000 Fixed}

rate22khz = $56EE8BA3; {22254.54545 Fixed}

rate11khz = $2B7745D1; {11127.27273 Fixed}

Note that the sample rate is declared as a Fixed data type, but the
most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

loopStart The starting point of the portion of the sampled sound header that
is to be used by the Sound Manager when determining the duration
of freqDurationCmd. These loop points specify the byte numbers
in the sampled data to be used as the beginning and end points to
cycle through when playing the sound. The loop starting and
ending points are 0-based.

loopEnd The end point of the portion of the sampled sound header that is to
be used by the Sound Manager when determining the duration of
freqDurationCmd. If no looping is desired, set both loopStart
and loopEnd to 0.

encode The method of encoding used to generate the sampled-sound data.
The current encoding option values are

CONST

stdSH = $00; {standard sound header}

extSH = $FF; {extended sound header}

cmpSH = $FE; {compressed sound header}

For a standard sound header, you should specify the constant
stdSH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in
the range 64 through 127 for your own encode options.

baseFrequency The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 2-43 lists the
possible baseFrequency values. The baseFrequency value
allows the Sound Manager to calculate the proper playback rate of
the sample when an application uses the freqDurationCmd
command. Applications should not alter the baseFrequency field
of a sampled sound; to play the sample at different pitches, use
freqDurationCmd or freqCmd.

sampleArea If the value of samplePtr is NIL, this field is an array of bytes,
each of which contains a value similar to the values in a wave-table
description. These values are interpreted as offset values, where $80
represents an amplitude of 0. The value $00 is the most negative
amplitude, and $FF is the largest positive amplitude. The samples
are numbered 1 through the value in the length parameter.

If you need to create a sound header for sampled-sound data that your application has

recorded, then you should use the SetupSndHeader function, described in the chapter

“Sound Input Manager” in this book.

C H A P T E R 2

Sound Manager

2-106 Sound Manager Reference

Extended Sound Header Records

For sampled-sound data that is more complex than a standard sound header can

describe, the Sound Manager uses an extended sound header record. Sound data

described by such a header can be monophonic or stereo, but it cannot be compressed.

Most of the fields of the extended sound header correspond to fields of the sampled

sound header. However, the extended sound header allows the encoding of stereo

sound. The numChannels field contains the number of channels of sound recorded, and

the numFrames field contains the number of frames of sound recorded in each channel.

For more information on the format of sampled sound frames, see “Sound Files” on

page 2-81.

Note

The word “channel” can be confusing in this context, because a sound
resource containing polyphonic sound (that is, multichannel sound) can
be played on a single Sound Manager sound channel. Channel is a
general term for the portion of sound data that can be described by a
single sound wave. Monophonic sound is composed of a single channel.
Stereo sound (also called polyphonic sound) is composed of several
channels of sound played simultaneously. “Sound channel” is a term
specific to the Sound Manager. ◆

TYPE ExtSoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

numChannels: LongInt; {number of channels in sample}

sampleRate: Fixed; {rate of original sample}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base freq. of original sample}

numFrames: LongInt; {total number of frames}

AIFFSampleRate: Extended80; {rate of original sample}

markerChunk: Ptr; {reserved}

instrumentChunks: Ptr; {pointer to instrument info}

AESRecording: Ptr; {pointer to audio info}

sampleSize: Integer; {number of bits per sample}

futureUse1: Integer; {reserved}

futureUse2: LongInt; {reserved}

futureUse3: LongInt; {reserved}

futureUse4: LongInt; {reserved}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-107

Field descriptions

samplePtr A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the futureUse4 field, then
this field should be set to NIL. Otherwise, this field is a pointer to
the memory location of the sampled-sound data.

numChannels The number of channels in the sampled-sound data.

sampleRate The rate at which the sample was originally recorded. The
approximate sample rates are shown in Table 2-1 on page 2-16. Note
that the sample rate is declared as a Fixed data type, but the most
significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

loopStart The starting point of the portion of the extended sampled sound
header that is to be used by the Sound Manager when determining
the duration of freqDurationCmd. These loop points specify the
byte numbers in the sampled data to be used as the beginning and
end points to cycle through when playing the sound. The loop
starting and ending points are 0-based.

loopEnd The end point of the portion of the extended sampled sound header
that is to be used by the Sound Manager when determining the
duration of freqDurationCmd.

encode The method of encoding used to generate the sampled-sound data.
For an extended sound header, you should specify the constant
extSH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in
the range 64 through 127 for your own encode options.

baseFrequency The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 2-43 lists the
possible baseFrequency values. The baseFrequency value
allows the Sound Manager to calculate the proper playback rate of
the sample when an application uses the freqDurationCmd
command. Applications should not alter the baseFrequency field
of a sampled sound; to play the sample at different pitches, use
freqDurationCmd or freqCmd.

numFrames The number of frames in the sampled-sound data. Each frame
contains numChannels bytes for 8-bit sound data.

AIFFSampleRate The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

markerChunk Synchronization information. The markerChunk field is not
presently used and should be set to NIL.

instrumentChunks
Instrument information.

AESRecording Information related to audio recording devices.

sampleSize The number of bits in each sample frame.

futureUse1 Reserved.

futureUse2 Reserved.

futureUse3 Reserved.

C H A P T E R 2

Sound Manager

2-108 Sound Manager Reference

futureUse4 The four futureUse fields are reserved for use by Apple. To
maintain compatibility with future releases of system software, you
should always set these fields to 0.

sampleArea An array of interleaved sample points, each of which contains a
value similar to the values in a wave-table description. For 8-bit
sampled-sound data, these values are interpreted as offset values,
where $80 represents an amplitude of 0. The value $00 is the largest
negative amplitude, and $FF is the largest positive amplitude.

To compute the total number of bytes of a sample, multiply the values in the

numChannels, numFrames, and sampleSize fields and divide by the number of bytes

per sample (typically 8 or 16).

Note

Although extended sound headers (and compressed sound headers,
described next) support the storage of 16-bit sound, only versions 3.0
and later of the Sound Manager can play 16-bit sounds. If your
application uses 16-bit sound, you must convert it to 8-bit sound before
earlier versions of the Sound Manager can play it. ◆

Compressed Sound Header Records

To describe compressed sampled-sound data, the Sound Manager uses a compressed

sound header record. Compressed sound headers include all of the essential fields of

extended sound headers in addition to several fields that pertain to compression. The

CmpSoundHeader data type defines the compressed sound header record.

TYPE CmpSoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

numChannels: LongInt; {number of channels in sample}

sampleRate: Fixed; {rate of original sample}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base freq. of original sample}

numFrames: LongInt; {length of sample in frames}

AIFFSampleRate: Extended80; {rate of original sample}

markerChunk: Ptr; {reserved}

format: OSType; {data format type}

futureUse2: LongInt; {reserved}

stateVars: StateBlockPtr; {pointer to StateBlock}

leftOverSamples: LeftOverBlockPtr;

{pointer to LeftOverBlock}

compressionID: Integer; {ID of compression algorithm}

packetSize: Integer; {number of bits per packet}

snthID: Integer; {unused}

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-109

sampleSize: Integer; {bits in each sample point}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

Field descriptions

samplePtr The location of the compressed sound frames. If samplePtr is NIL,
then the frames are located in the sampleArea field of the
compressed sound header. Otherwise, samplePtr points to a
buffer that contains the frames.

numChannels The number of channels in the sample.

sampleRate The sample rate at which the frames were sampled before
compression. The approximate sample rates are shown in Table 2-1
on page 2-16. Note that the sample rate is declared as a Fixed data
type, but the most significant bit is not treated as a sign bit; instead,
that bit is interpreted as having the value 32,768.

loopStart The beginning of the loop points of the sound before compression.
The loop starting and ending points are 0-based.

loopEnd The end of the loop points of the sound before compression.

encode The method of encoding (if any) used to generate the
sampled-sound data. For a compressed sound header, you should
specify the constant cmpSH. Encode option values in the ranges
0 through 63 and 128 to 255 are reserved for use by Apple. You are
free to use numbers in the range 64 through 127 for your own
encode options.

baseFrequency The pitch of the original sampled sound. It is not used by
bufferCmd. If you wish to make use of baseFrequency with a
compressed sound, you must first expand it and then play it with
soundCmd and freqDurationCmd.

numFrames The number of frames contained in the compressed sound header.
When you store multiple channels of noncompressed sound, store
them as interleaved sample frames (as in AIFF). When you store
multiple channels of compressed sounds, store them as interleaved
packet frames.

AIFFSampleRate
The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

markerChunk Synchronization information. The markerChunk field is not
presently used and should be set to NIL.

format The data format type. This field contains a value of type OSType
that defines the compression algorithm, if any, used to generate the
audio data. For example, for data generated using MACE 3:1
compression, this field should contain the value 'MAC3'. See
page 2-86 for a list of the format types defined by Apple. This field
is used only if the compressionID field contains the value
fixedCompression.

C H A P T E R 2

Sound Manager

2-110 Sound Manager Reference

futureUse2 This field is reserved for use by Apple. To maintain compatibility
with future releases of system software, you should always set this
field to 0.

stateVars A pointer to a state block. This field is used to store the state
variables for a given algorithm across consecutive calls. See “State
Blocks” on page 2-119 for a description of the state block.

leftOverSamples
A pointer to a leftover block. You can use this block to store samples
that will be truncated across algorithm invocations. See “Leftover
Blocks” on page 2-119 for a description of the leftover block.

compressionID The compression algorithm used on the samples in the compressed
sound header. You can use a constant to define the compression
algorithm.

CONST

variableCompression

= -2; {variable-ratio compr.}

fixedCompression = -1; {fixed-ratio compr.}

notCompressed = 0; {noncompressed samples}

threeToOne = 3; {3:1 compressed samples}

sixToOne = 4; {6:1 compressed samples}

The constant fixedCompression is available only with Sound
Manager versions 3.0 and later. If the compressionID field
contains the value fixedCompression, the Sound Manager reads
the format field to determine the compression algorithm used to
generate the compressed data. Otherwise, the Sound Manager reads
the compressionID field. Apple reserves the right to use
compression IDs in the range 0 through 511. Currently the constant
variableCompression is not used by the Sound Manager.

packetSize The size, in bits, of the smallest element that a given expansion
algorithm can work with. You can use a constant to define the
packet size.

CONST

sixToOnePacketSize = 8; {size for 6:1}

threeToOnePacketSize = 16; {size for 3:1}

Beginning with Sound Manager version 3.0, you can specify the
value 0 in this field to instruct the Sound Manager to determine the
packet size itself.

snthID This field is unused. You should set it to 0.

sampleSize The size of the sample before it was compressed. The samples
passed in the compressed sound header should always be
byte-aligned, and any padding done to achieve byte alignment
should be done from the left with zeros.

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-111

sampleArea The sample frames, but only when the samplePtr field is NIL.
Otherwise, the sample frames are in the location indicated
by samplePtr.

Sound Double Buffer Header Records

You must fill in a sound double buffer header record and two sound double

buffer records if you wish to manage your own double buffers. The

SndDoubleBufferHeader data type defines a sound double buffer header.

TYPE SndDoubleBufferHeader =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

END;

Sound Manager versions 3.0 and later support custom compression and decompression

algorithms by defining the revised sound double buffer header record, of type

SndDoubleBufferHeader2. It’s identical to the SndDoubleBufferHeader data type

except that it contains the dbhFormat field at the end.

TYPE SndDoubleBufferHeader2 =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

dbhFormat: OSType; {signature of codec}

END;

Field descriptions

dbhNumChannels
The number of channels for the sound (1 for monophonic sound,
2 for stereo).

dbhSampleSize The sample size for the sound if the sound is not compressed. If the
sound is compressed, dbhSampleSize should be set to 0. Samples

C H A P T E R 2

Sound Manager

2-112 Sound Manager Reference

that are 1–8 bits have a dbhSampleSize value of 8; samples that
are 9–16 bits have a dbhSampleSize value of 16. Currently, only
8-bit samples are supported. For further information on sample
sizes, refer to the AIFF specification.

dbhCompressionID
The compression identification number of the compression
algorithm, if the sound is compressed. If the sound is not
compressed, dbhCompressionID should be set to 0.

dbhPacketSize The packet size in bits for the compression algorithm specified by
dbhCompressionID, if the sound is compressed.

dbhSampleRate The sample rate for the sound. Note that the sample rate is declared
as a Fixed data type, but the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.

dbhBufferPtr An array of two pointers, each of which should point to a valid
SndDoubleBuffer record.

dbhDoubleBack A pointer to the application-defined routine that is called when the
double buffers are switched and the exhausted buffer needs to
be refilled.

dbhFormat The data format type. This field contains a value of type OSType
that defines the compression algorithm, if any, to be used to
decompress the audio data. For example, for data generated using
MACE 3:1 compression, this field should contain the value 'MAC3'.
See page 2-86 for a list of the format types defined by Apple. This
field is used only if the dbhCompressionID field contains the
value fixedCompression.

The dbhBufferPtr array contains pointers to two sound double buffer records, whose

format is defined below. These are the two buffers between which the Sound Manager

switches until all the sound data has been sent into the sound channel. When you make

the call to SndPlayDoubleBuffer, the two buffers should both already contain a

nonzero number of frames of data.

Sound Double Buffer Records

You must fill in a sound double buffer header record if you wish to manage your own

double buffers. The dbhBufferPtr field of the sound double buffer header record

references two sound double buffer records, which you must also fill out. The

SndDoubleBufferHeader data type defines a sound double buffer header.

TYPE SndDoubleBuffer =

PACKED RECORD

dbNumFrames: LongInt; {number of frames in buffer}

dbFlags: LongInt; {buffer status flags}

dbUserInfo: ARRAY[0..1] OF LongInt; {for application's use}

dbSoundData: PACKED ARRAY[0..0] OF Byte; {array of data}

END;

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-113

Field descriptions

dbNumFrames The number of frames in the dbSoundData array.

dbFlags Buffer status flags.

dbUserInfo Two long words into which you can place information that you
need to access in your doubleback procedure.

dbSoundData A variable-length array. You write samples into this array, and the
Sound Manager reads samples out of this array.

The buffer status flags field for each of the two buffers can contain either of these values

that your doubleback procedure must set when appropriate:

CONST

dbBufferReady = $00000001;

dbLastBuffer = $00000004;

All other bits in the dbFlags field are reserved by Apple; your application should not

modify them.

Chunk Headers

Every chunk in an AIFF or AIFF-C file contains a chunk header that defines

characteristics of the chunk. The ChunkHeader data type defines a chunk header.

TYPE ChunkHeader =

RECORD

ckID: ID; {chunk type ID}

ckSize: LongInt; {number of bytes of data}

END;

Field descriptions

ckID The ID of the chunk. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range ' ' (space character, ASCII
value $20) through '~' (ASCII value $7E). Spaces cannot precede
printing characters, but trailing spaces are allowed. Control
characters are not allowed. See “Chunk IDs” on page 2-98 for a list
of the currently recognized chunk IDs.

ckSize The size of the chunk in bytes, not including the ckID and ckSize
fields.

Form Chunks

All sound files begin with a Form Chunk. This chunk defines the type and size of the file

and can be thought of as enclosing the remaining chunks in the sound file. The

ContainerChunk data type defines a Form Chunk.

C H A P T E R 2

Sound Manager

2-114 Sound Manager Reference

TYPE ContainerChunk =

RECORD

ckID: ID; {'FORM'}

ckSize: LongInt; {number of bytes of data}

formType: ID; {type of file}

END;

Field descriptions

ckID The ID of this chunk. For a Form Chunk, this ID is 'FORM'.

ckSize The size of the data portion of this chunk. Note that the data portion
of a Form Chunk is divided into two parts, formType and the
remaining chunks of the sound file.

formType The type of audio file. For AIFF files, formType is 'AIFF'. For
AIFF-C files, formType is 'AIFC'.

The size of an entire sound file is ckSize+8, because the ckSize field incorporates the

size of all chunks of the sound file, except the sizes of the ckID and ckSize fields of the

Form Chunk itself.

Format Version Chunks

AIFF-C files each contain exactly one Format Version Chunk, but files of type AIFF do

not contain any. You can examine the Format Version Chunk to ensure that your

application can process an AIFF-C file. The FormatVersionChunk data type defines

a Format Version Chunk.

TYPE FormatVersionChunk =

RECORD

ckID: ID; {'FVER'}

ckSize: LongInt; {4}

timestamp: LongInt; {date of format version}

END;

Field descriptions

ckID The ID of this chunk. For a Format Version Chunk, this ID is
'FVER'.

ckSize The size of the data portion of this chunk. This value is always 4 in
a Format Version Chunk because the timestamp field is 4 bytes
long (the 8 bytes used by the ckID and ckSize fields are not
included).

timestamp An indication of when the format version for this kind of file was
created. The value indicates the number of seconds between
midnight, January 1, 1904, and the time at which the AIFF-C file
format was created.

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-115

Common Chunks

Every AIFF and AIFF-C file contains a Common Chunk that defines some fundamental

characteristics of the sampled sound contained in the file. The format of the Common

Chunk is different for AIFF and AIFF-C files. As a result, you need to determine the type

of file format (by inspecting the formType field of the Form Chunk) before reading the

Common Chunk.

For AIFF files, the CommonChunk data type defines a Common Chunk.

TYPE CommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

END;

Field descriptions

ckID The ID of this chunk. For a Common Chunk, this ID is 'COMM'.

ckSize The size of the data portion of this chunk. In AIFF files, this field is
always 18 because the 8 bytes used by the ckID and ckSize fields
are not included.

numChannels The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

numSampleFrames
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in
the file is numChannels * numSampleFrames.

sampleSize The number of bits in each sample point of noncompressed sound
data. The sampleSize field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sampleRate The sample rate at which the sound is to be played back, in sample
frames per second.

Extended Common Chunks

An AIFF-C file contains an extended Common Chunk that includes all of the fields of

the Common Chunk, but adds two fields that describe the type of compression (if any)

used on the audio data. The ExtCommonChunk data type defines an extended

Common Chunk.

C H A P T E R 2

Sound Manager

2-116 Sound Manager Reference

TYPE ExtCommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

compressionType: ID; {compression type ID}

compressionName: PACKED ARRAY[0..0] OF Byte;

{compression type name}

END;

Field descriptions

ckID The ID of this chunk. For an extended Common Chunk, this ID
is 'COMM'.

ckSize The size of the data portion of this chunk. For an extended
Common Chunk, this size is 22 plus the number of bytes in the
compressionName string.

numChannels The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

numSampleFrames
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in
the file is numChannels * numSampleFrames.

sampleSize The number of bits in each sample point of noncompressed sound
data. The sampleSize field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sampleRate The sample rate at which the sound is to be played back, in sample
frames per second.

compressionType
The ID of the compression algorithm, if any, used on the sound
data. Compression algorithms supplied by Apple have the
following types:

CONST

NoneType = 'NONE';

ACE2Type = 'ACE2';

ACE8Type = 'ACE8';

MACE3Type = 'MAC3';

MACE6Type = 'MAC6';

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-117

You can define your own compression types, but you should
register them with Apple.

compressionName
A human-readable name for the compression algorithm ID
specified in the compressionType field. If the number of bytes in
this field is odd, then it is padded with the digit 0. Compression
algorithms supplied by Apple have the following names:

CONST

NoneName = 'not compressed';

ACE2to1Name = 'ACE 2-to-1';

ACE8to3Name = 'ACE 8-to-3';

MACE3to1Name = 'MACE 3-to-1';

MACE6to1Name = 'MACE 6-to-1';

You can define your own compression types, but you should
register them with Apple.

Sound Data Chunks

AIFF and AIFF-C files generally contain a Sound Data Chunk that contains the actual

sampled-sound data. The SoundDataChunk data type defines a Sound Data Chunk.

TYPE SoundDataChunk =

RECORD

ckID: ID; {'SSND'}

ckSize: LongInt; {size of chunk data}

offset: LongInt; {offset to sound data}

blockSize: LongInt; {size of alignment blocks}

END;

Field descriptions

ckID The ID of this chunk. For a Sound Data Chunk, this ID is 'SSND'.

ckSize The size of the data portion of this chunk. This size does not include
the 8 bytes occupied by the values in the ckID and the ckSize
fields.

offset An offset (in bytes) to the beginning of the first sample frame in the
chunk data. Most applications do not need to use the offset field
and should set it to 0.

blockSize The size (in bytes) of the blocks to which the sound data is aligned.
This field is used in conjunction with the offset field for aligning
sound data to blocks. As with the offset field, most applications
do not need to use the blockSize field and should set it to 0.

The sampled-sound data follows the blockSize field. If the data following the

blockSize field contains an odd number of bytes, a pad byte with a value of 0 is added

at the end to preserve an even length for this chunk. If there is a pad byte, it is not

C H A P T E R 2

Sound Manager

2-118 Sound Manager Reference

included in the ckSize field. For information on the format of the sampled-sound data,

see “Sound Files” on page 2-81.

Version Records

The functions SndSoundManagerVersion and MACEVersion return version

information using a version record. The NumVersion data type defines a version record.

TYPE NumVersion =

PACKED RECORD

CASE INTEGER OF

 0:

(majorRev: SignedByte; {major revision level in BCD}

minorAndBugRev: SignedByte; {minor revision level}

stage: SignedByte; {development stage}

nonRelRev: SignedByte); {nonreleased revision level}

 1:

(version: LongInt); {all 4 fields together}

END;

IMPORTANT

A version record has the same structure as the first four fields of a
version resource (a resource of type 'vers'). See the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials for complete
information about version resources. ▲

Field descriptions

majorRev The major revision level. This field is a signed byte in binary-coded
decimal format.

minorAndBugRev
The minor revision level. This field is a signed byte in binary-coded
decimal format.

stage The development stage. You should use the following constants to
specify a development stage:

CONST

developStage = $20; {prealpha release}

alphaStage = $40; {alpha release}

betaStage = $60; {beta release}

finalStage = $80; {final release}

nonRelRev The revision level of a prereleased version.

version A long integer that contains all four version fields.

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-119

Leftover Blocks

The leftOverSamples field of a compressed sound header contains a pointer to a

leftover block, defined by the LeftOverBlock data type.

TYPE LeftOverBlock =

RECORD

count: LongInt;

sampleArea: PACKED ARRAY[0..leftOverBlockSize - 1] OF Byte;

END;

Field descriptions

count The number of bytes in the sampleArea field.

sampleArea An array of bytes. This field contains samples that are truncated
across invocations of the compression algorithm. The size of this
field is defined by a constant.

CONST

leftOverBlockSize = 32;

State Blocks

The stateVars field of a compressed sound header contains a pointer to a state block,

defined by the StateBlock data type.

TYPE StateBlock =

RECORD

stateVar: ARRAY[0..stateBlockSize - 1] OF Integer;

END;

Field descriptions

stateVar An array of integers. This field contains state variables that need to
be preserved across invocations of the compression algorithm. The
size of this field is defined by a constant.

CONST

stateBlockSize = 64;

Sound Manager Routines

This section describes the routines provided by the Sound Manager. You can use these

routines to

■ play sound resources

■ play sounds stored in files directly from disk

■ allocate and release sound channels

C H A P T E R 2

Sound Manager

2-120 Sound Manager Reference

■ send commands to a sound channel

■ obtain information about the Sound Manager, a sound channel, all sound channels, or
the system alert sound’s status

■ compress and expand audio data

■ manage the reading and writing of double sound buffers

The section “Application-Defined Routines” on page 2-151 describes routines that your

application might need to define, including callback procedures, completion routines,

and doubleback procedures.

Assembly-Language Note

Most Sound Manager routines are accessed through the
_SoundDispatch selector. However, the SndAddModifier,
SndControl, SndDisposeChannel, SndDoCommand,
SndDoImmediate, SndNewChannel, and SndPlay functions and the
SysBeep procedure are accessed through their own trap macros. See
“Summary of the Sound Manager,” which begins on page 2-157, for a
list of trap selector numbers. ◆

Playing Sound Resources

You can use the SysBeep procedure to play the system alert sound. Alert sounds are

stored in the System file as format 1 'snd ' resources. You can use the SndPlay

function to play the sounds that are stored in any 'snd ' resource, either format 1 or

format 2.

The SysBeep and SndPlay routines are the highest-level sound routines that the

Sound Manager provides. Depending on the needs of your application, you might be

able to accomplish all desired sound-related activity simply by using SysBeep to

produce the system alert sound or by using SndPlay to play other sounds that are

stored as 'snd ' resources.

SysBeep

You can use the SysBeep procedure to play the system alert sound.

PROCEDURE SysBeep (duration: Integer);

duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when the
system alert sound is the Simple Beep. The recommended duration is 30
ticks, which equals one-half second.

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-121

DESCRIPTION

The SysBeep procedure causes the Sound Manager to play the system alert sound at its

current volume. If necessary, the Sound Manager loads into memory the sound resource

containing the system alert sound and links it to a sound channel. The user selects a

system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert

sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound

control panel. The system alert sound volume can also be read and set by calling the

GetSysBeepVolume and SetSysBeepVolume routines. If the volume is set to 0 (silent)

and the system alert sound is enabled, calling SysBeep causes the menu bar to blink

once.

SPECIAL CONSIDERATIONS

Because the SysBeep procedure moves memory, you should not call it at interrupt time.

SEE ALSO

For information on enabling and disabling the system alert sound, see the description of

SndGetSysBeepState and SndGetSysBeepState on page 2-137. For information on

reading or adjusting the system alert sound volume, see “Controlling Volume Levels”

beginning on page 2-139.

SndPlay

You can use the SndPlay function to play a sound resource that your application has

loaded into memory.

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;

async: Boolean): OSErr;

chan A pointer to a valid sound channel. You can pass NIL instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NIL is passed in the first
parameter.

C H A P T E R 2

Sound Manager

2-122 Sound Manager Reference

DESCRIPTION

The SndPlay function attempts to play the sound located at sndHdl, which is expected

to have the structure of a format 1 or format 2 'snd ' resource. If the resource has not

yet been loaded, the SndPlay function fails and returns the resProblem result code.

All commands and data contained in the sound handle are then sent to the channel. Note

that you can pass SndPlay a handle to some data created by calling the Sound Input

Manager’s SndRecord function as well as a handle to an actual 'snd ' resource that

you have loaded into memory.

▲ W A R N I N G

In some versions of system software prior to system software version
7.0, the SndPlay function will not work properly with sound resources
that specify the sound data type twice. This might happen if a resource
specifies that a sound consists of sampled-sound data and an
application does the same when creating a sound channel. For more
information on this problem, see “Allocating Sound Channels” on
page 2-20. ▲

The chan parameter is a pointer to a sound channel. If chan is not NIL, it is used as

a valid channel. If chan is NIL, an internally allocated sound channel is used. If you

do supply a sound channel pointer in the chan parameter, you can play the sound

asynchronously. When a sound is played asynchronously, a callback procedure can be

called when a callBackCmd command is processed by the channel. (This procedure

is the callback procedure supplied to SndNewChannel.) See “Playing Sounds

Asynchronously” on page 2-46 for more information on playing sounds asynchronously.

The handle you pass in the sndHdl parameter must be locked for as long as the sound is

playing asynchronously.

If a format 1 'snd ' resource does not specify which type of sound data is to be played,

SndPlay defaults to square-wave data. SndPlay also supports format 2 'snd '

resources using sampled-sound data and a bufferCmd command. Note that to use

SndPlay and sampled-sound data with a format 1 'snd ' resource, the resource must

include a bufferCmd command.

SPECIAL CONSIDERATIONS

Because the SndPlay function moves memory, you should not call it at interrupt time.

RESULT CODES

noErr 0 No error
notEnoughHardwareErr –201 Insufficient hardware available
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-123

SEE ALSO

For an example of how to play a sound resource using the SndPlay function, see the

chapter “Introduction to Sound on the Macintosh” in this book.

For information on playing a sound resource without using the SndPlay function, see

“Playing Sounds Using Low-Level Routines” on page 2-61.

Playing From Disk

Use the SndStartFilePlay, SndPauseFilePlay, and SndStopFilePlay functions

to manage a continuous play from disk.

SndStartFilePlay

You can call the SndStartFilePlay function to initiate a play from disk.

FUNCTION SndStartFilePlay (chan: SndChannelPtr; fRefNum: Integer;

 resNum: Integer; bufferSize: LongInt;

 theBuffer: Ptr;

theSelection: AudioSelectionPtr;

theCompletion: ProcPtr;

async: Boolean): OSErr;

chan A pointer to a valid sound channel. You can pass NIL instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate
a sound channel in your application’s heap zone.

fRefNum The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

resNum The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

bufferSize
The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndStartFilePlay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

theBuffer A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NIL, the Sound
Manager allocates two buffers, each half the size of the value specified in
the bufferSize parameter. If this parameter is not NIL, the buffer
should be a nonrelocatable block of size bufferSize.

theSelection
A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NIL to specify that the Sound
Manager should play the entire sound.

C H A P T E R 2

Sound Manager

2-124 Sound Manager Reference

theCompletion
A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NIL to specify that the Sound
Manager should not execute a completion routine. This field is useful
only for asynchronous play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NIL in the chan parameter and TRUE for
this parameter, the SndStartFilePlay function returns the
badChannel result code.

DESCRIPTION

The SndStartFilePlay function begins a continuous play from disk on a sound

channel. The chan parameter is a pointer to the sound channel. If chan is not NIL, it is

used as a valid channel. If chan is NIL, an internally allocated sound channel is used for

play from disk. This internally allocated sound channel is not passed back to you.

Because SndPauseFilePlay and SndStopFilePlay require a sound-channel pointer,

you must allocate your own channel if you wish to use those routines.

The sounds you wish to play can be stored either in a file or in an 'snd ' resource. If

you are playing a file, then fRefNum should be the file reference number of the file to be

played and the parameter resNum should be set to 0. If you are playing an 'snd '

resource, then fRefNum should be set to 0 and resNum should be the resource ID

number (not the file reference number) of the resource to play.

▲ W A R N I N G

The SndStartFilePlay function might not play 'snd ' resources
from disk correctly. In particular, the function will not execute correctly
if any resource in the resource file containing the 'snd ' resource you
wish to play has been changed through a call to the WriteResource
procedure and you have not updated the resource file using the
UpdateResFile procedure. To avoid this and other problems, you
should use the SndStartFilePlay function to play only sound files. ▲

SPECIAL CONSIDERATIONS

Because the SndStartFilePlay function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndStartFilePlay function are

Trap macro Selector

_SoundDispatch $0D000008

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-125

RESULT CODES

SEE ALSO

For an example of how to play a sound file, see the chapter “Introduction to Sound on

the Macintosh” in this book.

For information on the format of a completion routine, see “Completion Routines” on

page 2-151.

SndPauseFilePlay

You can use the SndPauseFilePlay function to toggle the state of a play from disk in

progress, just as you might use the pause button on an audiocassette tape player to

temporarily pause and then resume play.

FUNCTION SndPauseFilePlay (chan: SndChannelPtr): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndStartFilePlay function.

DESCRIPTION

The SndPauseFilePlay function suspends the play from disk on the channel specified

by the chan parameter if that play from disk is not already paused; the function resumes

play if the play from disk is already paused.

The SndPauseFilePlay function is used in conjunction with SndStopFilePlay to

control play from disk on a sound channel. Note that this call can be made only if your

application has already called SndStartFilePlay with a valid sound channel. You

cannot use this function with a synchronous call to SndStartFilePlay because, in that

case, program control does not return to the caller until after the sound has completely

finished playing.

If the channel specified by the chan parameter is not being used for play from disk, then

SndPauseFilePlay returns the result code channelNotBusy. If the channel is busy

noErr 0 No error
notEnoughHardwareErr –201 Insufficient hardware available
queueFull –203 No room in the queue
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
notEnoughBufferSpace –207 Insufficient memory available
badFileFormat –208 File is corrupt or unusable, or not AIFF or

AIFF-C
channelBusy –209 Channel is busy
buffersTooSmall –210 Buffer is too small
siInvalidCompression –223 Invalid compression type

C H A P T E R 2

Sound Manager

2-126 Sound Manager Reference

and paused, then play from disk is resumed. If the channel is busy and the channel is not

paused, then play from disk is suspended.

SPECIAL CONSIDERATIONS

You can call the SndPauseFilePlay function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndPauseFilePlay function are

RESULT CODES

SndStopFilePlay

You can use SndStopFilePlay to stop an asynchronous play from disk.

FUNCTION SndStopFilePlay (chan: SndChannelPtr;

quietNow: Boolean): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndStartFilePlay function.

quietNow A Boolean value that indicates whether the play from disk should be
stopped immediately (TRUE) or when it completes execution (FALSE).

DESCRIPTION

The SndStopFilePlay function either can stop an asynchronous play from disk

immediately or can take control of the CPU until a play from disk finishes. The

SndStopFilePlay function does not return until all asynchronous file I/O calls have

completed and any internally allocated memory has been released. If async is FALSE,

then SndStopFilePlay lets the sound complete normally and returns only after the

sound has completed, all asynchronous file I/O calls have completed, and any internal

allocated memory has been released.

For example, you might use the function to stop the playing of a sound file if the user

selects an option that turns off sound output while the file is already playing. In that

case, you would pass TRUE to quietNow. Alternatively, you might have started a sound

Trap macro Selector

_SoundDispatch $02040008

noErr 0 No error
queueFull –203 No room in the queue
badChannel –205 Channel is corrupt or unusable
channelNotBusy –211 Channel not currently used

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-127

playing asynchronously so that you could perform other tasks while the sound plays.

But you might then finish those other tasks and want to convert the play from disk into a

synchronous play. By passing FALSE to quietNow, you effectively achieve that.

SPECIAL CONSIDERATIONS

Because the SndStopFilePlay function might move memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndStopFilePlay function are

RESULT CODES

Allocating and Releasing Sound Channels

If you use a high-level Sound Manager routine to play sounds, you might be able to let

the Sound Manager internally allocate a sound channel. However, to use low-level

sound commands or to take full advantage of the Sound Manager’s high-level routines,

you must allocate your own sound channels. The SndNewChannel function allows your

application to allocate a new sound channel, and the SndDisposeChannel function

allows your application to dispose of it.

SndNewChannel

You can use the SndNewChannel function to allocate a new sound channel.

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: Integer;

init: LongInt; userRoutine: ProcPtr):

OSErr;

chan A pointer to a sound channel record. You can pass a pointer whose value
is NIL to force the Sound Manager to allocate the sound channel record
internally.

synth The sound data type you intend to play on this channel. If you do not
want to specify a specific data type, pass 0 in this parameter. You might
do this if you plan to use the channel to play a single sound resource that
itself specifies the sound’s data type.

Trap macro Selector

_SoundDispatch $03080008

noErr 0 No error
badChannel –205 Channel is corrupt or unusable

C H A P T E R 2

Sound Manager

2-128 Sound Manager Reference

init The desired initialization parameters for the channel. If you cannot
determine what types of sounds you will be playing on the channel, pass
0 in this parameter. Only sounds defined by wave-table data and
sampled-sound data currently use the init options. You can use the
Gestalt function to determine if a sound feature (such as stereo output)
is supported by a particular computer.

userRoutine
A pointer to a callback procedure that the Sound Manager executes
whenever it receives a callBackCmd command. If you pass NIL as the
userRoutine parameter, then any callBackCmd commands sent to this
channel are ignored.

DESCRIPTION

The SndNewChannel function internally allocates memory to store a queue of sound

commands. If you pass a pointer to NIL as the chan parameter, the function also

allocates a sound channel record in your application’s heap and returns a pointer to that

record. If you do not pass a pointer to NIL as the chan parameter, then that parameter

must contain a pointer to a sound channel record.

If you pass a pointer to NIL as the chan parameter, then the amount of memory the

SndNewChannel function allocates to store the sound commands is enough to store

128 sound commands. However, if you pass a pointer to the sound channel record rather

than a pointer to NIL, the amount of memory allocated is determined by the qLength

field of the sound channel record. Thus, if you wish to control the size of the sound

queue, you must allocate your own sound channel record. Regardless of whether you

allocate your own sound channel record, the Sound Manager allocates memory for the

sound command queue internally.

The synth parameter specifies the sound data type you intend to play on this channel.

You can use these constants to specify the data type:

CONST

squareWaveSynth = 1; {square-wave data}

waveTableSynth = 3; {wave-table data}

sampledSynth = 5; {sampled-sound data}

In Sound Manager versions earlier than version 3.0, only one data type can be produced

at any one time. As a result, SndNewChannel may fail if you attempt to open a channel

specifying a data type other than the one currently being played.

To specify a sound output device other than the current sound output device, pass the

value kUseOptionalOutputDevice in the synth parameter and the signature of the

desired sound output device component in the init parameter.

CONST

kUseOptionalOutputDevice = -1;

The ability to redirect output away from the current sound output device is intended for

use by specialized applications that need to use a specific sound output device. In

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-129

general, your application should always send sound to the current sound output device

selected by the user.

SPECIAL CONSIDERATIONS

Because the SndNewChannel function allocates memory, you should not call it at

interrupt time.

RESULT CODES

SEE ALSO

For an example of a routine that uses the SndNewChannel function, see Listing 2-1 on

page 2-20.

For information on the format of a callback procedure, see “Callback Procedures” on

page 2-152.

SndDisposeChannel

If you allocate a sound channel by calling the SndNewChannel function, you must

release the memory it occupies by calling the SndDisposeChannel function.

FUNCTION SndDisposeChannel (chan: SndChannelPtr;

quietNow: Boolean): OSErr;

chan A pointer to a valid sound channel record.

quietNow A Boolean value that indicates whether the channel should be disposed
immediately (TRUE) or after sound stops playing (FALSE).

DESCRIPTION

The SndDisposeChannel function disposes of the queue of sound commands

associated with the sound channel specified in the chan parameter. If your application

created its own sound channel record in memory or installed a sound as a voice in a

channel, the Sound Manager does not dispose of that memory. The Sound Manager also

does not release memory associated with a sound resource that you have played on

a channel. You might use the userInfo field of the sound channel record to store

the address of a sound handle you wish to release before disposing of the sound

channel itself.

noErr 0 No error
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable

C H A P T E R 2

Sound Manager

2-130 Sound Manager Reference

The SndDisposeChannel function can dispose of a channel immediately or wait

until the queued commands are processed. If quietNow is set to TRUE, a flushCmd

command and then a quietCmd command are sent to the channel bypassing

the command queue. This removes all commands, stops any sound in progress, and

closes the channel. If quietNow is set to FALSE, then the Sound Manager issues a

quietCmd command only; it does not bypass the command queue, and it waits until

the quietCmd command is processed before disposing of the channel.

SPECIAL CONSIDERATIONS

Because the SndDisposeChannel function might dispose of memory, you should not

call it at interrupt time.

RESULT CODES

Sending Commands to a Sound Channel

Once a sound channel is opened, you can send commands to that channel by issuing

requests with the SndDoCommand and SndDoImmediate functions.

The section “Sound Command Numbers” beginning on page 2-92 lists the sound

commands that you can send using SndDoCommand, SndDoImmediate, or (in several

cases) SndControl.

SndDoCommand

You can queue a command in a sound channel by calling the SndDoCommand function.

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;

noWait: Boolean): OSErr;

chan A pointer to a valid sound channel.

cmd A sound command to be sent to the channel specified in the chan
parameter.

noWait A flag indicating whether the Sound Manager should wait for a free space
in a full queue (FALSE) or whether it should return immediately with a
queueFull result code if the queue is full (TRUE).

DESCRIPTION

The SndDoCommand function sends the sound command specified in the cmd parameter

to the end of the command queue of the channel specified in the chan parameter.

noErr 0 No error
badChannel –205 Channel is corrupt or unusable

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-131

The noWait parameter has meaning only if a sound channel’s queue of sound

commands is full. If the noWait parameter is set to FALSE and the queue is full, the

Sound Manager waits until there is space to add the command, thus preventing your

application from doing other processing. If noWait is set to TRUE and the queue is full,

the Sound Manager does not send the command and returns the queueFull result code.

SPECIAL CONSIDERATIONS

Whether SndDoCommand moves memory depends on the particular sound command

you’re sending it. Most of the available sound commands do not cause SndDoCommand

to move memory and can therefore be issued at interrupt time. Moreover, you can

sometimes safely send commands at interrupt time that would otherwise cause memory

to move if you’ve previously issued the soundCmd sound command to preconfigure the

channel at noninterrupt time.

RESULT CODES

SEE ALSO

For an example of a routine that uses the SndDoCommand function, see Listing 2-15 on

page 2-42.

SndDoImmediate

You can use the SndDoImmediate function to place a sound command in front of a

sound channel’s command queue.

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand):

OSErr;

chan A pointer to a sound channel.

cmd A sound command to be sent to the channel specified in the
chan parameter.

DESCRIPTION

The SndDoImmediate function operates much like SndDoCommand, except that it

bypasses the existing command queue of the sound channel and sends the specified

command directly to the Sound Manager for immediate processing. This routine also

overrides any waitCmd, pauseCmd, or syncCmd commands that might have already

been processed. However, other commands already received by the Sound Manager will

noErr 0 No error
queueFull –203 No room in the queue
badChannel –205 Channel is corrupt or unusable

C H A P T E R 2

Sound Manager

2-132 Sound Manager Reference

not be interrupted by the SndDoImmediate function (although a quietCmd command

sent via SndDoImmediate will quiet a sound already playing).

SPECIAL CONSIDERATIONS

Whether SndDoImmediate moves memory depends on the particular sound command

you’re sending it. Most of the available sound commands do not cause

SndDoImmediate to move memory and can therefore be issued at interrupt time.

Moreover, you can sometimes safely send commands at interrupt time that would

otherwise cause memory to move if you’ve previously issued the soundCmd sound

command to preconfigure the channel at noninterrupt time.

RESULT CODES

SEE ALSO

For an example of a routine that uses the SndDoImmediate function, see Listing 2-4 on

page 2-26.

Obtaining Information

To obtain information about whether a computer supports certain sound features, you

should use the Gestalt function, documented in Inside Macintosh: Operating System
Utilities. Sometimes, however, you might need information the Gestalt function is not

able to provide. The Sound Manager provides a number of routines that you can use to

obtain additional sound-related information.

You can obtain the version numbers of the Sound Manager and the MACE tools by

calling the SndSoundManagerVersion and MACEVersion functions, respectively. You

can obtain information about a sound channel and about all sound channels by calling

the SndControl, SndChannelStatus, and SndManagerStatus functions,

respectively.

The Sound Manager includes two routines—SndGetSysBeepState and

SndSetSysBeepState—that allow you to determine and alter the status of the

system alert sound.

To play a sound resource using low-level Sound Manager routines, you need the address

of the sound header stored in the sound resource. Sound Manager versions 3.0 and

later provide the GetSoundHeaderOffset function that you can use to obtain

that information.

noErr 0 No error
badChannel –205 Channel is corrupt or unusable

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-133

SndSoundManagerVersion

You can use SndSoundManagerVersion to determine the version of the Sound

Manager tools available on a computer.

FUNCTION SndSoundManagerVersion: NumVersion;

DESCRIPTION

The SndSoundManagerVersion function returns a version number that contains the

same information as in the first 4 bytes of a 'vers' resource. You might use the

SndSoundManagerVersion function to determine if a computer has the enhanced

Sound Manager, which is necessary for multichannel sound and for continuous plays

from disk.

SPECIAL CONSIDERATIONS

You can call the SndSoundManagerVersion function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndSoundManagerVersion function are

SEE ALSO

For information on how to use the SndSoundManagerVersion function to determine

whether the enhanced Sound Manager is available, see “Obtaining Version Information”

on page 2-34.

MACEVersion

You can use MACEVersion to determine the version of the MACE tools available on a

machine.

FUNCTION MACEVersion: NumVersion;

DESCRIPTION

The MACEVersion function returns a version number that contains the same

information as in the first 4 bytes of a 'vers' resource.

Trap macro Selector

_SoundDispatch $000C0008

C H A P T E R 2

Sound Manager

2-134 Sound Manager Reference

SPECIAL CONSIDERATIONS

You can call the MACEVersion function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the MACEVersion function are

SndControl

You can obtain information about a sound data type by using the SndControl function.

In Sound Manager version 3.0 and later, however, you virtually never need to call

SndControl. The capabilities that SndControl provides are either provided by the

Gestalt function or are no longer supported. The SndControl function is

documented here for completeness only.

FUNCTION SndControl (id: Integer; VAR cmd: SndCommand): OSErr;

id The sound data type you want to get information about.

cmd A sound command.

DESCRIPTION

The SndControl function sends a control command directly to the Sound Manager to

get information about a specific data type. The available data types are specified by

constants:

CONST

squareWaveSynth = 1; {square-wave data}

waveTableSynth = 3; {wave-table data}

sampledSynth = 5; {sampled-sound data}

You can call SndControl even if no channel has been created for the type of data you

want to get information about. SndControl can be used with the availableCmd or

versionCmd sound commands to request information. The requested information is

returned in the sound command record specified by the cmd parameter.

IMPORTANT

The SndControl function can indicate only whether a particular data
format supports some feature (for example, stereo output), not whether
the available sound hardware also supports that feature. In general, you
should use the Gestalt function to determine whether the sound
features you need are available in the current operating environment. ▲

Trap macro Selector

_SoundDispatch $00000010

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-135

In Sound Manager version 2.0, you can also use the totalLoadCmd and loadCmd

commands to get information about the amount of CPU time consumed by

sound-related processing. However, these commands are not very accurate and are

not supported by version 3.0 and later.

SPECIAL CONSIDERATIONS

You should not call the SndControl function at interrupt time.

RESULT CODES

SEE ALSO

See the list of sound commands in “Sound Command Numbers” beginning on page 2-92

for a complete description of the sound commands supported by SndControl.

SndChannelStatus

You can use the SndChannelStatus function to determine the status of a sound

channel.

FUNCTION SndChannelStatus (chan: SndChannelPtr;

theLength: Integer;

theStatus: SCStatusPtr): OSErr;

chan A pointer to a valid sound channel.

theLength The size in bytes of the sound channel status record. You should set this
field to SizeOf(SCStatus).

theStatus A pointer to a sound channel status record.

DESCRIPTION

If the SndChannelStatus function executes successfully, the fields of the record

specified by theStatus accurately describe the sound channel specified by chan.

SPECIAL CONSIDERATIONS

You can call the SndChannelStatus function at interrupt time.

noErr 0 No error

C H A P T E R 2

Sound Manager

2-136 Sound Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndChannelStatus function are

RESULT CODES

SEE ALSO

For information on the structure of a sound channel status record, see “Sound Channel

Status Records” on page 2-101.

SndManagerStatus

You can use the SndManagerStatus function to determine information about all sound

channels currently allocated.

FUNCTION SndManagerStatus (theLength: Integer;

theStatus: SMStatusPtr): OSErr;

theLength The size in bytes of the Sound Manager status record. You should set this
field to SizeOf(SMStatus).

theStatus A pointer to a Sound Manager status record.

DESCRIPTION

The SndManagerStatus function determines information about all currently allocated

sound channels. If the SndManagerStatus function executes successfully, the fields

of the record specified by theStatus accurately describe the current status of the

Sound Manager.

SPECIAL CONSIDERATIONS

You can call the SndManagerStatus function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndManagerStatus function are

Trap macro Selector

_SoundDispatch $00100008

noErr 0 No error
paramErr –50 A parameter is incorrect
badChannel –205 Channel is corrupt or unusable

Trap macro Selector

_SoundDispatch $00140008

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-137

RESULT CODES

SndGetSysBeepState

You can use the SndGetSysBeepState procedure to determine if the system alert

sound is enabled.

PROCEDURE SndGetSysBeepState (VAR sysBeepState: Integer);

sysBeepState
On exit, the state of the system alert sound.

DESCRIPTION

The SndGetSysBeepState procedure returns one of two states in the sysBeepState

parameter, either the sysBeepDisable or the sysBeepEnable constant.

CONST

sysBeepDisable = $0000; {system alert sound disabled}

sysBeepEnable = $0001; {system alert sound enabled}

SPECIAL CONSIDERATIONS

You can call the SndGetSysBeepState procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndGetSysBeepState procedure are

SndSetSysBeepState

You can use the SndSetSysBeepState function to set the state of the system alert

sound.

FUNCTION SndSetSysBeepState (sysBeepState: Integer): OSErr;

sysBeepState
The desired state of the system alert sound.

noErr 0 No error

Trap macro Selector

_SoundDispatch $00180008

C H A P T E R 2

Sound Manager

2-138 Sound Manager Reference

DESCRIPTION

You can use the SndSetSysBeepState function to temporarily disable the system alert

sound while you play a sound and then enable the alert sound when you are done.

The sysBeepState parameter should be set to either sysBeepDisable or

sysBeepEnable.

If your application disables the system alert sound, be sure to enable it when your

application gets a suspend event.

SPECIAL CONSIDERATIONS

You can call the SndSetSysBeepState function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndSetSysBeepState function are

RESULT CODES

GetSoundHeaderOffset

You can use the GetSoundHeaderOffset function to get the offset from the beginning

of a sound resource to the embedded sound header.

FUNCTION GetSoundHeaderOffset (sndHdl: Handle;

VAR offset: LongInt): OSErr;

sndHdl A handle to a sound resource.

offset On exit, the offset from the beginning of the sound resource specified by
the sndHdl parameter to the beginning of the sound header within that
sound resource.

DESCRIPTION

The GetSoundHeaderOffset function returns, in the offset parameter, the number

of bytes from the beginning of the sound resource specified by the sndHdl parameter to

the sound header that is contained within that resource. You might need this information

if you want to use the address of that sound header in a sound command (such as the

soundCmd or bufferCmd sound command).

The handle passed to GetSoundHeaderOffset does not have to be locked.

Trap macro Selector

_SoundDispatch $001C0008

noErr 0 No error
paramErr –50 A parameter is incorrect

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-139

SPECIAL CONSIDERATIONS

The GetSoundHeaderOffset function is available only in version 3.0 and later of the

Sound Manager. See “Obtaining a Pointer to a Sound Header” beginning on page 2-57

for a function you can call in earlier versions of the Sound Manager to obtain the same

information.

You can call the GetSoundHeaderOffset function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSoundHeaderOffset function are

RESULT CODES

SEE ALSO

See Listing 2-27 on page 2-57 for an example of calling GetSoundHeaderOffset.

Controlling Volume Levels

You can use the GetSysBeepVolume and SetSysBeepVolume functions to get and set

the volume level of the system alert sound. You can use GetDefaultOutputVolume

and SetDefaultOutputVolume to get and set the default output volume for a

particular output device.

IMPORTANT

These four functions are available only in Sound Manager version 3.0
and later. ▲

With all of these functions, you specify a volume with a 16-bit value, where 0 represents

no volume (that is, silence) and 256 (hexadecimal $0100) represents full volume. The

right and left volumes of a stereo sound are encoded as the high word and the low word,

respectively, of a 32-bit value. Moreover, it’s possible to overdrive a particular volume

level if you need to amplify a low signal. For example, the long word $02000200 specifies

a volume level of twice full volume on both the left and right channels of a stereo sound.

In addition to the four functions described in this section, Sound Manager version 3.0

introduces two new sound commands, getVolumeCmd and volumeCmd, that you can

use to get and set the volume of a particular sound channel. See page 2-96 for details on

these two sound commands; see “Managing Sound Volumes” beginning on page 2-31 for

a code listing that uses the volumeCmd command.

Trap macro Selector

_SoundDispatch $04040024

noErr 0 No error
badFormat –206 Resource is corrupt or unusable

C H A P T E R 2

Sound Manager

2-140 Sound Manager Reference

GetSysBeepVolume

You can use the GetSysBeepVolume function to determine the current volume of the

system alert sound.

FUNCTION GetSysBeepVolume (VAR level: LongInt): OSErr;

level On exit, the current volume level of the system alert sound.

DESCRIPTION

The GetSysBeepVolume function returns, in the level parameter, the current volume

level of the system alert sound. The values returned in the high and low words of the

level parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The GetSysBeepVolume function is available only in versions 3.0 and later of the

Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSysBeepVolume function are

RESULT CODES

SetSysBeepVolume

You can use the SetSysBeepVolume function to set the current volume of the system

alert sound.

FUNCTION SetSysBeepVolume (level: LongInt): OSErr;

level The desired volume level of the system alert sound.

DESCRIPTION

The SetSysBeepVolume function sets the current volume level of the system alert

sound. The values you can specify in the high and low words of the level parameter

Trap macro Selector

_SoundDispatch $02240024

noErr 0 No error

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-141

range from 0 (silence) to $0100 (full volume). Any calls to the SysBeep procedure use

the volume set by the most recent call to SetSysBeepVolume.

SPECIAL CONSIDERATIONS

The SetSysBeepVolume function is available only in versions 3.0 and later of the

Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSysBeepVolume function are

RESULT CODES

GetDefaultOutputVolume

You can use the GetDefaultOutputVolume function to determine the default volume

of a sound output device.

FUNCTION GetDefaultOutputVolume (VAR level: LongInt): OSErr;

level On exit, the default volume level of a sound output device.

DESCRIPTION

The GetDefaultOutputVolume function returns, in the level parameter, the default

volume of a sound output device. The values returned in the high and low words of the

level parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The GetDefaultOutputVolume function is available only in versions 3.0 and later of

the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetDefaultOutputVolume function are

Trap macro Selector

_SoundDispatch $02280024

noErr 0 No error

Trap macro Selector

_SoundDispatch $022C0024

C H A P T E R 2

Sound Manager

2-142 Sound Manager Reference

RESULT CODES

SetDefaultOutputVolume

You can use the SetDefaultOutputVolume function to set the default volume of a

sound output device.

FUNCTION SetDefaultOutputVolume (level: LongInt): OSErr;

level The desired default volume level of a sound output device.

DESCRIPTION

The SetDefaultOutputVolume function sets the default volume of a sound output

device. The values you can specify in the high and low words of the level parameter

range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The SetDefaultOutputVolume function is available only in versions 3.0 and later of

the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetDefaultOutputVolume function are

RESULT CODES

Compressing and Expanding Audio Data

You can use the procedures Comp3to1 and Comp6to1 to compress sound data. You can

use the procedures Exp1to3 and Exp1to6 to expand compressed audio data.

noErr 0 No error

Trap macro Selector

_SoundDispatch $02300024

noErr 0 No error

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-143

Comp3to1

You can use the Comp3to1 procedure to compress sound data at a ratio of 3:1.

PROCEDURE Comp3to1 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;

inState: Ptr; outState: Ptr;

numChannels: LongInt; whichChannel: LongInt);

inBuffer A pointer to a buffer of samples to be compressed.

outBuffer A pointer to a buffer where the samples are to be written.

cnt The number of samples to compress.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NIL. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NIL. This buffer might be the same as that specified by the
inState parameter.

numChannels
The number of channels in the buffer pointed to by the inBuffer
parameter.

whichChannel
The channel to compress, when numChannels is greater than 1. This
parameter must be in the range of 1 to numChannels.

DESCRIPTION

The Comp3to1 procedure compresses cnt samples of sound stored in the buffer

specified by inBuffer and places the result in the buffer specified by outBuffer,

which must be at least cnt/3 bytes in size. The original samples can be monophonic or

include multiple channels of sound, but they must be in 8-bit offset binary format. Also,

if numChannels is greater than 1, then the noncompressed sound must be stored in

interleaved format on a sample basis.

If you compress polyphonic sound, you retain only one channel of sound, which you

specify in the whichChannel parameter. Thus, if you use the Comp3to1 procedure

to compress three-channel sound, you will have effectively compressed the sound to

one-ninth its original size in bytes. To retain multiple channels of sound after

compression, you must call the Comp3to1 procedure for each channel to be compressed

and then interleave the compressed sound data on a packet basis.

The Comp3to1 procedure compresses every 48 bytes of sound data to exactly 16 bytes of

compressed sound data and compresses remaining bytes to no more than one-third the

original size.

You can use the inState and outState parameters to allow the MACE compression

routines to preserve information about algorithms across calls. Alternatively, you may

pass NIL state buffers and let the Sound Manager allocate the buffers internally.

C H A P T E R 2

Sound Manager

2-144 Sound Manager Reference

SPECIAL CONSIDERATIONS

Because the Comp3to1 procedure might allocate and dispose of memory, you should not

call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Comp3to1 procedure are

Comp6to1

You can use the Comp6to1 procedure to compress sound data at a ratio of 6:1.

PROCEDURE Comp6to1 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;

inState: Ptr; outState: Ptr;

numChannels: LongInt; whichChannel: LongInt);

inBuffer A pointer to a buffer of samples to be compressed.

outBuffer A pointer to a buffer where the samples are to be written.

cnt The number of samples to compress.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NIL. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NIL. This buffer might be the same as that specified by the
inState parameter.

numChannels
The number of channels in the buffer pointed to by the inBuffer
parameter.

whichChannel
The channel to compress, when numChannels is greater than 1. This
parameter must be in the range of 1 to numChannels.

DESCRIPTION

The Comp6to1 procedure compresses cnt samples of sound stored in the buffer

specified by inBuffer and places the result in the buffer specified by outBuffer,

which must be at least cnt/6 bytes in size. The Comp6to1 procedure works much like

the Comp3to1 procedure, but compresses every 48 bytes of sound data to exactly 8 bytes

of compressed sound data and compresses remaining bytes to no more than one-sixth

the original size.

Trap macro Selector

_SoundDispatch $00040010

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-145

SPECIAL CONSIDERATIONS

Because the Comp6to1 procedure might allocate and dispose of memory, you should not

call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Comp6to1 procedure are

Exp1to3

You can use the Exp1to3 procedure to expand a buffer of sound samples you

previously have compressed with the Comp3to1 procedure.

PROCEDURE Exp1to3 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;

 inState: Ptr; outState: Ptr;

 numChannels: LongInt; whichChannel: LongInt);

inBuffer A pointer to a buffer of packets to be expanded.

outBuffer A pointer to a buffer where the expanded samples will be written.

cnt The number of packets to expand.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NIL. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NIL. This buffer might be the same as that specified by the
inState parameter.

numChannels
The number of channels in the buffer pointed to by the inBuffer
parameter.

whichChannel
The channel to expand, when numChannels is greater than 1. This
parameter must be in the range of 1 to numChannels.

DESCRIPTION

The Exp1to3 procedure expands cnt packets of sound stored in the buffer specified by

inBuffer and places the result in the buffer specified by outBuffer, whose size must

be at least cnt packets * 2 bytes per packet * 3, or cnt * 6 bytes. If numChannels is

greater than 1, then the compressed sound must be stored in interleaved format on a

packet basis.

Trap macro Selector

_SoundDispatch $000C0010

C H A P T E R 2

Sound Manager

2-146 Sound Manager Reference

If you expand compressed sound data that includes multiple sound channels, you retain

only one channel of sound, which you specify in the whichChannel parameter. Thus, if

you use the Exp1to3 procedure to expand three-channel sound, the output buffer will

be the same size as the input buffer since only one channel is retained. To retain multiple

channels of sound after expansion, you must call the Exp1to3 procedure for each

channel to be expanded and then interleave the expanded sound data on a sample basis.

The Exp1to3 procedure expands every packet of sampled-sound data to exactly 6 bytes.

You can use the inState and outState parameters to allow the MACE compression

routines to preserve information about algorithms across calls. Alternatively, you may

pass NIL state buffers and let the Sound Manager allocate the buffers internally.

SPECIAL CONSIDERATIONS

Because the Exp1to3 procedure might allocate memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Exp1to3 procedure are

Exp1to6

You can use the Exp1to6 procedure to expand a buffer of sound samples you

previously have compressed with the Comp6to1 procedure.

PROCEDURE Exp1to6 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;

 inState: Ptr; outState: Ptr;

 numChannels: LongInt; whichChannel: LongInt);

inBuffer A pointer to a buffer of packets to be expanded.

outBuffer A pointer to a buffer where the expanded samples will be written.

cnt The number of packets to expand.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NIL. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NIL. This buffer might be the same as that specified by the
inState parameter.

numChannels
The number of channels in the buffer pointed to by the inBuffer
parameter.

Trap macro Selector

_SoundDispatch $00080010

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-147

whichChannel
The channel to expand, when numChannels is greater than 1. This
parameter must be in the range of 1 to numChannels.

DESCRIPTION

The Exp1to6 procedure expands cnt packets of sound stored in the buffer specified by

inBuffer and places the result in the buffer specified by outBuffer, whose size must

be at least cnt packets * 1 byte per packet * 6, or cnt * 6 bytes. If numChannels is

greater than 1, then the compressed sound must be stored in interleaved format on a

packet basis. The Exp1to6 procedure works just like the Exp1to3 procedure, but

expands 1-byte packets rather than 2-byte packets.

SPECIAL CONSIDERATIONS

Because the Exp1to6 procedure might allocate memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Exp1to6 procedure are

Managing Double Buffers

If you wish to customize the double buffering algorithm that the Sound Manager uses to

manage a play from disk, you can use the SndPlayDoubleBuffer function. The Sound

Manager’s high-level play-from-disk routines make extensive use of this function.

SndPlayDoubleBuffer

The SndPlayDoubleBuffer function is a low-level routine that gives you maximum

efficiency and control over double buffering while still maintaining compatibility with

the Sound Manager.

FUNCTION SndPlayDoubleBuffer (chan: SndChannelPtr;

theParams: SndDoubleBufferHeaderPtr): OSErr;

chan A pointer to a valid sound channel.

theParams A pointer to a sound double buffer header record.

Trap macro Selector

_SoundDispatch $00100010

C H A P T E R 2

Sound Manager

2-148 Sound Manager Reference

DESCRIPTION

The SndPlayDoubleBuffer function launches a low-level sound play using the

information in the double buffer header record specified by theParams. After your

application calls this function, the Sound Manager repeatedly calls the doubleback

procedure you specify in the double buffer header record. The doubleback procedure

then manages the filling of buffers of sound data from disk whenever one of the two

buffers specified in the double buffer header record becomes exhausted.

SPECIAL CONSIDERATIONS

Because the SndPlayDoubleBuffer function might move memory, you should not call

it at interrupt time.

You can use the SndPlayDoubleBuffer function only on a Macintosh computer that

supports the play-from-disk routines. For information on how to determine whether a

computer supports these routines, see “Testing for Multichannel Sound and

Play-From-Disk Capabilities” on page 2-35.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndPlayDoubleBuffer function are

RESULT CODES

SEE ALSO

For information on the format of a doubleback procedure, see “Doubleback Procedures”

on page 2-153.

Performing Unsigned Fixed-Point Arithmetic

This section describes the UnsignedFixMulDiv function provided by the Sound

Manager that you can use to perform multiplication and division on unsigned

fixed-point numbers.

Trap macro Selector

_SoundDispatch $00200008

noErr 0 No error
badChannel –205 Channel is corrupt or unusable

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-149

UnsignedFixMulDiv

You can use the UnsignedFixMulDiv function to perform multiplications and

divisions on unsigned fixed-point numbers. You’ll typically use it to calculate

sample rates.

FUNCTION UnsignedFixMulDiv (value: UnsignedFixed;

multiplier: UnsignedFixed;

divisor: UnsignedFixed):

UnsignedFixed;

value The value to be multiplied and divided.

multiplier
The multiplier to be applied to the value in the value parameter.

divisor The divisor to be applied to the value in the value parameter.

DESCRIPTION

The UnsignedFixMulDiv function returns the fixed-point number that is the value of

the value parameter, multiplied by the value in the multiplier parameter and

divided by the value in the divisor parameter. Note that UnsignedFixMulDiv

performs both operations before returning. If you want to perform only a multiplication

or only a division, pass the value $00010000 for whichever parameter you want to

ignore. For example, to determine the sample rate that is twice that of the 22 kHz rate,

you can use UnsignedFixMulDiv as follows:

myNewRate := UnsignedFixMulDiv(rate22kHz, $00020000, $00010000);

Similarly, to determine the sample rate that is half that of the 44 kHz rate, you can use

UnsignedFixMulDiv as follows:

myNewRate := UnsignedFixMulDiv(rate44kHz, $00010000, $00020000);

SPECIAL CONSIDERATIONS

The UnsignedFixMulDiv function is available only in versions 3.0 and later of the

Sound Manager.

Linking Modifiers to Sound Channels

Early versions of the Sound Manager allowed application developers to use modifiers

to alter sound commands before being processed by the Sound Manager. The Sound

Manager no longer supports this capability. SndAddModifier is documented here for

completeness only.

C H A P T E R 2

Sound Manager

2-150 Sound Manager Reference

SndAddModifier

The Sound Manager previously used the SndAddModifier function to link modifiers to

sound channels.

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;

 id: Integer; init: LongInt): OSErr;

chan A pointer to a valid sound channel.

modifier A pointer to a modifier function to be added to the sound channel
specified by chan. This field is obsolete.

id The resource ID of the modifier to be linked to the sound channel.

init The initialization parameters for the sound channel specified by chan.

DESCRIPTION

The SndAddModifier function installs a modifier into an open channel specified in the

chan parameter. The modifier parameter should be NIL, and the id parameter is the

resource ID of the modifier to be linked to the sound channel. SndAddModifier causes

the Sound Manager to load the specified 'snth' resource, lock it in memory, and link it

to the channel specified.

IMPORTANT

The SndAddModifier function is for internal Sound Manager use only.
You should not call it in your application. ▲

The only supported use of the SndAddModifier function is to change the data

type associated with a sound channel. For example, you can pass the constant

sampledSynth in the id parameter to reconfigure a sound channel for sampled-sound

data. You should, however, set a sound channel’s data type when you call

SndNewChannel, not by calling SndAddModifier.

SPECIAL CONSIDERATIONS

You should not use the SndAddModifier function.

RESULT CODES

SEE ALSO

To modify sampled-sound data immediately before the Sound Manager plays it, you can

customize double buffering routines so that your application can modify sampled-sound

noErr 0 No error
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-151

data when it fills a buffer of sound data for the Sound Manager to play. For more

information, see “Using Double Buffers” on page 2-68.

To change the initialization options for a sound channel, you can use the reInitCmd

command. For a description of that command, see “Sound Command Numbers”

beginning on page 2-92.

Application-Defined Routines

The Sound Manager allows you to define a completion routine that execute when a

play from disk finishes executing, a callback procedure that executes whenever your

application issues the callBackCmd command, and a doubleback procedure that

you must define if you wish to customize the double buffering of data during a play

from disk.

Completion Routines

You can specify a completion routine as the seventh parameter to the

SndStartFilePlay function. The completion routine executes when the sound file

finishes playing (unless sound play was stopped by the SndStopFilePlay function).

MyCompletionRoutine

A Sound Manager completion routine has the following syntax:

PROCEDURE MyFilePlayCompletionRoutine (chan: SndChannelPtr);

chan A pointer to the sound channel on which a play from disk has completed.

DESCRIPTION

The Sound Manager executes your completion routine when a play from disk on the

channel specified by the chan parameter finishes. You might use the completion routine

to set a global flag that alerts the application that it must dispose of the sound channel.

SPECIAL CONSIDERATIONS

A completion routine is called at interrupt time. It must not make any calls to the

Memory Manager, either directly or indirectly. If your completion routine needs to access

your application’s global variables, you must ensure that register A5 contains your

application’s A5. (You can use the userInfo field of the sound channel pointed to by

the chan parameter to pass that value to your completion routine.)

C H A P T E R 2

Sound Manager

2-152 Sound Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

Because this routine is called at interrupt time, it must preserve all registers other than

A0–A1 and D0–D2.

SEE ALSO

For information on how you can use completion routines to help manage an

asynchronous play from disk, see “Managing an Asynchronous Play From Disk” on

page 2-52.

Callback Procedures

You can specify a callback procedure as the fourth parameter to the SndNewChannel

function. The callback procedure executes whenever the Sound Manager processes a

callBackCmd command for the channel.

MyCallbackProcedure

A callback procedure has the following syntax:

PROCEDURE MyCallbackProcedure (theChan: SndChannelPtr;

theCmd: SndCommand);

theChan A pointer to the sound channel on which a callBackCmd command
was issued.

theCmd The sound command record in which a callBackCmd command was
issued.

DESCRIPTION

The Sound Manager executes the callback procedure associated with a sound channel

whenever it processes a callBackCmd command for the channel. You can use a callback

procedure to set a global flag that alerts the application that it must dispose of the sound

channel. Or, you can use a callback procedure so that your application can synchronize a

series of sound commands with other actions.

SPECIAL CONSIDERATIONS

A callback procedure is called at interrupt time. It must not make any calls to the

Memory Manager, either directly or indirectly. If your callback procedure needs to access

your application’s global variables, you must ensure that register A5 contains your

application’s A5. (You can use the userInfo field of the sound channel pointed to by

the theChan parameter or the param2 field of the sound command specified in the

theCmd parameter to pass that value to your callback procedure.)

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-153

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers

other than A0–A1 and D0–D2.

SEE ALSO

For information on how you can use callback procedures when playing sound

asynchronously, see “Using Callback Procedures” on page 2-47.

Doubleback Procedures

If you wish to customize the double buffering of sound during a play from disk, you

must use the SndPlayDoubleBuffer function and define a doubleback procedure.

Doubleback procedures also give you the power to modify sampled-sound data

immediately before the Sound Manager plays it.

MyDoubleBackProc

A doubleback procedure has the following syntax:

PROCEDURE MyDoubleBackProc (chan: SndChannelPtr;

exhaustedBuffer: SndDoubleBufferPtr);

chan A pointer to a sound channel on which a play from disk is executing.

exhaustedBuffer
A pointer to a sound double buffer record

DESCRIPTION

The Sound Manager calls the doubleback procedure associated with a play from disk

whenever the Sound Manager has exhausted the buffer. As the doubleback procedure

refills the buffer, the Sound Manager plays the other buffer. Your application might also

call the doubleback procedure twice to fill both buffers before the initial call to

SndPlayDoubleBuffer function.

When your doubleback procedure is called, it must

■ fill the buffer specified in the exhaustedBuffer parameter with the next set of
sound frames that the Sound Manager must play

■ set the dbNumFrames field of the sound double buffer record to the number of frames
in the buffer

■ set the dbBufferReady bit of the dbFlags field of the sound double buffer record

If your doubleback procedure fills the buffer with the last frames of sound that need to

be played, then your procedure should set the dbLastBuffer bit of the dbFlags field

of the sound double buffer record.

C H A P T E R 2

Sound Manager

2-154 Sound Manager Reference

Your doubleback procedure might fill the buffer with data from any of several sources.

For example, the doubleback procedure might compute the data, copy it from elsewhere

in RAM, or read it from disk. A doubleback procedure can also read data from disk and

then modify the data. This might be useful, for example, if you would like the Sound

Manager to be able to play sampled-sound data stored in 16-bit binary offset format.

Your doubleback procedure could translate the data to the 8-bit binary offset format that

the Sound Manager can read before placing it in the buffer.

SPECIAL CONSIDERATIONS

A doubleback procedure is called at interrupt time. It must not make any calls to the

Memory Manager, either directly or indirectly. If your callback procedure needs to access

your application’s global variables, you must ensure that register A5 contains your

application’s A5. (You can use one of the two long integers in the dbUserInfo field of

the sound double buffer record specified by the exhaustedBuffer parameter to pass

that value to your callback procedure.)

ASSEMBLY-LANGUAGE INFORMATION

Because a doubleback procedure is called at interrupt time, it must preserve all registers

other than A0–A1 and D0–D2.

SEE ALSO

For an example of how you might use doubleback procedures, see “Using Double

Buffers” on page 2-68.

Resources

This section describes the structure of format 1 and format 2 sound resources. For a more

complete discussion of the structure of sound resources, see “Sound Resources” on

page 2-74.

The Sound Resource

You can store sound commands and sound data as a resource with the resource type

'snd '. Resource IDs from 0 to 8191 are reserved by Apple Computer, Inc. You may use

all other resource IDs for your 'snd ' resources.

You can use the GetResource function to search all open resource files for the first

'snd ' resource type with the given ID. The 'snd ' resource type defines a sound

resource. Figure 2-8 shows the structure of a sound resource.

C H A P T E R 2

Sound Manager

Sound Manager Reference 2-155

Figure 2-8 The 'snd ' resource type

Often, you can create a sound resource simply by using the SndRecord function,

documented in the chapter “Introduction to Sound on the Macintosh” in this book.

However, you can also define a sound resource manually. This is especially useful for

sound resources that are simply series of sound commands and contain no

sampled-sound data. Also, you might construct a sound resource that contains

wave-table data manually. A sound resource contains the following elements:

■ Sound resource header. The gives information about the format of a sound resource,
as explained below.

■ Number of sound commands. Following the sound resource header is a word
indicating the number of sound commands contained in the resource.

■ Sound commands. Each sound command is 8 bytes, which includes 2 bytes that
identify the command, 2 bytes for the command’s first parameter, and 4 bytes for the
command’s second parameter. When a sound command contained in an 'snd '
resource has associated sound data, the high bit (defined by the dataOffsetFlag
constant) should be set. This tells the Sound Manager that the value in the second
parameter is an offset from the beginning of the resource and not a pointer to a
memory location.

■ Sound data. For a format 1 'snd ' resource, this field might contain wave-table data
or a sampled sound header that includes sampled-sound data. For a format 2 'snd '
resource, this field should contain a sampled sound header that includes
sampled-sound data.

The format of the sound resource header differs depending on whether the 'snd '

resource is format 1 or format 2. Figure 2-9 illustrates the formats of the two types of

C H A P T E R 2

Sound Manager

2-156 Sound Manager Reference

sound resource header. Both sound headers begin with a format field, which defines the

format of the sound resource as either $0001 or $0002.

Figure 2-9 The sound resource header

■ Format 1 sound resource header. For format 1 'snd ' resources, the sound resource
header includes a word that indicates the number of data types to be sent to the sound
channel. Because a sound channel cannot play more than one type of sound data, you
should typically specify either $00 or $01 in this field. If you specify $01 or more, then
the sound resource header contains both a word specifying the data type and a long
word specifying the initialization options for each data type.

■ Format 2 sound resource header. For format 2 'snd ' resources, the sound resource
header next includes a single word that the Sound Manager ignores. This word is
known as the reference count field. Your application can use this field as it pleases.

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-157

Summary of the Sound Manager

Pascal Summary

Constants

CONST

{Gestalt sound attributes selector and response bits}

gestaltSoundAttr = 'snd ';{sound attributes selector}

gestaltStereoCapability = 0; {built-in hw can play stereo sounds}

gestaltStereoMixing = 1; {built-in hw mixes stereo to mono}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

gestalt16BitAudioSupport = 12; {16-bit audio data supported}

{channel initialization parameters}

initChanLeft = $0002; {left stereo channel}

initChanRight = $0003; {right stereo channel}

waveInitChannel0 = $0004; {wave-table channel 0}

waveInitChannel1 = $0005; {wave-table channel 1}

waveInitChanne12 = $0006; {wave-table channel 2}

waveInitChannel3 = $0007; {wave-table channel 3}

initMono = $0080; {monophonic channel}

initStereo = $00C0; {stereo channel}

initMACE3 = $0300; {3:1 compression}

initMACE6 = $0400; {6:1 compression}

initNoInterp = $0004; {no linear interpolation}

initNoDrop = $0008; {no drop-sample conversion}

C H A P T E R 2

Sound Manager

2-158 Summary of the Sound Manager

{masks for channel attributes}

initPanMask = $0003; {mask for right/left pan values}

initSRateMask = $0030; {mask for sample rate values}

initStereoMask = $00C0; {mask for mono/stereo values}

initCompMask = $FF00; {mask for compression IDs}

{sound data types}

squareWaveSynth = 1; {square-wave data}

waveTableSynth = 3; {wave-table data}

sampledSynth = 5; {sampled-sound data}

{sound command numbers}

nullCmd = 0; {do nothing}

quietCmd = 3; {stop a sound that is playing}

flushCmd = 4; {flush a sound channel}

reInitCmd = 5; {reinitialize a sound channel}

waitCmd = 10; {suspend processing in a channel}

pauseCmd = 11; {pause processing in a channel}

resumeCmd = 12; {resume processing in a channel}

callBackCmd = 13; {execute a callback procedure}

syncCmd = 14; {synchronize channels}

availableCmd = 24; {see if initialization options }

{ are supported}

versionCmd = 25; {determine version}

totalLoadCmd = 26; {report total CPU load}

loadCmd = 27; {report CPU load for a new channel}

freqDurationCmd = 40; {play a note for a duration}

restCmd = 41; {rest a channel for a duration}

freqCmd = 42; {change the pitch of a sound

ampCmd = 43; {change the amplitude of a sound}

timbreCmd = 44; {change the timbre of a sound}

getAmpCmd = 45; {get the amplitude of a sound}

volumeCmd = 46; {set volume}

getVolumeCmd = 47; {get volume}

waveTableCmd = 60; {install a wave table as a voice}

soundCmd = 80; {install a sampled sound as a voice}

bufferCmd = 81; {play a sampled sound}

rateCmd = 82; {set the pitch of a sampled sound}

getRateCmd = 85; {get the pitch of a sampled sound}

{sampled sound header encoding options}

stdSH = $00; {standard sound header}

extSH = $FF; {extended sound header}

cmpSH = $FE; {compressed sound header}

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-159

{size of data structures}

stdQLength = 128; {default size of standard sound }

{ channel}

{sound resource formats}

firstSoundFormat = $0001; {format 1 'snd ' resource}

secondSoundFormat = $0002; {format 2 'snd ' resource}

{sound command mask}

dataOffsetFlag = $8000; {sound command data offset bit}

{system beep states}

sysBeepDisable = $0000; {system alert sound disabled}

sysBeepEnable = $0001; {system alert sound enabled}

{values for the unitType field in AudioSelection}

unitTypeSeconds = $0000; {seconds}

unitTypeNoSelection = $FFFF; {no selection}

{double buffer status flags}

dbBufferReady = $00000001;{double buffer is filled}

dbLastBuffer = $00000004;{last double buffer to play}

{values for the compressionID field of CmpSoundHeader}

variableCompression = -2; {variable-ratio compression}

fixedCompression = -1; {fixed-ratio compression}

notCompressed = 0; {noncompressed samples}

threeToOne = 3; {3:1 compressed samples}

sixToOne = 4; {6:1 compressed samples}

{values for the packetSize field of CmpSoundHeader}

sixToOnePacketSize = 8; {packet size in bits for 6:1}

threeToOnePacketSize = 16; {packet size in bits for 3:1}

{compression names and types}

NoneName = 'not compressed';

ACE2to1Name = 'ACE 2-to-1';

ACE8to3Name = 'ACE 8-to-3';

MACE3to1Name = 'MACE 3-to-1';

MACE6to1Name = 'MACE 6-to-1';

NoneType = 'NONE';

ACE2Type = 'ACE2';

ACE8Type = 'ACE8';

MACE3Type = 'MAC3';

MACE6Type = 'MAC6'

C H A P T E R 2

Sound Manager

2-160 Summary of the Sound Manager

{IDs for AIFF and AIFF-C files}

AIFFID = 'AIFF'; {AIFF file}

AIFCID = 'AIFC'; {AIFF-C file}

{IDs for AIFF and AIFF-C file chunks}

FormID = 'FORM'; {ID for Form Chunk}

FormatVersionID = 'FVER'; {ID for Format Version Chunk}

CommonID = 'COMM'; {ID for Common Chunk}

SoundDataID = 'SSND'; {ID for Sound Data Chunk}

MarkerID = 'MARK'; {ID for Marker Chunk}

InstrumentID = 'INST'; {ID for Instrument Chunk}

MIDIDataID = 'MIDI'; {ID for MIDI Data Chunk}

AudioRecordingID = 'AESD'; {ID for Recording Chunk}

ApplicationSpecificID = 'APPL'; {ID for Application Chunk}

CommentID = 'COMT'; {ID for Comment Chunk}

NameID = 'NAME'; {ID for Name Chunk}

AuthorID = 'AUTH'; {ID for Author Chunk}

CopyrightID = '(c) '; {ID for Copyright Chunk}

AnnotationID = 'ANNO'; {ID for Annotation Chunk}

{version of AIFC format specification}

AIFCVersion1 = $A2805140;{date of version creation}

{MIDI note value for middle C}

kMiddleC = 60;

{ratio between frequencies of MIDI note values}

twelfthRootTwo = 1.05946309434;

{standard sampling rates}

rate44khz = $AC440000; {44100.00000 in fixed-point}

rate22khz = $56EE8BA3; {22254.54545 in fixed-point}

rate22050hz = $56220000; {22050.00000 in fixed-point}

rate11khz = $2B7745D1; {11127.27273 in fixed-point}

rate11025hz = $2B110000; {11025.00000 in fixed-point}

{constant for synth parameter of SndNewChannel}

kUseOptionalOutputDevice = -1;

{volumes}

kFullVolume = $0100;

kNoVolume = 0;

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-161

{development stages}

developStage = $20; {prealpha release}

alphaStage = $40; {alpha release}

betaStage = $60; {beta release}

finalStage = $80; {final release}

{sizes of data buffers}

stateBlockSize = 64; {size of state block buffer}

leftOverBlockSize = 32; {size of leftover block buffer}

Data Types

Unsigned Fixed-Point Numbers

TYPE

UnsignedFixed = LongInt; {unsigned fixed-point number}

Times

TYPE

Time = LongInt; {in half-milliseconds}

Sound Command Record

SndCommand =

PACKED RECORD

cmd: Integer; {command number}

param1: Integer; {first parameter}

param2: LongInt; {second parameter}

END;

Audio Selection Record

AudioSelection =

PACKED RECORD

unitType: LongInt; {type of time unit}

selStart: Fixed; {starting point of selection}

selEnd: Fixed; {ending point of selection}

END;

AudioSelectionPtr = ^AudioSelection;

C H A P T E R 2

Sound Manager

2-162 Summary of the Sound Manager

Sound Channel Status Record

SCStatus =

RECORD

scStartTime: Fixed; {starting time for play from disk}

scEndTime: Fixed; {ending time for play from disk}

scCurrentTime: Fixed; {current time for play from disk}

scChannelBusy: Boolean; {TRUE if channel is processing cmds}

scChannelDisposed: Boolean; {reserved}

scChannelPaused: Boolean; {TRUE if play from disk is paused}

scUnused: Boolean; {unused}

scChannelAttributes: LongInt; {attributes of this channel}

scCPULoad: LongInt; {CPU load for this channel}

END;

SCStatusPtr = ^SCStatus;

Sound Manager Status Record

SMStatus =

PACKED RECORD

smMaxCPULoad: Integer; {maximum load on all channels}

smNumChannels: Integer; {number of allocated channels}

smCurCPULoad: Integer; {current load on all channels}

END;

SMStatusPtr = ^SMStatus;

Sound Channel Record

SndChannel =

PACKED RECORD

nextChan: SndChannelPtr; {pointer to next channel}

firstMod: Ptr; {used internally}

callBack: ProcPtr; {pointer to callback procedure}

userInfo: LongInt; {free for application's use}

wait: LongInt; {used internally}

cmdInProgress: SndCommand; {used internally}

flags: Integer; {used internally}

qLength: Integer; {used internally}

qHead: Integer; {used internally}

qTail: Integer; {used internally}

queue: ARRAY[0..stdQLength-1] OF SndCommand;

END;

SndChannelPtr = ^SndChannel;

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-163

Sound Header Record

SoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

length: LongInt; {number of samples in array}

sampleRate: Fixed; {sample rate}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base frequency of sample}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

SoundHeaderPtr = ^SoundHeader;

Extended Sound Header Record

ExtSoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

numChannels: LongInt; {number of channels in sample}

sampleRate: Fixed; {rate of original sample}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base frequency of sample}

numFrames: LongInt; {total number of frames}

AIFFSampleRate: Extended80; {rate of original sample}

markerChunk: Ptr; {reserved}

instrumentChunks: Ptr; {pointer to instrument info}

AESRecording: Ptr; {pointer to audio info}

sampleSize: Integer; {number of bits per sample}

futureUse1: Integer; {reserved}

futureUse2: LongInt; {reserved}

futureUse3: LongInt; {reserved}

futureUse4: LongInt; {reserved}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

ExtSoundHeaderPtr = ^ExtSoundHeader;

C H A P T E R 2

Sound Manager

2-164 Summary of the Sound Manager

Compressed Sound Header Record

CmpSoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

numChannels: LongInt; {number of channels in sample}

sampleRate: Fixed; {rate of original sample}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base freq. of original sample}

numFrames: LongInt; {length of sample in frames}

AIFFSampleRate: Extended80; {rate of original sample}

markerChunk: Ptr; {reserved}

format: OSType; {data format type}

futureUse2: LongInt; {reserved}

stateVars: StateBlockPtr; {pointer to StateBlock}

leftOverSamples: LeftOverBlockPtr;

{pointer to LeftOverBlock}

compressionID: Integer; {ID of compression algorithm}

packetSize: Integer; {number of bits per packet}

snthID: Integer; {unused}

sampleSize: Integer; {bits in each sample point}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

CmpSoundHeaderPtr = ^CmpSoundHeader;

Sound Double Buffer Header Record

SndDoubleBufferHeader =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

END;

SndDoubleBufferHeaderPtr = ^SndDoubleBufferHeader;

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-165

SndDoubleBufferHeader2 =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

dbhFormat: OSType; {signature of codec}

END;

SndDoubleBufferHeaderPtr2 = ^SndDoubleBufferHeader2;

Sound Double Buffer Record

SndDoubleBuffer =

PACKED RECORD

dbNumFrames: LongInt; {number of frames in buffer}

dbFlags: LongInt; {buffer status flags}

dbUserInfo: ARRAY[0..1] OF LongInt;

{for application's use}

dbSoundData: PACKED ARRAY[0..0] OF Byte;

{array of data}

END;

SndDoubleBufferPtr = ^SndDoubleBuffer;

Chunk Header

ID = LongInt; {chunk ID type}

ChunkHeader =

RECORD

ckID: ID; {chunk type ID}

ckSize: LongInt; {number of bytes of data}

END;

C H A P T E R 2

Sound Manager

2-166 Summary of the Sound Manager

Form Chunk

ContainerChunk =

RECORD

ckID: ID; {'FORM'}

ckSize: LongInt; {number of bytes of data}

formType: ID; {type of file}

END;

Format Version Chunk

FormatVersionChunk =

RECORD

ckID: ID; {'FVER'}

ckSize: LongInt; {4 bytes}

timestamp: LongInt; {date of format version}

END;

Common Chunk

CommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {18 bytes}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

END;

Extended Common Chunk

ExtCommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {22 bytes + compression name}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

compressionType: ID; {compression type ID}

compressionName: PACKED ARRAY[0..0] OF Byte;

{compression type name}

END;

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-167

Sound Data Chunk

SoundDataChunk =

RECORD

ckID: ID; {'SSND'}

ckSize: LongInt; {size of chunk data}

offset: LongInt; {offset to sound data}

blockSize: LongInt; {size of alignment blocks}

END;

Version Record

NumVersion =

PACKED RECORD

CASE INTEGER OF

 0:

(majorRev: SignedByte; {major revision level in BCD}

minorAndBugRev: SignedByte; {minor revision level}

stage: SignedByte; {development stage}

nonRelRev: SignedByte); {nonreleased revision level}

 1:

(version: LongInt); {all 4 fields together}

END;

Leftover Block

LeftOverBlock =

RECORD

count: LongInt;

sampleArea: PACKED ARRAY[0..leftOverBlockSize - 1] OF Byte;

END;

LeftOverBlockPtr = ^LeftOverBlock;

State Block

StateBlock =

RECORD

stateVar: ARRAY[0..stateBlockSize - 1] OF Integer;

END;

StateBlockPtr = ^StateBlock;

C H A P T E R 2

Sound Manager

2-168 Summary of the Sound Manager

Sound Manager Routines

Playing Sound Resources

PROCEDURE SysBeep (duration: Integer);

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;
async: Boolean): OSErr;

Playing From Disk

FUNCTION SndStartFilePlay (chan: SndChannelPtr; fRefNum: Integer;
resNum: Integer; bufferSize: LongInt;
theBuffer: Ptr;
theSelection: AudioSelectionPtr;
theCompletion: ProcPtr; async: Boolean): OSErr;

FUNCTION SndPauseFilePlay (chan: SndChannelPtr): OSErr;

FUNCTION SndStopFilePlay (chan: SndChannelPtr; quietNow: Boolean): OSErr;

Allocating and Releasing Sound Channels

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: Integer;
init: LongInt; userRoutine: ProcPtr): OSErr;

FUNCTION SndDisposeChannel (chan: SndChannelPtr; quietNow: Boolean): OSErr;

Sending Commands to a Sound Channel

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;
noWait: Boolean): OSErr;

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand): OSErr;

Obtaining Information

FUNCTION SndSoundManagerVersion
: NumVersion;

FUNCTION MACEVersion : NumVersion;

FUNCTION SndControl (id: Integer; VAR cmd: SndCommand): OSErr;

FUNCTION SndChannelStatus (chan: SndChannelPtr; theLength: Integer;
theStatus: SCStatusPtr): OSErr;

FUNCTION SndManagerStatus (theLength: Integer; theStatus: SMStatusPtr):
OSErr;

PROCEDURE SndGetSysBeepState
(VAR sysBeepState: Integer);

FUNCTION SndSetSysBeepState
(sysBeepState: Integer): OSErr;

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-169

FUNCTION GetSoundHeaderOffset
(sndHdl: Handle; VAR offset: LongInt): OSErr;

Controlling Volume Levels

FUNCTION GetSysBeepVolume (VAR level: LongInt): OSErr;

FUNCTION SetSysBeepVolume (level: LongInt): OSErr;

FUNCTION GetDefaultOutputVolume
(VAR level: LongInt): OSErr;

FUNCTION SetDefaultOutputVolume
(level: LongInt): OSErr;

Compressing and Expanding Audio Data

PROCEDURE Comp3to1 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;
inState: Ptr; outState: Ptr;
numChannels: LongInt; whichChannel: LongInt);

PROCEDURE Comp6to1 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;
inState: Ptr; outState: Ptr;
numChannels: LongInt; whichChannel: LongInt);

PROCEDURE Exp1to3 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;
inState: Ptr; outState: Ptr;
numChannels: LongInt; whichChannel: LongInt);

PROCEDURE Exp1to6 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;
inState: Ptr; outState: Ptr;
numChannels: LongInt; whichChannel: LongInt);

Managing Double Buffers

FUNCTION SndPlayDoubleBuffer
(chan: SndChannelPtr;
theParams: SndDoubleBufferHeaderPtr): OSErr;

Performing Unsigned Fixed-Point Arithmetic

FUNCTION UnsignedFixMulDiv (value: UnsignedFixed;
multiplier: UnsignedFixed;
divisor: UnsignedFixed): UnsignedFixed;

Linking Modifiers to Sound Channels

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;
id: Integer; init: LongInt): OSErr;

C H A P T E R 2

Sound Manager

2-170 Summary of the Sound Manager

Application-Defined Routines

PROCEDURE MyFilePlayCompletionRoutine
(chan: SndChannelPtr);

PROCEDURE MyCallback (chan: SndChannelPtr; cmd: SndCommand);

PROCEDURE MyDoubleBackProc (chan: SndChannelPtr;
doubleBufferPtr: SndDoubleBufferPtr);

C Summary

Constants

/*Gestalt sound attributes selector and response bits*/

#define gestaltSoundAttr 'snd ' /*sound attributes selector*/

enum {

gestaltStereoCapability = 0, /*built-in hw can play stereo sounds*/

gestaltStereoMixing = 1, /*built-in hw mixes stereo to mono*/

gestaltSoundIOMgrPresent = 3, /*sound input routines available*/

gestaltBuiltInSoundInput = 4, /*built-in input hw available*/

gestaltHasSoundInputDevice = 5, /*sound input device available*/

gestaltPlayAndRecord = 6, /*built-in hw can play while recording*/

gestalt16BitSoundIO = 7, /*built-in hw can handle 16-bit data*/

gestaltStereoInput = 8, /*built-in hw can record stereo sounds*/

gestaltLineLevelInput = 9, /*built-in input hw needs line level*/

gestaltSndPlayDoubleBuffer = 10, /*play from disk routines available*/

gestaltMultiChannels = 11, /*multiple channels of sound supported*/

gestalt16BitAudioSupport = 12 /*16-bit audio data supported*/

};

/*channel initialization parameters*/

enum {

initChanLeft = 0x0002, /*left stereo channel*/

initChanRight = 0x0003, /*right stereo channel*/

initMono = 0x0080, /*monophonic channel*/

initStereo = 0x00C0, /*stereo channel*/

initMACE3 = 0x0300, /*3:1 compression*/

initMACE6 = 0x0400, /*6:1 compression*/

initNoInterp = 0x0004, /*no linear interpolation*/

initNoDrop = 0x0008 /*no drop-sample conversion*/

};

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-171

/*wave channel initialization parameters*/

enum {

waveInitChannel0 = 0x04, /*wave-table channel 0*/

waveInitChannel1 = 0x05, /*wave-table channel 1*/

waveInitChannel2 = 0x06, /*wave-table channel 2*/

waveInitChannel3 = 0x07, /*wave-table channel 3*/

waveInitChannelMask = 0x07 /*mask for wave-table parameters*/

};

/*masks for channel attributes*/

enum {

initPanMask = 0x0003, /*mask for left/right pan values*/

initSRateMask = 0x0030, /*mask for sample rate values*/

initStereoMask = 0x00C0, /*mask for mono/stereo values*/

initCompMask = 0xFF00 /*mask for compression IDs*/

};

/*sound data types*/

enum {

squareWaveSynth = 1, /*square-wave data*/

waveTableSynth = 3, /*wave-table data*/

sampledSynth = 5 /*sampled-sound data*/

};

/*sound command numbers*/

enum {

nullCmd = 0, /*do nothing*/

quietCmd = 3, /*stop a sound that is playing*/

flushCmd = 4, /*flush a sound channel*/

reInitCmd = 5, /*reinitialize a sound channel*/

waitCmd = 10, /*suspend processing in a channel*/

pauseCmd = 11, /*pause processing in a channel*/

resumeCmd = 12, /*resume processing in a channel*/

callBackCmd = 13, /*execute a callback procedure*/

syncCmd = 14, /*synchronize channels*/

availableCmd = 24, /*see if initialization options */

/* are supported*/

versionCmd = 25, /*determine version*/

totalLoadCmd = 26, /*report total CPU load*/

loadCmd = 27, /*report CPU load for a new channel*/

freqDurationCmd = 40, /*play a note for a duration*/

restCmd = 41, /*rest a channel for a duration*/

freqCmd = 42, /*change the pitch of a sound*/

ampCmd = 43, /*change the amplitude of a sound*/

C H A P T E R 2

Sound Manager

2-172 Summary of the Sound Manager

timbreCmd = 44, /*change the timbre of a sound*/

getAmpCmd = 45, /*get the amplitude of a sound*/

volumeCmd = 46, /*set volume*/

getVolumeCmd = 47, /*get volume*/

waveTableCmd = 60, /*install a wave table as a voice*/

soundCmd = 80, /*install a sampled sound as a voice*/

bufferCmd = 81, /*play a sampled sound*/

rateCmd = 82, /*set the pitch of a sampled sound*/

getRateCmd = 85 /*get the pitch of a sampled sound*/

};

/*sampled sound header encoding options*/

enum {

stdSH = 0x00, /*standard sound header*/

extSH = 0xFF, /*extended sound header*/

cmpSH = 0xFE /*compressed sound header*/

};

/*size of data structures*/

enum {

stdQLength = 128 /*default size of sound channel*/

};

/*sound resource formats*/

enum {

firstSoundFormat = 0x0001, /*format 1 'snd ' resource*/

secondSoundFormat = 0x0002 /*format 2 'snd ' resource*/

};

/*sound command mask*/

enum {

dataOffsetFlag = 0x8000 /*sound command data offset bit*/

};

/*system beep states*/

enum {

sysBeepDisable = 0x0000, /*system alert sound disabled*/

sysBeepEnable = 0x0001 /*system alert sound enabled*/

};

/*values for the unitType field in AudioSelection*/

enum {

unitTypeSeconds = 0x0000, /*seconds*/

unitTypeNoSelection = 0xFFFF /*no selection*/

};

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-173

/*double buffer status flags*/

enum {

dbBufferReady = 0x00000001, /*double buffer is filled*/

dbLastBuffer = 0x00000004 /*last double buffer to play*/

};

/*values for the compressionID field of CmpSoundHeader*/

enum {

variableCompression = -2, /*variable-ratio compression*/

fixedCompression = -1, /*fixed-ratio compression*/

notCompressed = 0, /*noncompressed samples*/

threeToOne = 3, /*3:1 compressed samples*/

sixToOne = 4 /*6:1 compressed samples*/

};

/*values for the packetSize field of CmpSoundHeader*/

enum {

sixToOnePacketSize = 8, /*packet size in bits for 6:1*/

threeToOnePacketSize = 16 /*packet size in bits for 3:1*/

};

/*compression names and types*/

#define NoneName "\pnot compressed"

#define ACE2to1Name "\pACE 2-to-1"

#define ACE8to3Name "\pACE 8-to-3"

#define MACE3to1Name "\pMACE 3-to-1"

#define MACE6to1Name "\pMACE 6-to-1"

#define NoneType 'NONE'

#define ACE2Type 'ACE2'

#define ACE8Type 'ACE8'

#define MACE3Type 'MAC3'

#define MACE6Type 'MAC6'

/*IDs for AIFF and AIFF-C files*/

#define AIFFID 'AIFF' /*AIFF file*/

#define AIFCID 'AIFC' /*AIFF-C file*/

/*IDs for AIFF and AIFF-C file chunks*/

#define FORMID 'FORM' /*ID for Form Chunk*/

#define FormatVersionID 'FVER' /*ID for Format Version Chunk*/

#define CommonID 'COMM' /*ID for Common Chunk*/

#define SoundDataID 'SSND' /*ID for Sound Data Chunk*/

#define MarkerID 'MARK' /*ID for Marker Chunk*/

#define InstrumentID 'INST' /*ID for Instrument Chunk*/

C H A P T E R 2

Sound Manager

2-174 Summary of the Sound Manager

#define MIDIDataID 'MIDI' /*ID for MIDI Data Chunk*/

#define AudioRecordingID 'AESD' /*ID for Recording Chunk*/

#define ApplicationSpecificID 'APPL' /*ID for Application Chunk*/

#define CommentID 'COMT' /*ID for Comment Chunk*/

#define NameID 'NAME' /*ID for Name Chunk*/

#define AuthorID 'AUTH' /*ID for Author Chunk*/

#define CopyrightID '(c) ' /*ID for Copyright Chunk*/

#define AnnotationID 'ANNO' /*ID for Annotation Chunk*/

/*version of AIFC format specification*/

#define AIFCVersion1 0xA2805140

/*date of version creation*/

/*MIDI note value for middle C*/

enum {

kMiddleC = 60

};

/*ratio between frequencies of MIDI note values*/

#define twelfthRootTwo 1.05946309434

/*standard sampling rates*/

#define rate44khz 0xAC440000 /*44100.00000 in fixed-point*/

#define rate22khz 0x56EE8BA3 /*22254.54545 in fixed-point*/

#define rate22050hz 0x56220000 /*22050.00000 in fixed-point*/

#define rate11khz 0x2B7745D1 /*11127.27273 in fixed-point*/

#define rate11025hz 0x2B110000 /*11025.00000 in fixed-point*/

/*constant for synth parameter of SndNewChannel*/

enum {

kUseOptionalOutputDevice = -1

};

/*volumes*/

enum {

kFullVolume = 0x0100,

kNoVolume = 0

};

/*development stages*/

enum {

developStage = 0x20, /*prealpha release*/

alphaStage = 0x40, /*alpha release*/

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-175

betaStage = 0x60, /*beta release*/

finalStage = 0x80 /*final release*/

};

/*sizes of data buffers*/

enum {

stateBlockSize = 64, /*size of state block buffer*/

leftOverBlockSize = 32 /*size of leftover block buffer*/

};

Data Types

Unsigned Fixed-Point Numbers

typedef unsigned long UnsignedFixed; /*unsigned fixed-point number*/

Times

typedef long Time; /*in half-milliseconds*/

Sound Command Record

struct SndCommand {

unsigned short cmd; /*command number*/

short param1; /*first parameter*/

long param2; /*second parameter*/

};

typedef struct SndCommand SndCommand;

Audio Selection Record

struct AudioSelection {

long unitType; /*type of time unit*/

Fixed selStart; /*starting point of selection*/

Fixed selEnd; /*ending point of selection/*

};

typedef struct AudioSelection AudioSelection;

typedef AudioSelection *AudioSelectionPtr;

C H A P T E R 2

Sound Manager

2-176 Summary of the Sound Manager

Sound Channel Status Record

struct SCStatus {

Fixed scStartTime; /*starting time for play from disk*/

Fixed scEndTime; /*ending time for play from disk*/

Fixed scCurrentTime; /*current time for play from disk*/

Boolean scChannelBusy; /*TRUE if channel is processing cmds*/

Boolean scChannelDisposed;

/*reserved*/

Boolean scChannelPaused;

/*TRUE if play from disk is paused*/

Boolean scUnused; /*unused*/

unsigned long scChannelAttributes;

/*attributes of this channel*/

long scCPULoad; /*CPU load for this channel*/

};

typedef struct SCStatus SCStatus;

typedef SCStatus *SCStatusPtr;

Sound Manager Status Record

struct SMStatus {

short smMaxCPULoad; /*maximum load on all channels*/

short smNumChannels; /*number of allocated channels*/

short smCurCPULoad; /*current load on all channels*/

};

typedef struct SMStatus SMStatus;

typedef SMStatus *SMStatusPtr;

Sound Channel Record

struct SndChannel {

struct SndChannel *nextChan; /*pointer to next channel*/

Ptr firstMod; /*used internally*/

SndCallBackProcPtr callBack; /*pointer to callback procedure*/

long userInfo; /*free for application's use*/

long wait; /*used internally*/

SndCommand cmdInProgress; /*used internally*/

short flags; /*used internally*/

short qLength; /*used internally*/

short qHead; /*used internally*/

short qTail; /*used internally*/

SndCommand queue[stdQLength];

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-177

};

typedef struct SndChannel SndChannel;

typedef SndChannel *SndChannelPtr;

Sound Header Record

struct SoundHeader {

Ptr samplePtr; /*if NIL, samples in sampleArea*/

unsigned long length; /*number of samples in array*/

Fixed sampleRate; /*sample rate for this sound*/

unsigned long loopStart; /*loop point beginning*/

unsigned long loopEnd; /*loop point ending*/

unsigned char encode; /*sample's encoding option*/

unsigned char baseFrequency; /*base frequency of sample*/

unsigned char sampleArea[1];

};

typedef struct SoundHeader SoundHeader;

typedef SoundHeader *SoundHeaderPtr;

Extended Sound Header Record

struct ExtSoundHeader {

Ptr samplePtr; /*if NIL, samples in sampleArea*/

unsigned long numChannels; /*number of channels in sample*/

Fixed sampleRate; /*rate of original sample*/

unsigned long loopStart; /*loop point beginning*/

unsigned long loopEnd; /*loop point ending*/

unsigned char encode; /*sample's encoding option*/

unsigned char baseFrequency; /*base frequency of sample*/

unsigned long numFrames; /*total number of frames*/

extended80 AIFFSampleRate;/*rate of original sample*/

Ptr markerChunk; /*reserved*/

Ptr instrumentChunks;

/*pointer to instrument info*/

Ptr AESRecording; /*pointer to audio info*/

unsigned short sampleSize; /*number of bits per sample*/

unsigned short futureUse1; /*reserved*/

unsigned long futureUse2; /*reserved*/

unsigned long futureUse3; /*reserved*/

unsigned long futureUse4; /*reserved*/

unsigned char sampleArea[1];

};

typedef struct ExtSoundHeader ExtSoundHeader;

typedef ExtSoundHeader *ExtSoundHeaderPtr;

C H A P T E R 2

Sound Manager

2-178 Summary of the Sound Manager

Compressed Sound Header Record

struct CmpSoundHeader {

Ptr samplePtr; /*if NIL, samples in sampleArea*/

unsigned long numChannels; /*number of channels in sample*/

Fixed sampleRate; /*rate of original sample*/

unsigned long loopStart; /*loop point beginning*/

unsigned long loopEnd; /*loop point ending*/

unsigned char encode; /*sample's encoding option*/

unsigned char baseFrequency; /*base frequency of original sample*/

unsigned long numFrames; /*length of sample in frames*/

extended80 AIFFSampleRate;/*rate of original sample*/

Ptr markerChunk; /*reserved*/

OSType format; /*data format type*/

unsigned long futureUse2; /*reserved*/

StateBlockPtr stateVars; /*pointer to StateBlock*/

LeftOverBlockPtr leftOverSamples;

/*pointer to LeftOverBlock*/

unsigned short compressionID; /*ID of compression algorithm*/

unsigned short packetSize; /*number of bits per packet*/

unsigned short snthID; /*unused*/

unsigned short sampleSize; /*bits in each sample point*/

unsigned char sampleArea[1];

};

typedef struct CmpSoundHeader CmpSoundHeader;

typedef CmpSoundHeader *CmpSoundHeaderPtr;

Sound Double Buffer Header Record

struct SndDoubleBufferHeader {

short dbhNumChannels;/*number of sound channels*/

short dbhSampleSize; /*sample size, if noncompressed*/

short dbhCompressionID;

/*ID of compression algorithm*/

short dbhPacketSize; /*number of bits per packet*/

Fixed dbhSampleRate; /*sample rate*/

SndDoubleBufferPtr dbhBufferPtr[2];

/*pointers to SndDoubleBuffer*/

SndDoubleBackProcPtr dbhDoubleBack; /*pointer to doubleback procedure*/

};

typedef struct SndDoubleBufferHeader SndDoubleBufferHeader;

typedef SndDoubleBufferHeader *SndDoubleBufferHeaderPtr;

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-179

struct SndDoubleBufferHeader2 {

short dbhNumChannels;/*number of sound channels*/

short dbhSampleSize; /*sample size, if noncompressed*/

short dbhCompressionID;

/*ID of compression algorithm*/

short dbhPacketSize; /*number of bits per packet*/

Fixed dbhSampleRate; /*sample rate*/

SndDoubleBufferPtr dbhBufferPtr[2];

/*pointers to SndDoubleBuffer*/

SndDoubleBackProcPtr dbhDoubleBack; /*pointer to doubleback procedure*/

OSType dbhFormat; /*signature of codec*/

};

typedef struct SndDoubleBufferHeader2 SndDoubleBufferHeader2;

typedef SndDoubleBufferHeader2 *SndDoubleBufferHeaderPtr2;

Sound Double Buffer Record

struct SndDoubleBuffer {

long dbNumFrames; /*number of frames in buffer*/

long dbFlags; /*buffer status flags*/

long dbUserInfo[2]; /*for application's use*/

char dbSoundData[1];/*array of data*/

};

typedef struct SndDoubleBuffer SndDoubleBuffer;

typedef SndDoubleBuffer *SndDoubleBufferPtr;

Chunk Headers

typedef unsigned long ID; /*chunk ID type*/

struct ChunkHeader {

ID ckID; /*chunk type ID*/

long ckSize; /*number of bytes of data*/

};

typedef struct ChunkHeader ChunkHeader;

Form Chunk

struct ContainerChunk {

ID ckID; /*'FORM'*/

long ckSize; /*number of bytes of data*/

ID formType; /*type of file*/

};

typedef struct ContainerChunk ContainerChunk;

C H A P T E R 2

Sound Manager

2-180 Summary of the Sound Manager

Format Version Chunk

struct FormatVersionChunk {

ID ckID; /*'FVER'*/

long ckSize; /*4 bytes*/

unsigned long timestamp; /*date of format version*/

};

typedef struct FormatVersionChunk FormatVersionChunk;

Common Chunk

struct CommonChunk {

ID ckID; /*'COMM'*/

long ckSize; /*18 bytes*/

short numChannels; /*number of channels*/

unsigned long numSampleFrames;

/*number of sample frames*/

short sampleSize; /*number of bits per sample*/

extended80 sampleRate; /*number of frames per second*/

};

typedef struct CommonChunk CommonChunk;

Extended Common Chunk

struct ExtCommonChunk {

ID ckID; /*'COMM'*/

long ckSize; /*22 bytes + compression name*/

short numChannels; /*number of channels*/

unsigned long numSampleFrames;

/*number of sample frames*/

short sampleSize; /*number of bits per sample*/

extended80 sampleRate; /*number of frames per second*/

ID compressionType;

/*compression type ID*/

char compressionName[1];

/*compression type name*/

};

typedef struct ExtCommonChunk ExtCommonChunk;

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-181

Sound Data Chunk

struct SoundDataChunk {

ID ckID; /*'SSND'*/

long ckSize; /*size of chunk data*/

unsigned long offset; /*offset to sound data*/

unsigned long blockSize; /*size of alignment blocks*/

};

typedef struct SoundDataChunk SoundDataChunk;

Version Record

struct NumVersion {

unsigned char majorRev; /*major revision level in BCD*/

unsigned char minorAndBugRev;/*minor revision level*/

unsigned char stage; /*development stage*/

unsigned char nonRelRev; /*nonreleased version revision level*/

};

typedef struct NumVersion NumVersion;

Leftover Block

struct LeftOverBlock {

unsigned long count;

char sampleArea[leftOverBlockSize];

};

typedef struct LeftOverBlock LeftOverBlock;

typedef LeftOverBlock *LeftOverBlockPtr;

State Block

struct StateBlock {

short stateVar[stateBlockSize];

};

typedef struct StateBlock StateBlock;

typedef StateBlock *StateBlockPtr;

Procedure Types

typedef pascal void (*FilePlayCompletionProcPtr)
(SndChannelPtr chan);

typedef pascal void (*SndCallBackProcPtr)
(SndChannelPtr chan, SndCommand *cmd);

C H A P T E R 2

Sound Manager

2-182 Summary of the Sound Manager

typedef pascal void (*SndDoubleBackProcPtr)
(SndChannelPtr chan,
SndDoubleBufferPtr doubleBufferPtr);

Sound Manager Routines

Playing Sound Resources

pascal void SysBeep (short duration);

pascal OSErr SndPlay (SndChannelPtr chan, Handle sndHdl,
Boolean async);

Playing From Disk

pascal OSErr SndStartFilePlay
(SndChannelPtr chan, short fRefNum,
short resNum, long bufferSize, void *theBuffer,
AudioSelectionPtr theSelection,
FilePlayCompletionProcPtr theCompletion,
Boolean async);

pascal OSErr SndPauseFilePlay
(SndChannelPtr chan);

pascal OSErr SndStopFilePlay
(SndChannelPtr chan, Boolean quietNow);

Allocating and Releasing Sound Channels

pascal OSErr SndNewChannel (SndChannelPtr *chan, short synth, long init,
SndCallBackProcPtr userRoutine);

pascal OSErr SndDisposeChannel
(SndChannelPtr chan, Boolean quietNow);

Sending Commands to a Sound Channel

pascal OSErr SndDoCommand (SndChannelPtr chan, const SndCommand *cmd,
Boolean noWait);

pascal OSErr SndDoImmediate
(SndChannelPtr chan, const SndCommand *cmd);

Obtaining Information

pascal NumVersion SndSoundManagerVersion
(void);

pascal NumVersion MACEVersion
(void);

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-183

pascal OSErr SndControl (short id, SndCommand *cmd);

pascal OSErr SndChannelStatus
(SndChannelPtr chan, short theLength,
SCStatusPtr theStatus);

pascal OSErr SndManagerStatus
(short theLength, SMStatusPtr theStatus);

pascal void SndGetSysBeepState
(short *sysBeepState);

pascal OSErr SndSetSysBeepState
(short sysBeepState);

pascal OSErr GetSoundHeaderOffset
(Handle sndHandle, long *offset);

Controlling Volume Levels

pascal OSErr GetSysBeepVolume
(long *level);

pascal OSErr SetSysBeepVolume
(long level);

pascal OSErr GetDefaultOutputVolume
(long *level);

pascal OSErr SetDefaultOutputVolume
(long level);

Compressing and Expanding Audio Data

pascal void Comp3to1 (const void *inBuffer, void *outBuffer,
unsigned long cnt, const void *inState,
void *outState, unsigned long numChannels,
unsigned long whichChannel);

pascal void Comp6to1 (const void *inBuffer, void *outBuffer,
unsigned long cnt, const void *inState,
void *outState, unsigned long numChannels,
unsigned long whichChannel);

pascal void Exp1to3 (const void *inBuffer, void *outBuffer,
unsigned long cnt, const void *inState,
void *outState, unsigned long numChannels,
unsigned long whichChannel);

pascal void Exp1to6 (const void *inBuffer, void *outBuffer,
unsigned long cnt, const void *inState,
void *outState, unsigned long numChannels,
unsigned long whichChannel);

C H A P T E R 2

Sound Manager

2-184 Summary of the Sound Manager

Managing Double Buffers

pascal OSErr SndPlayDoubleBuffer
(SndChannelPtr chan,
SndDoubleBufferHeaderPtr theParams);

Performing Unsigned Fixed-Point Arithmetic

pascal UnsignedFixed UnsignedFixMulDiv
(UnsignedFixed value, UnsignedFixed multiplier,
UnsignedFixed divisor);

Linking Modifiers to Sound Channels

pascal OSErr SndAddModifier
(SndChannelPtr chan, Ptr modifier, short id,
long init);

Application-Defined Routines

pascal void MyFilePlayCompletionRoutine
(SndChannelPtr chan);

pascal void MyCallback (SndChannelPtr chan, SndCommand *cmd);

pascal void MyDoubleBackProc
(SndChannelPtr chan,
SndDoubleBufferPtr doubleBufferPtr);

Assembly-Language Summary

Data Structures

SndCommand Data Structure

AudioSelection Data Structure

0 cmd word command number
2 param1 word first parameter
4 param2 long second parameter

0 unitType long type of time unit
4 selStart 4 bytes starting point of selection (Fixed)
8 selEnd 4 bytes ending point of selection (Fixed)

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-185

SCStatus Data Structure

SMStatus Data Structure

SndChannel Data Structure

SoundHeader Data Structure

ExtSoundHeader Data Structure

0 scStartTime 4 bytes starting time for play from disk (Fixed)
4 scEndTime 4 bytes ending time for play from disk (Fixed)
8 scCurrentTime 4 bytes current time for play from disk (Fixed)

12 scChannelBusy byte channel playing sampled sound flag
13 scChannelDisposed byte reserved
14 scChannelPaused byte play from disk is paused flag
15 scUnused byte unused
16 scChannelAttributes long attributes of channel
20 scCPULoad long CPU load for channel

0 smMaxCPULoad word maximum load on all channels
2 smNumChannels word number of allocated channels
4 smCurCPULoad word current load on all channels

0 nextChan long pointer to next channel
4 firstMod long used internally
8 callBack long pointer to callback procedure

12 userInfo long free for application’s use
16 wait long used internally
20 cmdInProgress 8 bytes used internally
28 flags word used internally
30 qLength word used internally
32 qHead word used internally
34 qTail word used internally
36 queue variable queue of sound commands

0 samplePtr long pointer to samples (or NIL if samples follow data structure)
4 length long number of samples in array
8 sampleRate 4 bytes sample rate (Fixed)

12 loopStart long loop point beginning
16 loopEnd long loop point ending
20 encode byte sample’s encoding option
21 baseFrequency byte base frequency of sample
22 sampleArea variable sampled-sound data

0 samplePtr long pointer to samples (or NIL if samples follow data
structure)

4 numChannels long number of channels in sample
8 sampleRate 4 bytes sample rate (Fixed)

12 loopStart long loop point beginning
16 loopEnd long loop point ending

C H A P T E R 2

Sound Manager

2-186 Summary of the Sound Manager

CmpSoundHeader Data Structure

SndDoubleBufferHeader Data Structure

20 encode byte sample’s encoding option
21 baseFrequency byte base frequency of sample
22 numFrames long total number of frames
26 AIFFSampleRate 10 bytes rate of original sample (Extended80)
36 markerChunk long reserved
40 instrumentChunks long pointer to instrument info
44 AESRecording long pointer to audio info
48 sampleSize word number of bits per sample
50 futureUse1 word reserved
52 futureUse2 long reserved
56 futureUse3 long reserved
60 futureUse4 long reserved
64 sampleArea variable sampled-sound data

0 samplePtr long pointer to samples (or NIL if samples follow data
structure)

4 numChannels long number of channels in sample
8 sampleRate 4 bytes sample rate (Fixed)

12 loopStart long loop point beginning
16 loopEnd long loop point ending
20 encode byte sample’s encoding option
21 baseFrequency byte base frequency of original sample
22 numFrames long length of sample in frames
26 AIFFSampleRate 10 bytes rate of original sample (Extended80)
36 markerChunk long reserved
40 format OSType data format type
44 futureUse2 long reserved
48 stateVars long pointer to StateBlock
52 leftOverSamples long pointer to LeftOverBlock
56 compressionID word ID of compression algorithm
58 packetSize word number of bits per packet
60 snthID word unused
62 sampleSize word bits in each sample point
64 sampleArea variable compressed sound data

0 dbhNumChannels word number of sound channels
2 dbhSampleSize word sample size, if noncompressed
4 dbhCompressionID word ID of compression algorithm
6 dbhPacketSize word number of bits per packet
8 dbhSampleRate 4 bytes sample rate (Fixed)

12 dbhBufferPtr 2 longs pointers to SndDoubleBuffer data structures
20 dbhDoubleBack long pointer to doubleback procedure

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-187

SndDoubleBuffer Data Structure

ChunkHeader Data Structure

ContainerChunk Data Structure

FormatVersionChunk Data Structure

CommonChunk Data Structure

ExtCommonChunk Data Structure

SoundDataChunk

0 dbNumFrames long number of frames in buffer
4 dbFlags long buffer status flags
8 dbUserInfo 2 longs for application’s use

16 dbSoundData variable array of data

0 ckID long chunk type ID
4 ckSize long number of bytes of data

0 ckID long chunk type ID ('FORM')
4 ckSize long number of bytes of data
8 formType long type of file

0 ckID long chunk type ID ('FVER')
4 ckSize long number of bytes of data (4)
8 timestamp long date of format version

0 ckID long chunk type ID ('COMM')
4 ckSize long number of bytes of data (18)
8 numChannels word number of channels

10 numSampleFrames long number of sample frames
14 sampleSize word number of bits per sample
16 sampleRate 10 bytes number of frames per second (Extended80)

0 ckID long chunk type ID ('COMM')
4 ckSize long number of bytes of data (22 + length of compression

name)
8 numChannels word number of channels

10 numSampleFrames long number of sample frames
14 sampleSize word number of bits per sample
16 sampleRate 10 bytes number of frames per second (Extended80)
26 compressionType long compression type ID
30 compressionName variable compression type name

0 ckID long chunk type ID ('SSND')
4 ckSize long number of bytes of data
8 offset long offset to sound data

12 blockSize long size of alignment blocks

C H A P T E R 2

Sound Manager

2-188 Summary of the Sound Manager

Trap Macros

Trap Macro Requiring Routine Selectors

_SoundDispatch

Result Codes

Selector Routine

$00000010 MACEVersion

$00040010 Comp3to1

$00080010 Exp1to3

$000C0008 SndSoundManagerVersion

$000C0010 Comp6to1

$00100008 SndChannelStatus

$00100010 Exp1to6

$00140008 SndManagerStatus

$00180008 SndGetSysBeepState

$001C0008 SndSetSysBeepState

$00200008 SndPlayDoubleBuffer

$02040008 SndPauseFilePlay

$02240024 GetSysBeepVolume

$02280024 SetSysBeepVolume

$022C0024 GetDefaultOutputVolume

$02300024 SetDefaultOutputVolume

$03080008 SndStopFilePlay

$0D000008 SndStartFilePlay

$04040024 GetSoundHeaderOffset

noErr 0 No error
paramErr –50 A parameter is incorrect
noHardwareErr –200 Required sound hardware not available
notEnoughHardwareErr –201 Insufficient hardware available
queueFull –203 No room in the queue
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
notEnoughBufferSpace –207 Insufficient memory available
badFileFormat –208 File is corrupt or unusable, or not AIFF or AIFF-C
channelBusy –209 Channel is busy
buffersTooSmall –210 Buffer is too small

C H A P T E R 2

Sound Manager

Summary of the Sound Manager 2-189

channelNotBusy –211 Channel not currently used
noMoreRealTime –212 Not enough CPU time available
siInvalidCompression –223 Invalid compression type

Contents 3-1

C H A P T E R 3

Contents

Sound Input Manager

About the Sound Input Manager 3-3

Sound Recording Without the Standard Interface 3-4

Interaction With Sound Input Devices 3-4

Sound Input Device Drivers 3-5

Using the Sound Input Manager 3-5

Recording Sounds Directly From a Device 3-6

Defining a Sound Input Completion Routine 3-9

Defining a Sound Input Interrupt Routine 3-10

Getting and Setting Sound Input Device Information 3-10

Writing a Sound Input Device Driver 3-13

Responding to Status and Control Requests 3-13

Responding to Read Requests 3-15

Supporting Stereo Recording 3-16

Supporting Continuous Recording 3-17

Sound Input Manager Reference 3-17

Constants 3-17

Gestalt Selector and Response Bits 3-17

Sound Input Device Information Selectors 3-18

Data Structures 3-26

Sound Input Parameter Blocks 3-26

Sound Input Manager Routines 3-27

Recording Sounds 3-28

Opening and Closing Sound Input Devices 3-31

Recording Sounds Directly From Sound Input Devices 3-33

Manipulating Device Settings 3-41

Constructing Sound Resource and File Headers 3-44

Registering Sound Input Devices 3-48

Converting Between Milliseconds and Bytes 3-51

Obtaining Information 3-53

Application-Defined Routines 3-53

C H A P T E R 3

3-2 Contents

Sound Input Completion Routines 3-54

Sound Input Interrupt Routines 3-55

Summary of the Sound Input Manager 3-57

Pascal Summary 3-57

Constants 3-57

Data Types 3-58

Sound Input Manager Routines 3-59

Application-Defined Routines 3-60

C Summary 3-61

Constants 3-61

Data Types 3-62

Sound Input Manager Routines 3-63

Application-Defined Routines 3-65

Assembly-Language Summary 3-65

Data Structures 3-65

Trap Macros 3-66

Result Codes 3-66

C H A P T E R 3

About the Sound Input Manager 3-3

Sound Input Manager

This chapter describes the Sound Input Manager, the part of the Macintosh system

software that controls the recording of sound through sound input devices. You can use

the Sound Input Manager to display and manage the sound recording dialog box. This

ensures that the user is presented with a consistent and standard user interface for sound

recording. You can, however, also use Sound Input Manager routines to record sound

without the sound recording dialog box or to interact directly with a sound input

device driver.

To use this chapter, you should already be familiar with the information in the chapter

“Introduction to Sound on the Macintosh” earlier in this book, and in particular with the

portions of that chapter that concern sound recording. That chapter explains how your

application can record either a sound resource or a sound file using the standard sound

recording dialog box. You need to read this chapter only if you need to interact with the

Sound Input Manager at a lower level than is allowed by the high-level functions

SndRecord and SndRecordToFile. For example, you need to read this chapter to

learn how to

■ record sound without using the sound recording dialog box

■ interact with a sound input device driver

■ write a sound input device driver

To use this chapter, you should also be familiar with the chapter “Sound Manager” in

this book, especially the portions of that chapter that describe

■ the format of sampled-sound data

■ the Macintosh Audio Compression and Expansion (MACE) routines

■ the structure of sound resources and sound files

■ the use of the Gestalt function to determine whether certain sound-related facilities
are available.

If you are writing a sound input device driver, you should already be familiar with

writing device drivers in general, as described in the book Inside Macintosh: Devices.

About the Sound Input Manager

The Sound Input Manager uses sound input device drivers to allow applications to

access sound input hardware in a device-independent way. A sound input device driver

is a standard Macintosh device driver used to interface to an audio digitizer or other

recording hardware. If you use the Sound Input Manager’s high-level routines, the

Sound Input Manager handles all communication with a sound input device driver for

you. If, however, you need to use the Sound Input Manager’s low-level routines, you

must open a sound input device driver yourself. You might also need to get information

about certain attributes of a sound input device. Sound input device drivers allow your

application to query a device about such attributes.

C H A P T E R 3

Sound Input Manager

3-4 About the Sound Input Manager

Sound Recording Without the Standard Interface
The Sound Input Manager provides your application with the ability to record and

digitally store sounds in a device-independent manner even if your application does not

use the standard sound recording interface. In cases where you need very fine control

over the recording process, you can call various low-level sound input routines.

Your application can obtain control over sound recording in two different ways. First, if

your application uses the sound recording dialog box, you can modify the dialog box’s

features by defining a custom filter procedure, as explained in detail in the chapter

“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials. Second, if your

application needs to fine tune the sound recording process itself (or if your application

does not use the standard sound recording dialog box), then the application must use the

Sound Input Manager’s low-level routines.

In instances where you need to gain greater control over the recording process, you can

use a set of routines that manipulate the incoming sound data by using sound parameter

blocks. The parameter blocks contain information about the current recording device, the

length recorded, a routine to call on completion of the recording, and so forth. You can

call the SPBRecord function (or the SPBRecordToFile function) to begin a recording.

Then you can use the functions SPBPauseRecording, SPBResumeRecording, and

SPBStopRecording to control the recording. Note that you need to open a device

(using the SPBOpenDevice function) before you can record from it. On completion of

the recording, you should close the device (using the SPBCloseDevice function).

If you do record sounds using the Sound Input Manager’s low-level routines, you also

need to set up your own sound resource headers or sound files, because the Sound Input

Manager’s low-level routines return raw sampled-sound data to your application.

The Sound Input Manager provides two functions, SetupSndHeader and

SetupAIFFHeader, that allow you to set up your own sound resource headers or

sound files.

Interaction With Sound Input Devices
The Sound Input Manager provides routines that allow your application to request

information about a sound input device or to change a sound input device’s settings.

The types of information you can obtain about a sound input device include

■ the name, icon, and icon mask of the device driver

■ whether the device driver supports asynchronous recording

■ the device’s settings, such as the number of channels the device is to record, the
compression type, the number of bytes per sample at the current compression setting,
and the sample rate to be produced by the device

■ the range of compression types, sample rates, and sample sizes that the device
supports

You can also use the Sound Input Manager to change some of a sound input device’s

settings and to turn features on and off. For example, you can turn on and off automatic

gain control on some device drivers. Automatic gain control moderates sound recording

C H A P T E R 3

Sound Input Manager

Using the Sound Input Manager 3-5

to give a consistent signal level. Second, you can turn on and off the playthrough
feature, which allows the user to hear through the Macintosh speaker the sound being

recorded. Third, you can turn on and off VOX recording, or voice-activated recording,

which allows your application to record only when the amplitude of sound input

exceeds a certain level. You can use VOX recording either to prevent recording from

starting until sound is at least a certain amplitude or to automatically stop recording

when sound falls below a certain amplitude. This latter capability is called

VOX stopping.

An important feature of sound input devices is continuous recording. All sound input

devices that support asynchronous recording should support continuous recording as

well. Continuous recording allows your application to make several consecutive calls to

the SPBRecord function without losing data between calls. For example, you might

need to record a lengthy sound to disk but not be able to fit the entire sound into RAM.

Thus, it’s important to be able to save a buffer of data to disk while the sound input

device driver continues to collect recorded data. The Sound Input Manager’s

SndRecordToFile function relies on continuous recording.

To get information about a device or to turn features on and off, you can use the

SPBGetDeviceInfo and SPBSetDeviceInfo functions. These functions allow you to

use sound input device information selectors to specify what type of information you

need to know about the device or what settings you wish to change.

Sound Input Device Drivers
The Sound Input Manager also provides several routines intended for use only by sound

input device drivers. Sound input device drivers need to register themselves with the

Sound Input Manager by calling the SPBSignInDevice function. This makes that

device visible in the Sound In control panel for possible selection as the current input

device. You can remove a device from that panel by calling the SPBSignOutDevice

function.

For Macintosh computers with built-in sound recording hardware, the system software

includes a sound input device driver. This driver automatically calls SPBSignInDevice

when the computer starts up. If you are creating a sound input device driver for some

other sound recording hardware, your device driver must register itself at startup time.

Once your driver is registered, it must respond to Status, Control, and Read calls issued

by the Sound Input Manager. The Sound Input Manager issues Status calls to get

information about a device, Control calls to set device settings, and Read calls to

initiate recording.

Using the Sound Input Manager

You can use the Sound Input Manager to record sounds with the sound recording dialog

box, to record sounds directly from a device, to get and set information about a sound

input device, and to register your sound input device driver so that it can respond to

C H A P T E R 3

Sound Input Manager

3-6 Using the Sound Input Manager

Read, Status, and Control calls. This section does not explain how to record sounds using

the sound recording dialog box; for information on that, see the chapter “Introduction to

Sound on the Macintosh” in this book.

Recording Sounds Directly From a Device
The Sound Input Manager provides a number of routines that you can use for low-level

control over the recording process (such as the ability to intercept sound input data at

interrupt time). You can open a sound input device and read data from it by calling these

low-level Sound Input Manager routines. Several of those routines access information

through a sound input parameter block, which is defined by the SPB data type:

TYPE SPB =

RECORD

inRefNum: LongInt; {reference number of input device}

count: LongInt; {number of bytes to record}

milliseconds: LongInt; {number of milliseconds to record}

bufferLength: LongInt; {length of buffer to record into}

bufferPtr: Ptr; {pointer to buffer to record into}

completionRoutine: ProcPtr; {pointer to a completion routine}

interruptRoutine: ProcPtr; {pointer to an interrupt routine}

userLong: LongInt; {for application's use}

error: OSErr; {error returned after recording}

unused1: LongInt; {reserved}

END;

The inRefNum field indicates the reference number of the sound input device from

which the recording is to occur. You can obtain the reference number of the default

sound input device by using the SPBOpenDevice function.

The count, milliseconds, and bufferLength fields jointly determine the length of

recording. The count field indicates the number of bytes to record; the milliseconds

field indicates the number of milliseconds to record; and the bufferLength field

indicates the length in bytes of the buffer into which the recorded sound data is to be

placed. If the count and milliseconds fields are not equivalent, then the field which

specifies the longer recording time is used. If the buffer specified by the bufferLength

field is shorter than this recording time, then the recording time is truncated so that the

recorded data can fit into the buffer specified by the bufferPtr field. The Sound

Input Manager provides two functions, SPBMilliSecondsToBytes and

SPBBytesToMilliSeconds, that allow you to convert between byte and

millisecond values.

After recording finishes, the count and milliseconds fields indicate the number of

bytes and milliseconds actually recorded.

The completionRoutine and interruptRoutine fields allow your application

to define a sound input completion routine and a sound input interrupt routine,

respectively. More information on these routines is provided later in this section.

C H A P T E R 3

Sound Input Manager

Using the Sound Input Manager 3-7

The userLong field contains a long integer that is provided for your application’s own

use. You can use this field, for instance, to pass a handle to an application-defined

structure to the sound input completion or interrupt routine. Or, you can use this field

to store the value of your application’s A5 register, so that your sound input completion

or interrupt routine can access your application’s global variables. For more information

on preserving the value of the A5 register, see the discussion of the SetA5 and

SetCurrentA5 functions in the chapter “Memory Management Utilities” in

Inside Macintosh: Memory.

The error field describes any errors that occur during the recording. This field contains

a value greater than 0 while recording unless an error occurs, in which case it contains a

value less than 0 that indicates an operating system error. Your application can poll this

field to check on the status of an asynchronous recording. If recording terminates

without an error, this field contains 0.

Listing 3-1 shows how to set up a sound parameter block and record synchronously

using the SPBRecord function. This procedure takes one parameter, a handle to a block

of memory in which the recorded sound data is to be stored. It is assumed that the

block of memory is large enough to hold the sound to be recorded.

Listing 3-1 Recording directly from a sound input device

PROCEDURE MyRecordSnd (mySndH: Handle);

CONST

kAsync = TRUE;

kMiddleC = 60;

VAR

mySPB: SPB; {a sound input parameter block}

myInRefNum: LongInt; {device reference number}

myBuffSize: LongInt; {size of buffer to record into}

myHeadrLen: Integer; {length of sound header}

myNumChans: Integer; {number of channels}

mySampSize: Integer; {size of a sample}

mySampRate: Fixed; {sample rate}

myCompType: OSType; {compression type}

myErr: OSErr;

BEGIN

{Open the default input device for reading and writing.}

myErr := SPBOpenDevice('', siWritePermission, myInRefNum);

IF myErr = noErr THEN

BEGIN

{Get current settings of sound input device.}

MyGetDeviceSettings(myInRefNum, myNumChans, mySampRate,

mySampSize, myCompType);

C H A P T E R 3

Sound Input Manager

3-8 Using the Sound Input Manager

{Set up handle to contain the 'snd ' resource header.}

myErr := SetupSndHeader(mySndH, myNumChans, mySampRate,mySampSize,

myCompType, kMiddleC, 0, myHeadrLen);

{Leave room in buffer for the sound resource header.}

myBuffSize := GetHandleSize(mySndH) - myHeadrLen;

{Lock down the sound handle until the recording is over.}

HLockHi(mySndH);

{Set up the sound input parameter block.}

WITH mySPB do

BEGIN

inRefNum := myInRefNum; {input device reference number}

count := myBuffSize; {number of bytes to record}

milliseconds := 0; {no milliseconds}

bufferLength := myBuffSize; {length of buffer}

bufferPtr := Ptr(ORD4(mySndH^) + myHeadrLen);

{put data after 'snd ' header}

completionRoutine := NIL; {no completion routine}

interruptRoutine := NIL; {no interrupt routine}

userLong := 0; {no user data}

error := noErr; {clear error field}

unused1 := 0; {clear reserved field}

END;

{Record synchronously through the open sound input device.}

myErr := SPBRecord(@mySPB, NOT kAsync);

HUnlock(mySndH); {unlock the handle}

{Indicate the number of bytes actually recorded.}

myErr := SetupSndHeader(mySndH, myNumChans, mySampRate, mySampSize,

myCompType, kMiddleC, mySPB.count,

myHeadrLen);

{Close the input device.}

myErr := SPBCloseDevice(myInRefNum);

END;

END;

C H A P T E R 3

Sound Input Manager

Using the Sound Input Manager 3-9

The MyRecordSnd procedure defined in Listing 3-1 opens the default sound input

device by using the SPBOpenDevice function. You can specify one of two values for the

permission parameter of SPBOpenDevice:

CONST

siReadPermission = 0; {open device for reading}

siWritePermission = 1; {open device for reading/writing}

You must open a device for both reading and writing if you intend to use the

SPBSetDeviceInfo function or the SPBRecord function. If SPBOpenDevice

successfully opens the specified device for reading and writing, MyRecordSnd calls

the MyGetDeviceSettings procedure (defined in Listing 3-3 on page 3-12). That

procedure calls the Sound Input Manager function SPBGetDeviceInfo (explained in

“Getting and Setting Sound Input Device Information” on page 3-10) to determine the

current number of channels, sample rate, sample size, and compression type in use by

the device.

This information is then passed to the SetupSndHeader function, which sets up the

handle mySndH with a sound header describing the current device settings. After doing

this, MyRecordSnd sets up a sound input parameter block and calls the SPBRecord

function to record a sound. Note that the handle must be locked during the recording

because the parameter block contains a pointer to the input buffer. After the recording is

done, MyRecordSnd once again calls the SetupSndHeader function to fill in the actual

number of bytes recorded.

If the MyRecordSnd procedure defined in Listing 3-1 executes successfully, the handle

mySndH points to a resource of type 'snd '. Your application can then synchronously

play the recorded sound, for example, by executing the following line of code:

myErr := SndPlay(NIL, mySndH, FALSE);

For more information on playing sounds your application has recorded, see the chapter

“Sound Manager” in this book.

Defining a Sound Input Completion Routine

The completionRoutine field of the sound parameter block record contains the

address of a completion routine that is executed when the recording terminates

normally, either by reaching its prescribed time or size limits or by the application

calling the SPBStopRecording function. A completion routine should have the

following format:

PROCEDURE MySICompletionRoutine (inParamPtr: SPBPtr);

The completion routine is passed the address of the sound input parameter block that

was passed to the SPBRecord function. You can gain access to other data structures in

your application by passing an address in the userLong field of the parameter block.

After the completion routine executes, your application should check the error field of

the sound input parameter block to see if an error code was returned.

C H A P T E R 3

Sound Input Manager

3-10 Using the Sound Input Manager

Your sound input interrupt routine is always called at interrupt time, so it should not call

routines that might allocate or move memory or assume that A5 is set up. For more

information on sound input interrupt routines, see “Sound Input Interrupt Routines”

beginning on page 3-55.

Defining a Sound Input Interrupt Routine

The interruptRoutine field of the sound input parameter block contains the address

of a routine that executes when the internal buffers of an asynchronous recording device

are filled. The internal buffers contain raw sound samples taken directly from the input

device. The interrupt routine can modify the samples in the buffer in any way it requires.

The processed samples are then written to the application buffer. If compression is

enabled, the modified data is compressed after your interrupt routine operates on the

samples and before the samples are written to the application buffer.

Your sound input interrupt routine is always called at interrupt time, so it should not call

routines that might allocate or move memory or assume that A5 is set up. For more

information on sound input interrupt routines, see “Sound Input Interrupt Routines”

beginning on page 3-55.

Getting and Setting Sound Input Device Information
You can get information about a specific sound input device and alter a sound

input device’s settings by calling the functions SPBGetDeviceInfo and

SPBSetDeviceInfo. These functions accept sound input device information selectors

that determine which information you need or want to change. The selectors currently

available are defined by constants of type OSType.

Here is a list of the selectors that all sound input device drivers must support. For

complete details on all the selectors described in this section, see “Sound Input Device

Information Selectors” beginning on page 3-18.

CONST

siAsync = 'asyn'; {asynchronous capability}

siChannelAvailable = 'chav'; {number of channels available}

siCompressionAvailable = 'cmav'; {compression types available}

siCompressionFactor = 'cmfa'; {current compression factor}

siCompressionType = 'comp'; {compression type}

siContinuous = 'cont'; {continuous recording}

siDeviceBufferInfo = 'dbin'; {size of interrupt buffer}

siDeviceConnected = 'dcon'; {input device connection status}

siDeviceIcon = 'icon'; {input device icon}

siDeviceName = 'name'; {input device name}

siLevelMeterOnOff = 'lmet'; {level meter state}

siNumberChannels = 'chan'; {current number of channels}

siRecordingQuality = 'qual'; {recording quality}

siSampleRate = 'srat'; {current sample rate}

C H A P T E R 3

Sound Input Manager

Using the Sound Input Manager 3-11

siSampleRateAvailable = 'srav'; {sample rates available}

siSampleSizeAvailable = 'ssav'; {sample sizes available}

siSampleSize = 'ssiz'; {current sample size}

siTwosComplementOnOff = 'twos'; {two's complement state}

The Sound Input Manager defines several selectors that specifically help it interact with

sound input device drivers. Your application should not use any of these selectors, but if

you are implementing a sound input device driver, you need to support these selectors.

They are:

CONST

siCloseDriver = 'clos'; {release driver}

siInitializeDriver = 'init'; {initialize driver}

siPauseRecording = 'paus'; {pause recording}

siUserInterruptProc = 'user'; {set sound input interrupt routine}

Finally, there are a number of sound input device information selectors that sound input

device drivers can optionally support. If you are writing an application, you can use

these selectors to interact with a sound input device driver, but you should be aware that

some drivers might not support all of them. To determine if a driver supports one of

these selectors, you can use the SPBGetDeviceInfo function. If no errors are returned,

then the selector is supported when using the SPBGetDeviceInfo and the

SPBSetDeviceInfo functions.

CONST

siActiveChannels = 'chac'; {channels active}

siActiveLevels = 'lmac'; {levels active}

siAGCOnOff = 'agc '; {automatic gain control state}

siCompressionHeader = 'cmhd'; {get compression header}

siCompressionNames = 'cnam'; {return compression type names}

siInputGain = 'gain'; {input gain level}

siInputSource = 'sour'; {input source selector}

siInputSourceNames = 'snam'; {input source names}

siOptionsDialog = 'optd'; {display options dialog box}

siPlayThruOnOff = 'plth'; {play-through state}

siStereoInputGain = 'sgai'; {stereo input gain level}

siVoxRecordInfo = 'voxr'; {VOX record parameters}

siVoxStopInfo = 'voxs'; {VOX stop parameters}

The format of the relevant data (either returned by the Sound Input Manager or

provided by you) depends on the selector you provide. For example, if you want

to determine the name of some sound input device, you can pass to the

SPBGetDeviceInfo function the siDeviceName selector and a pointer to a

256-byte buffer. If the SPBGetDeviceInfo function can get the information, it fills

that buffer with the name of the specified sound input device. Listing 3-2 illustrates

one way you can determine the name of a particular sound input device.

C H A P T E R 3

Sound Input Manager

3-12 Using the Sound Input Manager

Listing 3-2 Determining the name of a sound input device

FUNCTION MyGetDeviceName (myRefNum: LongInt; VAR dName: Str255): OSErr;

BEGIN

MyGetDeviceName := SPBGetDeviceInfo(myRefNum, siDeviceName, Ptr(@dName));

END;

Note

You can get the name and icon of all connected sound input devices
without using sound input information selectors by using the
SPBGetIndexedDevice function, which is described on page 3-49. ◆

Some selectors cause the SPBGetDeviceInfo function to return data of other types.

Listing 3-3 illustrates how to determine the number of channels, the sample rate, the

sample size, and the compression type currently in use by a given sound input device.

(The procedure defined in Listing 3-3 is called in the procedure defined in Listing 3-1.)

Listing 3-3 Determining some sound input device settings

PROCEDURE MyGetDeviceSettings (myRefNum: LongInt;

VAR numChannels: Integer;

VAR sampleRate: Fixed;

VAR sampleSize: Integer;

VAR compressionType: OSType);

VAR

myErr: OSErr;

BEGIN

{Get number of active channels.}

myErr := SPBGetDeviceInfo (myRefNum, siNumberChannels, Ptr(@numChannels));

{Get sample rate.}

myErr := SPBGetDeviceInfo(myRefNum, siSampleRate, Ptr(@sampleRate));

{Get sample size.}

myErr := SPBGetDeviceInfo(myRefNum, siSampleSize, Ptr(@sampleSize));

{Get compression type.}

myErr := SPBGetDeviceInfo(myRefNum, siCompressionType,

Ptr(@compressionType));

END;

All of the selectors that return a handle allocate the memory for that handle in the

current heap zone; you are responsible for disposing of that handle when you are done

with it, and you should verify that there is enough memory for such a handle before

calling the selector.

C H A P T E R 3

Sound Input Manager

Using the Sound Input Manager 3-13

Writing a Sound Input Device Driver
This section describes what you need to do when you do write a sound input device

driver. If you write a sound input device driver, you should set the drvrFlags field of

the sound input device driver’s header to indicate that the driver can handle Status,

Control, and Read requests. The driver header should also indicate that the driver needs

to be locked.

IMPORTANT

You don’t need to write a device driver to use sound input
capabilities. ▲

After you create a device driver, you must write an extension that installs it. Before

your extension installs the driver, it should pass the Gestalt function the

gestaltSoundAttr attribute selector and inspect the gestaltSoundIOMgrPresent

bit to determine if the sound input routines are available. If so, the extension should

install the sound input device driver into the unit table just as any other driver must

be installed.

After installing the driver, the extension must then make an Open request to the driver,

so that the driver can perform any necessary initialization. In particular, the driver might

set the dCtlStorage field of the device control entry to a pointer or a handle to a block

in the system heap containing all of the variables that it might need. Finally, the device

driver signs into the Sound Input Manager by calling the SPBSignInDevice function.

Once signed in, a driver can receive Status, Control, and Read requests from the

Sound Input Manager. On entry, the A0 register contains a pointer to a standard

Device Manager parameter block, and the A1 register contains a pointer to the

device control entry. For more information on using registers in a device driver,

see Inside Macintosh: Devices.

Responding to Status and Control Requests

The Sound Input Manager supports sound input device information selectors by

sending your device driver Status and Control requests. It uses Status requests to get

information about your device; it uses Control requests to change settings of your sound

input device.

The behavior of your sound input device driver in response to Status and Control

requests depends on the value of the csCode field of the Device Manager control

parameter block. If the csCode field contains 2, then the sound input information

selector is passed in the first 4 bytes of the csParam field of the Device Manager control

parameter block. For Status requests, the next 18 bytes can be used for your device driver

to pass information back to an application. For Control requests, these 18 bytes are used

by an application to pass data to your sound input device driver.

Figure 3-1 shows the contents of the csParam field of the Device Manager control

parameter block for a sample Status request. The first four bytes of the csParam field

contain the input selector 'srav', which is a request for the available sample rates. The

next four bytes of the field contain a pointer to an application-supplied buffer in which

to return the data (the number of rates available) from the Status request.

C H A P T E R 3

Sound Input Manager

3-14 Using the Sound Input Manager

Figure 3-1 An example of the csParam field for a Status request

On exit from the Status request, your sound input device driver can respond in one of

two ways. If you are returning fewer than 18 bytes of data, your device driver should

specify in the first 4 bytes of the csParam field of the Device Manager control parameter

block the number of bytes of data being returned and place the data in the following 18

bytes. In this case, the Sound Input Manager copies the data to the application-supplied

buffer identified in Figure 3-1. If you are returning more than 18 bytes of data, your

device driver should copy the data to the application-supplied buffer. In this case,

your device driver needs to place a zero in the first 4 bytes of the csParam field to

indicate to the Sound Input Manager that the data has already been copied to the

application-supplied buffer.

Figure 3-2 shows the contents of the csParam field of the Device Manager control

parameter block for a sample Control request. The first four bytes of the csParam field

contain the input selector 'srat' which determines the sample rate for the sound input

device. The next eighteen bytes contain the data, which in this example is the sample rate

to set for your sound input device. This is a Fixed value of four bytes in length.

Figure 3-2 An example of the csParam field for a Control request

C H A P T E R 3

Sound Input Manager

Using the Sound Input Manager 3-15

Note
Some sound input information selectors require your sound input
device driver to allocate a handle in which to store information. In this
case, your driver should attempt to allocate an appropriately sized
handle in the current heap zone. If allocation fails, your driver should
return the appropriate Memory Manager result code. ◆

Your sound input device driver must respond to a core set of selectors, but the remaining

selectors defined by Apple are optional. Your device driver might also define private

selectors to support proprietary features. (Selectors containing all lowercase letters,

however, are reserved by Apple.) The section “Getting and Setting Sound Input Device

Information” beginning on page 3-10 lists the core selectors and other selectors that have

been defined.

If the csCode field contains 1 (which can occur only for Control requests), the Sound

Input Manager is attempting to stop asynchronous recording; that is, it is issuing a

KillIO request. In response to this, the driver should stop copying data to the

application buffer, update the ioActCount field of the request parameter block, and

return via an RTS instruction.

Before exiting after a Status and Control request, your sound input device driver should

fill the D0 register with the appropriate result code or noErr. To exit, your sound input

device driver should check whether the Status and Control request was executed

immediately or was queued.

Note

In current versions of system software, the Sound Input Manager always
issues Status and Control requests immediately. This might change in
future versions of system software. ◆

Your sound input device driver can determine whether a request is issued immediately

by checking the noQueueBit in the ioTrap field of the Device Manager control

parameter block. If the request was made immediately, the Control routine should return

via an RTS instruction; if the request was queued, the Control routine should jump to the

Device Manager’s IODone function via the global jump vector JIODone. You need to

make sure that the A0 and A1 registers are set the same as they are on entry to the device

driver or JIODone will fail.

Responding to Read Requests

When a sound input device receives a Read request, it must start recording and saving

recorded data into the buffer specified by the ioBuffer field of the request parameter

block. If that field is NIL, the driver should record but not save the data. During a Read

request, your sound input device driver can access the sound parameter block that

initiated recording through the ioMisc field of the request parameter block.

If a previous Control request has assigned a sound input interrupt routine to the device

driver and your driver records asynchronously, then the driver must call the routine

each time its internal buffer becomes filled, setting up registers as described in “Defining

a Sound Input Interrupt Routine” on page 3-10. The buffer size that your device driver

specifies in the D1 register should indicate how much your device records during every

C H A P T E R 3

Sound Input Manager

3-16 Using the Sound Input Manager

interrupt. For example, a sound input device driver that uses the serial port might use a

buffer as small as 3 bytes. For the built-in sound input port on the Macintosh LC and

other Macintosh models, the buffer is 512 bytes long.

Your device driver should update the ioActCount field of the request parameter block

with the actual number of bytes of sampled-sound data recorded. This allows the Sound

Input Manager to monitor the activity of your device driver. Whether your device driver

operates synchronously or asynchronously, it should complete recording by jumping to

the Device Manager’s IODone function via the global jump vector JIODone. You need

to set the D0 register to the appropriate result code before jumping to the Device

Manager’s IODone function.

Supporting Stereo Recording

Many sound input devices support recording stereo sounds (that is, sounds from two or

more channels). If you are writing a device driver for a stereo device, you need to make

sure that you support the siNumberChannels, siActiveChannels, and

siActiveLevels selectors.

The siNumberChannels selector controls the number of sound input channels and

thereby determines the format of the data stream your device driver produces. If the

number of channels is 1, the driver should produce monophonic data in response to a

Read request. If the number of channels is 2, the driver should produce interleaved

stereo data in response to a Read request.

The siActiveChannels selector controls which of the available input channels are

used for recording. The active channels are specified using a bitmap value. For example,

the value $01 indicates that the first channel (the left channel) is to be used. The value

$02 indicates that the second channel (the right channel) is to be used.

The siNumberChannels and siActiveChannels selectors together determine the

exact format of the output data stream. If the current number of channels is 1 and the

current active channel bitmap is $01, the driver should produce a stream of monophonic

data containing samples only from the left input channel. If the current number of

channels is 1 and the current active channel bitmap is $02, the driver should produce a

stream of monophonic data containing samples only from the right input channel. If the

current number of channels is 1 and the current active channel bitmap is $03, the driver

should mix the right and left channels to produce a stream of monophonic data. If the

current number of channels is 2 and the current active channel bitmap is $03, the driver

should produce a stream of interleaved samples from the left and right input channels.

Note

If the siActiveChannels selector is never passed to a sound input
device driver, it’s recommended that the active channel default bitmap
for both monophonic and stereo recording should be $03. When the
active channel bitmap conflicts with the number of channels (for
example, there are two channels but the active channel bitmap is $01),
you should use the default value of $03. ◆

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-17

Supporting Continuous Recording

If your sound input device driver supports continuous recording, it must do more than

respond to Status, Control, and Read requests. It must also, if continuous recording is on,

begin recording into an internal ring buffer as soon as a Read request completes. The

buffer should be made large enough so that the sound input device driver can support

successive requests to the SPBRecord function in most circumstances; however, if your

driver exhausts the internal buffer, your driver should begin recording again at the start

of the buffer.

When the sound input device driver receives a subsequent Read request, it should

record to the application’s buffer first all of the data in the internal ring buffer and then

as much fresh data as it can record during one interrupt.

If a Read terminates due to a KillIO request, your sound input device driver does not

need to continue recording samples to the internal ring buffer until after the next

uninterrupted Read request.

Sound Input Manager Reference

This section describes the constants, data structure, and the routines provided by the

Sound Input Manager.

Constants

This section describes the constants you can use with the SPBSetDeviceInfo and

SPBGetDeviceInfo functions to set or get device information. It also lists the Gestalt

function sound attributes selector and the returned bit numbers that are relevant to the

Sound Input Manager. All other constants defined by the Sound Input Manager are

described at the appropriate location in this chapter. (For example, the constants that you

can use to specify sound recording qualities are described in connection with the

SndRecord function beginning on page 3-28.)

Gestalt Selector and Response Bits

You can pass the gestaltSoundAttr selector to the Gestalt function to determine

information about the sound input capabilities of a Macintosh computer.

CONST

gestaltSoundAttr = 'snd '; {sound attributes selector}

The Gestalt function returns information by setting or clearing bits in the response

parameter. The bits relevant to the Sound Input Manager are defined by constants:

C H A P T E R 3

Sound Input Manager

3-18 Sound Input Manager Reference

CONST

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

Constant descriptions

gestaltSoundIOMgrPresent
Set if the Sound Input Manager is available.

gestaltBuiltInSoundInput
Set if a built-in sound input device is available.

gestaltHasSoundInputDevice
Set if a sound input device is available. This device can be either
built-in or external.

gestaltPlayAndRecord
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if
the gestaltBuiltInSoundInput bit is set, and it applies only to
any built-in sound input and output hardware.

gestalt16BitSoundIO
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.

gestaltStereoInput
Set if the built-in sound hardware can record stereo sounds.

gestaltLineLevelInput
Set if the built-in sound input port requires line level input.

Note

For complete information about the Gestalt function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. ◆

Sound Input Device Information Selectors

You can call the SPBSetDeviceInfo and SPBGetDeviceInfo functions to set or

get information about a sound input device. You pass each of those functions a sound

input device information selector in the infoType parameter to specify the type

of information you need. The available device information selectors are defined

by constants.

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-19

IMPORTANT

Some of these selectors are intended for use only by the Sound Input
Manager and other parts of the system software that need to interact
directly with sound input device drivers. (For example, the Sound Input
Manager sends the siCloseDriver selector to a sound input device
driver when it is closing the device.) In general, applications should not
use these reserved selectors. ▲

CONST

siActiveChannels = 'chac'; {channels active}

siActiveLevels = 'lmac'; {levels active}

siAGCOnOff = 'agc '; {automatic gain control state}

siAsync = 'asyn'; {asynchronous capability}

siChannelAvailable = 'chav'; {number of channels available}

siCloseDriver = 'clos'; {reserved for internal use only}

siCompressionAvailable = 'cmav'; {compression types available}

siCompressionFactor = 'cmfa'; {current compression factor}

siCompressionHeader = 'cmhd'; {return compression header}

siCompressionNames = 'cnam'; {return compression type names}

siCompressionType = 'comp'; {current compression type}

siContinuous = 'cont'; {continuous recording}

siDeviceBufferInfo = 'dbin'; {size of interrupt buffer}

siDeviceConnected = 'dcon'; {input device connection status}

siDeviceIcon = 'icon'; {input device icon}

siDeviceName = 'name'; {input device name}

siInitializeDriver = 'init'; {reserved for internal use only}

siInputGain = 'gain'; {input gain level}

siInputSource = 'sour'; {input source selector}

siInputSourceNames = 'snam'; {input source names}

siLevelMeterOnOff = 'lmet'; {level meter state}

siNumberChannels = 'chan'; {current number of channels}

siOptionsDialog = 'optd'; {display options dialog box}

siPauseRecording = 'paus'; {reserved for internal use only}

siPlayThruOnOff = 'plth'; {play-through state}

siRecordingQuality = 'qual'; {recording quality}

siSampleRate = 'srat'; {current sample rate}

siSampleRateAvailable = 'srav'; {sample rates available}

siSampleSize = 'ssiz'; {current sample size}

siSampleSizeAvailable = 'ssav'; {sample sizes available}

siStereoInputGain = 'sgai'; {stereo input gain level}

siTwosComplementOnOff = 'twos'; {two's complement state}

siUserInterruptProc = 'user'; {reserved for internal use only}

siVoxRecordInfo = 'voxr'; {VOX record parameters}

siVoxStopInfo = 'voxs'; {VOX stop parameters}

C H A P T E R 3

Sound Input Manager

3-20 Sound Input Manager Reference

Constant descriptions

siActiveChannels
Get or set the channels to record from. When setting the active
channels, the data passed in is a long integer that is interpreted as a
bitmap describing the channels to record from. For example, if bit 0
is set, then the first channel is made active. The samples for each
active channel are interleaved in the application’s buffer. When
reading the active channels, the data returned is a bitmap of the
active channels.

siActiveLevels
Get the current signal level for each active channel. The infoData
parameter points to an array of integers, the size of which depends
on the number of active channels. You can determine how many
channels are active by calling SPBGetDeviceInfo with the
siNumberChannels selector.

siAGCOnOff Get or set the current state of the automatic gain control feature. The
infoData parameter points to an integer, which is 0 if gain control
is off and 1 if it is on.

siAsync Determine whether the driver supports asynchronous recording
functions. The infoData parameter points to an integer, which is
0 if the driver supports synchronous calls only and 1 otherwise.
Some sound input drivers do not support asynchronous recording
at all, and some might support asynchronous recording only on
certain hardware configurations.

siChannelAvailable
Get the maximum number of channels this device can record. The
infoData parameter points to an integer, which is the number of
available channels.

siCloseDriver The Sound Input Manager sends this selector when it closes a
device previously opened with write permission. The sound input
device driver should stop any recording in progress, deallocate the
input hardware, and initialize local variables to default settings.
Your application should never issue this selector directly. The
infoData parameter is unused with this selector.

siCompressionAvailable
Get the number and list of compression types this device can
produce. The infoData parameter points to an integer, which is
the number of compression types, followed by a handle. The handle
references a list of compression types, each of type OSType.

siCompressionFactor
Get the compression factor of the current compression type. For
example, the compression factor for MACE 3:1 compression is 3. If a
sound input device driver supports only compression type 'NONE',
the returned compression type is 1. The infoData parameter
points to an integer, which is the compression factor.

siCompressionHeader
Get a compressed sound header for the current recording settings.
Your application passes in a pointer to a compressed sound header

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-21

and the driver fills it in. Before calling SPBGetDeviceInfo with
this selector, you should set the numFrames field of the compressed
sound header to the number of bytes in the sound. When
SPBGetDeviceInfo returns successfully, that field contains the
number of sample frames in the sound. This selector is needed
only by drivers that use compression types that are not directly
supported by Apple. If you call this selector after recording a sound,
your application can get enough information about the sound to
play it or save it in a file. The infoData parameter points to a
compressed sound header.

siCompressionNames
Get a list of names of the compression types supported by the
sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the infoData
parameter, a handle to a block of memory that contains the names
of all compression types supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach
any resource handles (by calling DetachResource) before
returning them to the caller. The data in the handle has the same
format as an 'STR#' resource: a two-byte count of the strings in the
resource, followed by the strings themselves. The strings should
occur in the same order as the compression types returned by the
siCompressionAvailable selector. If the driver does not
support compression, it returns siUnknownInfoType. If the driver
supports compression but for some reason not all compression
types are currently selectable, it returns a list of all available
compression types.

siCompressionType
Get or set the compression type. Some devices allow the incoming
samples to be compressed before being placed in your application’s
input buffer. The infoData parameter points to a buffer of type
OSType, which is the compression type.

siContinuous Get or set the state of continuous recording from this device. If
recording is being turned off, the driver stops recording samples to
its internal buffer. Only sound input device drivers that support
asynchronous recording support continuous recording. The
infoData parameter points to an integer, which is the state of
continuous recording (0 is off, 1 is on).

siDeviceBufferInfo
Get the size of the device’s internal buffer. This information can be
useful when you want to modify sound input data at interrupt time.
Note, however, that if a driver is recording continuously, then the
size of the buffer passed to your sound input interrupt routine
might be greater than the size this selector returns because data
recorded between calls to SPBRecord as well as recorded during
calls to SPBRecord will be sent to your interrupt routine. The
infoData parameter points to a long integer, which is the size of
the device’s internal buffer.

C H A P T E R 3

Sound Input Manager

3-22 Sound Input Manager Reference

siDeviceConnected
Get the state of the device connection. The infoData parameter
points to an integer, which is one of the following constants:

CONST

siDeviceIsConnected = 1;

siDeviceNotConnected = 0;

siDontKnowIfConnected = -1;

The siDeviceIsConnected constant indicates that the device is
connected and ready. The siDeviceNotConnected constant
indicates that the device is not connected. The
siDontKnowIfConnected constant indicates that the Sound
Input Manager cannot determine whether the device is connected.

siDeviceIcon Get the device’s icon and icon mask. In response to a Status call, a
sound input device driver should return, in the location specified
by the infoData parameter, a handle to a block of memory that
contains the icon and its mask in the format of an 'ICN#' resource.
It is the driver’s responsibility to allocate that block of memory, but
it should not releasee it. The software issuing this selector is
responsible for disposing of the handle. As a result, a device driver
should detach any resource handles (by calling DetachResource)
before returning them to the caller.

siDeviceName Get the name of the sound input device. Your application must pass
a pointer to a buffer that will be filled in with the device’s name.
The buffer needs to be large enough to hold a Str255 data type.

siInitializeDriver
The Sound Input Manager sends this selector when it opens a
sound input device with write permission. The sound input device
driver initializes local variables and prepares to start recording. If
possible, the driver initializes the device to a sampling rate of
22 kHz, a sample size of 8 bits, mono recording, no compression,
automatic gain control on, and all other features off. Your
application should never issue this selector directly. The infoData
parameter is unused with this selector.

siInputGain Get and set the current sound input gain. If the available hardware
allows adjustment of the recording gain, this selector lets you get
and set the gain. In response to a Status call, a sound input driver
returns the current gain setting. In response to a Control call, a
sound input driver sets the gain level used for all subsequent
recording to the specified value. The infoData parameter points to
a 4-byte value of type Fixed ranging from 0.5 to 1.5, where 1.5
specifies maximum gain.

siInputSource Get and set the current sound input source. If the available
hardware allows recording from more than one source, this selector
lets you get and set the source. In response to a Status call, a sound
input driver returns the current source value; if the driver supports
only one source, it returns siUnknownInfoType. In response to a
Control call, a sound input driver sets the source of all subsequent

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-23

recording to the value passed in. If the value is less than 1 or greater
than the number of input sources, the driver returns paramErr; if
the driver supports only one source, it returns
siUnknownInfoType. The infoData parameter points to an
integer, which is the index of the current sound input source.

siInputSourceNames
Get a list of the names of all the sound input sources supported by
the sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the infoData
parameter, a handle to a block of memory that contains the names
of all sound sources supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach
any resource handles (by calling DetachResource) before
returning them to the caller. The data in the handle has the same
format as an 'STR#' resource: a two-byte count of the strings in the
resource, followed by the strings themselves. The strings should
occur in the same order as the input sources returned by the
siInputSource selector. If the driver supports only one source, it
returns siUnknownInfoType. If the driver supports more than
one source but for some reason not all of them are currently
selectable, it returns a list of all available input sources.

siLevelMeterOnOff
Get or set the current state of the level meter. For calls to set the
level meter, the infoData parameter points to an integer that
indicates whether the level meter is off (0) or on (1). To get the level
meter setting, the infoData parameter points to two integers; the
first integer indicates the state of the level meter, and the second
integer contains the level value of the meter. The level meter setting
is an integer that ranges from 0 (no volume) to 255 (full volume).

siNumberChannels
Get or set the number of channels this device is to record. The
infoData parameter points to an integer, which indicates the
number of channels. Note that this selector determines the format of
the data stream output by the driver. If the number of channels is 1,
the driver should output monophonic data in response to a Read
call. If the number of channels is 2, the driver should output
interleaved stereo data.

siOptionsDialog
Determine whether the driver supports an Options dialog box
(SPBGetDeviceInfo) or cause the driver to display the Options
dialog box (SPBSetDeviceInfo). This dialog box is designed to
allow the user to configure device-specific features of the sound
input hardware. With SPBGetDeviceInfo, the infoData
parameter points to an integer, which indicates whether the driver
supports an Options dialog box (1 if it supports it, 0 otherwise).
With SPBSetDeviceInfo, the infoData parameter is unused.

C H A P T E R 3

Sound Input Manager

3-24 Sound Input Manager Reference

siPauseRecording
The Sound Input Manager uses this selector to get or set the current
pause state. The sound input device driver continues recording but
does not store the sampled data in a buffer. Your application should
never issue this selector directly. The infoData parameter points
to an integer, which indicates the state of pausing (0 is off, 1 is on).

siPlayThruOnOff
Get or set the current play-through state and volume. The
infoData parameter points to an integer, which indicates the
current play-through volume (1 to 7). If that integer is 0, then
play-through is off.

siRecordingQuality
Get or set the current quality of recorded sound. The infoData
parameter points to a buffer of type OSType, which is the recording
quality. Currently three qualities are supported, defined by these
constants:

CONST

siBestQuality = 'best';

siBetterQuality = 'betr';

siGoodQuality = 'good';

These qualities are defined by the sound input device driver.
Usually best means monaural, 8-bit, 22 kHz, sound with no
compression.

siSampleRate Get or set the sample rate to be produced by this device. The sample
rate must be in the range 0 to 65535.65535 Hz. The sample rate is
declared as a Fixed data type. In order to accommodate sample
rates greater than 32 kHz, the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.
The infoData parameter points to a buffer of type Fixed, which is
the sample rate.

siSampleRateAvailable
Get the range of sample rates this device can produce. The
infoData parameter points to an integer, which is the number of
sample rates the device supports, followed by a handle. The handle
references a list of sample rates, each of type Fixed. If the device
can record a range of sample rates, the number of sample rates is set
to 0 and the handle contains two rates, the minimum and the
maximum of the range of sample rates. Otherwise, a list is returned
that contains the sample rates supported. In order to accommodate
sample rates greater than 32 kHz, the most significant bit is not
treated as a sign bit; instead, that bit is interpreted as having the
value 32,768.

siSampleSize Get or set the sample size to be produced by this device. Because
some compression formats require specific sample sizes, this
selector might return an error when compression is used. The
infoData parameter points to an integer, which is the sample size.

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-25

siSampleSizeAvailable
Get the range of sample sizes this device can produce. The
infoData parameter points to an integer, which is the number of
sample sizes the device supports, followed by a handle. The handle
references a list of sample sizes, each of type Integer.

siStereoInputGain
Get and set the current stereo sound input gain. If the available
hardware allows adjustment of the recording gain, this selector lets
you get and set the gain for each of two channels (left or right). In
response to a Status call, a sound input driver should return the
current gain setting for the specified channel. In response to a
Control call, a sound input driver should set the gain level used for
all subsequent recording to the specified value. The infoData
parameter points to two 4-byte values of type Fixed ranging from
0.5 to 1.5, where 1.5 specifies maximum gain. The first of these
values is equivalent to the gain for the left channel and the second
value is equivalent to the gain for the right channel.

siTwosComplementOnOff
Get or set the current state of the two’s complement feature. This
selector only applies to 8-bit data. (16-bit samples are always stored
in two’s complement format.) If on, the driver stores all samples in
the application buffer as two’s complement values (that is, –128 to
127). Otherwise, the driver stores the samples as offset binary
values (that is, 0 to 255). The infoData parameter points to an
integer, which is the current state of the two’s complement feature
(1 if two’s complement output is desired, 0 otherwise).

siUserInterruptProc
The Sound Input Manager sends this selector to specify the sound
input interrupt routine that the sound input device driver should
call. Your application should never issue this selector directly. The
infoData parameter points to a procedure pointer, which is the
address of the sound input interrupt routine.

siVoxRecordInfo
Get or set the current VOX recording parameters. The infoData
parameter points to two integers. The first integer indicates whether
VOX recording is on or off (0 if off, 1 if on). The second integer
indicates the VOX record trigger value. Trigger values range from
0 to 255 (0 is trigger immediately, 255 is trigger only on full volume).

siVoxStopInfo Get or set the current VOX stopping parameters. The infoData
parameter points to three integers. The first integer indicates
whether VOX stopping is on or off (0 if off, 1 if on). The second
integer indicates the VOX stop trigger value. Trigger values range
from 0 to 255 (255 is stop immediately, 0 is stop only on total
silence). The third integer indicates how many milliseconds the
trigger value must be continuously valid for recording to be
stopped. Delay values range from 0 to 65,535.

C H A P T E R 3

Sound Input Manager

3-26 Sound Input Manager Reference

Data Structures

This section describes the sound input parameter block.

Sound Input Parameter Blocks

The SPBRecord and SPBRecordToFile functions require a pointer to a sound input

parameter block that defines characteristics of the recording. If you define a sound input

completion routine or a sound input interrupt routine, your routine receives a pointer

to a sound input parameter block. If you are using only the Sound Input Manager’s

high-level SndRecord and SndRecordToFile functions, the operation of sound input

parameter blocks is transparent to your application. A sound input parameter block is

defined by the SPB data type.

TYPE SPB =

RECORD

inRefNum: LongInt; {reference number of input device}

count: LongInt; {number of bytes to record}

milliseconds: LongInt; {number of milliseconds to record}

bufferLength: LongInt; {length of buffer to record into}

bufferPtr: Ptr; {pointer to buffer to record into}

completionRoutine: ProcPtr; {pointer to a completion routine}

interruptRoutine: ProcPtr; {pointer to an interrupt routine}

userLong: LongInt; {for application's use}

error: OSErr; {error returned after recording}

unused1: LongInt; {reserved}

END;

Field descriptions

inRefNum The reference number of the sound input device (as received from
the SPBOpenDevice function) from which the recording is to occur.

count On input, the number of bytes to record. On output, the number of
bytes actually recorded. If this field specifies a longer recording time
than the milliseconds field, then the milliseconds field is
ignored on input.

milliseconds On input, the number of milliseconds to record. On output, the
number of milliseconds actually recorded. If this field specifies a
longer recording time than the count field, then the count field is
ignored on input.

bufferLength The length of the buffer into which recorded sound data is placed.
The recording time specified by the count or milliseconds field
is truncated to fit into this length, if necessary.

bufferPtr A pointer to the buffer into which recorded data is placed. If this
field is NIL, then the count, milliseconds, and bufferLength
fields are ignored and the recording will continue indefinitely until
the SPBStopRecording function is called. However, the data is

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-27

not stored anywhere, so setting this field to NIL is useful only if you
want to do something in a sound input interrupt routine but do not
want to save the recorded sound.

completionRoutine
A pointer to a completion routine that is called when the recording
terminates as a result of your calling the SPBStopRecording
function or when the limit specified by the count or
milliseconds field is reached. The completion routine executes
only if SPBRecord is called asynchronously and therefore is called
at interrupt time.

interruptRoutine
A pointer to a routine that is called by asynchronous recording
devices when their internal buffers are full. You can define a sound
input interrupt routine to modify uncompressed sound samples
before they are placed into the buffer specified in the bufferPtr
parameter. The interrupt routine executes only if SPBRecord is
called asynchronously and therefore is called at interrupt time.

userLong A long integer available for the application’s own use. You can use
this field, for instance, to pass a handle to an application-defined
structure to the completion routine or to the interrupt routine.

error On exit, the error that occurred during recording. This field contains
a value greater than 0 while recording unless an error occurs, in
which case it contains a value less than 0 that indicates an operating
system error. Your application can poll this field to check on the
status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

unused1 Reserved for use by Apple. You should always initialize this
field to 0.

Sound Input Manager Routines

This section describes the routines provided by the Sound Input Manager. You can use

these routines to

■ record sounds using the sound recording dialog box

■ open and close sound input devices

■ record sounds directly from sound input devices

■ get information about sound input devices and change device settings

■ construct sound resource and file headers

■ register sound input devices with the Sound Input Manager

■ convert recording times between millisecond and byte values

■ obtain information about the version of the Sound Input Manager that is running

The section “Application-Defined Routines” on page 3-53 describes the format of sound

input completion routines and sound input interrupt routines.

C H A P T E R 3

Sound Input Manager

3-28 Sound Input Manager Reference

Recording Sounds

The Sound Input Manager provides two high-level sound input functions, SndRecord

and SndRecordToFile, for recording sound. These input routines are analogous to the

two Sound Manager functions SndPlay and SndStartFilePlay. By using these

high-level routines, you can be assured that your application presents a user interface

that is consistent with that displayed by other applications doing sound input. Both

SndRecord and SndRecordToFile attempt to record sound data from the sound

input hardware currently selected in the Sound In control panel.

SndRecord

You can use the SndRecord function to record sound resources into memory.

FUNCTION SndRecord (filterProc: ProcPtr; corner: Point;

quality: OSType; VAR sndHandle: Handle):

OSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar to the filterProc
parameter specified in a call to the ModalDialog procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. If filterProc isn’t NIL,
SndRecord filters events by calling the function that filterProc
points to.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandle On entry, a handle to some storage space or NIL. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

DESCRIPTION

The SndRecord function records sound into memory. The recorded data has the

structure of a format 1 'snd ' resource and can later be played using the SndPlay

function or can be stored as a resource. SndRecord displays a sound recording dialog

box and is always called synchronously. Controls in the dialog box allow the user to

start, stop, pause, and resume sound recording, as well as to play back the recorded

sound. The dialog box also lists the remaining recording time and the current

microphone sound level.

The quality parameter defines the desired quality of the recorded sound. Currently,

three values are recognized for the quality parameter:

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-29

CONST

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.

For Apple-supplied drivers, this parameter determines whether the recorded sound is to

be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality siBestQuality

does not compress the sound and provides the best quality output, but at the expense of

increased memory use. The quality siBetterQuality is suitable for most nonvoice

recording, and siGoodQuality is suitable for voice recording.

The sndHandle parameter is a handle to some storage space. If the handle is NIL, the

Sound Input Manager allocates a handle of the largest amount of space that it can find in

your application’s heap and returns this handle in the sndHandle parameter. The

Sound Input Manager resizes the handle when the user clicks the Save button in the

sound recording dialog box. If the sndHandle parameter passed to SndRecord is not

NIL, the Sound Input Manager simply stores the recorded data in the location specified

by that handle.

SPECIAL CONSIDERATIONS

Because the SndRecord function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecord function are

RESULT CODES

SEE ALSO

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a

complete description of event filter functions.

Trap macro Selector

_SoundDispatch $08040014

noErr 0 No error
userCanceledErr –128 User canceled the operation
siBadSoundInDevice –221 Invalid sound input device
siUnknownQuality –232 Unknown quality

C H A P T E R 3

Sound Input Manager

3-30 Sound Input Manager Reference

SndRecordToFile

You can use SndRecordToFile to record sound data into a file.

FUNCTION SndRecordToFile (filterProc: ProcPtr; corner: Point;

quality: OSType;

fRefNum: Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound, as described on page 3-28.

fRefNum The file reference number of an open file to save the audio data in.

DESCRIPTION

The SndRecordToFile function works just like SndRecord except that it stores the

sound input data into a file. The resulting file is in either AIFF or AIFF-C format and

contains the information necessary to play the file by using the Sound Manager’s

SndStartFilePlay function. The SndRecordToFile function is always called

synchronously.

Your application must open the file specified in the fRefNum parameter before calling

the SndRecordToFile function. Your application must close the file sometime after

calling SndRecordToFile.

SPECIAL CONSIDERATIONS

Because the SndRecordToFile function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecordToFile function are

RESULT CODES

Trap macro Selector

_SoundDispatch $07080014

noErr 0 No error
userCanceledErr –128 User canceled the operation
siBadSoundInDevice –221 Invalid sound input device
siUnknownQuality –232 Unknown quality

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-31

Opening and Closing Sound Input Devices

You can use the SPBOpenDevice function to open the default sound input device that

the user has selected in the Sound In control panel or to open a specific sound input

device. You must open a device before you can record from it by using SPBRecord, but

the Sound Input Manager’s high-level routines automatically open the default sound

input device. You can close a sound input device by calling the SPBCloseDevice

function.

SPBOpenDevice

You can use the SPBOpenDevice function to open a sound input device.

FUNCTION SPBOpenDevice (deviceName: Str255; permission: Integer;

VAR inRefNum: LongInt): OSErr;

deviceName
The name of the sound input device to open, or the empty string if the
default sound input device is to be opened.

permission
A flag that indicates whether subsequent operations with that device are
to be read/write or read-only.

inRefNum On exit, if the function is successful, a device reference number for the
open sound input device.

DESCRIPTION

The SPBOpenDevice function attempts to open a sound input device having the name

indicated by the deviceName parameter. If SPBOpenDevice succeeds, it returns a

device reference number in the inRefNum parameter. The permission parameter

indicates whether subsequent operations with that device are to be read/write or

read-only. If the device is not already in use, read/write permission is granted;

otherwise, only read-only operations are allowed. To make any recording requests or to

call the SPBSetDeviceInfo function, read/write permission must be available. Use

these constants to request the appropriate permission:

CONST

siReadPermission = 0; {open device for reading}

siWritePermission = 1; {open device for reading/writing}

You can request that the current default sound input device be opened by passing either

a zero-length string or a NIL string as the deviceName parameter. If only one sound

input device is installed, that device is used. Generally you should open the default

device unless you specifically want to use some other device. You can get a list of the

available devices by calling the SPBGetIndexedDevice function.

C H A P T E R 3

Sound Input Manager

3-32 Sound Input Manager Reference

SPECIAL CONSIDERATIONS

Because the SPBOpenDevice function allocates memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBOpenDevice function are

RESULT CODES

SPBCloseDevice

You can use the SPBCloseDevice function to close a sound input device.

FUNCTION SPBCloseDevice (inRefNum: LongInt): OSErr;

inRefNum The device reference number of the sound input device to close.

DESCRIPTION

The SPBCloseDevice function closes a device that was previously opened by

SPBOpenDevice and whose device reference number is specified in the

inRefNum parameter.

SPECIAL CONSIDERATIONS

Because the SPBCloseDevice function moves or purges memory, you should not call it

at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBCloseDevice function are

Trap macro Selector

_SoundDispatch $05180014

noErr 0 No error
permErr –54 Device already open for writing
siBadDeviceName –228 Invalid device name

Trap macro Selector

_SoundDispatch $021C0014

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-33

RESULT CODES

Recording Sounds Directly From Sound Input Devices

The Sound Input Manager provides a number of routines that allow you to begin, pause,

resume, and stop recording directly from a sound input device. These low-level routines

do not display the sound recording dialog box to the user.

SPBRecord

You can use the SPBRecord function to record audio data into memory, either

synchronously or asynchronously.

FUNCTION SPBRecord (inParamPtr: SPBPtr; asynchFlag: Boolean):

OSErr;

inParamPtr
A pointer to a sound input parameter block.

asynchFlag
A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

You specify values and receive return values in the sound input parameter block.

Parameter block

Field descriptions

inRefNum The device reference number of the sound input device, as obtained
from the SPBOpenDevice function.

count On input, the number of bytes to record. If this field indicates a
longer recording time than the milliseconds field, then the

noErr 0 No error
siBadRefNum –229 Invalid reference number

→ inRefNum LongInt A reference number of a sound input
device.

↔ count LongInt The number of bytes of recording.
↔ milliseconds LongInt The number of milliseconds of

recording.
→ bufferLength LongInt The length of the buffer beginning at

bufferPtr.
→ bufferPtr Ptr A pointer to a buffer for sampled-sound

data.
→ completionRoutine ProcPtr A pointer to a completion routine.
→ interruptRoutine ProcPtr A pointer to an interrupt routine.
→ userLong LongInt Free for application’s use.
← error OSErr The error value returned after recording.
→ unused1 LongInt Reserved.

C H A P T E R 3

Sound Input Manager

3-34 Sound Input Manager Reference

milliseconds field is ignored. On output, this field indicates the
number of bytes actually recorded.

milliseconds On input, the number of milliseconds to record. If this field
indicates a longer recording time than the count field, then the
count field is ignored. On output, this field indicates the number of
milliseconds actually recorded.

bufferLength The number of bytes in the buffer specified by the bufferPtr
parameter. If this buffer length is too small to contain the amount of
sampled-sound data specified in the count and milliseconds
fields, then recording time is truncated so that the sampled-sound
data fits in the buffer.

bufferPtr A pointer to the buffer for the sampled-sound data, or NIL if you
wish to record sampled-sound data without saving it. On exit, this
buffer contains the sampled-sound data, which is interleaved for
stereo sound on a sample basis (or on a packet basis if the data is
compressed). This buffer contains only sampled-sound data, so if
you need a sampled sound header, you should set that up in a
buffer before calling SPBRecord and then record into the buffer
following the sound header.

completionRoutine
A pointer to a completion routine. This routine is called when the
recording terminates (either after you call the SPBStopRecording
function or when the prescribed limit is reached). The completion
routine is called only for asynchronous recording.

interruptRoutine
A pointer to an interrupt routine. The interrupt routine specified in
the interruptRoutine field is called by asynchronous recording
devices when their internal buffers are full.

userLong A long integer that your application can use to pass data to your
application’s completion or interrupt routines.

error On exit, a value greater than 0 while recording unless an error
occurs, in which case it contains a value less than 0 that indicates an
operating system error. Your application can poll this field to check
on the status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

unused1 Reserved. You should set this field to 0 before calling SPBRecord.

DESCRIPTION

The SPBRecord function starts recording into memory from a device specified in a

sound input parameter block. The sound data recorded is stored in the buffer specified

by the bufferPtr and bufferLength fields of the parameter block. Recording lasts

the longer of the times specified by the count and milliseconds fields of the

parameter block, or until the buffer is filled. Recording is asynchronous if the

asynchFlag parameter is TRUE and the specified sound input device supports

asynchronous recording.

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-35

If the bufferPtr field of the parameter block contains NIL, then the count,

milliseconds, and bufferLength fields are ignored, and the recording continues

indefinitely until you call the SPBStopRecording function. In this case, the audio data

is not saved anywhere; this feature is useful only if you want to do something in your

interrupt routine and do not want to save the audio data. However, if the recording is

synchronous and bufferPtr is NIL, SPBRecord returns the result code

siNoBufferSpecified.

The SPBRecord function returns the value that the error field of the parameter block

contains when recording finishes.

SPECIAL CONSIDERATIONS

You can call the SPBRecord function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBRecord function are

RESULT CODES

SEE ALSO

For an example of the use of the SPBRecord function, see Listing 3-1.

SPBRecordToFile

You can use the SPBRecordToFile function to record audio data into a file, either

synchronously or asynchronously.

FUNCTION SPBRecordToFile (fRefNum: Integer; inParamPtr: SPBPtr;

asynchFlag: Boolean): OSErr;

fRefNum The file reference number of an open file in which to place the recorded
sound data.

inParamPtr
A pointer to a sound input parameter block.

Trap macro Selector

_SoundDispatch $03200014

noErr 0 No error
siNoSoundInHardware –220 No sound input hardware available
siBadSoundInDevice –221 Invalid sound input device
siNoBufferSpecified –222 No buffer specified
siDeviceBusyErr –227 Sound input device is busy

C H A P T E R 3

Sound Input Manager

3-36 Sound Input Manager Reference

asynchFlag
A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

Field descriptions

inRefNum The device reference number of the sound input device, as obtained
from the SPBOpenDevice function.

count On input, the number of bytes to record. If this field indicates a
longer recording time than the milliseconds field, then the
milliseconds field is ignored. On output, the number of bytes
actually recorded.

milliseconds On input, the number of milliseconds to record. If this field
indicates a longer recording time than the count field, then the
count field is ignored. On output, the number of milliseconds
actually recorded.

completionRoutine
A pointer to a completion routine. This routine is called when the
recording terminates (after you call the SPBStopRecording
function, when the prescribed limit is reached, or after an error
occurs). The completion routine is called only for asynchronous
recording.

interruptRoutine
Unused. You should set this field to NIL before calling
SPBRecordToFile.

userLong A long integer that your application can use to pass data to your
application’s completion or interrupt routines.

error On exit, the error that occurred during recording. This field contains
the number 1 while recording unless an error occurs, in which case
it contains a value less than 0 that indicates an operating system
error. Your application can poll this field to check on the status of an
asynchronous recording. If recording terminates without an error,
this field contains 0.

unused1 Reserved. You should set this field to 0 before calling the
SPBRecordToFile function.

→ inRefNum LongInt A reference number of a sound input
device.

↔ count LongInt The number of bytes of recording.
↔ milliseconds LongInt The number of milliseconds of

recording.
→ completionRoutine ProcPtr A pointer to a completion routine.
→ interruptRoutine ProcPtr Unused.
→ userLong LongInt Free for application’s use.
← error OSErr The error value returned after recording.
→ unused1 LongInt Reserved.

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-37

DESCRIPTION

The SPBRecordToFile function starts recording from the specified device into a file.

The sound data recorded is simply stored in the file, so it is up to your application to

insert whatever headers are needed to play the sound with the Sound Manager. Your

application must open the file specified by the fRefNum parameter with write access

before calling SPBRecordToFile, and it must eventually close that file.

The fields in the parameter block specified by the inParamPtr parameter are identical

to the fields in the parameter block passed to the SPBRecord function, except that the

bufferLength and bufferPtr fields are not used. The interruptRoutine field is

ignored by SPBRecordToFile because SPBRecordToFile copies data returned by the

sound input device driver to disk during the sound input interrupt routine, but you

should initialize this field to NIL.

The SPBRecordToFile function writes samples to disk in the same format that they are

read in from the sound input device. If compression is enabled, then the samples written

to the file are compressed. Multiple channels of sound are interleaved on a sample basis

(or, for compressed sound data, on a packet basis). When you are recording 8-bit audio

data to an AIFF file, you must set the siTwosComplementOnOff flag to so that the

data is stored on disk in the two’s-complement format. If you don’t store the data in this

format, it sounds distorted when you play it back.

If any errors occur during the file writing process, recording is suspended. All File

Manager errors are returned through the function’s return value if the routine is called

synchronously. If the routine is called asynchronously and the completion routine is not

NIL, the completion routine is called and is passed a single parameter on the stack that

points to the sound input parameter block; any errors are returned in the error field of

the sound input parameter block.

The SPBRecordToFile function returns the value that the error field of the parameter

block contains when recording finishes.

SPECIAL CONSIDERATIONS

Because the SPBRecordToFile function moves or purges memory, you should not call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBRecordToFile function are

Trap macro Selector

_SoundDispatch $04240014

C H A P T E R 3

Sound Input Manager

3-38 Sound Input Manager Reference

RESULT CODES

SPBPauseRecording

You can use the SPBPauseRecording function to pause recording from a sound input

device.

FUNCTION SPBPauseRecording (inRefNum: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

DESCRIPTION

The SPBPauseRecording function pauses recording from the device specified by

the inRefNum parameter. The recording must be asynchronous for this call to have

any effect.

SPECIAL CONSIDERATIONS

You can call the SPBPauseRecording function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBPauseRecording function are

RESULT CODES

noErr 0 No error
permErr –54 Attempt to open locked file for writing
siNoSoundInHardware –220 No sound input hardware available
siBadSoundInDevice –221 Invalid sound input device
siHardDriveTooSlow –224 Hard drive too slow to record

Trap macro Selector

_SoundDispatch $02280014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-39

SPBResumeRecording

You can use the SPBResumeRecording function to resume recording from a sound

input device.

FUNCTION SPBResumeRecording (inRefNum: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

DESCRIPTION

The SPBResumeRecording function resumes recording from the device specified by

the inRefNum parameter. Recording on that device must previously have been paused

by a call to the SPBPauseRecording function for SPBResumeRecording to have

any effect.

SPECIAL CONSIDERATIONS

You can call the SPBResumeRecording function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBResumeRecording function are

RESULT CODES

SPBStopRecording

You can use the SPBStopRecording function to end a recording from a sound input

device.

FUNCTION SPBStopRecording (inRefNum: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

Trap macro Selector

_SoundDispatch $022C0014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

C H A P T E R 3

Sound Input Manager

3-40 Sound Input Manager Reference

DESCRIPTION

The SPBStopRecording function stops recording from the device specified by the

inRefNum parameter. The recording must be asynchronous for SPBStopRecording

to have any effect. When you call SPBStopRecording, the sound input completion

routine specified in the completionRoutine field of the sound input parameter block

is called and the error field of that parameter block is set to abortErr. If you are

writing a device driver, you will receive a KillIO Status call. See the section “Writing

a Sound Input Device Driver” beginning on page 3-13 for more information.

SPECIAL CONSIDERATIONS

You can call the SPBStopRecording function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBStopRecording function are

RESULT CODES

SPBGetRecordingStatus

You can use SPBGetRecordingStatus to obtain recording status information about a

sound input device.

FUNCTION SPBGetRecordingStatus (inRefNum: LongInt;

VAR recordingStatus: Integer;

VAR meterLevel: Integer;

VAR totalSamplesToRecord: LongInt;

VAR numberOfSamplesRecorded: LongInt;

VAR totalMsecsToRecord: LongInt;

VAR numberOfMsecsRecorded: LongInt):

OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

recordingStatus
The status of the recording. While the input device is recording, this
parameter is set to a number greater than 0. When a recording terminates
without an error, this parameter is set to 0. When an error occurs during

Trap macro Selector

_SoundDispatch $02300014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-41

recording or the recording has been terminated by a call to the
SPBStopRecording function, this parameter is less than 0 and contains
an error code.

meterLevel
The current input signal level. This level ranges from 0 to 255.

totalSamplesToRecord
The total number of samples to record, including those samples
already recorded.

numberOfSamplesRecorded
The number of samples already recorded.

totalMsecsToRecord
The total duration of recording time, including recording time
already elapsed.

numberOfMsecsRecorded
The amount of recording time that has elapsed.

DESCRIPTION

The SPBGetRecordingStatus function returns, in its second through seventh

parameters, information about the recording on the device specified by the inRefNum

parameter.

SPECIAL CONSIDERATIONS

You can call the SPBGetRecordingStatus function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBGetRecordingStatus function are

RESULT CODES

Manipulating Device Settings

You can use the two functions SPBGetDeviceInfo and SPBSetDeviceInfo to read

and change the settings of a sound input device.

Trap macro Selector

_SoundDispatch $0E340014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

C H A P T E R 3

Sound Input Manager

3-42 Sound Input Manager Reference

SPBGetDeviceInfo

You can use the SPBGetDeviceInfo function to get information about the settings of a

sound input device.

FUNCTION SPBGetDeviceInfo (inRefNum: LongInt; infoType: OSType;

infoData: Ptr): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

infoType A sound input device information selector that specifies the type of
information you need.

infoData A pointer to a buffer in which information should be returned. This buffer
must be large enough for the type of information specified in the
infoType parameter.

DESCRIPTION

The SPBGetDeviceInfo function returns information about the sound input device

specified by the inRefNum parameter. The type of information you want is specified in

the infoType parameter. The available sound input device information selectors are

listed in “Sound Input Device Information Selectors” beginning on page 3-18. The

information is copied into the buffer specified by the infoData parameter.

SPECIAL CONSIDERATIONS

Because the SPBGetDeviceInfo function might move memory, you should not call it

at interrupt time. Check the selector description of the selector you want to use to see if it

moves memory before calling the SPBGetDeviceInfo function. Most of the selectors

do not move memory and are therefore safe to use at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBGetDeviceInfo function are

RESULT CODES

Trap macro Selector

_SoundDispatch $06380014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
siUnknownInfoType –231 Unknown type of information

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-43

SEE ALSO

Listing 3-2 on page 3-12 shows an example that uses the SPBGetDeviceInfo function

to get the name of a sound input device driver.

SPBSetDeviceInfo

You can use the SPBSetDeviceInfo function to set information in a sound input

device.

FUNCTION SPBSetDeviceInfo (inRefNum: LongInt; infoType: OSType;

 infoData: Ptr): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

infoType A sound input device information selector that specifies the type of
information you need.

infoData A pointer to a buffer. This buffer can contain information on entry, and
information might be returned on exit. This buffer must be large enough
for the type of information specified in the infoType parameter, and the
data in the buffer must be set to appropriate values if information needs
to be passed in to the SPBSetDeviceInfo function.

DESCRIPTION

The SPBSetDeviceInfo function sets information about the sound input device

specified by the inRefNum parameter, based on the data in the buffer specified by the

infoData parameter.

The type of setting you wish to change is specified in the infoType parameter. The

sound input device information selectors are listed in “Sound Input Device Information

Selectors” beginning on page 3-18.

SPECIAL CONSIDERATIONS

Because the SPBSetDeviceInfo function might move memory, you should not call it

at interrupt time. Check the selector description of the selector you want to use to see if it

moves memory before calling the SPBGetDeviceInfo function. Most of the selectors

do not move memory and are therefore safe to use at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSetDeviceInfo function are

Trap macro Selector

_SoundDispatch $063C0014

C H A P T E R 3

Sound Input Manager

3-44 Sound Input Manager Reference

RESULT CODES

Constructing Sound Resource and File Headers

The Sound Input Manager provides two functions, SetupSndHeader and

SetupAIFFHeader, to help you set up headers for sound resources and sound files.

SetupSndHeader

You can use the SetupSndHeader function to construct a sound resource containing

sampled sound that can be passed to the SndPlay function.

FUNCTION SetupSndHeader (sndHandle: Handle;

numChannels: Integer;

sampleRate: Fixed;

sampleSize: Integer;

compressionType: OSType;

baseFrequency: Integer;

numBytes: LongInt;

VAR headerLen: Integer): OSErr;

sndHandle A handle to a block of memory that is at least large enough to store the
sound resource header information. The handle is not resized in any way
upon successful completion of SetupSndHeader. The
SetupSndHeader function simply fills the relocatable block specified by
this parameter with the header information needed for a format 1
'snd ' resource, including the sound resource header, the list of sound
commands, and a sampled sound header. It is your application’s
responsibility to append the desired sampled-sound data.

numChannels
The number of channels for the sound; one channel is equivalent to
monaural sound and two channels are equivalent to stereo sound.

sampleRate
The rate at which the sound was recorded. The sample rate is declared as
a Fixed data type. In order to accommodate sample rates greater than
32 kHz, the most significant bit is not treated as a sign bit; instead, that bit
is interpreted as having the value 32,768.

sampleSize
The sample size for the original sound (that is, bits per sample).

noErr 0 No error
permErr –54 Attempt to open locked file for writing
siBadSoundInDevice –221 Invalid sound input device
siDeviceBusyErr –227 Sound input device is busy
siUnknownInfoType –231 Unknown type of information

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-45

compressionType
The compression type for the sound ('NONE', 'MAC3', 'MAC6', or other
third-party types).

baseFrequency
The base frequency for the sound, expressed as a MIDI note value.

numBytes The number of bytes of audio data that are to be stored in the handle.
(This value is not necessarily the same as the number of samples in
the sound.)

headerLen On exit, the size (in bytes) of the 'snd ' resource header that is created.
In no case will this length exceed 100 bytes. This field allows you to put
the audio data right after the header in the relocatable block specified by
the sndHandle parameter. The value returned depends on the type of
sound header created.

DESCRIPTION

The SetupSndHeader function creates a format 1 'snd ' resource for a sampled

sound. The resource contains a sound resource header that links the sound to the

sampled synthesizer, a single sound command (a bufferCmd command to play the

accompanying data), and a sampled sound header. You can use SetupSndHeader to

construct a sampled sound header that can be passed to the Sound Manager’s SndPlay

function or stored as an 'snd ' resource. After calling the SetupSndHeader function,

your application should place the sampled-sound data directly after the sampled sound

header so that, in essence, the sampled sound header’s final field contains the

sound data.

The sampled sound is in one of three formats depending on several of the parameters

passed. Table 3-1 shows how SetupSndHeader determines what kind of sound header

to create.

A good way to use this function is to create a handle in which you want to store a

sampled sound, then call SetupSndHeader with the numBytes parameter set to 0 to

see how much room the header for that sound will occupy and hence where to append

the audio data. Then record the data into the handle and call SetupSndHeader again

with numBytes set to the correct amount of sound data recorded. The handle filled out

in this way can be passed to SndPlay to play the sound.

Table 3-1 The sampled sound header format used by SetupSndHeader

compressionType numChannels sampleSize Sampled sound header format

'NONE' 1 8 SoundHeader

'NONE' 1 16 ExtSoundHeader

'NONE' 2 any ExtSoundHeader

 not 'NONE' any any CmpSoundHeader

C H A P T E R 3

Sound Input Manager

3-46 Sound Input Manager Reference

SPECIAL CONSIDERATIONS

You cannot call the SetupSndHeader function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetupSndHeader function are

RESULT CODES

SEE ALSO

For an example that uses the SetupSndHeader function to set up a sound header

before recording, see Listing 3-1 on page 3-7.

SetupAIFFHeader

You can use the SetupAIFFHeader function to set up a file that can subsequently be

played by SndStartFilePlay.

FUNCTION SetupAIFFHeader (fRefNum: Integer;

numChannels: Integer;

 sampleRate: Fixed;

sampleSize: Integer;

compressionType: OSType;

numBytes: LongInt;

 numFrames: LongInt): OSErr;

fRefNum A file reference number of a file that is open for writing.

numChannels
The number of channels for the sound; one channel is equivalent to
monaural sound and two channels are equivalent to stereo sound.

sampleRate
The rate at which the sound was recorded. The sample rate is declared as
a Fixed data type. In order to accommodate sample rates greater than 32
kHz, the most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

sampleSize
The sample size for the original sound (that is, bits per sample).

Trap macro Selector

_SoundDispatch $0D480014

noErr 0 No error
siInvalidCompression –223 Invalid compression type

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-47

compressionType
The compression type for the sound ('NONE', 'MAC3', 'MAC6', or other
third-party types).

numBytes The number of bytes of audio data that are to be stored in the Common
Chunk of the AIFF or AIFF-C file.

numFrames The number of sample frames for the sample sound. If you are using a
compression type defined by Apple, you can pass 0 in this field and the
appropriate value for this field will be computed automatically.

DESCRIPTION

The SetupAIFFHeader function creates an AIFF or AIFF-C file header, depending on

the parameters passed to it:

■ Uncompressed sounds of any type are stored in AIFF format (that is, the
compressionType parameter is 'NONE').

■ Compressed sounds of any type are stored in AIFF-C format (that is, the
compressionType parameter is different from 'NONE').

Note

The SetupAIFFHeader function might format a sound file as an AIFF
file even if the File Manager file type of a file is 'AIFC'. The Sound
Manager will still play such files correctly. ◆

The AIFF header information is written starting at the current file position of the file

specified by the fRefNum parameter, and the file position is left at the end of the header

upon completion. The SetupAIFFHeader function creates a Form Chunk, a Format

Version Chunk, a Common Chunk, and a Sound Data chunk, but it does not put any

sound data at the end of the Sound Data Chunk.

A good way to use this routine is to create a file that you want to store a sound in, then

call SetupAIFFHeader with numBytes set to 0 to position the file to be ready to write

the audio data. Then record the data to the file, set the file position to the beginning of

the file, and call SetupAIFFHeader again with numBytes set to the correct amount of

sound data recorded. The file created in this way can be passed to the

SndStartFilePlay function to play the sound.

SPECIAL CONSIDERATIONS

If recording produces an odd number of bytes of sound data, you must add a pad byte to

make the total number of bytes even.

Because the SetupAIFFHeader function moves memory, you should not call it at

interrupt time.

C H A P T E R 3

Sound Input Manager

3-48 Sound Input Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetupAIFFHeader function are

RESULT CODES

Registering Sound Input Devices

Sound input device drivers must call the SPBSignInDevice function to register with

the Sound Input Manager before they can use its sound input services. You might call

this routine at system startup time from within an extension to install a sound input

device driver. Your application can generate a list of registered sound input devices by

using the SPBGetIndexedDevice function. You can cancel the registration of your

driver, thus removing it from the Sound control panel and making it inaccessible, by

calling the SPBSignOutDevice function.

SPBSignInDevice

You can register a sound input device by calling the SPBSignInDevice function.

FUNCTION SPBSignInDevice (deviceRefNum: Integer;

deviceName: Str255): OSErr;

deviceRefNum
The device driver reference number of the sound input device to register
with the Sound Input Manager.

deviceName
The device’s name as it is to appear to the user in the Sound In control
panel (which is not the name of the driver used by the Device Manager).

DESCRIPTION

The SPBSignInDevice function registers with the Sound Input Manager the device

whose driver reference number is deviceRefNum.

The deviceName parameter specifies this device’s name as it is to appear to the user in

the Sound In control panel (which is not the name of the driver itself). Accordingly, the

name should be as descriptive as possible. You should call SPBSignInDevice after you

have already opened your driver by calling normal Device Manager routines.

Trap macro Selector

_SoundDispatch $0B4C0014

noErr 0 No error
siInvalidCompression –223 Invalid compression type

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-49

SPECIAL CONSIDERATIONS

Because the SPBSignInDevice function moves or purges memory, you should not call

it at interrupt time. You can, however, call it at system startup time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSignInDevice function are

RESULT CODES

SPBGetIndexedDevice

You can use the SPBGetIndexedDevice function to help generate a list of sound input

devices.

FUNCTION SPBGetIndexedDevice (count: Integer;

VAR deviceName: Str255;

VAR deviceIconHandle: Handle):

OSErr;

count The index number of the sound input device you wish to obtain
information about.

deviceName
On exit, the name of the sound input device specified by the count
parameter.

deviceIconHandle
On exit, a handle to the icon of the sound input device specified by the
count parameter. The memory for this icon is allocated automatically,
but your application must dispose of it.

DESCRIPTION

The SPBGetIndexedDevice function returns the name and icon of the device whose

index is specified in the count parameter. Your application can create a list of sound

input devices by calling this function with a count starting at 1 and incrementing it by

1 until the function returns siBadSoundInDevice.

Because the Sound In control panel allows the user to select a sound input device, most

applications should not use this function. Your application might need to use this

function if it allows the user to record from more than one sound input device at once.

Trap macro Selector

_SoundDispatch $030C0014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

C H A P T E R 3

Sound Input Manager

3-50 Sound Input Manager Reference

SPECIAL CONSIDERATIONS

Because the SPBGetIndexedDevice function allocates memory, you should not call it

at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBGetIndexedDevice function are

RESULT CODES

SPBSignOutDevice

You can use the SPBSignOutDevice function to cancel the registration of a device you

have previously registered with the SPBSignInDevice function.

FUNCTION SPBSignOutDevice (deviceRefNum: Integer): OSErr;

deviceRefNum
The driver reference number of the device you wish to sign out.

DESCRIPTION

The SPBSignOutDevice function cancels the registration of the device whose driver

reference number is deviceRefNum; the device is unregistered from the Sound Input

Manager’s list of available sound input devices and no longer appears in the Sound In

control panel.

Ordinarily, you should not need to use the SPBSignOutDevice function. You might use

it if your device driver detects that a sound input device is not functioning correctly or

has been disconnected.

SPECIAL CONSIDERATIONS

Because the SPBSignOutDevice function moves or purges memory, you should not

call it at interrupt time.

Trap macro Selector

_SoundDispatch $05140014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-51

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSignOutDevice function are

RESULT CODES

Converting Between Milliseconds and Bytes

The Sound Input Manager provides two routines that allow you to convert between

millisecond and byte recording values.

SPBMilliSecondsToBytes

You can use the SPBMilliSecondsToBytes function to determine how many bytes a

recording of a certain duration will use.

FUNCTION SPBMilliSecondsToBytes (inRefNum: LongInt;

VAR milliseconds: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

milliseconds
On entry, the duration of the recording in milliseconds. On exit, the
number of bytes that sampled-sound data would occupy for a recording
of the specified duration on the device specified by the inRefNum
parameter.

DESCRIPTION

The SPBMilliSecondsToBytes function reports how many bytes are required to store

a recording of duration milliseconds, given the input device’s current sample rate,

sample size, number of channels, and compression factor.

SPECIAL CONSIDERATIONS

You can call the SPBMilliSecondsToBytes function at interrupt time.

Trap macro Selector

_SoundDispatch $01100014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
siDeviceBusyErr –227 Sound input device is busy

C H A P T E R 3

Sound Input Manager

3-52 Sound Input Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBMilliSecondsToBytes function are

RESULT CODES

SPBBytesToMilliSeconds

You can use the SPBBytesToMilliSeconds function to determine the maximum

duration of a recording that can fit in a buffer of a certain size.

FUNCTION SPBBytesToMilliSeconds (inRefNum: LongInt;

VAR byteCount: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

byteCount On entry, a value in bytes. On exit, the number of milliseconds of
recording on the device specified by the inRefNum parameter that would
be necessary to fill a buffer of such a size.

DESCRIPTION

The SPBBytesToMilliSeconds function reports how many milliseconds of audio

data can be recorded in a buffer that is byteCount bytes long, given the input device’s

current sample rate, sample size, number of channels, and compression factor.

SPECIAL CONSIDERATIONS

You can call the SPBBytesToMilliSeconds function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBBytesToMilliSeconds function are

RESULT CODES

Trap macro Selector

_SoundDispatch $04400014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

Trap macro Selector

_SoundDispatch $04440014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-53

Obtaining Information

The SPBVersion function allows you to determine the version of the Sound

Input Manager.

SPBVersion

You can use the SPBVersion function to determine the version of the sound input tools

available on a machine.

FUNCTION SPBVersion: NumVersion;

DESCRIPTION

The SPBVersion function returns a version number that contains the same information

as in the first 4 bytes of a 'vers' resource or a NumVersion data type. For a description

of the version record, see the chapter “Sound Manager” in this book.

SPECIAL CONSIDERATIONS

You can call the SPBVersion function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBVersion function are

SEE ALSO

For a complete discussion of 'vers' resources, see the chapter “Finder Interface” in

Inside Macintosh: Macintosh Toolbox Essentials.

Application-Defined Routines

This section describes the routines that your application or device driver might need to

define. Your application can define a sound input completion routine to perform an

action when recording finishes, and your application can define a sound input interrupt

routine to manipulate sound data during recording.

Trap macro Selector

_SoundDispatch $00000014

C H A P T E R 3

Sound Input Manager

3-54 Sound Input Manager Reference

Sound Input Completion Routines

You can specify a sound input completion routine in the completionRoutine field of a

sound input parameter block that your application uses to initiate asynchronous

recording directly from a device.

MySICompletionRoutine

A sound input completion routine has the following syntax:

PROCEDURE MySICompletionRoutine (inParamPtr: SPBPtr);

inParamPtr
A pointer to the sound input parameter block that was used to initiate an
asynchronous recording.

DESCRIPTION

The Sound Input Manager executes your sound input completion routine after recording

terminates either because your application has called the SPBStopRecording function

or because the prescribed limit is reached. The completion routine is called only for

asynchronous recording.

A common use of a sound input completion routine is to set a global variable that alerts

the application that it should dispose of a sound input parameter block that it had

allocated for an asynchronous sound recording.

SPECIAL CONSIDERATIONS

Because a sound input completion routine is executed at interrupt time, it should not

allocate, move, or purge memory (either directly or indirectly) and should not depend

on the validity of handles to unlocked blocks.

If your sound input completion routine accesses your application’s global variables, it

must ensure that the A5 register contains the address of the boundary between the

application global variables and the application parameters. Your application can pass

the value of the A5 register to the sound input completion routine in the userLong field

of the sound input parameter block. For more information on ensuring the validity of the

A5 register, see the chapter “Memory Management Utilities” in Inside Macintosh: Memory.

Your sound input completion routine can determine whether an error occurred during

recording by examining the error field of the sound input parameter block specified by

inParamPtr. Your sound input completion routine can change the value of that field to

alert the application that some other error has occurred.

C H A P T E R 3

Sound Input Manager

Sound Input Manager Reference 3-55

ASSEMBLY-LANGUAGE INFORMATION

Because a sound input completion routine is called at interrupt time, it must preserve all

registers other than A0–A1 and D0–D2.

RESULT CODES

Sound Input Interrupt Routines

You can specify a sound input interrupt routine in the interruptRoutine field of

the sound input parameter block that your application uses to initiate asynchronous

recording directly from a device. Because the SPBRecordToFile function uses sound

input interrupt routines to enable it to record sound data to disk during recording, you

can use sound input interrupt routines only with the SPBRecord function.

MySIInterruptRoutine

A sound input interrupt routine has the following syntax:

PROCEDURE MySIInterruptRoutine;

DESCRIPTION

A sound input device driver executes the sound input interrupt routine associated with

an asynchronous sound recording whenever the driver’s internal buffers are full. The

internal buffers contain raw samples taken directly from the input device. The interrupt

routine can thus modify the samples in the buffer in any way it requires. After your

sound input interrupt routine finishes processing the data, the sound input device

driver compresses the data (if compression is enabled) and copies the data into your

application’s buffer.

SPECIAL CONSIDERATIONS

If your sound input interrupt routine accesses your application’s global variables, it

must ensure that the A5 register contains the address of the boundary between the

application global variables and the application parameters. Your application can pass

the value of the A5 register to the sound input interrupt routine in the userLong field of

the sound input parameter block. For more information on ensuring the validity of the

A5 register, see the chapter “Memory Management Utilities” in Inside Macintosh: Memory.

noErr 0 No error
abortErr –27 Asynchronous recording was cancelled
siNoSoundInHardware –220 No sound input hardware available
siBadSoundInDevice –221 Invalid sound input device
siNoBufferSpecified –222 No buffer specified
siDeviceBusyErr –227 Sound input device is busy

C H A P T E R 3

Sound Input Manager

3-56 Sound Input Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

Sound input interrupt routines are sometimes written in assembly language to maximize

real-time performance in recording sound. On entry, registers are set up as follows:

If you write a sound input interrupt routine in a high-level language like Pascal or C,

you might need to write inline code to copy variables from the registers into local

variables that your application defines.

Because a sound input interrupt routine is called at interrupt time, it must preserve

all registers.

Registers on entry

A0 Address of the sound parameter block passed to SPBRecord

A1 Address of the start of the sample buffer

D0 Peak amplitude for sample buffer if metering is on

D1 Size of the sample buffer in bytes

C H A P T E R 3

Sound Input Manager

Summary of the Sound Input Manager 3-57

Summary of the Sound Input Manager

Pascal Summary

Constants

CONST

gestaltSoundAttr = 'snd ';{sound attributes selector}

{Gestalt response bit flags related to sound input}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

{available information selectors for sound input device drivers}

siActiveChannels = 'chac'; {channels active}

siActiveLevels = 'lmac'; {levels active}

siAGCOnOff = 'agc '; {automatic gain control state}

siAsync = 'asyn'; {asynchronous capability}

siChannelAvailable = 'chav'; {number of channels available}

siCompressionAvailable = 'cmav'; {compression types available}

siCompressionFactor = 'cmfa'; {current compression factor}

siCompressionHeader = 'cmhd'; {return compression header}

siCompressionNames = 'cnam'; {return compression type names}

siCompressionType = 'comp'; {current compression type}

siContinuous = 'cont'; {continuous recording}

siDeviceBufferInfo = 'dbin'; {size of interrupt buffer}

siDeviceConnected = 'dcon'; {input device connection status}

siDeviceIcon = 'icon'; {input device icon}

siDeviceName = 'name'; {input device name}

siInputGain = 'gain'; {input gain level}

siInputSource = 'sour'; {input source selector}

siInputSourceNames = 'snam'; {input source names}

siLevelMeterOnOff = 'lmet'; {level meter state}

siNumberChannels = 'chan'; {current number of channels}

C H A P T E R 3

Sound Input Manager

3-58 Summary of the Sound Input Manager

siOptionsDialog = 'optd'; {display options dialog box}

siPlayThruOnOff = 'plth'; {play-through state}

siRecordingQuality = 'qual'; {recording quality}

siSampleRate = 'srat'; {current sample rate}

siSampleRateAvailable = 'srav'; {sample rates available}

siSampleSize = 'ssiz'; {current sample size}

siSampleSizeAvailable = 'ssav'; {sample sizes available}

siStereoInputGain = 'sgai'; {stereo input gain level}

siTwosComplementOnOff = 'twos'; {two's complement state}

siVoxRecordInfo = 'voxr'; {VOX record parameters}

siVoxStopInfo = 'voxs'; {VOX stop parameters}

{internal information selectors for sound input device drivers}

siCloseDriver = 'clos'; {release driver}

siInitializeDriver = 'init'; {initialize driver}

siPauseRecording = 'paus'; {pause recording}

siUserInterruptProc = 'user'; {set sound input interrupt routine}

{sound-recording qualities}

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

{sound input device permissions}

siReadPermission = 0; {open device for reading}

siWritePermission = 1; {open device for reading/writing}

{device-connection states}

siDeviceIsConnected = 1; {device is connected and ready}

siDeviceNotConnected = 0; {device is not connected}

siDontKnowIfConnected = -1; {can't tell if device is connected}

Data Types

Sound Input Parameter Block

TYPE SPB =

RECORD

inRefNum: LongInt; {reference number of input device}

count: LongInt; {number of bytes to record}

milliseconds: LongInt; {number of milliseconds to record}

bufferLength: LongInt; {length of buffer to record into}

bufferPtr: Ptr; {pointer to buffer to record into}

completionRoutine: ProcPtr; {pointer to a completion routine}

C H A P T E R 3

Sound Input Manager

Summary of the Sound Input Manager 3-59

interruptRoutine: ProcPtr; {pointer to an interrupt routine}

userLong: LongInt; {for application's use}

error: OSErr; {error returned after recording}

unused1: LongInt; {reserved}

END;

SPBPtr = ^SPB;

Sound Input Manager Routines

Recording Sounds

FUNCTION SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandle: Handle): OSErr;

FUNCTION SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType; fRefNum: Integer): OSErr;

Opening and Closing Sound Input Devices

FUNCTION SPBOpenDevice (deviceName: Str255; permission: Integer;
VAR inRefNum: LongInt): OSErr;

FUNCTION SPBCloseDevice (inRefNum: LongInt): OSErr;

Recording Sounds Directly From Sound Input Devices

FUNCTION SPBRecord (inParamPtr: SPBPtr; asynchFlag: Boolean):
OSErr;

FUNCTION SPBRecordToFile (fRefNum: Integer; inParamPtr: SPBPtr;
asynchFlag: Boolean): OSErr;

FUNCTION SPBPauseRecording (inRefNum: LongInt): OSErr;

FUNCTION SPBResumeRecording
(inRefNum: LongInt): OSErr;

FUNCTION SPBStopRecording (inRefNum: LongInt): OSErr;

FUNCTION SPBGetRecordingStatus
(inRefNum: LongInt;
VAR recordingStatus: Integer;
VAR meterLevel: Integer;
VAR totalSamplesToRecord: LongInt;
VAR numberOfSamplesRecorded: LongInt;
VAR totalMsecsToRecord: LongInt;
VAR numberOfMsecsRecorded: LongInt): OSErr;

Manipulating Device Settings

FUNCTION SPBGetDeviceInfo (inRefNum: LongInt; infoType: OSType;
infoData: Ptr): OSErr;

C H A P T E R 3

Sound Input Manager

3-60 Summary of the Sound Input Manager

FUNCTION SPBSetDeviceInfo (inRefNum: LongInt; infoType: OSType;
infoData: Ptr): OSErr;

Constructing Sound Resource and File Headers

FUNCTION SetupSndHeader (sndHandle: Handle; numChannels: Integer;
sampleRate: Fixed; sampleSize: Integer;
compressionType: OSType;
baseFrequency: Integer; numBytes: LongInt;
VAR headerLen: Integer): OSErr;

FUNCTION SetupAIFFHeader (fRefNum: Integer; numChannels: Integer;
sampleRate: Fixed; sampleSize: Integer;
compressionType: OSType; numBytes: LongInt;
numFrames: LongInt): OSErr;

Registering Sound Input Devices

FUNCTION SPBSignInDevice (deviceRefNum: Integer; deviceName: Str255):
OSErr;

FUNCTION SPBGetIndexedDevice
(count: Integer; VAR deviceName: Str255;
VAR deviceIconHandle: Handle): OSErr;

FUNCTION SPBSignOutDevice (deviceRefNum: Integer): OSErr;

Converting Between Milliseconds and Bytes

FUNCTION SPBMilliSecondsToBytes
(inRefNum: LongInt; VAR milliseconds: LongInt):
OSErr;

FUNCTION SPBBytesToMilliSeconds
(inRefNum: LongInt; VAR byteCount: LongInt):
OSErr;

Obtaining Information

FUNCTION SPBVersion : NumVersion;

Application-Defined Routines

PROCEDURE MySICompletionRoutine
(inParamPtr: SPBPtr);

PROCEDURE MySIInterruptRoutine;

C H A P T E R 3

Sound Input Manager

Summary of the Sound Input Manager 3-61

C Summary

Constants

#define gestaltSoundAttr 'snd ' /*sound attributes selector*/

enum {

/*Gestalt response bit flags related to sound input*/

gestaltSoundIOMgrPresent = 3, /*sound input routines available*/

gestaltBuiltInSoundInput = 4, /*built-in input hw available*/

gestaltHasSoundInputDevice = 5, /*sound input device available*/

gestaltPlayAndRecord = 6, /*built-in hw can play while recording*/

gestalt16BitSoundIO = 7, /*built-in hw can handle 16-bit data*/

gestaltStereoInput = 8, /*built-in hw can record stereo sounds*/

gestaltLineLevelInput = 9 /*built-in input hw needs line level*/

};

/*available information selectors for sound input device drivers*/

#define siActiveChannels 'chac' /*channels active*/

#define siActiveLevels 'lmac' /*levels active*/

#define siAGCOnOff 'agc ' /*automatic gain control state*/

#define siAsync 'asyn' /*asynchronous capability*/

#define siChannelAvailable 'chav' /*number of channels available*/

#define siCompressionAvailable'cmav' /*compression types available*/

#define siCompressionFactor 'cmfa' /*current compression factor*/

#define siCompressionHeader 'cmhd' /*return compression header*/

#define siCompressionNames 'cnam' /*return compression type names*/

#define siCompressionType 'comp' /*current compression type*/

#define siContinuous 'cont' /*continuous recording*/

#define siDeviceBufferInfo 'dbin' /*size of interrupt buffer*/

#define siDeviceConnected 'dcon' /*input device connection status*/

#define siDeviceIcon 'icon' /*input device icon*/

#define siDeviceName 'name' /*input device name*/

#define siInputGain 'gain' /*input gain level*/

#define siInputSource 'sour' /*input source selector*/

#define siInputSourceNames 'snam' /*input source names*/

#define siLevelMeterOnOff 'lmet' /*level meter state*/

#define siNumberChannels 'chan' /*current number of channels*/

#define siOptionsDialog 'optd' /*display options dialog box*/

#define siPlayThruOnOff 'plth' /*play-through state*/

#define siRecordingQuality 'qual' /*recording quality*/

#define siSampleRate 'srat' /*current sample rate*/

#define siSampleRateAvailable 'srav' /*sample rates available*/

C H A P T E R 3

Sound Input Manager

3-62 Summary of the Sound Input Manager

#define siSampleSize 'ssiz' /*current sample size*/

#define siSampleSizeAvailable 'ssav' /*sample sizes available*/

#define siStereoInputGain 'sgai' /*stereo input gain level*/

#define siTwosComplementOnOff 'twos' /*two's complement state*/

#define siVoxRecordInfo 'voxr' /*VOX record parameters*/

#define siVoxStopInfo 'voxs' /*VOX stop parameters*/

/*internal information selectors for sound input device drivers*/

#define siCloseDriver 'clos' /*release driver*/

#define siInitializeDriver 'init' /*initialize driver*/

#define siPauseRecording 'paus' /*pause recording*/

#define siUserInterruptProc 'user' /*set sound input interrupt routine*/

/*sound-recording qualities*/

#define siBestQuality 'best' /*the best quality available*/

#define siBetterQuality 'betr' /*a quality better than good*/

#define siGoodQuality 'good' /*a good quality*/

/*sound input device permissions*/

enum {

siReadPermission = 0, /*open device for reading*/

siWritePermission = 1 /*open device for reading/writing*/

};

/*device-connection states*/

enum {

siDeviceIsConnected = 1, /*device is connected and ready*/

siDeviceNotConnected = 0, /*device is not connected*/

siDontKnowIfConnected = -1 /*can't tell if device is connected*/

};

Data Types

Sound Input Parameter Block

struct SPB {

long inRefNum; /*reference number of input device*/

unsigned long count; /*number of bytes to record*/

unsigned long milliseconds; /*number of milliseconds to record*/

unsigned long bufferLength; /*length of buffer to record into*/

Ptr bufferPtr; /*pointer to buffer to record into*/

ProcPtr completionRoutine;

/*pointer to a completion routine*/

ProcPtr interruptRoutine;

C H A P T E R 3

Sound Input Manager

Summary of the Sound Input Manager 3-63

/*pointer to an interrupt routine*/

long userLong; /*for application's use*/

OSErr error; /*error returned after recording*/

long unused1; /*reserved*/

};

typedef struct SPB SPB;

typedef SPB *SPBPtr;

Sound Input Manager Routines

Recording Sounds

pascal OSErr SndRecord (ModalFilterProcPtr filterProc, Point corner,
OSType quality, Handle *sndHandle);

pascal OSErr SndRecordToFile
(ModalFilterProcPtr filterProc, Point corner,
OSType quality, short fRefNum);

Opening and Closing Sound Input Devices

pascal OSErr SPBOpenDevice (ConstStr255Param deviceName, short permission,
long *inRefNum);

pascal OSErr SPBCloseDevice
(long inRefNum);

Recording Sounds Directly From Sound Input Devices

pascal OSErr SPBRecord (SPBPtr inParamPtr, Boolean asynchFlag);

pascal OSErr SPBRecordToFile
(short fRefNum, SPBPtr inParamPtr,
Boolean asynchFlag);

pascal OSErr SPBPauseRecording
(long inRefNum);

pascal OSErr SPBResumeRecording
(long inRefNum);

pascal OSErr SPBStopRecording
(long inRefNum);

pascal OSErr SPBGetRecordingStatus
(long inRefNum, short *recordingStatus,
short *meterLevel,
unsigned long *totalSamplesToRecord,
unsigned long *numberOfSamplesRecorded,
unsigned long *totalMsecsToRecord,
unsigned long *numberOfMsecsRecorded);

C H A P T E R 3

Sound Input Manager

3-64 Summary of the Sound Input Manager

Manipulating Device Settings

pascal OSErr SPBGetDeviceInfo
(long inRefNum, OSType infoType,
char *infoData);

pascal OSErr SPBSetDeviceInfo
(long inRefNum, OSType infoType,
char *infoData);

Constructing Sound Resource and File Headers

pascal OSErr SetupSndHeader
(Handle sndHandle, short numChannels,
Fixed sampleRate, short sampleSize,
OSType compressionType, short baseFrequency,
unsigned long numBytes, short *headerLen);

pascal OSErr SetupAIFFHeader
(short fRefNum, short numChannels,
Fixed sampleRate, short sampleSize,
OSType compressionType,
unsigned long numBytes,
unsigned long numFrames);

Registering Sound Input Devices

pascal OSErr SPBSignInDevice
(short deviceRefNum,
ConstStr255Param deviceName);

pascal OSErr SPBGetIndexedDevice
(short count, Str255 deviceName,
Handle *deviceIconHandle);

pascal OSErr SPBSignOutDevice
(short deviceRefNum);

Converting Between Milliseconds and Bytes

pascal OSErr SPBMilliSecondsToBytes
(long inRefNum, long *milliseconds);

pascal OSErr SPBBytesToMilliSeconds
(long inRefNum, long *byteCount);

Obtaining Information

pascal NumVersion SPBVersion
(void);

C H A P T E R 3

Sound Input Manager

Summary of the Sound Input Manager 3-65

Application-Defined Routines

pascal void MySICompletionRoutine
(SPBPtr inParamPtr);

pascal void MySIInterruptRoutine
(void);

Assembly-Language Summary

Data Structures

Sound Input Parameter Block Data Structure

0 inRefNum long The input device reference number
4 count long The number of bytes to record
8 milliseconds long The number of milliseconds to record

12 bufferLength long The length of the buffer
16 bufferPtr long The address of the buffer
20 completionRoutine long A pointer to a completion routine
24 interruptRoutine long A pointer to an interrupt routine
28 userLong long For application’s use
32 error word The error value returned after recording
36 unused1 long Reserved

C H A P T E R 3

Sound Input Manager

3-66 Summary of the Sound Input Manager

Trap Macros

Trap Macros Requiring Routine Selectors

_SoundDispatch

Result Codes

Selector Routine

$00000014 SPBVersion

$01100014 SPBSignOutDevice

$021C0014 SPBCloseDevice

$02280014 SPBPauseRecording

$022C0014 SPBResumeRecording

$02300014 SPBStopRecording

$030C0014 SPBSignInDevice

$03200014 SPBRecord

$04240014 SPBRecordToFile

$04400014 SPBMillisecondsToBytes

$04440014 SPBBytesToMilliseconds

$05140014 SPBGetIndexedDevice

$05180014 SPBOpenDevice

$06380014 SPBGetDeviceInfo

$063C0014 SPBSetDeviceInfo

$07080014 SndRecordToFile

$08040014 SndRecord

$0B4C0014 SetupAIFFHeader

$0D480014 SetupSndHeader

$0E340014 SPBGetRecordingStatus

noErr 0 No error
abortErr –27 Asynchronous recording was cancelled
permErr –54 Attempt to open locked file for writing
userCanceledErr –128 User canceled the operation
siNoSoundInHardware –220 No sound input hardware available
siBadSoundInDevice –221 Invalid sound input device
siNoBufferSpecified –222 No buffer specified
siInvalidCompression –223 Invalid compression type
siHardDriveTooSlow –224 Hard drive too slow to record
siInvalidSampleRate –225 Invalid sample rate
siInvalidSampleSize –226 Invalid sample size
siDeviceBusyErr –227 Sound input device is busy
siBadDeviceName –228 Invalid device name

C H A P T E R 3

Sound Input Manager

Summary of the Sound Input Manager 3-67

siBadRefNum –229 Invalid reference number
siInputDeviceErr –230 Input device hardware failure
siUnknownInfoType –231 Unknown type of information
siUnknownQuality –232 Unknown quality

Contents 4-1

C H A P T E R 4

Contents

Speech Manager

About the Speech Manager 4-4

Voices 4-5

Speech Attributes 4-6

Speech Channels 4-9

Callback Routines 4-10

Using the Speech Manager 4-11

Checking for Speech Manager Capabilities 4-12

Creating, Using, and Disposing of a Speech Channel 4-13

Working With Different Voices 4-14

Adjusting Speech Attributes 4-16

Pausing Speech 4-18

Implementing Callback Procedures 4-19

Writing Embedded Speech Commands 4-23

Embedded Command Delimiters 4-23

Syntax of Embedded Speech Commands 4-24

Examples of Embedded Speech Commands 4-30

Phonemic Representation of Speech 4-32

Phonemic Symbols 4-33

Prosodic Control Symbols 4-34

Including Pronunciation Dictionaries 4-36

Speech Manager Reference 4-39

Constants 4-39

Speech Information Selectors 4-39

Data Structures 4-45

Voice Specification Records 4-46

Voice Description Records 4-47

Voice File Information Records 4-48

Speech Status Information Records 4-48

Speech Error Information Records 4-49

Speech Version Information Records 4-50

C H A P T E R 4

4-2 Contents

Phoneme Information Records 4-52

Phoneme Descriptor Records 4-53

Speech Extension Data Records 4-53

Delimiter Information Records 4-54

Speech Manager Routines 4-54

Starting, Stopping, and Pausing Speech 4-55

Obtaining Information About Voices 4-63

Managing Speech Channels 4-69

Obtaining Information About Speech 4-71

Changing Speech Attributes 4-73

Converting Text To Phonemes 4-79

Installing a Pronunciation Dictionary 4-80

Application-Defined Routines 4-82

Text-Done Callback Procedure 4-82

Speech-Done Callback Procedure 4-84

Synchronization Callback Procedure 4-85

Error Callback Procedure 4-86

Phoneme Callback Procedure 4-87

Word Callback Procedure 4-88

Resources 4-89

The Pronunciation Dictionary Resource 4-89

Summary of the Speech Manager 4-94

Pascal Summary 4-94

Constants 4-94

Data Structures 4-95

Speech Manager Routines 4-98

Application-Defined Routines 4-100

C Summary 4-100

Constants 4-100

Data Types 4-102

Speech Manager Routines 4-105

Application-Defined Routines 4-106

Assembly-Language Information 4-107

Data Structures 4-107

Trap Macros 4-109

Result Codes 4-110

C H A P T E R 4

4-3

Speech Manager

This chapter describes the Speech Manager, the part of the Macintosh system software

that provides a standardized method for Macintosh applications to generate

synthesized speech.

You need to read this chapter if you want your application to be able to generate speech.

For example, you may want your application to incorporate the capability to speak its

dialog box messages to the user. A word-processing application might use the Speech

Manager to implement a command that speaks a selected section of a document to the

user. A multimedia application might use the Speech Manager to provide a narration of

a QuickTime movie instead of including sampled-sound data on a movie track. Because

sound samples can take up large amounts of room on disk, using text in place of

sampled sound is extremely efficient.

If you are developing an application that needs only to generate speech from strings,

then the information on speech contained in the chapter “Introduction to Sound on the

Macintosh” in this book might be sufficient. If, however, you need to be able to

manipulate the speech output or customize it to make it easier for your users to

understand, you should read this chapter.

The Speech Manager is not available in all system software versions. It was introduced

with the Macintosh computers with audio visual capabilities in the summer of 1993. It

will continue to be incorporated into future versions of system software. You should use

the Gestalt function to ensure that the speech services you need are available before

calling them. See the discussion in the section “Checking for Speech Manager

Capabilities” beginning on page 4-12 for details.

The Speech Manager and the Sound Manager adopt many of the same metaphors in the

processes of sound production and speech generation. You should be aware that the

Speech Manager’s approach often differs in subtle but important ways from that of the

Sound Manager. Reading the chapter “Sound Manager” in this book might help you to

learn to use the Speech Manager, but it is not required.

Also, while the Speech Manager uses the Sound Manager, your application should not

attempt to directly access any Sound Manager data structures used by the Speech

Manager. Because the Speech Manager is likely to be a rapidly evolving portion of

system software, relying on Speech Manager data structures not explicitly documented

in this chapter is likely to pose compatibility problems for your application.

This chapter begins with an introduction to the speech generation process and then

discusses how you can

■ check for the availability of the Speech Manager

■ create and dispose of speech channels

■ generate speech with different voices

■ obtain information about and change speech channel settings

■ start and stop speech production

■ synchronize speech production with other activities by using callback procedures

■ embed Speech Manager commands within text to make it more understandable

C H A P T E R 4

Speech Manager

4-4 About the Speech Manager

■ convert text into phonemes and allow the user to enter phonetic text directly

■ create, install, and manipulate customized pronunciation dictionaries

About the Speech Manager

You can use the Speech Manager to incorporate synthesized speech into your

application. This section provides an overview and describes the basic concepts of the

Speech Manager, and it outlines the process that the Speech Manager uses to convert text

into speech. The Speech Manager converts text into sound data, which it passes to the

Sound Manager to play through the current sound output device. The Speech Manager’s

interaction with the Sound Manager is transparent to your application, so you don’t

need to be familiar with the Sound Manager to take advantage of the Speech Manager’s

capabilities.

Figure 4-1 illustrates the speech generation process. Your application can initiate speech

generation by passing a string or a buffer of text to the Speech Manager. The Speech

Manager is responsible for sending the text to a speech synthesizer, a component that

contains executable code that manages all communication between the Speech Manager

and the Sound Manager. A synthesizer is usually contained in a resource in a file within

the System Folder. A synthesizer is like a speech engine. It uses built-in dictionaries and

pronunciation rules to help determine how to pronounce text. You can provide custom

pronunciation dictionaries as described in the section “Including Pronunciation

Dictionaries” beginning on page 4-36.

Figure 4-1 The speech generation process

As Figure 4-1 suggests, the Speech Manager is simply a dispatch mechanism that allows

your application to take advantage of the capabilities of whatever speech synthesizers,

voices, and hardware are installed. The Speech Manager itself does not do any of the

work of converting text into speech; it just provides a convenient programming interface

that manages access to speech synthesizers and, indirectly, to the sound hardware. The

C H A P T E R 4

Speech Manager

About the Speech Manager 4-5

Speech Manager uses the Component Manager to access whatever speech synthesizers

are available and allows applications to take maximum advantage of a computer’s

speech facilities without knowing what those facilities are. Because the Speech

Manager’s routines work on all voices and synthesizers, you will not need to rewrite

your application to take advantage of improvements in speech technology.

Voices
Your application can use the system default voice to generate speech or it can specify

that the Speech Manager use a particular voice that is available on the current computer

system. A voice is a set of characteristics defined in parameters that specify a particular

quality of speech. Just as different people’s voices have different tonal qualities, so too

can different voices have different qualities. A synthesized voice might sound male or

female and might sound like an adult or a child. Some voices sound distinctively

synthetic, while others sound more like real people. Figure 4-2 shows how the Speech

Manager uses speech channels to synthesize speech with different voices.

Figure 4-2 The Speech Manager and multiple voices

As speech-synthesizing technology develops, the voices that your application can

access are likely to sound more and more human. Each voice is designed to work with

a particular speech synthesizer and can be customized in specific ways to create

different effects.

Voices are usually stored in one of three places. The Speech Manager will first look in the

application’s resources file chain when attempting to locate a voice specification record.

Then the Speech Manager will look in the System Folder and then the Extensions folder.

Voices stored in the System Folder or Extensions folder are normally available to all

C H A P T E R 4

Speech Manager

4-6 About the Speech Manager

applications. Voices stored in the resource fork of an application file are private to that

application and will not work if the synthesizers they depend on are not installed on a

user’s system.

Most of the time, your application designates the voice that speaks text, and usually that

is the default voice. Based on the needs of your users and the way in which you expect

them to use voices in your application you can provide access to voices in a number of

different ways. You could include access to selecting voices in a dialog box that is

available from a menu item such as Voices... Any application that allows users to choose

among voices requires additional information about the available voices beyond the

information provided by a voice specification record (described in detail on page 4-46),

whose data should never be presented to the user. Such additional information might

include the name of the voice as well as what script and language it supports.

Applications can use the GetVoiceDescription function (described in detail on

page 4-66) with a voice specification record to obtain such information in a voice

description record (described in detail on page 4-47). You might provide access to voices

through a control panel. For information about implementing control panels, see Inside
Macintosh: More Macintosh Toolbox. Or, you could implement a voices menu in your

application’s main menu bar, if you think that users will want to change the voice often

and you have the room available. It’s not a good idea to implement a hierarchical Voices

menu since hierarchical menus are harder to use. For more information about choosing a

user interface for your application, see Macintosh Human Interface Guidelines.

Speech Attributes
Any given person has only one voice, but can alter the characteristics of his or her speech

in a number of different ways. For example, a person can speak slowly or quickly and

with a low or a high pitch. Similarly, the Speech Manager provides routines that allow

you to modify these and other speech attributes, regardless of which voice is in use. A

speech attribute is a setting defined for a class of voices or for all voices that affects the

quality of speech produced by the Speech Manager. The Speech Manager provides

routines to directly alter two speech attributes—speech rate and speech pitch. These

routines are described in the section “Changing Speech Attributes” beginning on

page 4-73. You can change two other speech attributes—pitch modulation and speech

volume—by using the mechanism of speech information selectors, which is described in

the section “Speech Information Selectors” beginning on page 4-39.

The speech rate of a speech channel is the approximate number of words of text that the

synthesizer should say in one minute. Slower speech rates make the speech easier to

understand, but can be annoyingly tedious to listen to. Some applications, such as aids

for the visually impaired, require very fast speech rates. Speech rates are expressed as

fixed-point values. Each speech synthesizer determines it own range of speech rates. The

speech pitch of a speech channel represents the middle pitch of the voice, roughly

corresponding to the key in which a song is played. It is a fixed-point value in the range

of 0.000 through 127.000, where 60.000 corresponds to middle C on a conventional piano.

Each 1.000-unit change in a value corresponds to a musical half step. This is the same

scale used in specifying MIDI note values, as described in the chapter “Sound Manager”

C H A P T E R 4

Speech Manager

About the Speech Manager 4-7

in this book. Figure 4-3 shows a piano keyboard with the corresponding MIDI note

values.

Figure 4-3 MIDI note values and corresponding piano keys

MIDI note values differ from speech pitch values in that they are always integral and

have a wider range than speech pitch values. On the scale used to measure both MIDI

note values and speech pitches, a change of +12 units corresponds to doubling the

frequency (an increase of one octave), while a change of –12 units corresponds to halving

the frequency (a decrease of one octave). A frequency is a precise indication of the

number of hertz of a sound wave at any instant. If you need to convert between speech

pitches and hertz, note that a speech pitch of 60.000 corresponds to 261.625 Hz.

Meanwhile, when a speech pitch value rises by one unit, the corresponding hertz value

is multiplied by the twelfth root of 2, defined by the Sound Manager constant

twelfthRootTwo. The following formula thus converts a speech pitch into hertz:

hertz = twelfthRootTwo (pitch – 60.000) * 261.625

In order to calculate speech pitch in terms of hertz, you can use the following formula:

pitch = 60 + (ln(hertz) – ln(261.625))/ln(twelfthRootTwo)

Typical voice frequencies might range from around 90 hertz for a low-pitched male voice

to about 300 hertz for a high-pitched child’s voice. These frequencies correspond to

approximate pitch values in the ranges of 30.000 to 40.000 and 55.000 to 65.000,

respectively.

You can determine the current speech pitch on a speech channel by calling the

GetSpeechPitch function, described on page 4-75. You can change the current pitch by

calling the SetSpeechPitch function, described on page 4-76. You can also determine

the current speech rate and change it by using the GetSpeechRate function, described

on page 4-73 and the SetSpeechRate function, described on page 4-74. Changes in

speech pitch and speech rate are effective immediately (as soon as the synthesizer can

respond), even if they occur in the middle of a word.

C H A P T E R 4

Speech Manager

4-8 About the Speech Manager

Pitch is the listener’s subjective interpretation of speech’s average frequency. The speech

pitch specified is a baseline value corresponding to a particular frequency, from which

the actual frequency of generated speech varies with the rises and falls of the intonation

of speech. When a person speaks, there is a tune to the speech. Often you are more aware

of the singsong quality, or change in the range of speech pitch, of a language that you

don’t know rather than one that you speak. The synthesizer must generate this tune in

order to sound more human-like. Speech pitch is always described by a set of numbers

that specify the range of pitch of the tune a synthesizer generates. This set of numbers

can be the middle pitch and how far to deviate from that pitch or it can be the set of

pitches within which the semi-tones of the tune can vary. Figure 4-4 shows an example of

the range of pitches produced as the phrase “The cat sat on the mat.” is spoken.

Figure 4-4 An example of pitch range for a voice

To simulate the variability in frequency of human speech, the Speech Manager defines

the speech attribute of pitch modulation. The pitch modulation of a speech channel is

the maximum amount by which the actual frequency of speech generated may deviate

from the speech pitch.

Pitch modulation is also expressed as a fixed-point value in the range of 0.000 to 100.000.

A pitch modulation value of 0.000 corresponds to a monotone in which all speech is

generated at the frequency corresponding to the speech pitch. Speech generated at this

pitch modulation would sound unnaturally robotic. Given a speech pitch value of

46.000, a pitch modulation of 2.000 would mean that the widest possible range of pitches

corresponding to the actual frequency of generated text would be 44.000 to 48.000.

In some synthesizers, the actual pitch modulation may be restricted to a certain range.

For example, if a synthesizer supported the full range of pitch modulations, a pitch

modulation of 100.000 would result in unintelligible speech. In fact, however, some

synthesizers, even with such a setting, produce speech that sounds virtually monotone.

Even within a synthesizer, different voices might have different valid pitch modulation

ranges. The Speech Manager provides no mechanism for obtaining the range of valid

C H A P T E R 4

Speech Manager

About the Speech Manager 4-9

pitch modulations, although some synthesizers may allow applications designed to

work with those synthesizers to obtain such ranges.

You can obtain the pitch modulation by using the GetSpeechInfo function with the

soPitchMod speech information selector, and you can change the pitch modulation by

using the SetSpeechInfo function with the same selector. Speech information selectors

are described in “Speech Information Selectors” beginning on page 4-39.

The speech volume of a speech channel is the average amplitude at which the channel

generates speech. Volumes are expressed in fixed-point units ranging from 0.0 through

1.0. A value of 0.0 corresponds to silence, and a value of 1.0 corresponds to the maximum

possible volume. Volume units lie on a scale that is linear with amplitude or voltage. A

doubling of perceived loudness corresponds to a doubling of the volume.

Note that just as a speech synthesizer does not generate speech at a constant frequency, it

does not generate speech at a constant amplitude. Even when the speech rate is high,

brief pauses break up a steady stream of speech. The speech volume is, like speech pitch,

an indicator of an average. There is no way to determine or change the modulation of

speech volume.

A final speech attribute is prosody, the rhythm, modulation, and emphasis patterns of

speech.There is no simple mechanism for your application to determine what rhythmic

patterns a speech synthesizer is applying to speech. However, you can exert some

control over prosody by using prosodic control symbols, discussed in “Prosodic Control

Symbols” on page 4-34. Also, you can disable ending prosody, the modulation that

distinguishes the end of a sentence or statement in normal speech, by using the

SpeakBuffer function, described on page 4-57.

Speech Channels
To indicate to the Speech Manager which voice or attributes you would like it to use in

generating speech, your application must use a speech channel. A speech channel is a

data structure that the Speech Manager uses when processing text; it can be associated

with a particular voice and particular speech attributes. Because multiple speech

channels can coexist, your application can create several different vocal environments (to

simulate a conversation, for example). Because a synthesizer can be associated with only

one language and region, your application would need to create a separate speech

channel to process each language in bilingual or multilingual text. (Currently, however,

only English-producing synthesizers are available.)

Different speech channels can even generate speech simultaneously, subject to processor

capabilities and Sound Manager limitations. This capability should be used with

restraint, however, because it can be hard for the user to understand any speech when

more than one channel is generating speech at a time. In general, your application

should generate speech only at the specific request of the user and should allow the user

to turn off speech output. At the very least, your application should include an option

that allows the user to view text instead of hearing it. Some users might have trouble

understanding speech generated by the Speech Manager, and others might have a

C H A P T E R 4

Speech Manager

4-10 About the Speech Manager

hearing deficit. Even users who are able to clearly understand computer-synthesized

speech might prefer to read rather than hear.

Using the Speech Manager, you can identify how many voices are available and sort

through an index of the voices to get information about a specified voice such as its

gender, age, or the synthesizer with which it is associated. In general, your application

does not need to know which speech synthesizer it is using, and in most cases, you

do not need to be concerned with which speech synthesizer a voice is associated.

Sometimes, however, a speech synthesizer may provide special capabilities beyond that

provided by the Speech Manager. For example, a speech synthesizer might allow you to

select an option to speak numbers in a nonstandard way. The Speech Manager allows

you to determine which synthesizer is associated with a voice for these circumstances

and provides hooks that allow your application to take advantage of synthesizer-specific

capabilities.

In general, your application can achieve the best results by not making assumptions

about which synthesizers might be available. The user of a 2 MB Macintosh Classic

might use a synthesizer with low RAM requirements, while the user of a 20 MB

Macintosh Quadra 950 might take advantage of a synthesizer that provides better audio

quality at the expense of memory usage. The Speech Manager makes it easy to

accommodate both kinds of users. Currently there are three synthesizers available with

the Speech Manager. Each synthesizer has its own RAM requirements. To be compatible

with all three synthesizers, you must reserve enough space in your application’s heap to

accommodate their requirements. In general, reserving around 250 KB per channel that

you anticipate using provides enough space for the MacinTalk Pro synthesizer.

Callback Routines
The Speech Manager allows you to implement callback routines. With callback routines,

you can synchronize speech with other actions. You can use callback routines to obtain

information about when a synthesizer has finished speaking a phoneme, reaches a word

ending, or finishes speaking. Using this feature, you could highlight text as it is being

spoken or synchronize the speech production with a QuickTime movie or animation of a

mouth speaking.

You can also customize speech that your application generates with the Speech Manager

by embedding commands in text strings stored in resources in your application or by

programmatically embedding commands in commonly spoken text.

The next section of this chapter shows you how to implement the most commonly used

features of the Speech Manager. It demonstrates how you use the SpeakString

function to convert a text string into speech without allocating a speech channel, how

you can customize speech, how you can obtain more control over speech by allocating

speech channels, and how you can make speech easier to understand by embedding

commands within text strings. It also shows how to install a custom dictionary to

provide more accurate pronunciation of less common words such as names.

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-11

Using the Speech Manager

You can use the Speech Manager simply to convert Pascal-style strings into speech. This

simple technique is described in the chapter “Introduction to Sound on the Macintosh”

in this book. This section shows how you can take advantage of more features of the

Speech Manager.

Before you can generate synthetic speech on a Macintosh computer, you need to make

sure that the Speech Manager is installed. “Checking for Speech Manager Capabilities”

beginning on page 4-12 shows how to check for the availability of the Speech Manager.

It also demonstrates how to use the SpeakString function to generate synthesized

speech in the most straightforward way.

To take advantage of most of the Speech Manager’s features, you must allocate a speech

channel to pass to Speech Manager functions and dispose of the speech channel when

you are finished using it. “Creating, Using, and Disposing of a Speech Channel”

beginning on page 4-13 demonstrates how you do this and shows how you can use the

SpeakText function to start speech generation from a buffer of text. Some applications

permit users to choose a voice from those available to be used for speech generation.

The CountVoices, GetIndVoice, and GetVoiceDescription functions support

this capability. “Working With Different Voices” beginning on page 4-14 shows how you

can use these functions to choose among available voices.

You can also use the SpeakText function to customize some attributes of speech

generation. “Adjusting Speech Attributes” beginning on page 4-16 shows how you can

do this. When you start synthesizing speech, you may need a way to stop speech from

being generated. You can use the StopSpeech function to stop speech immediately, or

you can use the StopSpeechAt function to choose exactly where you want speech

stopped. You can stop speech temporarily and then resume it again using the

PauseSpeechAt and ContinueSpeech functions. “Pausing Speech” beginning on

page 4-18 shows how to pause or stop speech production and begin it again.

You might need to synchronize speech generation with other activities. For example,

your application might include an on screen animation that must be synchronized with

speech generation, or your application might need to determine when the Speech

Manager has finished processing text on a speech channel so that it can unlock a handle

or release some memory. “Implementing Callback Procedures” beginning on page 4-19

shows how you can accomplish these goals.

If your application uses embedded speech commands to obtain exacting control over

speech generation, you should read “Writing Embedded Speech Commands” beginning

on page 4-23. This section describes the complete syntax of embedded commands, and

provides a guide to all embedded commands supported by the Speech Manager.

The Speech Manager allows you to enter phonemic text directly. If your application

speaks only text that the user writes, this feature is unlikely to be useful to you, because

you cannot anticipate what the user might enter. However, if there are a few or many

sentences that your application frequently converts into speech, it might be useful to

C H A P T E R 4

Speech Manager

4-12 Using the Speech Manager

represent parts of these sentences phonemically rather than textually. “Phonemic

Representation of Speech” beginning on page 4-32 describes how to convert text

to phonemes.

Some applications might allow the user to use pronunciation dictionaries to override

the default pronunciations of certain words. “Including Pronunciation Dictionaries”

beginning on page 4-36 explains how you can create a new pronunciation dictionary

resource or install an existing pronunciation dictionary resource into a speech channel.

The section also explains how you can provide the user with the default phonemic

pronunciation of text by using the TextToPhonemes function.

Checking for Speech Manager Capabilities
Because the Speech Manager is not available in all system software versions, you should

always check for speech capabilities before attempting to use them. Listing 4-1 defines a

function that determines whether the Speech Manager is available.

Listing 4-1 Checking for speech generation capabilities

FUNCTION MySpeechMgrPresent: OSErr;

VAR

myErr: OSErr;

myFeature: LongInt; {feature being tested}

BEGIN

{Test Speech Manager present bit.}

myerr := Gestalt(gestaltSpeechAttr, myFeature);

IF (myErr = noErr) AND (BTst(myFeature, gestaltSpeechMgrPresent)) THEN

BEGIN

myErr := SpeakString('The Speech Manager is working and');

{Wait until synthesizer is done speaking.}

WHILE (SpeechBusy <> 0) DO

BEGIN {do nothing}

END;

myErr := SpeakString('is almost done.');

{Wait until synthesizer is done speaking.}

WHILE (SpeechBusy <> 0) DO

BEGIN {do nothing}

END;

MySpeechMgrPresent := myErr;

END;

END;

The MySpeechMgrPresent function defined in Listing 4-1 uses the Gestalt function

to determine whether the Speech Manager is available. The MySpeechMgrPresent

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-13

function tests the gestaltSpeechMgrPresent bit, and, if the Speech Manager

is present, the MySpeechMgrPresent function speaks the string passed to the

SpeakString function. If the Gestalt function cannot obtain the desired information

and returns a result code other than noErr, the MySpeechMgrPresent function

assumes that the Speech Manager is not available.

The SpeakString function uses an implied speech channel, that is, the speech channel

is automatically created and disposed of by the Speech Manager. The SpeakString

function is useful when you need to synthesize Pascal-style strings of fewer than

256 characters. If you need to process text that is longer than 255 characters, then you

must allocate a speech channel and use one of the routines that can generate speech in

a channel such as the SpeakText or SpeakBuffer function. These routines are much

more flexible in that they allow you to speak more text, customize the speech using

speech selectors, or alter the generated speech by changing its modulation, pitch, rate,

or voice.

Creating, Using, and Disposing of a Speech Channel
To take advantage of most of the Speech Manager’s capabilities, you must pass a speech

channel to Speech Manager functions. You use the NewSpeechChannel function to

create a speech channel. After you are done using a speech channel, you must dispose of

it by using the DisposeSpeechChannel function. Listing 4-2 shows how to create a

speech channel, start speaking text with the SpeakText function, stop speaking text

with the StopSpeech function, and then dispose of the speech channel when the

speaking is finished.

Listing 4-2 Speaking text with a speech channel

FUNCTION MyUseSpeechChannel: OSErr;

VAR

myErr: OSErr;

myErr2: OSErr;

myStr: Str255; {text to be spoken}

BEGIN

myStr := 'Hold the mouse button down to stop speech.';

myErr := NewSpeechChannel(NIL, gChannel); {create the channel}

IF (myErr = noErr) THEN

BEGIN {speak the string}

myErr := SpeakText(gChannel, @myStr[1], Length(myStr));

WHILE (SpeechBusy <> 0) DO {wait until speaking is done}

BEGIN

IF (Button) THEN

myErr := StopSpeech(gChannel); {stop speech at mouse down}

END;

IF (gChannel <> NIL) THEN

C H A P T E R 4

Speech Manager

4-14 Using the Speech Manager

myErr2 := DisposeSpeechChannel(gChannel);{get rid of channel}

END;

IF (myErr = noErr) THEN

MyUseSpeechChannel := myErr2

ELSE

MyUseSpeechChannel := myErr;

END;

The MyUseSpeechChannel function defined in Listing 4-2 creates a default speech

channel using the default system voice. You pass NIL in the first parameter to use the

system default voice. You must also pass a global variable to NewSpeechChannel in

which is returned a valid speech channel. Once the channel exists, then you can use the

SpeakText function to generate speech. To generate synthesized speech, you pass in the

channel allocated by NewSpeechChannel in the first parameter, and then you pass a

pointer to the text that you want to speak as well as the length of the text that you want

the Speech Manager to attempt to speak. That is, you can pass a pointer to a buffer of

text that is 500 bytes long, but specify that only the first 10 bytes get spoken. Then

MyUseSpeechChannel uses the SpeechBusy function in a WHILE loop to allow the

text to be completely spoken before disposing of the channel.

When the designated action to stop the speaking occurs, which in this example is the

user pressing the mouse button, MyUseSpeechChannel halts speech production. In this

case, the StopSpeech function stops the speech immediately (as soon as the synthesizer

can). You need to pass StopSpeech the variable that identifies the channel on which the

speech is currently being synthesized. If you want to have more control over when the

speech is stopped, you can use the StopSpeechAt function, which allows you to stop

speech immediately, at the end of a word, or at the end of a sentence. See the description

of the StopSpeechAt function on page 4-60 for more information.

Once you are done using the speech channel that was created with

NewSpeechChannel, you must dispose of it. The MyUseSpeechChannel function

calls DisposeSpeechChannel with the global variable that identifies the channel

currently in use.

Working With Different Voices
When you work with speech channels, you can set a voice for a particular channel.

When you set a voice, you may want to filter out certain of its characteristics in order to

identify the one you want. For example, in an educational software application for

elementary school students, you may want to use only children’s voices. In order to

choose the voice you want, you get a voice description record that contains information

about a voice such as the size of the voice, the name of the voice, the age and gender of

the voice, and the synthesizer with which it works. You can get the number of available

voices using the CountVoices function. You can cycle through the available voices and

identify the one you want to use by using the GetIndVoice function. Then you fill out

a voice description record using the GetVoiceDescription function. Listing 4-3

shows how to get identifying information about a voice.

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-15

Listing 4-3 Getting a description of a voice

FUNCTION MyInstallBoysVoice: OSErr;

VAR

myErr: OSErr;

myIndex: Integer;

myNumVoices: Integer;

myVoice: VoiceSpec;

myFound: VoiceSpec;

myInfo: VoiceDescription;

BEGIN

myFound := NIL;

myErr := CountVoices(myNumVoices); {count voices}

IF myErr = noErr THEN

BEGIN

FOR myIndex := 0 to myNumVoices DO {loop through all voices}

BEGIN

myErr := GetIndVoice(myIndex, @myVoice);

IF myErr = noErr THEN

BEGIN

myErr := GetVoiceDescription(@myVoice, @myInfo, sizeof(myInfo));

IF myErr = noErr THEN {check if a boy's voice}

IF (myVoice.age < 16) AND (myVoice.gender = kMale) THEN

myFound := myVoice;

END;

END; {FOR}

IF myFound <> NIL THEN {install boy's voice}

myErr := NewSpeechChannel(@myFound, gChannel);

END;

MyInstallBoysVoice := myErr; {return result code}

END;

The MyGetVoiceInfo function checks to see how many voices are available. Once you

have identified the list of available voices, you can index through the voices to select one

about which you want to get information. You pass the number of the voice index in the

first parameter of the GetIndVoice function. (This number cannot be larger than the

number of voices.) GetIndVoice returns a voice specification record in the location

specified in the second parameter— in this case, in the location of the pointer @myVoice.

This sample cycles through the available voices looking for a male child’s voice.

The voice specification record contains two identifiers: the creator identification

of the required synthesizer and the voice identification of the voice.In order to

get specific information about the voice you want to use, you need to call the

GetVoiceDescription function. You need to pass a pointer to the voice specification

record in the first parameter of the GetVoiceDescription function.

C H A P T E R 4

Speech Manager

4-16 Using the Speech Manager

GetVoiceDescription returns the voice description record in the location pointed to

in the second parameter, @info. The voice description record contains information

about the voice such as its age or gender.

To specify which voice you want to use, you pass a pointer to the voice specification

record as the first parameter to NewSpeechChannel. In this case, when the male child’s

voice is identified, it’s voice specification record is passed to NewSpeechChannel,

which allocates a channel with the specified voice. Note that this sample code contains

limited error checking.

Adjusting Speech Attributes
Speech attributes are settings defined for a class of voices or for all voices that affect the

quality of speech produced by the Speech Manager. In general, an application should not

try to second-guess the developers of a voice or synthesizer by arbitrarily setting a

speech attribute. However, there are some cases in which you would want to adjust

the rate of speech (how many words per minute are spoken) or the speech pitch (the

listener’s subjective interpretation of speech’s average frequency). Listing 4-4 shows how

to adjust the speech pitch and speech rate of a particular channel.

Listing 4-4 Changing the speech rate and pitch

FUNCTION MyAdjustSpeechAttributes: OSErr;

VAR

myErr: OSErr;

myErr2: OSErr;

myPitch: Fixed;

myRate: Fixed;

myStr: Str255;

BEGIN

myStr := 'This is the old pitch and rate.';

myErr := NewSpeechChannel(NIL, gChannel); {allocate a channel}

IF myErr = noErr THEN

 BEGIN {speak a string}

myErr := SpeakText(gChannel, @myStr[1], Length(myStr));

WHILE (SpeechBusy <> 0) DO {wait for speech to finish}

BEGIN

END;

{Find the current speech pitch.}

myErr := GetSpeechPitch(gChannel, @myPitch);

myPitch := myPitch * 2; {double the pitch}

IF myErr = noErr THEN

myErr := SetSpeechPitch(gChannel, myPitch); {change the pitch}

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-17

{Find the current speech rate.}

IF myErr = noErr THEN

myErr := GetSpeechRate(gChannel, @myRate);

myRate := myRate * 2; {double the rate}

IF myErr = noErr THEN

myErr := SetSpeechRate(gChannel, myRate); {change the rate}

{Speak a string with new attributes.}

myStr := 'This is the new pitch and rate.';

myErr := SpeakText(gChannel, @myStr[1], Length(myStr));

WHILE (SpeechBusy <> 0) DO {wait for speech to finish}

BEGIN

END;

{Dispose of the speech channel.}

IF gChannel <> NIL THEN

myErr2 := DisposeSpeechChannel(gChannel);

END;

IF myErr = noErr THEN

MyAdjustSpeechAttributes := myErr2

ELSE

MyAdjustSpeechAttributes := myErr;

END;

The MyAdjustSpeechAttributes function first allocates a speech channel, as

demonstrated previously. Then the MyAdjustSpeechAttributes function speaks a

string to demonstrate the default speech rate and pitch for the default system voice.

After the speech synthesis is finished, MyAdjustSpeechAttributes calls the

GetSpeechPitch function with a valid speech channel and a pointer to a

fixed-point value in which the value of the current speech pitch is returned. Then

MyAdjustSpeechAttributes doubles the value of the speech pitch by multiplying

and passes the new value to the SetSpeechPitch function.

MyAdjustSpeechAttributes repeats this sequence to determine the speech rate

using the GetSpeechRate function, doubles the rate, and sets a new speech rate

by passing the new rate value to the SetSpeechRate function. Next,

MyAdjustSpeechAttributes calls SpeakText again to demonstrate the new

speech pitch and rate. Creating a loop with the SpeechBusy function allows the

synthesizer to finish speaking its text, and then MyAdjustSpeechAttributes

disposes of the active channel.

When you set a rate value, each synthesizer may or may not be able to support that exact

value. A synthesizer will attempt to set the value you specify, but it may substitute a

value that it can support that is the closest it can come to your value. Don’t be alarmed if

GetSpeechRate returns a value other than the one you thought you set. The value

returned is the closest value to the one set that the synthesizer is capable of reproducing.

C H A P T E R 4

Speech Manager

4-18 Using the Speech Manager

Pausing Speech
When you start synthesizing speech, you may need a way to stop speech that is being

generated. For example, your application might support a Stop Speech menu command

to let users stop speech when they want to. Also, you should usually stop speech when

you receive a suspend event. You can use StopSpeech to stop speech immediately, or

you can use StopSpeechAt to choose exactly where you want speech stopped. You can

also stop speech temporarily and then resume it again using the PauseSpeechAt and

ContinueSpeech functions. Listing 4-5 shows how you might do this.

Listing 4-5 Pausing and continuing speech production

FUNCTION MyPauseAndContinueSpeech: OSErr;

VAR

myErr, myErr2: OSErr;

myStr: Str255;

BEGIN

gChannel := NIL;

myStr := 'Hold the mouse button down to test pause speech at immediate.';

myErr := NewSpeechChannel(NIL, gChannel); {open speech channel}

IF myErr = noErr THEN

BEGIN {speak some text}

myErr := SpeakText(gChannel, @myStr[1], Length(myStr));

WHILE (SpeechBusy <> 0) DO {wait for speech to finish}

IF (Button) THEN

BEGIN {stop speech immediately}

myErr := PauseSpeechAt(gChannel, kImmediate);

IF myErr = noErr THEN

WHILE (Button) DO {while mouse button is down, do nothing}

BEGIN

END; {on mouse up, resume speaking}

myErr := ContinueSpeech(gChannel);

END;

IF gChannel <> NIL THEN {dispose of channel}

myErr2 := DisposeSpeechChannel(gChannel);

END;

IF myErr = noErr THEN

MyPauseAndContinueSpeech := myErr2

ELSE

MyPauseAndContinueSpeech := myErr;

END;

The MyPauseAndContinueSpeech function defined in Listing 4-5 begins by allocating

a speech channel using the default system voice. It then begins to speak some text.

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-19

MyPauseAndContinueSpeech uses a busy loop to allow the speech to be completely

spoken before finishing the subroutine. Then, when the designated action occurs, in this

case the mouse button being depressed by a user, MyPauseAndContinueSpeech calls

PauseSpeechAt with the currently active channel and a constant that defines where to

stop the speech. This example uses the constant kImmediate to indicate that the speech

should cease wherever it us currently being processed by the synthesizer. There are also

constants that define the end of a word and the end of a sentence as appropriate

stopping places.

When the mouse button is released, MyPauseAndContinueSpeech calls the

ContinueSpeech function with the variable identifying the paused speech channel.

When paused immediately, the synthesizer resumes speaking at the beginning of

the word that was interrupted. While the speech is being generated,

MyPauseAndContinueSpeech continues to call SpeechBusy to determine if

the channel is still being used to process speech. When the channel is no longer

busy, MyPauseAndContinueSpeech calls DisposeSpeechChannel to release the

memory used by the speech channel.

Implementing Callback Procedures
The Speech Manager makes it easy for you to synchronize other activities to speech

generation by allowing you to install various types of callback procedures on a speech

channel. A callback procedure is a procedure that executes whenever a certain type of

event is about to occur or has occurred. For example, you might use a word callback

procedure to ensure that whenever the Speech Manager is about to speak a word, the

word is visible onscreen. Callback procedures also allow you to synchronize more

mundane activities with the Speech Manager; for example, you might need to know

when you can dispose of a certain text buffer that you had asked the Speech Manager

to speak. This section provides an overview of the different callback procedures that you

can define.

The soTextDoneCallBack and soSpeechDoneCallBack speech information

selectors allow you to designate text-done and speech-done callback procedures. A

text-done callback procedure executes whenever the Speech Manager finishes

processing a buffer of text to be spoken. This procedure usually executes before the

Speech Manager has finished generating speech from the text and indeed often before

it has started. The text-done callback procedure provides a mechanism that allows you to

specify to the Speech Manager an additional buffer of text to be spoken, so that speech

is generated continuously. Once your text-done callback procedure executes, you can

release the memory occupied by the text buffer processed. A speech-done callback
procedure does not execute until after the Speech Manager has completed generating

speech from a buffer of text.

If your application uses or supports embedded speech commands, it may need to use the

soSyncCallBack and soErrorCallBack speech information selectors to designate a

synchronization callback procedure or an error callback procedure. A synchronization
callback procedure executes whenever the Speech Manager encounters a

synchronization command embedded within a text buffer to be spoken.

C H A P T E R 4

Speech Manager

4-20 Using the Speech Manager

An error callback procedure executes whenever the Speech Manager encounters an

error when attempting to process an embedded speech command. The Speech Manager

passes information about the synchronization message or type of error to your callback

procedure. If your application does not use synchronization or error callback procedures,

it can obtain information about synchronization or error messages by continually polling

the speech channel by using the GetSpeechInfo function with the soErrors or

soRecentSync selectors.

The soPhonemeCallBack and soWordCallBack speech information selectors allow

you to designate a phoneme callback procedure and a word callback procedure,

respectively. A phoneme callback procedure executes whenever a phoneme is about to

be spoken on a speech channel. A word callback procedure executes whenever a word is

about to be spoken on a speech channel.

Since callback procedures execute at interrupt time they face several restrictions, as

discussed in detail in Inside Macintosh: Processes. Most significantly, your callback

procedure must not allocate or move memory or call any Toolbox or Operating System

routine that might do so. Thus, typically a callback procedure simply sets a flag variable;

for example, a phoneme callback procedure might change a variable that indicates which

phoneme is being spoken. Your application can then poll this flag variable each time

through its main event loop and perform whatever activity is desired if it finds that the

flag variable has changed. Remember to design callback procedures to execute quickly.

Because they execute at interrupt time, callback procedures also cannot access

application global variables unless the A5 register contains the value of the application’s

A5, as discussed in Inside Macintosh: Memory. Fortunately, the Speech Manager provides a

mechanism that makes it easy to ensure that A5 is set correctly. Your application can call

the SetSpeechInfo function with the soCurrentA5 selector to pass the application’s

A5 in the speechInfo parameter to the Speech Manager. The Speech Manager will then

set the A5 register to the passed value whenever it executes an application-defined

callback procedure for that speech channel.

Sometimes your application might wish to provide a callback procedure with additional

information beyond that which can be provided by examining application global

variables. For example, a callback procedure might need to know from which document

speech is being generated. Your application can use the SetSpeechInfo function with

the soRefCon selector to specify a 4-byte reference constant value—for example, a

handle to a document record—that the Speech Manager passes to all callback procedures

on a particular speech channel. Your application can use the same callback procedure on

multiple speech channels, for each of which the Speech Manager can pass a different

value to the callback procedure. Thus, as long as your application never uses a single

speech channel to generate speech on multiple documents simultaneously, it can use the

reference constant value mechanism to pass document-specific information to a callback

procedure. Typically, you use the reference constant to contain a pointer or handle to

more extensive information that the callback procedure would require.

Listing 4-6 shows how you can indicate to the Speech Manager both the value to which it

should set the A5 register when it executes a callback procedure on a particular speech

channel and the reference constant value to pass to that callback procedure.

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-21

Listing 4-6 Setting up a speech channel for callbacks

FUNCTION MySetupCallbacks (chan: SpeechChannel; refCon: LongInt): OSErr;

VAR

myA5: LongInt; {application's A5}

myErr: OSErr;

BEGIN

myA5 := SetCurrentA5; {get application's A5}

{Pass A5 value to speech channel.}

myErr := SetSpeechInfo(chan, soCurrentA5, Ptr(myA5));

IF myErr = noErr THEN {set the reference constant}

myErr := SetSpeechInfo(chan, soRefCon, Ptr(refCon));

MySetupCallbacks := myErr;

END;

The MySetupCallbacks function defined in Listing 4-6 uses the SetSpeechInfo

function with both the soCurrentA5 and the soRefCon selectors to prepare a specific

speech channel for callbacks. Note that your application can call MySetupCallbacks as

many times as desired for any particular speech channel; you might do this if you want

to change the reference constant value to be passed to the speech channel.

Unlike other selectors, the soCurrentA5 and soRefCon selectors do not require that

you pass a pointer to the information you are specifying in the speechInfo parameter.

Because an application’s A5 value and a speech channel’s reference constant value are

always each 4 bytes long (the same size as the speechInfo parameter), your

application passes these values directly, casting them to pointer values.

After your application sets up the A5 register and defines a reference constant value, it

can install the appropriate type or types of callback procedure. Listing 4-7 shows how

you might install a word callback procedure.

Listing 4-7 Installing a word callback procedure

PROCEDURE MyInstallWordCallback (chan: SpeechChannel; callbackProc: ProcPtr;

refCon: LongInt);

VAR

myErr: OSErr;

BEGIN

myErr := MySetupCallbacks(chan, refCon); {set up callbacks}

myErr := SetSpeechInfo(chan, soWordCallBack, callbackProc);

IF myErr <> noErr THEN

DoError(myErr); {respond to an error}

END;

C H A P T E R 4

Speech Manager

4-22 Using the Speech Manager

The MyInstallWordCallback procedure defined in Listing 4-7 first prepares for

callbacks by calling the MySetupCallbacks function defined in Listing 4-6 for the

speech channel and reference constant value specified by the chan and refCon

parameters, respectively. Then it installs the callback procedure specified by the

callbackProc parameter by using the SetSpeechInfo function with the

soWordCallBack speech information selector. If, for example, you want to pass to

your word callback procedure a pointer to the window containing the document being

used for speech generation, you might call the MyInstallWordCallback procedure

like this:

MyInstallWordCallback(mySpeechChan, @MyWordCallBack, LongInt(myWindow));

Listing 4-8 defines a simple word callback procedure.

Listing 4-8 A typical word callback procedure

PROCEDURE MyWordCallback (chan: SpeechChannel; refCon: LongInt;

wordPos: LongInt; wordLen: Integer);

BEGIN

gWindowBeingRead := WindowPtr(refCon);

gWordPos := wordPos;

gWordLen := wordLen;

END;

▲ W A R N I N G

Callback procedures are called at interrupt time and therefore must not
attempt to allocate, move, or dispose of memory; dereference an
unlocked handle; or call other routines that do so. Also, a callback
procedure is a Pascal procedure and must preserve all registers other
than A0–A1 and D0–D2. ▲

Because of the restrictions on callback procedures, a typical callback procedure usually

just sets global flag variables based on the information passed to it. In Listing 4-8, the

callback procedure copies information from the refCon, wordPos, and wordLen

parameters to the three global variables gWindowBeingRead, gWordPos, and

gWordLen. You can then call a routine to check the values of these global variables

once each time through your application’s event loop and respond appropriately if the

gWindowBeingRead global variable is not NIL. (Your application would have to

initialize the variable to NIL.) For example, the routine might ensure that the word about

to be spoken is visible onscreen and scroll the document appropriately if it is not.

Although they have different uses, speech-done callback procedures, synchronization

callback procedures, error callback procedures, and phoneme callback procedures are

typically defined in ways similar to that of the word callback procedure in Listing 4-8.

See “Application-Defined Routines” beginning on page 4-82 for complete information

on callback routines.

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-23

Text-done callback procedures are usually more complex than the other types. You can

use a text-done callback procedure simply to determine when the Speech Manager has

completed processing a buffer of input text. The callback procedure can just set a global

flag variable that is inspected once each time through the application’s main event loop;

when the flag variable indicates that the input buffer processing is complete, you can

dispose of the input buffer.

Writing Embedded Speech Commands
Embedded speech commands allow you to customize the quality of speech output by

fine tuning it. You can make speech much easier to understand than the default way in

which text is spoken by a synthesizer. An embedded speech command is a command

embedded within a text buffer to be spoken by the Speech Manager that causes the

Speech Manager to take a certain action. For example, you could use an embedded

speech command to emphasize a particular word in a text string to make it stand out

to the user.

An advantage of this technique is that your application needs to call only the standard

functions that generate speech: SpeakString, SpeakText, or SpeakBuffer. To

change the way a phrase is generated, you do not need to change any of your

application’s code; you merely need to change the embedded command text. Your

application can also use embedded speech commands even if it speaks text created

by the user, as opposed to a limited set of phrases. Before passing text to the Speech

Manager, your application could embed various commands within the text. For example,

a word-processing application might embed commands that tell the Speech Manager to

put extra emphasis around words that the user has boldfaced or underlined.

Embedded Command Delimiters

When processing input text data, speech synthesizers look for special sequences of

characters called command delimiters. These character sequences are usually defined to

be unusual pairings of printable characters that would not normally appear in the text.

When a begin command delimiter string is encountered in the text, the following

characters are assumed to contain one or more commands. The synthesizer will attempt

to parse and process these commands until an end command delimiter string is

encountered. By default, the begin command delimiter string is “[[”, and the end

command delimiter string is “]]”. You can change the command delimiters if necessary,

but you should be sure to use printable characters that are not in common use. Be sure to

change the default delimiters back to the assigned characters when you are done with

the speech processing for which you changed the delimiters. For example, if your

application needs to speak text that naturally contains the default delimiter characters,

then it should temporarily change the delimiters to sequences not included in the text.

Or, if your application does not wish to support embedded speech commands, then it

can disable such processing by setting both the begin command delimiter and the end

command delimiter to 2 NIL bytes.

C H A P T E R 4

Speech Manager

4-24 Using the Speech Manager

Syntax of Embedded Speech Commands

This section describes the syntax of embedded speech commands in detail. All

embedded speech commands must be enclosed by the begin command delimiter and

the end command delimiter, as follows:

[[emph +]]

All speech commands require parameters immediately following the speech command.

The parameter to the speech emphasis command above is the plus sign. The format of

the parameter depends on the command issued. Numeric type parameters include

fixed-point numbers, bytes, integers, and 32-bit values. Hexadecimal numbers may be

entered using either Pascal or C syntax; $1A22 and 0x1A22 are both acceptable.

A common type of parameter is an operating-system type parameter, used generally to

specify a particular selector. For example,

[[inpt PHON]]

changes the text-processing mode so that the Speech Manager interprets text to be

composed of phonemes.

Some commands allow you to specify an absolute value by including just a number as

the parameter or to specify a relative value by adding a + or – character. For example,

the following command raises the speech volume by 0.1:

[[volm +0.1]]

Your application can place multiple commands within a single set of delimiters by using

semicolons–for example:

[[volm 0.3 ; rate 165]]

It is suggested that you precede all other embedded speech commands by a format

version command. This command indicates to speech synthesizers the format version to

be used by all subsequent embedded speech commands. The current format version is 1.

You could write a format version command for the current format version like this:

[[vers $00000001]]

Table 4-1 provides a formalization of the embedded command syntax structure, subject

to these conventions:

■ Items enclosed in angle brackets (< and >) represent logical units that either are
defined further below in the table or are atomic units that should be self-explanatory,
in which case the explanations are provided in italic type. All logical units are listed in
the first column.

■ Items enclosed in single brackets ([and]) are optional.

■ Items followed by an ellipsis (…) may be repeated one or more times.

■ For items separated by a vertical bar (|), any one of the listed items may be used.

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-25

■ Multiple space characters between tokens may be used if desired.

■ Multiple commands within a single set of parameters should be separated by
semicolons.

Table 4-1 The embedded command syntax structure

Identifier Syntax

CommandBlock <BeginDelimiter> <CommandList> <EndDelimiter>

BeginDelimiter <String1> | <String2>

EndDelimiter <String1> | <String2>

CommandList <Command> [; <Command>]…

Command <CommandSelector> [parameter]…

CommandSelector <OSType>

Parameter <OSType> | <String1> | <String2> | <StringN> |
<FixedPointValue> | <32BitValue> | <16BitValue> | <8BitValue>

String1 <Character>

String2 <Character> <Character>

StringN [<Character>…]

OSType <Character> <Character> <Character> <Character>

32BitValue <OSType> | <LongInt> | <HexLongInt>

16BitValue < Integer> |<HexInteger>

8BitValue <Byte> | <HexByte>

FixedPointValue <Decimal number: 0.0000 ≤ N ≤ 65,535.9999>

LongInt <Decimal number: 0 ≤ N ≤ 4,294,967,295>

HexLongInt <Hex number: 0x00000000 ≤ N ≤ 0xFFFFFFFF>

Integer <Decimal number: 0 ≤ N ≤ 65,535>

HexInteger <Hex number: 0x0000 ≤ N ≤ 0xFFFF>

Character <Any printable character (for example, A, b, *, #, x)>

Byte <Decimal number: 0 ≤ N ≤ 255>

HexByte <Hex number: 0x00 ≤ N ≤ 0xFF>

C H A P T E R 4

Speech Manager

4-26 Using the Speech Manager

Table 4-2 outlines the set of currently defined embedded speech commands in

alphabetical order and uses the same syntax conventions as Table 4-1. Note that when

writing embedded speech commands, you omit the symbols like angle brackets and

ellipses that are used here for explanatory purposes.

Table 4-2 Embedded speech commands

Command and
selector Command syntax and description

Character mode
(char)

char NORM | LTRL

The character mode command sets the word-speaking mode
of the speech channel. When NORM mode is selected, the
synthesizer attempts to automatically convert words into
speech. This is the most basic function of the text-to-speech
synthesizer. When LTRL mode is selected, the synthesizer
speaks every word, number, and symbol character by
character. Embedded command processing continues to
function normally, however.

This embedded speech command is analogous to the
soCharacterMode speech information selector.

Comment (cmnt) cmnt [<Character>…]

The comment command is ignored by speech synthesizers.
It enables a developer to insert a comment that will not be
spoken into a text stream for documentation purposes. Note
that all characters following the cmnt selector up to
<EndDelimiter> are part of the comment.

Delimiter (dlim) dlim <BeginDelimiter> <EndDelimiter>

The delimiter command changes the character sequences that
mark the beginning and end of all subsequent commands to
the character sequences specified. The new delimiters take
effect after the command list containing this command has
been completely processed. If the delimiter strings are empty,
an error is generated.

This embedded speech command is analogous to the
soCommandDelimiter speech information selector.

Emphasis (emph) emph + | -

The emphasis command causes the next word to be spoken
with either greater emphasis or less emphasis than would
normally be used. Using + will force added emphasis, while
using – will force reduced emphasis. For an illustration of
using the emphasis command, see the section “Examples of
Embedded Speech Commands” beginning on page 4-30.

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-27

Input mode (inpt) inpt | TEXT | PHON

The input mode command switches the input-processing mode
to either normal text mode or phoneme mode. Passing TEXT
sets the mode to text mode; passing PHON sets the mode to
phoneme mode. Some speech synthesizers might define
additional speech input mode selectors. In phoneme mode,
characters are interpreted as representing phonemes, as
described in “Phonemic Representation of Speech” on
page 4-32.

This embedded speech command is analogous to the
soInputMode speech information selector.

Number mode
(nmbr)

nmbr NORM | LTRL

The number mode command sets the number-speaking mode
of the speech synthesizer. When NORM mode is selected, the
synthesizer attempts to automatically speak numeric strings as
intelligently as possible. When LTRL mode is selected, numeric
strings are spoken digit by digit. When the word-speaking
mode is set to literal via the character mode command or the
soCharacterMode speech information selector, numbers are
spoken digit by digit regardless of the current
number-speaking mode.

This embedded speech command is analogous to the
soNumberMode speech information selector.

Baseline pitch
(pbas)

pbas [+ | -] <FixedPointValue>

The baseline pitch command changes the current speech pitch
for the speech channel to the fixed point value specified. If the
pitch number is preceded by a + or – character, the speech
pitch is adjusted relative to its current value. Base pitch values
are always positive numbers in the range from 1.000 to 127.000.

This embedded speech command is analogous to the
soPitchBase speech information selector. For a discussion
of speech pitch, see the section “Speech Attributes” beginning
on page 4-6.

continued

Table 4-2 Embedded speech commands (continued)

Command and
selector Command syntax and description

C H A P T E R 4

Speech Manager

4-28 Using the Speech Manager

Pitch modulation
(pmod)

pmod [+ | -] <FixedPointValue>

The pitch modulation command changes the modulation range
for the speech channel based on the modulation depth
fixed-point value specified. The actual pitch of generated
speech might vary from the baseline pitch up or down as much
as the modulation depth. If the modulation depth number
is preceded by a + or – character, the pitch modulation is
adjusted relative to its current value. Speech pitches fall in the
range of 0.000 to 127.000.

This embedded speech command is analogous to the
soPitchMod speech information selector. For a discussion
of speech pitch, see the section “Speech Attributes” beginning
on page 4-6.

Speech rate (rate) rate [+ | -] <FixedPointValue>

The speech rate command sets the speech rate in words per
minute on the speech channel to the fixed-point value
specified. If the rate value is preceded by a + or – character, the
speech rate is adjusted relative to its current value. Speech
rates fall in the range 0.000 to 65535.999, which translate into 50
to 500 words per minute. Normal human speech rates are
around 180 to 220 words per minute.

This embedded speech command is analogous to the soRate
speech information selector. For a discussion of speech rate, see
the section “Speech Attributes” beginning on page 4-6.

Reset (rset) rset <32BitValue>

The reset command will reset the speech channel’s voice and
speech attributes back to default values. The parameter has no
effect; it should be set to 0.

This embedded speech command is analogous to the soReset
speech information selector.

Silence (slnc) slnc <32BitValue>

The silence command causes the synthesizer to generate
silence for the number of milliseconds specified. The timing
of the silence will vary widely between synthesizers. For an
illustration of using the silence command, see the section
“Examples of Embedded Speech Commands” beginning on
page 4-30.

Table 4-2 Embedded speech commands (continued)

Command and
selector Command syntax and description

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-29

While embedded speech commands are being processed, several types of errors might

be detected and reported to your application. If you have enabled error callbacks by

Synchronization
(sync)

sync <32BitValue>

The synchronization command causes the application’s
synchronization callback procedure to be executed. The
callback is made as the audio corresponding to the next word
begins to sound. The callback procedure is passed the 32-bit
value specified in the command. Synchronization callback
procedures are described in “Synchronization Callback
Procedure” beginning on page 4-85.

Format version
(vers)

vers <32BitValue>

The format version command informs the speech synthesizer
of the format version that subsequent embedded speech
commands will use. This command is optional but is
recommended to ensure that embedded speech commands
are compatible with all versions of the Speech Manager.
The current format version is $0001.

Speech volume
(volm)

volm [+ | -] <FixedPointValue>

The speech volume command changes the speech volume on
the speech channel to the fixed-point value specified. If the
volume value is preceded by a + or – character, the speech
volume is adjusted relative to its current value. Volumes are
expressed in fixed-point units ranging from 0.000 through
1.000. A value of 0.0 corresponds to silence, and a value of 1.0
corresponds to the maximum possible volume. Volume units
lie on a scale that is linear with amplitude or voltage. A
doubling of perceived loudness corresponds to a doubling of
the volume.

This embedded speech command is analogous to the
soVolume speech information selector.

Synthesizer-specific
(xtnd)

xtnd <OSType> [<Parameter>…]

The synthesizer-specific command enables synthesizer-specific
commands to be embedded in the input text stream.
Synthesizer-specific speech commands are processed by the
speech synthesizer whose creator ID is specified in the first
parameter and by other speech synthesizers that support
commands aimed at the synthesizer with the specified creator
ID. The format of the data following the parameter is entirely
dependent on the synthesizer being used.

This embedded speech command is analogous to the
soSynthExtension speech information selector, described
in “Speech Information Selectors” beginning on page 4-39.

Table 4-2 Embedded speech commands (continued)

Command and
selector Command syntax and description

C H A P T E R 4

Speech Manager

4-30 Using the Speech Manager

using the SetSpeechInfo function with the soErrorCallBack selector, the error

callback procedure will be executed once for every error that is detected, as described in

“Error Callback Procedure” beginning on page 4-86. If you have not enabled error

callbacks, you can still obtain information about the errors encountered by calling the

GetSpeechInfo function with the soErrors selector. The following errors might be

detected during processing of embedded speech commands:

Examples of Embedded Speech Commands

If you use just a few of the embedded speech commands, you can markedly increase the

understandability of text spoken by your application. Your application knows more

about the speech being produced than a speech synthesizer does. A synthesizer speaks

text according to a predetermined set of rules about language production. Therefore, the

voices available on a Macintosh computer with the Speech Manager installed sound very

synthetic and sometimes robotic because the pronunciation rules are formalized. You can

make the speech produced by the synthesizer sound a lot more human by observing

some simple rules of human speech and embedding speech commands in text according

to these conventions. The techniques presented in this section could be applied when

your application is having a dialog with the user or speaking some error messages or

announcements.

The most common technique humans use in speaking is to emphasizing or

deemphasizing words in a sentence. This change in emphasis marks for the listener

new and important information by highlighting it vocally, making it easier for the

listener to recognize important or different words in a sentence. For example, in a

calendar-scheduling program, your application might speak a list of appointments for a

day. The following text strings would all be spoken with the same tune and rhythm.

At 4pm you have a meeting with Kim Silver.

At 6pm you have a meeting with Tim Johnson.

At 7pm you have a meeting with Mark Smith.

The example that follows shows how you use embedded speech commands to

deemphasize repeated words in similar sentences and highlight new information in a

sentence. The first sentence of the following example sounds fairly acceptable. The

second sentence deemphasizes the repeated words have and meeting to point out the new

information—with whom the meeting is. The choice of which words to emphasize or

deemphasize is based on what was spoken in the preceding sentence.To use the

embedded command emph (emphasis), you insert it followed by a plus or minus sign

before the word you want emphasized or deemphasized. The emph command lasts for

a duration of one word.

badParmVal –245 Parameter value is invalid
badCmdText –246 Embedded command syntax or parameter problem
unimplCmd –247 Embedded command is not implemented on synthesizer
unimplMsg –248 Unimplemented message
badVoiceID –250 Specified voice has not been preloaded
badParmCount –252 Incorrect number of embedded command arguments

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-31

At 4:15 you have a meeting with Ray Chiang.

At 6:30, you [[emph -]] have a [[emph -]] meeting with

William Ortiz.

At 7pm, you [[emph -]] have a [[emph -]] meeting with

Eric Braz Ford.

As shown in the next example, you can further enhance this text by spelling out the

numbers so that you can emphasize changes in increments of time. For example, the

following sentences deemphasize the repeated word six to highlight the difference

between the meetings; which both occur between six and seven o’clock.

At four fifteen you have a meeting with Lori Kaplan.

At six [[emph -]] fifteen, you [[emph -]] have a [[emph -]]

meeting with Tim Monroe.

At [[emph -]] six thirty, you [[emph -]] have a [[emph -]] meeting

with Michael Abrams.

Another use of the emphasis embedded command is to make confusing, boring, or

mechanical sounding text more understandable. One example of this is strings of nouns

that refer to one entity (called complex nominals) that when spoken differently have a

different meeting.

1a. Steel warehouse.

1b. Steel [[emph -]] warehouse.

2a. French teachers.

2b. French [[emph -]] teachers.

In the first example, phrase 1a, steel warehouse, refers to a warehouse made of steel, in

which anything could be stored. But phrase 1b describes a warehouse of unspecified

construction in which steel is stored. In the second example, phrase 2a, French teachers,
refers to teachers from France who teach any subject. In the same example, phrase 2b

specifies people from anywhere who teach French classes. You can use this technique of

deemphasizing words in phrases to help users correctly understand the meaning of text

spoken from your application.

You use the emph command to emphasize words in order to contrast them. You

contrast words that are similar to words found later in a sentence to help distinguish

new information.

You have [[emph +]] 3 text [[emph -]] messages, two fax [[emph -]]

messages, and [[emph +]] one [[emph +]] voice [[emph -]] message.

This example emphasizes the words related to the number of messages and type of

messages to help the listener discern the different kinds of information being presented.

C H A P T E R 4

Speech Manager

4-32 Using the Speech Manager

Another common speaking technique that humans use is to pause before starting to

speak about a new idea or before beginning a new paragraph. Adding an slnc (silence)

command before beginning to speak a new idea or paragraph makes the synthetic voice

sound like a person does when taking a breath in between ideas. This technique works

best if you also raise the pitch range (using the pmod and pbas embedded commands) of

the first sentence of the new paragraph. You must remember to lower the pitch range to

achieve the desired effect.

[[emph -; pmod +1; pbas +1]] Good morning! [[pmod -1; pbas -1]]

This is a [[emph +]] newer [[emph -]] version of Apple's speech

synthesis. The previous [[emph -]] version has already been [[emph

-]] adopted by many developers. Users have sent us many positive

[[emph +]] reports.

[[slnc 500; pmod +1; pbas +1]]

This newer [[emph -]] version has better signal [[emph -]]

processing [[pmod -1; pbas -1]], new pitch [[emph -]] contours,

and a new compression. It still doesn't [[emph -]] sound

perfect, but people find it easier to understand.

This example deemphasizes the first word of the utterance, but raises the pitch to make

the greeting sound more like a human would speak it. Then words are emphasized or

deemphasized according to the techniques discussed previously. Silence is introduced

before the new paragraph to signal a change in thought process. The pitch is raised and

then lowered again after the first phrase. Note that you don’t have to wait a full sentence

before changing the pitch back to its previous value. It’s best to work with these

techniques until you find the most human-sounding utterances.

Phonemic Representation of Speech
The Speech Manager allows your application to process text phonemically. If your

application speaks only text that the user writes, this feature is unlikely to be useful to

you, because you cannot anticipate what the user might enter. However, if there are a

few or many sentences that your application frequently converts into speech, it might be

useful to represent parts of these sentences phonemically rather than textually.

It might be useful to convert your text into phonemes during application development in

order to be able to reduce the amount of memory required to speak. If your application

does not require the text-to-phoneme conversion portion of the speech synthesizer,

significantly less RAM might be required to speak with some synthesizers.

Additionally, you might be able to use a higher quality text-to-phoneme conversion

process (even one that does not work in real time) to generate precise phonemic

information. This data can then be used with any speech synthesizer to produce better

speech. For example, you might convert textual to phonemic data on a future version of

the Speech Manager that performs such conversions more accurately than the Speech

Manager currently does; that phonemic data could then be used to generate speech with

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-33

any version of the Speech Manager. The Speech Manager’s TextToPhonemes function

provides an easy method for converting text into its default phonemic equivalent.

To help the Speech Manager differentiate a textual representation of a word from a

phonemic representation, you must embed commands in text that inform the Speech

Manager to change into a mode in which it interprets a buffer of text as a phonemic

representation of speech, in which particular combinations of letters represent particular

phonemes. (You can also use the SetSpeechInfo function to change to phoneme

mode.) To indicate to the Speech Manager that subsequent text is a phonemic

representation of text to be spoken, embed the [[inpt PHON]] command within

a string or buffer that your application passes to one of the SpeakString, SpeakText,

or SpeakBuffer functions. To indicate that the Speech Manager should revert to textual

interpretation of a text buffer, embed the [[inpt TEXT]] command. For example,

passing the string

Hello, I am [[inpt PHON]]mAYkAXl[[inpt TEXT]], the talking

computer.

to SpeakString, SpeakText, or SpeakBuffer would result in the generation of the

sentence, “Hello, I am Michael, the talking computer.”

Some, but not all, speech synthesizers allow you to embed a command that causes the

Speech Manager to interpret a buffer of text as a series of allophones.

Phonemic Symbols

Table 4-3 summarizes the set of standard phonemes recognized by American English

speech synthesizers. Other languages and dialects require different phoneme

inventories. Phonemes divide into two groups: vowels and consonants. All vowel

symbols are pairs of uppercase letters. For simple consonants the symbol is that

lowercase consonant; for blends and complex consonants, the symbol is in uppercase.

Within the example words, the individual sounds being exemplified appear in boldface.

Table 4-3 American English phoneme symbols

Symbol Example Opcode Symbol Example Opcode

% silence 0 D them 21

@ breath intake 1 f fin 22

AE bat 2 g gain 23

EY bait 3 h hat 24

AO caught 4 J jump 25

AX about 5 k kin 26

IY beet 6 l limb 27

EH bet 7 m mat 28

continued

C H A P T E R 4

Speech Manager

4-34 Using the Speech Manager

You can obtain information similar to that in Table 4-3 for whatever language a

synthesizer supports by using the GetSpeechInfo function on a channel using the

synthesizer with the soPhonemeSymbols selector. The information is returned in a

phoneme descriptor record, whose structure is described on page 4-53.

Prosodic Control Symbols

The symbols listed in Table 4-4 are recognized as modifiers to the basic phonemes

described in the preceding section. You can use them to more precisely control the

quality of speech that is described in terms of raw phonemes.

IH bit 8 n nat 29

AY bite 9 N tang 30

IX roses 10 p pin 31

AA cot 11 r ran 32

UW boot 12 s sin 33

UH book 13 S shin 34

UX bud 14 t tin 35

OW boat 15 T thin 36

AW bout 16 v van 37

OY boy 17 w wet 38

b bin 18 y yet 39

C chin 19 z zen 40

d din 20 Z measure 41

Table 4-4 Prosodic control symbols

Type Symbol Symbol name Description or illustration of effect

Lexical stress: Marks stress within a word (optional)

 Primary stress 1 AEnt2IHsIXp1EYSAXn (“anticipation”)

 Secondary stress 2

Syllable breaks: Marks syllable breaks within a word (optional)

 Syllable mark = (equal) AEn=t2IH=sIX=p1EY=SAXn (“an-ti-ci-pa-tion”)

Word prominence: Placed before the affected word

 Destressed ~ (asciitilde) Used for words with minimal informational
content

Table 4-3 American English phoneme symbols (continued)

Symbol Example Opcode Symbol Example Opcode

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-35

Note

Like all other phonemes, the “silence” phoneme (%) and the “breath
intake” phoneme (@) can be lengthened or shortened using the > and <
symbols. ◆

The prosodic control symbols (/, \, <, and >) can be concatenated to provide

exaggerated or cumulative effects. The specific nature of the effect is dependent on

the speech synthesizer. Speech synthesizers also often extend or enhance the controls

described in the table.

Table 4-5 indicates the effect of punctuation marks on sentence prosody. In particular, the

table shows the effect of punctuation marks on speech pitch and indicates to what extent

the punctuation marks cause a pause. Note that because some languages might not use

these punctuation marks, some synthesizers might not interpret them correctly. In

general, speech synthesizers strive to mimic the pauses and changes in pitch of actual

speakers in response to punctuation marks, so to obtain best results, you can punctuate

according to standard grammatical rules.

 Normal stress _ (underscore) Used for information-bearing words

 Emphatic stress + (plus) Used for words requiring special emphasis

Prosodic: Placed before the affected phoneme

 Pitch rise / (slash) Pitch will rise on the following phoneme

 Pitch fall \ (backslash) Pitch will fall on the following phoneme

 Lengthen
 phoneme

> (greater) Lengthens the duration of the following phoneme

 Shorten phoneme < (less) Shortens the duration of the following phoneme

Table 4-5 Effect of punctuation marks on English-language synthesizers

Symbol Symbol name Effect of punctuation mark Effect on Timing

& (ampersand) Forces no addition of silence
between phonemes

No additional effect

: (colon) End of clause, no change in pitch Short pause follows

, (comma) Continuation rise in pitch Short pause follows

… (ellipsis) End of clause, no change in pitch Pause follows

! (exclam) End-of-sentence sharp fall in pitch Pause follows

- (hyphen) End of clause, no change in pitch Short pause follows

((parenleft) Start reduced pitch range Short pause precedes

continued

Table 4-4 Prosodic control symbols (continued)

Type Symbol Symbol name Description or illustration of effect

C H A P T E R 4

Speech Manager

4-36 Using the Speech Manager

Specific pitch contours associated with these punctuation marks might vary according to

other considerations in the analysis of the text. For example, if a question is rhetorical or

begins with a word recognized by the synthesizer to be a question word, the pitch might

fall at the question mark. Consequently the above effects should be regarded as only

guidelines and not absolute. This also applies to the timing effects, which will vary

according to the current rate setting.

Including Pronunciation Dictionaries
No matter how sophisticated a speech synthesis system is, there will always be words

that it does not automatically pronounce correctly. A clear instance of words that are

often mispronounced is the class of proper nouns (names of people, place names, and so

on). The Speech Manager supports pronunciation dictionaries which allow applications

to override the default pronunciations of words. A pronunciation dictionary is a list

of words along with their associated pronunciations stored in a resource of resource

type 'dict'.

The application is free to store dictionaries in either the resource fork or the data fork of a

file. The application is responsible for loading the individual dictionaries into RAM and

then passing a handle to the dictionary data to the Speech Manager. The initial release of

the Speech Manager, however, does not include any routines that can add entries to

dictionaries or manipulate them in other ways. The Speech Manager does include a

routine, the UseDictionary function, that you can use to install one or more

pronunciation dictionaries in a speech channel.

 A multimedia application might store such a pronunciation dictionary resource in its

own resource fork to specify the pronunciations of selected words used in a narration.

A word-processing application, meanwhile, could allow a user to add words to a

pronunciation dictionary stored in the resource fork of a text file. Or, a text-services

application dedicated to speech generation might include large specialized dictionaries—

for example, of medical terms—to specify pronunciation of words in particular subject

) (parenright) End reduced pitch range Short pause follows

. (period) End-of-sentence fall in pitch Pause follows

? (question) End-of-sentence rise in pitch Pause follows

“
‘

(quotedblleft,
quotesingleleft)

Varies depending on context Varies

”
’

(quotedblright,
quotesingleright)

Varies depending on context Varies

; (semicolon) Continuation rise in pitch Short pause follows

Table 4-5 Effect of punctuation marks on English-language synthesizers (continued)

Symbol Symbol name Effect of punctuation mark Effect on Timing

C H A P T E R 4

Speech Manager

Using the Speech Manager 4-37

areas. Because the Speech Manager allows your application to install as many

pronunciation dictionaries as desired in a speech channel, it can use pronunciation

dictionaries in one or more of these ways.

Note

The Dictionary Manager, described in Inside Macintosh: Text, cannot be
used with pronunciation dictionaries. ◆

Whenever a speech synthesizer needs to determine the proper phonemic representation

for a particular word, it first looks for the word in its pronunciation dictionaries.

Pronunciation dictionary entries contain information that enables precise conversion

between text and the correct phoneme codes, as described in “Phonemic Representation

of Speech” beginning on page 4-32. Pronunciation dictionary entries also provide stress,

intonation, and other information to help speech synthesizers produce more natural

speech, as described in “Prosodic Control Symbols” beginning on page 4-34. Note that

you cannot use punctuation marks (as described in Table 4-5) in pronunciation

dictionaries.

A single pronunciation dictionary entry cannot be used to specify the pronunciation of

an entire phrase, because the Speech Manager checks its pronunciation dictionary on a

word-by-word basis. Thus, the textual portion of a pronunciation dictionary entry must

not contain any spaces.

If the pronunciation dictionaries installed in a speech channel do not include an

indication of how a word should be pronounced, then the Speech Manager uses its own

pronunciation rules and internal dictionary to pronounce the words. In general, you

need to create a dictionary only for unusual words that your application requires but the

Speech Manager ordinarily pronounces incorrectly. You might also allow a user who is

not pleased with the default pronunciation of a word to add the correct pronunciation

to a pronunciation dictionary. You can create a dictionary using MPW Rez or another

appropriate tool. See “The Pronunciation Dictionary Resource” beginning on page 4-89

for a discussion of the format of the pronunciation dictionary resource and the meaning

of it fields.

To install a pronunciation dictionary resource in a speech channel, you must read

the resource into memory and pass it to the UseDictionary function. Because the

UseDictionary function requires that you specify a speech channel, you might need

to reinstall the dictionary whenever your application allocates a new speech channel or

whenever it resets an existing speech channel. Listing 4-9 shows how you can use

the UseDictionary function to install a pronunciation dictionary resource in a

speech channel.

Listing 4-9 Installing a pronunciation dictionary resource into a speech channel

PROCEDURE MyUseDictionary (chan: SpeechChannel; resID: Integer);

VAR

myDict: Handle; {handle to dictionary data}

myErr: OSErr;

C H A P T E R 4

Speech Manager

4-38 Using the Speech Manager

BEGIN

myDict := GetResource('dict', resID); {load the dictionary}

IF (myDict <> NIL) AND (ResError = noErr) THEN

BEGIN

myErr := UseDictionary(chan, myDict); {install the dictionary}

IF myErr <> noErr THEN

DoError(myErr); {respond to an error}

ReleaseResource(myDict); {release the resource}

END;

END;

The MyUseDictionary procedure defined in Listing 4-9 attempts to find a resource of

resource type 'dict' with resource ID resID and uses the Resource Manager to read it

into memory. If your application stores pronunciation dictionaries in the data fork of

files, it can instead use analogous File Manager routines to read the data. If the data is

read in correctly, MyUseDictionary calls the UseDictionary function to install the

dictionary on the specified speech channel. Because the speech synthesizer copies all

necessary data from the dictionary to its internal buffers, the application is free to release

the memory occupied by the dictionary, as illustrated by the ReleaseResource call.

The pronunciation dictionary resource in Listing 4-10 consists of pronunciation

dictionary entries in Rez format. Each entry specifies a word in textual format and its

phonemic equivalent.

Listing 4-10 A sample pronunciation dictionary resource

resource 'dict' (1, "TestDict") {

smRoman, langEnglish, verUS, ThisSecond,

{

pron, {tx, "ROOSEVELT", ph, "_1EHf_d1IY_1AAr"},

pron, {tx, "CHELSEA", ph, "_C1EHls2IY"},

pron, {tx, "AMHERST", ph, "_2UXmAXrst"},

pron, {tx, "REDSOX", ph, "_r1EHd_s1AAks"},

pron, {tx, "HALLOWEEN", ph, "_h1AAl2OW_w1IYn"},

pron, {tx, "FELIX", ph, "_f1IYl2IHks_D2UX_k1AEt"},

pron, {tx, "WEDNESDAY", ph, "_m1IHd_w1IYk"},

},

};

Note that you are not restricted to using pronunciations similar to those of the words

listed. Typically, however, pronunciation dictionaries contain entries for words that the

Speech Manager pronounces unsatisfactorily.

Also, note that a pronunciation dictionary’s entries need not be in any particular order.

In particular, you should not assume that a pronunciation dictionary is in alphabetical

order unless your application creates the dictionary and maintains that order.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-39

The pronunciation dictionary resource header consists of nine fields, of which four must

be explicitly defined in a Rez definition such as the one in Listing 4-10. The first three of

these fields specify the script, language, and region code of the language for which the

pronunciation dictionary is designed. Note that you must create a separate

pronunciation dictionary for each region, language, or script. The fourth field of a

pronunciation dictionary is the date the pronunciation dictionary was last modified,

in terms of seconds since midnight, January 1, 1904. In Listing 4-10, it is assumed

that the constant ThisSecond is defined to be such a date. For information on

obtaining information about the current date in this format, see Inside Macintosh:
Operating System Utilities.

Speech Manager Reference

This section describes the constants, data structures, routines, and resources that are

specific to the Speech Manager.

The section “Constants” describes the available speech information selectors.

The section “Data Structures” beginning on page 4-45 shows all of the Speech Manager’s

Pascal data structures, including those for the voice specification and description

records, the speech status information record, and the phoneme information and

descriptor records.

The section “Speech Manager Routines” beginning on page 4-54 describes the Speech

Manager functions that allow you to generate speech, use voices, manage and control

speech channels, convert text to phonemes, and use pronunciation dictionaries.

The section “Application-Defined Routines” beginning on page 4-82 describes the kinds

of callback procedures you can implement.

The section “Resources” beginning on page 4-89 describes the format of pronunciation

dictionary resources.

Constants

This section describes the available speech information selectors.

Speech Information Selectors

This section describes the speech information selectors that you can pass in the

selector parameter of the GetSpeechInfo and SetSpeechInfo functions.

CONST

soCharacterMode = 'char'; {get or set character-processing mode}

soCommandDelimiter = 'dlim'; {set embedded command delimiters}

soCurrentA5 = 'myA5'; {set A5 on callbacks}

C H A P T E R 4

Speech Manager

4-40 Speech Manager Reference

soCurrentVoice = 'cvox'; {set speaking voice}

soErrorCallBack = 'ercb'; {set error callback}

soErrors = 'erro'; {get error information}

soInputMode = 'inpt'; {get or set text-processing mode}

soNumberMode = 'nmbr'; {get or set number-processing mode}

soPhonemeCallBack = 'phcb'; {set phoneme callback}

soPhonemeSymbols = 'phsy'; {get phoneme symbols and example }

{ words}

soPitchBase = 'pbas'; {get or set baseline pitch}

soPitchMod = 'pmod'; {get or set pitch modulation}

soRate = 'rate'; {get or set speech rate}

soRecentSync = 'sync'; {get most recent synchronization }

{ message information}

soRefCon = 'refc'; {set reference constant value}

soReset = 'rset'; {set channel back to default state}

soSpeechDoneCallBack = 'sdcb'; {set speech-done callback}

soStatus = 'stat'; {get status of channel}

soSyncCallBack = 'sycb'; {set synchronization callback}

soSynthExtension = 'xtnd'; {get or set synthesizer-specific }

{ information}

soSynthType = 'vers'; {get synthesizer information}

soTextDoneCallBack = 'tdcb'; {set text-done callback}

soVolume = 'volm'; {get or set speech volume}

soWordCallBack = 'wdcb'; {set word callback}

Constant descriptions

soCharacterMode
Get or set the speech channel’s character-processing mode.
Two constants are currently defined for the processing mode,
modeNormal and modeLiteral. When the character-processing
mode is modeNormal, input characters are spoken as you would
expect to hear them. When the mode is modeLiteral, each
character is spoken literally, so that the word “cat” would be spoken
“C–A–T”. The speechInfo parameter points to a variable of type
OSType, which is the character-processing mode.

This selector works with GetSpeechInfo and SetSpeechInfo
and does not move memory.

soCommandDelimiter
Set the embedded speech command delimiter characters to be used
for the speech channel. By default the opening delimiter is “[[” and
the closing delimiter is “]]”. Your application might need to change
these delimiters temporarily if those character sequences occur
naturally in a text buffer that is to be spoken. Your application can
also disable embedded command processing by passing empty
delimiters (2 NIL bytes). The speechInfo parameter is a pointer
to a delimiter information record, described on page 4-54.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-41

This selector works with the SetSpeechInfo function and does
not move memory.

soCurrentA5 Set the value that the Speech Manager assigns to the A5 register
before invoking any application-defined callback procedures for the
speech channel. The A5 register must be set correctly if the callback
procedures are to be able to access application global variables. For
more information on the A5 register, see Inside Macintosh: Memory.
The speechInfo parameter should be set to the pointer contained
in the A5 register at a time when the application is not executing
interrupt code or to NIL if your application wishes to clear a value
previously set with the soCurrentA5 selector.

This selector works with the SetSpeechInfo function and does
not move memory. See Listing 4-6 on page 4-21 for an illustration of
the use of this selector.

soCurrentVoice
Set the current voice on the current speech channel to the specified
voice. The speechInfo parameter is a pointer to a voice
specification record. Your application should create the record by
calling the MakeVoiceSpec function, described on page 4-64.
SetSpeechInfo will return an incompatibleVoice error if
the specified voice is incompatible with the speech synthesizer
associated with the speech channel. If you have a speech channel
open using a voice from a particular synthesizer and you try to
switch to a voice that works with a different synthesizer, you
receive an incompatibleVoice error. You need to create a new
channel to use with the new voice.

This selector works with only SetSpeechInfo and might move
memory. Your application should not invoke it at interrupt time.

soErrorCallBack
Set the callback procedure to be called when an error is encountered
during the processing of an embedded command. The callback
procedure might also be called if other conditions (such as
insufficient memory) arise during the speech conversion process.
When a Speech Manager function returns an error directly, the
error callback procedure is not called. The callback procedure is
passed information about the most recent error; it can determine
information about the oldest pending error by using the speech
information selector soErrors. The speechInfo parameter is a
pointer to an application-defined error callback procedure, whose
syntax is described on page 4-86. Passing NIL in speechInfo
disables the error callback procedure.

This selector works with the SetSpeechInfo function and does
not move memory.

soErrors Get saved error information for the speech channel and clear its
error registers. This selector lets you poll for various run-time errors
that occur during speaking, such as the detection of badly formed
embedded commands. Errors returned directly by Speech Manager
functions are not reported here. If your application defines an error
callback procedure, the callback should use the soErrors selector

C H A P T E R 4

Speech Manager

4-42 Speech Manager Reference

to obtain error information. The speechInfo parameter is a
pointer to a speech error information record, described on page 4-49.

This selector works with the GetSpeechInfo function and does
not move memory.

soInputMode Get or set the speech channel’s current text-processing mode. The
returned value specifies whether the channel is currently in text
input mode or phoneme input mode. The speechInfo parameter
is a pointer to a variable of type OSType, which specifies a
text-processing mode. The following constants specify the
available text-processing modes:

CONST

modeText = 'TEXT';

modePhonemes = 'PHON';

The modeText constant indicates that the speech channel is in
text-processing mode. The modePhonemes constant indicates that
the speech channel is in phoneme-processing mode. When in
phoneme-processing mode, a text buffer is interpreted to be a series
of characters representing various phonemes and prosodic controls,
as discussed in “Phonemic Representation of Speech” on page 4-32
and “Prosodic Control Symbols” on page 4-34. Some synthesizers
might support additional input-processing modes and define
constants for these modes.

This selector works with both the GetSpeechInfo and
SetSpeechInfo functions. It might move memory only when
used in conjunction with the SetSpeechInfo function.

soNumberMode Get or set the speech channel’s current number-processing mode.
Two OSType constants are currently defined, modeNormal and
modeLiteral. When the number-processing mode is
modeNormal, the synthesizer assembles digits into numbers (so
that 12 is spoken as “twelve”). When the mode is modeLiteral,
each digit is spoken literally (so that 12 is spoken as “one, two”).
The speechInfo parameter is a pointer to a variable of type
OSType, which specifies the number-processing mode.

This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soPhonemeCallBack
Set the callback procedure to be called every time the Speech
Manager is about to generate a phoneme on the speech channel.
The speechInfo parameter is a pointer to an application-defined
phoneme callback procedure, whose syntax is described on
page 4-87. Passing NIL in speechInfo disables the phoneme
callback procedure.

This selector works with the SetSpeechInfo function and does
not move memory.

soPhonemeSymbols
Get a list of phoneme symbols and example words defined for the

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-43

speech channel’s synthesizer. Your application might use this
information to show the user what symbols to use when entering
phonemic text directly. The speechInfo parameter is a pointer to
a variable of type Handle that, on exit from the GetSpeechInfo
function, is a handle to a phoneme descriptor record, described on
page 4-53.

This selector works with the GetSpeechInfo function and might
move memory. Your application should not invoke it at interrupt
time.

soPitchBase Get or set the speech channel’s baseline speech pitch. This selector is
intended for use by the Speech Manager; ordinarily, an application
uses the GetSpeechPitch and SetSpeechPitch functions,
described on page 4-75 and page 4-76, respectively. The
speechInfo parameter is a pointer to a variable of type Fixed.

This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soPitchMod Get or set a speech channel’s pitch modulation. The speechInfo
parameter is a pointer to a variable of type Fixed. Pitch
modulation is also expressed as a fixed-point value in the range
of 0.000 to 127.000. These values correspond to MIDI note values,
where 60.000 is equal to middle C on a piano scale. The most useful
speech pitches fall in the range of 40.000 to 55.000. A pitch
modulation value of 0.000 corresponds to a monotone in which all
speech is generated at the frequency corresponding to the speech
pitch. Given a speech pitch value of 46.000, a pitch modulation
of 2.000 would mean that the widest possible range of pitches
corresponding to the actual frequency of generated text would
be 44.000 to 48.000.

This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soRate Get or set a speech channel’s speech rate. The speechInfo
parameter is a pointer to a variable of type Fixed. The possible
range of speech rates is from 0.000 to 65535.65535. The range of
supported rates is not predefined by the Speech Manager; each
speech synthesizer provides its own range of speech rates. Average
human speech occurs at a rate of 180 to 220 words per minute.

This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soRecentSync Get the message code for the most recently encountered
synchronization command. If no synchronization command has
been encountered, 0 is returned. The speechInfo parameter is a
pointer to a variable of type OSType.

This selector works with the GetSpeechInfo function and does
not move memory.

soRefCon Set a speech channel’s reference constant value. The reference
constant value is passed to application-defined callback procedures
and might contain any value convenient for the application. The
speechInfo parameter is a long integer containing the reference

C H A P T E R 4

Speech Manager

4-44 Speech Manager Reference

constant value. In contrast with other selectors, this selector does
not require that the speechInfo parameter’s value be a pointer
value. Typically, however, an application does use this selector to
pass a pointer or handle value to callback procedures.

This selector works with the SetSpeechInfo function and does
not move memory. See Listing 4-6 on page 4-21 for an illustration of
the use of this selector.

soReset Set a speech channel back to its default state. For example, speech
pitch and speech rate are set to default values. The speechInfo
parameter should be set to NIL.

This selector works with the SetSpeechInfo function and does
not move memory.

soSpeechDoneCallBack
Set the callback procedure to be called when the Speech Manager
has finished generating speech on the speech channel. The
speechInfo parameter is a pointer to an application-defined
speech-done callback procedure, whose syntax is described on
page 4-84. Passing NIL in speechInfo disables the speech-done
callback procedure.

This selector works with the SetSpeechInfo function and does
not move memory.

soStatus Get a speech status information record for the speech channel. The
speechInfo parameter is a pointer to a speech status information
record, described on page 4-48.

This selector works with the GetSpeechInfo function and does
not move memory.

soSyncCallBack
Set the callback procedure to be called when the Speech Manager
encounters a synchronization command within an embedded
speech command in text being processed on the speech channel.
The speechInfo parameter is a pointer to an application-defined
synchronization callback procedure, whose syntax is described on
page 4-85. Passing NIL in speechInfo disables the
synchronization callback procedure.

This selector works with the SetSpeechInfo function and does
not move memory.

soSynthExtension
Get or set synthesizer-specific information or settings. The
speechInfo parameter is a pointer to a speech extension data
record, described on page 4-53. Your application should set the
synthCreator field of this record before calling GetSpeechInfo
or SetSpeechInfo. Ordinarily, your application must pass
additional information to the synthesizer in the synthData field.

This selector works with both the GetSpeechInfo and
SetSpeechInfo functions. Whether it moves memory depends
on the synthesizer being used and the information passed to the
synthesizer.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-45

soSynthType Get a speech version information record for the speech synthesizer
being used on the specified speech channel. The speechInfo
parameter is a pointer to a speech version information record,
described on page 4-50.

This selector works with the GetSpeechInfo function and does
not move memory.

soTextDoneCallBack
Set the callback procedure to be called when the Speech Manager
has finished processing speech being generated on the speech
channel. The speechInfo parameter is a pointer to an
application-defined text-done callback procedure, whose syntax
is described on page 4-84. Passing NIL in speechInfo disables
the text-done callback procedure.

This selector works with the GetSpeechInfo function and does
not move memory.

soVolume Get or set the speech volume for a speech channel. The
speechInfo parameter is a pointer to a variable of type Fixed.
Volumes are expressed in fixed-point units ranging from 0.0
through 1.0. A value of 0.0 corresponds to silence, and a value of
1.0 corresponds to the maximum possible volume. Volume units lie
on a scale that is linear with amplitude or voltage. A doubling of
perceived loudness corresponds to a doubling of the volume.

This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soWordCallBack
Set the callback procedure to be called every time the Speech
Manager is about to generate a word on the speech channel. The
speechInfo parameter is a pointer to an application-defined word
callback procedure, whose syntax is described on page 4-87. Passing
NIL in speechInfo disables the word callback procedure.

This selector works with the SetSpeechInfo function and does
not move memory. See Listing 4-7 on page 4-21 for an illustration of
the use of this selector.

Data Structures

This section describes the data structures defined by the Speech Manager.

The speech channel record contains information internal to the Speech Manager. Speech

channels, which process Speech Manager text and commands, are defined as pointers to

Speech Manager records.

A voice specification record provides a unique specification of a voice. You can

create such a record with the MakeVoiceSpec function and then pass it to the

GetVoiceDescription function to obtain information about the voice. This

information is contained in a voice description record. Or, you can use the

GetVoiceInfo function to obtain information about the file that stores a voice.

This information is contained in a voice file information record.

C H A P T E R 4

Speech Manager

4-46 Speech Manager Reference

By using the GetSpeechInfo function, you can obtain information about a speech

channel, as well as information about its synthesizer. Such information is returned

in speech status information records, speech error information records, and speech

version information records.

The GetSpeechInfo function also allows you to obtain information about the

phonemes defined for a synthesizer. Information about a single phoneme is contained

in a phoneme information record. A phoneme descriptor record contains phoneme

information records for all of the phonemes that a synthesizer supports.

Synthesizers that use the GetSpeechInfo or SetSpeechInfo function to allow

exploitation of synthesizer-specific features often require that data passed to it be

formatted in a particular way. The speech extension data record allows your application

to exchange data in any format with a synthesizer.

The SpeakString, SpeakText, and SpeakBuffer functions can process both text and

commands embedded in that text. So that commands can be distinguished from text, the

commands must be enclosed by command delimiters. The delimiter information record

allows your application to change the command delimiters.

Voice Specification Records

A voice specification record provides a unique specification that you must use to obtain

information about a voice. You also must use a voice specification record if you wish to

create a speech channel that generates speech in a voice other than the current system

default voice. The VoiceSpec data type defines a voice specification record. In Pascal,

the VoiceSpecPtr data type defines a pointer to a voice specification record. The

VoiceSpecPtr data type is not defined in the interface files for C programmers. If you

are programming in C and you need to pass a variable of type VoiceSpecPtr to a

Speech Manager routine, simply pass a pointer to a voice specification record instead.

TYPE VoiceSpec =

RECORD

creator: OSType; {ID of required synthesizer}

id: OSType; {ID of voice on the synthesizer}

END;

Field descriptions

creator The synthesizer that is required to use the voice. This is equivalent
to the value contained in the synthManufacturer field of a
speech version information record and that contained in the
synthCreator field of a speech extension data record. The set of
OSType values specified entirely by space characters and lowercase
letters is reserved.

id The voice ID of the voice for the synthesizer. Every voice on a
synthesizer has a unique ID.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-47

IMPORTANT

To ensure compatibility with future versions of the Speech Manager, you
should never fill in the fields of a voice specification record yourself.
Instead, you should create a voice specification record by using the
MakeVoiceSpec function. ▲

Voice Description Records

By calling the GetVoiceDescription function, you can obtain information about a

voice in a voice description record. The VoiceDescription data type defines a voice

description record.

TYPE VoiceDescription =

RECORD

length: LongInt; {size of record}

voice: VoiceSpec; {voice synthesizer and ID info}

version: LongInt; {version number of voice}

name: Str63; {name of voice}

comment: Str255; {text information about voice}

gender: Integer; {neuter, male, or female}

age: Integer; {approximate age in years}

script: Integer; {script code of text voice can process}

language: Integer; {language code of voice output}

region: Integer; {region code of voice output}

reserved1: LongInt; {always 0--reserved for future use}

reserved2: LongInt; {always 0--reserved for future use}

reserved3: LongInt; {always 0--reserved for future use}

reserved4: LongInt; {always 0--reserved for future use}

END;

Field descriptions

length The size of the voice description record, in bytes.

voice A voice specification record that uniquely identifies the voice.

version The version number of the voice.

name The name of the voice, preceded by a length byte. Names must be
63 characters or less.

comment Additional text information about the voice. The information might
indicate how much memory the voice requires. Some synthesizers
use this field to store a phrase that can be spoken.

gender The gender of the individual represented by the voice. The value in
this field must be one of the following constants:

C H A P T E R 4

Speech Manager

4-48 Speech Manager Reference

CONST

kNeuter = 0; {neuter voice}

kMale = 1; {male voice}

kFemale = 2; {female voice}

A neuter voice is a voice that is not distinctively male or female.

age The approximate age in years of the individual represented by
the voice.

script The script code of text that the voice can process.

language A code that indicates the language of voice output.

region A code that indicates the region represented by the voice.

reserved1 Reserved.

reserved2 Reserved.

reserved3 Reserved.

reserved4 The four reserved fields are reserved for use by Apple.

Voice File Information Records

A voice file information record specifies the file in which a voice is stored and the

resource ID of the voice within that file. You can use the GetVoiceInfo function to

obtain a voice file information record for a voice. The VoiceFileInfo data type defines

a voice file information record. In Pascal, the VoiceFileInfoPtr data type defines a

pointer to a voice file information record.

TYPE VoiceFileInfo =

RECORD

fileSpec: FSSpec; {volume, dir, and name of file}

resID: Integer; {resource ID of voice in the file}

END;

Field descriptions

fileSpec A file system specification record that contains the volume,
directory, and name of the file containing the voice. Generally, files
containing a single voice are of type
kTextToSpeechVoiceFileType, and files containing multiple
voices are of type kTextToSpeechVoiceBundleType.

resID The resource ID of the voice in the file. Voices are stored in
resources of type kTextToSpeechVoiceType.

Speech Status Information Records

By calling the GetSpeechInfo function with the soStatus selector, you can find

out information about the status of a speech channel. This information is stored in a

speech status information record, which the SpeechStatusInfo data type defines.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-49

TYPE SpeechStatusInfo =

RECORD

outputBusy: Boolean; {TRUE if audio is playing }

{ or text is being processed}

outputPaused: Boolean; {TRUE if channel is paused}

inputBytesLeft: LongInt; {bytes of text left to process}

phonemeCode: Integer; {opcode for current phoneme}

END;

Field descriptions

outputBusy Whether the speech channel is currently producing speech. A
speech channel is considered to be producing speech even at some
times when no audio data is being produced through the Macintosh
speaker. This occurs, for example, when the Speech Manager is
processing an input buffer but has not yet initiated speech or when
speech output is paused.

outputPaused Whether speech output in the speech channel has been paused by a
call to the PauseSpeechAt function.

inputBytesLeft
The number of input bytes of the text that the speech channel must
still process. When inputBytesLeft is 0, the buffer of input text
passed to one of the SpeakText or SpeakBuffer functions may
be disposed of. (Note that when you call the SpeakString
function, the Speech Manager stores a duplicate of the string to
be spoken in an internal buffer; thus, you may delete the original
string immediately after calling SpeakString.)

phonemeCode The opcode for the phoneme that the speech channel is currently
processing.

Speech Error Information Records

By calling the GetSpeechInfo function with the soErrors selector, you can obtain a

speech error information record, which shows what Speech Manager errors occurred

while processing a text buffer on a given speech channel. The SpeechErrorInfo data

type defines a speech error information record.

TYPE SpeechErrorInfo =

RECORD

count: Integer; {number of errors since last check}

oldest: OSErr; {oldest unread error}

oldPos: LongInt; {character position of oldest error}

newest: OSErr; {most recent error}

newPos: LongInt; {character position of newest error}

END;

C H A P T E R 4

Speech Manager

4-50 Speech Manager Reference

Field descriptions

count The number of errors that have occurred in processing the current
text buffer since the last call to the GetSpeechInfo function with
the soErrors selector. Of these errors, you can find information
about only the first and last error that occurred.

oldest The error code of the first error that occurred after the previous call
to the GetSpeechInfo function with the soErrors selector.

oldPos The character position within the text buffer being processed of
the first error that occurred after the previous call to the
GetSpeechInfo function with the soErrors selector.

newest The error code of the most recent error.

newPos The character position within the text buffer being processed of the
most recent error.

Speech error information records never include errors that are returned by Speech

Manager routines. Instead, they reflect only errors encountered directly in the processing

of text, and, in particular, in the processing of commands embedded within text.

The speech error information record keeps track of only the most recent error and the

first error that occurred after the previous call to the GetSpeechInfo function with the

soErrors selector. If your application needs to keep track of all errors, then you should

install an error callback procedure, as described in “Error Callback Procedure” beginning

on page 4-86.

Speech Version Information Records

By calling the GetSpeechInfo function with the soSynthType selector, you can

obtain a speech version information record, which provides information about the

speech synthesizer currently being used. The SpeechVersionInfo data type defines a

speech version information record.

TYPE SpeechVersionInfo =

RECORD

synthType: OSType; {general synthesizer type}

synthSubType: OSType; {specific synthesizer type}

synthManufacturer: OSType; {synthesizer creator ID}

synthFlags: LongInt; {synthesizer feature flags}

synthVersion: NumVersion; {synthesizer version number}

END;

Field descriptions

synthType The general type of the synthesizer. For the current version of the
Speech Manager, this field always contains the value
kTextToSpeechSynthType, indicating that the synthesizer
converts text into speech.

synthSubType The specific type of the synthesizer. Currently, no specific types of
synthesizer are defined. If you define a new type of synthesizer, you

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-51

should register the four-character code for your type with
Developer Technical Support.

synthManufacturer
A unique identification of a synthesizer engine. If you develop
synthesizers, then you should register a different four-character
code for each synthesizer you develop with Developer Technical
Support. The creatorID field of the voice specification record and
the synthCreator field of a speech extension data record should
each be set to the value stored in this field for the desired
synthesizer.

synthFlags A set of flags indicating which synthesizer features are activated.
The following constants define the bits in this field whose meanings
are defined for all synthesizers:

CONST

kNoEndingProsody = 1;

kNoSpeechInterrupt = 2;

kPreflightThenPause = 4;

The kNoEndingProsody flag bit is used to control whether or not
the speech synthesizer automatically applies ending prosody, the
speech tone and cadence that normally occur at the end of a
statement. Under normal circumstances (for example, when the flag
bit is not set), ending prosody is applied to the speech when the end
of the textBuf data is reached. This default behavior can be
disabled by setting the kNoEndingProsody flag bit.

Some synthesizers do not speak until the kNoEndingProsody flag
bit is reset, or they encounter a period in the text, or textBuf is full.

The kNoSpeechInterrupt flag bit is used to control the behavior
of SpeakBuffer when called on a speech channel that is still busy.
When the flag bit is not set, SpeakBuffer behaves similarly to
SpeakString and SpeakText. Any speech currently being
produced on the specified speech channel is immediately
interrupted, and then the new text buffer is spoken. When the
kNoSpeechInterrupt flag bit is set, however, a request to speak
on a channel that is still busy processing a prior text buffer will
result in an error. The new buffer is ignored and the error
synthNotReady is returned. If the prior text buffer has been fully
processed, the new buffer is spoken normally. One way of achieving
continuous speech without using callback procedures is to
continually call SpeakBuffer with the kNoSpeechInterrupt
flag bit set until the function returns noErr. The function will then
execute as soon as the first text buffer has been processed.

The kPreflightThenPause flag bit is used to minimize the
latency experienced when the speech synthesizer is attempting to
speak. Ordinarily, whenever a call to SpeakString, SpeakText,
or SpeakBuffer is made, the speech synthesizer must perform a
certain amount of initial processing before speech output is heard.
This startup latency can vary from a few milliseconds to several

C H A P T E R 4

Speech Manager

4-52 Speech Manager Reference

seconds depending upon which speech synthesizer is being used.
Recognizing that larger startup delays might be detrimental to
certain applications, a mechanism is provided to allow the
synthesizer to perform any necessary computations at noncritical
times. Once the computations have been completed, the speech is
able to start instantly. When the kPreflightThenPause flag bit is
set, the speech synthesizer will process the input text as necessary
to the point where it is ready to begin producing speech output. At
this point, the synthesizer will enter a paused state and return to the
caller. When the application is ready to produce speech, it should
call the ContinueSpeech function to begin speaking.

synthVersion The version number of the synthesizer.

Phoneme Information Records

Information about a phoneme is stored in a phoneme information record. Ordinarily,

you use a phoneme information record to show the user how to enter text to represent a

particular phoneme when the 'PHON' input mode is activated. The PhonemeInfo data

type defines a phoneme information record.

TYPE PhonemeInfo =

RECORD

opCode: Integer; {opcode for the phoneme}

phStr: Str15; {corresponding character string}

exampleStr: Str31; {word that shows use of phoneme}

hiliteStart: Integer; {offset from beginning of word }

{ to beginning of phoneme sound}

hiliteEnd: Integer; {offset from beginning of word }

{ to end of phoneme sound}

END;

Field descriptions

opCode The opcode for the phoneme. For a list of English-language
opcodes, see Table 4-3 on page 4-33.

phStr The string used to represent the phoneme. The string does not
necessarily have a phonetic connection to the phoneme, but might
simply be an abstract textual representation of it.

exampleStr An example word that illustrates use of the phoneme.

hiliteStart The number of characters in the example word that precede the
portion of that word representing the phoneme.

hiliteEnd The number of characters between the beginning of the example
word and the end of the portion of that word representing the
phoneme.

You might use the information contained in the hiliteStart and hiliteEnd fields to

highlight the characters in the example word that represent the phoneme.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-53

Note that in order to obtain a phoneme information record for an individual phoneme,

you must obtain a list of phonemes through a phoneme descriptor record, described next.

Phoneme Descriptor Records

By calling the GetSpeechInfo function with the soPhonemeSymbols selector, you

can obtain a phoneme descriptor record, which describes all phonemes defined for the

current synthesizer. The PhonemeDescriptor data type defines a phoneme

descriptor record.

TYPE PhonemeDescriptor =

RECORD

phonemeCount: Integer; {number of phonemes defined by current }

{ synthesizer}

thePhonemes: ARRAY[0..0] OF PhonemeInfo;

{list of phoneme information records}

END;

Field descriptions

phonemeCount The number of phonemes that the current synthesizer defines.
Typically, this will correspond to the number of phonemes in the
language supported by the synthesizer.

thePhonemes An array of phoneme information records.

A common use for a phoneme descriptor record is to provide a graphical display to the

user of all available phonemes. Note that such a list would be useful only for a user

entering phonemic data directly rather than just entering text.

Speech Extension Data Records

The speech extension data record allows you to use the GetSpeechInfo and

SetSpeechInfo functions with selectors defined by particular synthesizers. By

requiring that you pass to one of these functions a pointer to a speech extension

data record, synthesizers can permit the exchange of data in any format. The

SpeechXtndData data type defines a speech extension data record.

TYPE SpeechXtndData =

RECORD

synthCreator: OSType; {synthesizer creator ID}

{data used by synthesizer}

synthData: PACKED ARRAY[0..1] OF Char;

END;

Field descriptions

synthCreator The synthesizer’s creator ID, identical to the value stored in the
synthManufacturer field of a speech version information record.

C H A P T E R 4

Speech Manager

4-54 Speech Manager Reference

You should set this field to the appropriate value before calling
GetSpeechInfo or SetSpeechInfo.

synthData Synthesizer-specific data. The size and format of the data in this
field may vary.

Delimiter Information Records

A delimiter information record defines the characters used to indicate the beginning

and end of a command embedded in text. A delimiter can be one or two characters. The

DelimiterInfo data type defines a delimiter information record.

TYPE DelimiterInfo =

RECORD

startDelimiter: PACKED ARRAY[0..1] OF Char;

endDelimiter: PACKED ARRAY[0..1] OF Char;

END;

Field descriptions

startDelimiter The start delimiter for an embedded command. By default, the start
delimiter is “[[”.

endDelimiter The end delimiter for an embedded command. By default, the end
delimiter is “]]”.

Ordinarily, applications that support embedded speech commands should not change

the start or end delimiters. However, if for some reason you must change the delimiters,

you can use the SetSpeechInfo function with the soCommandDelimiter selector.

For example, you might do this if a text buffer naturally includes the delimiter strings.

Before passing such a buffer to the Speech Manager, you can change the delimiter strings

to some two-character sequences not used in the buffer and then change the delimiter

strings back once processing of the buffer is complete.

If a single-byte delimiter is desired, it should be followed by a NIL (0) byte. If the

delimiter strings both consist of two NIL bytes, embedded command processing

is disabled.

Speech Manager Routines

This section describes the routines provided by the Speech Manager. You can use these

routines to

■ generate speech and then pause or stop it

■ obtain information about an individual voice or all voices

■ create and dispose of speech channels

■ obtain the Speech Manager’s version and status

■ change the rate or pitch of speech

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-55

■ convert textual into phonetic data

■ install a pronunciation dictionary into a speech channel

With the exception of the SpeechManagerVersion, SpeechBusy, and

SpeechBusySystemWide functions, all Speech Manager routines return a result code

to indicate whether an error has occurred.

The section “Application-Defined Routines” beginning on page 4-82 describes the syntax

and operation of application-defined callback procedures.

Starting, Stopping, and Pausing Speech

You can use the SpeakString function to generate speech from strings of fewer than

256 characters. The SpeakText function also generates speech, but through a speech

channel through which you can exert control over the generated speech. The

SpeakBuffer function includes all the capabilities of SpeakText and allows you

to set certain flags that control speech behavior.

To stop speech, use the StopSpeech function or the StopSpeechAt function. The latter

provides control over when speech is stopped. To pause and later resume speech, use the

PauseSpeechAt and ContinueSpeech functions.

SpeakString

You can use the SpeakString function to have the Speech Manager speak a text string.

FUNCTION SpeakString (s: Str255): OSErr;

s The string to be spoken.

DESCRIPTION

The SpeakString function attempts to speak the Pascal-style text string contained in

the string s. Speech is produced asynchronously using the default system voice. When

an application calls this function, the Speech Manager makes a copy of the passed string

and creates any structures required to speak it. As soon as speaking has begun, control is

returned to the application. The synthesized speech is generated asynchronously to the

application so that normal processing can continue while the text is being spoken. No

further interaction with the Speech Manager is required at this point, and the application

is free to release the memory that the original string occupied.

If SpeakString is called while a prior string is still being spoken, the sound currently

being synthesized is interrupted immediately. Conversion of the new text into speech is

then begun. If you pass a zero-length string (or, in C, a null pointer) to SpeakString,

the Speech Manager stops any speech previously being synthesized by SpeakString
without generating additional speech. If your application uses SpeakString, it is often

a good idea to stop any speech in progress whenever your application receives a

C H A P T E R 4

Speech Manager

4-56 Speech Manager Reference

suspend event. (Note, however, that calling SpeakString with a zero-length string

has no effect on speech channels other than the one managed internally by the Speech

Manager for the SpeakString function.)

The text passed to the SpeakString function may contain embedded speech

commands.

SPECIAL CONSIDERATIONS

Because the SpeakString function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeakString function are

RESULT CODES

SpeakText

You can use the SpeakText function to have the Speech Manager speak a buffer of text.

FUNCTION SpeakText (chan: SpeechChannel; textBuf: Ptr;

textBytes: LongInt): OSErr;

chan The speech channel through which speech is to be spoken.

textBuf A pointer to the first byte of text to spoken.

textBytes The number of bytes of text to spoken.

DESCRIPTION

The SpeakText function converts the text stream specified by the textBuf and

textBytes parameters into speech using the voice and control settings for the speech

channel chan, which should be created with the NewSpeechChannel function.

The speech is generated asynchronously. This means that control is returned to your

application before the speech has finished (and probably even before it has begun).

The maximum length of the text buffer that can be spoken is limited only by the

available RAM.

Trap macro Selector

_SoundDispatch $0220000C

noErr 0 No error
memFullErr –108 Not enough memory to speak
synthOpenFailed –241 Could not open another speech synthesizer channel

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-57

If SpeakText is called while the channel is currently busy speaking the contents of

a prior text buffer, it immediately stops speaking from the prior buffer and begins

speaking from the new text buffer as soon as possible. If you pass a zero-length string

(or, in C, a null pointer) to SpeakText, the Speech Manager stops all speech currently

being synthesized by the speech channel specified in the chan parameter without

generating additional speech.

▲ W A R N I N G

The text buffer must be locked in memory and must not move while the
Speech Manager processes it. This buffer is read at interrupt time, and
moving it could cause a system crash. If your application defines a
text-done callback procedure, then it can move the text buffer or dispose
of it once the callback procedure is executed. ▲

SPECIAL CONSIDERATIONS

Because the SpeakText function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeakText function are

RESULT CODES

SpeakBuffer

You can use the SpeakBuffer function to have the Speech Manager speak a buffer of

text, using certain flags to control speech behavior.

FUNCTION SpeakBuffer (chan: SpeechChannel; textBuf: Ptr;

textBytes: LongInt;

controlFlags: LongInt): OSErr;

chan The speech channel through which speech is to be spoken.

textBuf A pointer to the first byte of text to spoken.

textBytes The number of bytes of text to spoken.

controlFlags
Control flags to customize speech behavior.

Trap macro Selector

_SoundDispatch $0624000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

4-58 Speech Manager Reference

DESCRIPTION

The SpeakBuffer function behaves identically to the SpeakText function, but allows

control of several speech parameters by setting values of the controlFlags parameter.

The controlFlags parameter relies on the following constants, which may be applied

additively:

CONST

kNoEndingProsody = 1; {disable prosody at end of sentences}

kNoSpeechInterrupt = 2; {do not interrupt current speech}

kPreflightThenPause = 4; {compute speech without generating}

Each constant specifies a flag bit of the controlFlags parameter, so by passing the

constants additively you can enable multiple capabilities of SpeakBuffer. If you pass

0 in the controlFlags parameter, SpeakBuffer works just like SpeakText. By

passing kNoEndingProsody + kNoSpeechInterrupt in the controlFlags

parameter, SpeakBuffer works like SpeakText except that the kNoEndingProsody

and kNoSpeechInterrupt features have been selected. Future versions of the Speech

Manager may define additional constants.

The kNoEndingProsody flag bit is used to control whether or not the speech

synthesizer automatically applies ending prosody, the speech tone and cadence that

normally occur at the end of a statement. Under normal circumstances (for example,

when the flag bit is not set), ending prosody is applied to the speech when the end of

the textBuf data is reached. This default behavior can be disabled by setting the

kNoEndingProsody flag bit.

Some synthesizers do not speak until the kNoEndingProsody flag bit is reset, or they

encounter a period in the text, or textBuf is full.

The kNoSpeechInterrupt flag bit is used to control the behavior of SpeakBuffer

when called on a speech channel that is still busy. When the flag bit is not set,

SpeakBuffer behaves similarly to SpeakString and SpeakText. Any speech

currently being produced on the specified speech channel is immediately interrupted,

and then the new text buffer is spoken. When the kNoSpeechInterrupt flag bit is set,

however, a request to speak on a channel that is still busy processing a prior text buffer

will result in an error. The new buffer is ignored and the error synthNotReady is

returned. If the prior text buffer has been fully processed, the new buffer is spoken

normally. One way of achieving continuous speech without using callback procedures is

to continually call SpeakBuffer with the kNoSpeechInterrupt flag bit set until the

function returns noErr. The function will then execute as soon as the first text buffer has

been processed.

The kPreflightThenPause flag bit is used to minimize the latency experienced when

the speech synthesizer is attempting to speak. Ordinarily, whenever a call to

SpeakString, SpeakText, or SpeakBuffer is made, the speech synthesizer must

perform a certain amount of initial processing before speech output is heard. This

startup latency can vary from a few milliseconds to several seconds depending upon

which speech synthesizer is being used. Recognizing that larger startup delays might

be detrimental to certain applications, a mechanism exists to allow the synthesizer to

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-59

perform any necessary computations at noncritical times. Once the computations have

been completed, the speech is able to start instantly. When the kPreflightThenPause

flag bit is set, the speech synthesizer will process the input text as necessary to the point

where it is ready to begin producing speech output. At this point, the synthesizer will

enter a paused state and return to the caller. When the application is ready to produce

speech, it should call the ContinueSpeech function to begin speaking.

When the controlFlags parameter is set to 0, SpeakBuffer behaves identically to

SpeakText.

SPECIAL CONSIDERATIONS

Because the SpeakBuffer function might move memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeakBuffer function are

RESULT CODES

StopSpeech

You can use the StopSpeech function to terminate speech immediately on a specified

channel.

FUNCTION StopSpeech (chan: SpeechChannel): OSErr;

chan The speech channel on which speech is to be stopped.

DESCRIPTION

The StopSpeech function immediately terminates speech on the channel specified by

the chan parameter. After returning from StopSpeech, your application can safely

release any text buffer that the speech synthesizer has been using. You can call

StopSpeech for an already idle channel without ill effect.

You can also stop speech by passing a zero-length string (or, in C, a null pointer) to one

of the SpeakString, SpeakText, or SpeakBuffer functions. Doing this stops speech

Trap macro Selector

_SoundDispatch $0828000C

noErr 0 No error
synthNotReady –242 Speech channel is still busy speaking
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

4-60 Speech Manager Reference

only in the specified speech channel (or, in the case of SpeakString, in the speech

channel managed internally by the Speech Manager).

SPECIAL CONSIDERATIONS

Because the StopSpeech function might move or purge memory, you should not call it

at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StopSpeech function are

RESULT CODES

SEE ALSO

Before calling the StopSpeech function, you can use the SpeechBusy function, which

is described on page 4-72, to determine if a synthesizer is still speaking. If you are

working with multiple speech channels, you can use the status selector with the routine

GetSpeechInfo which is described on page 4-77, to determine if a specific channel is

still speaking.

StopSpeechAt

You can use the StopSpeechAt function to terminate speech delivery on a specified

channel either immediately or at the end of the current word or sentence.

FUNCTION StopSpeechAt (chan: SpeechChannel; whereToStop: LongInt)

: OSErr;

chan The speech channel on which speech is to be stopped.

whereToStop
A constant indicating when speech processing should stop. Pass the
constant kImmediate to stop immediately, even in the middle of a word.
Pass kEndOfWord or kEndOfSentence to stop speech at the end of the
current word or sentence, respectively.

Trap macro Selector

_SoundDispatch $022C000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-61

DESCRIPTION

The StopSpeechAt function halts the production of speech on the channel specified by

chan at a specified point in the text. This routine returns immediately, although speech

output continues until the specified point has been reached.

▲ W A R N I N G

If you call the StopSpeechAt function before the Speech Manager
finishes processing input text, then the function might return before
some input text has yet to be spoken. Thus, before disposing of the
text buffer, your application should wait until its text-done callback
procedure has been called (if one has been defined), or until it can
determine (by, for example obtaining a speech status information
record) that the Speech Manager is no longer processing input text. ▲

If the end of the input text buffer is reached before the specified stopping point, the

speech synthesizer stops at the end of the buffer without generating an error.

SPECIAL CONSIDERATIONS

Because the StopSpeechAt function might move or purge memory, you should not call

it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StopSpeechAt function are

RESULT CODES

PauseSpeechAt

You can use the PauseSpeechAt function to pause speech on a speech channel.

FUNCTION PauseSpeechAt (chan: SpeechChannel; whereToStop: LongInt)

: OSErr;

chan The speech channel on which speech is to be paused.

whereToStop
A constant indicating when speech processing should be paused. Pass
the constant kImmediate to pause immediately, even in the middle of
a word. Pass kEndOfWord or kEndOfSentence to pause speech at the
end of the current word or sentence, respectively.

Trap macro Selector

_SoundDispatch $0430000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

4-62 Speech Manager Reference

DESCRIPTION

The PauseSpeechAt function makes speech production pause at a specified point in

the text. PauseSpeechAt returns immediately, although speech output will continue

until the specified point.

You can determine whether your application has paused speech output on a speech

channel by obtaining a speech status information record through the GetSpeechInfo

function. While a speech channel is paused, the speech status information record

indicates that outputBusy and outputPaused are both TRUE.

If the end of the input text buffer is reached before the specified pause point, speech

output pauses at the end of the buffer.

The PauseSpeechAt function differs from the StopSpeech and StopSpeechAt

functions in that a subsequent call to ContinueSpeech, described next, causes the

contents of the current text buffer to continue being spoken.

▲ W A R N I N G

If you plan to continue speech synthesis from a paused speech channel,
the text buffer being processed must remain available at all times and
must not move while the channel is in a paused state. ▲

SPECIAL CONSIDERATIONS

Because the PauseSpeechAt function might move or purge memory, you should not

call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PauseSpeechAt function are

RESULT CODES

ContinueSpeech

You can use the ContinueSpeech function to resume speech paused by the

PauseSpeechAt function.

FUNCTION ContinueSpeech (chan: SpeechChannel): OSErr;

chan The paused speech channel on which speech is to be resumed.

Trap macro Selector

_SoundDispatch $0434000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-63

DESCRIPTION

At any time after the PauseSpeechAt function is called, the ContinueSpeech

function can be called to continue speaking from the beginning of the word in which

speech paused. Calling ContinueSpeech on a channel that is not currently in a paused

state has no effect on the speech channel or on future calls to the PauseSpeechAt

function. If you call ContinueSpeech on a channel before a pause is effective,

ContinueSpeech cancels the pause.

If the PauseSpeechAt function stopped speech in the middle of a word, the Speech

Manager will start speaking that word from the beginning when you call

ContinueSpeech.

SPECIAL CONSIDERATIONS

Because the ContinueSpeech function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the ContinueSpeech function are

RESULT CODES

Obtaining Information About Voices

Specification of a voice requires a voice specification record. When you already know the

creator and ID for a voice, you should use the MakeVoiceSpec function to create such a

record rather than filling in the fields of one directly. To obtain information about all

available voices, use the CountVoices function to determine how many voices are

available, and the GetIndVoice function to obtain a voice specification record

corresponding to each voice.

Having created a voice specification record, you can obtain information about the voice

to which it corresponds. The GetVoiceDescription function provides information

about a voice in the form of a voice description record. In addition to duplicating the

capabilities of the GetVoiceDescription function, the GetVoiceInfo function

allows you to obtain information about where on disk a voice is stored.

Trap macro Selector

_SoundDispatch $0238000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

4-64 Speech Manager Reference

MakeVoiceSpec

To set the fields of a voice specification record, you should use the MakeVoiceSpec

function. You should never set the fields of such a record directly.

FUNCTION MakeVoiceSpec (creator: OSType; id: OSType;

voice: VoiceSpecPtr): OSErr;

creator The ID of the synthesizer that your application requires.

id The ID of the voice on the synthesizer specified by the creator
parameter.

voice A pointer to the voice specification record whose fields are to be filled in.

DESCRIPTION

A voice specification record is a unique voice ID used by the Speech Manager. Most

voice management routines expect to be passed a pointer to a voice specification

record. When you already know the creator and ID for a voice, you should use the

MakeVoiceSpec function to create such a record rather than filling in the fields of

one directly. On exit, the voice specification record pointed to by the voice parameter

contains the appropriate values.

SPECIAL CONSIDERATIONS

You can call the MakeVoiceSpec function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the MakeVoiceSpec function are

RESULT CODES

CountVoices

You can determine how many voices are available by calling the CountVoices function.

FUNCTION CountVoices (VAR numVoices: Integer): OSErr;

numVoices On exit, the number of voices that the application can use.

Trap macro Selector

_SoundDispatch $0604000C

noErr 0 No error

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-65

DESCRIPTION

The CountVoices function returns, in the numVoices parameter, the number of voices

available. The application can then use this information to call the GetIndVoice

function, described next, to obtain voice specification records for one or more of

the voices.

Each time CountVoices is called, the Speech Manager searches for new voices.

SPECIAL CONSIDERATIONS

Because the CountVoices function moves memory, you should not call it at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the CountVoices function are

RESULT CODES

GetIndVoice

You can obtain a voice specification record for a voice by passing an index to the

GetIndVoice function.

FUNCTION GetIndVoice (index: Integer; voice: VoiceSpecPtr): OSErr;

index The index of the voice for which to obtain a voice specification record.
This number must range from 1 to the total number of voices, as returned
by the CountVoices function.

voice A pointer to the voice specification record whose fields are to be filled in.

DESCRIPTION

The GetIndVoice function returns, in the voice specification record pointed to by the

voice parameter, a specification of the voice whose index is provided in the index

parameter. Your application should make no assumptions about the order in which

voices are indexed.

Trap macro Selector

_SoundDispatch $0108000C

noErr 0 No error

C H A P T E R 4

Speech Manager

4-66 Speech Manager Reference

▲ W A R N I N G

Your application should not add, remove, or modify a voice and then
call the GetIndVoice function with an index value other than 1. To
allow the Speech Manager to update its information about voices, your
application should always either call the CountVoices function or call
the GetIndVoice function with an index value of 1 after adding,
removing, or modifying a voice or after a time at which the user might
have done so. ▲

If you specify an index value beyond the number of available voices, the GetIndVoice

function returns a voiceNotFound error.

SPECIAL CONSIDERATIONS

Because the GetIndVoice function moves memory, you should not call it at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetIndVoice function are

RESULT CODES

GetVoiceDescription

You can obtain a description of a voice by using the GetVoiceDescription function.

FUNCTION GetVoiceDescription (voice: VoiceSpecPtr;

info: VoiceDescriptionPtr;

infoLength: LongInt): OSErr;

voice A pointer to the voice specification record identifying the voice to be
described, or NULL to obtain a description of the system default voice.

info A pointer to a voice description record. If this parameter is NULL, the
function does not fill in the fields of the voice description record; instead,
it simply determines whether the voice parameter specifies an available
voice and, if not, returns a voiceNotFound error.

Trap macro Selector

_SoundDispatch $030C000C

noErr 0 No error
voiceNotFound –244 Voice resource not found

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-67

infoLength
The length, in bytes, of the voice description record. In the current version
of the Speech Manager, the voice description record contains 362 bytes.
However, you should always use the SizeOf function to determine the
length of this record.

DESCRIPTION

The GetVoiceDescription function fills out the voice description record pointed to

by the info parameter with the correct information for the voice specified by the voice

parameter. It fills in the length field of the voice description record with the number of

bytes actually copied. This value will always be less than or equal to the value that your

application passes in infoLength before calling GetVoiceDescription. This scheme

allows applications targeted for the current version of the Speech Manager to work on

future versions that might have longer voice description records; it also allows you to

write code for future versions of the Speech Manager that will also run on computers

that support only the current version.

If the voice specification record does not identify an available voice,

GetVoiceDescription returns a voiceNotFound error.

SPECIAL CONSIDERATIONS

Because the GetVoiceDescription function moves memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetVoiceDescription function are

RESULT CODES

GetVoiceInfo

You can use the GetVoiceInfo function to obtain the same information about a voice

that the GetVoiceDescription function provides or to determine in which file and

Trap macro Selector

_SoundDispatch $0610000C

noErr 0 No error
paramErr –50 Parameter error
memFullErr –108 Not enough memory to load voice into memory
voiceNotFound –244 Voice resource not found

C H A P T E R 4

Speech Manager

4-68 Speech Manager Reference

resource a voice is stored. This function is intended primarily for use by synthesizers, but

an application can call it too.

FUNCTION GetVoiceInfo (voice: VoiceSpecPtr; selector: OSType;

voiceInfo: Ptr): OSErr;

voice A pointer to the voice specification record identifying the voice about
which your application requires information, or NIL to obtain
information on the system default voice.

selector A specification of the type of data being requested. For current
versions of the Speech Manager, you should set this field either to
soVoiceDescription, if you would like to use the GetVoiceInfo
function to mimic the GetVoiceDescription function, or to
soVoiceFile, if you would like to obtain information about the
location of a voice on disk.

voiceInfo A pointer to the appropriate data structure. If the selector is
soVoiceDescription, then voiceInfo should be a pointer to a voice
description record, and the length field of the record should be set to the
length of the voice description record. If the selector is soVoiceFile,
then voiceInfo should be a pointer to a voice file information record.

DESCRIPTION

The GetVoiceInfo function accepts a selector in the selector parameter that

determines the type of information you wish to obtain about the voice specified in the

voice parameter. The function then fills the fields of the data structure appropriate to

the selector you specify in the voiceInfo parameter.

If the voice specification is invalid, GetVoiceInfo returns a voiceNotFound error. If

there is not enough memory to load the voice into memory to obtain information about

it, GetVoiceInfo returns the result code memFullErr.

SPECIAL CONSIDERATIONS

Because the GetVoiceInfo function might move memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetVoiceInfo function are

RESULT CODES

Trap macro Selector

_SoundDispatch $0614000C

noErr 0 No error
memFullErr –108 Not enough memory to load voice into memory
voiceNotFound –244 Voice resource not found

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-69

Managing Speech Channels

To take advantage of any but the most rudimentary of the Speech Manager’s capabilities,

you need to use speech channels. However, you cannot create a speech channel simply

by declaring a variable of type SpeechChannel. Before your application calls any

routine that requires a speech channel as a parameter, you must call the

NewSpeechChannel function to allow the Speech Manager to allocate memory

associated with the speech channel. Later, you can release the memory occupied

by a speech channel by calling the DisposeSpeechChannel function. In general,

it is a good idea to create a speech channel just before you need it and then dispose

of it as soon as you have finished processing speech through it.

NewSpeechChannel

You can use the NewSpeechChannel function to create a new speech channel.

FUNCTION NewSpeechChannel (voice: VoiceSpecPtr;

VAR chan: SpeechChannel): OSErr;

voice A pointer to the voice specification record corresponding to the voice to
be used for the new speech channel. Pass NIL to create a speech channel
using the system default voice.

chan On exit, a valid speech channel.

DESCRIPTION

The NewSpeechChannel function allocates memory for a speech channel record and

sets the speech channel variable pointed to by the chan parameter to point to this speech

channel record. The Speech Manager automatically locates and opens a connection to the

proper synthesizer for the voice specified by the voice parameter.

There is no predefined limit to the number of speech channels an application can create.

However, system constraints on available RAM, processor loading, and number of

available sound channels limit the number of speech channels actually possible.

▲ W A R N I N G

Your application should not attempt to manipulate the data pointed to
by a variable of type SpeechChannel. The internal format that the
Speech Manager uses for speech channel data is not documented and
may change in future versions of system software. ▲

SPECIAL CONSIDERATIONS

Because the NewSpeechChannel function allocates memory, you should not call it at

interrupt time.

C H A P T E R 4

Speech Manager

4-70 Speech Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewSpeechChannel function are

RESULT CODES

DisposeSpeechChannel

You can use the DisposeSpeechChannel function to dispose of an existing speech

channel.

FUNCTION DisposeSpeechChannel (chan: SpeechChannel): OSErr;

chan The speech channel to dispose of.

DESCRIPTION

The DisposeSpeechChannel function disposes of the speech channel specified in the

chan parameter and releases all memory the channel occupies. If the speech channel

specified is producing speech, then the DisposeSpeechChannel function immediately

stops speech before disposing of the channel. If you have defined a text-done callback

procedure or a speech-done callback procedure, the procedure will not be called before

the channel is disposed of.

The Speech Manager releases any speech channels that have not been explicitly disposed

of by an application when the application quits. In general, however, your application

should dispose of any speech channels it has created whenever it receives a suspend

event. This ensures that other applications can take full advantage of Speech Manager

and Sound Manager capabilities.

SPECIAL CONSIDERATIONS

Because the DisposeSpeechChannel function might purge memory, you should not

call it at interrupt time.

Trap macro Selector

_SoundDispatch $0418000C

noErr 0 No error
memFullErr –108 Not enough memory to open speech channel
synthOpenFailed –241 Could not open another speech synthesizer channel
voiceNotFound –244 Voice resource not found

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-71

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DisposeSpeechChannel function are

RESULT CODES

Obtaining Information About Speech

Once you have determined with the Gestalt Manager that the Speech Manager is

present, you can use the SpeechManagerVersion function to determine what version

is available.

To determine how many speech channels are currently processing speech in your

application, you can use the SpeechBusy function. To determine how many are

processing speech in your application and other processes, you can use the

SpeechBusySystemWide function.

SpeechManagerVersion

You can use the SpeechManagerVersion function to determine the current version of

the Speech Manager installed in the system.

FUNCTION SpeechManagerVersion: NumVersion;

DESCRIPTION

The SpeechManagerVersion function returns the version of the Speech Manager

installed in the system, in the format of the first 4 bytes of a 'vers' resource. You can

use this call to determine whether your program can access features of the Speech

Manager that are included in some Speech Manager releases but not in earlier ones.

Note, however, that because this chapter documents the initial release of the Speech

Manager, all features and techniques described in this chapter should be available in

all versions of the Speech Manager.

SPECIAL CONSIDERATIONS

You can call the SpeechManagerVersion function at interrupt time.

Trap macro Selector

_SoundDispatch $021C000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

4-72 Speech Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechManagerVersion function are

SpeechBusy

You can use the SpeechBusy function to determine whether any channels of speech are

currently synthesizing speech.

FUNCTION SpeechBusy: Integer;

DESCRIPTION

The SpeechBusy function returns the number of speech channels that are currently

synthesizing speech in the application. This is useful when you want to ensure that an

earlier speech request has been completed before having the system speak again. Note

that paused speech channels are counted among those that are synthesizing speech.

The speech channel that the Speech Manager allocates internally in response to calls to

the SpeakString function is counted in the number returned by SpeechBusy. Thus, if

you use just SpeakString to initiate speech, SpeechBusy always returns 1 as long as

speech is being produced. When SpeechBusy returns 0, all speech has finished.

SPECIAL CONSIDERATIONS

You can call the SpeechBusy function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechBusy function are

SpeechBusySystemWide

You can use the SpeechBusySystemWide function to determine if any speech is

currently being synthesized in your application or elsewhere on the computer.

FUNCTION SpeechBusySystemWide: Integer;

Trap macro Selector

_SoundDispatch $0000000C

Trap macro Selector

_SoundDispatch $003C000C

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-73

DESCRIPTION

The SpeechBusySystemWide function returns the total number of speech channels

currently synthesizing speech on the computer, whether they were initiated by your

application or process’s code or by some other process executing concurrently. Note that

paused speech channels are counted among those channels that are synthesizing speech.

This function is useful when you want to ensure that no speech is currently being

produced anywhere on the Macintosh computer before initiating speech. Although the

Speech Manager allows different applications to produce speech simultaneously, this can

be confusing to the user. As a result, it is often a good idea for your application to check

that no other process is producing speech before producing speech itself. If the difference

between the values returned by SpeechBusySystemWide and the SpeechBusy

function is 0, no other process is producing speech.

SPECIAL CONSIDERATIONS

You can call the SpeechBusySystemWide function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechBusySystemWide function are

Changing Speech Attributes

To determine the rate and pitch at which a speech channel is processing text, you can use

the GetSpeechRate and GetSpeechPitch functions. The SetSpeechRate and

SetSpeechPitch functions allow you to change rate and pitch.

The most robust of the Speech Manager’s routines are the GetSpeechInfo and

SetSpeechInfo functions. These allow you to obtain many types of information

about a speech channel and to change many settings of a speech channel. To specify

the operation that you wish to perform, you must pass GetSpeechInfo or

SetSpeechInfo a selector. A full list of selectors is provided in “Speech Information

Selectors” beginning on page 4-39.

GetSpeechRate

You use the GetSpeechRate function to obtain a speech channel’s current speech rate.

FUNCTION GetSpeechRate (chan: SpeechChannel; VAR rate: Fixed)

: OSErr;

chan The speech channel whose rate you wish to determine.

Trap macro Selector

_SoundDispatch $0040000C

C H A P T E R 4

Speech Manager

4-74 Speech Manager Reference

rate On exit, the speech channel’s speech rate, expressed as a fixed-point,
words-per-minute value.

DESCRIPTION

The GetSpeechRate function returns, in the rate parameter, the speech rate of the

speech channel specified by the chan parameter.

SPECIAL CONSIDERATIONS

You can call the GetSpeechRate function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSpeechRate function are

RESULT CODES

SetSpeechRate

You can set the speech rate of a designated speech channel with the SetSpeechRate

function.

FUNCTION SetSpeechRate (chan: SpeechChannel; rate: Fixed): OSErr;

chan The speech channel whose rate you wish to set.

rate The new speech rate for the speech channel, expressed as a fixed-point,
words-per-minute value.

DESCRIPTION

The SetSpeechRate function adjusts the speech rate on the speech channel specified

by the chan parameter to the rate specified by the rate parameter. As a general rule,

typical speaking rates range from around 150 words per minute to around 180 words per

minute. It is important to keep in mind, however, that users will differ greatly in their

ability to understand synthesized speech at a particular rate based upon their level of

experience listening to the voice and their ability to anticipate the types of utterances

they will encounter.

Trap macro Selector

_SoundDispatch $0448000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-75

SPECIAL CONSIDERATIONS

You can call the SetSpeechRate function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSpeechRate function are

RESULT CODES

GetSpeechPitch

You can determine a speech channel’s current speech pitch by using the

GetSpeechPitch function.

FUNCTION GetSpeechPitch (chan: SpeechChannel; VAR pitch: Fixed)

: OSErr;

chan The speech channel whose pitch you wish to determine.

pitch On exit, the current pitch of the voice in the speech channel, expressed as
a fixed-point frequency value.

DESCRIPTION

The GetSpeechPitch function returns, in the pitch parameter, the pitch of the speech

channel specified by the chan parameter. Typical voice frequencies range from around

90 hertz for a low-pitched male voice to perhaps 300 hertz for a high-pitched child’s

voice. These frequencies correspond to approximate pitch values in the ranges of

30.000 to 40.000 and 55.000 to 65.000, respectively. For information about the

mathematical relationship between pitches and frequencies expressed in hertz,

see “Speech Attributes” beginning on page 4-6.

SPECIAL CONSIDERATIONS

You can call the GetSpeechPitch function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSpeechPitch function are

Trap macro Selector

_SoundDispatch $0444000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

Trap macro Selector

_SoundDispatch $0450000C

C H A P T E R 4

Speech Manager

4-76 Speech Manager Reference

RESULT CODES

SetSpeechPitch

You can use the SetSpeechPitch function to set the speech pitch on a designated

speech channel.

FUNCTION SetSpeechPitch (chan: SpeechChannel; pitch: Fixed)

: OSErr;

chan The speech channel whose pitch you wish to set.

pitch The new pitch for the speech channel, expressed as a fixed-point
frequency value.

DESCRIPTION

The SetSpeechPitch function changes the current speech pitch on the speech channel

specified by the chan parameter to the pitch specified by the pitch parameter. Typical

voice frequencies range from around 90 hertz for a low-pitched male voice to perhaps

300 hertz for a high-pitched child’s voice. These frequencies correspond to approximate

pitch values in the ranges of 30.000 to 40.000 and 55.000 to 65.000, respectively. For

information about the mathematical relationship between pitches and frequencies

expressed in hertz, see “Speech Attributes” beginning on page 4-6. Although fixed-point

values allow you to specify a wide range of pitches, not all synthesizers will support the

full range of pitches. If your application specifies a pitch that a synthesizer cannot

handle, it may adjust the pitch to fit within an acceptable range.

SPECIAL CONSIDERATIONS

You can call the SetSpeechPitch function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSpeechPitch function are

RESULT CODES

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

Trap macro Selector

_SoundDispatch $044C000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-77

GetSpeechInfo

You can use the GetSpeechInfo function to obtain information about a designated

speech channel.

FUNCTION GetSpeechInfo (chan: SpeechChannel; selector: OSType;

speechInfo: Ptr): OSErr;

chan The speech channel about which information is being requested.

selector A speech information selector that indicates the type of information being
requested.

speechInfo
A pointer whose meaning depends on the speech information selector
specified in the selector parameter.

DESCRIPTION

The GetSpeechInfo function returns, in the data structure pointed to by the

speechInfo parameter, the type of information requested by the selector parameter

as it applies to the speech channel specified in the chan parameter.

The format of the data structure specified by the speechInfo parameter depends on

the selector you choose. For example, a selector might require that your application

allocate a block of memory of a certain size and pass a pointer to that block. Another

selector might require that speechInfo be set to the address of a handle variable. In

this case, the GetSpeechInfo function would allocate a relocatable block of memory

and change the handle variable specified to reference the block.

SPECIAL CONSIDERATIONS

You can call the GetSpeechInfo function at interrupt time only if the speech

information selector specified in the selector parameter does not move or purge

memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSpeechInfo function are

RESULT CODES

Trap macro Selector

_SoundDispatch $0658000C

noErr 0 No error
siUnknownInfoType –231 Feature is not implemented on synthesizer
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

4-78 Speech Manager Reference

SEE ALSO

For a complete list of speech information selectors, see “Speech Information Selectors”

beginning on page 4-39. This list indicates how your application should set the

speechInfo parameter for each selector and indicates which selectors might cause

memory to be moved or purged.

SetSpeechInfo

You can use the SetSpeechInfo function to change a setting of a particular speech

channel.

FUNCTION SetSpeechInfo (chan: SpeechChannel; selector: OSType;

speechInfo: Ptr): OSErr;

chan The speech channel for which your application wishes to change a setting.

selector A speech information selector that indicates the type of information being
changed.

speechInfo
A pointer whose meaning depends on the speech information selector
specified in the selector parameter.

DESCRIPTION

The SetSpeechInfo function changes the type of setting indicated by the selector

parameter in the speech channel specified by the chan parameter, based on the data your

application provides via the speechInfo parameter.

The format of the data structure specified by the speechInfo parameter depends on

the selector you choose. Ordinarily, a selector requires that speechInfo be a pointer to

a data structure that specifies a new setting for the speech channel.

SPECIAL CONSIDERATIONS

You can call the SetSpeechInfo function at interrupt time only if the speech

information selector specified in the selector parameter does not move or purge

memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSpeechInfo function are

Trap macro Selector

_SoundDispatch $0654000C

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-79

RESULT CODES

SEE ALSO

For a complete list of speech information selectors, see “Speech Information Selectors”

beginning on page 4-39. This list indicates how your application should set the

speechInfo parameter for each selector and indicates which selectors might cause

memory to be moved or purged.

Converting Text To Phonemes

The Speech Manager provides a utility routine, the TextToPhonemes function, to

convert textual data into phonetic data. This is particularly useful during application

development, when you might wish to adjust phrases that your application generates to

produce smoother speech. By first converting the target phrase into phonemes, you can

see what the synthesizer will try to speak. Then you need correct only the parts that

would not have been spoken the way you want.

TextToPhonemes

You can use the TextToPhonemes function to convert textual data into phonemic data.

FUNCTION TextToPhonemes (chan: SpeechChannel; textBuf: Ptr;

textBytes: LongInt; phonemeBuf: Handle;

VAR phonemeBytes: LongInt): OSErr;

chan A speech channel whose associated synthesizer and voice are to be used
for the conversion process.

textBuf A pointer to a buffer of text to be converted.

textBytes The number of bytes of text to be converted.

phonemeBuf
A handle to a buffer to be used to store the phonemic data. The
TextToPhonemes function may resize the relocatable block referenced
by this handle.

phonemeBytes
On exit, the number of bytes of phonemic data written to the handle.

noErr 0 No error
paramErr –50 Parameter value is invalid
siUnknownInfoType –231 Feature is not implemented on synthesizer
incompatibleVoice –245 Specified voice cannot be used with synthesizer
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

4-80 Speech Manager Reference

DESCRIPTION

The TextToPhonemes function converts the textBytes bytes of textual data pointed

to by the textBuf parameter to phonemic data, which it writes into the relocatable

block specified by the phonemeBuf parameter. If necessary, TextToPhonemes resizes

this relocatable block. The TextToPhonemes function sets the phonemeBytes

parameter to the number of bytes of phonetic data actually written.

▲ W A R N I N G

If the textual data is contained in a relocatable block, a handle to that
block must be locked before the TextToPhonemes function is called. ▲

The data returned by TextToPhonemes corresponds precisely to the phonemes that

would be spoken had the input text been sent to SpeakText instead. All current mode

settings for the speech channel specified by chan are applied to the converted speech.

No callbacks are generated while the TextToPhonemes routine is generating its output.

SPECIAL CONSIDERATIONS

Because the TextToPhonemes function might move memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the TextToPhonemes function are

RESULT CODES

Installing a Pronunciation Dictionary

Pronunciation dictionaries allow your application to override the default Speech

Manager pronunciations of individual words, such as names with quirky spellings. The

UseDictionary function allows your application to load a pronunciation dictionary

into a speech channel.

Trap macro Selector

_SoundDispatch $0A5C000C

noErr 0 No error
paramErr –50 Parameter value is invalid
nilHandleErr –109 Handle argument is NIL
siUnknownInfoType –231 Feature not implemented on synthesizer
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-81

UseDictionary

You can use the UseDictionary function to install a designated dictionary into a

speech channel.

FUNCTION UseDictionary (chan: SpeechChannel; dictionary: Handle)

: OSErr;

chan The speech channel into which a dictionary is to be installed.

dictionary
A handle to the dictionary data. This is often a handle to a resource of
type 'dict'.

DESCRIPTION

The UseDictionary function attempts to install the dictionary data referenced by the

dictionary parameter into the speech channel referenced by the chan parameter. The

synthesizer will use whatever elements of the dictionary resource it considers useful to

the speech conversion process. Some speech synthesizers might ignore certain types of

dictionary entries.

After the UseDictionary function returns, your application is free to release any

storage allocated for the dictionary handle. The search order for application-provided

dictionaries is last-in, first-searched.

All details of how an application-provided dictionary is represented within the speech

synthesizer are dependent on the specific synthesizer implementation and are private to

the synthesizer.

SPECIAL CONSIDERATIONS

Because the UseDictionary function might move memory, you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UseDictionary function are

RESULT CODES

Trap macro Selector

_SoundDispatch $0460000C

noErr 0 No error
memFullErr –108 Not enough memory to use new dictionary
badDictFormat –246 Pronunciation dictionary format error
invalidComponentID –3000 Speech channel is uninitialized or bad

C H A P T E R 4

Speech Manager

4-82 Speech Manager Reference

SEE ALSO

For a description of the format of a pronunciation dictionary, see “The Pronunciation

Dictionary Resource” on page 4-89. For a discussion of how you might manipulate a

dictionary in memory, see “Including Pronunciation Dictionaries” beginning on

page 4-36.

Application-Defined Routines

The Speech Manager allows you to define callback procedures that execute

■ when text input processing is complete (but not necessarily after speech has stopped)

■ when text has been completely processed and spoken

■ whenever the Speech Manager encounters an embedded synchronization command

■ whenever the Speech Manager encounters an error in processing embedded speech
commands

■ whenever a phoneme is about to be spoken

■ whenever a word is about to be spoken

▲ W A R N I N G

When the Speech Manager executes a callback procedure, the Speech
Manager sets the A5 register to the value specified by the most recent
call to the SetSpeechInfo function with the soCurrentA5 selector.
However, if the most recent value specified with the soCurrentA5
selector is NIL or if your application has not yet specified a value, then
the Speech Manager leaves the A5 register unchanged. In this case, the
callback procedure cannot access application global variables because
it executes at interrupt time. For code showing how to use the
soCurrentA5 selector to ensure that the A5 register is set to your
application’s A5, see Listing 4-6 on page 4-21. ▲

Text-Done Callback Procedure

You can specify a text-done callback procedure by passing the soTextDoneCallBack

selector to the SetSpeechInfo function.

MyTextDoneCallback

A text-done callback procedure has the following syntax:

PROCEDURE MyTextDoneCallback

(chan: SpeechChannel; refCon: LongInt;

VAR nextBuf: Ptr; VAR byteLen: LongInt;

VAR controlFlags: LongInt);

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-83

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

nextBuf On exit, a pointer to the next buffer of text to process or NIL if your
application has no additional text to be spoken. This parameter is mostly
for internal use by the Speech Manager.

byteLen On exit, the number of bytes of the text buffer pointed to by the nextBuf
parameter.

controlFlags
On exit, the control flags to be used in generating the next buffer of text.

 DESCRIPTION

If a text-done callback procedure is installed in a speech channel, then the Speech

Manager calls this procedure when it finishes processing a buffer of text. The Speech

Manager might not yet have completed finishing speaking the text and indeed might not

have started speaking it.

A common use of a text-done callback procedure is to alert your application once the text

passed to the SpeakText or SpeakBuffer function can be disposed of (or, when the

text is contained within a locked relocatable block, when the relocatable block can be

unlocked). The Speech Manager copies the text you pass to the SpeakText or

SpeakBuffer function into an internal buffer. Once it has finished processing the text,

you may dispose of the original text buffer, even if speech is not yet complete. However,

if you wish to write a callback procedure that executes when speech is completed, see

the definition of a speech-done callback procedure below.

Although most applications won’t need to, your callback procedure can indicate to the

Speech Manager whether there is another buffer of text to speak. If there is another

buffer, your callback procedure should reference it by setting the nextBuf and byteLen

parameters to appropriate values. (Your callback procedure might also change the

control flags to be used to process the speech by altering the value in the controlFlags

parameter.) Setting these parameters allows the Speech Manager to generate

uninterrupted speech. If there is no more text to speak, your callback procedure should

set nextBuf to NIL. In this case, the Speech Manager ignores the byteLen and

controlFlags parameters.

If your text-done callback procedure does not change the values of the nextBuf and

byteLen parameters, the text buffer just spoken will be spoken again.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any

routines that might move or purge memory. If you are writing a callback procedure

so that your application will know when it can dispose of a text buffer, then use the

callback procedure to set a global flag variable. Your application’s main event loop can

check this flag and dispose of the text buffer if it is set.

Your callback procedure is able to access application global variables only if the A5

register is properly set. The Speech Manager sets A5 to the proper value if you provide

C H A P T E R 4

Speech Manager

4-84 Speech Manager Reference

your application’s A5 value by calling the SetSpeechInfo function with the

soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers

other than A0–A2 and D0–D2.

Speech-Done Callback Procedure

You can specify a speech-done callback procedure by passing the

soSpeechDoneCallBack selector to the SetSpeechInfo function.

MySpeechDoneCallback

A speech-done callback procedure has the following syntax:

PROCEDURE MySpeechDoneCallback (chan: SpeechChannel;

refCon: LongInt);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

DESCRIPTION

If a speech-done callback procedure is installed in a speech channel, then the Speech

Manager calls this procedure when it finishes speaking a buffer of text.

You might use a speech-done callback procedure if you need to update some visual

indicator that shows what text is currently being spoken. For example, suppose your

application passes text buffers to the Speech Manager one paragraph at a time. Your

speech-done callback procedure might set a global flag variable to indicate to the

application that the Speech Manager has finished speaking a paragraph. When a routine

called by your application’s main event loop checks the global flag variable and

determines that it has been set, the routine might ensure that the next paragraph of text

is visible.

You might use a speech-done callback procedure to set a flag variable that alerts the

application that it should pass a new buffer of text to the Speech Manager. If you do so,

however, there might be a noticeable pause as the Speech Manager switches from

processing one text buffer to another. Ordinarily, it is easier to achieve this goal by using

a text-done callback procedure, as described earlier.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-85

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any

routines that might move or purge memory.

Your callback procedure is able to access application global variables only if the A5

register is properly set. The Speech Manager sets A5 to the proper value if you provide

your application’s A5 value by calling the SetSpeechInfo function with the

soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers

other than A0–A2 and D0–D2.

Synchronization Callback Procedure

You can specify a synchronization callback procedure by passing the soSyncCallBack

selector to the SetSpeechInfo function and embedding a synchronization command

within a text buffer passed to the SpeakText or SpeakBuffer function.

MySynchronizationCallback

A synchronization callback procedure has the following syntax:

PROCEDURE MySynchronizationCallback (chan: SpeechChannel;

refCon: LongInt;

syncMessage: OSType);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

syncMessage
The synchronization message passed in the embedded command.
Usually, you use this message to distinguish between several different
types of synchronization commands, but you can use it any way you wish.

DESCRIPTION

The Speech Manager calls a speech channel’s synchronization callback procedure

whenever it encounters a synchronization command embedded in a text buffer. You

might use the synchronization callback procedure to provide a callback not ordinarily

provided. For example, you might inset synchronization commands at the end of every

sentence in a text buffer, or you might enter synchronization commands after every

numeric value in the text. However, to synchronize your application with phonemes or

words, it makes more sense to use the built-in phoneme and word callback procedures,

C H A P T E R 4

Speech Manager

4-86 Speech Manager Reference

defined in “Phoneme Callback Procedure” on page 4-87 and “Word Callback Procedure”

on page 4-88.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any

routines that might move or purge memory. If you need to make a visual change in

response to a synchronization command, then use the callback procedure to set a global

flag variable. Your application’s main event loop can check this flag and update the

screen display if it is set.

Your callback procedure is able to access application global variables only if the A5

register is properly set. The Speech Manager sets A5 to the proper value if you provide

your application’s A5 value by calling the SetSpeechInfo function with the

soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers

other than A0–A2 and D0–D2.

Error Callback Procedure

You can specify an error callback procedure by passing the soErrorCallBack selector

to the SetSpeechInfo function.

MyErrorCallback

An error callback procedure has the following syntax:

PROCEDURE MyErrorCallback (chan: SpeechChannel; refCon: LongInt;

error: OSErr; bytePos: LongInt);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

error The error that occurred in processing an embedded command.

bytePos The number of bytes from the beginning of the text buffer being spoken to
the error encountered.

DESCRIPTION

The Speech Manager calls a speech channel’s error callback procedure whenever it

encounters a syntax error within a command embedded in a text buffer it is processing.

This can be useful during application debugging, to detect problems with commands

that you have embedded in text buffers that your application speaks. It can also be

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-87

useful if your application allows users to embed commands within text buffers. Your

application might display an alert indicating that the Speech Manager encountered a

problem in processing an embedded command.

Ordinarily, the error information that the Speech Manager provides the error callback

procedure should be sufficient. However, if your application needs information about

errors that occurred before the error callback procedure was enabled, the application

(including the error callback procedure) can call the GetSpeechInfo function with the

soErrors selector.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any

routines that might move or purge memory. If you need to display an alert box to the

user, then use the callback procedure to set a global flag variable. Your application’s

main event loop can check this flag and display the alert box if it is set.

Your callback procedure is able to access application global variables only if the A5

register is properly set. The Speech Manager sets A5 to the proper value if you provide

your application’s A5 value by calling the SetSpeechInfo function with the

soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers

other than A0–A2 and D0–D2.

Phoneme Callback Procedure

You can specify a phoneme callback procedure by passing the soPhonemeCallBack

selector to the SetSpeechInfo function.

MyPhonemeCallback

A phoneme callback procedure has the following syntax:

PROCEDURE MyPhonemeCallback (chan: SpeechChannel; refCon: LongInt;

phonemeOpcode: Integer);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

phonemeOpcode
The phoneme about to be pronounced.

C H A P T E R 4

Speech Manager

4-88 Speech Manager Reference

DESCRIPTION

The Speech Manager calls a speech channel’s phoneme callback procedure just before

it pronounces a phoneme. For example, your application might use such a callback

procedure to enable mouth synchronization. In this case, the callback procedure would

set a global flag variable to indicate that the phoneme being pronounced is changing and

another global variable to phonemeOpcode. A routine called by your application’s main

event loop could detect that the phoneme being pronounced is changing and update

a picture of a mouth to reflect the current phoneme. In practice, providing a visual

indication of the pronunciation of a phoneme requires several consecutive pictures of

mouth movement to be rapidly displayed. Consult the linguistics literature for

information on mouth movements associated with different phonemes.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any

routines that might move or purge memory.

Your callback procedure is able to access application global variables only if the A5

register is properly set. The Speech Manager sets A5 to the proper value if you provide

your application’s A5 value by calling the SetSpeechInfo function with the

soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers

other than A0–A2 and D0–D2.

Word Callback Procedure

You can specify a word callback procedure by passing the soWordCallBack selector to

the SetSpeechInfo function.

MyWordCallback

A word callback procedure has the following syntax:

PROCEDURE MyWordCallback (chan: SpeechChannel; refCon: LongInt;

wordPos: LongInt; wordLen: Integer);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

wordPos The number of bytes between the beginning of the text buffer and the
beginning of the word about to be pronounced.

wordLen The length in bytes of the word about to be pronounced.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-89

DESCRIPTION

The Speech Manager calls a speech channel’s word callback procedure just before it

pronounces a word. You might use such a callback procedure, for example, to draw the

word about to be spoken in a window. In this case, the callback procedure would set a

global flag variable to indicate that the word being spoken is changing and another two

global variables to wordPos and wordLen. A routine called by your application’s main

event loop could detect that the word being spoken is changing and draw the word in

a window.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any

routines that might move or purge memory.

Your callback procedure is able to access application global variables only if the A5

register is properly set. The Speech Manager sets A5 to the proper value if you provide

your application’s A5 value by calling the SetSpeechInfo function with the
soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers

other than A0–A2 and D0–D2.

Resources

This section describes the format of a pronunciation dictionary resource, which the

Speech Manager uses to override its default pronunciation of words. The Speech

Manager uses pronunciation rules as well as an internal dictionary (not stored in the

same format as pronunciation dictionary resources) to determine how to pronounce

words not included in a speech channel’s installed pronunciation dictionaries. For an

introduction to the use of and examples showing how your application can install and

manipulate pronunciation dictionaries, see “Including Pronunciation Dictionaries”

beginning on page 4-36.

This section does not describe the format of voice resources or speech synthesizer

resources, because you should not need to access them directly.

The Pronunciation Dictionary Resource

You can store a list of words and their associated pronunciations in a resource of

resource type 'dict'. You can associate any number of dictionary resources with a

speech channel. Before using its internal rules to pronounce a word, the Speech Manager

searches the dictionary resources that your application has associated with the speech

channel in a last-in, first-searched order.

C H A P T E R 4

Speech Manager

4-90 Speech Manager Reference

Note
Because your application is responsible for loading data from a
pronunciation dictionary into memory, you can, if desired, store
pronunciation information in the data fork of a file rather than in the
resource fork. Also, you can devise your own format in which to store
pronunciation data, as long as you convert that data into the format
described in this section before calling the UseDictionary function. ◆

Figure 4-5 shows the format of a pronunciation dictionary resource.

Figure 4-5 Format of a pronunciation dictionary resource

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-91

Note
Some synthesizers might use resources (such as resources of type
'ttsd') to store their internal pronunciation dictionaries. These
internal dictionaries are not necessarily in the same format as the
pronunciation dictionaries described here. ◆

To define a dictionary resource, you ordinarily use a resource of type 'dict'. Such

a resource contains a pronunciation dictionary resource header, which is at the start of

the resource and defines characteristics of the dictionary as a whole, and any number

of pronunciation dictionary entries. Each pronunciation dictionary entry corresponds

to one word and contains one or more pronunciation dictionary entry fields. Each

pronunciation dictionary entry field contains one piece of information about the word

being described in the entry; for example, a dictionary entry would include a field with

a textual representation of the word.

The pronunciation dictionary resource header includes the following:

■ Total byte length. The total number of bytes of the dictionary, including the entire
pronunciation dictionary resource header in addition to the dictionary’s entries.

■ Atom type. The currently defined atom type is 'dict'. Future versions of the Speech
Manager might define additional atom types for other types of dictionaries.

■ Format version. The currently defined format version is 1. Future versions of the
Speech Manager might support additional format versions for the 'dict' atom type.

■ Script code. The script code of words defined in the pronunciation dictionary (for
example, smRoman). All words in a dictionary must be in the same script.

■ Language code. The language code of words defined in the pronunciation dictionary
(for example, langEnglish). All words in a dictionary must be in the same language.

■ Region code. The region code of pronunciations in the dictionary (for example,
verUS). All words in a dictionary must target the same region.

■ Date last modified. The number of seconds between midnight, January 1, 1904, and
the modification time. You can use the GetDateTime procedure to determine the
number of seconds between midnight, January 1, 1904, and the current time. For more
information, see Inside Macintosh: Operating System Utilities.

■ Reserved. These 16 bytes are reserved for future use. You should set them to 0.

■ Entry count. The number of dictionary entries.

Immediately following the pronunciation dictionary resource header is a list of the

pronunciation dictionary entries.

Figure 4-6 shows the format of a pronunciation dictionary entry.

C H A P T E R 4

Speech Manager

4-92 Speech Manager Reference

Figure 4-6 Format of a dictionary entry in a dictionary resource

Each pronunciation dictionary entry consists of the following:

■ Entry byte length. The total number of bytes in the entry, including this word.

■ Entry type. A code for the type of pronunciation dictionary entry. The code $0000
represents a null entry, and codes $0001 through $0020 are reserved for future use by
Apple Computer, Inc. You should thus ordinarily fill in this field with $0021, which is
the code for a pronunciation entry, or $0022, which is the code for an abbreviation
entry. In the current version of the Speech Manager, abbreviation entries work just like
pronunciation entries.

■ Field count. The number of pronunciation dictionary entry fields contained within
this entry.

Immediately following the field count indicator are the fields themselves. Typically, a

pronunciation entry always includes a field containing the word in textual format and

a field containing the phonetic pronunciation of the word.

Each field within a dictionary entry has the format illustrated in Figure 4-7.

C H A P T E R 4

Speech Manager

Speech Manager Reference 4-93

Figure 4-7 Format of a dictionary entry field

The three parts of a dictionary entry field are as follows:

■ Field byte length. The total number of bytes in the pronunciation entry field, not
including the pad byte of the field data when applicable.

■ Field type. A code for the format of the pronunciation dictionary entry field’s data.
The code $0000 represents a null entry field, and Apple reserves codes $0001 through
$0020 as well as code $0023 for future use. Code $0021 represents a textual
representation of the word being described in the entry. Code $0022 represents a
phonetic pronunciation of the word, including a complete set of syllable, lexical stress,
word prominence, and prosodic marks, all represented in textual format.

■ Field data. If the field type is $0021 or $0022, then this field contains characters
representing the word textually or phonetically, respectively. The characters are not
preceded by a length byte and are not followed by a null character. However, if there
are an odd number of characters, then a byte must be added as padding to ensure that
fields align on word boundaries. The pad byte need not be set to a particular value.

C H A P T E R 4

Speech Manager

4-94 Summary of the Speech Manager

Summary of the Speech Manager

Pascal Summary

Constants

CONST

{Gestalt selector and response bits for speech attributes}

gestaltSpeechAttr = 'ttsc'; {speech attributes selector}

gestaltSpeechMgrPresent = 0; {Speech Manager is present}

gestaltSpeechHasPPCGlue = 1; {native glue for PowerPC present}

{Operating System types}

kTextToSpeechSynthType = 'ttsc'; {synthesizer component type}

kTextToSpeechVoiceType = 'ttvd'; {voice resource type}

kTextToSpeechVoiceFileType = 'ttvf'; {voice file type}

kTextToSpeechVoiceBundleType

= 'ttvb'; {voice bundle file type}

{masks for SpeakBuffer and text-done callback control flags}

kNoEndingProsody = 1; {disable prosody at end of sentences}

kNoSpeechInterrupt = 2; {do not interrupt current speech}

kPreflightThenPause = 4; {compute speech without generating}

{constants for StopSpeechAt and PauseSpeechAt}

kImmediate = 0; {stop immediately}

kEndOfWord = 1; {stop at end of word}

kEndOfSentence = 2; {stop at end of sentence}

{GetSpeechInfo and SetSpeechInfo selectors}

soCharacterMode = 'char'; {get or set character-processing mode}

soCommandDelimiter = 'dlim'; {set embedded command delimiters}

soCurrentA5 = 'myA5'; {set A5 on callbacks}

soCurrentVoice = 'cvox'; {set speaking voice}

soErrorCallBack = 'ercb'; {set error callback}

soErrors = 'erro'; {get error information}

soInputMode = 'inpt'; {get or set text-processing mode}

soNumberMode = 'nmbr'; {get or set number-processing mode}

soPhonemeCallBack = 'phcb'; {set phoneme callback}

C H A P T E R 4

Speech Manager

Summary of the Speech Manager 4-95

soPhonemeSymbols = 'phsy'; {get phoneme symbols and sample words}

soPitchBase = 'pbas'; {get or set baseline pitch}

soPitchMod = 'pmod'; {get or set pitch modulation}

soRate = 'rate'; {get or set speech rate}

soRecentSync = 'sync'; {get most recent synchronization }

{ message information}

soRefCon = 'refc'; {set reference constant value}

soReset = 'rset'; {set channel back to default state}

soSpeechDoneCallBack = 'sdcb'; {set speech-done callback}

soStatus = 'stat'; {get status of channel}

soSyncCallBack = 'sycb'; {set synchronization callback}

soSynthExtension = 'xtnd'; {get or set synthesizer-specific }

{ information}

soSynthType = 'vers'; {get synthesizer information}

soTextDoneCallBack = 'tdcb'; {set text-done callback}

soVolume = 'volm'; {get or set speech volume}

soWordCallBack = 'wdcb'; {set word callback}

{input mode constants}

modeText = 'TEXT';

modePhonemes = 'PHON';

{character and number mode constants}

modeNormal = 'NORM';

modeLiteral = 'LTRL';

{GetVoiceInfo selectors}

soVoiceDescription = 'info'; {get basic voice information}

soVoiceFile = 'fref'; {get voice file reference information}

{genders}

kNeuter = 0;

kMale = 1;

kFemale = 2;

Data Structures

Speech Channel Record

TYPE

SpeechChannelRecord = LongInt; {speech channel record}

SpeechChannel = ^SpeechChannelRecord; {speech channel}

SpeechChannelPtr = ^SpeechChannel; {speech channel pointer}

C H A P T E R 4

Speech Manager

4-96 Summary of the Speech Manager

Voice Specification Record

VoiceSpec =

RECORD

creator: OSType; {ID of required synthesizer}

id: OSType; {ID of voice on the synthesizer}

END;

VoiceSpecPtr = ^VoiceSpec;

Voice Description Record

VoiceDescription =

RECORD

length: LongInt; {size of record--set by application}

voice: VoiceSpec; {voice synthesizer and ID info}

version: LongInt; {version number of voice}

name: Str63; {name of voice}

comment: Str255; {text information about voice}

gender: Integer; {neuter, male, or female}

age: Integer; {approximate age in years}

script: Integer; {script code of text voice can }

{ process}

language: Integer; {language code of voice output}

region: Integer; {region code of voice output}

reserved1: LongInt; {always 0--reserved for future use}

reserved2: LongInt; {always 0--reserved for future use}

reserved3: LongInt; {always 0--reserved for future use}

reserved4: LongInt; {always 0--reserved for future use}

END;

VoiceDescriptionPtr = ^VoiceDescription;

Voice File Information Record

VoiceFileInfo =

RECORD

fileSpec: FSSpec; {volume, dir, and name of file}

resID: Integer; {resource ID of voice in the file}

END;

VoiceFileInfoPtr = ^VoiceFileInfo;

C H A P T E R 4

Speech Manager

Summary of the Speech Manager 4-97

Speech-Status Information Record

SpeechStatusInfo =

RECORD

outputBusy: Boolean; {TRUE if audio is playing}

outputPaused: Boolean; {TRUE if channel is paused}

inputBytesLeft: LongInt; {bytes of text left to process}

phonemeCode: Integer; {opcode for current phoneme}

END;

SpeechStatusInfoPtr = ^SpeechStatusInfo;

Speech Error Information Record

SpeechErrorInfo =

RECORD

count: Integer; {number of errors since last check}

oldest: OSErr; {oldest unread error}

oldPos: LongInt; {character position of oldest error}

newest: OSErr; {most recent error}

newPos: LongInt; {character position of newest error}

END;

Speech Version Information Record

SpeechVersionInfo =

RECORD

synthType: OSType; {general synthesizer type}

synthSubType: OSType; {specific synthesizer type}

synthManufacturer:

OSType; {synthesizer creator ID}

synthFlags: LongInt; {synthesizer feature flags}

synthVersion: NumVersion; {synthesizer version number}

END;

SpeechVersionInfoPtr = ^SpeechVersionInfo;

Phoneme Information Record

PhonemeInfo =

RECORD

opCode: Integer; {opcode for the phoneme}

phStr: Str15; {corresponding character string}

exampleStr: Str31; {word that shows use of phoneme}

hiliteStart: Integer; {offset from beginning of word }

{ to beginning of phoneme sound}

C H A P T E R 4

Speech Manager

4-98 Summary of the Speech Manager

hiliteEnd: Integer; {offset from beginning of word }

{ to end of phoneme sound}

END;

Phoneme Descriptor Record

PhonemeDescriptor =

RECORD

phonemeCount: Integer; {number of phonemes defined by }

{ current synthesizer}

{list of phoneme information records}

thePhonemes: ARRAY[0..0] OF PhonemeInfo;

END;

Speech Extension Data Record

SpeechXtndData =

RECORD

synthCreator: OSType; {synthesizer creator ID}

{data used by synthesizer}

synthData: PACKED ARRAY[0..1] OF Char;

END;

Delimiter Information Record

DelimiterInfo =

RECORD

startDelimiter: PACKED ARRAY[0..1] OF Char; {start delimiter}

endDelimiter: PACKED ARRAY[0..1] OF Char; {end delimiter}

END;

Speech Manager Routines

Starting, Stopping, and Pausing Speech

FUNCTION SpeakString (s: Str255): OSErr;

FUNCTION SpeakText (chan: SpeechChannel; textBuf: Ptr;
byteLen: LongInt): OSErr;

FUNCTION SpeakBuffer (chan: SpeechChannel; textBuf: Ptr;
byteLen: LongInt; controlFlags: LongInt):
OSErr;

FUNCTION StopSpeech (chan: SpeechChannel): OSErr;

C H A P T E R 4

Speech Manager

Summary of the Speech Manager 4-99

FUNCTION StopSpeechAt (chan: SpeechChannel; whereToStop: LongInt):
OSErr;

FUNCTION PauseSpeechAt (chan: SpeechChannel; whereToStop: LongInt):
OSErr;

FUNCTION ContinueSpeech (chan: SpeechChannel): OSErr;

Obtaining Information About Voices

FUNCTION MakeVoiceSpec (creator: OSType; id: OSType;
voice: VoiceSpecPtr): OSErr;

FUNCTION CountVoices (VAR numVoices: Integer): OSErr;

FUNCTION GetIndVoice (index: Integer; voice: VoiceSpecPtr): OSErr;

FUNCTION GetVoiceDescription
(voice: VoiceSpecPtr;
info: VoiceDescriptionPtr; infoLength: LongInt)
: OSErr;

FUNCTION GetVoiceInfo (voice: VoiceSpecPtr; selector: OSType;
voiceInfo: Ptr): OSErr;

Managing Speech Channels

FUNCTION NewSpeechChannel (voice: VoiceSpecPtr; VAR chan: SpeechChannel):
OSErr;

FUNCTION DisposeSpeechChannel
(chan: SpeechChannel): OSErr;

Obtaining Information About Speech

FUNCTION SpeechManagerVersion
: NumVersion;

FUNCTION SpeechBusy : Integer;

FUNCTION SpeechBusySystemWide
: Integer;

Changing Speech Attributes

FUNCTION GetSpeechRate (chan: SpeechChannel; VAR rate: Fixed): OSErr;

FUNCTION SetSpeechRate (chan: SpeechChannel; rate: Fixed): OSErr;

FUNCTION GetSpeechPitch (chan: SpeechChannel; VAR pitch: Fixed): OSErr;

FUNCTION SetSpeechPitch (chan: SpeechChannel; pitch: Fixed): OSErr;

FUNCTION GetSpeechInfo (chan: SpeechChannel; selector: OSType;
speechInfo: Ptr): OSErr;

FUNCTION SetSpeechInfo (chan: SpeechChannel; selector: OSType;
speechInfo: Ptr): OSErr;

C H A P T E R 4

Speech Manager

4-100 Summary of the Speech Manager

Converting Text to Phonemes

FUNCTION TextToPhonemes (chan: SpeechChannel; textBuf: Ptr;
textBytes: LongInt; phonemeBuf: Handle;
VAR phonemeBytes: LongInt): OSErr;

Installing a Pronunciation Dictionary

FUNCTION UseDictionary (chan: SpeechChannel; dictionary: Handle)
: OSErr;

Application-Defined Routines

PROCEDURE MyTextDoneCallback
(chan: SpeechChannel; refCon: LongInt;
VAR nextBuf: Ptr; VAR byteLen: LongInt;
VAR controlFlags: LongInt);

PROCEDURE MySpeechDoneCallback
(chan: SpeechChannel; refCon: LongInt);

PROCEDURE MySynchronizationCallback
(chan: SpeechChannel; refCon: LongInt;
syncMessage: OSType);

PROCEDURE MyErrorCallback (chan: SpeechChannel; refCon: LongInt;
error: OSErr; bytePos: LongInt);

PROCEDURE MyPhonemeCallback
(chan: SpeechChannel; refCon: LongInt;
phonemeOpcode: Integer);

PROCEDURE MyWordCallback (chan: SpeechChannel; refCon: LongInt;
wordPos: LongInt; wordLen: Integer);

C Summary

Constants

/*Gestalt selector and response bits for speech attributes*/

#define gestaltSpeechAttr 'ttsc' /*speech attributes selector*/

enum {

gestaltSpeechMgrPresent = 0 /*Speech Manager is present*/

gestaltSpeechHasPPCGlue = 1 /*native glue for PowerPC present*/

};

C H A P T E R 4

Speech Manager

Summary of the Speech Manager 4-101

/*Operating System types*/

#define kTextToSpeechSynthType 'ttsc' /*synthesizer component */

/* type*/

#define kTextToSpeechVoiceType 'ttvd' /*voice resource type*/

#define kTextToSpeechVoiceFileType 'ttvf' /*voice file type*/

#define kTextToSpeechVoiceBundleType 'ttvb' /*voice bundle file type*/

/*masks for SpeakBuffer and text-done callback control flags*/

enum {

kNoEndingProsody = 1, /*disable prosody at end of sentences*/

kNoSpeechInterrupt = 2, /*do not interrupt current speech*/

kPreflightThenPause = 4 /*compute speech without generating*/

};

/*constants for StopSpeechAt and PauseSpeechAt*/

enum {

kImmediate = 0, /*stop immediately*/

kEndOfWord = 1, /*stop at end of word*/

kEndOfSentence = 2 /*stop at end of sentence*/

};

/*GetSpeechInfo and SetSpeechInfo selectors*/

#define soCharacterMode 'char' /*get or set character-processing */

/* mode*/

#define soCommandDelimiter 'dlim' /*set embedded command delimiters*/

#define soCurrentA5 'myA5' /*set A5 on callbacks*/

#define soCurrentVoice 'cvox' /*set speaking voice*/

#define soErrorCallBack 'ercb' /*set error callback*/

#define soErrors 'erro' /*get error information*/

#define soInputMode 'inpt' /*get or set text-processing mode*/

#define soNumberMode 'nmbr' /*get or set number-processing mode*/

#define soPhonemeCallBack 'phcb' /*set phoneme callback*/

#define soPhonemeSymbols 'phsy' /*get phoneme symbols and sample*/

/* words*/

#define soPitchBase 'pbas' /*get or set baseline pitch*/

#define soPitchMod 'pmod' /*get or set pitch modulation*/

#define soRate 'rate' /*get or set speech rate*/

#define soRecentSync 'sync' /*get most recent synchronization */

/* message information*/

#define soRefCon 'refc' /*set reference constant value*/

#define soReset 'rset' /*set channel back to default state*/

#define soSpeechDoneCallBack 'sdcb' /*set speech-done callback*/

#define soStatus 'stat' /*get status of channel*/

#define soSyncCallBack 'sycb' /*set synchronization callback*/

C H A P T E R 4

Speech Manager

4-102 Summary of the Speech Manager

#define soSynthExtension 'xtnd' /*get or set synthesizer-specific */

/* information*/

#define soSynthType 'vers' /*get synthesizer information*/

#define soTextDoneCallBack 'tdcb' /*set text-done callback*/

#define soVolume 'volm' /*get or set speech volume*/

#define soWordCallBack 'wdcb' /*set word callback*/

/*input mode constants*/

#define modeText 'TEXT'

#define modePhonemes 'PHON'

/*character and number mode constants*/

#define modeNormal 'NORM'

#define modeLiteral 'LTRL'

/*GetVoiceInfo selectors*/

enum {

soVoiceDescription = 'info', /*get basic voice information*/

soVoiceFile = 'fref' /*get voice file reference information*/

};

/*genders*/

enum {

kNeuter = 0,

kMale,

kFemale

};

Data Types

Speech Channel Record

typedef struct SpeechChannelRecord {

long data[1]; /*used internally*/

} SpeechChannelRecord;

typedef SpeechChannelRecord *SpeechChannel;

Voice Specification Record

typedef struct VoiceSpec {

OSType creator; /*ID of required synthesizer*/

OSType id; /*ID of voice on the synthesizer*/

} VoiceSpec;

C H A P T E R 4

Speech Manager

Summary of the Speech Manager 4-103

Voice Description Record

typedef struct VoiceDescription {

long length; /*size of structure--set by application*/

VoiceSpec voice; /*voice synthesizer and ID info*/

long version; /*version number of voice*/

Str63 name; /*name of voice*/

Str255 comment; /*text information about voice*/

short gender; /*neuter, male, or female*/

short age; /*approximate age in years*/

short script; /*script code of text voice can process*/

short language; /*language code of voice output*/

short region; /*region code of voice output*/

long reserved[4]; /*always 0--reserved for future use*/

} VoiceDescription;

Voice File Information Record

typedef struct VoiceFileInfo {

FSSpec fileSpec; /*volume, dir, and name of file*/

short resID; /*resource ID of voice in the file*/

} VoiceFileInfo;

Speech Status Information Record

typedef struct SpeechStatusInfo {

Boolean outputBusy; /*TRUE if audio is playing*/

Boolean outputPaused; /*TRUE if channel is paused*/

long inputBytesLeft; /*bytes of text left to process*/

short phonemeCode; /*opcode for current phoneme*/

} SpeechStatusInfo;

Speech Error Information Record

typedef struct SpeechErrorInfo {

short count; /*number of errors since last check*/

OSErr oldest; /*oldest unread error*/

long oldPos; /*character position of oldest error*/

OSErr newest; /*most recent error*/

long newPos; /*character position of newest error*/

} SpeechErrorInfo;

C H A P T E R 4

Speech Manager

4-104 Summary of the Speech Manager

Speech Version Information Record

typedef struct SpeechVersionInfo {

OSType synthType; /*general synthesizer type*/

OSType synthSubType; /*specific synthesizer type*/

OSType synthManufacturer; /*synthesizer creator ID*/

long synthFlags; /*synthesizer feature flags*/

NumVersion synthVersion; /*synthesizer version number*/

} SpeechVersionInfo;

Phoneme Information Record

typedef struct PhonemeInfo {

short opcode; /*opcode for the phoneme*/

Str15 phStr; /*corresponding character string*/

Str31 exampleStr; /*word that shows use of phoneme*/

short hiliteStart; /*offset from beginning of word */

/* to beginning of phoneme sound*/

short hiliteEnd; /*offset from beginning of word */

/* to end of phoneme sound*/

} PhonemeInfo;

Phoneme Descriptor Record

typedef struct PhonemeDescriptor {

short phonemeCount; /*number of phonemes defined by */

/* current synthesizer*/

PhonemeInfo thePhonemes[1]; /*list of phoneme information records*/

} PhonemeDescriptor;

Speech Extension Data Record

typedef struct SpeechXtndData {

OSType synthCreator; /*synthesizer creator ID*/

Byte synthData[2]; /*data used by synthesizer*/

} SpeechXtndData;

Delimiter Information Record

typedef struct DelimiterInfo {

Byte startDelimiter[2]; /*start delimiter*/

Byte endDelimiter[2]; /*end delimiter*/

} DelimiterInfo;

C H A P T E R 4

Speech Manager

Summary of the Speech Manager 4-105

Speech Manager Routines

Starting, Stopping, and Pausing Speech

pascal OSErr SpeakString (StringPtr s);

pascal OSErr SpeakText (SpeechChannel chan, Ptr textBuf,
long textBytes);

pascal OSErr SpeakBuffer (SpeechChannel chan, Ptr textBuf,
long textBytes, long controlFlags);

pascal OSErr StopSpeech (SpeechChannel chan);

pascal OSErr StopSpeechAt (SpeechChannel chan, long whereToStop);

pascal OSErr PauseSpeechAt (SpeechChannel chan, long whereToPause);

pascal OSErr ContinueSpeech
(SpeechChannel chan);

Obtaining Information About Voices

pascal OSErr MakeVoiceSpec (OSType creator, OSType id, VoiceSpec *voice);

pascal OSErr CountVoices (short *numVoices);

pascal OSErr GetIndVoice (short index, VoiceSpec *voice);

pascal OSErr GetVoiceDescription
(VoiceSpec *voice, VoiceDescription *info,
long infoLength);

pascal OSErr GetVoiceInfo (VoiceSpec *voice, OSType selector,
void *voiceInfo);

Managing Speech Channels

pascal OSErr NewSpeechChannel
(VoiceSpec *voice, SpeechChannel *chan);

pascal OSErr DisposeSpeechChannel
(SpeechChannel chan);

Obtaining Information About Speech

pascal NumVersion SpeechManagerVersion
(void);

pascal short SpeechBusy (void);

pascal short SpeechBusySystemWide
(void);

Changing Speech Attributes

pascal OSErr GetSpeechRate (SpeechChannel chan, Fixed *rate);

C H A P T E R 4

Speech Manager

4-106 Summary of the Speech Manager

pascal OSErr SetSpeechRate (SpeechChannel chan, Fixed rate);

pascal OSErr GetSpeechPitch
(SpeechChannel chan, Fixed *pitch);

pascal OSErr SetSpeechPitch
(SpeechChannel chan, Fixed pitch);

pascal OSErr GetSpeechInfo (SpeechChannel chan, OSType selector,
void *speechInfo);

pascal OSErr SetSpeechInfo (SpeechChannel chan, OSType selector,
void *speechInfo);

Converting Text to Phonemes

pascal OSErr TextToPhonemes
(SpeechChannel chan, Ptr textBuf,
long textBytes, Handle phonemeBuf,
long *phonemeBytes);

Installing a Pronunciation Dictionary

pascal OSErr UseDictionary (SpeechChannel chan, Handle dictionary);

Application-Defined Routines

#pragma procname SpeechTextDone

typedef pascal void (*SpeechTextDoneCBPtr)
(SpeechChannel, long, Ptr *, long *, long *);

typedef SpeechTextDoneProcPtr SpeechTextDoneCBPtr;

#pragma procname SpeechDone

typedef pascal void (*SpeechDoneCBPtr)
(SpeechChannel, long);

typedef SpeechDoneProcPtr SpeechDoneCBPtr;

#pragma procname SpeechSync

typedef pascal void (*SpeechSyncCBPtr)
(SpeechChannel, long, OSType);

typedef SpeechSyncProcPtr SpeechSyncCBPtr;

#pragma procname SpeechError

typedef pascal void (*SpeechErrorCBPtr)
(SpeechChannel, long, OSErr, long);

typedef SpeechErrorProcPtr SpeechErrorCBPtr;

#pragma procname SpeechPhoneme

typedef pascal void (*SpeechPhonemeCBPtr)
(SpeechChannel, long, short);

typedef SpeechPhonemeProcPtr SpeechPhonemeCBPtr;

C H A P T E R 4

Speech Manager

Summary of the Speech Manager 4-107

#pragma procname SpeechWord

typedef pascal void (*SpeechWordCBPtr)
(SpeechChannel, long, long, short);

typedef SpeechWordProcPtr SpeechWordCBPtr;

Assembly-Language Information

Data Structures

Voice Specification Data Structure

Voice Description Data Structure

Voice File Information Data Structure

Speech Status Information Data Structure

0 creator 4 bytes ID of required synthesizer
4 id 4 bytes ID of voice on the synthesizer

0 length long size of structure—set by application
4 voice 8 bytes voice specification record

12 version long version number of voice
16 name 64 bytes name of voice; preceded by length byte
80 comment 256 bytes text information about voice; preceded by length

byte
336 gender short neuter (0), male (1), or female (2)
338 age short approximate age in years
340 script short script code of text voice can process
342 language short language code of text voice can process
344 region short region code of voice output
346 reserved 16 bytes always set to 0—reserved for future use

0 fileSpec 70 bytes volume, directory, and name of file
70 resID word resource ID of voice in the file

0 outputBusy byte 1 if audio is playing
1 outputPaused byte 1 if channel is paused
2 inputBytesLeft long bytes of text left to process
6 phonemeCode short opcode for current phoneme

C H A P T E R 4

Speech Manager

4-108 Summary of the Speech Manager

Speech Error Information Data Structure

Speech Version Information Data Structure

Phoneme Information Data Structure

Phoneme Descriptor Data Structure

Speech Extension Data Structure

Delimiter Information Data Structure

0 count word number of errors since last check
2 oldest long oldest unread Operating System error
6 oldPos long character position of oldest error

10 newest long newest Operating System error
14 newPos long character position of newest error

0 synthType 4 bytes always 'TTSC'
4 synthSubType 4 bytes synthesizer type
8 synthManufacturer 4 bytes synthesizer creator ID

12 synthFlags long synthesizer feature flags
16 synthVersion long synthesizer version number

0 opcode word opcode for the phoneme
2 phStr 16 bytes corresponding character string; preceded by length byte

18 exampleStr 32 bytes word that shows use of phoneme
50 hiliteStart word offset from beginning of word to beginning of phoneme

sound
52 hiliteEnd word offset from beginning of word to end of phoneme sound

0 phonemeCount word number of phonemes defined by current synthesizer
2 thePhonemes variable list of phoneme information records

0 synthCreator 4 bytes synthesizer creator ID
4 synthData variable data used by synthesizer

0 startDelimiter 2 bytes start embedded command characters; defaults to “[[”
2 endDelimiter 2 bytes end embedded command characters; defaults to “]]”

C H A P T E R 4

Speech Manager

Summary of the Speech Manager 4-109

Trap Macros

Trap Macro Requiring Routine Selectors

_SoundDispatch

Selector Routine

$0000000C SpeechManagerVersion

$003C000C SpeechBusy

$0040000C SpeechBusySystemWide

$0108000C CountVoices

$021C000C DisposeSpeechChannel

$0220000C SpeakString

$022C000C StopSpeech

$0238000C ContinueSpeech

$030C000C GetIndVoice

$0418000C NewSpeechChannel

$0430000C StopSpeechAt

$0434000C PauseSpeechAt

$0444000C SetSpeechRate

$0448000C GetSpeechRate

$044C000C SetSpeechPitch

$0450000C GetSpeechPitch

$0460000C UseDictionary

$0604000C MakeVoiceSpec

$0610000C GetVoiceDescription

$0614000C GetVoiceInfo

$0624000C SpeakText

$0654000C SetSpeechInfo

$0658000C GetSpeechInfo

$0828000C SpeakBuffer

$0A5C000C TextToPhonemes

C H A P T E R 4

Speech Manager

4-110 Summary of the Speech Manager

Result Codes
noErr 0 No error
paramErr –50 Parameter error
memFullErr –108 Not enough memory to speak
nilHandleErr –109 Handle argument is NIL
siUnknownInfoType –231 Feature not implemented on synthesizer
noSynthFound –240 Could not find the specified speech synthesizer
synthOpenFailed –241 Could not open another speech synthesizer channel
synthNotReady –242 Speech synthesizer is still busy speaking
bufTooSmall –243 Output buffer is too small to hold result
voiceNotFound –244 Voice resource not found
incompatibleVoice –245 Specified voice cannot be used with synthesizer
badDictFormat –246 Pronunciation dictionary format error
badPhonemeText –247 Raw phoneme text contains invalid characters
unimplMsg –248 Unimplemented message
badVoiceID –250 Specified voice has not been preloaded
badParmCount –252 Incorrect number of embedded command arguments
invalidComponentID –3000 Speech channel is uninitialized or bad

Contents 5-1

C H A P T E R 5

Contents

Sound Components

About Sound Components 5-4

Sound Component Chains 5-4

The Apple Mixer 5-6

The Data Stream 5-7

Writing a Sound Component 5-8

Creating a Sound Component 5-8

Specifying Sound Component Capabilities 5-11

Dispatching to Sound Component-Defined Routines 5-12

Registering and Opening a Sound Component 5-16

Finding and Changing Component Capabilities 5-18

Sound Components Reference 5-22

Constants 5-22

Sound Component Information Selectors 5-22

Audio Data Types 5-26

Sound Component Features Flags 5-26

Action Flags 5-27

Data Format Flags 5-28

Data Structures 5-29

Sound Component Data Records 5-29

Sound Parameter Blocks 5-30

Sound Information Lists 5-31

Compression Information Records 5-32

Sound Manager Utilities 5-33

Opening and Closing the Apple Mixer Component 5-33

Saving and Restoring Sound Component Preferences 5-35

Sound Component-Defined Routines 5-36

Managing Sound Components 5-37

Creating and Removing Audio Sources 5-42

Getting and Setting Sound Component Information 5-44

Managing Source Data 5-46

C H A P T E R 5

5-2 Contents

Summary of Sound Components 5-50

C Summary 5-50

Constants 5-50

Data Types 5-53

Sound Manager Utilities 5-54

Sound Component-Defined Routines 5-55

Assembly-Language Summary 5-56

Data Structures 5-56

C H A P T E R 5

5-3

Sound Components

This chapter describes sound components, which are code modules used by the

Sound Manager to manipulate audio data or to communicate with sound output

devices. Current versions of the Sound Manager allow you to write two kinds of

sound components:

■ compression and decompression components (codecs), which allow you to implement
audio data compression and decompression algorithms different from those provided
by the Sound Manager’s MACE (Macintosh Audio Compression and Expansion)
capabilities

■ sound output device components, which send audio data directly to sound output
devices

You need to read this chapter only if you are developing a sound output device or if you

want to implement a custom compression and decompression scheme for audio data.

For example, you might write a codec to handle 16-bit audio data compression and

decompression. (The MACE algorithms currently compress and expand only 8-bit data

at ratios of 3:1 and 6:1.)

IMPORTANT

Sound components are loaded and managed by the Sound Manager
and operate transparently to applications. Applications that want to
create sounds must use Sound Manager routines to do so. The routines
described in this chapter are intended for use exclusively by sound
components. ▲

To use this chapter, you should already be familiar with the general operation of the

Sound Manager, as described in the chapter “Introduction to Sound on the Macintosh”

in this book. Because sound components are components, you also need to be familiar

with the Component Manager, described in Inside Macintosh: More Macintosh Toolbox. If

you are developing a sound output device component, you need to be familiar with the

process of installing a driver and handling interrupts created by your hardware device.

See Inside Macintosh: Devices for complete information on devices and device drivers.

If you’re developing a sound output device, you might also need to write a control panel

extension that installs a custom subpanel into the Sound control panel. For example,

your subpanel could allow the user to set various characteristics of the sound your

output device is creating. For complete information on writing control panel subpanels,

see the chapter “Control Panel Extensions” in Inside Macintosh: Operating System Utilities.

This chapter begins with a general description of sound components and how they are

managed by the Sound Manager. Then it provides instructions on how to write a sound

component. The section “Sound Components Reference” beginning on page 5-22

describes the sound component selectors your component might need to handle and the

component-defined routines that your sound component should call in response to those

the sound component selectors. It also describes a small number of Sound Manager

utility routines that your sound component can use.

C H A P T E R 5

Sound Components

5-4 About Sound Components

Note
Pascal interfaces for sound components are not currently available. As a
result, this chapter provides all source code examples and reference
materials in C. ◆

About Sound Components

A sound component is a component that works with the Sound Manager to manipulate

audio data or to communicate with a sound output device. Sound components provide

the foundation for the modular, device-independent sound architecture introduced with

Sound Manager version 3.0. This section provides a description of sound components

and shows how they are managed by the Sound Manager. For specific information on

creating a sound component, see “Writing a Sound Component” beginning on page 5-8.

Sound Component Chains
Prior to version 3.0, the Sound Manager performed all audio data processing internally,

using its own filters to decompress audio data, convert sample rates, mix separate sound

channels, and so forth. This effectively rendered it difficult, if not impossible, to add

other data modification filters to process the audio data. (The now-obsolete method of

installing a sound modifier with the SndAddModifier routine did not work reliably.)

More importantly, the Sound Manager was responsible for managing the entire stream of

audio data, from the application to the available sound-producing audio hardware. This

made it very difficult to support new sound output devices.

In versions 3.0 and later, the Sound Manager provides a new audio data processing

architecture based on components, illustrated in Figure 5-1. The fundamental idea is that

the process of playing a sound can be divided into a number of specific steps, each of

which has well-defined inputs and outputs. Figure 5-1 shows the steps involved in

playing an 11 kHz compressed sampled sound resource on a Macintosh II computer.

An application sends the compressed sound data to the Sound Manager, which

constructs an appropriate sound component chain that links the unprocessed audio

data to the sound components required to modify the data into a form that can be sent to

the current sound output device. As you can see in Figure 5-1, the Sound Manager links

together sound components that, in sequence, expand the compressed sound data into

audio samples, convert the sample rate from 11 kHz to 22 kHz, mix those samples with

samples from any other sound channels that might be playing, and then write the

samples to the available audio hardware (in this case, the FIFO buffer in the

Apple Sound Chip).

IMPORTANT

The Sound Manager itself converts both wave-table data and
square-wave data into sampled-sound data before sending the data
into a chain of sound components. As a result, sound components need
to be concerned only with sampled-sound data. ▲

C H A P T E R 5

Sound Components

About Sound Components 5-5

Figure 5-1 The component-based sound architecture

The components in a component chain may vary, depending both on the format of the

audio data sent to the Sound Manager by an application and on the capabilities of

the current sound output device. The chain shown in Figure 5-1 is necessary to handle

the compressed 11 kHz sound because the Apple Sound Chip can handle only 22 kHz

noncompressed sampled-sound data. Other sound output devices may be able to do

more processing internally, thereby reducing the amount of processing required by the

sound component chain. For instance, a DSP-based sound card might be capable of

converting sample rates itself. In that case, the Sound Manager would not install the rate

conversion component into the sound component chain. The resulting sound component

chain is shown in Figure 5-2.

Figure 5-2 A component chain for audio hardware that can convert sample rates

The principal function of a sound component is to transfer data from the source down

the chain of sound components while performing some specific modification on the data.

It does this by getting a block of data from its source component (the component that

immediately precedes it in the chain). The sound component then processes that data

and stores it in the component’s own private buffers. The next component can then get

that processed data, perform its own modifications, and pass the data to the next

component in the chain. Eventually, the audio data flows through the Apple Mixer

(described in the next section) to the sound output device component, which sends the

data to the current sound output device.

C H A P T E R 5

Sound Components

5-6 About Sound Components

Notice that only the sound output device component communicates directly with the

sound output hardware. This insulates all other sound components from having to know

anything about the current sound output device. Rather, those components (sometimes

called utility components) can simply operate on a stream of bytes.

The Sound Manager provides sound output device components for all sound output

devices built into Macintosh computers. It also provides utility components for many

typical kinds of audio data manipulation, including

■ sample rate conversion

■ audio data expansion

■ sample size conversion

■ format conversion (for example, converting offset binary data to two’s complement)

Currently, you can write sound output device components to handle communication

with your own sound output devices. You can also write utility components to handle

custom compression and expansion schemes. You cannot currently write any other kind

of utility component.

The Apple Mixer
As you’ve seen, most sound components take a single source of audio data and modify

it in some way, thereby producing a single output stream of audio data. There is one

special sound component, known as the Apple Mixer component (or, more briefly, the

Apple Mixer), that is able to handle more than one input data stream. Its function is

precisely to mix together all open channels of sound data into a single output stream,

as shown in Figure 5-3.

Figure 5-3 Mixing multiple channels of sound

C H A P T E R 5

Sound Components

About Sound Components 5-7

The Apple Mixer has a more general function also, namely to construct the sound

component chain required to process audio data from a given sound source into a format

that can be handled by a particular sound output device. The Apple Mixer always feeds

its output directly to the sound output device component, which sends the data to its

associated audio hardware. After creating the component chain, the Apple Mixer assigns

it a source ID, a 4-byte token that provides a unique reference to the component chain.

The Apple Mixer is actually created by the sound output device component, when that

component calls the Sound Manager’s OpenMixerSoundComponent function.

In addition to creating sound component chains and mixing their data, the Apple Mixer

can control the volume and stereo panning of a particular sound channel. Some sound

output devices might be able to provide these capabilities as well. Indeed, some sound

output devices might even be able to mix the data in multiple sound channels. In those

cases, the sound output device component can call the OpenMixerSoundComponent

function once for each sound source it wants to manage. The result is a separate instance

of the Apple Mixer for each sound source, as shown in Figure 5-4.

Figure 5-4 A sound output device component that can mix sound channels

The sound output device component can instruct each instance of the Apple Mixer to

pass all the sound data through unprocessed, thereby allowing the output device to

perform the necessary processing and mixing. In this case, the Apple Mixer consumes

virtually no processing time. The Apple Mixer must, however, still be present to set up

the sound component chain and to assign a source ID to each sound source.

The Data Stream
A sound component is a standalone code resource that performs some signal processing

function or communicates with a sound output device. All sound components have a

standard programming interface and local storage that allows them to be connected

C H A P T E R 5

Sound Components

5-8 Writing a Sound Component

together in series to perform a wide range of audio data processing tasks. As previously

indicated, all sound components (except for mixer components and some sound output

device components) accept a single stream of input data and produce a single stream of

output data.

The Sound Manager sends your sound component information about its input stream by

passing it the address of a sound component data record, defined by the

SoundComponentData data type.

typedef struct {

long flags; /*sound component flags*/

OSType format; /*data format*/

short numChannels; /*number of channels in data*/

short sampleSize; /*size of a sample*/

UnsignedFixed sampleRate; /*sample rate*/

long sampleCount; /*number of samples in buffer*/

Byte *buffer; /*location of data*/

long reserved; /*reserved*/

} SoundComponentData, *SoundComponentDataPtr;

The buffer field points to the buffer of input data. The other fields define the format of

that data. For example, the sample size and rate are passed in the sampleSize and

sampleRate fields, respectively. A utility component should modify the data in that

buffer and then write the processed data into an internal buffer. Then it should fill out

a sound component data record and pass its address back to the Sound Manager, which

will then pass it on to the next sound component in the chain. Eventually, the audio data

passes through all utility components in the chain, through the Apple Mixer and the

sound output device component, down to the audio hardware.

Writing a Sound Component

A sound component is a component that works with the Sound Manager to manipulate

audio data or to communicate with a sound output device. Because a sound component

is a component, it must be able to respond to standard selectors sent by the Component

Manager. In addition, a sound component must handle other selectors specific to sound

components. This section describes how to write a sound component.

Creating a Sound Component
A sound component is a component. It contains a number of resources, including icons,

strings, and the standard component resource (a resource of type 'thng') required of

any Component Manager component. In addition, a sound component must contain

code to handle required selectors passed to it by the Component Manager as well as

selectors specific to the sound component.

C H A P T E R 5

Sound Components

Writing a Sound Component 5-9

Note
For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This
section provides specific information about sound components. ◆

The component resource binds together all the relevant resources contained in a

component; its structure is defined by the ComponentResource data type.

struct ComponentResource {

ComponentDescription cd;

ResourceSpec component;

ResourceSpec componentName

ResourceSpec componentInfo;

ResourceSpec componentIcon;

};

The component field specifies the resource type and resource ID of the component’s

executable code. By convention, this field should be set to the value

kSoundComponentCodeType:

#define kSoundComponentCodeType 'sift' /*sound component code type*/

(You can, however, specify some other resource type if you wish.) The resource ID can be

any integer greater than or equal to 128. See the following section for further information

about this code resource. The ResourceSpec data type has this structure:

typedef struct {

OSType resType;

short resID;

} ResourceSpec;

The componentName field specifies the resource type and resource ID of the resource

that contains the component’s name. Usually the name is contained in a resource of type

'STR '. This string should be as short as possible.

The componentInfo field specifies the resource type and resource ID of the resource

that contains a description of the component. Usually the description is contained in a

resource of type 'STR '.

The componentIcon field specifies the resource type and resource ID of the resource

that contains an icon for the component. Usually the icon is contained in a resource of

type 'ICON'.

The cd field of the ComponentResource structure is a component description record,
which contains additional information about the component. A component description

record is defined by the ComponentDescription data type.

typedef struct {

OSType componentType;

OSType componentSubType;

C H A P T E R 5

Sound Components

5-10 Writing a Sound Component

OSType componentManufacturer;

unsigned long componentFlags;

unsigned long componentFlagsMask;

} ComponentDescription;

For sound components, the componentType field must be set to a value recognized

by the Sound Manager. Currently, there are five available component types for

sound components:

#define kSoundComponentType 'sift' /*utility component*/

#define kMixerType 'mixr' /*mixer component*/

#define kSoundHardwareType 'sdev' /*sound output device component*/

#define kSoundCompressor 'scom' /*compression component*/

#define kSoundDecompressor 'sdec' /*decompression component*/

In addition, the componentSubType field must be set to a value that indicates the type

of audio services your component provides. For example, the Apple-supplied sound

output device components have these subtypes:

#define kClassicSubType 'clas' /*Classic hardware*/

#define kASCSubType 'asc ' /*ASC device*/

#define kDSPSubType 'dsp ' /*DSP device*/

If you add your own sound output device component, you should define some other

subtype.

Note

Apple Computer, Inc., reserves for its own use all types and subtypes
composed solely of lowercase letters. ◆

You can assign any value you like to the componentManufacturer field; typically you

put the signature of your sound component in this field.

The componentFlags field of the component description for a sound component

contains bit flags that encode information about the component. You can use this field

to specify that the Component Manager should send your component the

kComponentRegisterSelect selector.

enum {

cmpWantsRegisterMessage = 1L<<31 /*send register request*/

};

This bit is most useful for sound output device components, which might need to test for

the presence of the appropriate hardware to determine whether to register with the

Component Manager. When your component gets the kComponentRegisterSelect

selector at system startup time, it should make sure that all the necessary hardware is

available. If it isn’t available, your component shouldn’t register. See “Registering and

Opening a Sound Component” beginning on page 5-16 for more information on opening

and registering your sound component.

C H A P T E R 5

Sound Components

Writing a Sound Component 5-11

You also use the componentFlags field of the component description to define the

characteristics of your component. For example, you can set a bit in that field to indicate

that your sound component can accept stereo sound data. See “Specifying Sound

Component Capabilities” on page 5-11 for more details on specifying the features of your

sound component.

You should set the componentFlagsMask field to 0.

Listing 5-1 shows, in Rez format, a component resource for a sample sound output

device component named SurfBoard.

Listing 5-1 Rez input for a component resource

#define kSurfBoardID 128

#define kSurfBoardSubType 'SURF'

resource 'thng' (kSurfBoardID, purgeable) {

'sdev', /*component type*/

kSurfBoardSubType, /*component subtype*/

'appl', /*component manufacturer*/

cmpWantsRegisterMessage, /*component flags*/

0, /*component flags mask*/

'sift', /*component code resource type*/

kSurfBoardID, /*component code resource ID*/

'STR ', /*component name resource type*/

kSurfBoardID, /*component name resource ID*/

'STR ', /*component info resource type*/

kSurfBoardID+1, /*component info resource ID*/

'ICON', /*component icon resource type*/

kSurfBoardID /*component icon resource ID*/

};

Your sound component is contained in a resource file. You can assign any type you wish

to be the file creator, but the type of the file must be 'thng'. If the sound component

contains a 'BNDL' resource, then the file’s bundle bit must be set.

Specifying Sound Component Capabilities
As mentioned in the previous section, the componentFlags field of a component

description for a sound component contains bit flags that encode information about the

component. The high-order 8 bits of that field are reserved for use by the Component

Manager. In those 8 bits, you can set the cmpWantsRegisterMessage bit to indicate

that the Component Manger should call your component during registration.

The low-order 24 bits of the componentFlags field of a component description are

used by the Sound Manager. You’ll set some of these bits to define the capabilities of

C H A P T E R 5

Sound Components

5-12 Writing a Sound Component

your sound component. You can use the following constants to set specific bits in the

componentFlags field.

#define k8BitRawIn (1 << 0) /*data flags*/

#define k8BitTwosIn (1 << 1)

#define k16BitIn (1 << 2)

#define kStereoIn (1 << 3)

#define k8BitRawOut (1 << 8)

#define k8BitTwosOut (1 << 9)

#define k16BitOut (1 << 10)

#define kStereoOut (1 << 11)

#define kReverse (1 << 16) /*action flags*/

#define kRateConvert (1 << 17)

#define kCreateSoundSource (1 << 18)

#define kHighQuality (1 << 22) /*performance flags*/

#define kRealTime (1 << 23)

These constants define four types of information about your sound component: the kind

of audio data it can accept as input, the kind of audio data it can produce as output, the

actions it can perform on the audio data it’s passed, and the performance of your sound

component. For example, a utility component that accepts only monaural 8-bit, offset

binary data as input and converts it to 16-bit two’s complement data might have the

value 0x00000801 (that is, k8BitRawIn | k16BitOut) in the componentFlags field.

The Sound Manager also defines a number of masks that you can use to select ranges of

bits within the componentFlags field. See “Sound Component Features Flags” on

page 5-26 for complete information on the defined bit constants and masks.

Dispatching to Sound Component-Defined Routines
As explained earlier, the code stored in the sound component should be contained in a

resource of type kSoundComponentCodeType. The Component Manager expects the

entry point in this resource to be a function with this format:

pascal ComponentResult MySurfDispatch (ComponentParameters *params,

SoundComponentGlobalsPtr globals);

The Component Manager calls your sound component by passing MySurfDispatch a

selector in the params->what field; MySurfDispatch must interpret the selector and

possibly dispatch to some other routine in the resource. Your sound component must be

able to handle the required selectors, defined by these constants:

#define kComponentOpenSelect -1

#define kComponentCloseSelect -2

#define kComponentCanDoSelect -3

#define kComponentVersionSelect -4

C H A P T E R 5

Sound Components

Writing a Sound Component 5-13

#define kComponentRegisterSelect -5

#define kComponentTargetSelect -6

#define kComponentUnregisterSelect -7

Note

For complete details on required component selectors, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. ◆

In addition, your sound component must be able to respond to component-specific

selectors. Some of these selectors must be handled by your component; if your

component doesn’t implement one of these selectors, it should return the

badComponentSelector result code. Other selectors should be delegated up the

component chain. This allows the Sound Manager to query a particular component

chain by passing a selector to the first component in the chain. If your component does

not implement a delegable selector, it should call the Component Manager routine

DelegateComponentCall to delegate the selector to its source component. If your

sound component does implement a particular delegable selector, it should perform the

operation associated with it. The Sound Manager defines a constant to designate the

delegable selectors.

/*first selector that can be delegated up the chain*/

#define kDelegatedSoundComponentSelectors 0x0100

The Sound Manager can pass these selectors to your sound component:

enum {

/*the following calls cannot be delegated*/

kSoundComponentInitOutputDeviceSelect = 1,

kSoundComponentSetSourceSelect,

kSoundComponentGetSourceSelect,

kSoundComponentGetSourceDataSelect,

kSoundComponentSetOutputSelect,

/*the following calls can be delegated*/

kSoundComponentAddSourceSelect = kDelegatedSoundComponentSelectors + 1,

kSoundComponentRemoveSourceSelect,

kSoundComponentGetInfoSelect,

kSoundComponentSetInfoSelect,

kSoundComponentStartSourceSelect,

kSoundComponentStopSourceSelect,

kSoundComponentPauseSourceSelect,

kSoundComponentPlaySourceBufferSelect

};

You can respond to these selectors by calling the Component Manager routine

CallComponentFunctionWithStorage or by delegating the selector to your

component’s source component. Listing 5-2 illustrates how to define a sound component

entry point routine.

C H A P T E R 5

Sound Components

5-14 Writing a Sound Component

Listing 5-2 Handling Component Manager selectors

pascal ComponentResult MySurfDispatch (ComponentParameters *params,

 SoundComponentGlobalsPtr globals)

{

ComponentRoutine myRoutine;

ComponentResult myResult;

/*Get address of component-defined routine.*/

myRoutine = MyGetComponentRoutine(params->what);

if (myRoutine == nil) /*selector not implemented*/

myResult = badComponentSelector;

else if (myRoutine == kDelegateCall) /*selector should be delegated*/

myResult = DelegateComponentCall(params, globals->sourceComponent);

else

myResult = CallComponentFunctionWithStorage((Handle) globals, params,

(ComponentRoutine) myRoutine);

return (myResult);

}

As you can see, the MySurfDispatch function defined in Listing 5-2 simply retrieves

the address of the appropriate component-defined routine, as determined by the

params->what field. If the routine MyGetComponentRoutine returns nil, then

MySurfDispatch itself returns the badComponentSelector result code. Otherwise,

if the selector should be delegated, MySurfDispatch calls DelegateComponentCall

to do so. Finally, if the selector hasn’t yet been handled, the appropriate

component-defined routine is executed via CallComponentFunctionWithStorage.

Listing 5-3 defines the function MyGetComponentRoutine.

Listing 5-3 Finding the address of a component-defined routine

ComponentRoutine MyGetComponentRoutine (short selector)

{

void *myRoutine;

if (selector < 0)

switch (selector) /*required component selectors*/

{

case kComponentRegisterSelect:

myRoutine = MyRegisterSoundComponent;

break;

case kComponentVersionSelect:

C H A P T E R 5

Sound Components

Writing a Sound Component 5-15

myRoutine = MySoundComponentVersion;

break;

case kComponentCanDoSelect:

myRoutine = MySoundComponentCanDo;

break;

case kComponentCloseSelect:

myRoutine = MyCloseSoundComponent;

break;

case kComponentOpenSelect:

myRoutine = MyOpenSoundComponent;

break;

default:

myRoutine = nil; /*unknown selector, so fail*/

break;

}

else if (selector < kDelegatedSoundComponentSelectors)

/*selectors that can't be delegated*/

switch (selector)

{

case kSoundComponentInitOutputDeviceSelect:

myRoutine = MySoundComponentInitOutputDevice;

break;

case kSoundComponentSetSourceSelect:

case kSoundComponentGetSourceSelect:

case kSoundComponentGetSourceDataSelect:

case kSoundComponentSetOutputSelect:

default:

myRoutine = nil; /*unknown selector, so fail*/

break;

}

else /*selectors that can be delegated*/

switch (selector)

{

case kSoundComponentStartSourceSelect:

myRoutine = MySoundComponentStartSource;

break;

case kSoundComponentPlaySourceBufferSelect:

myRoutine = MySoundComponentPlaySourceBuffer;

break;

case kSoundComponentGetInfoSelect:

myRoutine = MySoundComponentGetInfo;

break;

C H A P T E R 5

Sound Components

5-16 Writing a Sound Component

case kSoundComponentSetInfoSelect:

myRoutine = MySoundComponentSetInfo;

break;

case kSoundComponentAddSourceSelect:

case kSoundComponentRemoveSourceSelect:

case kSoundComponentStopSourceSelect:

case kSoundComponentPauseSourceSelect:

default:

myRoutine = kDelegateCall; /*delegate it*/

break;

}

return (myRoutine);

}

In all likelihood, your component is loaded into the system heap, although it might be

loaded into an application heap if memory is low in the system heap. You can call the

Component Manager function GetComponentInstanceA5 to determine the A5 value

of the current application. If this function returns 0, your component is in the system

heap; otherwise, your component is in an application’s heap. Its location might affect

how you allocate memory. For example, calling the MoveHHi routine on handles in the

system heap has no result. Thus, you should either call the ReserveMemSys routine

before calling NewHandleSys (so that the handle is allocated as low in the system heap

as possible) or else just allocate a nonrelocatable block by calling the NewPtrSys routine.

If you need to access resources that are stored in your sound component, you can use

OpenComponentResFile and CloseComponentResFile. OpenComponentResFile

requires the ComponentInstance parameter supplied to your routine. You should not

call Resource Manager routines such as OpenResFile or CloseResFile.

▲ W A R N I N G

Do not leave any resource files open when your sound component is
closed. Their maps will be left in the subheap when the subheap is freed,
causing the Resource Manager to crash. ▲

The following sections illustrate how to define some of the sound component functions.

Registering and Opening a Sound Component
The Component Manager sends your component the kComponentRegisterSelect

selector, usually at system startup time, to allow your component to determine whether

it wants to register itself with the Component Manager. Utility components should

always register themselves, so that the capabilities they provide will be available when

needed. Sound output device components, however, should first check to see whether

any necessary hardware is available before registering themselves. If the hardware they

drive isn’t available, there is no point in registering with the Component Manager.

C H A P T E R 5

Sound Components

Writing a Sound Component 5-17

The Component Manager sends your component the kComponentOpenSelect selector

whenever the Sound Manager wants to open a connection to your component. In

general, a sound output device component has only one connection made to it. A utility

component, however, might have several instances, if the capabilities it provides are

needed by more than one sound component chain. Your component should do as little as

possible when opening up. It should allocate whatever global storage it needs to manage

the connection and call SetComponentInstanceStorage so that the Component

Manager can remember the location of that storage and pass it to all other

component-defined routines.

As noted in the previous section, your component is probably loaded into the system

heap. If so, you should also allocate any global storage in the system heap. If memory

is tight, however, your component might be loaded into an application’s heap (namely,

the heap of the first application that plays sound). In that case, you should allocate any

global variables you need in that heap. The Sound Manager ensures that other

applications will not try to play sound while the component is in this application heap.

IMPORTANT

Your component is always sent the kComponentOpenSelect
component selector before it is sent the kComponentRegisterSelect
selector. As a result, you should not attempt to initialize or configure any
associated hardware in response to kComponentOpenSelect. ▲

The Sound Manager sends the kSoundComponentInitOutputDeviceSelect

selector specifically to allow a sound output device component to perform any

hardware-related operations. Your component should initialize the hardware to some

reasonable default values, create the Apple Mixer, and allocate any other memory that

might be needed. Listing 5-4 shows one way to respond to the

kSoundComponentInitOutputDeviceSelect selector.

Listing 5-4 Initializing an output device

static pascal ComponentResult MySoundComponentInitOutputDevice

(SoundComponentGlobalsPtr globals, long actions)

{

#pragma unused (actions)

ComponentResult myResult;

/*Make sure we got our globals.*/

if (globals->hwGlobals == nil)

return (notEnoughHardwareErr);

/*Set up the hardware.*/

myResult = MySetupHardware(globals);

if (myResult != noErr)

return (myResult);

C H A P T E R 5

Sound Components

5-18 Writing a Sound Component

/*Create an Apple Mixer.*/

myResult = OpenMixerSoundComponent(&globals->thisComp, 0,

 &globals->sourceComponent);

return (myResult);

}

The MySoundComponentInitOutputDevice function defined in Listing 5-4 simply

retrieves the location of its global variables, configures the hardware by calling the

MySetupHardware function, and then calls OpenMixerSoundComponent to create an

instance of the Apple Mixer.

Finding and Changing Component Capabilities
All sound components take a stream of input data and produce a (usually different)

stream of output data. The Sound Manager needs to know what operations your

component can perform, so that it knows what other sound components might need to

be linked together to play a particular sound on the available sound output device. It

calls your component’s SoundComponentGetInfo and SoundComponentSetInfo

functions to get and set information about the capabilities and current settings of your

sound component.

To specify the kind of information it wants to get or set, the Sound Manager passes your

component a sound component information selector. If your component does not

support a particular selector, if should pass the selector to the specified sound source.

If your component does support the selector, it should either return the desired

information directly or alter its settings as requested.

The sound component information selectors can specify any of a large number of audio

capabilities or component settings. For example, the selector siRateMultiplier is

passed to get or set the current output sample rate multiplier value.

Note

The Sound Manager uses many of the sound input device information
selectors defined by the Sound Input Manager for communicating with
sound input devices. See “Sound Input Manager” in this book for a
description of the sound input device information selectors. A complete
list of all sound component information selectors is provided in “Sound
Component Information Selectors” beginning on page 5-22. ◆

Your component’s SoundComponentGetInfo function has the following declaration:

pascal ComponentResult SoundComponentGetInfo (ComponentInstance ti,

SoundSource sourceID, OSType selector,

void *infoPtr);

The sound component information selector is passed in the selector parameter.

The sound source is identified by the source ID passed in the sourceID parameter.

C H A P T E R 5

Sound Components

Writing a Sound Component 5-19

The infoPtr parameter specifies the location in memory of the information returned

by SoundComponentGetInfo. If the information to be returned occupies four bytes

or fewer, you can simply return the information in the location pointed to by that

parameter. Otherwise, you should pass back in the infoPtr parameter a pointer to a

record of type SoundInfoList, which contains an integer and a handle to an array of

data items. In the second case, you’ll need to allocate memory to hold the information

you need to pass back. Listing 5-5 defines a component’s SoundComponentGetInfo

routine. It returns information to the Sound Manager about its capabilities and

current settings.

Listing 5-5 Getting sound component information

static pascal ComponentResult MySoundComponentGetInfo

(SoundComponentGlobalsPtr globals, SoundSource sourceID,

OSType selector, void *infoPtr)

{

HandleListPtr listPtr;

short *sp, i;

UnsignedFixed *lp;

Handle h;

HardwareGlobalsPtr hwGlobals = globals->hwGlobals;

ComponentResult result = noErr;

/*Make sure we got our global variables.*/

if (hwGlobals == nil)

return (notEnoughHardwareErr);

switch (selector)

{

case siSampleSize: /*return current sample size*/

*((short *) infoPtr) = hwGlobals->sampleSize;

break;

case siSampleSizeAvailable: /*return sample sizes available*/

h = NewHandle(sizeof(short) * kSampleSizesCount);

if (h == nil)

return (MemError());

listPtr = (HandleListPtr) infoPtr;

listPtr->count = 0; /*num. sample sizes in handle*/

listPtr->handle = h; /*handle to be returned*/

sp = (short *) *h; /*store sample sizes in handle*/

C H A P T E R 5

Sound Components

5-20 Writing a Sound Component

for (i = 0; i < kSampleSizesCount; ++i)

if (hwGlobals->sampleSizesActive[i])

{

listPtr->count++;

*sp++ = hwGlobals->sampleSizes[i];

}

break;

case siSampleRate: /*return current sample rate*/

*((Fixed *) infoPtr) = hwGlobals->sampleRate;

break;

case siSampleRateAvailable: /*return sample rates available*/

h = NewHandle(sizeof(UnsignedFixed) * kSampleRatesCount);

if (h == nil)

return (MemError());

listPtr = (HandleListPtr) infoPtr;

listPtr->count = 0; /*num. sample rates in handle*/

listPtr->handle = h; /*handle to be returned*/

lp = (UnsignedFixed *) *h;

/*If the hardware can support a range of sample rate values,

 the list count should be set to 0 and the minimum and maximum

 sample rate values should be stored in the handle.*/

if (hwGlobals->supportsRateRange)

{

*lp++ = hwGlobals->sampleRateMin;

*lp++ = hwGlobals->sampleRateMax;

}

/*If the hardware supports a limited set of sample rates,

 the list count should be set to the number of sample rates

 and this list of rates should be stored in the handle.*/

else

{

for (i = 0; i < kSampleRatesCount; ++i)

if (hwGlobals->sampleRatesActive[i])

{

listPtr->count++;

*lp++ = hwGlobals->sampleRates[i];

C H A P T E R 5

Sound Components

Writing a Sound Component 5-21

}

}

break;

case siNumberChannels: /*return current num. channels*/

*((short *) infoPtr) = hwGlobals->numChannels;

break;

case siChannelAvailable: /*return channels available*/

h = NewHandle(sizeof(short) * kChannelsCount);

if (h == nil)

return (MemError());

listPtr = (HandleListPtr) infoPtr;

listPtr->count = 0; /*num. channels in handle*/

listPtr->handle = h; /*handle to be returned*/

sp = (short *) *h; /*store channels in handle*/

for (i = 0; i < kChannelsCount; ++i)

if (hwGlobals->channelsActive[i])

{

listPtr->count++;

*sp++ = hwGlobals->channels[i];

}

break;

case siHardwareVolume:

*((long *)infoPtr) = hwGlobals->volume;

break;

/*If you do not handle a selector, delegate it up the chain.*/

default:

result = SoundComponentGetInfo(globals->sourceComponent, sourceID,

selector, infoPtr);

break;

}

return (result);

}

You can define your MySoundComponentSetInfo routine in an exactly similar fashion.

C H A P T E R 5

Sound Components

5-22 Sound Components Reference

Sound Components Reference

This section describes the constants, data structures, and routines you can use to write a

sound component. It also describes the routines that your sound component should call

in response to a sound component selector. See “Writing a Sound Component” on

page 5-8 for information on creating a component that contains these component-defined

routines.

Constants

This section provides details on the constants defined by the Sound Manager for use

with sound components. You’ll use these constants to

■ determine the kind of information the Sound Manager wants your sound component
to return to it or settings it wants your sound component to change

■ define the format of the audio data your sound component is currently producing

■ specify the action flags for the SoundComponentPlaySourceBuffer function

■ specify the format of the data your sound output device component expects to receive

Sound Component Information Selectors

The Sound Manager calls your sound component’s SoundComponentGetInfo and

SoundComponentSetInfo functions to determine the capabilities of your component

and to change those capabilities. It passes those functions a sound component

information selector in the function’s selector parameter to specify the type of

information it wants to get or set. The available sound component information selectors

are defined by constants.

Note

Most of these selectors can be passed to both
SoundComponentGetInfo and SoundComponentSetInfo.
Some of them, however, can be sent to only one or the other. ◆

#define siChannelAvailable 'chav' /*number of channels available*/

#define siCompressionAvailable 'cmav' /*compression types available*/

#define siCompressionFactor 'cmfa' /*current compression factor*/

#define siCompressionType 'comp' /*current compression type*/

#define siHardwareMute 'hmut' /*current hardware mute state*/

#define siHardwareVolume 'hvol' /*current hardware volume*/

#define siHardwareVolumeSteps 'hstp' /*number of hardware volume steps*/

#define siHeadphoneMute 'pmut' /*current headphone mute state*/

#define siHeadphoneVolume 'pvol' /*current headphone volume*/

C H A P T E R 5

Sound Components

Sound Components Reference 5-23

#define siHeadphoneVolumeSteps 'hdst' /*num. of headphone volume steps*/

#define siNumberChannels 'chan' /*current number of channels*/

#define siQuality 'qual' /*current quality*/

#define siRateMultiplier 'rmul' /*current rate multiplier*/

#define siSampleRate 'srat' /*current sample rate*/

#define siSampleRateAvailable 'srav' /*sample rates available*/

#define siSampleSize 'ssiz' /*current sample size*/

#define siSampleSizeAvailable 'ssav' /*sample sizes available*/

#define siSpeakerMute 'smut' /*current speaker mute*/

#define siSpeakerVolume 'svol' /*current speaker volume*/

#define siVolume 'volu' /*current volume setting*/

Constant descriptions

siChannelAvailable
Get the maximum number of channels this sound component can
manage, as well as the channels themselves. The infoPtr
parameter points to a record of type SoundInfoList, which
contains an integer (the number of available channels) and a
handle to an array of integers (which represent the channel
numbers themselves).

siCompressionAvailable
Get the number and list of compression types this sound
component can manage. The infoPtr parameter points to a
record of type SoundInfoList, which contains the number of
compression types, followed by a handle that references a list
of compression types, each of type OSType.

siCompressionFactor
Get information about the current compression type. The
infoData parameter points to a compression information record
(see page 5-32).

siCompressionType
Get or set the current compression type. The infoPtr parameter
points to a buffer of type OSType, which is the compression type.

siHardwareMute
Get or set the current mute state of the audio hardware. A value of 0
indicates that the hardware is not muted, and a value of 1 indicates
that the hardware is muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated hardware can be muted.

siHardwareVolume
Get or set the current volume level of all sounds produced on the
sound output device. The infoPtr parameter points to a long
integer, where the high-order word represents the right volume
level and the low-order word represents the left volume level. A
volume level is specified by an unsigned 16-bit number: 0x0000
represents silence and 0x0100 represents full volume. (You can use
the constant kFullVolume for full volume.) You can specify values

C H A P T E R 5

Sound Components

5-24 Sound Components Reference

larger than 0x0100 to overdrive the volume, although doing so
might result in clipping. This selector applies to the volume of
the output device, whereas the siVolume selector applies to the
volume of a specific sound channel and its component chain. If
a sound output device supports more than one output port (for
example, both headphones and speakers), the siHardwareVolume
selector applies to all those ports.

siHardwareVolumeSteps
Get the number of audible volume levels supported by the audio
hardware. If the device supports a range of volume levels (for
example, 0x000 to 0x1000), you should return only the number of
levels that are audible. The Sound Manager uses this information
to handle the volume slider in the Alert Sounds control panel.

siHeadphoneMute
Get or set the current mute state of the headphone. A value of 0
indicates that the headphone is not muted, and a value of 1
indicates that the headphone is muted. Not all sound components
need to support this selector; it’s intended for sound output device
components whose associated headphone can be muted.

siHeadphoneVolume
Get or set the current volume level of all sounds produced on the
headphone. The infoPtr parameter points to a long integer, where
the high-order word represents the right volume level and the
low-order word represents the left volume level. A volume level is
specified by an unsigned 16-bit number: 0x0000 represents silence
and 0x0100 represents full volume. (You can use the constant
kFullVolume for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the headphones.

siHeadphoneVolumeSteps
Get the number of audible volume levels supported by the
headphones. If the headphones support a range of volume levels
(for example, 0x000 to 0x1000), you should return only the number
of levels that are audible.

siNumberChannels
Get or set the current number of audio channels currently being
managed by the sound component. The infoPtr parameter points
to an integer, which is the number of channels. For example, for
stereo sounds, this integer should be 2.

siQuality Get or set the current quality setting for the sound component.
The infoPtr parameter points to a 32-bit value, which typically
determines how much processing should be applied to the audio
data stream.

siRateMultiplier
Get or set the current rate multiplier for the sound component. The
infoPtr parameter points to a buffer of type UnsignedFixed,
which is the multiplier to be applied to the playback rate of the
sound, independent of the base sample rate of the sound. For
example, if the current rate multiplier is 2.0, the sound is played

C H A P T E R 5

Sound Components

Sound Components Reference 5-25

back at twice the speed specified in the sampleRate field of the
sound component data record.

siSampleRate Get or set the current sample rate of the data being output by the
sound component. The infoPtr parameter points to a buffer of
type UnsignedFixed, which is the sample rate.

siSampleRateAvailable
Get the range of sample rates this sound component can handle.
The infoPtr parameter points to a record of type
SoundInfoList, which is the number of sample rates the
component supports, followed by a handle to a list of sample rates,
each of type UnsignedFixed. The sample rates can be in the range
0 to 65535.65535. If the number of sample rates is 0, then the first
two sample rates in the list define the lowest and highest values in
a continuous range of sample rates.

siSampleSize Get or set the current sample size of the audio data being output by
the sound component. The infoPtr parameter points to an integer,
which is the sample size in bits.

siSampleSizeAvailable
Get the range of sample sizes this sound component can handle.
The infoPtr parameter points to a record of type
SoundInfoList, which is the number of sample sizes the sound
component supports, followed by a handle. The handle references
a list of sample sizes, each of type Integer. Sample sizes are
specified in bits.

siSpeakerMute
Get or set the current mute state of the speakers. A value of 0
indicates that the speakers are not muted, and a value of 1 indicates
that the speakers are muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated speakers can be muted.

siSpeakerVolume
Get or set the current volume level of all sounds produced on the
speakers. The infoPtr parameter points to a long integer, where
the high-order word represents the right volume level and the
low-order word represents the left volume level. A volume level is
specified by an unsigned 16-bit number: 0x0000 represents silence
and 0x0100 represents full volume. (You can use the constant
kFullVolume for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the speakers.

siVolume Get or set the current volume level of the sound component. The
infoPtr parameter points to a long integer, where the high-order
word represents the right volume level and the low-order word
represents the left volume level. A volume level is specified by an
unsigned 16-bit number: 0x0000 represents silence and 0x0100
represents full volume. (You can use the constant kFullVolume for
full volume.) You can specify values larger than 0x0100 to overdrive
the volume, although doing so might result in clipping. This
selector applies to the volume of a specific sound channel and its

C H A P T E R 5

Sound Components

5-26 Sound Components Reference

component chain, while the siHardwareVolume selector applies
to the volume of the output device.

Audio Data Types

You can use the following constants to define the format of the audio data your sound

component is currently producing. You can also define additional data types to denote

your own compression schemes. You pass these constants in the format field of a sound

component data record.

#define kOffsetBinary 'raw '

#define kTwosComplement 'twos'

#define kMACE3Compression 'MAC3'

#define kMACE6Compression 'MAC6'

Constant descriptions

kOffsetBinary The data is noncompressed samples in offset binary format (that is,
values range from 0 to 255).

kTwosComplement
The data is noncompressed samples in two’s complement format
(that is, values range from –128 to 128).

kMACE3Compression
The data is compressed using MACE 3:1 compression.

kMACE6Compression
The data is compressed using MACE 6:1 compression.

Sound Component Features Flags

You can use the following constants to define features of your sound component. You

use some combination of these constants to set bits in the componentFlags field of a

component description record, which is contained in a 'thng' resource. These bits

represent the kind of data your component can receive as input, the kind of data your

component can produce as output, the operations your component can perform, and the

performance of your component.

#define k8BitRawIn (1 << 0) /*data flags*/

#define k8BitTwosIn (1 << 1)

#define k16BitIn (1 << 2)

#define kStereoIn (1 << 3)

#define k8BitRawOut (1 << 8)

#define k8BitTwosOut (1 << 9)

#define k16BitOut (1 << 10)

#define kStereoOut (1 << 11)

#define kReverse (1 << 16) /*action flags*/

#define kRateConvert (1 << 17)

C H A P T E R 5

Sound Components

Sound Components Reference 5-27

#define kCreateSoundSource (1 << 18)

#define kHighQuality (1 << 22) /*performance flags*/

#define kRealTime (1 << 23)

Constant descriptions

k8BitRawIn The component can accept 8 bit offset binary data as input.

k8BitTwosIn The component can accept 8 bit two’s complement data as input.

k16BitIn The component can accept 16 bit data as input. 16 bit data is always
in two’s complement format.

kStereoIn The component can accept stereo data as input.

k8BitRawOut The component can produce 8 bit offset binary data as output.

k8BitTwosOut The component can produce 8 bit two’s complement data as output.

k16BitOut The component can produce 16 bit data as output. 16 bit data is
always in two’s complement format.

kStereoOut The component can produce stereo data as output.

kReverse The component can accept reversed audio data.

kRateConvert The component can convert sample rates.

kCreateSoundSource
The component can create sound sources.

kHighQuality The component can produce high quality output.

kRealTime The component can operate in real time.

Action Flags

You can use constants to specify the action flags in the actions parameter of the

SoundComponentPlaySourceBuffer function. See page 5-49 for information about

this function.

#define kSourcePaused (1 << 0)

#define kPassThrough (1 << 16)

#define kNoSoundComponentChain (1 << 17)

Constant descriptions

kSourcePaused If this bit is set, the component chain is configured to play the
specified sound but the playback is initially paused. In this case,
your SoundComponentStartSource function must be called to
begin playback. If this bit is clear, the playback begins immediately
once the component chain is set up and configured.

kPassThrough If this bit is set, the Sound Manager passes all data through to the
sound output device component unmodified. A sound output
device component that can handle any sample rate and sound
format described in a sound parameter block should set this bit.

kNoSoundComponentChain
If this bit is set, the Sound Manager does not construct a component
chain for processing the sound data.

C H A P T E R 5

Sound Components

5-28 Sound Components Reference

Data Format Flags

You can use constants to set or clear flag bits in the outputFlags parameter passed to

the OpenMixerSoundComponent routine. These flags specify the format of the data

your sound output device component expects to receive. See page 5-33 for information

about the OpenMixerSoundComponent function.

IMPORTANT

Most of these flags are ignored unless the kNoMixing flag is set,
because a sound output device component cannot perform data
modifications such as sample rate conversion or sample size conversion
unless it is also able to mix sound sources. ▲

#define kNoMixing (1 << 0) /*don't mix sources*/

#define kNoSampleRateConversion (1 << 1) /*don't convert sample rate*/

#define kNoSampleSizeConversion (1 << 2) /*don't convert sample size*/

#define kNoSampleFormatConversion \

(1 << 3) /*don't convert sample format*/

#define kNoChannelConversion (1 << 4) /*don't convert stereo/mono*/

#define kNoDecompression (1 << 5) /*don't decompress*/

#define kNoVolumeConversion (1 << 6) /*don't apply volume*/

#define kNoRealtimeProcessing (1 << 7) /*don't run at interrupt time*/

Constant descriptions

kNoMixing If this bit is set, the Apple Mixer does not mix audio data sources.

kNoSampleRateConversion
If this bit is set, the sound component chain does not perform
sample rate conversion (for example, converting 11 kHz data to
22 kHz data).

kNoSampleSizeConversion
If this bit is set, the sound component chain does not perform
sample size conversion (for example, converting 8-bit data to
16-bit data).

kNoSampleFormatConversion
If this bit is set, the sound component chain does not convert
between sample formats (for example, converting from two’s
complement data to offset binary data). Most sound output devices
on Macintosh computers accept only 8-bit offset binary data, which
is therefore the default type of data produced by the Apple Mixer.
If your output device can handle either offset binary or two’s
complement data, you should set this flag. Note that 16-bit data
is always in two’s complement format.

kNoChannelConversion
If this bit is set, the sound component chain does not convert
channels (for example, converting monophonic channels to stereo
or stereo channels to monophonic).

kNoDecompression
If this bit is set, the sound component chain does not decompress

C H A P T E R 5

Sound Components

Sound Components Reference 5-29

audio data. If your output device can decompress data, you should
set this flag.

kNoVolumeConversion
If this bit is set, the sound component chain does not convert
volumes.

kNoRealtimeProcessing
If this bit is set, the sound component chain does not do any
processing at interrupt time.

Data Structures

This section describes the data structures you need to use when writing a sound

component.

Sound Component Data Records

The flow of data from one sound component to another is managed using a sound

component data record. This record indicates to other sound components the format of

the data that a particular component is generating, together with the location and length

of the buffer containing that data. This allows other sound components to access data

from that component as needed. A sound component data record is defined by the

SoundComponentData data type.

typedef struct {

long flags; /*sound component flags*/

OSType format; /*data format*/

short numChannels; /*number of channels in data*/

short sampleSize; /*size of a sample*/

UnsignedFixed sampleRate; /*sample rate*/

long sampleCount; /*number of samples in buffer*/

Byte *buffer; /*location of data*/

long reserved; /*reserved*/

} SoundComponentData, *SoundComponentDataPtr;

Field descriptions

flags A set of bit flags whose meanings are specific to a particular sound
component.

format The format of the data a sound component is producing. The
following formats are defined by Apple:

#define kOffsetBinary 'raw '

#define kTwosComplement 'twos'

#define kMACE3Compression 'MAC3'

#define kMACE6Compression 'MAC6'

C H A P T E R 5

Sound Components

5-30 Sound Components Reference

See “Audio Data Types” on page 5-26 for a description of these
formats. You can define additional format types, which are
currently assumed to be the types of proprietary compression
algorithms.

numChannels The number of channels of sound in the output data stream. If this
field contains the value 1, the data is monophonic. If this field
contains 2, the data is stereophonic. Stereo data is stored as
interleaved samples, in a left-to-right ordering.

sampleSize The size, in bits, of each sample in the output data stream. Typically
this field contains the values 8 or 16. For compressed sound data,
this field indicates the size of the samples after the data has been
expanded.

sampleRate The sample rate for the audio data. The sample rate is expressed as
an unsigned, fixed-point number in the range 0 to 65536.0 samples
per second.

sampleCount The number of samples in the buffer pointed to by the buffer
field. For compressed sounds, this field indicates the number of
compressed samples in the sound, not the size of the buffer.

buffer The location of the buffer that contains the sound data.

reserved Reserved for future use. You should set this field to 0.

Sound Parameter Blocks

The Sound Manager passes a component’s SoundComponentPlaySourceBuffer

function a sound parameter block that describes the source data to be modified or sent

to a sound output device. A sound parameter block is defined by the

SoundParamBlock data type.

struct SoundParamBlock {

long recordSize; /*size of this record in bytes*/

SoundComponentData desc; /*description of sound buffer*/

Fixed rateMultiplier;/*rate multiplier*/

short leftVolume; /*volume on left channel*/

short rightVolume; /*volume on right channel*/

long quality; /*quality*/

ComponentInstance filter; /*filter*/

SoundParamProcPtr moreRtn; /*routine to call to get more data*/

SoundParamProcPtr completionRtn; /*buffer complete routine*/

long refCon; /*user refcon*/

short result; /*result*/

};

typedef struct SoundParamBlock SoundParamBlock;

typedef SoundParamBlock *SoundParamBlockPtr;

Field descriptions

recordSize The length, in bytes, of the sound parameter block.

C H A P T E R 5

Sound Components

Sound Components Reference 5-31

desc A sound component data record that describes the format, size, and
location of the sound data. See “Sound Component Data Records”
on page 5-29 for a description of the sound component data record.

rateMultiplier
A multiplier to be applied to the playback rate of the sound. This
field contains an unsigned fixed-point number. If, for example, this
field has the value 2.0, the sound is played back at twice the rate
specified in the sampleRate field of the sound component data
record contained in the desc field.

leftVolume The playback volume for the left channel. You specify a volume
with 16-bit value, where 0 (hexadecimal 0x0000) represents no
volume and 256 (hexadecimal 0x0100) represents full volume. You
can overdrive a channel’s volume by passing volume levels greater
than 0x0100.

rightVolume The playback volume for the right channel. You specify a volume
with 16-bit value, where 0 (hexadecimal 0x0000) represents no
volume and 256 (hexadecimal 0x0100) represents full volume. You
can overdrive a channel’s volume by passing volume levels greater
than 0x0100.

quality The level of quality for the sound. This value usually determines
how much processing should be applied during audio data
processing (such as rate conversion and decompression) to increase
the output quality of the sound.

filter Reserved for future use. You should set this field to nil.

moreRtn A pointer to a callback routine that is called to retrieve another
buffer of audio data. This field is used internally by the Sound
Manager.

completionRtn A pointer to a callback routine that is called when the sound has
finished playing. This field is used internally by the Sound Manager.

refCon A value that is to be passed to the callback routines specified in the
moreRtn and completionRtn fields. You can use this field to pass
information (for example, the address of a structure) to a callback
routine.

result The status of the sound that is playing. The value 1 indicates that
the sound is currently playing. The value 0 indicates that the sound
has finished playing. Any negative value indicates that some error
has occurred.

Sound Information Lists

The SoundComponentGetInfo and SoundComponentSetInfo functions access

information about a sound component using a sound information list, which is defined

by the SoundInfoList data type.

C H A P T E R 5

Sound Components

5-32 Sound Components Reference

typedef struct {

short count;

Handle handle;

} SoundInfoList, *SoundInfoListPtr;

Field descriptions

count The number of elements in the array referenced by the handle field.

handle A handle to an array of data elements. The type of these data
elements depends on the kind of information requested, which
is determined by the selector parameter passed to
SoundComponentGetInfo or SoundComponentSetInfo. See
“Sound Component Information Selectors” beginning on page 5-22
for information about the available information selectors.

Compression Information Records

When the Sound Manager calls your SoundComponentGetInfo routine with the

siCompressionFactor selector, you need to return a pointer to a compression
information record, which is defined by the CompressionInfo data type.

typedef struct {

long recordSize;

OSType format;

short compressionID;

short samplesPerPacket;

short bytesPerPacket;

short bytesPerFrame;

short bytesPerSample;

short futureUse1;

} CompressionInfo, *CompressionInfoPtr, **CompressionInfoHandle;

Field descriptions

recordSize The size of this compression information record.

format The compression format.

compressionID The compression ID.

samplesPerPacket
The number of samples in each packet.

bytesPerPacket
The number of bytes in each packet.

bytesPerFrame
The number of bytes in each frame.

bytesPerSample
The number of bytes in each sample.

futureUse1 Reserved for use by Apple Computer, Inc. You should set this
field to 0.

C H A P T E R 5

Sound Components

Sound Components Reference 5-33

Sound Manager Utilities

This section describes several utility routines provided by the Sound Manager that are

intended for use only by sound components. You can use these routines to

■ open and close the Apple Mixer component

■ save and restore a user’s preference settings for a sound component

Note

For a description of the routines that a sound component must
implement, see “Sound Component-Defined Routines” on page 5-36. ◆

Opening and Closing the Apple Mixer Component

A sound output device component needs to open and close one or more instances of the

Apple Mixer component.

OpenMixerSoundComponent

A sound output device component can use the OpenMixerSoundComponent function

to open and connect itself to the Apple Mixer component.

pascal OSErr OpenMixerSoundComponent

(SoundComponentDataPtr outputDescription,

long outputFlags,

ComponentInstance *mixerComponent);

outputDescription
A description of the data format your sound output device is expecting to
receive.

outputFlags
A set of 32 bit flags that provide additional information about the data
format your output device is expecting to receive. See “Data Format
Flags” beginning on page 5-28 for a description of the constants you
can use to select bits in this parameter.

mixerComponent
The component instance of the Apple Mixer component. You need
this instance to call the SoundComponentGetSourceData and
CloseMixerSoundComponent functions.

DESCRIPTION

The OpenMixerSoundComponent function opens the standard Apple Mixer

component and creates a connection between your sound output device component

and the Apple Mixer. If your output device can perform specific operations on the

C H A P T E R 5

Sound Components

5-34 Sound Components Reference

stream of audio data, such as channel mixing and rate conversion, it should call

OpenMixerSoundComponent as many times as are necessary to create a unique

component chain for each sound source. If, on the other hand, your output device does

not perform channel mixing, it should call OpenMixerSoundComponent only once,

from its SoundComponentInitOutputDevice function. This opens a single instance

of the Apple Mixer component, which in turn manages all the available sound sources.

Your component specifies the format of the data it can handle by filling in a sound

component data record and passing its address in the outputDescription parameter.

The sound component data record specifies the data format as well as the sample rate

and sample size expected by the output device component. If these specifications are

sufficient to determine the kind of data your component can handle, you should pass

the value 0 in the outputFlags parameter. Otherwise, you can set flags in the

outputFlags parameter to select certain kinds of input data. For example, you can set

the kNoChannelConversion flag to prevent the component chain from converting

monophonic sound to stereo sound, or stereo sound to monophonic sound. See “Data

Format Flags” beginning on page 5-28 for a description of the constants you can use to

select bits in the outputFlags parameter.

SPECIAL CONSIDERATIONS

The OpenMixerSoundComponent function is available only in versions 3.0 and later of

the Sound Manager. It should be called only by sound output device components.

CloseMixerSoundComponent

A sound output device component can use the CloseMixerSoundComponent function

to close the Apple Mixer.

pascal OSErr CloseMixerSoundComponent (ComponentInstance ci);

ci The component instance of the Apple Mixer component.

DESCRIPTION

The CloseMixerSoundComponent function closes the Apple Mixer component

instance specified by the ci parameter. Your output device component should call

this function when it is being closed.

SPECIAL CONSIDERATIONS

The CloseMixerSoundComponent function is available only in versions 3.0 and later

of the Sound Manager. It should be called only by sound output device components.

C H A P T E R 5

Sound Components

Sound Components Reference 5-35

RESULT CODES

Saving and Restoring Sound Component Preferences

A sound component can use the SetSoundPreference and GetSoundPreference

functions to save and restore a user’s preference settings.

SetSoundPreference

A sound component can use the SetSoundPreference function to have the Sound

Manager store a block of preferences data in a resource file. You’re most likely to use

this function in a sound output device component, although other types of sound

components can use it also.

pascal OSErr SetSoundPreference (OSType type, Str255 name,

Handle settings);

type The resource type to be used to create the preferences resource.

name The resource name to be used to create the preferences resource.

settings A handle to the data to be stored in the preferences resource.

DESCRIPTION

The SetSoundPreference function causes the Sound Manager to attempt to create

a new resource that contains preferences data for your sound component. You can use

this function to maintain a structure of any format across subsequent startups of the

machine. You’ll retrieve the preferences data by calling the GetSoundPreference

function. The data is stored in a resource with the specified type and name in a resource

file in the Preferences folder in the System Folder. In general, the resource type and name

should be the same as the sound component subtype and name.

The settings parameter is a handle to the preferences data you want to store. It is the

responsibility of your component to allocate and initialize the block of data referenced

by that handle. The Sound Manager copies the handle’s data into a resource in the

appropriate location. Your sound component should dispose of the handle when

SetSoundPreference returns.

The format of the block of preferences data referenced by the settings parameter

is defined by your sound component. It is recommended that you include a field

specifying the version of the data format; this allows you to modify the format of the

block of data while remaining compatible with previous formats you might have defined.

noErr 0 No error
invalidComponentID –3000 Invalid component ID

C H A P T E R 5

Sound Components

5-36 Sound Components Reference

SPECIAL CONSIDERATIONS

The SetSoundPreference function is available only in versions 3.0 and later of the

Sound Manager.

GetSoundPreference

A sound component can use the GetSoundPreference function to have the Sound

Manager read a block of preferences data from a resource file. You’ll use it to retrieve a

block of preferences data you previously saved by calling SetSoundPreference.

pascal OSErr GetSoundPreference (OSType type, Str255 name,

Handle settings);

type The resource type of the preferences resource.

name The resource name of the preferences resource.

settings A handle to the data in the preferences resource.

DESCRIPTION

The GetSoundPreference function retrieves the block of preferences data you

previously stored in a resource by calling the SetSoundPreference function. It is

the responsibility of your component to allocate the block of data referenced by the

settings handle. The Sound Manager resizes the handle (if necessary) and fills it with

data from the resource with the specified type and name. Your sound component should

dispose of the handle once it’s finished reading the data from it. You can determine the

size of the handle returned by the Sound Manager by calling the Memory Manager’s

GetHandleSize function.

SPECIAL CONSIDERATIONS

The GetSoundPreference function is available only in versions 3.0 and later of the

Sound Manager.

Sound Component-Defined Routines

This section describes the routines you need to define in order to write a sound

component. You need to write routines to

■ load, configure, and unload your sound component

■ add and remove audio sources

■ read and set component settings

■ control and process audio data

C H A P T E R 5

Sound Components

Sound Components Reference 5-37

Some of these routines are optional for some types of sound components. All routines

return result codes. If they succeed, they should return noErr. To simplify dispatching,

the Component Manager requires these routines to return a value of type

ComponentResult.

See “Writing a Sound Component” beginning on page 5-8 for a description of how

you call these routines from within a sound component. See “Sound Manager Utilities”

beginning on page 5-33 for a description of some Sound Manager utility routines you

can use in a sound component.

Managing Sound Components

To write a sound component, you might need to define routines that manage the

loading, configuration, and unloading of your sound component:

■ SoundComponentInitOutputDevice

■ SoundComponentSetSource

■ SoundComponentGetSource

■ SoundComponentGetSourceData

■ SoundComponentSetOutput

After the Sound Manager opens your sound component, it attempts to add your sound

component to a sound component chain. Thereafter, the Sound Manager calls your

component’s SoundComponentInitOutputDevice function to give you an

opportunity to set default values for any associated hardware and to perform any

hardware-specific operations.

SoundComponentInitOutputDevice

A sound output device component must implement the

SoundComponentInitOutputDevice function. The Sound Manager calls this

function to allow a sound output device component to configure any associated

hardware devices.

pascal ComponentResult SoundComponentInitOutputDevice

(ComponentInstance ti, long actions);

ti A component instance that identifies your sound component.

actions A set of flags. This parameter is currently unused.

DESCRIPTION

Your SoundComponentInitOutputDevice function is called by the Sound Manager

at noninterrupt time to allow your sound output device component to perform any

hardware-specific initialization. You should perform any necessary initialization that

C H A P T E R 5

Sound Components

5-38 Sound Components Reference

was not already performed in your OpenComponent function. Note that your

OpenComponent function cannot assume that the appropriate hardware is available. As

a result, the Sound Manager calls your SoundComponentInitOutputDevice function

when it is safe to communicate with your audio hardware. You can call the

OpenMixerSoundComponent function to create a single sound component chain.

SPECIAL CONSIDERATIONS

Your SoundComponentInitOutputDevice function is always called at noninterrupt

time. All other component-defined routines might be called at interrupt time.

Accordingly, your SoundComponentInitOutputDevice function should handle any

remaining memory allocation needed by your component and it should lock down

any relocatable blocks your component will access.

RESULT CODES

Your SoundComponentInitOutputDevice function should return noErr if

successful or an appropriate result code otherwise.

SEE ALSO

See Listing 5-4 on page 5-17 for a sample SoundComponentInitOutputDevice

function.

SoundComponentSetSource

A sound component can implement the SoundComponentSetSource function. The

Sound Manager calls this function to identify your component’s source component.

pascal ComponentResult SoundComponentSetSource

(ComponentInstance ti,

SoundSource sourceID,

ComponentInstance source);

ti A component instance that identifies your sound component.

sourceID A source ID for the source component chain created by the Apple Mixer.

source A component instance that identifies your source component.

DESCRIPTION

Your SoundComponentSetSource function is called by the Sound Manager to identify

to your sound component the sound component that is its source. The source component

is identified by the source parameter. Your component uses that information when it

C H A P T E R 5

Sound Components

Sound Components Reference 5-39

needs to obtain more data from its source (usually, by calling its

SoundComponentGetSourceData function).

Because a sound output device component is always connected directly to one or

more instances of the Apple Mixer, the SoundComponentSetSource function needs

to be implemented only by utility components (that is, components that perform

modifications on sound data). Utility components are linked together into a chain of

sound components, each link of which has only one input source. As a result, a utility

component can usually ignore the sourceID parameter passed to it.

RESULT CODES

Your SoundComponentSetSource function should return noErr if successful or an

appropriate result code otherwise.

SoundComponentGetSource

A sound component can implement the SoundComponentGetSource function. The

Sound Manager calls this function to determine your component’s source component.

pascal ComponentResult SoundComponentGetSource

(ComponentInstance ti,

SoundSource sourceID,

ComponentInstance *source);

ti A component instance that identifies your sound component.

sourceID A source ID for the source component chain created by the Apple Mixer.

source A component instance that identifies your source component.

DESCRIPTION

Your SoundComponentGetSource function is called by the Sound Manager to retrieve

your component’s source component instance. Your component should return, in the

source parameter, the component instance of your component’s source. This should be

the source component instance your component was passed when the Sound Manager

called your SoundComponentSetSource function.

In general, all sound components have sources, except for the source at the beginning

of the source component chain. In the unlikely event that your component does not have

a source, you should return nil in the source parameter. A sound output device

component is always connected directly to an instance of the Apple Mixer. Accordingly,

a sound output device component should return a component instance of the Apple

Mixer in the source parameter and a source ID in the sourceID parameter. A utility

component can ignore the sourceID parameter.

C H A P T E R 5

Sound Components

5-40 Sound Components Reference

RESULT CODES

Your SoundComponentGetSource function should return noErr if successful or an

appropriate result code otherwise.

SoundComponentGetSourceData

A utility component must implement the SoundComponentGetSourceData function.

A sound output device component calls this function on its source component when it

needs more data.

pascal ComponentResult SoundComponentGetSourceData

(ComponentInstance ti,

SoundComponentDataPtr *sourceData);

ti A component instance that identifies your sound component.

sourceData
On output, a pointer to a sound component data record that specifies the
type and location of the data your component has processed.

DESCRIPTION

Your SoundComponentGetSourceData function is called when the sound component

immediately following your sound component in the sound component chain needs

more data. Your function should generate a new block of audio data, fill out a sound

component data record describing the format and location of that data, and then return

the address of that record in the sourceData parameter.

Your SoundComponentGetSourceData function might itself need to get more data

from its source component. To do this, call through to the source component’s

SoundComponentGetSourceData function. If your component cannot generate any

more data, it should set the sampleCount field of the sound component data record

to 0 and return noErr.

IMPORTANT

Sound output device components do not need to implement this
function, but all utility components must implement it. ▲

RESULT CODES

Your SoundComponentGetSourceData function should return noErr if successful or

an appropriate result code otherwise.

C H A P T E R 5

Sound Components

Sound Components Reference 5-41

SoundComponentSetOutput

A sound output device component can call the SoundComponentSetOutput function

of the Apple Mixer to indicate the type of data it expects to receive.

pascal ComponentResult SoundComponentSetOutput

(ComponentInstance ti,

SoundComponentDataPtr requested,

SoundComponentDataPtr *actual);

ti A component instance that identifies your sound component.

requested
A pointer to a sound component data record that specifies the type of the
data your component expects to receive.

actual
This parameter is currently unused.

DESCRIPTION

The Apple Mixer’s SoundComponentSetOutput function can be called by a sound

output device component to specify the kind of audio data the output device component

wants to receive. The Apple Mixer uses that information to determine the type of sound

component chain it needs to construct in order to deliver that kind of audio data to your

sound output device component. For example, if your sound output device is able to

accept 16-bit samples, the Sound Manager doesn’t need to convert 16-bit audio data into

8-bit data.

The following lines of code illustrate how the sound output device component for the

Apple Sound Chip might call Apple Mixer’s SoundComponentSetOutput function:

myDataRec.flags = 0; /*ignored here*/

myDataRec.format = kOffsetBinary; /*ASC needs offset binary*/

myDataRec.sampleRate = rate22khz; /*ASC needs 22 kHz samples*/

myDataRec.sampleSize = 8; /*ASC needs 8-bit data*/

myDataRec.numChannels = 2; /*ASC can do stereo*/

myDataRec.sampleCount = 1024; /*ASC uses a 1K FIFO*/

myErr = SoundComponentSetOutput(mySource, &myDataRec, &myActual);

In general, however, a sound output device component shouldn’t need to call the Apple

Mixer’s SoundComponentSetOutput function. Instead, it can indicate the type of data

it expects to receive when it calls the OpenMixerSoundComponent function. The

SoundComponentSetOutput function is intended for sophisticated sound output

device components that might want to reinitialize the Apple Mixer.

IMPORTANT

Only the Apple Mixer component needs to implement this function. ▲

C H A P T E R 5

Sound Components

5-42 Sound Components Reference

RESULT CODES

The Apple Mixer’s SoundComponentSetOutput function returns noErr if successful

or an appropriate result code otherwise.

Creating and Removing Audio Sources

To write a sound output device component, you might need to define two routines that

create and remove audio sources:

■ SoundComponentAddSource

■ SoundComponentRemoveSource

Your component needs to contain these functions only if, like the Apple Mixer, it can mix

two or more audio channels into a single output stream. Sound components that operate

on a single input stream only do not need to include these functions.

SoundComponentAddSource

A sound output device component that can mix multiple channel of audio data must

implement the SoundComponentAddSource function to add a new sound source.

pascal ComponentResult SoundComponentAddSource

(ComponentInstance ti, SoundSource *sourceID);

ti A component instance that identifies your sound component.

sourceID On exit, a source ID for the newly created source component chain.

DESCRIPTION

The SoundComponentAddSource function is called by the Sound Manager to create a

new sound source. If your sound output device component can mix multiple channels

of sound, it needs to define this function. Your SoundComponentAddSource function

should call the Sound Manager function OpenMixerSoundComponent to create an new

instance of the Apple Mixer component. The Apple Mixer component then creates a

sound component chain capable of generating the type of data your sound output device

component wants to receive.

The Apple Mixer also assigns a unique 4-byte source ID that identifies the new sound

source and component chain. You can retrieve that source ID by calling the Apple

Mixer’s SoundComponentAddSource function. Your SoundComponentAddSource

function should then pass that source ID back to the Sound Manager in the sourceID

parameter.

C H A P T E R 5

Sound Components

Sound Components Reference 5-43

IMPORTANT

Most sound components do not need to implement the
SoundComponentAddSource function. Only sound components that
can handle more than one source of input need to define it. ▲

SPECIAL CONSIDERATIONS

The SoundComponentAddSource function is called at noninterrupt time.

RESULT CODES

Your SoundComponentAddSource function should return noErr if successful or an

appropriate result code otherwise.

SEE ALSO

See page 5-33 for a description of OpenMixerSoundComponent.

SoundComponentRemoveSource

A sound output device component that implements the SoundComponentAddSource

function must also implement the SoundComponentRemoveSource function to

remove sound sources.

pascal ComponentResult SoundComponentRemoveSource

(ComponentInstance ti, SoundSource sourceID);

ti A component instance that identifies your sound component.

sourceID A source ID for the source component chain to be removed.

DESCRIPTION

Your SoundComponentRemoveSource function is called by the Sound Manager

to remove the existing sound source specified by the sourceID parameter. Your

SoundComponentRemoveSource function should do whatever is necessary to

invalidate that source and then call through to the Apple Mixer’s

SoundComponentRemoveSource function.

IMPORTANT

Most sound components do not need to implement the
SoundComponentRemoveSource function. Only sound components
that can handle more than one source of input need to define it. ▲

C H A P T E R 5

Sound Components

5-44 Sound Components Reference

SPECIAL CONSIDERATIONS

Your SoundComponentRemoveSource function is always called at noninterrupt time.

RESULT CODES

Your SoundComponentRemoveSource function should return noErr if successful or

an appropriate result code otherwise.

Getting and Setting Sound Component Information

To write a sound component, you need to define two routines that determine the

capabilities of your component or to change those capabilities:

■ SoundComponentGetInfo

■ SoundComponentSetInfo

SoundComponentGetInfo

A sound component must implement the SoundComponentGetInfo function. The

Sound Manager calls this function to get information about the capabilities of your

component.

pascal ComponentResult SoundComponentGetInfo

(ComponentInstance ti,

SoundSource sourceID,

OSType selector, void *infoPtr);

ti A component instance that identifies your sound component.

sourceID A source ID for a source component chain.

selector A sound component information selector. See “Sound Component
Information Selectors” beginning on page 5-22 for a description of the
available selectors.

infoPtr On output, a pointer to the information requested by the caller.

DESCRIPTION

Your SoundComponentGetInfo function returns information about your sound

component. The sourceID parameter specifies the sound source to return information

about, and the selector parameter specifies the kind of information to be returned. If

the information occupies 4 or fewer bytes, it should be returned in the location pointed

to by the infoPtr parameter. If the information is larger than 4 bytes, the infoPtr

parameter is a pointer to a component information list, a 6-byte structure of type

SoundInfoList:

C H A P T E R 5

Sound Components

Sound Components Reference 5-45

typedef struct {

short count;

Handle handle;

} SoundInfoList, *SoundInfoListPtr;

This structure consists of a count and a handle to a variable-sized array. The count field

specifies the number of elements in the array to which handle is a handle. It is your

component’s responsibility to allocate the block of data referenced by that handle, but it

is the caller’s responsibility to dispose of that handle once it is finished with it.

The data type of the array elements depends on the kind of information being returned.

For example, the selector siSampleSizeAvailable indicates that you should return

a list of the sample sizes your component can support. You return the information by

passing back, in the infoPtr parameter, a pointer to an integer followed by a handle to

an array of integers.

If your component cannot provide the information specified by the selector

parameter, it should pass the selector to its source component.

SPECIAL CONSIDERATIONS

Your SoundComponentGetInfo function is not called at interrupt time if it is passed

a selector that might cause it to allocate memory for the handle in the component

information list.

RESULT CODES

Your SoundComponentGetInfo function should return noErr if successful or an

appropriate result code otherwise.

SEE ALSO

See “Finding and Changing Component Capabilities” on page 5-18 for a sample

SoundComponentGetInfo function.

SoundComponentSetInfo

A sound component must implement the SoundComponentSetInfo function. The

Sound Manager calls this function to modify settings of your component.

pascal ComponentResult SoundComponentSetInfo

(ComponentInstance ti,

SoundSource sourceID,

OSType selector, void *infoPtr);

ti A component instance that identifies your sound component.

C H A P T E R 5

Sound Components

5-46 Sound Components Reference

sourceID A source ID for a source component chain.

selector A sound component information selector. See “Sound Component
Information Selectors” beginning on page 5-22 for a description of the
available selectors.

infoPtr A pointer to the information your component is to use to modify its
settings. If the information occupies 4 or fewer bytes, however, this
parameter contains the information itself, not the address of the
information.

DESCRIPTION

Your SoundComponentSetInfo function is called by the Sound Manager to set one

of the settings for your component, as specified by the selector parameter. If the

information associated with that selector occupies 4 or fewer bytes, it is passed on

the stack, in the infoPtr parameter itself. Otherwise, the infoPtr parameter

is a pointer to a structure of type SoundInfoList. See the description of

SoundComponentGetInfo for more information about the SoundInfoList structure.

If your component cannot modify the settings specified by the selector parameter, it

should pass the selector to its source component.

RESULT CODES

Your SoundComponentSetInfo function should return noErr if successful or an

appropriate result code otherwise.

Managing Source Data

To write a sound output device component, you might need to define routines that

manage the flow of data in a sound channel:

■ SoundComponentStartSource

■ SoundComponentStopSource

■ SoundComponentPauseSource

■ SoundComponentPlaySourceBuffer

SoundComponentStartSource

A sound output device component must implement the

SoundComponentStartSource function. The Sound Manager calls this function to

start playing sounds in one or more sound channels.

C H A P T E R 5

Sound Components

Sound Components Reference 5-47

pascal ComponentResult SoundComponentStartSource

(ComponentInstance ti,

short count, SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the source
parameter.

sources An array of source IDs.

DESCRIPTION

Your SoundComponentStartSource function is called by the Sound Manager to begin

playing the sounds originating from the sound sources specified by the sources

parameter. Your function should start (or resume) sending data from those sources to the

associated sound output device. If your component supports only one sound source, you

can ignore the sources parameter.

SPECIAL CONSIDERATIONS

Your SoundComponentStartSource function can be called at interrupt time.

RESULT CODES

Your SoundComponentStartSource function should return noErr if successful or

an appropriate result code otherwise. You should return noErr even if no sounds are

playing in the specified channels.

SoundComponentStopSource

A sound output device component must implement the SoundComponentStopSource

function. The Sound Manager calls this function to stop playing sounds in one or more

sound channels.

pascal ComponentResult SoundComponentStopSource

(ComponentInstance ti, short count,

SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the source
parameter.

sources An array of source IDs.

C H A P T E R 5

Sound Components

5-48 Sound Components Reference

DESCRIPTION

Your SoundComponentStopSource function is called by the Sound Manager to stop

the sounds originating from the sound sources specified by the sources parameter.

Your function should stop sending data from those sources to the associated sound

output device. In addition, your SoundComponentStopSource function should flush

any data from the specified sound sources that it’s caching. If your component supports

only one sound source, you can ignore the sources parameter.

RESULT CODES

Your SoundComponentStopSource function should return noErr if successful or an

appropriate result code otherwise. You should return noErr even if no sounds are

playing in the specified channels.

SoundComponentPauseSource

A sound output device component must implement the

SoundComponentPauseSource function. The Sound Manager calls this function to

stop pause the playing of sounds in one or more sound channels.

pascal ComponentResult SoundComponentPauseSource

(ComponentInstance ti,

short count, SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the source
parameter.

sources An array of source IDs.

DESCRIPTION

Your SoundComponentPauseSource function is called by the Sound Manager to

pause the playing of the sounds originating from the sound sources specified by the

sources parameter. Your function should stop sending data from those sources to

the associated sound output device. Because your SoundComponentStartSource

function might be called to resume playing sounds, you should not flush any data.

If your component supports only one sound source, you can ignore the sources

parameter.

RESULT CODES

Your SoundComponentPauseSource function should return noErr if successful or

an appropriate result code otherwise. You should return noErr even if no sounds are

playing in the specified channels.

C H A P T E R 5

Sound Components

Sound Components Reference 5-49

SoundComponentPlaySourceBuffer

A sound component must implement the SoundComponentPlaySourceBuffer

function. The Sound Manager calls this function to start a new sound playing.

pascal ComponentResult SoundComponentPlaySourceBuffer

(ComponentInstance ti,

SoundSource sourceID,

SoundParamBlockPtr pb,

long actions);

ti A component instance that identifies your sound component.

sourceID A source ID for a source component chain.

pb A pointer to a sound parameter block.

actions A set of 32 bit flags that describe the actions to be taken when preparing
to play the source data. See “Action Flags” on page 5-27 for a description
of the constants you can use to select bits in this parameter.

DESCRIPTION

Your SoundComponentPlaySourceBuffer function is called by the Sound Manager

to start a new sound playing. The sound parameter block pointed to by the pb parameter

specifies the sound to be played. That parameter block should be passed successively to

all sound components in the chain specified by the sourceID parameter. This allows the

components to determine their output formats and playback settings and to prepare for

a subsequent call to their SoundComponentGetSourceData function. It also allows a

sound output device component to prepare for starting up its associated hardware.

RESULT CODES

Your SoundComponentPlaySourceBuffer function should return noErr if

successful or an appropriate result code otherwise.

C H A P T E R 5

Sound Components

5-50 Summary of Sound Components

Summary of Sound Components

This section provides a C summary for the constants, data types, and routines you can

use to write a sound component. There are currently no Pascal interfaces available for

writing sound components.

C Summary

Constants

/*component types*/

#define kSoundComponentType 'sift' /*utility component*/

#define kMixerType 'mixr' /*mixer component*/

#define kSoundHardwareType 'sdev' /*sound output device component*/

#define kSoundCompressor 'scom' /*compression component*/

#define kSoundDecompressor 'sdec' /*decompression component*/

#define kNoSoundComponentType '****' /*no type*/

/*subtypes for kSoundComponentType component type*/

#define kRate8SubType 'ratb' /*8-bit rate converter*/

#define kRate16SubType 'ratw' /*16-bit rate converter*/

#define kConverterSubType 'conv' /*sample format converter*/

#define kSndSourceSubType 'sour' /*generic source component*/

/*subtypes for kMixerType component type*/

#define kMixer8SubType 'mixb' /*8-bit mixer*/

#define kMixer16SubType 'mixw' /*16-bit mixer*/

/*subtypes for kSoundHardwareType component type*/

#define kClassicSubType 'clas' /*Classic hardware*/

#define kASCSubType 'asc ' /*ASC device*/

#define kDSPSubType 'dsp ' /*DSP device*/

/*subtypes for kSoundCompressor and kSoundDecompressor component types*/

#define kMace3SubType 'MAC3' /*MACE 3:1*/

#define kMace6SubType 'MAC6 ' /*MACE 6:1*/

#define kCDXA4SubType 'CDX4' /*CD/XA 4:1*/

#define kCDXA2SubType 'CDX2' /*CD/XA 2:1*/

#define kSoundComponentCodeType 'sift' /*sound component code type*/

C H A P T E R 5

Sound Components

Summary of Sound Components 5-51

/*first selector that can be delegated up the chain*/

#define kDelegatedSoundComponentSelectors 0x0100

/*Component Manager selectors for routines*/

enum {

/*the following calls cannot be delegated*/

kSoundComponentInitOutputDeviceSelect = 1,

kSoundComponentSetSourceSelect,

kSoundComponentGetSourceSelect,

kSoundComponentGetSourceDataSelect,

kSoundComponentSetOutputSelect,

/*the following calls can be delegated*/

kSoundComponentAddSourceSelect = kDelegatedSoundComponentSelectors + 1,

kSoundComponentRemoveSourceSelect,

kSoundComponentGetInfoSelect,

kSoundComponentSetInfoSelect,

kSoundComponentStartSourceSelect,

kSoundComponentStopSourceSelect,

kSoundComponentPauseSourceSelect,

kSoundComponentPlaySourceBufferSelect

};

/*sound component information selectors*/

#define siChannelAvailable 'chav' /*number of channels available*/

#define siCompressionAvailable 'cmav' /*compression types available*/

#define siCompressionFactor 'cmfa' /*current compression factor*/

#define siCompressionType 'comp' /*current compression type*/

#define siHardwareMute 'hmut' /*current hardware mute state*/

#define siHardwareVolume 'hvol' /*current hardware volume*/

#define siHardwareVolumeSteps 'hstp' /*number of hardware volume steps*/

#define siHeadphoneMute 'pmut' /*current headphone mute state*/

#define siHeadphoneVolume 'pvol' /*current headphone volume*/

#define siHeadphoneVolumeSteps 'hdst' /*num. of headphone volume steps*/

#define siNumberChannels 'chan' /*current number of channels*/

#define siQuality 'qual' /*current quality*/

#define siRateMultiplier 'rmul' /*current rate multiplier*/

#define siSampleRate 'srat' /*current sample rate*/

#define siSampleRateAvailable 'srav' /*sample rates available*/

#define siSampleSize 'ssiz' /*current sample size*/

#define siSampleSizeAvailable 'ssav' /*sample sizes available*/

#define siSpeakerMute 'smut' /*current speaker mute*/

#define siSpeakerVolume 'svol' /*current speaker volume*/

#define siVolume 'volu' /*current volume setting*/

C H A P T E R 5

Sound Components

5-52 Summary of Sound Components

/*audio data format types*/

#define kOffsetBinary 'raw '

#define kTwosComplement 'twos'

#define kMACE3Compression 'MAC3'

#define kMACE6Compression 'MAC6'

/*sound component features flags*/

#define k8BitRawIn (1 << 0) /*data flags*/

#define k8BitTwosIn (1 << 1)

#define k16BitIn (1 << 2)

#define kStereoIn (1 << 3)

#define k8BitRawOut (1 << 8)

#define k8BitTwosOut (1 << 9)

#define k16BitOut (1 << 10)

#define kStereoOut (1 << 11)

#define kReverse (1 << 16) /*action flags*/

#define kRateConvert (1 << 17)

#define kCreateSoundSource (1 << 18)

#define kHighQuality (1 << 22) /*performance flags*/

#define kRealTime (1 << 23)

/*action flags for SoundComponentPlaySourceBuffer*/

#define kSourcePaused (1 << 0)

#define kPassThrough (1 << 16)

#define kNoSoundComponentChain (1 << 17)

/*flags for OpenMixerSoundComponent*/

#define kNoMixing (1 << 0) /*don't mix sources*/

#define kNoSampleRateConversion (1 << 1) /*don't convert sample rate*/

#define kNoSampleSizeConversion (1 << 2) /*don't convert sample size*/

#define kNoSampleFormatConversion \

(1 << 3) /*don't convert sample format*/

#define kNoChannelConversion (1 << 4) /*don't convert stereo/mono*/

#define kNoDecompression (1 << 5) /*don't decompress*/

#define kNoVolumeConversion (1 << 6) /*don't apply volume*/

#define kNoRealtimeProcessing (1 << 7) /*don't run at interrupt time*/

/*quality flags*/

#define kBestQuality (1 << 0) /*use interp. in rate conv.*/

C H A P T E R 5

Sound Components

Summary of Sound Components 5-53

/*volume specifications*/

#define kSilenceByte 0x80

#define kSilenceLong 0x80808080

#define kFullVolume 0x0100

Data Types

Unsigned Fixed-Point Numbers

typedef unsigned long UnsignedFixed; /*unsigned fixed-point number*/

Sound Component Data Record

typedef struct {

long flags; /*sound component flags*/

OSType format; /*data format*/

short numChannels; /*number of channels in data*/

short sampleSize; /*size of a sample*/

UnsignedFixed sampleRate; /*sample rate*/

long sampleCount; /*number of samples in buffer*/

Byte *buffer; /*location of data*/

long reserved; /*reserved*/

} SoundComponentData, *SoundComponentDataPtr;

Sound Parameter Block

typedef pascal Boolean (*SoundParamProcPtr)(SoundParamBlockPtr *pb);

struct SoundParamBlock {

long recordSize; /*size of this record in bytes*/

SoundComponentData desc; /*description of sound buffer*/

Fixed rateMultiplier;/*rate multiplier*/

short leftVolume; /*volume on left channel*/

short rightVolume; /*volume on right channel*/

long quality; /*quality*/

ComponentInstance filter; /*filter*/

SoundParamProcPtr moreRtn; /*routine to call to get more data*/

SoundParamProcPtr completionRtn; /*buffer complete routine*/

long refCon; /*user refcon*/

short result; /*result*/

};

typedef struct SoundParamBlock SoundParamBlock;

typedef SoundParamBlock *SoundParamBlockPtr;

C H A P T E R 5

Sound Components

5-54 Summary of Sound Components

Sound Source

typedef struct privateSoundSource *SoundSource;

Sound Information List

typedef struct {

short count;

Handle handle;

} SoundInfoList, *SoundInfoListPtr;

Compression Information Record

typedef struct {

long recordSize;

OSType format;

short compressionID;

short samplesPerPacket;

short bytesPerPacket;

short bytesPerFrame;

short bytesPerSample;

short futureUse1;

} CompressionInfo, *CompressionInfoPtr, **CompressionInfoHandle;

Sound Manager Utilities

Opening and Closing the Apple Mixer Component

pascal OSErr OpenMixerSoundComponent
(SoundComponentDataPtr outputDescription,
long outputFlags,
ComponentInstance *mixerComponent);

pascal OSErr CloseMixerSoundComponent
(ComponentInstance ci);

Saving and Restoring Sound Component Preferences

pascal OSErr SetSoundPreference
(OSType type, Str255 name, Handle settings);

pascal OSErr GetSoundPreference
(OSType type, Str255 name, Handle settings);

C H A P T E R 5

Sound Components

Summary of Sound Components 5-55

Sound Component-Defined Routines

Managing Sound Components

pascal ComponentResult SoundComponentInitOutputDevice
(ComponentInstance ti, long actions);

pascal ComponentResult SoundComponentSetSource
(ComponentInstance ti, SoundSource sourceID,
ComponentInstance source);

pascal ComponentResult SoundComponentGetSource
(ComponentInstance ti, SoundSource sourceID,
ComponentInstance *source);

pascal ComponentResult SoundComponentGetSourceData
(ComponentInstance ti,
SoundComponentDataPtr *sourceData);

pascal ComponentResult SoundComponentSetOutput
(ComponentInstance ti,
SoundComponentDataPtr requested,
SoundComponentDataPtr *actual);

Creating and Removing Audio Sources

pascal ComponentResult SoundComponentAddSource
(ComponentInstance ti, SoundSource *sourceID);

pascal ComponentResult SoundComponentRemoveSource
(ComponentInstance ti, SoundSource sourceID);

Getting and Setting Sound Component Information

pascal ComponentResult SoundComponentGetInfo
(ComponentInstance ti, SoundSource sourceID,
OSType selector, void *infoPtr);

pascal ComponentResult SoundComponentSetInfo
(ComponentInstance ti, SoundSource sourceID,
OSType selector, void *infoPtr);

Managing Source Data

pascal ComponentResult SoundComponentStartSource
(ComponentInstance ti, short count,
SoundSource *sources);

pascal ComponentResult SoundComponentStopSource
(ComponentInstance ti, short count,
SoundSource *sources);

C H A P T E R 5

Sound Components

5-56 Summary of Sound Components

pascal ComponentResult SoundComponentPauseSource
(ComponentInstance ti, short count,
SoundSource *sources);

pascal ComponentResult SoundComponentPlaySourceBuffer
(ComponentInstance ti, SoundSource sourceID,
SoundParamBlockPtr pb, long actions);

Assembly-Language Summary

Data Structures

Sound Component Data Record

Sound Parameter Block

Sound Information List

0 flags long sound component flags
4 format long data format
8 numChannels word number of channels in data

10 sampleSize word size of a sample
12 sampleRate long sample rate (Fixed)
16 sampleCount long number of samples in buffer
20 buffer long location of data
24 reserved long reserved

0 recordSize long size of this record in bytes
4 desc 28 bytes description of sound buffer

32 rateMultiplier long rate multiplier (Fixed)
36 leftVolume word volume on left channel
38 rightVolume word volume on right channel
40 quality long quality
44 filter long filter
48 moreRtn long routine to call to get more data
52 completionRtn long buffer complete routine
56 refCon long user refcon
60 result word result

0 count word number of data items in the handle
2 handle long handle to list of data items

C H A P T E R 5

Sound Components

Summary of Sound Components 5-57

Compression Information Record

0 recordSize long the size of this record
4 format 4 bytes compression format
8 compressionID word compression ID

10 samplesPerPacket word the number of samples per packet
12 bytesPerPacket word the number of bytes per packet
14 bytesPerFrame word the number of bytes per frame
16 bytesPerSample word the number of bytes per sample
18 futureUse1 word reserved

Contents 6-1

C H A P T E R 6

Contents

Audio Components

About Audio Components 6-3

Writing an Audio Component 6-5

Creating an Audio Component 6-5

Dispatching to Audio Component-Defined Routines 6-7

Audio Components Reference 6-8

Data Structures 6-8

Audio Information Records 6-9

Audio Component-Defined Routines 6-9

Getting and Setting Volumes 6-10

Managing the Mute State 6-11

Resetting Audio Components 6-13

Getting Audio Component Information 6-13

Summary of Audio Components 6-15

C Summary 6-15

Constants 6-15

Data Types 6-16

Audio Component-Defined Routines 6-16

Assembly-Language Summary 6-17

Data Structures 6-17

C H A P T E R 6

About Audio Components 6-3

Audio Components

This chapter describes audio components, which are code modules used by the Sound

Manager to adjust volumes or other settings of a sound output device. In general, you

need to write an audio component only if you are developing a sound output device

with multiple output ports that can be independently controlled by software. If your

sound output device has only one software-controllable output port, the sound output

device component for that device manages the volume levels of the port.

IMPORTANT

The Sound Manager loads and manages audio components, which
operate transparently to applications. The routines described in this
chapter are intended for use exclusively by audio components. ▲

To use this chapter, you should already be familiar with writing sound output device

components, as described in the chapter “Sound Components” in this book. Because

audio components are components, you also need to be familiar with the Component

Manager, described in Inside Macintosh: More Macintosh Toolbox.

This chapter begins by describing what audio components are and the Sound Manager

uses them. Then it provides instructions on how to write an audio component. The

section “Audio Components Reference” beginning on page 6-8 describes the routines

that your audio component might need to define.

Note

Pascal interfaces for audio components are not currently available. As
a result, this chapter provides all source code examples and reference
materials in C. ◆

About Audio Components

An audio component is a component that works with the Sound Manager to adjust

volumes or other settings of a sound output device. The Sound Manager uses audio

components, however, only when a particular sound output device has more than one

audio port that can be controlled through software. If a sound output device has only

one audio port, the sound component that communicates with the output device

controls the volume settings of that port.

IMPORTANT

Because audio components are currently used to manage only volume
and mute settings, they might have been called volume components. The
more general term anticipates future capabilities of audio components.
For example, audio components might in the future be used to modify
bass or treble settings of an audio port. ▲

An audio port is any independently controllable sound-producing hardware connected

or attached to a sound output device. For example, the Apple AudioVision 14 Display

(shown in Figure 6-1) contains two audio ports: a set of speakers and a jack for

headphones.

C H A P T E R 6

Audio Components

6-4 About Audio Components

Figure 6-1 The Apple AudioVision 14 Display

As the Volumes subpanel of the Sound control panel shows (Figure 6-2), the two audio

ports are independently controllable by software.

Figure 6-2 The Volumes control panel for the Apple AudioVision 14 Display

C H A P T E R 6

Audio Components

Writing an Audio Component 6-5

The control panel shown in Figure 6-2 contains volume sliders both for the set of

speakers and for the headphones. The volume of the speakers is controlled by the sound

component that drives the sound output device. The volume of the headphones is

controlled by an audio component.

In short, audio components are used to allow a single sound output device to have more

than one audio port. The sound component that communicates with that device can

control the volume setting of one audio port; audio components control the volume

settings of all other audio ports.

Writing an Audio Component

Because an audio component is a component, it must be able to respond to standard

selectors sent by the Component Manager. In addition, an audio component must handle

other selectors specific to audio components. This section briefly describes how to write

an audio component.

Creating an Audio Component
An audio component is a component. It contains a number of resources, including icons,

strings, and the standard component resource (a resource of type 'thng') required of

any Component Manager component. In addition, an audio component must contain

code to handle required selectors passed to it by the Component Manager as well as

selectors specific to the audio component.

Note

For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This
section provides specific information about audio components. ◆

The component resource binds together all the relevant resources contained in a

component; its structure is defined by the ComponentResource data type.

struct ComponentResource {

ComponentDescription cd;

ResourceSpec component;

ResourceSpec componentName

ResourceSpec componentInfo;

ResourceSpec componentIcon;

};

The component field specifies the resource type and resource ID of the component’s

executable code. By convention, this field should be set to the value kAudioCodeType.

#define kAudioCodeType 'adio' /*audio component code type*/

C H A P T E R 6

Audio Components

6-6 Writing an Audio Component

(You can, however, specify some other resource type if you wish.) The resource ID can be

any integer greater than or equal to 128. See the following section for further information

about this code resource.

The componentName field specifies the resource type and resource ID of the resource

that contains the component’s name. Usually the name is contained in a resource of type

'STR '. This string should be as short as possible.

The componentInfo field specifies the resource type and resource ID of the resource

that contains a description of the component. Usually the description is contained in a

resource of type 'STR '.

The componentIcon field specifies the resource type and resource ID of the resource

that contains an icon for the component. Usually the icon is contained in a resource of

type 'ICON'.

The cd field of the ComponentResource structure is a component description record,
which contains additional information about the component. A component description

record is defined by the ComponentDescription data type.

typedef struct {

OSType componentType;

OSType componentSubType;

OSType componentManufacturer;

unsigned long componentFlags;

unsigned long componentFlagsMask;

} ComponentDescription;

For audio components, the componentType field must be set to a value recognized by

the Sound Manager.

#define kAudioComponentType 'adio' /*audio component*/

In addition, the componentSubType field must be set to a value that indicates the type

of audio services your component provides. For example, the Apple-supplied audio

components have these subtypes:

#define kAwacsPhoneSubType 'hphn' /*AWACS phone*/

#define kAudioVisionSpeakerSubType 'telc' /*AudioVision speaker*/

#define kAudioVisionHeadphoneSubType 'telh' /*AudioVision headphones*/

If you write an audio component, you should define some other subtype.

Note

Apple Computer, Inc., reserves for its own use all types and subtypes
composed solely of lowercase letters. ◆

You can assign any value you like to the componentManufacturer field; typically you

put the signature of your audio component in this field.

C H A P T E R 6

Audio Components

Writing an Audio Component 6-7

The componentFlags field of the component description for an audio component

contains bit flags that encode information about the component. You can use this field to

specify that the Component Manager should send your component the

kComponentRegisterSelect selector.

enum {

cmpWantsRegisterMessage = 1L<<31 /*send register request*/

};

This bit is useful for audio components, which might need to test for the presence of the

appropriate hardware to determine whether to register with the Component Manager.

When your component gets the kComponentRegisterSelect selector at system

startup time, it should make sure that all the necessary hardware is available. If it isn’t

available, your component shouldn’t register.

You should set the componentFlagsMask field to 0.

Your audio component is contained in a resource file. You can assign any type you wish

to be the file creator, but the type of the file must be 'thng'. If the audio component

contains a 'BNDL' resource, then the file’s bundle bit must be set.

Dispatching to Audio Component-Defined Routines
As explained in the previous section, the code stored in the audio component should be

contained in a resource of type kAudioCodeType. The Component Manager expects the

entry point in this resource to be a function with this format:

pascal ComponentResult MyAudioDispatch (ComponentParameters *params,

AudioGlobalsPtr globals);

The Component Manager calls your sound component by passing MyAudioDispatch a

selector in the params->what field; MyAudioDispatch must interpret the selector and

possibly dispatch to some other routine in the resource. Your audio component must be

able to handle the required selectors, defined by these constants:

#define kComponentOpenSelect -1

#define kComponentCloseSelect -2

#define kComponentCanDoSelect -3

#define kComponentVersionSelect -4

#define kComponentRegisterSelect -5

#define kComponentTargetSelect -6

#define kComponentUnregisterSelect -7

Note

For complete details on required component selectors, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. ◆

In addition, your audio component must be able to respond to component-specific

selectors. The Sound Manager can pass these selectors to your audio component:

C H A P T E R 6

Audio Components

6-8 Audio Components Reference

enum {

kAudioGetVolumeSelect = 0,

kAudioSetVolumeSelect,

kAudioGetMuteSelect,

kAudioSetMuteSelect,

kAudioSetToDefaultsSelect,

kAudioGetInfoSelect

};

You can respond to these selectors by calling the Component Manager routine

CallComponentFunctionWithStorage. See the section “Audio Component-Defined

Routines” beginning on page 6-9 for information on how to handle these selectors.

In all likelihood, your component is loaded into the system heap, although it might be

loaded into an application heap if memory is low in the system heap. You can call the

Component Manager function GetComponentInstanceA5 to determine the A5 value

of the current application. If this function returns 0, your component is in the system

heap; otherwise, your component is in an application’s heap. Its location might affect

how you allocate memory. For example, calling the MoveHHi routine on handles in the

system heap has no result. Thus, you should either call the ReserveMemSys routine

before calling NewHandleSys (so that the handle is allocated as low in the system heap

as possible) or else just allocate a nonrelocatable block by calling the NewPtrSys routine.

If you need to access resources that are stored in your audio component, you can use

OpenComponentResFile and CloseComponentResFile. OpenComponentResFile

requires the ComponentInstance parameter supplied to your routine. You should not

call Resource Manager routines such as OpenResFile or CloseResFile.

▲ W A R N I N G

Do not leave any resource files open when your audio component is
closed. Their maps will be left in the subheap when the subheap is freed,
causing the Resource Manager to crash. ▲

Audio Components Reference

This section describes the data structures you can use to write an audio component. It

also describes the routines that your audio component should call in response to an

audio component selector. See “Writing an Audio Component” beginning on page 6-5

for information on creating a component that contains these component-defined routines.

Data Structures

This section describes the data structure you need to use when writing an audio

component.

C H A P T E R 6

Audio Components

Audio Components Reference 6-9

Audio Information Records

You return information about the capabilities of your audio component in the info

parameter passed to your AudioGetInfo function. The info parameter contains a

pointer to an audio information record. An audio information record is defined by the

AudioInfo data type.

typedef struct {

long capabilitiesFlags; /*device capabilities*/

long reserved; /*reserved*/

unsigned short numVolumeSteps; /*number of volume steps*/

} AudioInfo, *AudioInfoPtr;

Field descriptions

capabilitiesFlags
A set of bit flags specifying the capabilities of the audio component.
You can use constants to set some of these bits:

#define audioDoesMono (1L<<0) /*supports mono output*/

#define audioDoesStereo (1L<<1) /*supports stereo output*/

#define audioDoesIndependentChannels (1L<<2) /*supports independent

software control of each channel*/

reserved Reserved for use by Apple Computer, Inc.

numVolumeSteps
The number of volume steps your audio component supports.

Audio Component-Defined Routines

This section describes the routines you must define in order to write an audio

component. You need to write routines to

■ get and set volume levels of a sound output device

■ manage mute states

■ reset device settings

■ get information about the audio component

All routines return result codes. If they succeed, they should return noErr. To simplify

dispatching, the Component Manager requires these routines to return a value of type

ComponentResult.

See “Writing an Audio Component” beginning on page 6-5 for a description of how you

call these routines from within an audio component.

C H A P T E R 6

Audio Components

6-10 Audio Components Reference

Getting and Setting Volumes

To write an audio component, you might need to define two routines that manage the

volume level of the associated audio port:

■ AudioGetVolume

■ AudioSetVolume

AudioGetVolume

An audio component can implement the AudioGetVolume function. The Sound

Manager calls this function to determine the current volume of an audio port.

pascal ComponentResult AudioGetVolume (ComponentInstance ac,

short whichChannel,

ShortFixed *volume);

ac A component instance that identifies your audio component.

whichChannel
The channel or channels whose volume you should return.

volume
On output, the current volume level of the specified channel.

DESCRIPTION

Your AudioGetVolume function is called by the Sound Manager to determine the

current volume levels of one or more channels of an audio port. The volume parameter

can have any value between 0 and 1, where 0 indicates minimum volume and 1 indicates

maximum volume. The whichChannel parameter indicates the channels or channels

whose volumes you should return. The following constants are defined for the

whichChannel parameter:

#define audioAllChannels 0 /*all channels*/

#define audioLeftChannel 1 /*left channel*/

#define audioRightChannel 2 /*right channel*/

RESULT CODES

Your AudioGetVolume function should return noErr if successful or an appropriate

result code otherwise. In particular, if your audio component doesn’t support software

control of volume levels, AudioGetVolume should return unImpErr.

C H A P T E R 6

Audio Components

Audio Components Reference 6-11

AudioSetVolume

An audio component can implement the AudioSetVolume function. The Sound

Manager calls this function to set the current volume of an audio port.

pascal ComponentResult AudioSetVolume (ComponentInstance ac,

short whichChannel,

ShortFixed volume);

ac A component instance that identifies your audio component.

whichChannel
The channel or channels whose volume you should set.

volume
The desired volume level of the specified channel.

DESCRIPTION

Your AudioSetVolume function is called by the Sound Manager to set the volume

levels of one or more channels of an audio port. See the description of the

AudioGetVolume function for the values of the whichChannel and volume

parameters.

RESULT CODES

Your AudioSetVolume function should return noErr if successful or an appropriate

result code otherwise. In particular, if your audio component doesn’t support software

control of volume levels, AudioSetVolume should return unImpErr.

Managing the Mute State

To write an audio component, you might need to define two routines that manage the

mute state of the associated audio port:

■ AudioGetMute

■ AudioSetMute

AudioGetMute

An audio component can implement the AudioGetMute function. The Sound Manager

calls this function to determine the current mute state of an audio port.

pascal ComponentResult AudioGetMute (ComponentInstance ac,

short whichChannel,

short *mute);

C H A P T E R 6

Audio Components

6-12 Audio Components Reference

ac A component instance that identifies your audio component.

whichChannel
The channel or channels whose mute state you should return.

mute
On output, the current mute state of the specified channel.

DESCRIPTION

Your AudioGetMute function is called by the Sound Manager to determine the current

mute state of one or more channels of an audio port. The following constants define the

mute states you can return in the mute parameter:

#define audioUnmuted 0 /*device is not muted*/

#define audioMuted 1 /*device is muted*/

The whichChannel parameter indicates the channels or channels whose mute state you

should return. The following constants are defined for the whichChannel parameter:

#define audioAllChannels 0 /*all channels*/

#define audioLeftChannel 1 /*left channel*/

#define audioRightChannel 2 /*right channel*/

RESULT CODES

Your AudioGetMute function should return noErr if successful or an appropriate

result code otherwise. In particular, if your audio component doesn’t support software

control of mute states, AudioGetMute should return unImpErr.

AudioSetMute

An audio component can implement the AudioSetMute function. The Sound Manager

calls this function to set the current mute state of an audio port.

pascal ComponentResult AudioSetMute (ComponentInstance ac,

short whichChannel,

short mute);

ac A component instance that identifies your audio component.

whichChannel
The channel or channels whose mute state you should set.

mute
The desired mute state of the specified channel.

C H A P T E R 6

Audio Components

Audio Components Reference 6-13

DESCRIPTION

Your AudioSetMute function is called by the Sound Manager to set the mute state of

one or more channels of an audio port. See the description of the AudioGetMute

function for the values of the whichChannel and mute parameters.

RESULT CODES

Your AudioSetMute function should return noErr if successful or an appropriate

result code otherwise. In particular, if your audio component doesn’t support software

control of mute states, AudioSetMute should return unImpErr.

Resetting Audio Components

To write an audio component, you need to define the AudioSetToDefaults routine,

which resets the associated audio port to its default settings.

AudioSetToDefaults

The Sound Manager might call your AudioSetToDefaults function to reset an

audio port.

pascal ComponentResult AudioSetToDefaults (ComponentInstance ac);

ac A component instance that identifies your audio component.

DESCRIPTION

Your AudioSetToDefaults function should reset its volume and mute levels to some

reasonable default value. It should also reset to reasonable values any other settings it

might be maintaining privately.

RESULT CODES

Your AudioSetToDefaults function should return noErr if successful or an

appropriate result code otherwise.

Getting Audio Component Information

To write an audio component, you need to define the AudioGetInfo routine, which

returns information about the capabilities of your component.

C H A P T E R 6

Audio Components

6-14 Audio Components Reference

AudioGetInfo

An audio component must implement the AudioGetInfo function. The Sound

Manager calls this function to get information about the capabilities of your component.

pascal ComponentResult AudioGetInfo (ComponentInstance ac,

AudioInfoPtr info);

ac A component instance that identifies your sound component.

info A pointer to an audio information record.

DESCRIPTION

Your AudioGetInfo function returns information about your audio component. You

should fill out the audio information record pointed to by the info parameter. See

“Audio Information Records” beginning on page 6-9 for a description of the audio

information record.

RESULT CODES

Your AudioGetInfo function should return noErr if successful or an appropriate

result code otherwise.

C H A P T E R 6

Audio Components

Summary of Audio Components 6-15

Summary of Audio Components

This section provides a C summary for the constants, data types, and routines you can

use to write an audio component. There are currently no Pascal interfaces available for

writing audio components.

C Summary

Constants

/*component types*/

#define kAudioComponentType 'adio' /*audio component*/

/*subtypes for kAudioComponentType component type*/

#define kAwacsPhoneSubType 'hphn' /*AWACS phone*/

#define kAudioVisionSpeakerSubType 'telc' /*AudioVision speaker*/

#define kAudioVisionHeadphoneSubType 'telh' /*AudioVision headphones*/

#define kAudioCodeType 'adio' /*audio component code type*/

/*Component Manager selectors for routines*/

enum {

kAudioGetVolumeSelect = 0,

kAudioSetVolumeSelect,

kAudioGetMuteSelect,

kAudioSetMuteSelect,

kAudioSetToDefaultsSelect,

kAudioGetInfoSelect

};

/*values for whichChannel parameter*/

#define audioAllChannels 0 /*all channels*/

#define audioLeftChannel 1 /*left channel*/

#define audioRightChannel 2 /*right channel*/

/*values for mute parameter*/

#define audioUnmuted 0 /*device is not muted*/

#define audioMuted 1 /*device is muted*/

C H A P T E R 6

Audio Components

6-16 Summary of Audio Components

/*audio component features flags*/

#define audioDoesMono (1L<<0) /*supports mono output*/

#define audioDoesStereo (1L<<1) /*supports stereo output*/

#define audioDoesIndependentChannels (1L<<2) /*supports independent

software control of each channel*/

Data Types

Short Fixed-Point Numbers

typedef short ShortFixed;

Audio Information Record

typedef struct {

long capabilitiesFlags; /*device capabilities*/

long reserved; /*reserved*/

unsigned short numVolumeSteps; /*number of volume steps*/

} AudioInfo, *AudioInfoPtr;

Audio Component-Defined Routines

Getting and Setting Volumes

pascal ComponentResult AudioGetVolume
(ComponentInstance ac, short whichChannel,
ShortFixed *volume);

pascal ComponentResult AudioSetVolume
(ComponentInstance ac, short whichChannel,
ShortFixed volume);

Managing the Mute State

pascal ComponentResult AudioGetMute
(ComponentInstance ac, short whichChannel,
short *mute);

pascal ComponentResult AudioSetMute
(ComponentInstance ac, short whichChannel,
short mute);

Resetting Audio Components

pascal ComponentResult AudioSetToDefaults
(ComponentInstance ac);

C H A P T E R 6

Audio Components

Summary of Audio Components 6-17

Getting Audio Component Information

pascal ComponentResult AudioGetInfo
(ComponentInstance ac, AudioInfoPtr info);

Assembly-Language Summary

Data Structures

Audio Information Record

0 capabilitiesFlags long device capabilities
4 reserved long reserved
8 numVolumeSteps word number of volume steps

GL-1

AGC See automatic gain control.

AIFF See Audio Interchange File Format.

AIFF-C See Audio Interchange File Format
Extension for Compression.

alert sound See system alert sound.

Alert Sounds control panel A subpanel of the
Sound control panel that allows the user to select
a system alert sound. See also Sound In control
panel, Sound Out control panel, Volumes
control panel.

allophone A distinct variety of a phoneme
in a particular language that is never used
contrastingly with any other allophone of
the phoneme.

amplitude A modification to the wave
amplitude of a sound to make it sound louder
or softer. See also speech volume. Compare
wave amplitude.

Apple Mixer See Apple Mixer component.

Apple Mixer component A sound component
that is responsible for mixing together the audio
data streams from all open sound channels.

Apple Sound Chip (ASC) A custom chip that,
in conjunction with other circuitry, generates a
stereo sound signal that drives the internal
speaker or an external sound jack. Compare
Enhanced Apple Sound Chip.

ASC See Apple Sound Chip.

asynchronous sound play The playing of
sound during other, non-sound related
operations. Compare synchronous sound play.

audio compression A technique of reducing
the amount of memory space required for a
buffer of sampled-sound data, usually at
the expense of audio fidelity. See also
audio expansion.

audio component A component that works
with the Sound Manager to adjust volumes or
other settings of a sound output device. Compare
sound component.

audio data See sampled-sound data, sound,
square-wave data, wave-table data.

audio decompression See audio expansion.

audio expansion The decompression
of compressed sound data. See also
audio compression.

audio information record A structure you can
use to specify information about an audio
component. Defined by the AudioInfo data
type.

Audio Interchange File Format (AIFF) A
sound storage file format designed to allow easy
exchange of audio data among applications.

Audio Interchange File Format Extension for
Compression (AIFF-C) An extension of the
Audio Interchange File Format that allows for the
storage of compressed sound data.

audio port Any independently-controllable
sound-producing hardware connected or
attached to a sound output device. A sound
output device can have several audio ports.

audio selection record A structure you can use
to specify that only part of a sound be played.
Defined by the AudioSelection data type.

automatic gain control (AGC) A feature of
sound recording that moderates the recording
to give a consistent signal level.

base frequency The pitch at which a sampled
sound is recorded. The wave of a sampled sound
may include frequencies other than the base
frequency (and need not even include the
base frequency).

baseline pitch See speech pitch.

Glossary

G L O S S A R Y

GL-2

buffered expansion Audio expansion of a
sound that does not occur while the sound is
playing. Compare real-time expansion.

callback procedure An application-defined
procedure that is invoked at a specified time
or based on specified criteria.

channel A portion of sound data that can be
described by a single sound wave. Do not
confuse with sound channel or speech channel.
See also monophonic sound, stereo sound.

chunk Any distinct portion of a sound file.

chunk header The first segment of a chunk,
which defines the characteristics of the chunk.
Defined by the ChunkHeader data type.

codec See compression/decompression
component.

command See embedded speech command,
sound command.

command delimiter A sequence of one or two
characters that indicates the start or end of an
embedded speech command.

component A piece of code that provides a
defined set of services to one or more clients.
Applications, system extensions, and other
components can use the services of a component.
See also audio component, sound component.

component description record A structure
that contains information about a component.
Defined by the ComponentDescription
data type.

Component Manager A collection of routines
that allows your application or other clients
to access components. The Component Manager
manages components and also provides services
to components.

compressed sound data Sampled-sound data
that has been subjected to audio compression.

compressed sound header A sound header that
can describe noncompressed and compressed
sampled-sound data, whether monophonic or
stereo. Defined by the CmpSoundHeader data
type. See also extended sound header, sampled
sound header.

compression See audio compression.

compression/decompression component
(codec) A component that handles data
compression and decompression.

compression information record A structure
you use to specify information about a sound
component that can decompress compressed
audio data. Defined by the CompressionInfo
data type.

computer-generated speech See synthesized
speech.

continuous play from disk See play from disk.

continuous recording A feature of a sound
input device driver that allows recording from
the device while other processing continues.

current sound input device The sound input
device that the user has chosen through the
Sound In subpanel of the Sound control panel.

current sound output device The sound output
device that the user has chosen through the
Sound Out subpanel of the Sound control panel.

DAC See digital-to-analog convertor.

decompressed sound data Sampled-sound data
that has been subjected to audio compression and
expansion.

decompression See audio expansion.

delimiter See command delimiter.

delimiter information record A structure that
defines the characters used to indicate the
beginning and end of a command embedded in
text. Defined by the DelimiterInfo data type.

dictionary See pronunciation dictionary.

digital signal processor (DSP) A processor that
manipulates digital data.

digital-to-analog convertor (DAC) A device
that converts data from digital to analog form.

G L O S S A R Y

GL-3

double buffering A technique used by the
Sound Manager to manage a play from disk.
When using this technique, the Sound Manager
plays one buffer of sampled-sound data while
filling a second with more data. When the first
buffer of sound finishes playing, the Sound
Manager plays the data in the second buffer
while filling the first with more data. See also
play from disk, sampled-sound data.

drop-sample conversion A form of sample rate
conversion that uses an existing sample as an
interpolated sample point. Compare linear
interpolation.

DSP See digital signal processor.

duration The length of time that a sound takes
to play.

EASC See Enhanced Apple Sound Chip.

embedded speech command In a buffer of
input text, a sequence of characters enclosed by
command delimiters that provides instructions to
a speech synthesizer.

ending prosody The rhythm, modulation, and
stress patterns associated with the end of a
sentence of speech.

Enhanced Apple Sound Chip (EASC) A
modified Apple Sound Chip that generates stereo
sound using pulse-code modulation. Compare
Apple Sound Chip.

enhanced Sound Manager Any version of the
Sound Manager greater than 2.0.

error callback procedure An
application-defined procedure that is executed
whenever the Speech Manager encounters an
error in an embedded speech command in a
buffer of input text.

expansion See audio expansion.

extended sound header A sound header that
can describe monophonic and stereo
sampled-sound data, but not compressed sound
data. Defined by the ExtSoundHeader data
type. See also compressed sound header,
sampled sound header.

FIFO See first-in, first-out.

Finder sound file A file of file type 'sfil'
containing a sound resource. If a user opens a
Finder sound file, the Finder plays the sound
resource contained within it. See also sound file,
sound resource.

first-in, first-out (FIFO) Characteristic of a
queue in which the first item put into the queue
becomes the first item to be taken out of it.
Compare last-in, first out.

frequency The number of times per second
that an action occurs. An action’s frequency is
measured in cycles per second, or hertz. See
also period.

gain The ratio of the output volume to the
input volume. See also automatic gain control.

hertz (Hz) A unit of frequency, equal to one
cycle per second.

instrument A sampled sound played at varying
rates to produce a number of different pitches or
notes. See also voice.

interleaving The technique of combining two
or more channels of sound data by alternating
small pieces of the data in each channel into a
single data stream. See also sample frame.

interpolation The process of generating sample
points between two given sample points. See also
linear interpolation.

kilohertz (kHz) A unit of frequency, equal to
one thousand cycles per second.

last-in, first out (LIFO) Characteristic of a
queue in which the last item put into the queue
becomes the first item to be taken out of it.
Compare first-in, first out.

LIFO See last-in, first-out.

linear interpolation A form of interpolation
that uses the calculated mean of two sample
points as the interpolated sample point. Compare
drop-sample conversion.

MACE See Macintosh Audio Compression
and Expansion.

Macintosh Audio Compression and Expansion
(MACE) A set of Sound Manager routines that
allow your application to compress and expand
audio data.

G L O S S A R Y

GL-4

megahertz (MHz) A unit of frequency, equal to
one million cycles per second.

microsecond A unit of time equal to one
millionth of a second. Abbreviated µs.

MIDI See Musical Instrument Digital
Interface.

MIDI Manager The part of the Macintosh
system software that controls the flow of MIDI
data and commands through a MIDI interface.

MIDI note value An integer that is defined to
correspond to a frequency specified in hertz that
is associated with a musical note.

millisecond A unit of time equal to one
thousandth of a second. Abbreviated ms.

modulation of speech See pitch modulation.

monophonic sound. Sound consisting of a single
channel. Compare stereo sound.

multichannel sound See stereo sound.

Musical Instrument Digital Interface
(MIDI) A standard protocol for sending
audio data and commands to digital devices.

noncompressed sound data Sampled-sound
data that has not been subjected to audio
compression or that has been decompressed.

note See frequency, MIDI note value.

offset-binary encoding A method of digitally
encoding sound that represents the range of
amplitude values as an unsigned number, with
the midpoint of the range representing silence.
For example, an 8-bit sound stored in
offset-binary format would contain sample
values ranging from 0 to 255, with a value of 128
specifying silence (no amplitude). Samples
in Macintosh sound resources are stored in
offset-binary form. See also two’s
complement encoding.

packet A unit of compressed sampled-sound
data. One or more packets make up a sample
frame of compressed sampled-sound data. See
also sample point.

period The time elapsed during one complete
cycle. See also frequency.

phoneme A speech sound in a language that
a speaker of the language psychologically
considers to be a single unit. A single phoneme
may have several allophones.

phoneme callback procedure An
application-defined procedure that is executed
whenever the Speech Manager is about to
pronounce a phoneme.

phoneme descriptor record A structure that
contains information about all phonemes defined
for the current synthesizer. Defined by the
PhonemeDescriptor data type.

phoneme information record A structure that
contains information about a phoneme. Defined
by the PhonemeInfo data type.

phonemic representation of speech The
representation of speech using a series of
phonemes.

phonetic representation of speech The
representation of speech using a series of
allophones.

pitch A listener’s subjective interpretation of a
sound’s frequency. See also speech pitch.

pitch modulation A fixed-point value defined
on a scale from 0.000 to 100.000 that indicates the
maximum amount by which the frequency of
generated speech may deviate from that
corresponding to the speech pitch in either
direction. A value of 0.000 corresponds to a
monotone.

play from disk The ability of the Sound
Manager to play sampled sounds stored on disk
(either in a sound file or a sound resource)
continuously without audible gaps.

playthrough A feature of sound recording that
allows the user to hear, through the speaker of a
Macintosh computer, the sound being recorded.

polyphonic sound See stereo sound.

pronunciation dictionary A list of words and
their pronunciations, installed in a speech
channel to override default speech synthesizer
pronunciations of words.

pronunciation dictionary resource A
pronunciation dictionary stored in a resource of
type 'dict'.

G L O S S A R Y

GL-5

prosody The rhythm, modulation, and stress
patterns of speech.

rate See sample rate, speech rate.

real-time expansion Audio expansion of a
sound that occurs while the sound is playing.
Compare buffered expansion.

recording The process of creating an analog or
digital representation of a sound. See also
sampling.

sample See sample point.

sampled sound Any sound defined using
sampled-sound data.

sampled-sound data Any set of values that
represent the sample points of a sampled sound.
The values can be in either offset-binary format
or two’s complement format.

sampled sound header A sound header that
can describe monophonic, noncompressed
sampled-sound data. Defined by the
SoundHeader data type. See also compressed
sound header, extended sound header.

sample frame An interleaved set of sample
points (for noncompressed sampled-sound data)
or packets (for compressed sampled-sound data).

sample point A value representing the
amplitude of sampled-sound data at a particular
instant. One or more sample points make up a
sample frame of noncompressed sampled-sound
data. See also packet.

sample rate The rate at which samples are
recorded. Sample rates are usually measured in
kilohertz or megahertz.

sampling The process of representing a sound
by measuring its amplitude at discrete points in
time. See also recording.

sifter See sound component.

sound Anything perceived by the organs of
hearing. See also frequency, pitch, stereo sound,
timbre.

sound channel A path that sound data
traverses from an application to the sound
output device. A sound channel is associated
with a queue of sound commands and with other
information about the audio characteristics of the
sound data. See also sound channel record.

sound channel record A structure that
represents a sound channel. Defined by the
SndChannel data type.

sound channel status record A structure whose
address you pass to the SndChannelStatus
function. Defined by the SCStatus data type.

sound command An instruction to produce
sound, modify sound, or otherwise assist in the
overall process of sound production. See also
sound command record.

sound command record A structure that
describes a sound command. Defined by the
SndCommand data type.

sound component A component that works
with the Sound Manager to manipulate audio
data or to communicate with a sound output
device. See also audio component, compression/
decompression component, sound output
device component, utility component.

sound component chain A chain of sound
components that links a sound source to a sound
output device.

sound component data record A structure that
specifies information about the data stream
generated by a sound component. Defined by the
SoundComponentData data type.

sound component information selector A
value of type OSType that indicates the kind
of information a sound component should return
or modify.

Sound control panel A control panel that
allows the user to specify basic sound-related
settings and preferences. See also Alert Sounds
control panel, Sound In control panel, Sound
Out control panel, Volumes control panel.

sound data See sampled-sound data, sound,
square-wave data, wave-table data.

G L O S S A R Y

GL-6

sound double buffer header record A structure
that you use to manage your own
double-buffering scheme. Defined by the
SndDoubleBufferHeader and
SndDoubleBufferHeader2 data types.

sound double buffer record A structure that
you use to manage your own double-buffering
scheme. Defined by the SndDoubleBuffer
data type.

Sound Driver A device driver on the original
Macintosh computers that provided sound
generation. The Sound Driver is now obsolete; it
has been replaced by the Sound Manager.

sound file A file of file type 'AIFF' or 'AIFC'
that can be used to store sampled-sound data and
information about that data. See also Audio
Interchange File Format, Audio Interchange File
Format Extension for Compression, chunk,
Finder sound file, sound resource.

sound header A data structure (usually stored
in a sound resource) that contains information
about a buffer of sampled-sound data. See also
compressed sound header, extended sound
header, sampled sound header.

Sound In control panel A subpanel of the
Sound control panel that allows the user to select
a sound input device. See also Alert Sounds
control panel, Sound Out control panel,
Volumes control panel.

sound information list A structure that
specifies the information associated with a sound
component information selector. Defined by the
SoundInfoList data type.

sound input device Any hardware device
(such as a microphone or audio digitizer) that
records sound.

sound input device driver A standard
Macintosh device driver used by the Sound
Manager to manage communication between
applications and a sound input device.

sound input device information selector A
variable of type OSType that is used to specify
the type of information that an application or the
Sound Input Manager is requesting from a sound
input device driver.

Sound Input Manager The part of the
Macintosh system software that controls the
recording of sound from sound input devices.

sound input parameter block A parameter
block that contains information about sound
recording. Defined by the SPB data type.

Sound Manager The part of the Macintosh
system software that manages the production
and manipulation of sounds on Macintosh
computers.

Sound Manager status record A structure filled
in by the SndManagerStatus function, which
gives information on the current CPU loading
caused by all open channels of sound. Defined by
the SMStatus data type.

Sound Out control panel A subpanel of the
Sound control panel that allows the user to select
a sound output device. See also Alert Sounds
control panel, Sound In control panel, Volumes
control panel.

sound output device Any hardware device
(such as a speaker or sound synthesizer) that
produces sound.

sound output device component A sound
component that communicates with a sound
output device. See also compression/
decompression component and utility
component.

sound parameter block A parameter block that
describes the source data to be modified or sent
to a sound output device. Defined by the
SoundParamBlock data type.

sound recording dialog box The dialog box
displayed by the Sound Input Manager when
you call SndRecord or SndRecordToFile.

sound resource A resource of resource type
'snd ' that can be use to store sound
commands and sound data. See also sound file.

sound resource header The portion of a sound
resource that describes the format of the sound
resource.

sound source The origin of a specific channel of
sound.

source See sound source.

G L O S S A R Y

GL-7

source component The sound component that
provides input for a particular component.

source ID A unique 4-byte identifier created by
the Apple Mixer to refer to a single chain of
sound components linking a sound source to the
current sound output device. Defined by the
SoundSource data type.

speech The process or product of speaking. See
also sound, synthesized speech.

speech amplitude See speech volume.

speech attribute A setting defined for a voice
or a class of voices that affects the quality of
speech generated by the Speech Manager. Speech
attributes include speech pitch, speech rate,
pitch modulation, speech volume.

speech channel The data structure used by the
Speech Manager to store settings related to
speech generation. All speech must be generated
through a speech channel. Defined by the
SpeechChannel data type.

speech channel control flags Constants that
enable special Speech Manager features
associated with speech generation.

speech command See embedded speech
command.

speech-done callback procedure An
application-defined procedure that is executed
when the Speech Manager completes speaking a
buffer of input text.

speech error information record A structure
that contains information about which Speech
Manager errors occurred while processing a text
buffer on a given speech channel. Defined by the
SpeechErrorInfo data type.

speech extension data record A structure
passed to GetSpeechInfo or SetSpeechInfo
to get or set synthesizer information. Defined by
the SpeechXtndData data type.

speech information selector A variable of type
OSType that is used to specify the type of
information that an application or the Speech
Manager is requesting from a speech synthesizer.

Speech Manager The part of the Macintosh
system software that provides a standardized
method for Macintosh applications to generate
synthesized speech.

speech modulation See pitch modulation.

speech pitch A fixed-point value on a scale
from 0.000 to 100.000 that indicates the average
(or baseline) frequency a speech synthesizer
should use in generating synthesized speech. A
value of 60.000 corresponds to Middle C on a
conventional piano keyboard. See also pitch
modulation.

speech rate A fixed-point value specifying the
approximate number of words per minute that a
speech synthesizer should use in generating
speech.

speech status information record A structure
that contains information about the status of a
speech channel. Defined by the
SpeechStatusInfo data type.

speech synthesizer The executable code that is
linked to a speech channel and manages all
communication between the Speech Manager
and the Sound Manager.

speech version information record A structure
that contains information about the speech
synthesizer currently being used. Defined by the
SpeechVersionInfo data type.

speech volume A fixed-point value on a scale
from 0.000 to 1.000 that indicates the average
amplitude a speech synthesizer should use in
generating synthesized speech. A value of 0.000
corresponds to the lowest possible volume, and a
value of 1.000 corresponds to the highest.

square-wave data Any set of values that
represent a sound by its frequency, amplitude,
and duration.

stereo sound Sound that simultaneously
consists of two or more channels. Also called
polyphonic sound or multichannel sound. Compare
monophonic sound.

synchronization callback procedure An
application-defined procedure that is executed
whenever the Speech Manager encounters an
embedded synchronization speech command in a
buffer of input text.

G L O S S A R Y

GL-8

synchronous sound play A playing of sound
by the Sound Manager that prevents other code
from executing until the sound is done playing.
Compare asynchronous sound play.

synthesized speech The product of converting
nonaural tokens (such as written or
digitally-stored words or phonemes) into speech.
See also Speech Manager.

synthesizer See speech synthesizer.

system alert sound A sound resource stored in
the System file that is played whenever an
application or other executable code calls the
SysBeep procedure.

text The written representation of language.

text-done callback procedure An
application-defined procedure that is executed
when the Speech Manager has finished
processing (although not necessarily speaking) a
buffer of input text.

text-to-speech See synthesized speech.

tick A unit of time equal to one sixtieth of
a second.

timbre The tone of a sound, which can range
from clear to buzzing.

two’s complement encoding A system for
digitally encoding sound that stores the
amplitude values as a signed number—silence is
represented by a sample with a value of 0. For
example, with 8-bit sound samples, two’s
complement values would range from –128 to
127, with 0 meaning silence. The Audio
Interchange File Format (AIFF) used by the
Sound Manager stores samples in two’s
complement form. Compare offset-binary
encoding.

uncompressed sound data See decompressed
sound data, noncompressed sound data.

utility component A sound component that
performs some modification on sound data and
does not communicate directly with any sound
output device. See also sound component, sound
output device component.

version record A structure that contains
version information. Defined by the
NumVersion data type.

voice (1) The set of parameters that specify a
particular quality of synthesized speech. A voice
is designed to work with a particular speech
synthesizer. (2) A sampled sound played at
varying rates to produce a number of different
pitches or notes. See also instrument.

voice description record A structure that
contains information about a voice. Defined by
the VoiceDescription data type.

voice file information record A structure that
contains information about the file in which a
voice is stored and the resource ID of the voice
within that file. Defined by the VoiceFileInfo
data type.

voice specification record A structure that
provides a unique specification that you must
use to obtain information about a voice. Defined
by the VoiceSpec data type.

volume See amplitude, speech volume.

Volumes control panel A subpanel of the
Sound control panel that allows the user to select
volumes. See also Alert Sounds control panel,
Sound In control panel, Sound Out control
panel.

VOX recording A feature that allows sound
recording only when the sound to be recorded
exceeds a certain amplitude.

VOX stopping A feature that stops sound
recording when the sound falls below a certain
amplitude.

wave amplitude The height of a sound wave at
an instant of time. Compare amplitude.

waveform The shape of a wave (a graph of a
wave’s amplitude over time).

wavelength The extent of one complete cycle of
a wave.

wave table A sequence of wave amplitudes
measured at fixed intervals.

wave-table data Any set of values that
represent a sound by a wave table.

word callback procedure An
application-defined procedure that is executed
whenever the Speech Manager is about to speak
a word.

IN-1

Index

A

A5 register
and Sound Manager callback procedures 2-48
and Speech Manager callback procedures 4-20 to

4-21, 4-82
abbreviation entries 4-92
action flags 5-27
'adio' resource type 6-5
AGC. See automatic gain control
AIFF-C files

and AIFF files 1-19
creating 1-41
defined 1-18 to 1-20
file type of 2-87
and Finder sound files 1-19
format of 2-87 to 2-89
playing sounds in 1-19, 1-26
recording sounds to 1-31
sample frames in 2-89
sample of 2-88
specifications of 2-82 to 2-89
storing sounds in 1-40 to 1-41, 2-9, 3-30

AIFF files
and AIFF-C files 1-19
creating 1-41
defined 1-18 to 1-20
file type of 2-66, 2-87
and Finder sound files 1-19
format of 2-81 to 2-89
playing sounds in 1-19, 1-26
recording sounds to 1-31
sample frames in 2-89
specifications of 2-82, 2-89
storing sounds in 1-40 to 1-41, 2-9, 3-30

alert sounds. See system alert sounds
Alert Sounds control panel 1-16, 1-24, 5-24
allophones 4-33
ampCmd command 2-27, 2-96
amplitude of sounds 2-8, 2-27
amplitude of speech. See speech volume
Annotation Chunks 2-82
Apple Mixer. See Apple Mixer component
Apple Mixer component

closing 5-34 to 5-35
introduced 1-13 to 1-14, 5-6 to 5-7
opening 5-33 to 5-34

Apple Sound Chip (ASC) 1-10, 2-36
Application Specific Chunks 2-82

ASC. See Apple Sound Chip
asynchronous sound play 2-46 to 2-56, 2-62
audio components 6-3 to 6-17

See also sound components
creating 6-5 to 6-7
data structures for 6-8 to 6-9
defined 6-3
getting information about 6-14
getting mute states 6-11 to 6-12
getting volumes 6-10
opening resource files 6-8
resetting 6-13
routines defined by 6-9 to 6-14
run-time environment 6-8
selectors 6-7 to 6-8
setting mute states 6-12 to 6-13
setting volumes 6-11
subtypes of 6-6
types of 6-6
writing 6-5 to 6-8

audio compression
determining type of 5-23
formats for storage 1-18
introduced 1-5, 1-7 to 1-8
using MACE routines 2-14 to 2-17, 2-66 to 2-68,

2-142 to 2-145
and versions of the Sound Manager 1-14

audio data
See also sampled-sound data, sounds, square-wave

data, wave-table data
getting from the source component 5-40
mixing 5-6 to 5-7
setting the output data type 5-41 to 5-42
types of 5-26

audio decompression. See audio expansion
audio expansion

and audio codecs 1-7
introduced 1-5
using MACE routines 2-14 to 2-17, 2-66 to 2-68,

2-142 to 2-147
and versions of the Sound Manager 1-14

AudioGetInfo function 6-14
AudioGetMute function 6-11 to 6-12
AudioGetVolume function 6-10
AudioInfo data type 6-9
audio information records 6-9
Audio Interchange File Format (AIFF). See AIFF files
Audio Interchange File Format for Compression

(AIFF-C). See AIFF-C files

I N D E X

IN-2

audio ports 6-3 to 6-5
Audio Recording Chunks 2-82
AudioSelection data type 2-53, 2-100
audio selection records 2-53, 2-100
AudioSetMute function 6-12 to 6-13
AudioSetToDefaults function 6-13
AudioSetVolume function 6-11
AudioVision 14 Display 6-3 to 6-5, 6-6
Author Chunks 2-82
automatic gain control

defined 3-4
status of 3-20

availableCmd command 2-95

B

base frequencies 2-105, 2-107
baseline pitch. See speech pitch
baseline pitch embedded speech command 4-27
bilingual speech 1-22, 4-9
BlockMove procedure, using in doubleback

procedures 2-72
bufferCmd command

described 2-97
examples of use 2-57, 2-61 to 2-62
using for compressed sound samples 2-61, 2-62

buffered expansion 2-15
buffers. See double buffers
bundle bit 5-11, 6-7
busy loops, creating 4-14
byte recording values, converting to milliseconds 3-52

C

callBackCmd command
described 2-94
example of use 2-48
using to synchronize sound with other actions 2-51

callback procedures
defined 4-19
installing 2-48
and Sound Manager 2-46 to 2-51, 2-152 to 2-153
and Speech Manager 4-10, 4-19 to 4-23, 4-82 to 4-89

channels. See sound channels, speech channels
character mode embedded speech command 4-26
char embedded speech command selector 4-26
ChunkHeader data type 2-83, 2-113
chunk header record 2-83
chunk headers 2-113
chunks (in AIFF and AIFF-C files)

Annotation 2-82

Application Specific 2-82
Audio Recording 2-82
Author 2-82
Comments 2-82
Common 2-82, 2-85 to 2-87, 2-115 to 2-117
Copyright 2-82
data types used to describe 2-83
defined 2-81
determining size of 2-64
Extended Common Chunks 2-85, 2-115 to 2-117
finding 2-62 to 2-66
Form 2-82, 2-83 to 2-84, 2-113 to 2-114
Format Version 2-82, 2-84 to 2-85, 2-114
IDs for 2-98 to 2-99
Instrument 2-82
list of types 2-82
local 2-84, 2-114
Marker 2-82
MIDI Data 2-82
modifying 2-88
Name 2-82
order of 2-88
Sound Accelerator 2-82
Sound Data 2-82, 2-87, 2-117 to 2-118
structure of 2-82 to 2-83

CloseMixerSoundComponent function 5-34 to 5-35
cmnt embedded speech command selector 4-26
CmpSoundHeader data type 2-108 to 2-111
codecs. See compression/decompression components
command delimiters

changing with an embedded speech command 4-26
changing with a speech information selector 4-40
default 4-23, 4-40, 4-54
defined 4-23, 4-26
specification of 4-54

commands. See embedded speech commands, sound
commands

comment embedded speech command 4-26
Comments Chunks 2-82
CommonChunk data type 2-85, 2-115
Common Chunks 2-82, 2-85 to 2-87, 2-115
Comp3to1 procedure 2-66, 2-143 to 2-144
Comp6to1 procedure 2-66, 2-144 to 2-145
completion routines

and Sound Input Manager 3-9, 3-54 to 3-55
and Sound Manager 2-47, 2-52, 2-151 to 2-152

ComponentDescription data type 5-10, 6-6
Component Manager

and audio components 6-3
and sound components 5-3
and Speech Manager 1-20, 4-5

ComponentResource data type 5-9 to 5-11, 6-5 to 6-7
components. See audio components, sound components
component selectors 5-12 to 5-14, 6-7 to 6-8
compressed sound header records 2-108 to 2-111

I N D E X

IN-3

compression. See audio compression
compression/decompression components

(codecs) 1-7, 1-14 to 1-15, 5-3, 5-6, 5-30
compression IDs 2-110
CompressionInfo data type 5-32
compression information records 5-32
compression types 2-86, 2-116, 2-117
computer-generated speech. See Speech Manager
ContainerChunk data type 2-84, 2-114
container chunks. See Form Chunks
ContinueSpeech function

described 4-62 to 4-63
minimizing latency of speech generation with 4-52,

4-59
continuing paused speech 4-18, 4-62 to 4-63
continuous play from disk. See play-from-disk routines
continuous recording

defined 3-5
supporting 3-17

continuous speech 4-51, 4-58
Control calls 3-5, 3-13 to 3-15
Copyright Chunks 2-82
CountVoices function 4-64 to 4-65
CPU loading values 2-40
cultural values, associated with sounds 1-24
current sound input device 1-16
current sound output device 1-10

D

DAC. See digital-to-analog convertor
data. See also audio data

sampled-sound 2-9 to 2-11
square-wave 2-7 to 2-8
wave-table 2-8

data format flags 5-28 to 5-29
data offset bit in sound commands 2-75
decompression. See audio expansion
delimiter. See command delimiter
delimiter embedded speech command 4-26
DelimiterInfo data type 4-54
delimiter information records 4-54
Device Manager, and sound input device drivers 3-13

to 3-17
'dict' atom type 4-91
dictionaries. See pronunciation dictionaries
Dictionary Manager 4-37
'dict' resource type 4-36, 4-89 to 4-93
digital signal processor (DSP) 1-6, 1-8, 1-10, 5-5
digital-to-analog converter (DAC) 1-9
DisposeSpeechChannel function 4-70 to 4-71
dlim embedded speech command selector 4-26
document annotations, audio 1-24

documents, and Speech Manager callback
procedures 4-20

doubleback procedures
defined 2-72 to 2-73, 2-153 to 2-154
limitations of 2-72
and sound double buffer header records 2-112
syntax of 2-72
writing 2-72 to 2-73

double buffering 1-19
double buffers 2-68 to 2-73

managing 2-147 to 2-148
setting up 2-70 to 2-72

drop-sample conversion 2-92
DSP. See digital signal processor
duration of sounds 2-7, 3-6

E

EASC. See Enhanced Apple Sound Chip
Edit menu commands, and alert sounds list 1-16
embedded speech commands 4-23 to 4-30

changing delimiters temporarily 4-54
deemphasizing words 4-32
defined 4-23
emphasizing words 4-31
errors for 4-30
examples of use 4-30 to 4-32
format of parameters 4-24
hexadecimal numbers in 4-24
list of 4-26 to 4-29
obtaining errors involving 4-20
raising the speech pitch 4-32
specifying relative values 4-24
synchronization messages in 4-20
syntax of 4-24 to 4-30
writing comments in 4-26

emphasis embedded speech command 4-26
emph embedded speech command selector 4-26
emptyCmd command 2-30
ending prosody

defined 4-9
disabling 4-51, 4-58

Enhanced Apple Sound Chip (EASC) 1-10
enhanced Sound Manager 1-14
entry types 4-92
error callback procedures 4-19 to 4-20, 4-86 to 4-87
Exp1to3 procedure 2-66, 2-145 to 2-146
Exp1to6 procedure 2-66, 2-146 to 2-147
expanding sounds 2-145 to 2-147
expansion. See audio expansion
ExtCommonChunk data type 2-85, 2-116
Extended Common Chunks 2-85, 2-115 to 2-117
extended sound header records 2-106 to 2-108

I N D E X

IN-4

extended sound headers 2-106 to 2-108
extensions, installing sound input device drivers

from 3-13
ExtSoundHeader data type 2-106

F

file types
'AIFC'. See AIFF-C files
'AIFF'. See AIFF files
'sfil' 1-19

Finder sound files 1-19, 1-23
flushCmd command

described 2-94
sent by SndDisposeChannel function 2-24, 2-130
using to flush sound channels 2-29

format 1 'snd ' resources 1-18, 2-74, 2-75 to 2-80
format 2 'snd ' resources 1-18, 2-74, 2-80 to 2-81
FormatVersionChunk data type 2-84, 2-114
Format Version Chunks 2-82, 2-84 to 2-85, 2-114
format version embedded speech command 4-29
Form Chunks 2-82, 2-83 to 2-84, 2-113 to 2-114
frames of sampled sound 2-10
freqCmd command

calculating proper playback rate for 2-105
compared to freqDurationCmd 2-41
described 2-96

freqDurationCmd command
calculating proper playback rate for 2-105
compared to freqCmd 2-41
described 2-95
using to play frequencies 2-41

frequencies
as MIDI note values 2-42, 4-7
defined 2-7
distinguished from speech pitches 4-8
playing 2-41 to 2-46
playing for indefinite duration 2-41

G

gain 3-20
Gestalt function

and Sound Input Manager 1-27 to 1-28, 3-13, 3-17 to
3-18

and Sound Manager 1-15, 2-33 to 2-34, 2-35 to 2-37,
2-90 to 2-91

and Speech Manager 1-31 to 1-32, 4-12 to 4-13
getAmpCmd command 2-28, 2-96
GetDefaultOutputVolume function 2-32, 2-141 to

2-142

GetIndVoice function 4-65 to 4-66
getRateCmd command 2-26, 2-97
GetSoundHeaderOffset function 2-138 to 2-139
GetSoundPreference function 5-36
GetSpeechInfo function 4-77 to 4-78
GetSpeechPitch function 4-7, 4-75 to 4-76
GetSpeechRate function 4-73 to 4-74
GetSysBeepVolume function 2-32, 2-140
GetVoiceDescription function 4-66 to 4-67
GetVoiceInfo function 4-67 to 4-68
getVolumeCmd command 2-31, 2-96

H

hertz 2-16, 4-7
hexadecimal numbers, in embedded speech

commands 4-24
hissing sound, eliminating during real-time

expansion 2-17
human interface guidelines. See user interface

guidelines
HyperCard, and format 2 'snd ' resources 2-74

I

'ICON' resource type 5-9, 6-6
initialization parameters, for sound channels 2-22 to

2-23, 2-91 to 2-92
inpt embedded speech command selector 4-27
input mode embedded speech command 4-27
Instrument Chunks 2-82
instruments, installing into sound channels 2-10
interleaving of sample points or packets 2-10
interpolation. See linear interpolation
interrupt routines, of Sound Input Manager 3-10, 3-55

to 3-56
interrupt time

Sound Input Manager completion routines at 3-55
Sound Manager callback procedures at 2-49, 2-153
Sound Manager completion routines at 2-152
Sound Manager doubleback procedures at 2-72,

2-154
sound recording at 3-16
Speech Manager callback procedures at 4-20, 4-82

IODone function, and sound input device drivers 3-16

I N D E X

IN-5

J

JIODone global jump vector, and sound input device
drivers 3-16

K

kPreflightThenPause flag bit 4-52, 4-59
kUseOptionalOutputDevice constant 2-128

L

LeftOverBlock data type 2-119
leftover blocks 2-119
lexical stress symbols 4-34
linear interpolation 2-24, 2-92
loadCmd command 2-95
local chunks 2-84
localization, sounds and 1-24
looping sounds 2-45 to 2-46

M

MACE 2-14 to 2-17, 2-66
testing for version 2-133 to 2-134

MACEVersion function 2-35, 2-133 to 2-134
Macintosh Audio Compression and Expansion

(MACE). See MACE
MakeVoiceSpec function 4-64
Marker Chunks 2-82
menu bar, blinking of 2-41
MIDI (Musical Instrument Digital Interface) 1-6
MIDI Data Chunks 2-82
MIDI Manager 1-6
MIDI note values 4-7

converting to hertz values 2-43
defined 2-7
introduced 2-42
table of 2-43

millisecond recording values, converting to bytes 3-51
to 3-52

modifiers 2-149 to 2-151
modulation of speech. See pitch modulation
'movr' creator type 1-19
multichannel sound. See stereo sound
multilingual speech 1-22, 4-9
Musical Instrument Digital Interface. See MIDI

N

Name Chunks 2-82
NewSpeechChannel function 4-69 to 4-70
nmbr embedded speech command selector 4-27
notes. See frequencies, MIDI note values
NuBus expansion cards, for audio hardware

enhancement 1-10
nullCmd command 2-94
number mode embedded speech command 4-27
NumVersion data type 2-118

O

offset-binary encoding 2-11
OpenMixerSoundComponent function 5-7, 5-33 to 5-34
output rate 2-16

P

packets 2-11, 2-67
pad bytes, in AIFF and AIFF-C files 2-87
param2 field 2-75
pauseCmd command 2-29, 2-94
PauseSpeechAt function 4-61 to 4-62
pausing speech 4-18 to 4-19, 4-61 to 4-62
pbas embedded speech command selector 4-27
phoneme callback procedures 4-87 to 4-88
PhonemeDescriptor data type 4-53
phoneme descriptor records 4-53
PhonemeInfo data type 4-52
phoneme information records 4-52 to 4-53
phonemes

conversion from text 4-32, 4-79 to 4-80
getting information about 4-34
lengthening duration of 4-35
shortening duration of 4-35
symbols for 4-33 to 4-34

phonemic representation of speech 4-32 to 4-34
pitch

changing 2-10
defined 2-7

pitch modulation
allowable range 4-8
defined 4-8
valid ranges of 4-9

pitch modulation embedded speech command 4-28
play-from-disk routines

introduced 1-19
testing for availability of 2-35 to 2-37

I N D E X

IN-6

playing frequencies 2-41 to 2-46
choosing a data type 2-41
of indefinite duration 2-41

playing sampled sounds
at arbitrary frequencies 2-43
with bufferCmd 2-61 to 2-62

playing selections of sound 2-53
playthrough feature 3-5
pmod embedded speech command selector 4-28
polyphonic sound. See stereo sound
preconfiguring sound channels 2-131, 2-132
preferences

restoring 5-36
storing 5-35 to 5-36

pronunciation dictionaries 4-36 to 4-39, 4-89 to 4-93
creating temporary dictionaries 4-36
defined 4-36
and Dictionary Manager 4-37
entries 4-37 to 4-39
entry codes 4-92
example of 4-38
field type codes 4-93
format of 4-89 to 4-93
format version 4-91
installing 4-37, 4-80 to 4-82
order of entries 4-38
resource headers 4-39, 4-91
resources 4-36 to 4-39, 4-89 to 4-93
storing in a file’s data fork 4-90
uses of 4-37
using alternative storage formats 4-90

pronunciation entries 4-92
prosodic control symbols 4-34 to 4-36
prosody 4-9, 4-34 to 4-36
punctuation marks, effect on prosody 4-35 to 4-36

Q

quietCmd command 2-94
sent by SndDisposeChannel function 2-24, 2-130
using with freqDurationCmd 2-41

R

rate. See sample rate, speech rate
rateCmd command 2-26, 2-97
rate embedded speech command selector 4-28
Read calls 3-5, 3-13 to 3-16
real-time expansion 2-15, 2-17
recording sounds 3-6 to 3-9

described 1-28 to 1-31, 1-38 to 1-41, 3-28 to 3-30

directly from device 3-6 to 3-9, 3-33 to 3-38
effect of interruption on sound input device

driver 3-15
in stereo 3-16
introduced 1-15 to 1-17
specifying duration 3-6
without standard interface 3-4

reInitCmd command 2-23, 2-94
ReleaseResource function, and sound resources 2-25
request parameter blocks, passed to sound input

device drivers 3-13
reset embedded speech command 4-28
ResourceSpec data type 5-9
resource types
'adio' 6-5
'dict' 4-36, 4-89 to 4-93
'ICON' 5-9, 6-6
'sift' 5-9
'snd '. See 'snd ' resource type, sound resources
'STR ' 5-9, 6-6
'thng' 5-8 to 5-11, 6-5 to 6-7
'ttsd' 4-91
'vers' 2-35, 2-118

restCmd command 2-96
resumeCmd command 2-29, 2-94
resuming speech 4-62 to 4-63
rset embedded speech command selector 4-28

S

sample. See sample point
sampled-sound data 2-9 to 2-11

computing length of 2-46
format of 2-10 to 2-11
modifying during recording 3-55 to 3-56
obtaining data without header information 3-4
packet sizes for compressed data 2-67
setting up header information for 3-4

sampled sounds. See also sounds
changing frequency of 2-26
compressing. See compressing sounds
disk space requirements for 2-14
expanding. See expanding sounds
input buffer size 3-6
installing as voices in channels 2-44
introduced 2-9 to 2-11
multiple channels of 1-13 to 1-14, 2-14
number of commands used in 2-21
output buffer size required 2-66 to 2-67
pausing 2-27
playing

asynchronously 2-46, 2-50, 2-52 to 2-53

I N D E X

IN-7

continuously 2-45 to 2-46
play from disk 1-18 to 1-20, 1-26 to 1-27, 2-52 to

2-53
selections of 2-53
using low-level routines 2-61 to 2-62

recording 1-15 to 1-17
storing 1-18 to 1-20, 2-9, 3-44 to 3-46
synchronizing 2-31

sample frames 2-10
sample points 2-10 to 2-11
sample rates 2-16, 2-97, 2-105, 2-107, 2-109
sample routines
MyAdjustSpeechAttributes 4-16 to 4-17
MyAudioDispatch 6-7
MyCallback 2-48
MyCanPlayMultiChannels 2-36
MyChannelIsPaused 2-39
MyCheckSndChan 2-49
MyCleanUpTrackedChan 2-55 to 2-56
MyCompressBy3 2-67
MyCreateSndChannel 2-20
MyDBSndPlay 2-70 to 2-72
MyDisposeSndChannel 2-25
MyDoLoopEntireSound 2-45
MyDoubleBackProc 2-73
MyFindChunk 2-63 to 2-64
MyGetChunkData 2-65
MyGetComponentRoutine 5-14 to 5-16
MyGetDeviceName 3-12
MyGetDeviceSettings 3-12
MyGetNumChannels 2-40
MyGetSoundHeader 2-60
MyGetSoundHeaderOffset 2-58 to 2-59
MyHalveFreq 2-26
MyHasEnhancedSoundManager 2-35
MyHasPlayFromDisk 2-37
MyHasSoundInput 1-27
MyHasSpeech 1-32
MyHasStereo 2-34
MyInstallBoysVoice 4-15
MyInstallCallback 2-48
MyInstallSampledVoice 2-44
MyInstallWordCallback 4-21 to 4-22
MyLowLevelSampledSndPlay 2-62
MyPauseAndContinueSpeech 4-18 to 4-19
MyPlayFrequencyOnce 2-42
MyPlaySampledSound 2-57
MyPlaySndResource 1-26
MyPlaySoundFile 1-27
MyRecordSnd 3-7 to 3-8
MyRecordSndResource 1-29 to 1-30
MyRecordSoundFile 1-31
MyRecordThruDialog 1-28
MySetAmplitude 2-27
MySetTrackChanDispose 2-55

MySetupCallbacks 4-21
MySetVolume 2-32
MySoundCompletionRoutine 2-52
MySoundComponentGetInfo 5-19 to 5-21
MySoundComponentInitOutputDevice 5-17
MySpeakStringResource 1-32
MySpeakStringResourceSync 1-33
MySpeechMgrPresent 4-12 to 4-13
MyStartPlaying 2-50
MyStopPlaying 2-50
MyStopSpeech 1-34
MySurfDispatch 5-12 to 5-14
MySync1Chan 2-30
MyUseDictionary 4-37 to 4-38
MyUseSpeechChannel 4-13 to 4-14
MyWordCallback 4-22

Scrapbook, representation of sounds in 1-23
SCStatus data type 2-38, 2-101
SetDefaultOutputVolume function 2-32, 2-142
SetSoundPreference function 5-35 to 5-36
SetSpeechInfo function 4-78 to 4-79
SetSpeechPitch function 4-76
SetSpeechRate function 4-74 to 4-75
SetSysBeepVolume function 2-32, 2-140 to 2-141
SetupAIFFHeader function 3-46 to 3-48
SetupSndHeader function 3-9, 3-44 to 3-46
'sfil' file type 1-19
sifters. See sound components
'sift' resource type 5-9
silence embedded speech command 4-28
Simple Beep 1-25, 2-76 to 2-77
slnc embedded speech command selector 4-28
SMStatus data type 2-39, 2-102
SndAddModifier function 2-150 to 2-151, 5-4
SndChannel data type 2-13, 2-103 to 2-104
SndChannelStatus function 2-37, 2-46, 2-135 to 2-136
SndCommand data type 2-12, 2-99 to 2-100
SndControl function 2-134 to 2-135
SndDisposeChannel function 2-129 to 2-130

introduced 2-24
and quietCmd 2-29

SndDoCommand function 2-130 to 2-131
introduced 2-12
and other low-level routines 2-17

SndDoImmediate function 2-131 to 2-132
introduced 2-12
issuing flushCmd with 2-29
issuing quietCmd with 2-28
and other low-level routines 2-17

SndDoubleBuffer data type 2-69, 2-112
SndDoubleBufferHeader2 data type 2-111
SndDoubleBufferHeader data type 2-69, 2-111
SndGetSysBeepState procedure 2-137

I N D E X

IN-8

SndManagerStatus function
described 2-136 to 2-137
example of use 2-40
introduced 2-39

SndNewChannel function
described 2-127 to 2-129
examples of use 2-20 to 2-22
introduced 2-14
specifying an initialization parameter 2-22

SndPauseFilePlay function 2-53, 2-125 to 2-126
SndPlayDoubleBuffer function 2-68, 2-147 to 2-148
SndPlay function

described 1-35 to 1-36, 2-121 to 2-122
examples of use 1-25, 3-9
playing compressed sound resources with 2-15, 2-66
using to play Finder sound files 1-19

SndRecord function
described 1-39 to 1-40, 3-28 to 3-29
example use of 1-28 to 1-29
introduced 1-17

SndRecordToFile function
described 1-40 to 1-41, 3-30
introduced 1-17

'snd ' resource type. See also sound resources
alternatives to 2-9
format 1 1-18, 2-74, 2-75 to 2-80, 3-45
format 2 1-18, 2-74, 2-80 to 2-81
introduced 1-16, 1-17 to 1-18
structure of 2-154 to 2-156

SndSetSysBeepState function 2-137 to 2-138
SndSoundManagerVersion function 2-35, 2-133
SndStartFilePlay function

default buffer allocation 1-27
described 1-36 to 1-38, 2-123 to 2-125
using to play sound files 1-19, 1-27

SndStopFilePlay function 2-53, 2-126 to 2-127
Sony sound chip 1-9
Sound Accelerator Chunks 2-82
sound channel records 2-25, 2-103 to 2-104
sound channels

allocating 2-20 to 2-22, 2-127
bypassing 1-12, 2-12
determining number allocated 2-40
executing callback procedures 2-94
flushing 2-28 to 2-29, 2-94
getting information about all channels 2-39 to 2-40,

2-136 to 2-137
getting information about a single channel 2-37 to

2-39, 2-135 to 2-136
initializing 2-22 to 2-24
installing voices into 2-43 to 2-45
introduced 1-11, 2-13 to 2-14
linking modifiers to 2-150
multiple 1-13 to 1-14, 2-14, 2-53 to 2-56
pausing 2-29 to 2-30, 2-94

playing notes in 2-95, 2-96
preconfiguring 2-97, 2-131, 2-132
reducing memory requirements of 2-21
reinitializing 2-23, 2-94
releasing 2-24 to 2-25, 2-129 to 2-130
restarting 2-29 to 2-30, 2-94
resting 2-96
sample rate of 2-97
sending commands 2-130 to 2-132
setting timbre of 2-96
setting volume of 2-96
specifying length of 2-21
stopping 2-28 to 2-29, 2-94, 2-125 to 2-127
synchronizing 2-30 to 2-31, 2-95
testing for multichannel sound capability 2-35 to

2-37
using low-level routines 2-62

sound channel status records 2-38, 2-101 to 2-102
soundCmd command 2-44, 2-97
sound command records 2-99 to 2-100
sound commands

data offset bit 2-75
in sound resources 2-155
introduced 1-11, 2-11 to 2-13
issuing 2-12, 2-130
list of constants for 2-12 to 2-13, 2-93 to 2-97
number per channel 2-21
referencing sampled-sound data 2-60
structure of 2-12

SoundComponentAddSource function 5-42 to 5-43
sound component chains 1-8 to 1-9, 5-4 to 5-5
SoundComponentData data type 5-8, 5-29 to 5-30
sound component data records 5-8, 5-29 to 5-30
sound component features flags 5-26 to 5-27
SoundComponentGetInfo function 5-18 to 5-21, 5-22

to 5-26, 5-44 to 5-45
SoundComponentGetSourceData function 5-40
SoundComponentGetSource function 5-39 to 5-40
sound component information selectors 5-18, 5-22 to

5-26
SoundComponentInitOutputDevice function 5-37 to

5-38
SoundComponentPauseSource function 5-48
SoundComponentPlaySourceBuffer function 5-27,

5-49
SoundComponentRemoveSource function 5-43 to 5-44
sound components 5-3 to 5-57

See also audio components
constants for 5-22 to 5-29
creating 5-8 to 5-11
data structures for 5-29 to 5-32, ?? to 5-32
defined 1-7 to 1-9, 5-4
getting information about 5-18 to 5-21, 5-22 to 5-26,

5-31, 5-44 to 5-45

I N D E X

IN-9

information selectors 5-18, 5-22 to 5-26
opening 5-16 to 5-18
opening resource files 5-16
registering 5-16 to 5-17
restoring preferences 5-36
routines defined by 5-36 to 5-49
run-time environment 5-16
setting information about 5-18, 5-22 to 5-26, 5-31,

5-45 to 5-46
storing preferences 5-35 to 5-36
subtypes of 5-10
types of 5-10
writing 5-8 to 5-21

SoundComponentSetInfo function 5-23 to 5-26, 5-45
to 5-46

SoundComponentSetOutput function 5-41 to 5-42
SoundComponentSetSource function 5-38 to 5-39
SoundComponentStartSource function 5-46 to 5-47
SoundComponentStopSource function 5-47 to 5-48
Sound control panels

effect on loudness of sounds 2-27
extensions to 1-10
and SysBeep procedure 1-24, 1-35, 2-121

sound data. See sampled-sound data, sounds,
square-wave data, wave-table data

SoundDataChunk data type 2-87, 2-117
Sound Data Chunks 2-82, 2-87, 2-117 to 2-118
sound double buffer header records 2-69, 2-111 to 2-112
sound double buffer records 2-69, 2-112 to 2-113
Sound Driver 2-7
sound files. See also AIFF files, AIFF-C files

advantages over sound resources 1-18
asynchronous playing 2-52
and Finder sound files 1-19
getting information about 2-62 to 2-66
introduced 1-18 to 1-20
pausing play 2-53
playing 1-26 to 1-27, 1-36 to 1-38, 2-123 to 2-125
playing several simultaneously 1-20
reading 2-87 to 2-89
recording 1-31, 1-40 to 1-41, 3-30
setting up 3-46 to 3-48
stopping play 2-53
structure of 2-81 to 2-89
translating between operating systems 1-18
writing 2-87 to 2-89

SoundHeader data type 2-104
sound header records 2-104 to 2-105
sound headers

accessing fields of 2-61
compressed 2-108 to 2-111
defined 2-10
extended 2-106 to 2-108
formats of 3-45
getting pointers to 2-57 to 2-61, 2-138 to 2-139

setting up 3-4, 3-44 to 3-46
standard 2-104 to 2-105
types of 2-10, 2-62

Sound In control panel 1-15 to 1-16
selecting sound input device from list 3-49

SoundInfoList data type 5-31 to 5-32
sound information lists 5-31 to 5-32
sound input completion routines

defined 3-9, 3-54 to 3-55
setting 3-6, 3-27

sound input device drivers 3-13 to 3-17
and continuous recording 3-17
getting information about 3-4, 3-41 to 3-44
installing and initializing 3-13
and Memory Manager errors 3-15
registering with Sound Input Manager 3-13, 3-48,

3-50
routines for 3-5
and stereo recording 3-16
storage for 3-13
types of requests drivers can handle 3-13

sound input device information selectors
introduced 3-5
list of 3-18 to 3-25
required selectors 3-15
reserved by Apple 3-15
responding to requests for more than 18 bytes of

data 3-13
sound input devices

changing settings of 3-10 to 3-12, 3-41 to 3-44
closing 3-4, 3-32 to 3-33
connection state 3-22
current 1-16
displaying Options dialog box for 3-23
generating list of 3-49 to 3-50
getting information about 3-4, 3-10 to 3-12, 3-18 to

3-25
opening 3-4, 3-9, 3-31 to 3-32
recording directly from 3-6 to 3-9, 3-33 to 3-38
registering 3-48 to 3-51

sound input interrupt routines
defined 3-10, 3-55 to 3-56
executing from sound input device driver 3-16
setting 3-6, 3-27

Sound Input Manager 3-3 to 3-67
application-defined routines 3-53 to 3-56
completion routines 3-9, 3-54 to 3-55
constants in 3-17 to 3-25
data structures in 3-26 to 3-27
interrupt routines 3-10, 3-55 to 3-56
introduced 1-5, 1-15 to 1-17
recording features 3-5
routines in 3-27 to 3-53
testing for availability 3-13, 3-17 to 3-18
testing for version 3-53

I N D E X

IN-10

sound input parameter blocks
accessing from a sound input device driver 3-15
format of 3-6, 3-26 to 3-27
setting up 3-7 to 3-8
uses for 3-26

Sound Manager 2-5 to 2-189
application-defined routines 2-151 to 2-154
and audio components 6-3 to 6-5
callback procedures 2-46 to 2-51, 2-152 to 2-153
completion routines 2-47, 2-151 to 2-152
constants in 2-89 to 2-99
data structures in 2-99 to 2-119
doubleback procedures 2-153 to 2-154
enhanced 1-14 to 1-15
features new in version 3.0 1-14
improving efficiency 2-61
introduced 1-5, 1-9 to 1-15
obtaining information 2-32 to 2-41
relation to audio hardware 1-11
routines in 2-119 to 2-151
and sound components 5-4 to 5-8
sound component utility routines 5-33 to 5-36
testing for features 2-33 to 2-34, 2-35 to 2-37, 2-90 to

2-91
testing for version 2-34 to 2-35, 2-133
turning off sound output 2-27

Sound Manager status records 2-39, 2-102
Sound Out control panel 1-10
sound output device components 5-5, 5-46 to 5-49
sound output devices

initializing 5-17 to 5-18, 5-37 to 5-38
sound output rate 2-16
SoundParamBlock data type 5-30 to 5-31
sound parameter blocks 5-30 to 5-31
sound queues

bypassing 1-12, 2-11
specifying size 2-21

sound recording dialog box
customizing behavior of 1-29, 3-4
filtering events in 1-29
introduced 1-17
recording sounds with 1-28 to 1-31

sound-recording equipment
checking for 1-27 to 1-28
types supported 1-27

sound resource headers 2-155 to 2-156
sound resources. See also 'snd ' resource type

alternatives to 2-9
containing sampled-sound data 2-77
creating manually 2-155
format of 2-74 to 2-80, 2-154 to 2-155
freeing memory after playing 2-25
getting information about 2-57 to 2-61
introduced 1-17 to 1-18
number of commands used in 2-21

playing
described 1-25 to 1-26, 1-35 to 1-38, 2-121 to 2-123,

2-123 to 2-125
example of use 2-57
ignoring parts of 2-61
large resources with a small buffer 2-61

recording 1-28 to 1-30, 1-39 to 1-40, 3-28 to 3-29
reserved IDs 2-75, 2-154

sounds. See also sampled sounds
amplitude 2-8, 2-27 to 2-28
changing output channel for 2-24
computed 2-9
determinants of loudness 2-27
digitally recorded 2-9
duration 2-7
frequency 2-7
installing into System file 1-19
looping 2-45 to 2-46
manipulating while playing 2-25 to 2-28
mixing 5-6 to 5-7
pitch 2-7
recording. See recording sounds
sample rate. See sample rates
synchronizing with other actions 2-51
timbre 2-8
volume 2-8

sound sources
adding 5-42 to 5-43
pausing 5-48
removing 5-43 to 5-44
starting 5-46 to 5-47
stopping 5-47 to 5-48

sound storage formats 2-74 to 2-89
source components 5-5, 5-38 to 5-40
source IDs 5-7
sources. See sound sources
SPBBytesToMilliSeconds function 3-52
SPBCloseDevice function 3-4, 3-32 to 3-33
SPB data type 3-6, 3-26
SPBGetDeviceInfo function

described 3-42
example of use 3-8
information selectors, list of 3-20 to 3-25
introduced 3-5
using in interrupt routines 3-10

SPBGetIndexedDevice function 3-31, 3-49 to 3-50
SPBGetRecordingStatus function 3-40 to 3-41
SPBMilliSecondsToBytes function 3-51 to 3-52
SPBOpenDevice function 3-31 to 3-32

example of use 3-8
introduced 3-4
and sound input parameter blocks 3-26

SPBPauseRecording function 3-4, 3-38
SPBRecord function 3-33 to 3-35

example of use 3-8

I N D E X

IN-11

introduced 3-4
and sound input completion routines 3-9

SPBRecordToFile function 3-4, 3-35 to 3-38
SPBResumeRecording function 3-4, 3-39
SPBSetDeviceInfo function 3-5, 3-10, 3-43 to 3-44
SPBSignInDevice function 3-5, 3-48 to 3-49
SPBSignOutDevice function 3-5, 3-50 to 3-51
SPBStopRecording function

described 3-39 to 3-40
introduced 3-4
and sound input completion routines 3-9, 3-27
and sound input parameter blocks 3-27

SPBVersion function 3-53
SpeakBuffer function 4-57 to 4-59
SpeakString function 1-33 to 1-34, 1-42 to 1-43, 4-55

to 4-56
SpeakText function 4-56 to 4-57
speech

bilingual 1-22, 4-9
continuous 4-19, 4-51, 4-58
minimizing latency period of 4-52, 4-59
multilingual 1-22, 4-9
pausing 4-18 to 4-19, 4-61 to 4-62
phonemic representation of 4-32 to 4-34, 4-37
resuming 4-19, 4-62 to 4-63
starting 4-18 to 4-19, 4-56 to 4-59
stopping 1-33 to 1-34, 1-42, 4-18 to 4-19, 4-56, 4-59 to

4-61
synchronous generation 1-33
tonal qualities of 1-21, 4-5

speech amplitude. See speech volume
speech attributes

changing the rate and pitch 4-16 to 4-17, 4-74 to
4-75, 4-76

defined 4-6 to 4-9
SpeechBusy function 1-43, 4-72
SpeechBusySystemWide function 4-72 to 4-73
speech channel control flags

changing during speech 4-83
described 4-51 to 4-52, 4-58 to 4-59

speech channels
changing settings of 4-78 to 4-79
control flags. See speech channel control flags
creating 4-13 to 4-14, 4-69 to 4-70
defined 1-22, 4-9
disposing of 4-13 to 4-14, 4-70 to 4-71
getting information about 4-77 to 4-78
limitations on 1-22, 4-10
multiple 1-22, 4-10
number synthesizing speech 4-72
preventing interruption of speech 4-51, 4-58
reference constant values 4-20
setting up callback procedures 4-21
speaking text with 4-13 to 4-14
and suspend events 4-70

speech commands. See embedded speech commands
speech components 1-20, 4-5
speech-done callback procedures 4-19, 4-84 to 4-85
SpeechErrorInfo data type 4-49
speech error information records 4-49 to 4-50
speech extension data records 4-53 to 4-54
speech generation process 1-20 to 1-22, 4-4
speech information selectors 4-39 to 4-45
speech input mode 4-33
Speech Manager 4-3 to 4-110

application-defined routines 4-82 to 4-89
callback procedures 4-10, 4-19 to 4-23
common uses of 4-3
and Component Manager 1-20, 4-5
constants in 4-39 to 4-45
data structures in 4-45 to 4-54
future improvements in 1-21, 4-5
introduced 1-5, 1-20 to 1-22
memory requirements of 1-22, 4-32
position in speech generation process 1-20, 4-5
resources 4-89 to 4-93
result code of routines 4-55
routines in 4-54 to 4-82
and Sound Manager 4-3
testing for availability 1-31 to 1-32, 4-12 to 4-13
testing for version 4-71 to 4-72
and voices 4-5 to 4-6, 4-14 to 4-16, 4-63 to 4-68

SpeechManagerVersion function 4-71 to 4-72
speech modulation. See pitch modulation
speech pitch

causing rise or fall in 4-35
changing 4-16 to 4-17, 4-76
defined 4-7
distinguished from frequency 4-8
getting 4-75 to 4-76
and Hertz values 4-7
range used by human voices 4-7

speech rate
changing 4-16 to 4-17, 4-74 to 4-75
defined 4-6, 4-43
getting 4-73 to 4-74

speech rate embedded speech command 4-28
SpeechStatusInfo data type 4-49
speech status information records 4-48 to 4-49
speech synthesizer resources 4-89
speech synthesizers

defined 1-20, 4-4
getting information about phonemes supported 4-34
internal dictionaries 4-91
memory requirements of 4-10
minimizing latency period of 4-52, 4-59

SpeechVersionInfo data type 4-50
speech version information records 4-50 to 4-52
speech volume 4-45

defined 4-9

I N D E X

IN-12

speech volume embedded speech command 4-29
SpeechXtndData data type 4-53
square-wave data 2-7 to 2-8
standard sound headers 2-104 to 2-105
StateBlock data type 2-119
state blocks 2-119
state buffers, used by MACE routines 2-67
Status calls 3-5, 3-13 to 3-15
stereo sounds

defined 2-106
expanding 2-15
recording 3-16
storage format of 2-10

stopping speech 4-59 to 4-61
StopSpeechAt function 4-60 to 4-61
StopSpeech function 4-59 to 4-60
strings, converting into speech. See speech generation
'STR ' resource type 5-9, 6-6
suspend events, disposing of speech channels in

response to 4-70
syllable break symbols 4-34
syncCmd command 2-30 to 2-31, 2-94
sync embedded speech command selector 4-29
synchronization callback procedures 4-19 to 4-20, 4-85

to 4-86
synchronization embedded speech command 4-29
synchronization messages 4-20
synchronizing sound channels 2-30 to 2-31, 2-95
synchronizing sounds with other actions 2-51
synthesizers. See speech synthesizers
synthesizer-specific embedded speech command 4-29
SysBeep procedure

described 1-35, 2-120 to 2-121
example use of 1-24
using as notification 1-25

system alert sounds
determining status of 2-40 to 2-41, 2-137
disabling 2-40 to 2-41
editing list of 1-16
enabling 2-40 to 2-41
installing new sound 1-19
producing 1-24 to 1-25, 1-35, 2-120 to 2-121
setting status of 2-137 to 2-138

T

text
conversion into phonemes 4-32 to 4-33, 4-79 to 4-80
specifying allophones in 4-33

text-done callback procedures 4-19, 4-82 to 4-84
text processing modes 4-42
TextToPhonemes function 4-32, 4-79 to 4-80
text-to-speech. See Speech Manager

'thng' resource type 5-8 to 5-11, 6-5 to 6-7
ticks, used to time system alert sounds 1-25
timbre 2-8, 2-28, 2-96
timbreCmd command 2-28, 2-96
Time Manager, and synchronizing sounds 2-31
totalLoadCmd command 2-95
'ttsd' resource type 4-91
two’s complement encoding 2-11

U

uncompressed sound data. See decompressed sound
data, noncompressed sound data

unit table, installing sound input device driver
into 3-13

unsigned fixed-point numbers, multiplying and
dividing 2-149

UnsignedFixMulDiv function 2-149
UseDictionary function 4-38, 4-81 to 4-82
user interface guidelines, for sound 1-23 to 1-24
utility components 5-6

V

vers embedded speech command selector 4-29
versionCmd command 2-95
version embedded speech command 4-29
version records 2-118
version resources 2-35, 2-118
'vers' resource type 2-35, 2-118
VoiceDescription data type 4-47
voice description records 4-16, 4-47 to 4-48
VoiceFileInfo data type 4-48
voice file information records 4-48
voice resources 4-89
voices

characteristics of 4-6 to 4-9
counting 4-14, 4-64 to 4-65
defined 4-5 to 4-6
getting a description of 4-14, 4-66 to 4-67
identifying 4-14, 4-65 to 4-66
installing into sound channels 2-10, 2-43 to 2-45
synthesized 1-22
updating information about 4-66

VoiceSpec data type 4-46
voice specification records 4-46 to 4-47, 4-64
volm embedded speech command selector 4-29
volume. See also amplitude, speech volume

defined 2-8
volumeCmd command 2-31, 2-96

I N D E X

IN-13

volume levels, controlling 2-31 to 2-32, 2-96 to 2-97,
2-139 to 2-142

Volumes control panel 6-4 to 6-5
VOX recording 3-5, 3-25
VOX stopping 3-5, 3-25

W

waitCmd command
described 2-94
example of use 2-29

waveTableCmd command 2-44, 2-97
wave-table data 2-8
wave tables 2-8, 2-44
word callback procedures

described 4-88 to 4-89
example of 4-22

word prominence symbols 4-34

X, Y, Z

xtnd embedded speech command selector 4-29

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe Illustrator™ and
Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER

Tim Monroe

WRITERS

Tim Monroe, Michael Abramowicz,
Lori E. Kaplan

DEVELOPMENTAL EDITORS

Sanborn Hodgkins, Wendy Krafft,
Antonio Padial, Laurel Rezeau,
Beverly Zegarski

ILLUSTRATORS

Shawn Morningstar, Barbara Carey

ART DIRECTOR

Bruce Lee

PRODUCTION EDITOR

Gerri Gray

PROJECT MANAGER

Patricia Eastman

COVER DESIGNER

Barbara Smyth

Special thanks to Mark Cecys, Kip Olson,
Jim Reekes, and Tim Schaaff.

Acknowledgments to Bob Aron,
Ray Chiang, Ron Dumont,
Sharon Everson, Eric “Braz” Ford,
Jim Nitchals, Guillermo Ortiz,
Kim Silverman, George Towner,
Randy Zeitman, and the entire
Inside Macintosh team.

